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Abstract 
 

 Biphasic, non-sigmoidal dose-response relationships are frequently observed in biochemistry and 
pharmacology, but they are not always analyzed with appropriate statistical methods. Here, we examine 
curve fitting methods for “hormetic” dose-response relationships where low and high doses of an 
effector produce opposite responses. We provide the full dataset used for modeling, and we provide the 
code for analyzing the dataset in SAS using two established mathematical models of hormesis, the 
Brain-Cousens model and the Cedergreen model. We show how to obtain and interpret curve parameters 
such as the ED50 that arise from modeling, and we discuss how curve parameters might change in a 
predictable manner when the conditions of the dose-response assay are altered. In addition to modeling 
the raw dataset that we provide, we also model the dataset after applying common normalization 
techniques, and we indicate how this affects the parameters that are associated with the fit curves. The 
Brain-Cousens and Cedergreen models that we used for curve fitting were similarly effective at 
capturing quantitative information about the biphasic dose-response relationships.   
 
Introduction 
 

 Biphasic, non-sigmoidal dose-response relationships have been observed in many biological 
systems on the molecular, cellular, and organism levels.1 The term “hormesis” is used to describe 
biphasic dose-response relationships where low and high doses produce opposite responses. Hormetic 
dose-responses are sometimes also called bell-shaped, J-shaped, inverted U-shaped, and other field-
specific terms. Hormetic dose-response relationships are not limited to specific types of biological 
components, drugs, compounds, stimulants, or toxins.1  
 Although hormetic dose-response relationships are common in biochemical assays, they are not 
always analyzed with appropriate curve fitting techniques that provide—at the least—an accurate ED50 
(see Methods for parameter descriptions). Additionally, the steepness of the slopes on a biphasic curve 
are important for understanding the dose ranges that transition the system between high and low 
responses, much like the Hill coefficient (n) of standard sigmoidal dose-responses. Other information 
including the exact magnitude of a biphasic increase or decrease relative to a control response is lost 
without proper modeling. The complete characteristics of hormetic dose-responses that are obtained 
through modeling are essential to accurately predict how a system will respond when dosed and to 
reliably choose doses that will produce a desired outcome.  
 It has been proposed that quantitative features of hormetic dose-response relationships are widely 
conserved regardless of the organism or the biological system used.1 This will only be clear by 
comparing of a wide variety of dose-response relationships from different biological systems that are 
analyzed with identical methods. Here, we analyzed a sample biochemical dataset with mathematical 
models of hormesis that are commonly used in other fields such as weed science.2,3 The biochemical 
assay that was used to collect this data has been described in detail along with the molecular mechanism 
that underlies the hormetic dose-response.4–6 The present article focuses on comparing two methods that 



can be used for curve fitting and the meaning behind the parameters associated with the curves. The 
methods we describe can be applied to a broader range of molecular systems that exhibit hormesis. 
  
Methods 
 

Interpretation and Implementation of Hormetic Dose-Response Models 
 In simple molecular systems showing hormesis, we refer to the dose variable as the effector that 
induces a response from the system (Figure 1). A second variable is the substrate that responds to the 
effector. The substrate concentration can be changed in dose-response assays, but should remain 
constant throughout any individual dose-response curve. It is possible for an effector to have more than 
one substrate in a system, and additional components might be required to produce or observe a 
response. Every component in a system has the potential to alter the characteristics of a dose-response 
relationship.  

 
 

Figure 1. Hypothetical sigmoidal dose-response relationship (red trace) and hormetic dose-response 
relationship (black trace). Refer to the main text for a description of the parameters defined on the 
curves; note that parameters a, f, and b do not directly interpolate to the x or y axes, but their 
approximate meaning was shown here for reference. This figure was adapted from several sources.2–4,7 
 
 The full dataset used for modeling in this work can be found in the Appendix (Table A1), and its 
experimental origin has been described.4 The numerical values of the responses (i.e., the raw data 
values) were unitless and derived from fluorescence anisotropy-based binding assays;4–6 their meaning is 
not discussed here. Data was collected by measuring the response of a substrate to different doses of 
effector, then in separate experiments, the amount of substrate was changed and the effector was again 
dosed. Five different concentrations of substrate were used in dose-response assays, and the effector was 
dosed across the same concentration range for each amount of substrate. The substrate concentrations 
ranged between 0.25-10 µM, and the effector concentrations ranged between 0.01-50 µM (Table A1).   
 The data in Table A1 was analyzed with equations that arise from the Brain-Cousens model of 
hormesis (equations 1-5) and the Cedergreen model of hormesis (equations 6-10).2,3,8,9 Equations 1 and 
6 were the original equations by Brain and Cousens and Cedergreen et al., respectively, which were 
modifications of a common log-logistic function.3,9 The remaining equations were parameterizations of 
equations 1 and 6 that were used to extract additional information from the curves (discussed below).2,8 
Note that our hormetic dataset provided inverted U-shaped curves where the highest doses of effector 
produced the lowest responses, which directed our description of curve parameters. However, these 
equations can be used to model hormetic datasets of all shapes.3   



