
3/

d

17,

uch as
d
s failure

he amino
2, in the

metric

pporting

BLAST,

méthodes
t », en parti-
C. R. Biologies 328 (2005) 445–453

http://france.elsevier.com/direct/CRASS

Genetics / Génétique

Construction of non-symmetric substitution matrices derive
from proteomes with biased amino acid distributions

Olivier Bastiena,b, Sylvaine Royc, Éric Maréchala,∗

a Laboratoire de physiologie cellulaire végétale, département « Réponse et Dynamique cellulaire », UMR 5019,
CNRS–CEA–INRA–université Joseph-Fourier, CEA Grenoble, 17, rue des Martyrs, 38054 Grenoble cedex 09, France

b Gene-IT, 147, av. Paul-Doumer, 92500 Rueil-Malmaison, France
c Laboratoire de biologie, informatique et mathématiques, département « Réponse et Dynamique cellulaire », CEA Grenoble,

rue des Martyrs, 38054 Grenoble cedex 09, France

Received 6 December 2004; accepted after revision 1 February 2005

Available online 25 February 2005

Presented by Roland Douce

Abstract

Automatic comparison of compositionally biased genomes, such as that of the malarial causative agentPlasmodium falci-
parum(82% adenosine+ thymidine), with genomes of average composition, is currently limited. Indeed, popular tools s
BLAST require that amino acid distributions be similar in aligned sequences. However, theP. falciparumgenome is so biase
that six amino acids account for more than 50% of the protein composition. One reason for the comparison method
lies in the compositional difference between the query and the subject proteomes, which is not taken into account in t
acid substitution matrices. This paper introduces a method to derive substitution matrices, in particular BLOSUM 6
frame of the information theory. It allows the construction of non-symmetrical matrices, taking into account the non-sym
amino acid distributions. The dirAtPf family of matrices allowing the comparison ofP. falciparumandA. thalianais given as
an example. This paper further provides an analysis of the obtained matrices in the frame of the information theory, su
the discrimination advantage they bring.To cite this article: O. Bastien et al., C. R. Biologies 328 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

La comparaison automatique de génomes biaisés, tel que celui de l’agent du paludismePlasmodium falciparum(82 % adé-
nosine+ thymidine), avec des génomes de composition moyenne, est limitée. En effet, les outils populaires, tels que
imposent que les distributions en amino acides des séquences comparées soient proches. Or le génome deP. falciparumest
tellement biaisé que six aminoacides constituent plus de 50 % de la composition protéique. Une cause de l’échec des
de comparaison est de ne pas tenir compte de ces différences de distributions entre protéomes « requête » et « suje
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rimination
culier au niveau de la matrice de substitution des aminoacides. Cette note présente une méthode pour dériver les m
substitution, en particulier BLOSUM 62, dans le cadre de la théorie de l’information. Il est ainsi possible de constr
matrices non symétriques, tenant compte de la non-symétrie des distributions en amino acides. La famille dirAtPf de
permettant de comparerArabidopsis thalianaet Plasmodium falciparumest proposée comme exemple. Cette note présent
plus, une analyse de ces matrices dans le cadre de la théorie de l’information, soutenant théoriquement le gain de disc
qu’elles peuvent apporter.Pour citer cet article : O. Bastien et al., C. R. Biologies 328 (2005).
 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Keywords:Substitution matrix; BLOSUM; Biased genome;Plasmodium falciparum; Information theory; Mutual information

Mots-clés :Matrice de substitution ; BLOSUM ; Génome biaisé ;Plasmodium falciparum; Théorie de l’information ; Information mutuelle
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1. Introduction

Comparison of biological macromolecules has
come an everyday task for biologists, for extrem
diverse purposes such as genomic sequencing, s
tural modelling, functional inference, phylogenetic
construction, allelic or mutational analyses, etc. In
cases, comparison methods rely on a fundamental
tulate that one can simply state as: “the closer in
evolution, the more alike and reversely, the more al
probably the closer in the evolution”[1]. Numerous
computer-based tools are used to estimate the p
imity of protein sequences[2]. Alignment of two se-
quences is typically done by maximizing (or minimi
ing) a given quantity, named score, which reflects
shared features of the two biological entities. Glo
alignment algorithms[3] are not accurate to asse
homology of domains in modular proteins[4]; local
alignments are better suited[5,6]. They use scoring
matrices to maximize the summed scores of compa
residues and find optimal local alignments, compu
with a dynamic programming procedure[2–6]. Scor-
ing matrices have been found to be similarity matri
as well[2,4,6]. Many similarity matrices are availab
[7–10]and evaluation studies led to the conclusion t
those based on a log-odds ratio, like BLOSUM 62[8],
over performed the others[9]. BLOSUM 62 was com-
puted using blocks of aligned sequences with

