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Abstract

Automatic comparison of compositionally biased genomes, such as that of the malarial causativasgeotium falci-
parum(82% adenosine- thymidine), with genomes of average composition, is currently limited. Indeed, popular tools such as
BLAST require that amino acid distributions be similar in aligned sequences. However,fdleiparumgenome is so biased
that six amino acids account for more than 50% of the protein composition. One reason for the comparison methods failure
lies in the compositional difference between the query and the subject proteomes, which is not taken into account in the amino
acid substitution matrices. This paper introduces a method to derive substitution matrices, in particular BLOSUM 62, in the
frame of the information theory. It allows the construction of non-symmetrical matrices, taking into account the non-symmetric
amino acid distributions. The dirAtPf family of matrices allowing the comparisoR ¢dlciparumandA. thalianais given as
an example. This paper further provides an analysis of the obtained matrices in the frame of the information theory, supporting
the discrimination advantage they briffg.cite this article: O. Bastien et al., C. R. Biologies 328 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

La comparaison automatique de génomes biaisés, tel que celui de I'agent du paRlismedium falciparuni82 % adé-
nosine+ thymidine), avec des génomes de composition moyenne, est limitée. En effet, les outils populaires, tels que BLAST,
imposent que les distributions en amino acides des séquences comparées soient proches. Or le gérfaltipatemest

tellement biaisé que six aminoacides constituent plus de 50 % de la composition protéique. Une cause de I'échec des méthode
de comparaison est de ne pas tenir compte de ces différences de distributions entre protéomes «requéte » et « sujet», en par
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culier au niveau de la matrice de substitution des aminoacides. Cette note présente une méthode pour dériver les matrices d
substitution, en particulier BLOSUM 62, dans le cadre de la théorie de I'information. Il est ainsi possible de construire des
matrices non symétriques, tenant compte de la non-symétrie des distributions en amino acides. La famille dirAtPf de matrices
permettant de compardrabidopsis thalianat Plasmodium falciparunest proposée comme exemple. Cette note présente, de
plus, une analyse de ces matrices dans le cadre de la théorie de I'information, soutenant théoriquement le gain de discrimination
gu’elles peuvent apportdPour citer cet article: O. Bastien et al., C. R. Biologies 328 (2005).

0 2005 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction Karlin and Altschul[11] have shown that substi-
tution matrices depend on a particular set of data in

Comparison of biological macromolecules has be- which amino acids are paired with frequencies that
come an everyday task for biologists, for extremely correspond to the matrices’ target frequencies. If the
diverse purposes such as genomic sequencing, strucset of data is made up of aligned homologous se-
tural modelling, functional inference, phylogenetic re- quences, then the matrix is usable to distinguish dis-
construction, allelic or mutational analyses, etc. In all tant local homologies, from similarities due to chance
cases, comparison methods rely on a fundamental pos-{12]. Using information theory, Altschiil 2] have fur-
tulate that one can simply state as: “the closer in the ther reported that substitution matrices can be eval-
evolution, the more alike and reversely, the more alike, uated using the average information they contained.
probably the closer in the evolution[1]. Numerous  This average information, known as theative en-
computer-based tools are used to estimate the prox-tropy of Shannon (1948)13], was computed as
imity of protein sequence®]. Alignment of two se-

. . ... L. H:Zqijsij

quences is typically done by maximizing (or minimiz- -
ing) a given quantity, named score, which reflects the "
shared features of the two biological entities. Global This formula can be trivially applied to similarity ma-
alignment algorithmg3] are not accurate to assess trices, in order to estimate their ‘sensitivityd com-
homology of domains in modular proteifid]; local  Putation is therefore a popular parameter when new
alignments are better suitd8,6]. They use scoring ~ Matrices are proposed. In a recent refd], it has
matrices to maximize the summed scores of Comloareolfurther been used as a computation constraint to derive
residues and find optimal local alignments, computed sub_stitution mgtrices, i.e. with constant entropy. Infor-
with a dynamic programming proceduj@-6]. Scor- mat|9n theory is _much more than a practlcal frame for
ing matrices have been found to be similarity matrices Matrix computation; it allows essentially the transla-
as well[2,4,6] Many similarity matrices are available ~ion of biological properties into mathematical mod-
[7—10]and evaluation studies led to the conclusion that ©!S; particularly in probabilistic terms.

