
Old Dominion University Old Dominion University 

ODU Digital Commons ODU Digital Commons 

Civil & Environmental Engineering Faculty 
Publications Civil & Environmental Engineering 

6-2023 

Optimal Domain-Partitioning Algorithm for Real-Life Optimal Domain-Partitioning Algorithm for Real-Life 

Transportation Networks and Finite Element Meshes Transportation Networks and Finite Element Meshes 

Jimesh Bhagatji 

Sharanabasaweshwara Asundi 

Eric Thompson 

Duc T. Nguyen 

Follow this and additional works at: https://digitalcommons.odu.edu/cee_fac_pubs 

 Part of the Computer-Aided Engineering and Design Commons, Theory and Algorithms Commons, 

and the Transportation Engineering Commons 

https://digitalcommons.odu.edu/
https://digitalcommons.odu.edu/cee_fac_pubs
https://digitalcommons.odu.edu/cee_fac_pubs
https://digitalcommons.odu.edu/cee
https://digitalcommons.odu.edu/cee_fac_pubs?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/297?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1329?utm_source=digitalcommons.odu.edu%2Fcee_fac_pubs%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages


Citation: Bhagatji, J.; Asundi, S.;

Thompson, E.; Nguyen, D.T. Optimal

Domain-Partitioning Algorithm for

Real-Life Transportation Networks

and Finite Element Meshes. Designs

2023, 7, 82. https://doi.org/

10.3390/designs7040082

Academic Editor: Emadaldin

Mohammadi Golafshani

Received: 16 February 2023

Revised: 10 May 2023

Accepted: 15 May 2023

Published: 27 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Optimal Domain-Partitioning Algorithm for Real-Life
Transportation Networks and Finite Element Meshes
Jimesh Bhagatji 1 , Sharanabasaweshwara Asundi 1 , Eric Thompson 1 and Duc T. Nguyen 2,*

1 Department of Mechanical and Aerospace Engineering, Old Dominion University, Norfolk, VA 23529, USA
2 Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
* Correspondence: dnguyen@odu.edu

Abstract: For large-scale engineering problems, it has been generally accepted that domain-partitioning
algorithms are highly desirable for general-purpose finite element analysis (FEA). This paper presents
a heuristic numerical algorithm that can efficiently partition any transportation network (or any
finite element mesh) into a specified number of subdomains (usually depending on the number
of parallel processors available on a computer), which will result in “minimising the total num-
ber of system BOUNDARY nodes” (as a primary criterion) and achieve “balancing work loads”
amongst the subdomains (as a secondary criterion). The proposed seven-step heuristic algorithm
(with enhancement features) is based on engineering common sense and observation. This current
work has the following novelty features: (i) complicated graph theories that are NOT needed and
(ii) unified treatments of transportation networks (using line elements) and finite element (FE) meshes
(using triangular, tetrahedral, and brick elements) that can be performed through transforming the
original network (or FE mesh) into a pseudo-transportation network which only uses line elements.
Several examples, including real-life transportation networks and finite element meshes (using trian-
gular/brick/tetrahedral elements) are used (under MATLAB computer environments) to explain,
validate and compare the proposed algorithm’s performance with the popular METIS software.

Keywords: domain-partitioning algorithm; finite element meshes; METIS software

1. Introduction

For large-scale engineering/science problems, it has been generally accepted that
domain-partitioning algorithms [1–10] are highly desirable for general-purpose finite ele-
ment analysis [11–16]. Domain-partitioning (DP) procedures can be considered as “divide
and conquer” strategies, in which a large-scale (and complicated) problem is divided into
several smaller (and simpler) subdomains [17–20]. This strategy is not only efficient but
also blends very well with modern computer hardware with multiple parallel processors
(each subdomain can be independently assigned to different processors for further analysis).
This paper presents a simple/heuristic numerical algorithm that can efficiently partition
any transportation networks and/or any finite element meshes into a specified number
of subdomains (usually depending on the number of parallel processors available on a
computer) which will result in “minimising the total number of system BOUNDARY nodes”
and “balancing the work-loads” amongst the subdomains (as a secondary criteria). This
current work represents several novelty features as compared to our previous work, such
as unified treatments of transportation networks (using line elements) and finite element
(FE) meshes (using triangular, tetrahedral, brick elements) that can be performed through
transforming the original network (or FE mesh) into a pseudo-transportation network
which only uses line elements. While different partitioning algorithms [21–24] and current
advanced optimisation algorithms [25–27] have been reported in the literature, our work
will focus on the comparisons with the METIS algorithm/software [21] (since METIS has
been most widely used by researchers around the world).
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In Section 2, a brief summary of the originally developed seven-step heuristic DD parti-
tioning algorithm is highlighted [1,17]. In Section 3, additional algorithm details/refinements
to enhance the performance of the proposed seven-step partitioning algorithm are dis-
cussed [18]. In Section 4, real-life transportation networks (under MATLAB computer
environments) are used to validate the proposed algorithm and to compare its performance
with the popular METIS software [1,21]. For DP finite element analysis (FEA), minimising
the number of system boundary nodes will lead to minimising the communication time
amongst different processors in parallel computing environments. This time saving usually
occurs during the solution of simultaneous linear equations (SLE) for which the SLE can
be effectively solved by the mixed direct-iterative sparse solver with appropriated precon-
ditioners [11,18–20,28]. Domain-partitioning (DP) examples for finite element meshes are
presented in Section 5. Finally, conclusion and suggested future works are discussed in
Section 6.