Brain-Cousens Model 
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Cedergreen Model 
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 A brief description of parameters found in the Brain-Cousens and Cedergreen models of 
hormesis are as follows: 
 

 a. Parameter a is the only parameter that is specific to the Cedergreen model, and is not found   
      in the Brain-Cousens model. Parameter a was reported to control the rate of hormetic     
     increase prior to the hormetic peak.3,10 
 

 b. Parameter b controls the steepness of the descending part of the curve towards the lower   
      asymptote after the hormetic peak. Parameter b is analogous to the commonly used Hill   
      coefficient n; however in the equations used here, b is positive in the downward sloping   
     responses (i.e., b and n have conventionally opposite signs). In practice, b controls the  
  dose distance between (for example) the LDS and ED50.  
 

   c. Parameter c is the y response value at the lower asymptote and is the theoretical response at   
      infinite doses of effector (Figure 1). 
 



 d. Parameter d is the y response value at the upper asymptote and is the theoretical control   
      response in the absence of effector (Figure 1). 
 

 e. Parameter e in hormetic modeling provides a lower bound on the ED50 but has no   
  straightforward biological meaning.3,8,9 Parameter e and the ED50 are the same in the  
  absence of hormesis.3,10 
 

 f. Parameter f is the hormesis parameter. Parameter f should equal 0 in the absence of hormesis   
     which reverts the hormetic equations back to a standard sigmoidal log-logistic function 
  (in other words, set f = 0 in equations 1 and 6 to obtain an equation for a standard   
  sigmoidal dose-response relationship). In practice, a value for f is always determined  
  during modeling even if it is infinitely close to 0. A hormetic effect is often   
  confirmed with some statistical confidence when the 95% confidence interval of   
  parameter f does not overlap with the value 0.2,8 As cautioned,7,11 the actual magnitude of  
  f is not always directly related to the size of the hormetic increase.  
 

 ED50. The ED50 is the effective dose x that reduces the response y to the halfway point between d 
     and c (Figure 1). The ED50 on a standard sigmoidal dose-response curve is often called  
  the EC50 (half maximal effective concentration) or IC50 (half maximal inhibitory   
  concentration). 
 

 M. Parameter M is the dose x that provides the maximum stimulatory response y (i.e., ymax). 
 

 LDS. The LDS (limiting dose for stimulation) is the highest dose x where the hormetic increase  
  vanishes and the response y returns to the value of d or the upper asymptote.  
 

 ymax. The ymax is the maximum stimulatory response y that occurs at the hormetic peak. 
 

 ymax%. The ymax% is calculated as the percent change between the control response d and ymax. 
  [ymax% = (ymax / d) * 100%]  
 
 For data modeling, the NLMIXED procedure of SAS software was used to fit response values y 
as a nonlinear biphasic function of dose x. All calculations were performed with SAS Studio OnDemand 
for Academics webserver. The code for our calculations in SAS can be found in the Appendix. For the 
Brain-Cousens analyses, parameters b, d, e, and f were determined using equation 1, whereas ED50, M, 
and LDS were calculated using the relevant parameterization (equations 2, 3, and 4). Parameter ymax was 
calculated using equation 5 with x = M.  For the Cedergreen model analyses, parameters a, b, d, e, and f 
were determined using equation 6, while ED50, M, LDS and ymax were determined using equations 7, 8, 
9, and 10. When calculating values for parameters ED50, M, LDS, and ymax, the values for a, b, d, e, and f 
were fixed to the values that were obtained with equations 1 and 6. It is statistically preferred to solve 
for all parameters independently without introducing these fixed values into the equations, but in 
practice, we found equations 1 and 6 to be significantly more robust in their ability to model the datasets 
compared to the parameterizations (with the exception of equation 2, which we also found highly 
reliable). Therefore, fixing the values improved modeling efficiency, and as indicated below, the initial 
parameters determined with equations 1 and 6 were used to gauge modeling quality (i.e., goodness-of-
fit). Furthermore, parameter c was fixed in all of our analyses. Generally speaking, fixing parameter c to 
a specific value while using any of equations 1-10 is expected to occur more frequently than fixing other 
parameters as a consequence of technical limitations that prevent data collection at high doses such as 
limited effector solubility at high concentrations or effector availability. With our raw dataset, a value of 
0.0572 for parameter c could readily be obtained using the Brain-Cousens equations by analyzing the 
0.25 µM substrate data without constraints, or by analyzing the 0.25 µM substrate data with a standard 
sigmoidal dose-response equation.4 At its simplest, 0.0572 was also the average of the data values for 
the 0.25 µM substrate data at a dose of 50 µM effector (Table A1), which rested on the lower asymptote. 
In the experimental paradigm, the response of the substrate to an infinite dose of effector was 



