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Abstract

The folding process of a set of 42 proteins, representative of the various folds, has been simulated by means of a Monte Carlc
method on a discrete lattice, using twdfelient potentials of meaforce. Multiple compact fragents of contiguous residues
are formed in the simulation, stable in composition, but not in geometry. During time, the number of fragments decreases until
one final compact globular state is reached. We focused on the early steps of the folding in order to evidence the maximum
number of fragments, provided they are sufficiently stable qusace. A correlation has been established between these proto
fragments and regular secondary-structuesmadnts, whatever their nature, alpha ¢edior beta strands. Quantitatively, this is
revealed by an overall mean one-residue quality factor of nearly 60%, which is better for proteins mainly composed of alpha
helices. The correspondence between the number of fragrmedthe number of secondary-structure elements is of 77% and
the regions separating successive fragments are mainly located in loops. Besides, hydrophobic clusters deduced from HC/
correspond to fragments with an equivalent accuracy. These results suggest that folding pathways do not contain structurally
static intermediate. However, since the beginning of folding, most residues that will later form one given secondary structure
are kept close in space by being involved in the same fragment. This aggregation may be a way to accelerate the formation o
the native state and enforces the key role played by hydrophobic residues in the formation of the fragments, thus in the folding
process itselfTo citethisarticle: J. Chomilier et al., C. R. Biologies 327 (2004).
0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Analyse desfragments obtenuspar smulation du repliement protéiquesur réseau. Le repliement protéique a été simulé
par une méthode de Monte Carlo appliquée a un réseau discret, et deux potentiels statistiques ont été employés. Un jeu c
42 protéines représentant les différents types de repliement a été utilisé. Au cours de la simulation, de multiples fragments

compacts, composés de résidus contigus en séquence, se fdissont stables en séquence, mais variables en géométrie,
et leur nombre décroit avec le temps, jusqu’a I'obtention d’'un seul globule compact. Nous nous sommes concentrés sur les
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premiers pas du repliement afin de faire apparaitre le plus grand nombre de fragments, dés qu'ils sont stabilisés dans leur
limites. Une corrélation a été établie entre ces proto fragments et les structures secondaires, quelle que soit leur nature. Ce
est mis en évidence d'un point de vue quantitatif par un fadelgualité global de pres de 60 %, meilleur pour les protéines
principalement en hélices. La correspondance entre le norelfragiments et le nombre de structures secondaires est de 77 %,

et les régions séparant les fragments successifs sont principalement localisées dans les boucles. En outre, les amas hydrophol
de la méthode HCA correspondent statistiquement aux fragments. Ces résultats suggérent que les chemins du repliement 1
contiennent pas d’'intermédiaires structuraux statiques. Cependant, dés le début du repliement, la plupart des résidus qui sero
impliqués dans une structure secondaire donnée est confinée dans un méme fragment. L'agrégation pourrait étre un moyen po
accélérer la formation de I'état natif et renforcer le role clef joué par les résidus hydrophobes dans la formation des fragments.
Pour citer cet article: J. Chomilier et al., C. R. Biologies 327 (2004).

0 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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Abbreviations fragments are correlated with secondary-structure el-
ements (SSE) as it has already been shown, by using
SSE: secondary-structure element a simple cubic latticg3]. In this paper, we focus ex-
3D: three dimension clusively on the first steps of the folding process and
lu: lattice unit try to delineate the fragmés formed at this stage.
MC: Monte Carlo cycle The time limits have been chosen in a way that the
TH: topohydrophobic number of fragments is maximal, before the folding
Cu: alpha carbon process reaches a single compact domain. We demon-
PMF: potential of mean force strate here a correspondence between fragments and
MJ: Miyazawa and Jernigan SSE on a set of 42 proteins, representative of vari-
ous folds. The physical reason for this correspondence
1. Introduction may be based on the fact that local interactions (from