2. A Review of the Basic Seven-Step Heuristic Algorithm for Domain Partitioning

This section reviews the basic seven-step heuristic algorithm for domain-partitioning [1],
which provides a systematic approach for decomposing a domain into a predefined number
of interconnected subdomains. It provides a step-by-step process for partitioning a domain
into smaller subdomains while minimising the number of system boundary nodes.

As shown in Figure 1, we would like to divide the given transportation network with
15 nodes and 24 links into three subdomains in such a way (i) to minimise (or reduce) the
total number of system boundary nodes (SBN) and (ii) to achieve a “work-load balancing”
among different subdomains. By “eyes observation”, one can see that Figure 1 itself
represents such optimum (or near optimum) partitions, with subdomain-1 having nodes
N01–N05, subdomain-2 having nodes N11–N15, and subdomain-3 having nodes N06–N10.
There are only three SBNs (nodes N05, N08, and N12). However, for a general (large-scale)
network with thousands of nodes and links, we need to develop a heuristic DP algorithm
to automatically partition (or divide) the original network into a user-specified number of
subdomains, which is briefly summarised [1] in the following steps:

Figure 1. Seven-step domain-partitioning algorithm.

Step 1. Initialise the problem: In this step, we simply provide the input data which
describe the network’s connectivity information.

Step 2. Determine nodal ranks: In this step, the rank for each ith node can be computed
(or defined) as the number of surrounding nodes connected to the ith node.

Step 3. Determine first-source (starting) node for each kth subdomain: The first starting
node for the kth = 1th subdomain will be node N01 because node N01 has the
lowest rank.

Step 4. Determine other-source (starting) nodes for each remaining kth subdomain:
The starting node for each remaining kth subdomain will also have the lowest
rank. Furthermore, its starting node should be far away from the starting node
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of other subdomains. Based on these criteria (and the “tie-breaking” rules),
the starting nodes for the second and third subdomains are nodes N11 and
N06, respectively.

Step 5. Populate more (two-node) LINE elements or (three-node) TRIANGULAR ele-
ments simultaneously to each kth subdomain: In this step, additional nodes are
populated into each subdomain based on the following criteria: (i) the newly
added node to its kth subdomain must be connected to at least one of the existing
nodes and (ii) the newly added node to its kth subdomain must be very close to
its subdomain’s starting node.

Step 6. Identify system boundary nodes (SBN): The SBN can be found by creating a loop
that will process every (LINE) eth element of the entire original network. For
each eth (line) element, we can identify its two end-nodes. These two end-nodes
are considered as “SBN” if these two end-nodes belong to different subdomains.
Otherwise, these two end-nodes will be declared as “interior nodes”.

Step 7. Renumber the nodes: In this (last) step, the entire original node numbering
system will be re-numbered in such a way that all “SBN” will be numbered
last. For example, the original SBNs N05, N08 and N012 will be renumbered as
SBNs N013, N014 and N015, respectively.

3. Extension of the Basic Seven-Step Domain Partitioning Algorithm for General
Finite Element Mesh Partitioning

The seven-step domain-partitioning (DP) algorithm described in the previous sections
has been specifically developed for finding the shortest path (SP) of a given transportation
network [1]. The objectives of this section are two-fold:

i. The proposed seven-step DP algorithm can be generalised to include a wider range
of different elements in the “elements library,” including two-node LINE elements
that can serve as links or arcs in transportation networks or as two-node truss/beam
elements in finite element (FE) meshes, as well as three-node triangular elements, four-
node quadrilateral elements, eight-node brick elements, and four-node tetrahedral
elements used in 2D and 3D FE analysis.

ii. An emphasis was placed on enhancing the effectiveness of 2D and 3D FE analysis.

We introduce a concept of the “original network” and the “transformed network” to
facilitate the application of a general-purpose DP algorithm to problems such as finding the
shortest path (SP) of a given transportation network or solving the system of simultaneous
linear equations (SLE) of a given 1D, 2D, or 3D FE mesh. The former consists of a set of
“original nodes” and “original links, or original elements”, and the latter consists of a set of
“pseudo-nodes” and “pseudo-links”, or “pseudo-elements”.

It is rather obvious from Figure 2a–c that

• The intersection of any (different) pair of (two-node) LINE elements will be a NODE
(see Figure 2a).

• For 2D applications, the intersection of any (different) pair of (three-node) TRIANGU-
LAR elements will be a LINE (see Figure 2b).

• For 3D applications, the intersection of any (different) pair of (eight-node) BRICK
elements will be a four-node SURFACE (see Figure 2c).

Similarly, for additional 2D applications, the intersection of any (different) pair
of (four-node) RECTANGULAR (or QUADRILATERAL) elements will be a LINE (see
Figure 3a). For additional 3D applications, the intersection of any (different) pair of (four-
node) TETRAHEDRAL elements will be a three-node SURFACE (see Figure 3b).
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Figure 2. Element connectivity information (E: element; N: nodes): (a) two-node (LINE) elements;
(b) three-node (TRIANGULAR) elements; (c) eight-node (BRICK) elements. The figure shows
only portions of the “original network” with two-node LINE elements, three-node TRIANGULAR
elements, and eight-node brick elements, for 1D, 2D, and 3D analysis, respectively.

Figure 3. Element connectivity information: (a) four-node (QUADRILATERAL) elements; (b) four-
node (TETRAHEDRAL) elements. The figure shows only portions of the “original network” four-node
TRIANGULAR elements and four-node brick elements, for 2D and 3D analysis, respectively.