&)

those based on a log-odds ratio, like BLOSUM[BP Given_a probability lawP that.charactgrizes a .ran-
over performed the othef8]. BLOSUM 62 was com- dor_n variable, the Hartley_ self-qurmaﬂdn [1_5] is
puted using blocks of aligned sequences with defined as the amount of information one gains when
an event occurs:
1 qij
;j = —log| —— 1 )= — j
Sij =3, g(p,-p,-> 1) h(i) = —log(P(i)) (3)

The less likely an event, the more we learn about
the system whehhappens. The mutual-informatidn
between two events, is the reduction of the uncertainty
of one event due to the knowledge of the othgr

wherei and j are aligned amino acidg;; the fre-
quency of the observationi ‘is aligned with;”, i.e.

the target frequencyp; and p; are respectively the

i andj frequency, i.e. the background frequency and
A is a scaling factor. I =h()—h(@i/j) (4)
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Mutual information being symmetrical,;,; = I;, ; tection of homologous sequences. An important ap-
and is noted! (i; j). Self and mutual information of  plication is the computing of non-symmetric matrices
two events and; are related: for the comparison between complete proteomes with

deep differences in their composition in amino acids.
h(G O j)=h@) +h(j) = 1G; ) ®) Comparison oArabidopsis thalianandPlasmodium

If the occurrence of one of the two events makes falciparumproteomes is given as a case study.
the second impossible, mutual information is equal to
—o0. If the two events are fully independent, mutual

information is null. 2. Methods
Recently, we rigorously demonstrated that the score
s(i, j) between two amino acids was theutual in- 2.1. Nomenclature for sequences databases (query,

