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Abstract

More than 20% of the genes sequenced thus far appear to encode polytopic transmembrane proteins involved in a
of critical functions, particularly energy and signal transduction. Many are important with regard to human disease (e.g.
sion, diabetes, drug resistance), and many drugs are targeted to membrane transport proteins (e.g., fluoxetine and om
However, the number of crystal structures of membrane proteins, especially ion-coupled transporters, is very limited.
an inward-facing conformer of theEscherichia coli lactose permease (LacY), a paradigm for the Major Facilitator Superfa
which contains almost 4000 members, was solved at about 3.5 Å in collaboration with Jeff Abramson and So Iwata at
College London. This intensively studied membrane transport protein is composed of two pseudo-symmetrical 6-helix
with a large internal cavity containing bound sugar and open to the cytoplasm only. Based on the structure and a larg
biochemical and biophysical evidence, a mechanism is proposed in which the binding site is alternatively accessible
side of the membrane.To cite this article: H.R. Kaback, C. R. Biologies 328 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

As postulated by Mitchell[1,2] and demonstrate
conclusively in bacterial membrane vesicles[3–5],
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1 Mailing address: UCLA, 5-748 MacDonald Research Labor

tories, Box 951662, Los Angeles, CA 90095-1662, USA.
1631-0691/$ – see front matter 2005 Académie des sciences. Publis
doi:10.1016/j.crvi.2005.03.008
transport of many solutes against a concentration
dient is driven by an electrochemical H+ gradient
(�µ̄H+ ; interior negative and/or alkaline). This fun
damental process is found ubiquitously in all livin
organisms and plays an important role in many asp
of cell function, such as nutrient uptake, signal tra
duction, as well extrusion of drugs and noxious s
stances in the environment. Understanding the m
anism by which membrane transporter proteins tra
duce free energy stored in ion electrochemical gra
hed by Elsevier SAS. All rights reserved.
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membrane is one of the fundamental questions in
ology.

Lactose permease ofEscherichia coli (LacY), the
second structural gene in thelac operon[6], is en-
coded bylacY and is the first gene encoding a me
brane transport protein to be cloned into a recom
nant plasmid, overexpressed[7] and sequenced[8].
This success in the early days of molecular biolo
opened the study of secondary active transport at
molecular level. Thus, LacY was the first protein
its class to be solubilized and purified in a complet
functional state[9,10], thereby demonstrating that th
single gene product is solely responsible for all
translocation reactions catalyzed by the galacto
transport system inE. coli. It has also been shown th
LacY is both structurally and functionally a monom
in the membrane (see[11–14]).

LacY is an integral cytoplasmic membrane p
tein that belongs to the Major Facilitator Superfa
ily (MFS) [15], an increasingly large group of tran
port proteins thought to be evolutionarily related a
found in membranes from archaea to the mamma
central nervous system. LacY utilizes free energy
leased from downhill translocation of H+ to drive the
stoichiometric accumulation of galactosides again
concentration gradient. In the absence of�µ̄H+ , LacY
catalyzes the converse reaction, utilizing free ene
released from downhill translocation of sugar to dr
uphill translocation of H+ with generation of�µ̄H+ ,
the polarity of which depends upon the direction of
substrate concentration gradient (Fig. 1).

LacY is composed of 417 amino acid residu
is 80–85% helical[16–19], and has 12 helices tha

Fig. 1. Lactose/H+ symport. In the absence of substrate, LacY d
not translocate H+; substrate gradients generate electrochem
H+ gradients.
traverse the membrane in zigzag fashion conne
by relatively hydrophilic loops with both N and
termini on the cytoplasmic face[20–22] (Fig. 2).
Electrospray ionization-mass spectrometry (ESI–M
has been applied successfully to LacY[23–27] and
other hydrophobic membrane proteins. The molec
weight reconstruction from ESI–MS of LacY with
6-histidine affinity tag at the carboxyl terminus reve
that the purified protein is homogeneous, and the c
puted mass is within 0.01% of that calculated from
DNA sequence with a formyl group on the initiatin
methionine. Although the formyl group is normal
removed from native LacY[28], overexpression ma
saturate the deformylase.