theoretically the same regardless of the substrate concentration which justified the universal constraint 
on c.  
 The modeling procedure required that “starting values” were provided for each parameter in the 
software code; the importance of the starting values in facilitating the algorithms’ convergence to 
reported parameter values has been extensively discussed.10 A general recommendation is to deduce 
starting values for each parameter after visualizing the plotted datasets on a graph.8,10 In all analyses, the 
starting value for d was chosen as the approximate value that was expected for the upper asymptote 
when the 0.25 µM substrate dataset was plotted and visualized on a graph. Starting values for 
parameters a, b, e, and f were determined empirically by testing sets of values that resulted in 
convergence of the estimation algorithm.8 Note that the starting values in some analyses required more 
trial and error than others to achieve satisfactory fits for the curves. Our starting values are reported in 
the Appendix (Table A2). 
 To draw the curves that were fit to our datasets in the Figure panels, we solved for y responses to 
hypothetical x values using equations 1 and 6. Equations 1 and 6 were also used to calculate R2 values 
that compared goodness-of-fit for the hormetic models. R2 and adjusted R2 values (Rlmmm) were calculated 
using Posit Cloud webserver (formerly RStudio Cloud) using equations 11 and 12, respectively  
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where yi was the experimental response value, 𝑦zt  was the predicted response value based on the fit 
curve, 𝑦m was the mean of the experimental response values, n was the total number of data points, and k 
was the number of independent variables. Rlmmm was calculated because Rl is highly dependent on the size 
of the experimental dataset, and  Rlmmm adjusts for the population size and number of independent 
variables.12,13 Note that R2 and Rlmmm are generally not recommended measures of goodness-of-fit for non-
linear models,2,14,15 but they remain familiar metrics that represent how much of the change in the 
response variable was explained by changes in the dose variable. Thus, we justified using these metrics 
to compare the goodness-of-fit for two models on the same dataset. The RStudio code can be found in 
the Appendix.  
   
Results and Discussion 
 

Fitting Curves to the Raw Hormetic Dataset with Brain-Cousens and Cedergreen Models 
 The dose-response data in Table A1 was modeled with Brain-Cousens and Cedergreen equations 
to yield the parameters shown in Table 1. With the exception of parameter e, we previously reported 
parameters for this raw dataset using the Brain-Cousens equations;4 the analyses discussed here were 
independently reproduced. The Brain-Cousens model provided well-fit curves for each dose-response 
relationship from assays with different substrate concentrations (Figure 2A). This was clear both 
qualitatively (visually) and quantitatively based on R2 values. For the Brain-Cousens analysis of the 0.25 
µM substrate data, the hormesis parameter f was not considered statistically different from 0 because its 
95% confidence interval overlapped with 0. This dose-response relationship was therefore not 
significantly hormetic,2,8 and it qualitatively resembled a standard monotonic sigmoidal dose-response 
(Figure 2A). Additionally, the Brain-Cousens equations could satisfactorily model the data from 
experiments that used 10 µM substrate, even though we report some parameters with caution because 
the descending part of the curve was not adequately represented by experimental data points (i.e., 
parameters b, ED50, and LDS cannot be certain). 



 The Cedergreen model also provided well-fit curves for the dose-response assays that used 0.25-
3 µM of substrate (Figure 2B). The R2 values for these curves were quantitatively similar to the R2 
values determined with the Brain-Cousens model (Table 1). The Cedergreen analyses also suggested 
that f was not different from 0 for the 0.25 µM substrate data because the 95% confidence interval of the 
value overlapped with 0. We concluded that the Brain-Cousens and Cedergreen equations were similarly 
effective at modeling the data from assays that used 0.25-3 µM of substrate. In contrast, we were unable 
to obtain a reasonable curve for the 10 µM substrate data using the Cedergreen equations. The inability 
of the Cedergreen equations to model the 10 µM substrate data reflects a higher requirement for 
stringency in the dataset compared to the Brain-Cousens equations, which could model the data despite 
there being incomplete inhibition of the response at the highest doses of effector (Figure 2 and Table 
A1). The Brain-Cousens model likely has lower demands on the quality of the data because it contains 
one less parameter than the Cedergreen model. 
 