formation in the sense of Hartley, between the two Subject, Species 1 and 2) and for the non-symmetric
considered amino acid (Bastien et al., submitted), that DirSp1Sp matrices
is to say:
In molecular alignments, we used the standard
s, j) = }I(i;j) (6) nomenclature for homology searches methods, i.e.
A queryfor a known probing sequence (or database of
This assertion was implicit in Eq2). It first implies sequences) that is compared to another sequence (or
that it is impossible to build separable and metric se- database of sequences), termstject The family
guence spaces that conserve the mutual informationof non-symmetric matrices computed here were ded-
between compared sequences. Second, the fundamenicated to the comparison of a query sequence from a
tal postulate can be reformulated in the information first species (termed Speciesl) with a subject database,
theory framework: “Given two homologous proteins  or a single sequence, from a second species (termed
andb, the closer in the evolution, the greater the mu- Species2). The family of amino acid substitution ma-
tual information betweem andb and reversely, the trices referred to as Dir§fp (Speciesl> Species2)
greater the mutual information betweeandb, prob- were designed to be implemented in the conventional
ably the closer in the evolution.” BLASTP alignment algorithm: columns correspond to
Whereas the BLOSUM model is efficient in most the query (or Speciesl) and rows to the subject (or
cases, it fails to estimate satisfactorily the alignment Species?2) entries.
between two proteins of very different amino acid
composition[16—18] A major reason lies in Eq1) 2.2. ldentification of a non-redundant set of
that does not account for the distinct sequences wherehomologous proteins betwe@mnabidopsis thaliana
the amino acids and j are sampled. This can be andPlasmodium falciparum
of importance when compared proteins are from very
different cell environments (like soluble or membrane- As a source of genomic sequence material, we se-
bound proteins) or of strongly different amino acids lected the annotated sequences frarabidopsis tha-
composition[18-21] In a pioneering study address- liana andPlasmodium falciparunfrom Internet data-
ing this problem, Miller et al22] introduced a non-  bases, respectively the National Center for Biotech-
symmetric substitution matrices model for the com- nology Information serverftfp://ftp.nchi.nih.goy and
parison of homologous trans-membrane proteins and the Plasmodb genome resourbég://plasmodb.org/
showed that this kind of matrices had a larger discrim- The massive annotation resulting from collaborative
ination power, i.e. specificity. We reformulated this efforts, genomic annotations contain errors. We se-
model for the comparison of biased and non-biased lected therefore annotated sequences that were judged
genomes|(6] and the present work). trustworthy at the downloading date in the respec-
Considering the general case of genome compar- tive Internet-available databases, i.e. 25 545 sequences
ison with distinct global amino acid compositions, from A. thalianaas of December 2002, 5334 from
we used mutual information theory to construct non- P. falciparumas of December 2002. According to a
symmetric substitution matrices dedicated to the de- method describe previous[it8], the two proteomes
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were used to identify a non-redundant set of homol- blocks in the database and then summed. The sub-
ogous proteins using the BLASTP program and the stitution frequency table is used to calculate matrices
Smith—-Waterman algorithiib,6], implemented in the  representing the odd ratio between these observed fre-
Biofacet software package (Gene-IT, Frarjeg]). To gquencies and those expected by chance.
remove the similarity redundancies fradnfalciparum
andA. thalianaprotein-sequence databases, for each 2.4. Families of similarity matrices computed from
proteome, we built up a random proteome database blocks filtered by segment clustering
containing an identical number of protein sequences,
of identical size and amino acid distribution, in which Closely related blocks in blocks databases exhibit
each sequence was an obligate shuffling of a corre-a high percentage of identity, up to 100% when no
sponding sequence from the original database. Eachamino acid substitution is observed in aligned se-
real protein of a given organism was compared to all quences. Evolutionary divergence is marked by a de-
the sequences of the random database using BLASTPcrease in the identity percentage. Thus, the distribution
algorithm; the best alignmemt-value was collected.  of the identity percentages within a block database
From the distribution of the self random P-values, can lead to a bhiased calculation of substitution ma-
a 5-percentile was set to define a cut-off. Then, for trices, that over- or underscores alignments of close
each species, the calculated cut-off was used as a cri-or distant sequences. Therefore, for each matrix com-
terion to partition the proteome owing to the single- puting, the training set of blocks was filtered using a
linkage clustering method. Eventually, the longest se- clustering percentage, so that sequence segments that
guence was drawn from each similarity cluster to build were identical for at least that percentage of amino
up non-redundant proteomes. All proteins from the acid were kept for the substitution frequency counting.
A. thaliananon-redundant proteome were compared This filtering is an alternative definition of the cluster-
to the P. falciparumnon-redundant proteome, using ing percentage described [8], in which the multiple
the SW algorithm. For each alignmentZavalue was contribution of segments that were identical for at least
computed and &-value-cut-off of 8 was used to cre- that percentage, were averaged in calculating pair fre-
ate clusters of aligneé. falciparum x A. thaliana quencies. In both cases, the decrease in the clustering
sequences, owing to the single-clustering method. In percentage implies a decrease in the contribution of
this paper, this set was termed ‘automatic training set’. the blocks which percentage of identity is higher than
Clusters were examined manually to select pairs of the clustering percentage. Like for the BLOSUM fam-
sequences whose functional annotation appeared analily of matrices, varying the clustering percentage leads
ogous. This set was termed ‘manual training set’ (see to a family of matrices.
table in[18]).

2.5. Iterative process in the computation of

2.3. Initial construction of a database of protein non-symmetric matrices
blocks, from pairs of aligned sequences from Speciesl
and Species?2 (or query and subject) Construction of DirSpSp, matrices was stepwise.

Frequency tables, matrices, and programs for UNIX

As described by24], local alignments can be rep- machines were primarily designed using the Biofacet
resented as ungapped blocks with each row a different multipurpose package (Gene-IT, Rueil-Malmaison,
protein segment and each column an aligned residue[23]. The initial training set of pairs of sequences
position. In the particular case described here, blocks derived from alignments using the Smith—Waterman
can be simply derived as ungapped segments in pairsalgorithm implemented with BLOSUM 62. For a
of aligned sequences. These 2-line blocks were or- given clustering percentage, an initial non-symmetric
dered so that the first sequence always belongs to thematrix was computed, and indexdd DirSp;Spp1.
same genome. Substitutions of a given amino acid The initial training set was then re-aligned using the
from a first sequence (Speciesl or query) with another Smith—Waterman algorithm implemented with this
amino acid from a second (Species2 or subject) were first hon-symmetric matrix. From these alignments,
counted in all pairs of matching amino acids in each ungapped segments were selected and filtered owing
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to the defined clustering percentage, and used as a newence at the aligned site of the other sequence. This
database of Blocks to compute a new non-symmetric can be easily verified for Asparagines in the case of

matrix indexed2: DirSp;Sppe. The process was it-
erated, outputting a convergent family of matrices
DirSp1Sp 3, DirSpiSp 4, . . . DirSp S n. The stable
matrices where referred to as un-indexed DifSip.