Use of molecular biology approaches to engin
LacY for site-directed biochemical and biophysic
studies has provided important information ab
structure and mechanism (Fig. 2) [29]. In addition to
other site-directed mutants, functional LacY dev
of 8 native cysteine residues has been constru
(C-less LacY) and used for Cysteine-Scanning M
tagenesis[30]. Analysis of mutants at every positio
in the protein has led to the following observatio
(reviewed in[29–31]). (1) Only six side chains are ir
replaceable with respect to active transport: Glu1
(helix IV) and Arg144 (helix V) which are crucial fo
substrate binding; Glu269 (helix VIII) which is likel
involved in both substrate binding and H+ translo-
cation; and Arg302 (helix IX), His322 (helix X) an
Glu325 (helix X) which play irreplaceable roles in H+
translocation. (2) Residues in addition to Glu126 a
Arg144 that are important determinants for sugar bi
ing and recognition have been identified. (3) Substr
induced changes in the reactivity of side chains w
various chemical modification reagents, site-direc
fluorescence and spin-labeling suggest widesp
conformation changes in the protein during the tra
port process.

Based on these observations, a model for the tr
port mechanism has been postulated which is s
ported by the structure to be discussed. A poss
helix packing model was also proposed from dista
constraints obtained from thiol cross-linking expe
ments and engineered Mn(II) binding sites[32] which
is consistent with most of the local interactions
vealed, but does not accurately describe certain gl
aspects of the structure. Although the results provi
a crude approximation of the structure and mec
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Fig. 2. Secondary structure model of LacY derived from hydropathy and deletion analyses. The single-letter amino acid code is use
irreplaceable for active transport are highlighted in large green type. Charge pairs Asp237/Lys358 and Asp240/Lys319 are show
brown type. Solid rectangles represent transmembrane regions defined by deletion analysis. The dashed helix VI represents the re
by a decrease in downhill transport assessed by phenotype on indicator media. Orange letters represent ionizable residues predicted
the cytoplasmic ends of transmembrane helices II, III, IV and V by deletion analysis. Squared residues represent positions where
activity of single-cysteine replacement mutants is inhibited byN -ethylmaleimide (NEM) treatment. Circled residues represent positions w
missense mutations have been shown to inhibit lactose accumulation. Residues in gray circles represent positions where both resul
observed. Two-tone arrowheads indicate locations where discontinuities in the primary sequence have been introduced and solid
indicate regions where amino acids have been inserted into LacY. Purple arrowheads heads indicate good transport activity and red

indicate little or no transport activity.
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nism, high-resolution structures are required to
plain the details of the transport reaction, which
clude substrate binding, coupling between subst
and H+ translocation and large-scale conformatio
changes during turnover. However, all crystallizat
trials failed until lately, due in all probability to th
conformational flexibility of LacY.

Recently, the X-ray structure of a LacY the
mostable mutant, C154G, which binds ligand but d
little transport, was solved at a resolution of 3.5 Å
collaboration with So Iwata and Jeff Abramson at I
perial College London[14]. The structure confirm
many of the biochemical and biophysical studies a
also reveals a number of unexpected, novel finding
2. Overall structure of LacY