(1)sij = 1

λ
log

(
qij

pipj

)

where i and j are aligned amino acids,qij the fre-
quency of the observation: “i is aligned withj ”, i.e.
the target frequency,pi and pj are respectively the
i andj frequency, i.e. the background frequency a
λ is a scaling factor.
-

-

Karlin and Altschul[11] have shown that subst
tution matrices depend on a particular set of data
which amino acids are paired with frequencies t
correspond to the matrices’ target frequencies. If
set of data is made up of aligned homologous
quences, then the matrix is usable to distinguish
tant local homologies, from similarities due to chan
[12]. Using information theory, Altschul[12] have fur-
ther reported that substitution matrices can be e
uated using the average information they contain
This average information, known as therelative en-
tropyof Shannon (1948)[13], was computed as

(2)H =
∑
i,j

qij sij

This formula can be trivially applied to similarity ma
trices, in order to estimate their ‘sensitivity’.H com-
putation is therefore a popular parameter when n
matrices are proposed. In a recent report[14], it has
further been used as a computation constraint to de
substitution matrices, i.e. with constant entropy. Inf
mation theory is much more than a practical frame
matrix computation; it allows essentially the trans
tion of biological properties into mathematical mo
els, particularly in probabilistic terms.

Given a probability lawP that characterizes a ran
dom variable, the Hartley self-informationh [15] is
defined as the amount of information one gains w
an eventi occurs:

(3)h(i) = − log
(
P(i)

)
The less likely an eventi, the more we learn abou
the system wheni happens. The mutual-informationI
between two events, is the reduction of the uncerta
of one eventi due to the knowledge of the otherj :

(4)I = h(i) − h(i/j)
j→i
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Mutual information being symmetrical,Ij→i = Ii→j

and is notedI (i; j). Self and mutual information o
two eventsi andj are related:

(5)h(i ∩ j) = h(i) + h(j) − I (i; j)

If the occurrence of one of the two events mak
the second impossible, mutual information is equa
−∞. If the two events are fully independent, mutu
information is null.

Recently, we rigorously demonstrated that the sc
s(i, j) between two amino acids was themutual in-
formation, in the sense of Hartley, between the tw
considered amino acid (Bastien et al., submitted),
is to say:

(6)s(i, j) = 1

λ
I (i; j)

This assertion was implicit in Eq.(2). It first implies
that it is impossible to build separable and metric
quence spaces that conserve the mutual informa
between compared sequences. Second, the funda
tal postulate can be reformulated in the informat
theory framework: “Given two homologous proteinsa

andb, the closer in the evolution, the greater the m
tual information betweena and b and reversely, the
greater the mutual information betweena andb, prob-
ably the closer in the evolution.”

Whereas the BLOSUM model is efficient in mo
cases, it fails to estimate satisfactorily the alignm
between two proteins of very different amino ac
composition[16–18]. A major reason lies in Eq.(1)
that does not account for the distinct sequences w
the amino acidsi and j are sampled. This can b
of importance when compared proteins are from v
different cell environments (like soluble or membran
bound proteins) or of strongly different amino aci
composition[18–21]. In a pioneering study addres
ing this problem, Müller et al.[22] introduced a non
symmetric substitution matrices model for the co
parison of homologous trans-membrane proteins
showed that this kind of matrices had a larger discr
ination power, i.e. specificity. We reformulated th
model for the comparison of biased and non-bia
genomes ([16] and the present work).

Considering the general case of genome com
ison with distinct global amino acid composition
we used mutual information theory to construct no
symmetric substitution matrices dedicated to the
-

tection of homologous sequences. An important
plication is the computing of non-symmetric matric
for the comparison between complete proteomes w
deep differences in their composition in amino aci
Comparison ofArabidopsis thalianaandPlasmodium
falciparumproteomes is given as a case study.