 
 

Figure 2. Dose-response curves generated from modeling the raw dataset (Table A1) with the Brain-
Cousens model (equation 1) (panel A) or the Cedergreen model (equation 6) (panel B).  

 
 

 



Fitting Curves to the Hormetic Dataset after Subtracting Baseline   
 As further discussed in the Methods, the lower asymptotes (parameter c) for the dose-response 
relationships from the raw dataset were theoretically identical for all of the assays regardless of the 
substrate concentration used, and this value was non-zero (0.0572). However, the baseline measurement 
of 0.0572 represented a complete absence of a response. It could therefore be argued that subtracting this 
baseline measurement from all of the data values before modeling would more accurately describe the 
magnitude of the hormetic effect relative to the control (no effector) assay condition. This occurs 
because baseline subtraction reduces the numerical value of d, which is critical for ymax% calculation 
(ymax% = (ymax / d) * 100%), even though baseline subtraction has no effect on the range of the data 
values (d-c). To illustrate this, we modeled the dataset in Table A1 as before using Brain-Cousens and 
Cedergreen equations, but first we subtracted the baseline signal (0.0572) from all of the data values 
(Figures 3A and 3B). Subtracting 0.0572 to make the lower asymptote 0 (as if no response had occurred) 
had the following expected effects on the parameters compared to their values from modeling the raw 
dataset: parameters a, b, e, f, ED50, M, and LDS were essentially unchanged, and parameters c, d, and 
ymax were reduced by ~0.0572 (Table 2). R2 values indicated that the modeling was similarly effective 
using raw data and baseline subtracted data (Table 2). We still could not model the 10 µM substrate data 
using the Cedergreen equations. 
 As mentioned above, a notable effect of subtracting the baseline signal was observed on the 
ymax% values. Compared to the ymax% values from modeling the raw dataset (Table 1), baseline 
subtraction prior to modeling with the Brain-Cousens equations increased the ymax% by 24%-42% when 
the substrate concentration was 0.5-10 µM (similar increases were determined with Cedergreen 
equations) (Table 2). This was a cautionary example where modeling raw data values and processed data 
provided different parameters, but data processing could be essential for proper determination of 
hormesis magnitude.   
 

 
 

Figure 3. Dose-response curves generated from modeling the baseline subtracted dataset with the Brain-
Cousens model (equation 1) (panel A) or the Cedergreen model (equation 6) (panel B).  



 
 
 
Fitting Curves to the Hormetic Dataset after Normalization and Scaling 
 Prior to modeling, we normalized and scaled the data values using equation 13  
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where yraw was the response from the original dataset (Table A1), c was the baseline signal (0.0572), and 
d was the control response (upper asymptote; Table 1) when the substrate concentration was the same as 
it was for the yraw value. This transformation subtracted baseline and scaled each dose-response such that 
the upper asymptote (d) was 100 and the lower asymptote (c) was 0. This presented the dose-response 
data as if “% of control” was on the y axis where 100 was the control (no effector) response, and 0 was 
complete inhibition of the response (Figure 4). This y axis transformation is common when reporting 
normalized dose-response data in biochemistry and pharmacology, and the multiplier of 100 can be 
omitted from equation 13 to present data as a “fraction of control” with a response range of 0 to 1.16 In 
some cases, normalizing dose-response relationships to a control (no effector) response can remove 
experimental variability associated with the control level (parameter d) without changing values for 
other parameters such as ED50, b, M, and LDS which are often scale-independent parameters.16†  
 As observed before, Brain-Cousens and Cedergreen equations were similarly effective at 
modeling the dataset after normalizing and scaling the values (Figure 4A, Figure 4B, and R2 values in 
Table 3). During modeling, parameter c and parameter d were fixed to 0 and 100, respectively (Table 3). 
Because equation 13 subtracted baseline, other parameters in Table 3 should be compared to Table 2. 
Parameters a, b, e, ED50, M, LDS, and ymax% were essentially unchanged, and ymax converted from a 

                                                
† In this work, the values for parameter d used in equation 13 were determined from modeling and are shown in Table 1. 
Because Brain-Cousens and Cedergreen modeling determined slightly different values for d, the normalized and scaled 
datasets used for the different models in Figures 4A and 4B were different from each other with data values differing by as 
much as 3.8%. The fact that we could not determine parameter d for Cedergreen modeling of the 10 µM substrate data is why 
we could not normalize and scale that data, leading to its absence in Figure 4B and its status as not applicable in Table 3. 
Ordinarily, an experimenter may be inclined to choose a control (no effector) response as parameter d to use with equation 13 
as opposed to modeling the raw data first to derive d.       



value related to experimental measurement (Table 2) to become equivalent to the value of the ymax% 
(Table 3). Finally, the numerical value of parameter f increased ~2200-fold to ~4100-fold from Table 2 
to Table 3 depending on the substrate concentration and the model used. Parameter f scales with the y 
response values, and to illustrate this, the f/d and f/ymax ratios for individual dose-response conditions 
were unchanged (Table 4).  
 