The following examples will illustrate the “unified ideas” for constructing the “trans-
formed network” from a given “original network” for the purpose of implementing the
proposed seven-step domain-partitioning (DP) algorithm.

3.1. Example 1: Two-Node LINE Elements for Truss (or Beam) FEA

Figure 4a displays the “original network” of a 2D truss structure composed of five
nodes and seven LINE elements, while Figure 4b shows the associated 7× 3 “element
connectivity” matrix data. The first column (under the label “E”) denotes the seven truss
element numbers, while the second and third columns specify the two nodes associated
with each LINE (or truss) element. For instance, element E01 is connected from node N01
to node N02. The numbers inside the small circles represent the “rank” associated with
each node [1,17]. For example, node N02 has a rank of three, as it is surrounded by nodes
N01, N03, and N04, as well as three LINE elements E01, E03, and E04. Likewise, node N03
(Figure 4a) has a rank of four, as it is bordered by LINE elements E02, E03, E05 and E06. To
construct the corresponding “transformed network”, the following rules are applied:

i. The “transformed network” is constructed by assigning a “pseudo-node" to each
actual LINE element in the original network, resulting in a total of seven pseudo-
nodes in this example, which are labelled from E01 to E07 (see Figure 5a).

ii. The number of “pseudo-links” in the “transformed network” corresponds to the total
number of INTERSECTIONS between different pairs of LINE elements in the original
network. As shown in Figure 5a, node N01 is the INTERSECTION of two LINE
elements E01 and E02; thus, only one INTERSECTION (between E01 and E02) will be
allocated a pseudo-link.
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Figure 4. (E: element; N: nodes): (a) “Original FEM Network” with five nodes and seven links;
(b) connectivity matrix information.

Figure 5. (a) “Transformed Network” with seven pseudo-nodes and fourteen pseudo-links;
(b) connectivity matrix information.

Figure 4a shows node N02 as the INTERSECTIONS of three (LINE) elements E01, E03
and E04, resulting in three INTERSECTIONS (between E01 and E03, E01 and E04, and E03
and E04 pairs). The same figure shows node N03 as the INTERSECTIONS of four (LINE)
elements E02, E03, E05 and E06, resulting in three INTERSECTIONS (between E02 and E03,
E02 and E05, E02 and E06, E03 and E05, E03 and E06, and E05 and E06 pairs). In general, if
a node is an INTERSECTION of “n” (LINE) elements, the number of INTERSECTIONS
(Nint) of that node can be calculated using Equation (1). As an example, if a node is the
INTERSECTION of five (LINE) elements, it will have ten INTERSECTIONS [1 + 2 + 3 + 4].

Nint =
n−1

∑
i=1

i (1)

The number of INTERSECTIONS in the truss example of Figure 4a is equal to the total
of the ranks at each node, which is 1 (at node N01) + 3 (at node N02) + 6 (at node N03) +
3 (at node N04) + 1 (at node N05) = 14. This number of intersections is also equal to the
number of “pseudo-links” in the “transformed network”, labelled as L01, L02, L03, . . . , L13,
L14, as shown in Figure 5a,b. The third and fourth columns of Figure 5b indicate the pair
of elements that intersect at each node, as indicated in the second column of Figure 5b. For
example, row 8 of the 14× 4 matrix in Figure 5b shows that pseudo-link L08 consists of
elements E03 and E05 and intersects at node N03, while row 4 of the same matrix shows
that “pseudo-link” L04 consists of elements E02 and E03 and intersects at node N03.
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3.2. Example 2: Three-Node TRIANGULAR Elements for Finite Element Analysis (FEA)

The “element connectivity” matrix data from Figure 6b show that the “original net-
work”, displayed in Figure 6a, has eight nodes and six TRIANGULAR elements connected
in a manner such that the first column (labelled “E”) contains the six TRIANGULAR el-
ement numbers and the second, third and fourth columns contain the nodes associated
with each element; for example, element E01 is connected by nodes N01, N02, and N03.
Similarly, element E06 is connected by nodes N03, N02, and N08.

Figure 6a displays two networks: Network-1 with eight nodes and six elements
(solid line) and Network-2 with eight nodes and eight elements (six elements represented
by a solid line and two elements represented by a dotted line). Figure 6b illustrates
the corresponding connection matrix of the networks from Figure 6a, with Network-1’s
connectivity matrix represented by the first six rows of the matrix (above the dotted line),
and Network-2’s connectivity matrix represented by the entire matrix (including the rows
below the dotted line).

Figure 6. (a) The “original network” with eight nodes and 6/8 (TRIANGULAR) elements (E: element;
N: nodes). Network-1 contains eight nodes and six elements represented by solid lines, while
Network-2 contains eight nodes and eight elements, of which six elements are represented by solid
lines and two elements are represented by dotted lines; (b) connectivity matrix information.

To construct the corresponding “Transformed Network”, the same (previously dis-
cussed) rules are applied:

i. The number of “pseudo-nodes” in the “transformed network” will be equal to the
number of actual TRIANGULAR elements in the “original network”. Thus, in this
example, the number of “pseudo-nodes” is equal to six, and these pseudo-nodes are
labelled as node numbers E01, E02, . . . E06 (see Figure 6).

ii. The number of “pseudo-links” in the “transformed network” will be equal to “the
total number of INTERSECTIONS of all (different) pairs of TRIANGULAR elements”
in the “original network”. In Figure 6, triangular element E01 will INTERSECT with
its adjacent (triangular element) neighbours E02, E05, and E06 at three “boundary
LINES” connected by nodes N01 and N02, nodes N01 and N03, and nodes N03 and
N02, respectively.

iii. Similarly, triangular element E02 will INTERSECT with its adjacent (triangular el-
ement) neighbours E01, E03, and E04 at two additional (new) “boundary LINES”
connected by nodes N02 and N04 and by nodes N01 and N06, respectively.