2. Methods

2.1. Nomenclature for sequences databases (que
subject, Species 1 and 2) and for the non-symmetr
DirSp1Sp2 matrices

In molecular alignments, we used the stand
nomenclature for homology searches methods,
query for a known probing sequence (or database
sequences) that is compared to another sequenc
database of sequences), termedsubject. The family
of non-symmetric matrices computed here were d
icated to the comparison of a query sequence fro
first species (termed Species1) with a subject datab
or a single sequence, from a second species (ter
Species2). The family of amino acid substitution m
trices referred to as DirSp1Sp2 (Species1→ Species2)
were designed to be implemented in the conventio
BLASTP alignment algorithm: columns correspond
the query (or Species1) and rows to the subject
Species2) entries.

2.2. Identification of a non-redundant set of
homologous proteins betweenArabidopsis thaliana
andPlasmodium falciparum

As a source of genomic sequence material, we
lected the annotated sequences fromArabidopsis tha-
liana andPlasmodium falciparumfrom Internet data-
bases, respectively the National Center for Biote
nology Information server (ftp://ftp.ncbi.nih.gov) and
the Plasmodb genome resource (http://plasmodb.org/).
The massive annotation resulting from collaborat
efforts, genomic annotations contain errors. We
lected therefore annotated sequences that were ju
trustworthy at the downloading date in the resp
tive Internet-available databases, i.e. 25 545 seque
from A. thaliana as of December 2002, 5334 fro
P. falciparumas of December 2002. According to
method describe previously[18], the two proteomes

ftp://ftp.ncbi.nih.gov
http://plasmodb.org/
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were used to identify a non-redundant set of hom
ogous proteins using the BLASTP program and
Smith–Waterman algorithm[5,6], implemented in the
Biofacet software package (Gene-IT, France,[23]). To
remove the similarity redundancies fromP. falciparum
andA. thalianaprotein-sequence databases, for e
proteome, we built up a random proteome datab
containing an identical number of protein sequenc
of identical size and amino acid distribution, in whi
each sequence was an obligate shuffling of a co
sponding sequence from the original database. E
real protein of a given organism was compared to
the sequences of the random database using BLA
algorithm; the best alignmentP -value was collected
From the distribution of the selfx randomP -values,
a 5-percentile was set to define a cut-off. Then,
each species, the calculated cut-off was used as a
terion to partition the proteome owing to the sing
linkage clustering method. Eventually, the longest
quence was drawn from each similarity cluster to bu
up non-redundant proteomes. All proteins from
A. thaliananon-redundant proteome were compa
to the P. falciparumnon-redundant proteome, usin
the SW algorithm. For each alignment, aZ-value was
computed and aZ-value-cut-off of 8 was used to cre
ate clusters of alignedP. falciparum× A. thaliana
sequences, owing to the single-clustering method
this paper, this set was termed ‘automatic training s
Clusters were examined manually to select pairs
sequences whose functional annotation appeared
ogous. This set was termed ‘manual training set’ (
table in[18]).

2.3. Initial construction of a database of protein
blocks, from pairs of aligned sequences from Spec
and Species2 (or query and subject)

As described by[24], local alignments can be rep
resented as ungapped blocks with each row a diffe
protein segment and each column an aligned res
position. In the particular case described here, blo
can be simply derived as ungapped segments in p
of aligned sequences. These 2-line blocks were
dered so that the first sequence always belongs to
same genome. Substitutions of a given amino a
from a first sequence (Species1 or query) with ano
amino acid from a second (Species2 or subject) w
counted in all pairs of matching amino acids in ea
-

blocks in the database and then summed. The
stitution frequency table is used to calculate matri
representing the odd ratio between these observed
quencies and those expected by chance.