 
 

Figure 4. Dose-response curves generated from modeling the normalized and scaled dataset with the 
Brain-Cousens model (equation 1) (panel A) or the Cedergreen model (equation 6) (panel B).  

 
 

 



 
 
Parameter Characteristics Across Dose-Response Relationships and Comparison to Published 
Trends 
 Generalizable features of hormetic dose-response curves have been reported from analyzing 
dozens of hormetic datasets that derived from whole organism studies with plants.7,11,17 We relate these 
findings to our curves which were produced with the same mathematical models and discuss how 
parameter values change as a function of substrate concentration. This discussion is restricted to 
parameters in Table 2, which are graphically represented in Figure 3, and which accurately describe 
relative response magnitudes to effector doses. Note that the values in Table 1 from Brain-Cousens 
modeling were also discussed previously,4 and normalization of the dataset artificially set some 
parameters to specific values in Table 3, thereby modifying their trends. Finally, the 0.25 µM substrate 
dataset was not hormetic; in the discussion below, parameters a, f, LDS, M, ymax, and ymax% from the 
0.25 µM substrate data do not have any meaning and were therefore excluded from the analysis. 
Additionally, we excluded parameters b, ED50, and LDS from the Brain-Cousens modeling of 10 µM 
substrate assays because of their uncertainty, as the dataset lacked experimental measurements in that 
part of the curve.  
 The clearest trend from hormetic dose-response modeling was the strong correlation between d 
and ymax (Figure 5A).7,11,17 Experimental conditions that produced a higher control response (d) in the 
absence of effector were capable of producing a higher stimulatory response (ymax) in the presence of 
effector.7,11,17 These parameters are real values that can be experimentally measured and are linked with 
the relationship d ≤ ymax. In contrast, the correlation between d and ymax% was not as strong because, as 
the control response increases, the system does not necessarily have the ability to produce a 
proportionately higher hormetic increase—even though this was observed in our dataset. Generally, 
parameters that trended in the same direction as a function of substrate concentration correlated with 
each other (in our dataset, a, d, ED50, M, LDS, ymax, and ymax% consistently increased as the substrate 
concentration increased). 
 It was reported that the actual size of parameters a and f, which are specific to the hormetic 
equations as opposed to sigmoidal curves, are not directly related to the magnitude of hormesis.7,11 
Rather, in plant studies with pronounced hormetic effects, there tended to be low values for a and high 
values for f, and therefore the f/a ratio was more predictive for high values of ymax.10,11 Our limited 
analysis contrasted this conclusion as a consistently increased with greater hormetic effect (Figure 5B), f 
had no consistent relationship to ymax for either the Brain-Cousens or Cedergreen models (Figure 5C), 
and the f/a ratio was not reliably associated with the magnitude of hormesis (Figure 5D). In prior 
studies, values for parameter a were in the ~0.1 to 0.7 range,10,18 which was consistent with the values 
for a that we determined (0.45 to 0.71).  
 Finally, parameter e provides a lower bound on the ED50 in hormetic curves, but the question of 
“how much lower” has been posited.10 In 89 curves from plant experiments, parameter e was on average 
1.7-fold lower than the ED50, but there was some variability (1.1 to 4.8 fold lower).10 For our modeling 



with the Cedergreen equations, parameter e was 2.2 to 5.0-fold lower than the ED50. In contrast, 
parameter e was 6 to 369-fold lower than the ED50 in Brain-Cousens modeling, and parameter e 
increased consistently when the substrate concentration, ED50, and the degree of hormesis also increased 
(Table 2). Even though parameter e has ambiguous significance in a biological context, its potential 
values are useful to consider because of its presence in equations 1 and 6 that were robustly used for 
modeling.   
 

 
 
Figure 5. (A) Relationship between parameters d and ymax, (B) Relationship between parameters a and 
ymax, (C) Relationship between parameters f and ymax, and (D) Relationship between f/a ratio and ymax. 
Values for the parameters used in this figure are in Table 2.  
 