the point of view of the sequence) play a key role in the

Protein folding is a major challenge at the period formation of SSE, but also probably constitute the ma-
of complete genome determination, and we are now in jor driving force of folding. To carry out this project,
the post genomic era. Many of the attempts for ab ini- @ 24-first-neighbour latticg!] has been used, in order
tio prediction of protein tertiary structures go through to give a better flexibility to the macromolecular chain
the prediction of regular secondary structures, helices and to have a better approximation of real protein an-
and strands. Two approaches have been developed agles, particularly forg strands. We have performed
both short and long time limits. Molecular dynamics calculations utilising two different potentials of mean
allow investigating either small deviations in 3D struc- force (PMF) to describe the interactions between pairs
tures due for instance to local mutations, or small pro- of residues: the classical Miyazawa-Jernigan (MJ) po-
teins, but is limited until now to short timescales, up to tential [5,6] and a new one, based on the concept of
1 ps[1]. Large timescales can be reached with sim- ‘topohydrophobic’ residues,d. positions always oc-
plified models, such as Monte Carlo simulations in cupied by a hydrophobic residue for all the members
discrete spaces. Starting from a random coil confor- of a common fold7,8]. Starting from 100 initial con-
mation, the folding process can be dynamically simu- formations for every protein, we have recorded the
lated. It has already been demonstrd&dhat multi- residues included in each fragment, and performed a
fragment intermediate states are observed. A fragmentstatistical analysis over the protein set. The quality
is a certain number of successive residues that col- factor estimating the one-residue correspondence be-
lapse and form a local compact structure, linked to tween SSE, as derived by DS$# and fragments,
another one by an extended polypeptide chain. Thesegives an overall mean value of 61%. Moreover, regions
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separating fragments are mainly occupied by loops in is taken into account in the energy terms, which de-
the 3D structures of the proteins. Fragments also rea- scribe the inter-residue non-covalent interactions. We
sonably fit (mean quality factor of 67%) the hydropho- assume that two non-contiguous residues with a dis-
bic clusters deduced from the HCA methfid,11] tance smaller than 7.2 A (38 Iu) interact with an
The role of hydrophobic residues is important as they energy that depends on their nature. Outside this limit,
mainly contribute to the driving force of fragment for-  their interaction energy igero. The selected interac-
mation. This study shows that regular local structures tion range exceeds the minimal allowed distance be-
may be formed at the very first steps of the folding. tween neighbour Catoms, which is 3.8 A. Therefore,
These observations are otherwise consistent with theit accounts much better for the environment of each

features of a folding of proteins by blocks, i.e. frag-

residue than a simple cubic-lattice model with nearest-

ments of around 27 residues, that have been calledneighbour interactions.

TEF (for Tightened End Fragments) as their ends are

mainly occupied by topohydrophobic residues located
in close contacts, i.e. at less than T1&].

2. Methods
2.1. Lattice geometry

A protein is represented as a self-avoiding chain,
composed of the £ atoms only. We have used a
lattice, introduced by Skolnick et aj4] where the
C, are located on the nodes of an underlying simple
cubic lattice and positioned in the following way:
consecutive ¢ atoms are separated by a vector of the
form (2,1,0). The length of this vector, corresponding
to the mean distance betwee @ proteins, is set
to 3.8 A or 572 lattice units (lu). This lattice unit
corresponds to the underlyisgmple cubic lattice, and
is worth 1.7 A[4]. Each G in this (2,1,0) lattice can
have 24 first neighbours. Since the occupied volume
of amino acids must be taken into account, we make
the assumption that two amino acids (contiguous or
not) may not be closer than 3.8 A. To approximate
protein chain geometry, we have limited the angle
between three contiguous, Cthus limiting the local
flexibility. This is done by restricting the distance
between residues andi + 2 from 4.1 to 7.2 A (or
from 612 to 182 lu), corresponding to angles from
66° to 143 respectively{4], in better agreement with
real angles in alpha and beta conformations.

2.2. Energy of interaction

In this model, the amino acid type is not introduced
in the chain geometry (which considers only)Cbut

Two expressions of the pair interacting residue
energy have been used in this study. The first one
was the distance-independent statistical pair potential
of Miyazawa and Jernigalb,6], which constitutes a
20 x 20 symmetric matrix. This potential implicitly
takes into account the solvent effect (the hydrophobic
interaction).