Remarks:
• In Figure 6, “Boundary LINE” connected by nodes N01 and N02 has already been

accounted for in rule (ii); hence, this boundary line will not be counted twice.
• In Figure 6, triangular E03 is adjacent to triangular E02 and shares the “boundary

LINE” connected by nodes N02 and N04, which has already been accounted for in
rule (iii); hence, this boundary line will not be counted twice.



Designs 2023, 7, 82 7 of 20

The “transformed network” in this example comprises six pseudo-nodes (E01, E02,
E03, E04, E05, and E06) and five pseudo-links (L01, L02, L03, L04, and L05), as depicted in
Figure 7a,b. If two additional triangular elements (E07 and E08) are included (see Figure 6a),
the “transformed network” is composed of eight pseudo-nodes (E01, E02,. . . , E08) and nine
pseudo-links (L01, L02, . . . , L09), as seen in Figure 7a,b.

Figure 7. (a) The “Transformed Network” with “6 and 8 pseudo-nodes” and “5 and 9 pseudo-links”,
(L: pseudo-link ; E: element; N: nodes); (b) connectivity matrix information.

Figure 7a shows two transformed networks (TN): TN-1 comprising six pseudo-nodes
and five pseudo-links (represented by solid lines) and TN-2 comprising eight pseudo-nodes
and nine pseudo-links (five pseudo-links represented by solid lines and four pseudo-links
represented by dotted lines). Figure 7b provides the respective connection matrices of the
two TN shown in Figure 7a, with TN-1’s connectivity matrix represented by the first five
rows of the matrix (above the dotted line) and TN-2’s connectivity matrix represented by
the entirety of the matrix (including the rows below the dotted line).

3.3. Example 3: Eight-Node BRICK Elements for Finite Element Analysis (FEA)

The “original FEM network” depicted in Figure 8a, composed of sixteen nodes and
three eight-node BRICK elements, is represented by the associated 3 × 9 “element connec-
tivity” matrix data shown in Figure 8b. The first column, labelled “E”, indicates the three
BRICK element numbers, while the subsequent columns label the eight nodes associated
with each element. For example, the BRICK element E01 is connected by nodes N01, N04,
N05, N08, N09, N12, N13, and N16, while BRICK element E03 is connected by nodes N08,
N05, N06, N07, N16, N13, N14, and N15. For example, the “transformed network” will
have only “3 pseudo-nodes”, and “2 pseudo-links”, as can be seen in Figure 9.

To construct the corresponding “transformed network”, the same (previously dis-
cussed) rules are applied:

i. The number of “pseudo-nodes” in the “transformed network” will be equal to the
number of actual BRICK elements in the “original network”. Thus, in this example,
the number of “pseudo-nodes” is equal to three, and these pseudo-nodes are labelled
as node numbers E01, E02, and E03 (see Figure 9a).

ii. The number of “pseudo-links” in the “transformed network” will be equal to “the
total number of INTERSECTIONS of all (different) pairs of BRICK elements” in
the “original network”. In Figure 8a, BRICK element E01 will INTERSECT with its
adjacent (BRICK element) neighbours E02 and E03 at two “boundary (four-node)
SURFACES” connected by nodes N01, N04, N12 and N09 and nodes N08, N05, N13
and N16, respectively.
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Figure 8. (a) Original FEM network with sixteen nodes and three (eight-node BRICK) elements;
(b) connectivity matrix information.

Figure 9. (a) “Transformed Network” with three pseudo-nodes and two pseudo-links, (L: pseudo-link;
E: element; N: nodes); (b) connectivity matrix information.

3.4. Example 4: Four-Node TETRAHEDRAL Elements for Finite Element Analysis (FEA)

The “original FEM network”, depicted in Figure 10a, consists of six nodes and three
(four-node tetrahedral) elements. The corresponding 3× 5 element connectivity matrix
is presented in Figure 10b. The first column of the matrix, labelled “E”, denotes the three
tetrahedral elements. The remaining four columns denote the four nodes that make up
each element, such as element E01, which is composed of nodes N01, N02, N03, and N04,
and element E03, which is composed of nodes N02, N03, N04, and N06. In this example,
the “transformed network” will have only “3 pseudo-nodes” which have been labelled as
nodes E01, E02, E03, and “2 pseudo-links” which have been labelled as links L01 and L02,
as can be seen in Figure 11.

Figure 10. (a) “Original FEM Network” with six nodes and three (four-node TETRAHEDRAL)
elements (E: element; N: modes); (b) connectivity matrix information.

To construct the corresponding “transformed network”, the same (previously dis-
cussed) rules are applied:

i. The number of “pseudo-nodes” in the “transformed network” will be equal to the
number of actual TETRAHEDRAL elements in the “original FEM network”. Thus, in
this example, the number of “pseudo-nodes” is equal to three, and these pseudo-nodes
are labelled as node numbers E01, E02, and E03 (see Figure 11).

ii. The number of “pseudo-links” in the “transformed network” will be equal to “the
total number of INTERSECTIONS of all (different) pairs of TETRAHEDRA elements”
in the “original FEM network”. In Figure 10, TETRAHEDRAL element E01 will
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INTERSECT with its adjacent (TETRAHEDRAL element) neighbours E02, and E03 at
two “boundary (three-node) SURFACES” connected by nodes N01, N02 and N03 and
/by nodes N02, N03 and N04, respectively.