Conclusions 
 

 This study analyzed a biphasic, biochemical dataset with two mathematical models of hormesis: 
the Brain-Cousens model and the Cedergreen model. Both models were effective at quantitatively 
describing the hormetic dose-responses that were collected under different experimental conditions and 
were processed with different normalization techniques. The comprehensive analyses performed here, 
along with the review of associated equations, hormetic curve parameters, and software code, provides a 
framework for analyzing additional hormetic datasets of biochemical and molecular origin. Future 
investigation will reveal the extent to which hormetic dose-responses from molecular systems 
quantitatively resemble hormetic dose-responses from cells and organisms.          
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Appendix 
 

 



 
 
Note that successfully chosen starting values only sometimes follow logical trends, highlighting the 
importance of trial-and-error with starting values and iteratively checking goodness-of-fit of the curves 
that result from the calculated parameters. The convergence algorithm can be very sensitive to small 
changes in starting values that unexpectedly lead to different parameter estimates. 
 
 
 
 
Brain-Cousens SAS Code ; note that in SAS, natural log “ln” is written as “log” 
 
/* Input data for each dataset */ 
data data_0_25uM; 
    input x y gew; 
    datalines; 
/* Insert data here in column format of x y gew for the 0.25 uM dataset*/ 
/* Note that gew is equal to 1 divided by standard dev of the replicates*/ 
; 
 
data data_0_50uM; 
    input x y gew; 
    datalines; 
/*Insert data in the format of x y gew for the 0.50 uM dataset*/ 
; 
 
 
data data_1uM; 
    input x y gew; 
    datalines; 
/*Insert data in the format of x y gew for the 1 uM dataset*/ 
; 
 
data data_3uM; 
    input x y gew; 
    datalines; 
/*Insert data in the format of x y gew for the 3 uM dataset*/ 
; 
 
data data_10uM; 
    input x y gew; 
    datalines; 



/*Insert data in the format of x y gew for the 10 uM dataset*/ 
; 
 
%macro analyze_data(dataset_name); 
 
/* Brain&Cousens for e estimation; c is fixed */ 
ods output ParameterEstimates=Estimates_Model1; 
Proc nlmixed data=&dataset_name; 
parms 
/* starting values */ 
b=1.5 d=0.08 e=3 f=0.01; 
/* c is fixed */ 
c=0.0572; 
bounds e > 0 ; 
eta=(c+(((d-c)+(f*x))/(1+exp(b*log(x/e))))); 
model y ~ normal(eta, s2/gew); 
run; 
ods output close; 
 
/* Retrieve parameter estimates from Model 1 */ 
proc sql noprint; 
    select Estimate into :b_estimated from Estimates_Model1 where 
Parameter='b'; 
    select Estimate into :d_estimated from Estimates_Model1 where 
Parameter='d'; 
    select Estimate into :e_estimated from Estimates_Model1 where 
Parameter='e'; 
    select Estimate into :f_estimated from Estimates_Model1 where 
Parameter='f'; 
quit; 
 
/* Brain&Cousens reparameterized for ED50 (K=50) estimation; c is fixed */ 
ods output ParameterEstimates=Estimates_Model2; 
Proc nlmixed data=&dataset_name; 
parms  
/* starting values */ 
ed=30; 
/* K is fixed to 50 for ED50 estimation; can be changed to any EDK value 
estimation */ 
b=&b_estimated; d=&d_estimated; f=&f_estimated; K=50; c=0.0572; 
e=&e_estimated; 
bounds ed > 0 ; 
eta=(c+(((d-c)+(f*x))/(1+(((K/(100-K))+((100/(100-K))*(f*ED/(d-c))))*exp(b*l
og(x/ED)))))); 
model y ~ normal(eta, s2/gew); 
run; 
ods output close; 
 
/* Retrieve parameter estimates from Model 2 */ 
proc sql noprint; 
    select Estimate into :ed_estimated from Estimates_Model2 where 
Parameter='ed'; 
quit; 
 
/* Brain&Cousens reparameterized for M and ymax estimation */ 
ods output ParameterEstimates=Estimates_Model3; 



Proc nlmixed data=&dataset_name; 
parms  
M=4; 
b=&b_estimated; d=&d_estimated; f=&f_estimated; c=0.0572; e=&e_estimated; 
ed=&ed_estimated; 
bounds M > 0 ; 
eta=(c+((d-c)+(f*x))/(1+(f*M/(((d-c)*b)-f*M*(1-b)))*exp(b*log(x/M)))); 
ymax = (c+((d-c)+(f*M))/(1+(f*M/(((d-c)*b)-f*M*(1-b)))*exp(b*log(M/M)))); 
model y ~ normal(eta, s2/gew); 
estimate 'ymax' ymax; 
estimate 'ymax%' ((ymax*100)/d); 
run; 
ods output close; 
 
/* Retrieve parameter estimates from Model 3 */ 
proc sql noprint; 
    select Estimate into :m_estimated from Estimates_Model3 where 
Parameter='M'; 
    select Estimate into :ymax_est from Estimates_Model3 where 
Parameter='ymax'; 
    select Estimate into :ymax_percent_est from Estimates_Model3 where 
Parameter='ymax_percent'; 
quit; 
 