We derived another potential of mean force (PMF),
called topohydrophobic (TH) from a database of 340
structurally aligned proteinf8] of various folds. It
takes into account the fact that some positions in the
multiple alignment of a family are always occupied
by strong hydrophobic residues, that is V, I, L, M,
F, Y, W. These positions have been called topohy-
drophobic[7,8] and it has been shown that they are
related to the folding nucleugl3-15] Thus, in a
protein, there are two possible states for the above
seven hydrophobic residue types: topohydrophobic or
not. The remaining 13 residue types exist only in
the non-topohydrophobic state. Therefore three matri-
ces have been built. The first one is a 2@0 ma-
trix, which defines the energy of interaction between
non-topohydrophobic residues, named NN for non-
topohydrophobic—non-topohydrophobic. The second
is a 7x 20 matrix, which describes the interaction be-
tween a topohydrophobic and a non-topohydrophobic
residue, named TN for tophohydrophobic—non-topo-
hydrophobic. The third one is a X 7 matrix, de-
scribing the interactions between residues in topohy-
drophobic positions, named TT for topohydrophobic—
topohydrophobic. To derive these matrices, we used
the procedure described by Bryant and Lawrgiég,
which deals with log-linear modelling from the num-
ber of contacts between déffent types of amino acids
in a dataset. The data for such an analysis takes the
form of a four-dimensional contingency table, whose
category variables are the two amino acid types
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ands, the distance interval of contaefs and the pro- in order to simulate formation and conservation of
tein p. The cells contain the ratio of the observed con- secondary structures. Here, our goal is to reveal the

tactsNr"st(’fp between residuesands at distancel over role of local interactions (in the sense of sequence)

Nyaghy the expected number of contacts by mass action 8t the first stages of folding and to show that they
or random pairind16]. Assuming a Boltzmann-like guide the protein into intermediate multi-fragment

distribution of contacts is equivalent to considering States. This is why we restricted the move set in the
that the frequency of occurrence of a particular contact €lémentary single residue moves, which are sufficient
is proportional to exp-AE/RT). These energy dif- 0 drive the protein into a fragmented state.

ferencesA E may be viewed as chemical potentials After each move, the energy is calculated for the
asinEq. (1} new state and is accepted with a probability:

AE/RT = pursgp= _ln(Nr(?s%%/Nres)ép @) b/1+4+b, whereb=exp(—AE/kT) 3)

where AE is the energy difference between the new
and the initial conformationsk is the Boltzmann
constant andl’ the temperature. The energy units
are arbitrary because theyeaderived from statistical
analysis. Thus, realistic values @f corresponding

to the ambient temperature must be determined a
posteriori, by looking which values @f are suitable to
obtain a transition toward a folded state. Note thdt if

is too low, the protein freezes into unfolded states, as
the thermal energy is too low to overcome the energy
barriers that exist between different conformations. On
the other hand, iff" is too high, the thermal motion
makes folded states unstable. The valu& afepends

on the used PMF, because each PMF has different
Mrsp:—ln(NObs/Nres);) ) absolute energy values. We empirically found that

P reasonable values to achieve folding dre= 1.1 for
The method of iterative fitting was used to find MJ field andT = 0.06 for TH field.

the maximum likelihood estimates of these parame-

ters, and extrapolate their values independently of the 2 4. Definition of a fragment

protein p, such thaturs ~ ursp [16]. The parame-

ters urs constitute the energy of interaction between A fragmentis a piece of sequence that folds to form

two residues in the three matrices, NN, TN and TT. a compact geometry in the first stages of the folding
process simulated by our Monte Carlo algorithm.

2.3. Monte Carlo folding algorithm At that time, the protein is composed of a set of
fragments, linked by coil-like parts of the sequence

The initial state of the proteins is an extended (Fig. 1).

random conformation. At each step, a single residueis  During a simulation, a residue belongs to a frag-

selected at random to move and its move is also chosenment if it is part of a set of at least four non-contiguous

at random and follows the previous lattice restrictions. residues interacting by pairs. Actually there are at least

The single residue movements are of two kinds: end six pairs of interacting residues in the smallest frag-

flip movement for the N and C terminal residues and ment. By interacting we mean that the distance of each

corner movements for the others. All the possible pair is equal or less than 7.2 A or %8 Iu, the maxi-

corner moves are described in detail in the paper mum range of non-covalent interactions.