The asymmetric unit of the LacY crystal is com
posed of an artificial dimer[14], with two molecules
oriented in opposite directions, confirming that t
monomer is the functional and structural unit (s
[11–13]). Viewed normal to the membrane (Fig. 3B),
LacY has a distorted oval shape with dimensions
30 Å × 60 Å. Parallel to the membrane (Fig. 3A),
LacY is heart-shaped with a large interior hydroph
cavity (dimensions ca. 25 Å× 15 Å) open on the
cytoplasmic side, representing the inward-facing c
formation of LacY. Within the cavity, a single boun
ligand molecule (β-D-galactopyranosyl 1-thio-β-D-
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Fig. 3. Overall structure of LacY. The figures are based on the C154G mutant structure with boundβ-D-galactopyranosyl-1-thio-β-D-galacto-
spyranoside (TDG). (A) Ribbon representation of LacY viewed parallel to the membrane. The twelve transmembrane helices are colo
the N-terminus (N) in purple to the C-terminus (C) in pink with TDG represented by black spheres. (B) Stereo view of the ribbon representatio
of LacY viewed along the membrane normal from the cytoplasmic side. For clarity, the loops have been omitted. The color scheme is
as in (A) and the twelve transmembrane helices are labeled with roman numerals. (C) Secondary structure schematic of LacY. The N- a
C-terminal portions of the enzyme are colored in blue and red, respectively. Residues at the kinks in the transmembrane helices are m
purple squares; residues marked with green and yellow circles are involved in substrate binding and proton translocation, respecti
residue E269, colored aqua, is involved in both substrate binding and H+ translocation. The large hydrophilic cavity is designated by a b

triangle and TDG is depicted as two black circles.
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galactopyranoside; TDG) is observed in the middle
the membrane displaced slightly towards the cytop
mic side. This is consistent with the idea that LacY h
only one binding site that is alternatively accessible
either side of the membrane[1,33].

The monomer is composed of 12 transmembr
helices as predicted[14,16,20] in which the N- and
C-terminal 6 helices form two distinct bundles co
nected by a long cytoplasmic loop between helices
and VII (Fig. 3C). The N- and C-terminal 6-helix do
mains have a similar topology and are related b
pseudo two-fold axis of symmetry, as proposed
oxalate/formate antiporter (OxlT) and other memb
of the MFS[34,35]. A hydrophilic cavity is formed
between helices I, II, IV and V of the N-terminal d
main and helices VII, VIII, X and XI of the C-ter
minal domain, while helices III, VI, IX and XII are
largely embedded in the bilayer, as suggested from
termolecular cross-linking experiments[12]. Kinks in
helices I and VII, as well as IV and X, are observed,
dicating that these helices may play an important r
in the conformation change(s) between the outwa
facing and inward-facing conformations during Lac

turnover.
It is highly relevant that the 3-D structure of anoth
member of the MFS, the Pi/glycerol-3-P antiporte
(GlpT), was solved at the same time as LacY[35].
Although the two proteins have little sequence h
mology and catalyze different translocation reactio
their overall fold is similar. In addition, the 2-D stru
ture of the OxlT, a third member of the MFS, al
exhibits similar features, suggesting that the memb
of the MFS may all have a similar fold[34].

3. Substrate-binding

A primary interaction is found between the irr
placeable residue Arg144 (helix V) and the O3 and
O4 atoms of the galactopyranosyl ring via a bident
H-bond, as suggested by biochemical findings (Fig. 4)
[14,36–39]. Another irreplaceable residue Glu126 (h
lix IV) is in close proximity to Arg144 and may in
teract with the O4, O5 or O6 atoms of galactopyra
nosyl ring via water molecules. Although a propos
salt bridge between Arg144 and Glu126[40,41] is not
observed, such an interaction may be present in