/* Brain&Cousens reparameterized for LDS estimation*/ 
ods output ParameterEstimates=Estimates_Model4; 
Proc nlmixed data=&dataset_name; 
parms 
LDS=10; 
b=&b_estimated; d=&d_estimated; f=&f_estimated; c=0.0572; e=&e_estimated; 
ed=&ed_estimated; M=&m_estimated; 
bounds lds > 0 ; 
eta=(c+(((d-c)+(f*x))/(1+(((f*LDS/(d-c)))*exp(b*log(x/LDS)))))); 
model y ~ normal(eta, s2/gew); 
run; 
ods output close; 
 
proc sql noprint; 
    select Estimate into :LDS from Estimates_Model4 where Parameter='LDS'; 
quit; 
 
%mend analyze_data; 
 
%analyze_data(data_0_25uM); 
%analyze_data(data_0_50uM); 
%analyze_data(data_1uM); 
%analyze_data(data_3uM); 
%analyze_data(data_10uM); 
 
 
 
 
 
 
 



Cedergreen SAS Code ; note that in SAS, natural log “ln” is written as “log” 
 
/* Input data for each dataset */ 
data data_0_25uM; 
    input x y gew; 
    datalines; 
/* Insert data in the format of x y gew for the 0.25 uM dataset*/ 
; 
 
data data_0_50uM; 
    input x y gew; 
    datalines; 
/*Insert data in the format of x y gew for the 0.50 uM dataset*/ 
; 
 
data data_1uM; 
    input x y gew; 
    datalines; 
/*Insert data in the format of x y gew for the 1 uM dataset*/ 
; 
 
data data_3uM; 
    input x y gew; 
    datalines; 
/*Insert data in the format of x y gew for the 3 uM dataset*/ 
; 
 
data data_10uM; 
    input x y gew; 
    datalines; 
/*Insert data in the format of x y gew for the 10 uM dataset*/ 
; 
 
%macro analyze_data(dataset_name); 
 
/*Cedergreen e estimation*/ 
ods output ParameterEstimates=Estimates_Model1; 
Proc nlmixed data=&dataset_name; 
parms 
/* starting values */ 
b=1.5 d=0.08 e=3 f=0.02 a=0.2; 
/* c is fixed */ 
c=0.0572; 
bounds e > 0 ; 
eta = (c+((d-c)+(f*exp(-1/(x**a))))/(1+exp(b*log(x/e)))); 
model y ~ normal(eta, s2/gew); 
run; 
ods output close; 
 
/* Retrieve parameter estimates from Model 1 */ 
proc sql noprint; 
    select Estimate into :b_estimated from Estimates_Model1 where 
Parameter='b'; 
    select Estimate into :d_estimated from Estimates_Model1 where 
Parameter='d'; 



    select Estimate into :e_estimated from Estimates_Model1 where 
Parameter='e'; 
    select Estimate into :f_estimated from Estimates_Model1 where 
Parameter='f'; 
    select Estimate into :a_estimated from Estimates_Model1 where 
Parameter='a'; 
quit; 
 
/*Cedergreen reparameterized for ED50 (K=50) estimation; c is fixed*/ 
ods output ParameterEstimates=Estimates_Model2; 
Proc nlmixed data=&dataset_name; 
parms  
/* starting values */ 
ed=30; 
/* K is fixed to 50 for ED50 estimation; can be changed to any EDK value 
estimation */ 
b=&b_estimated; d=&d_estimated; f=&f_estimated; K=50; c=0.0572; 
e=&e_estimated; a=&a_estimated; 
bounds ED > 0 ; 
eta = (c+(((((((100-K)/100)-(1/(1+exp(b*log(ED/e)))))**(-1))*(((-c+(f*exp(-1
/(ED**a))))/(1+exp(b*log(ED/e))))+(c*(100-K)/100)))-c)+(f*exp(-1/(x**a))))/(
1+exp(b*log(x/e)))); 
model y ~ normal(eta, s2/gew); 
run; 
ods output close; 
 
/* Retrieve parameter estimates from Model 2 */ 
proc sql noprint; 
    select Estimate into :ed_estimated from Estimates_Model2 where 
Parameter='ed'; 
quit; 
 