of Skolnick and co-worker$4]. These authors also The number of fragments decreases with time, as

use multiple-residue moves and a more sophisticatedthey progressively merge to form fewer and longer

representation of proteins by introducing side chains ones until the protein forms a single globule. We

The distance between two residues was defined be-
tween centroid positions obtained by projecting a
point at 2.4 A from the ¢, in the directionC,—

Cp for each residue, as previously used by Bryant
and Lawrencd16]. The six distance categories used
by Bryant and Lawrence have been collected in only
one. So all distances lower than 10 A were taken in
the count of contacts between two residues of type
ands. We did so in order to have a potential depending
only on pair type and not on the distance, as does the
Miyazawa and Jernigan potential. So the dimension of
the contingency table decreases by one, and the TH
potential is derived according tq. (2)
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Fig. 1. Initial and intermediate state, as an example of fragment for-
mation during the Monte Carlo simulated folding. The initial state

is chosen at random but as extended as possible. The intermediate
state is composed of three fragments.

are interested to find the highest possible number
of fragments with the highest lifetime. Thus the
time interval must satisfy two requirements. First, the
length and composition of the fragments should not
be dependent on the initial state and second the time
interval must be sufficiently large to allow a statistical
analysis on the fluctuations of the limits. The first
requirement determines the low time limi, and the
second the high time limi¢nax, and time is measured

in Monte Carlo (MC) steps in our case. In addition to
that, we must take into account that, due to the serial
nature of the algorithm, the time limits are correlated
to the protein chain length. We have determined that
for small proteins of about 50 residuesin is around

10° MC andfmax = 10fmin. Thus, we have adopted the
following linear relation to generaligg,in andsmax to
proteins of any length:

tmin = INT (10°L /50) (4)

()

INT means integer part, becausgn and fmax are
integers by definition (MC cycles).

In order to avoid any effect due to the initial con-
formation, 100 extended initial states have been gen-
erated at random for each protein. For each of the
100 simulations per protein, the number and limits of

max = 10tmin

ogies 327 (2004) 431-443 435

fragments are recorded every 100 MC betwegn

and fmax, giving a total number of recorded states of
the order of 16. It thus enables us to decide for any
residue if it belongs or not to a fragment. For the
ith simulation over 100 for a given protein(i, f)

is the number of recorded inteediate states contain-
ing f fragments. From the maximum Ko of the
distribution ofn (i, f), typically 10*, one deduces the
number of fragmentg°(i). In other words, for each
one of the 100 simulations, we select the fragmenta-
tion that corresponds to the longest lifetime. To accu-
rately calculate the limits of the fragments, we count
the number of times o€t r) each residue is in-
cluded in a fragment over all the o states. By
defining ocndi) as the maximum value of o@cr)
over all residues, we assume that any residue such that
ocdi, r) > 0.9 ocm(i) belongs to a fragment. This is
equivalent to averaging over the time period in which
the number of fragments remains constant, in order to
decide if a given residue is involved or not in a frag-
ment. By this mean, we determined the limits of the
f°(@i) fragments for theth simulation. This proce-
dure is repeated for all the 100 initial conformations.
We then construct a new histogram OEthat repre-
sents the number of times a residuagelongs to a frag-
ment over the 100 simulations. The maximum value
of OCC(r) is 100, thus the final fragmentation is ob-
tained by assuming that residuebelongs to a frag-
ment if OCGr) is larger than a limit which depends
on the potential used, 50 for TH and 65 for MJ.

2.5. Protein set

A set of 42 proteins has been selected from the PDB
[17] corresponding to the main characteristic folds,
and they are given imable 1 Secondary-structure
assignments have been computed by D$HP All
these proteins have been simulated with the MJ field.
A subset of 22 of the above proteins, for which the
topohydrophobicresidues are known, has been studied
also with the TH field.