Figure 11. (a) “Transformed Network” with three pseudo-nodes and two pseudo-links (L: pseudo-
link); (b) connectivity matrix information.

4. Domain-Partitioning Examples for Real-Life Transportation Network

This study investigates the performance of the proposed seven-step domain-partitioning
(DP) algorithm with enhancement features on three real-life transportation networks, each
of which is divided into two, three, and four subdomains. In domain decomposition (DD)
FE partitioning analysis, it is important to minimise the total number of boundary nodes
(in order to minimise the communication time amongst different processors, this is the
primary criteria) and to maintain “work-load balancing” amongst different processors (in
order to avoid idle time amongst different processors, this is the secondary criteria). To
assess the results, a comparison between the proposed seven-step DP algorithm and the
widely used METIS algorithm/software [21] is conducted, with particular emphasis on the
total number of system boundary nodes generated and the computation time. A visualised
sparsity pattern of the transportation network matrix is presented before and after the DP
algorithm is implemented, with the aim of producing a “block diagonal pattern”. A sum-
mary table is provided for each transportation network, which includes the total number
of system boundary nodes generated by the proposed seven-step DP algorithm and the
METIS algorithm/software, as well as the computation time for the proposed seven-step.

4.1. Example 1: Anaheim (Real-Life) Transportation Network

A real-life transportation network of Anaheim, consisting of 416 nodes and 914 links,
was used to demonstrate the application of DP into subdomains of two, three and four.
The input data for the network was sourced from the Git-Hub repository [29]. Figure 12a
depicts the sparsity pattern of the matrix, representing the node connections of the given
network prior to renumbering. The axes of the matrix correspond to the assigned node
numbers, with the x-axis representing the source nodes and the y-axis representing the
target nodes. The node connections after renumbering into two subdomains are presented
in Figure 12b, while Figure 12c,d demonstrate the node connections after renumbering into
three and four subdomains, respectively, using the seven-step shortest distance partitioning
algorithm (SDPA).

SDPA was found to reduce the number of boundary nodes for two, three and four
subdomains (as compared to METIS), as evident from Table 1. Although METIS [21]
took less time when compared to SDPA’s solution time, this is not a fair comparison,
due to the following reasons: (i) The computer configuration used by METIS is of higher
configuration computation power (in terms of more RAM memory and higher number
of parallel processing cores) in comparison to the “sequential” and lower RAM memory
used in this present work. (ii) It has been shown in [1] that the domain-partitioning (pre-
processing) time is “insignificant” as compared to the “total analysis time”, such as finding
the shortest paths from all source nodes to all destination nodes in a transportation network
or finding the joint displacements and element stresses of a finite element mesh.
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Figure 12. Visualised sparsity pattern of node connection matrix for Anaheim network.

Table 1. Summary table of the Anaheim network. Comparison of SDPA’s number of boundary nodes
and time with METIS. Computation time is in seconds for each step for SDPA. ∧∧ Total solution
time is the summation of all seven steps of the SDPA solution timing using a desktop computer with
an intel i7 processor, 6th generation, 3.4 GHz, 4 core, RAM 12 GB. ** METIS solution time based on
using high-performance computer (Intel Xeon E5-2670 v2 2.50 GHz, 20 core, RAM 128 GB [1]) using
FORTRAN shell program, which is called METIS, written in C.

NP = 2 NP = 3 NP = 4

Nodes Boundary
Elements Nodes Boundary

Elements Nodes Boundary
Elements

Subdomain 1 212

45

153

64

102

72

Subdomain 2 204 144 108

Subdomain 3 – 119 104

Subdomain 4 – – 102

Total Nodes 416 416 416

Metis Boundary Nodes 416 81 416 162 416 160

Step 1 Time 0.0291 0.0281 0.035

Step 2 Time 0.0024 0.0024 0.0022

Step 3 Time 0.0018 0.014 0.0016

Step 4 Time 0.1127 0.1776 0.2489

Step 5 Time 0.0238 0.0258 0.0297

Step 6 Time 0.0245 0.0297 0.0246

Step 7 Time 0.0136 0.0166 0.0138

Total Solution Time ^^ 0.2080 0.2816 0.3564

MeTiS Solution Time ** 0.003 0.003 0.004
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4.2. Example 2: Austin (Real-Life) Transportation Network

The transportation network of Austin with 7388 nodes and 18961 links was utilised
to illustrate the application of the SDPA algorithm to decompose the network into two,
three, and four subdomains, as visualised by the sparsity patterns of the matrices. Figure 13
presents the visualised sparsity pattern of the matrix and node connections for a given
network prior to renumbering. Figure 13b shows the reordering of the nodes after decom-
posing the network into two subdomains, while Figure 13c,d demonstrate the reordering
of the nodes after decomposition into three and four subdomains, respectively.

The results of Table 2 reveal that the SDPA algorithm outperforms the METIS algorithm
in terms of decreasing the number of boundary nodes for two, three, and four subdomains.
Furthermore, METIS [21] was found to require less time for the solution than SDPA, likely
due to the fact that the computer configuration used for the METIS solution was more
powerful than that used to solve the SDPA problem.

Figure 13. Visualised sparsity pattern of node connection matrix for the Austin network.

Table 2. Summary table of the Austin network. Comparison of the proposed DP algorithm with
METIS. Computation time in seconds for each of the proposed seven steps of the DP algorithm.