2.4. Families of similarity matrices computed from
blocks filtered by segment clustering

Closely related blocks in blocks databases exh
a high percentage of identity, up to 100% when
amino acid substitution is observed in aligned
quences. Evolutionary divergence is marked by a
crease in the identity percentage. Thus, the distribu
of the identity percentages within a block datab
can lead to a biased calculation of substitution m
trices, that over- or underscores alignments of cl
or distant sequences. Therefore, for each matrix c
puting, the training set of blocks was filtered using
clustering percentage, so that sequence segment
were identical for at least that percentage of am
acid were kept for the substitution frequency counti
This filtering is an alternative definition of the cluste
ing percentage described by[8], in which the multiple
contribution of segments that were identical for at le
that percentage, were averaged in calculating pair
quencies. In both cases, the decrease in the clust
percentage implies a decrease in the contribution
the blocks which percentage of identity is higher th
the clustering percentage. Like for the BLOSUM fa
ily of matrices, varying the clustering percentage le
to a family of matrices.

2.5. Iterative process in the computation of
non-symmetric matrices

Construction of DirSp1Sp2 matrices was stepwise
Frequency tables, matrices, and programs for UN
machines were primarily designed using the Biofa
multipurpose package (Gene-IT, Rueil-Malmais
[23]. The initial training set of pairs of sequenc
derived from alignments using the Smith–Waterm
algorithm implemented with BLOSUM 62. For
given clustering percentage, an initial non-symme
matrix was computed, and indexed1: DirSp1Sp21.
The initial training set was then re-aligned using
Smith–Waterman algorithm implemented with th
first non-symmetric matrix. From these alignmen
ungapped segments were selected and filtered o
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to the defined clustering percentage, and used as a
database of Blocks to compute a new non-symme
matrix indexed2: DirSp1Sp22. The process was it
erated, outputting a convergent family of matric
DirSp1Sp2,3, DirSp1Sp2,4, . . . DirSp1Sp2,n. The stable
matrices where referred to as un-indexed DirSp1Sp2.

3. Results and discussion

3.1. Question of the mutual information between tw
homologous sequences of distinct amino acid
distributions

The physical environment of proteins, (pH, wa
solubility or association to membranes), the codon
that is required for their synthesis or nucleotidic co
positional trends are constraints that can lead to v
uncommon amino acid distributions in some famil
of protein or even in complete proteomes[16–18,22].
Although biased amino acid distributions affect t
performance of protein comparison tools built for ‘a
erage’ amino acid distributions, they can bring use
information to discriminate homologous proteins.
that purpose, we considered two kinds of sequen
or set of sequences, the first namedquery, the sec-
ondsubject. For example,querysequence can be from
a first species, called Species1 (such asArabidopsis
thaliana; with an average nucleotidic−55% A+T−
and amino acid distribution) and thesubjectsequence
from a second species, called Species2 (such asPlas-
modium falciparum; which nucleotidic bias−82%
A+T− leads to a biased compositional proteome).

We can consider two kinds of events:{X = i} given
the amino acidsi in thesubjectsequence and{Y = j}
given the amino acidsj in thequerysequence (as a
application,X can be defined in a given species su
asArabidopsis thalianaandY in another such asPlas-
modium falciparum). The self-informationh, for the
occurrence of a given amino acid does not have
same signification in the context of each sequence

(7)hX(i) = − log
(
PX(i)

) �= − log
(
PY (i)

) = hY (i)

with PX andPY the probability laws assigned to th
random variablesX and Y , respectively. From in
equality (7), knowing an amino acid in one of th
aligned sequences does not bring the same q
tity of information concerning an amino acid occu
rence at the aligned site of the other sequence.
can be easily verified for Asparagines in the case
Arabidopsis thalianaandPlasmodium falciparum. In
P. falciparum, this amino acid is over represented a
leads to well-known low-complexity regions, where
it does not inArabidopsis thaliana. Still, Eqs. (4)
and (7)allow the definition of the mutual-informatio
I between two amino acids in two different set of s
quences, defined as the reduction of the uncertaint
eventj in the query sequence, gained by the kno
edge of the occurrence ofi in the subject sequence:

(8)IX=i→Y=j = hY (j) − hY/X(j/i)

Using the conditional probability theorem[25], which
states that:

PX/Y (X = i/Y = j)PY (j)

(9)= PY/X(Y = j/X = i)PX(i)

we can state that the mutual information is symm
ric in respect to the amino acid occurrence eventand
to the sequence were this event occurs:IX=i→Y=j =
IY=j→X=i . This last expression is defined as:

(10)IXY (i; j) = IYX(j ; i)
It is important to notice that, in general:

(11)IXY (i; j) �= IXY (j ; i)
and therefore that the mutual information between
amino acidsis not symmetricwhen just permuting the
amino acids and not sequences in the two term
Eq.(11). Using Eqs.(5), (8), (9) and (10), we can now
state that:

(12)IXY (i; j) = log

{
PXY ((X = i) ∩ (Y = j))

PX(i)PY (j)

}

Eq. (12) can be estimated from observed homolog
aligned sequences and allows computation of a s
stitution amino acid sequence with Eq.(6). This ma-
trix is non-symmetric (Eq.(12)) and implementation
in optimization alignment algorithm should therefo
be carried out paying attention to thequery and the
subjectsequence order. An important property of t
matrix is that the application inverse (transformat
of the query into a subject, and vice-versa) is don
by the transposition of the scoring matrix. The mat
SXY (i, j) in this order (i is taken from the Species
and is reading on the row) is called dirSp1Sp2.
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3.2. Training sets to compute non-symmetrical
substitution matrices

Determining sets of homologous sequences is a
ficult question. Here, we examined the possibilit
of an automatic or manual selection of a training
of pairs of similar sequences, in the given exam
of Arabidopsis thalianaandPlasmodium falciparum
proteomes, obtained after an all-against-all comp
son of non-redundant protein sequence databases
selected genomic sequences fromA. thaliana(25 545
annotated sequences as of December 2002) andP. fal-
ciparum (5334 annotated sequences as of Decem
2002). The strong nucleotidic bias of theP. falci-
parumgenome (82% AT) strikingly affects the amin
acid distribution within encoded proteins (Fig. 1). Six
amino acids (N, K, I, L, E, and S) account for 51
of the total amino acid content in proteins.Fig. 1
shows that the amino acid distribution inA. thalianais
strongly divergent, with a more balanced contribut
of individual amino acids to the overall compositio
of proteins. On top of the very strong amino acid b
found in P. falciparum, the protein sequences exhib
a very low complexity, marked by long stretches
repeated amino acids. It is still not known wheth
the very low complexity is solely due to the amin
acid bias or if a generic mechanism dedicated to
insertions of amino acid repeats would contribute
this striking occurrence of repeated amino acid p
tions in proteins. For an in-depth discussion of
biological rational ofP. falciparumbias as compare
to A. thaliana, see[18]. We selected a training set o

Fig. 1. Comparison of the amino acid distribution in thePlasmod-
ium falciparumand Arabidopsis thalianaproteomes. Frequencie
were calculated using the set of 71 pairs of homologous seque
selected with the method described in[17] from the two complete
proteomes (see material and methods). Amino acids were ra
owing to their frequencies inP. falciparum.
e

similar sequences, which was either directly used
matrices’ calculations (automatic sampling) or w
the restriction that the analogy of the protein funct
could be assessed by inspection of an expert c
tor (manual sampling). The advantage of the man
training set, described in[18], lies in its quality, but
it is costly. Although one might question the qual
of the automatic sample, the case study in the pre
paper proved that no major difference between
converging matrices calculated from the manual
the automatic training sets could be noticed. Beca
a model generalization and a pragmatic computa
of matrices would benefit mostly from a fully aut
mated method, we therefore detailed results obta
in that context.