3. Resultsand discussion
3.1. Question of the mutual information between two
homologous sequences of distinct amino acid

distributions

The physical environment of proteins, (pH, water

solubility or association to membranes), the codon use

that is required for their synthesis or nucleotidic com-

positional trends are constraints that can lead to very

uncommon amino acid distributions in some families
of protein or even in complete proteon|é$—18,22]

Although biased amino acid distributions affect the
performance of protein comparison tools built for ‘av-
erage’ amino acid distributions, they can bring useful
information to discriminate homologous proteins. To

that purpose, we considered two kinds of sequences,

or set of sequences, the first namgakry, the sec-
ondsubject For examplegquerysequence can be from
a first species, called Speciesl (suchAasbidopsis
thaliana with an average nucleotidie 55% A+T—
and amino acid distribution) and tiseibjectsequence
from a second species, called Species2 (sudPlas
modium falciparum which nucleotidic bias—82%
A+T— leads to a biased compositional proteome).
We can consider two kinds of even{X =i} given
the amino acids in thesubjectsequence anfl’ = j}
given the amino acidg in the querysequence (as an

Arabidopsis thalianaand Plasmodium falciparumin

P. falciparum this amino acid is over represented and
leads to well-known low-complexity regions, whereas
it does not inArabidopsis thaliana Still, Egs. (4)

and (7)allow the definition of the mutual-information

I between two amino acids in two different set of se-
quences, defined as the reduction of the uncertainty on
event; in the query sequence, gained by the knowl-
edge of the occurrence oin the subject sequence:

©)

Using the conditional probability theoref25], which
states that:

Ix=isy=j=hy(j) —hy/x(j/i)

Px;y(X=i/Y = j)Py(j)

= Py,;x(Y =j/X =10)Px(i) (©)
we can state that the mutual information is symmet-
ric in respect to the amino acid occurrence eweamd

to the sequence were this event occuss:; . y—; =
Iy—;_ x;. This last expression is defined as:

Ixy (5 j) = Iyx (j; i) (10)
It is important to notice that, in general:
Ixy (5 j) # Ixy (i 1) (11)

and therefore that the mutual information between two
amino acidgs not symmetriavhen just permuting the
amino acids and not sequences in the two terms of
Eqg.(11). Using Egs(5), (8), (9) and (1Q)we can now
state that:

(12)

P X=0)NY¥=j
Ixy(i;j)=|Og{ xy (( )N ( J))}

Px (i) Py (j)

application,X can be defined in a given species such Eq.(12) can be estimated from observed homologous

asArabidopsis thalianandY in another such aBlas-
modium falciparum The self-information:, for the

aligned sequences and allows computation of a sub-
stitution amino acid sequence with §§). This ma-

occurrence of a given amino acid does not have the trix is non-symmetric (Eq(12)) and implementation

same signification in the context of each sequence:

hx (i) = —log(Px (i) # —log(Py (i)) = hy (i)  (7)

with Py and Py the probability laws assigned to the
random variablesX and Y, respectively. From in-
equality (7), knowing an amino acid in one of the

in optimization alignment algorithm should therefore
be carried out paying attention to tlggiery and the
subjectsequence order. An important property of this
matrix is that the application inverse (transformation
of the query into a subject and vice-versa) is done
by the transposition of the scoring matrix. The matrix

aligned sequences does not bring the same quan-Sxy (i, j) in this order ( is taken from the Species2