NP = 2 NP = 3 NP = 4

Nodes Boundary
Elements Nodes Boundary

Elements Nodes Boundary
Elements

Subdomain 1 3788

265

2691

329

1976

414

Subdomain 2 3600 2159 1716

Subdomain 3 – 2538 2009

Subdomain 4 – – 1687

Total Nodes 7388 7388 7388

METIS Boundary Nodes 7388 878 7388 872 7388 1221

Step 1 Time (s) 0.1326 0.1385 0.1470
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Table 2. Cont.

NP = 2 NP = 3 NP = 4

Nodes Boundary
Elements Nodes Boundary

Elements Nodes Boundary
Elements

Step 2 Time (s) 0.4265 0.3657 0.3881

Step 3 Time (s) 0.0035 0.0023 0.0026

Step 4 Time (s) 16.370 26.079 40.629

Step 5 Time (s) 0.5382 0.5028 0.5074

Step 6 Time (s) 1.2516 1.5658 1.3411

Step 7 Time (s) 0.0882 0.0874 0.1122

Total Time (s) ^^ 18.809 28.742 43.128

MeTiS Time (s) ** 0.006 0.009 0.01

4.3. Example 3: Philadelphia (Real-Life) Transportation Network

The Philadelphia transportation network, consisting of 13,389 nodes and 40,003 links
(one of the largest real-life transportation networks), was used to demonstrate the appli-
cation of the domain-partitioning (DP) algorithm. Figure 14a shows the sparsity pattern
of the network prior to renumbering. Figure 14b–d then demonstrate the renumbered
node connections into two, three and four subdomains, respectively, using the seven-
step domain-partitioning algorithm (SDPA). It can be observed that the node connections
become more distinct and clear after the renumbering process.

Figure 14. Visualised sparsity pattern of the node connection matrix for the Philadelphia network.

The results in Table 3 indicate that applying the SDPA approach was successful in
decreasing the number of boundary nodes for scenarios with two and four subdomains.
Conversely, the METIS method only yielded a decrease in boundary nodes for the three
subdomain cases. Furthermore, METIS [21] was able to solve the problem faster than SDPA
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due to the higher configuration (computation power) in comparison to the configuration
used to solve by SDPA.

Table 3. Summary table of the Philadelphia network. Comparison of “general SDPA” with METIS
algorithms. Computation time in seconds for each step in SDPA.

NP = 2 NP = 3 NP = 4

Nodes Boundary
Elements Nodes Boundary

Elements Nodes Boundary
Elements

Subdomain 1 7502

370

5368

603

3525

548

Subdomain 2 5887 1797 731

Subdomain 3 – 6224 4994

Subdomain 4 – – 4139

Total Nodes 13389 13389 13389

METIS Boundary Nodes 13389 773 13389 393 13389 1080

Step 1 Time (s) 0.3282 0.3045 0.2839

Step 2 Time (s) 1.228 1.3234 1.2617

Step 3 Time (s) 0.0033 0.0031 0.0031

Step 4 Time (s) 53.285 89.893 121.97

Step 5 Time (s) 2.3435 2.6017 2.7539

Step 6 Time (s) 5.2156 6.0476 6.3865

Step 7 Time (s) 0.1172 0.1478 0.1363

Total Time (s) ^^ 62.521 100.321 132.796

MeTiS Time (s) ** 0.08 0.026 0.013

The proposed “general SDPA” algorithm was tested on three real-life transportation
networks—Anaheim, Austin, and Philadelphia—with partitioning into two, three, and four
subdomains in each network. As Figure 15 shows, the proposed algorithm yielded superior
results to the popular METIS algorithm in eight out of nine cases, with the only exception
being the Philadelphia network with three subdomains. In this case, METIS was able to
minimise the number of boundary nodes more effectively than the proposed algorithm.

Figure 15. Overall summary column plot for the “general SDPA” and METIS algorithms. The y-axis
is the percentage ratio of boundary nodes to total nodes, and the x-axis is the number of partitions
ranging from two to four subdomains for different real-life transportation networks.
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5. Domain-Partitioning Examples for Finite Element Meshes

In this work, a nonuniformly meshed 31 × 31 grid with 1860 line elements and
961 nodes (1860 pseudo-nodes and 3720 pseudo-links) was demonstrated, and the as-
sociated node connection matrix was provided to the full DP algorithm (including pre-
and post-processing algorithm) for its solution. The visualised sparsity pattern of a 1D
mesh input node connection matrix is shown in Figure 16a. A two-dimensional right angle
block with dimensions of 2 × 2 cm was studied, featuring a triangular mesh with sides of
0.5 mm. This mesh comprises 2718 triangular elements and 1440 nodes (2718 pseudo-nodes
and 5436 pseudo-links). The visualised sparsity pattern of a 2D mesh input node connec-
tion matrix is shown in Figure 16b. Lastly, a 3D tetragonal mesh problem, consisting of
1138 tetrahedral elements and 359 nodes (1138 pseudo-nodes and 2276 pseudo-links), was
generated on a 6 × 6 × 1 cm cross block with a mesh size of 5 mm. The sparsity pattern
visualised in Figure 16c demonstrates the connections between the nodes of the domain.
Each subdomain is represented by a different colour, with the domain being divided into
two, three, and four distinct subdomains.

Figure 16. Visualised sparsity pattern of node connection matrix for the finite element meshes
problem; (a) nonuniform 1D grid problem; (b) right-angle block 2D mesh problem; (c) 3D tetragonal
mesh problem.