3.3. Convergence of the non-symmetric matrices
obtained after iterative computation

Blocks used to calculate matrices were filtered
described in the Methods section, according to a c
tering percentage. Matrices were termed dirSp1S
with Sp1 being the query species, and Sp2 the s
ject species. The matrices devoted to the comp
son of A. thaliana and P. falciparum are therefore
called dirAtPf matrices. We generated matrices c
responding to eleven block clustering percenta
(dirAtPf100n for a clustering percentage= 100%
and n iterations, dirAtPf90n, . . . , dirAtPf50n). We
analysed the evolution of the matrices obtained a
each iterative round (summarized inFig. 2). Fig. 3
shows the number of amino acids that are initia
aligned by the generalist matrix BLOSUM 62 in th
training set and after alignments using matrices co
puted after 1, 4, 7 and 9 iterations. From the v
first matrix computation, one notice a decrease in
number of aligned amino acid, with a very rapid co
vergence, as early as∼ 10 iterations. Interestingly
in the present result, convergence appears as a
crease in the number of amino acids ‘detected’
the non-symmetrical matrices. That decrease wo
suggest that, in the case of well-assessed alignm
the non-symmetrical matrices are more specific.
contrast, although they converge to a close result,
trices computed with a manual training set exhibit
increase in the number of aligned amino acid alo
the training process. That increase would conver
suggest that in the case of hypothetical alignme
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Fig. 2. dirSp1Sp2 matrices iterative computing Workflow. After sampling a set of pairs of homologous sequences between Spe
Species2, these sequences were primarily aligned using BLOSUM 62 in order to determine conserved block. BLOSUM 62 is therefo
a way to initially ‘anchor’ homologous regions. These blocks are considered only if they have both the required minimum size and a m
given percentage of identity, named clustering percentage. The first deduced matrix, calledinitial matrix, is then used to iterate the process a
lead to a sequence of dirSp1Sp2 matrices. A convergence criterion is applied on the sequence dirSp1Sp2n so as to end the process.
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Fig. 3. Convergence of the matrices computing iterating proc
Convergence of the iterating process was studied according t
number of detected aligned amino acids pairs. For all clustering
centage, convergence was also observed for the number of de
blocks and the value of the matrices (data not shown). Excep
the 50% clustering percentage, convergence leads to a numb
aligned amino acids pairs lower than that obtained with the BL
SUM 62 matrix. As described by Müller et al.[22], non-symmetric
matrices lead to an increase of the discrimination power of the
trices, an expression of a more accurate mutual information val

the non-symmetrical matrices would lead to a gain
sensitivity. Thus it appears that an apparent gain
selectivity and specificity would be obtained. To th
extent, and as mentioned by Müller et al.[22], defi-
nition of a specificity/sensitivity gain when derivin
substitution matrices is difficult to rigorously asse
The matrices obtained from automatic or manual s
ples exhibited identical trends for eachsij terms: no
opposite deviations were observed. For all cluster
percentages, convergence was also observed fo
number of detected blocks and the value of the ma
ces (data not shown).

3.4. Asymmetry of the DirSp1Sp2 matrices: case
study of DirAtPf

We generated all the convergent dirAtPf matric
after a 10-iteration computation process dirAtPf10010,
dirAtPf9010, . . . , dirAtPf5010, indistinctly called
dirAtPf100, dirAtPf90, . . . , dirAtPf50. All the ma-
trices we obtained were non-symmetric, as sho
in Fig. 4 for dirAtPf100. In detail, the sub-matrice
(N, R) × (N, R) giving the mutual information be
tween all substitution available between Asparagi
(N) and Arginines (R) stresses the different ro
played by these two amino acids in the two proteom
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Fig. 4. BLOSUM 62 and dirAtPf100 substitution matrices.
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Fig. 5. Evolution of the relative Entropy as a function of the clu
tering percentage. As intuitively predicted by Müller et al.[22], the
better definition of the mutual information between aligned am
acids leads to a higher relative entropy than this of BLOSUM
(H ∼= 0.69).

as recorded by Singer and Hickey[20] and Bastien
et al.[17].

3.5. Analysis of the relative entropy H of the family
DirAtPf matrices

As described earlier for the family of BLOSUM
matrices [8], the relative entropyH derived from
Eq. (2) decreases with the blocks clustering perce
age (Fig. 5). Interestingly, relative entropy values
dirAtPf matrices (0.5–1.5 bits) are slightly higher th
those of the BLOSUM or PAM matrices (0.2–1.2 bi
[7,8]. Following the theory of information, this highe
relative entropy would suggest a higher sensitivity
dirAtPf matrices as compared to symmetrical ma
ces.

4. Conclusion

This article describes a method to compute a no
family of substitution matrices that are dedicated
the comparison of proteins, which amino acid co
position deviates from the average distribution. Th
exhibit remarkable features such as (i) the possibility
of computing reliable matrices from automatically s
lected pairs of similar sequences (automatic train
sets), (ii ) a rapidly convergent iterative process, a
(iii ) an increase in relative entropy. Still the select
ity/sensitivity gain is difficult to assess besides pr
matic use. Families of matrices for pairwise proteo
comparisons including biased genomes such as th
Plasmodium flaciparum(AT rich) or Chlamydomonas
reinhardtii (GC rich) are expected to be improved.
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