tity of information concerning an amino acid occur-

and is reading on the row) is called dirSp1Sp2.
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3.2. Training sets to compute non-symmetrical similar sequences, which was either directly used for
substitution matrices matrices’ calculations (automatic sampling) or with
the restriction that the analogy of the protein function
Determining sets of homologous sequences is a dif- could be assessed by inspection of an expert cura-
ficult question. Here, we examined the possibilities tor (manual sampling). The advantage of the manual
of an automatic or manual selection of a training set training set, described ifi8], lies in its quality, but
of pairs of similar sequences, in the given example it is costly. Although one might question the quality
of Arabidopsis thalianaand Plasmodium falciparum  of the automatic sample, the case study in the present
proteomes, obtained after an all-against-all compari- paper proved that no major difference between the
son of non-redundant protein sequence databases. Weeonverging matrices calculated from the manual and
selected genomic sequences frAmthaliana(25 545 the automatic training sets could be noticed. Because

annotated sequences as of December 2002Pafad a model generalization and a pragmatic computation
ciparum (5334 annotated sequences as of Decemberof matrices would benefit mostly from a fully auto-
2002). The strong nucleotidic bias of the falci- mated method, we therefore detailed results obtained

parumgenome (82% AT) strikingly affects the amino  in that context.

acid distribution within encoded proteinsig. 1). Six

amino acids (N, K, I, L, E, and S) account for 51% 3.3. Convergence of the non-symmetric matrices

of the total amino acid content in proteinBig. 1 obtained after iterative computation

shows that the amino acid distributionAnthalianais

strongly divergent, with a more balanced contribution ~ Blocks used to calculate matrices were filtered as
of individual amino acids to the overall composition ~described in the Methods section, according to a clus-
of proteins. On top of the very strong amino acid bias tering percentage. Matrices were termed dirSp1Sp2,
found inP. falciparum the protein sequences exhibit With Spl being the query species, and Sp2 the sub-
a very low complexity, marked by long stretches of ject species. The matrices devoted to the compari-
repeated amino acids. It is still not known whether son of A. thaliana and P. falciparumare therefore
the very low complexity is solely due to the amino called dirAtPf matrices. We generated matrices cor-
acid bias or if a generic mechanism dedicated to the responding to eleven block clustering percentages
insertions of amino acid repeats would contribute to (dirAtPf100, for a clustering percentage- 100%
this striking occurrence of repeated amino acid por- and n iterations, dirAtPfoQ, ..., dirAtPf50,). We
tions in proteins. For an in-depth discussion of the analysed the evolution of the matrices obtained after
biological rational ofP. falciparumbias as compared ~ €ach iterative round (summarized Hig. 2). Fig. 3

to A. thaliang see[18]. We selected a training set of shows the number of amino acids that are initially
aligned by the generalist matrix BLOSUM 62 in the

Comparison of amino acid distributions training set and after alignments using matrices com-
16 - puted after 1, 4, 7 and 9 iterations. From the very
14 W Plasmodium falciparum . . . . .

first matrix computation, one notice a decrease in the

number of aligned amino acid, with a very rapid con-
vergence, as early as 10 iterations. Interestingly,
in the present result, convergence appears as a de-
crease in the number of amino acids ‘detected’ by
the non-symmetrical matrices. That decrease would
suggest that, in the case of well-assessed alignments,
the non-symmetrical matrices are more specific. By
Fig. 1. Qomparison of the am'ino ac'id distribution in Ihlasmod'- contrast, although they converge to a close result, ma-
ium faIC|parumand_Arabldop5|s thallan_q)roteomes. Frequencies trices computed with a manual training set exhibit an
were calculated using the set of 71 pairs of homologous sequences . . . )
selected with the method described[17] from the two complete increase in the number of aligned amino acid along
proteomes (see material and methods). Amino acids were ranked the training process. That increase would conversely
owing to their frequencies iR. falciparum suggest that in the case of hypothetical alignments,

12 O Arabidopsis thaliana

frequency (%)

NK I LESDYFTVQGRHMPATCW

amino acids
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automatic sampling and/or
eye-inspection

L

Set of homologous sequence

Variable: minimum size of a block

| BLOSUM62
Variable: clustering percentage

homologous sequence
alignment and computing of the
initial matrix

Variable: criterion for

iteration process ending N‘jmamx

homologous sequence
alignment and computing of
iterated matrix

.