5.1. Example 1: One-Dimensional Grid Problem with 2–4 Subdomains

The solution of the full DP algorithm is clearly visible in Figure 17(a1, b1, c1), splitting
the domain into two, three, and four subdomains, respectively. Figure 17(a1) shows the
partitioning of the domain into two subdomains with 120 boundary elements and 31
boundary nodes, represented in red and blue, and the two subdomains were separated by
the bolded node in black. Furthermore, Figure 17(a2) provides a visualised sparsity pattern
of the node connection matrix after renumbering for two subdomains, which clearly shows
the rearranging of the input matrix (Figure 16a) into two submatrices and boundary nodes
at the extreme right/bottom of the rearranged matrix.

The grid domain is partitioned into three subdomains using 187 boundary elements
and 55 boundary nodes, as shown in Figure 17(b1). This partitioning is illustrated in the
figure by the red, blue, and cyan regions, which are separated by the black bolded node. To
facilitate the rearrangement of the original input matrix, in Figure 16a, the node connection
matrix is renumbered and visualised in Figure 17(b2). The sparsity pattern of the node
connection matrix, as shown in Figure 17(b2), clearly reveals the three submatrices and
boundary nodes at the extreme right/bottom after the rearrangement of the original matrix.

Lastly, the domain was partitioned into four distinct subdomains, as depicted in
Figure 17(c1), each with 190 boundary elements and 62 boundary nodes. The boundary
nodes are highlighted in black, while the subdomains are represented in red, blue, cyan,
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and magenta. Furthermore, Figure 17(c2) displays the sparsity pattern of the resulting node
connection matrix, which was obtained by rearranging the original matrix, as shown in
Figure 16a. This visualisation allows for easy identification of the four submatrices and
boundary nodes located at the extreme right/bottom of the rearranged matrix.

Figure 17. Example 1: One-dimensional grid problem with 2–4 subdomains. (a1) Nonuniform 1D
grid DP into two subdomains, as red and blue with black boundary nodes. (a2) Node connection
matrix for DP into two subdomains. (b1) Nonuniform 1D grid DP into three subdomains, as red, cyan,
and blue with black boundary nodes. (b2) Node connection matrix for DP into three subdomains. (c1)
Nonuniform 1D grid DP into four subdomains, as red, cyan, magenta and blue with black boundary
nodes. (c2) Node connection matrix for DP into four subdomains.

Table 4 presents a comprehensive overview of the domain-partitioning (DP) result for
a 31× 31 grid with nonuniform meshing, partitioned into two, three, and four subdomains.
The table includes the total number of elements per subdomain, the number of boundary
nodes and elements for each subdomain, and the total computation time (including pre-
and post-processing) on a desktop computer with an Intel i7 6th generation processor
@3.4 GHz, 4 cores, and 12 GB RAM.

5.2. Example 2: Two-Dimensional Grid Problem with 2–4 Subdomains

The right-angle block mesh domain is divided into two subdomains using 40 nodes
and 65 boundary elements, with the first subdomain illustrated in red and the second in
blue in Figure 18(a1). The visualisation in Figure 18(a1) enables easy identification of the
two subdomains separated by boundary elements in black. Figure 18(a2) shows the sparsity
pattern of the rearranged node connection matrix, which was obtained by rearranging the
original matrix, as illustrated in Figure 16b. Simulations were carried out on the same
mesh, with domain separation of three and four, respectively; 56 boundary nodes and
91 boundary elements were used for three domains, and 108 boundary nodes and 183
boundary elements for four domains (see Figure 18(b1) and (c1), respectively). The sparsity
patterns of the corresponding node connection matrices, after renumbering, are visualised
in Figure 18(b2) and (c2), respectively, which depict the rearrangement of the input matrix,
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shown in Figure 16b, into three, and four submatrices, with boundary nodes located at the
extreme right/bottom.

Table 5 presents a summary of the results of the domain-partitioning (DP) algorithm,
which was implemented on a desktop computer with an Intel i7 6th generation processor
@3.4 GHz, 4 cores, and 12 GB RAM. The table includes the number of boundary nodes and
boundary elements for each partition, the total number of elements per subdomain, and
the complete computation time (including pre- and post-processing) for two, three and
four subdomains.

5.3. Example 3: Three-Dimensional Grid Problem with 2–4 Subdomains

The 3D tetragonal mesh domain was divided into two subdomains, with 30 nodes
and 53 boundary elements, as illustrated in Figure 19(a1). This visualisation makes it
easy to identify the two subdomains, with the first subdomain illustrated in red and the
second in blue. The sparsity pattern of the rearranged node connection matrix, obtained by
rearranging the original matrix, is shown in Figure 19(a2). Additionally, simulations were
carried out on the same mesh, but with domain separation of three and four, respectively.
For the three domains, 50 boundary nodes and 109 boundary elements were used, and
for the four domains, 47 boundary nodes and 99 boundary elements were used, as shown
in Figure 19(b1,c1). The resulting sparsity patterns of the node connection matrices, after
renumbering, are visualised in Figure 19(b2,c2). These figures illustrate the rearrangement
of the input matrix, shown in Figure 16c, into three and four submatrices, with boundary
nodes located at the extreme right/bottom.

Table 6 presents the results of a three-dimensional tetrahedral finite element mesh with
partitioning into two, three, and four subdomains. The number of boundary nodes and
boundary elements are listed for each partition, as well as the total number of elements per
subdomain. Additionally, the computation time (including both pre- and post-processing)
used the same desktop computer configuration as mentioned in the previous section These
data provide a useful reference for researchers interested in exploring the performance of
three-dimensional tetrahedral finite element meshes partitioned into different subdomains.