2.6. Validation of fragment prediction: comparison
with DSSP SSE assignments and HCA clusters

The calculated fragmés have been compared to
SSE assigned by the DSSP algorith@). Another
comparison has been performed with the results of
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Table 1

Description of fragments obtained from Monte Carlo simulation inteo§@?2 proteins of various folds, using the Jernigan and Miyazawa
potential. The PDB code is given in the first column. The PDB codkewed by an asterisk indicate the presence of at least one disulfide
bridge in the protein. The classification from CAT8R] is also givenQSandQH are one-residue quality factors (see methods) with respect
to DSSP assignment and HCA predictian.is the number of fragments determined by the present method” d@adhe number of clusters
deduced from HCAN is the number of SSE as derived from DS$Pis compared to bottv and C by means of global quality factors
Quality factorsRSandRH range from O to 1 and describe the match betwEerersusN andC respectively. A good correspondence between
fragments and SSE occurs when b@BandRShave high values. Mean quality factor values are given for each of the four CATH classes,
namelya (mainly alpha) b (mainly beta)ab (alpha and beta) and (few secondary structures)

PDB code CATH Qs QH F C N RS RH
(%) (%) (%) (%)

3c2c a 62 63 6 7 5 80 86
2mhr a 60 72 6 9 6 100 67
1hbg a 84 83 7 8 7 100 88
2lhb a 64 77 8 12 9 89 67
1bp2* a 60 60 7 7 9 78 100
leca a 68 75 9 8 8 88 88
lenh a 67 63 5 4 3 33 75
1rro a 73 64 7 9 11 64 78
4cpv a 75 73 6 8 8 75 75
155¢ a 54 65 8 8 6 67 100
2mhb a 67 74 7 10 7 100 70
libe a 65 73 8 9 7 86 89
1dke a 72 74 8 10 7 86 80
1lsg* a 61 72 7 10 10 70 70
3eyt a 47 61 6 8 5 80 75
lutg a 63 79 4 5 5 80 80
lag2* a 61 70 5 7 5 100 71
Classa mean 65 70 81 80
1pk4* b 37 61 4 4 4 100 100
ltud b 67 68 3 6 6 50 50
1pmy b 65 69 9 10 10 920 920
1fas* b 49 43 4 4 5 80 100
2mem* b 59 59 6 8 10 60 75
4rxn b 50 67 3 5 6 50 60
lrei* b 53 64 5 9 11 45 56
2sns b 62 69 10 9 12 83 89
lgab b 59 67 8 9 10 80 89
2tpi* b 59 67 13 15 17 76 87
1lpwt b 66 70 4 6 6 67 67
Classb mean 57 64 71 78
1bdm ab 65 75 6 8 7 86 75
1frd ab 53 60 7 8 11 64 88
1fxd* ab 53 53 3 6 6 50 50
1ptf ab 67 75 5 6 7 71 83
1sha ab 66 76 8 10 8 100 80
3chy ab 62 73 8 9 10 80 89
5p21 ab 71 78 12 11 12 100 91
1ldur ab 50 52 4 3 5 80 67
lcyo ab 62 75 5 5 10 50 100
1cOb* ab 67 62 6 6 9 67 100
5nll ab 73 68 11 9 12 92 78
Classabmean 63 68 76 82
lisu f 50 56 4 4 4 100 100
1knt* f 55 51 3 3 4 75 100
1hip f 44 58 4 4 8 50 100
Classf mean 50 55 75 100

Total mean 61 67 e 81
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the HCA method. HCA lies on a threading of the 3. Results

residues along an alpha helix, followed by a projection

in a 2D plane. In this representation, neighbouring 4 4| the 42 proteins typical of various folds from
hydrophobic residues constitute clust{¥8,11} One ¢ ppB studied in this lattice model, the simulated
cluster is built of hydrophobic residues separated ¢,4ing process went through the formation of inter-

by at most three non-hydrophobic ones and at the o jiate states, composed of compact fragments linked

condition that no proline is present, because proline by pieces of sequence in non-compact conformations.