absence of ligand[42] or in another conformational
Fig. 4. Substrate binding site of LacY. Possible H-bonds and salt bridges are represented by black dashed lines. (A) Residues involved in TDG
binding viewed along the membrane normal from the cytoplasmic side. 2|Fo|–|Fc| electron density map (contoured at 1.5σ ) for TDG is also
shown. (B) Close up of the TDG binding site in the N-terminal domain.
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intermediate. Interestingly, a hydrophobic interact
is observed between the bottom of the galactop
nosyl ring and the indole ring of Trp151 (helix V), a
proposed[43]. Recent fluorescence studies[44] sup-
port the conclusion from the structure that Trp151
in a hydrophilic environment. Furthermore, phosph
rescence studies in the absence and presence of l
verify a direct interaction between the galactopy
nosyl and indole rings. The C-6 atom of the galacto
ranosyl ring also appears to interact hydrophobic
with Met23 (helix I). A similar interaction betwee
the C6 atom of TDG and a His side chain is observ
in the structure of anE. coli enterotoxin[45]. How-
ever, mutant M23A exhibits the same binding affin
as wild-type LacY (I. Smirnova & HRK, unpublishe
data). The binding-site in the N-terminal domain be
a striking similarity to those of many other galact
side and sugar binding proteins (see[45–47]). Glu269
in helix VIII in the C-terminal domain, another irre
placeable residue, appears to form a salt bridge w
Arg144, as well as a possible H-bond with Trp15
More recent studies[48] with N -bromosuccinamide
(NBS), a Trp-modification reagent, and fully fun
tional single-Trp151 LacY are consistent with t
presence of an H-bond between the carboxyl gr
at position 269 and the indole N of Trp151. Impo
tantly, it was suggested that the primary charge–
interaction between Glu269 and Arg144 is necess
to maintain the H-bond between Glu269 and Trp1
which acts to keep Trp151 in an optimal orientatio
It has also been proposed that Glu269 is involved
both ligand binding and H+ translocation[27,49–51].
Thus, it is likely that contacts between Glu269 in t
C-terminal domain and Arg144 and Trp151 in the
terminal domain may be a key to providing the imp
tant energetic link between the two helical bundles

Fewer interactions are observed with the su
and residues in the C-terminal domain. Helices
(Asp237) and XI (Lys358) (Fig. 4A), which are sym-
metrically related to the helices I and V, respective
are also involved in TDG binding. However, it seem
probable that these residues play a supporting role
ative to the N-terminal primary binding site by provi
ing additional affinity for disaccharide substrates. T
explains why the monosaccharide galactose has
affinity for LacY, but behaves like any other substra
with respect to protecting Cys148 against alkylat
[52]. It is critical to understand that galactose its
d

is the most specific substrate for LacY, but has v
low affinity, which is increased markedly by variou
adducts, particularly if they are hydrophobic, at t
anomeric carbon[52]. In contrast to Arg144, which i
absolutely required, the charge pair between Asp
and Lys358 is interchangeable, and both can be
placed simultaneously by neutral side chains with
tle effect on activity[53–55]. Therefore, their inter
actions with ligand are not absolutely required. T
essential portion of the substrate-binding site with
spect to specificity is in the N-terminal domain, a
the residues in the C-terminal domain that inter
with the adduct on the anomeric carbon of galacto
ranoside increase affinity, but have little to do w
specificity. Furthermore, although the C2, C3, and C6
OH groups on the galactopyranosyl ring play ro
in H-bonding, the C4 OH is clearly the most impor
tant determinant for specificity[56]. The hydropho-
bic interaction between the galactopyranosyl ring a
Trp151 is likely to orient the ring so that impo
tant H-bonds can be realized[43]. However, although
the structure is consistent with and explains ma
biochemical observations, higher resolution structu
with different bound sugars are required to underst
ligand binding in atomic detail.

4. Residues involved in H+ translocation and
coupling

One fundamentally important problem that requi
a solution is the identification of H+ binding sites
and the mechanism of coupling between sugar
H+ translocation. Several lines of evidence indic
that LacY is protonated prior to ligand binding[39].
Most recently, it has been shown directly (J. Vazqu
Ibar, S. Schuldiner & HRK, unpublished) that a
dition of TDG to a concentrated solution of pu
fied, detergent solubilized LacY induces no chang
pH, while a positive control experiment with the a
tiporter EmrE (provided by Prof. Shimon Schuldin
Hebrew University, Jerusalem) under the same co
tions releases about 1 H+/mol EmrE upon addition o
tetraphenylphosphonium[57].

In the structure, a complex salt bridge/H-bond n
work is observed (Fig. 5), which is composed o
residues from helix VII (Tyr236 and Asp240), helix
(Lys319, His322 and Glu325) and helix IX (Arg302
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Fig. 5. Residues involved in H+ translocation and coupling
H-bonds are represented by black dashed lines. (A) View parallel
to the membrane. (B) View along the membrane normal from th
cytoplasmic side.