Table 4. Summary table of nonuniform 1D grid problem. All computation times are in seconds.

NP = 2 NP = 3 NP = 4

Elements Boundary
Elements Elements Boundary

Elements Elements Boundary
Elements

Subdomain 1 (red) 930

120

620

187

465

190

Subdomain 2 (blue) 930 620 465

Subdomain 3 (cyan) – 620 465

Subdomain 4 (magenta) – – 465

Total FEM Elements 1860 1860 1860

FEM Nodes 961 31 961 55 961 62

Pre-processing Time 100.60 93.99 90.81

Step 1 Time 0.025 0.015 0.0129

Step 2 Time 0.0051 0.0034 0.0029

Step 3 Time 0.0032 0.0021 0.0022

Step 4 Time 0.047 0.037 0.03

Step 5 Time 0.057 0.039 0.06

Step 6 Time 0.031 0.018 0.03

Step 7 Time 0.020 0.014 0.02

Post-processing Time 0.605 0.92 0.98

Total Time ^^ 101.39 95.042 91.93
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Figure 18. Example 2: Two-dimensional grid problem with 2–4 subdomains. (a1) Triangular 2D
mesh DP into two subdomains, as red and blue with black boundary elements. (a2) Node connection
matrix for DP into two subdomains. (b1) Triangular 2D mesh DP into three subdomains, as red, cyan,
and blue with black boundary elements. (b2) Node connection matrix for DP into three subdomains.
(c1) Triangular 2D mesh DP into four subdomains, as red, cyan, magenta and blue with black
boundary elements. (c2) Node connection matrix for DP into four subdomains.

Table 5. Summary table of triangular 2D mesh problem. All computation times are in seconds.

NP = 2 NP = 3 NP = 4

Elements Boundary
Elements Elements Boundary

Elements Elements Boundary
Elements

Subdomain 1 (red) 1359

65

907

91

707

183

Subdomain 2 (blue) 1359 907 614

Subdomain 3 (magenta) – 904 707

Subdomain 4 (cyan) – – 690

Total FEM Elements 2718 2718 2718

FEM Nodes 1440 40 1440 56 1440 108

Pre-processing Time 205.8 197.49 205.67

Step 1 Time 0.012 0.01 0.01

Step 2 Time 0.0031 0.0028 0.0029

Step 3 Time 0.0022 0.0024 0.0022

Step 4 Time 0.035 0.048 0.04

Step 5 Time 0.083 0.102 0.094

Step 6 Time 0.014 0.018 0.015

Step 7 Time 0.018 0.003 0.0029

Post-processing Time 0.199 0.31 1.01

Total Time ^^ 206.15 197.988 206.84
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Figure 19. Example 3: Three-dimensional grid problem with 2–4 subdomains. (a1) Three-dimensional
tetragonal mesh DP into two subdomains, with red and blue. (a2) Node connection matrix for DP
into two subdomains. (b1) Three-dimensional tetragonal mesh DP into three subdomains, as red,
cyan, and blue. (b2) Node connection matrix for DP into three subdomains. (c1) Three-dimensional
tetragonal mesh DP in four subdomains, as red, cyan, magenta and blue. (c2) Node connection matrix
for DP into four subdomains.

Table 6. Summary table of 3D (tetrahedral) mesh problem. The computational times are in seconds.

NP = 2 NP = 3 NP = 4

Elements Boundary
Elements Elements Boundary

Elements Elements Boundary
Elements

Subdomain 1 (red) 579

53

327

109

298

99

Subdomain 2 (blue) 559 403 277

Subdomain 3 (magenta) – 408 279

Subdomain 4 (cyan) – – 284

Total FEM Elements 1138 1138 1138

FEM Nodes 359 30 359 50 359 47

Pre-processing Time 34.69 36.65 34.32

Step 1 Time 0.01 0.011 0.01

Step 2 Time 0.0032 0.0025 0.0025

Step 3 Time 0.0021 0.0021 0.0023

Step 4 Time 0.026 0.032 0.026

Step 5 Time 0.03 0.039 0.028

Step 6 Time 0.016 0.0137 0.013

Step 7 Time 0.002 0.003 0.0023

Post-processing Time 0.11 0.3897 0.29

Total Time ^^ 34.89 37.1461 34.70
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6. Conclusions and Suggested Future Works

In this work, a novel heuristic domain-partitioning (DP) algorithm was explained with
great details. This current work has the following novel features: (i) Graph theories are
not needed, since all (basic) seven steps involved in the proposed algorithm (including
the enhancement features discussed in Section 3) are based on engineering common sense
observations. (ii) Unified treatments of transportation networks (using line elements) and
finite element (FE) meshes (using triangular, tetrahedral, brick elements) can be conducted
through transforming the original network (or FE mesh) into a pseudo-transportation
network which only uses line elements. Several examples (in transportation engineering
networks and general-purpose finite element meshes) were tested to evaluate the perfor-
mance of the proposed partitioning algorithm. Numerical comparisons with the popular
METIS software indicated that the developed algorithm resulted in a significantly fewer
number of system boundary nodes for eight out of the nine tested cases in large-scale
(real-life) transportation networks. For DP finite element meshes, minimising the number
of system boundary nodes will lead to minimising the communication time amongst differ-
ent processors in parallel computing environments. Efforts are underway to incorporate
the developed DP algorithm into general purpose FEA for solving statics and general
Eigen-value problems, which will be reported on in the near future.
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