iterated matrix

Fig. 2. dirSp1Sp2 matrices iterative computing Workflow. After sampling a set of pairs of homologous sequences between Speciesl and
Species2, these sequences were primarily aligned using BLOSUM 62 in order to determine conserved block. BLOSUM 62 is therefore used as
a way to initially ‘anchor’ homologous regions. These blocks are considered only if they have both the required minimum size and a maximum

given percentage of identity, named clustering percentage. The first deduced matrixind@dllietiatrix, is then used to iterate the process and
lead to a sequence of dirSp1Sp2 matrices. A convergence criterion is applied on the sequence girSpaSp2end the process.

g 1. = ooz selectivity and specificity would be obtained. To that
x *in ..... . 5 ferory extent, and as mentioned by Miller et 2], defi-

% 501 .1 T nition of a specificity/sensitivity gain when deriving
- g Dy SIS substitution matrices is difficult to rigorously assess.
S 0l ‘i.‘_ The matrices obtained from automatic or manual sam-
S [ ples exhibited identical trends for eagh terms: no

§ w0l f opposite deviations were observed. For all clustering
3 . percentages, convergence was also observed for the
5 e number of detected blocks and the value of the matri-
a 201, , , , ‘ , ces (data not shown).

50 60 70 80 90 100

% clustering

3.4. Asymmetry of the DirgBp matrices: case
Fig. 3. Convergence of the matrices computing iterating process. Study of DirAtPf
Convergence of the iterating process was studied according to the
number of detected aligned amino acids pairs. For all clustering per- We generated all the convergent dirAtPf matrices
centage, convergence was also observed for the number of detected . . . .

blocks and the value of the matrices (data not shown). Except for after a 10-iteration cpmputatlon pro_ce;s dirAtPT)0
the 50% clustering percentage, convergence leads to a number of dirAtPf90;0, ., dirAtPf5Q, indistinctly called
aligned amino acids pairs lower than that obtained with the BLO- dirAtPf100, dirAtPf90,..., dirAtPf50. All the ma-
SUM 62 matrix. As described by Miiller et d22], non-symmetric
matrices lead to an increase of the discrimination power of the ma-

trices we obtained were non-symmetric, as shown
trices, an expression of a more accurate mutual information values.

in Fig. 4 for dirAtPf100. In detail, the sub-matrices
(N,R) x (N,R) giving the mutual information be-

tween all substitution available between Asparagines
the non-symmetrical matrices would lead to a gain in (N) and Arginines (R) stresses the different roles

sensitivity. Thus it appears that an apparent gain in played by these two amino acids in the two proteomes,
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Query = undefined species

Query = Arabidopsis thaliana
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Fig. 4. BLOSUM 62 and dirAtPf100 substitution matrices.
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Fig. 5. Evolution of the relative Entropy as a function of the clus-
tering percentage. As intuitively predicted by Miller et[aR], the
better definition of the mutual information between aligned amino
acids leads to a higher relative entropy than this of BLOSUM 62
(H =0.69).

as recorded by Singer and Hickg30] and Bastien
etal.[17].

3.5. Analysis of the relative entropy H of the family of
DirAtPf matrices

As described earlier for the family of BLOSUM
matrices[8], the relative entropyH derived from
Eq. (2) decreases with the blocks clustering percent-
age Fig. 5. Interestingly, relative entropy values in
dirAtPf matrices (0.5-1.5 bits) are slightly higher than
those of the BLOSUM or PAM matrices (0.2—-1.2 bits)
[7,8]. Following the theory of information, this higher

relative entropy would suggest a higher sensitivity of
dirAtPf matrices as compared to symmetrical matri-
ces.

4. Conclusion

This article describes a method to compute a novel
family of substitution matrices that are dedicated to
the comparison of proteins, which amino acid com-
position deviates from the average distribution. They
exhibit remarkable features such @stfie possibility
of computing reliable matrices from automatically se-
lected pairs of similar sequences (automatic training
sets), (i) a rapidly convergent iterative process, and
(iii) an increase in relative entropy. Still the selectiv-
ity/sensitivity gain is difficult to assess besides prag-
matic use. Families of matrices for pairwise proteome
comparisons including biased genomes such as that of
Plasmodium flaciparurfAT rich) or Chlamydomonas
reinhardtii (GC rich) are expected to be improved.
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