Since extensive biochemical analysis indicates
His322, Glu325 and Arg302 are directly involved
H+ translocation, it is noteworthy that Glu325 is em
bedded in a hydrophobic milieu formed by Met2
and Ala295 (helix IX), Leu329 (helix X) and Tyr23
(helix VII), which is consistent with the notion tha
Glu325 is protonated in this conformation[29]. Pro-
tonated Glu325 also appears to be partially stabili
by an H-bond to the Sδ atom of Met299; a simi-
lar glutamate-methionine interaction which stabiliz
protonation of a glutamic acid residue has been
ported for theD-proton pathway of bovine cytochrom
c oxidase[58]. Therefore, the structure represents
protonated inward-facing conformation with bou
substrate. It has been suggested[59] that Arg302 could
interact with Glu325 to drive H+ release. However, in
the current structure, the side chain of Arg302 is
7 Å away from Glu325, which would require a larg
side-chain rearrangement of Arg302 to form a s
bridge. This structural data combined with bioche
ical studies (see[29]) provides support for the sug
gestion that His322 may be the immediate H+ donor
to Glu325. Since mutants with simultaneous neu
replacements for Asp240 and Lys319 maintain sign
cant transport activity[53,54], it is unlikely that this
salt bridge is directly involved in H+ translocation;
however, the two residues could be involved in r
ulation and/or stabilization of the salt bridge/H-bo
network of the residues.

The closest distance between this network and
sugar binding site is more than 6 Å, indicating that
network does not directly interact with the sugar bin
ing site in the inward-facing conformation. Glu269
involved in substrate binding, as discussed, and is
in proximity to His322 (closest distance 5.8 Å) (in a
dition, see[60–62]). It is highly likely that Glu269
couples ligand binding and H+ translocation since i
is the only irreplaceable residue that appears to be
volved in both sugar binding and H+ translocation.
It is also proposed that Glu269 makes direct c
tact with His322 in another conformation. Obvious
higher resolution structures in other conformations
required to address these critical questions.

5. Proposed mechanism of lactose/H+ symport

The mechanism of lactose/H+ symport can be ex
plained by a simple kinetic scheme (see[14,29]).
Briefly, influx consists of six steps: starting fro
the outward-facing conformation (A); protonation
LacY (B); binding of lactose (C); a conformation
change that results in the inward conformation (
release of substrate (E); release of the H+ (F); return
to the outward conformation. As discussed above,
structure corresponds to the protonated, inward-fac
conformation with bound substrate (Fig. 6D).

LacY in the outward-facing conformation mig
be very unstable and protonated immediately as p
tulated [29]. In this state, the H+ is on Glu269 or
shared between Glu269 and His322. Ligand is rec
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Fig. 6. A possible lactose/H+ symport mechanism. Key residues are labeled and H-bonds are shown with blue lines. The H+ and the substrate
are shown in red and green circles, respectively, and the hydrophilic cavity is colored aqua.
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nized initially by Trp151, Arg144 and Glu126, whic
may induce H+ transfer to His322 and subsequen
to Glu325 as Glu269 is recruited to complete the bi
ing site by H-bonding to Arg144 and Trp151. Th
process may also trigger transition to the inward c
formation. Substrate is then released into the cy
plasm, followed by release of the H+ from Glu325
due probably to a decrease in pKa caused either by
approximation to Arg302[59] or exposure to solven
in the aqueous cavity (cytoplasmic pH is ca. 7.6). S
eral lines of evidence indicate that the H+ is released
from Glu325. After releasing the H+ inside, transition
into the outward-facing conformation is induced.

The structure of LacY exhibits a single suga
binding site at the apex of a hydrophilic cavity op
to the cytoplasm, and it has been postulated[14] that
the binding site has alternating access to either
of the membrane during turnover. However, it is n
clear whether�µ̄H+ changes binding affinity, particu
larly with LacY, where it has been shown that�Ψ and
�pH have quantitatively the same kinetic[63], as well
as thermodynamic[64,65], effect on transport.