/* Cedergreen reparameterized for M and ymax estimation */ 
ods output ParameterEstimates=Estimates_Model3; 
Proc nlmixed data=&dataset_name; 
parms  
M=1; 
b=&b_estimated; d=&d_estimated; f=&f_estimated; c=0.0572; e=&e_estimated; 
ed=&ed_estimated; a=&a_estimated; 
bounds M > 0 ; 
eta = (c+((d-c)+(((((exp(-1/(M**a))*(a*(M**(-a-1)))*(1+exp(b*log(M/e))))-(ex
p(-1/(M**a))*exp(b*log(M/e))*(b/M)))**(-1))*((d-c)*exp(b*log(M/e))*(b/M)))*e
xp(-1/(x**a))))/(1+exp(b*log(x/e)))); 
ymax = (c+((d-c)+(((((exp(-1/(M**a))*(a*(M**(-a-1)))*(1+exp(b*log(M/e))))-(e
xp(-1/(M**a))*exp(b*log(M/e))*(b/M)))**(-1))*((d-c)*exp(b*log(M/e))*(b/M)))*
exp(-1/(M**a))))/(1+exp(b*log(M/e)))); 
model y ~ normal(eta, s2/gew); 
estimate 'ymax' ymax; 
estimate 'ymax%' ((ymax*100)/d); 
run; 
ods output close; 
 
/* Retrieve parameter estimates from Model 3 */ 
proc sql noprint; 
    select Estimate into :m_estimated from Estimates_Model3 where 
Parameter='M'; 



    select Estimate into :ymax_est from Estimates_Model3 where 
Parameter='ymax'; 
    select Estimate into :ymax_percent_est from Estimates_Model3 where 
Parameter='ymax_percent'; 
quit; 
 
/* Cedergreen reparameterized for LDS estimation*/ 
ods output ParameterEstimates=Estimates_Model4; 
Proc nlmixed data=&dataset_name; 
parms 
LDS=10; 
b=&b_estimated; d=&d_estimated; f=&f_estimated; c=0.0572; e=&e_estimated; 
ed=&ed_estimated; M=&m_estimated; a=&a_estimated; 
bounds LDS > 0 ; 
eta=(c+(((((1-(1/(1+exp(b*log(LDS/e)))))**(-1))*(((-c+(f*exp(-1/(LDS**a))))/
(1+exp(b*log(LDS/e))))+c))-c)+(f*exp(-1/(x**a))))/(1+exp(b*log(x/e)))); 
model y ~ normal(eta, s2/gew); 
run; 
ods output close; 
 
proc sql noprint; 
    select Estimate into :LDS from Estimates_Model4 where Parameter='LDS'; 
quit; 
 
%mend analyze_data; 
 
%analyze_data(data_0_25uM); 
%analyze_data(data_0_50uM); 
%analyze_data(data_1uM); 
%analyze_data(data_3uM); 
%analyze_data(data_10uM); 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



RStudio code for calculating R2 and Adjusted R2 

 

# Define function to calculate R-squared and adjusted R-squared 
r_and_adjusted_r_squared <- function(y_actual, y_predicted) { 
  n <- length(y_actual) 
  k <- 1 # Number of independent variables (here, it's only 1) 
   
  sse <- sum((y_actual - y_predicted)^2) 
  sst <- sum((y_actual - mean(y_actual))^2) 
   
  r_squared <- 1 - (sse/sst) 
  adj_r_squared <- 1 - ((1 - r_squared) * (n - 1) / (n - k - 1)) 
   
  return(list(r_squared = r_squared, adj_r_squared = adj_r_squared)) 
} 
 
# Your predicted y-value for a given x 
y_predicted <- c(0.08150493, 0.081514244, 0.081539694, 0.081538375, 
0.080542747, 0.065994835, 0.058572196, 0.057362795) 
 
y_actual <- list( 
  c(0.08343, 0.08993, 0.08402),   # 0.01 
  c(0.08091, 0.0805, 0.07932),    # 0.03 
  c(0.07916, 0.08239, 0.07941),   # 0.1 
  c(0.08166, 0.0821, 0.08222),    # 0.3 
  c(0.07944, 0.08142, 0.07978),   # 1 
  c(0.06677, 0.0645, 0.06725),    # 5 
  c(0.0597, 0.05767, 0.05762),    # 15 
  c(0.0576, 0.05687)              # 50 
) 
 
# Combine all actual y-values into one vector 
y_actual_combined <- unlist(y_actual) 
 
# Calculate how many times each predicted y-value should be repeated 
repeats <- sapply(y_actual, length) 
 
# Repeat each predicted y-value according to the repeats vector 
y_predicted_combined <- rep(y_predicted, repeats) 
 
# Calculate R-squared and adjusted R-squared values for the entire dataset 
r_and_adj_r_squared_values <- r_and_adjusted_r_squared(y_actual_combined, 
y_predicted_combined) 
 
# Output the R-squared and adjusted R-squared values 
cat("R-squared value:", r_and_adj_r_squared_values$r_squared, "\n") 
cat("Adjusted R-squared value:", r_and_adj_r_squared_values$adj_r_squared, 
"\n") 
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