Although substrate protection against alkylation
Cys148 byN -ethylmaleimide is particularly useful fo
obtainingKDs of LacY for various substrates over
wide range of concentrations[38,39,52,56,66–68], it
is difficult to obtain trueKD values on each side o
the membrane for a transport protein in the prese
of �µ̄H+ because the ligands used are transloca
across the membrane and may accumulate in ri
side-out (RSO) vesicles thereby leading to unde
timation of KD. However, in a recent series of e
periments[69], lactose or TDG protection of Cys14
against alkylation byN -ethylmaleimide were carrie
out on ice, which decreases substrate accumula
drastically[70]. Under these experimental condition
in the absence of�µ̄H+ , both ice-cold RSO and
inside-out (ISO) vesicles likely equilibrate with th
external medium. In the presence of�µ̄H+ , RSO vesi-
cles may still be able to accumulate lactose or T
2–3 fold, even though the reactions are carried ou
ice for only 5 min. Therefore, the measuredKDs for
RSO vesicles in the presence of�µ̄H+ may be un-
derestimated by 2–3-fold. However, this is unlikely,
ISO vesicles in the presence of ATP generate a�µ̄H+
of opposite polarity (interior positive and/or acid)[71],
which causes a decrease in the intravesicular con
tration of ligand relative to the concentration in t
medium[72]. Remarkably, results with both lacto
and TDG demonstrate that theKD manifested by ISO
vesicles exhibits less than a 2-fold change in the
sence or presence of�µ̄H+ . Moreover, theKD values
observed with RSO or ISO vesicles in the absenc
presence of�µ̄H+ are similar within experimental er
ror. The results provide a strong indication that�µ̄H+
has little or no effect on binding affinity, a concl
sion that raises a number of interesting considerat
regarding the mechanism by which�µ̄H+ drives ac-
cumulation.

In the presence of�µ̄H+ (interior negative and/o
alkaline), wild-type LacY can accumulate lacto
against about a 100-fold concentration gradient. W
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Fig. 7. Effect of�µ̄H+ of opposite polarities of�µ̄H+ on substrate
translocation in RSO or ISO vesicles. (A) �µ̄H+ with RSO gener-
ated by addition ofD-lactate (�Ψ , interior negative); substrate
accumulated. (B) �µ̄H+ with ISO vesicles generated by addition
10 mM Mg(II)ATP or 20 mM lithiumD-lactate under oxygen (inte
rior positive and/or acid), which is opposite to that of RSO vesic
substrate is extruded from the vesicles.

out a significant decrease in binding affinity on t
inside of the membrane, how does�µ̄H+ drive lac-
tose accumulation against a concentration gradi
Based on the effect of D2O on various translocatio
reactions, it has been postulated[29,73] that the rate-
limiting step for downhill transport in the absence
�µ̄H+ is deprotonation which precedes return of u
loaded LacY to the outer surface of the membra
in contrast, in the presence of�µ̄H+ , dissociation of
sugar or return of unloaded LacY may be rate-limitin
It is also noteworthy that the primary kinetic effe
of �Ψ or �pH on transport is a dramatic decrea
in Km [63]. Therefore, it seems reasonable to s
gest that�µ̄H+ enhances the rate of deprotonation
the inner surface of the membrane, and thereby all
unloaded LacY to return to the outward-facing conf
mation more rapidly. Thus, the major effect of�µ̄H+
on active transport by LacY appears to be kinetic w
little or no change in affinity for sugar.

Although biochemical and biophysical studies,
well as a single structure at a 3.5-Å resolution, can
plain how the overall conformational change in La
may be coupled to sugar binding and H+ transloca-
tion, many fundamental questions remain: Why is p
tonation of LacY important for sugar binding? Wh
is the detailed mechanism of coupling between bi
ing and H+ translocation? How does a lactose gra
ent directed inward or outward drive H+ translocation
through the same pathway? What is the time of
cupancy of LacY in the outward-facing and inwar
facing conformations? In addition, higher resoluti
atomic detail regarding ligand-protein interactions
needed. Therefore, it is essential to obtain higher re
lution structures in different conformations, as well
dynamics, in order to fully understand the mechan
of substrate/H+ symport by LacY.
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