![i (E[otrr113|dered asa cIuster;ttk;r/eake; CItAhals bteen Shc?wnThe number of fragments decreases with time until a
atthere Is an agreeme een clusters an final globular state is reacheDuring its lifetime, the

SSE[18]. HCA clusters have been compared to the 3D internal geometry of a fragment changes, but its

dgnved fr.agments, except for clusters formed of a linear limits are surprisingly stable. This characteristic
single residue. : ; .
property led us to compare amino acid compositions
of fragments and SSE. In cedto accurately determine
the most stable fragmentation for each protein, we per-
formed a statistical analigsof the recorded states in
a predetermined time range at the beginning of fold-
ing, presented in detail in thdethodssection. The re-
sults concerning fragment formation are presented in

2.7. Quantitative analysis

Agreement between theumber of fragments and
the number of SSE has been calculated with a one-
residue quality factorQS It is derived from the
classical Q3 quality factor used in SSE prediction ) ;
papers[19], in order to differentiate alpha helices, Tab!e Ifor a 42-protein set, calculated with the MJ po-
beta strands and coiled structures. In our case, thetential. Table 2shows the results of the same calcula-
amino acids fall into two categories: either they belong t1ons with the TH potential. They concern 22 proteins,
to a SSE or not, whatever the nature of the SSE @ subse’; of th_e_ total 42 proteins, where _the topohy-
(alpha or beta), because the fragments do not providedrOPhOb'C positions are known and permit the use of
information on the type of secondary structureplf ~ TH field. _ _
fragment and to a SSE amdthe number of those not ~ denceQSreaches a maximum of 84% for hemoglobin
belonging to a fragment and a SSE, the quality factor (PDB code 1hbg)Table 1. QSvalues are very sensi-

is defined as: tive to the class of fold. Class proteins, correspond-
ing to mainly alpha in CATH, give rise to the high-
QS=(p+n)/N (6) est values, with a mean at 65%. It is followed by the

QS factor is the percentage of correctly predicted @b class (alpha—beta) with a mean at 63%, and by the
residues of any nature and it ranges between 0 and 1.0 class (mainly beta) with a mean at 57%. Last is
An equivalent factoQH has been computed to evalu- the f class (few SSE) with a mean at 50%. In most
ate the agreement between fragments and hydrophobiccases, the number of SSE is higher than the number
clusters determined by HCA. Another measurement of of predicted fragments. The quality fact&Sg is 1 in

the correspondence between fragments and SSE is oba few cases, and its class dependence follows the one-
tained by comparing the number of fragmentso the residue quality facto®S with mean values of 81% for
numberN of SSE. To quantify the match between the classa, 76% for classaband 71% for class, while it

number of fragmentsy, or the number of clusters;, is 75% for classf. The one-residue quality factor for
and the number of SSH/, the ratiosRSandRH have hydrophobic cluster®H, also follows the same class
been calculated as: dependence. The mean valuedil is 70% for clasg,

68% for classb, 64% for clas® and 55% for clasg'.
RS=1-|N—-F|/N, RH=1-|C-F|/C (7) The quality factolRH is nearly class-independent, be-
The maxima oRSandRH are 1, which correspond  ing 80% for class:, 82% for classb, 78% for class,
to N =F or N = C. An equivalent factolRH has while it is worth 100% for clasg". These results indi-
been computed to compaketo the numbe€ of HCA cate a close relationshipetween fragments and hy-
clusters. drophobic clusters.
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Table 2

Description of fragments obtained from Monte Carlo simulation in

a subset of 22 proteins included in the datasetaifle 1 The TH
mean potential described in this work has been used. Notations are
identical to those oTable 1

PDB CATH QS QH F C N RS RH
code (%) (%) (%) (%)
3c2c a 64 52 6 7 5 80 86
2mhr a 52 64 6 9 6 100 67
lhbg a 73 67 10 8 7 57 75
2lhb a 59 61 8 12 9 89 67
1lbp2* a 52 67 7 7 9 78 100
leca a 67 76 8 8 8 100 100
lenh a 63 56 3 4 3 100 75
1rro a 69 69 5 9 11 45 56
Classa 62 64 81 78
mean

1pk 4¢ b 47 58 3 4 4 75 75
1tud b 68 60 3 6 6 50 50
1pmy b 64 57 6 10 10 60 60
1fas* b 54 41 3 4 5 60 75
2mcm b 57 46 7 8 10 70 88
Classb 58 52 63 70
mean

1lbdm ab 57 67 7 8 7 100 88
1frd ab 56 69 7 8 11 64 88
1fxd* ab 57 53 3 6 6 50 50
1ptf ab 60 63 5 6 7 71 83
1sha ab 52 58 5 10 8 63 50
3chy ab 62 62 7 9 10 70 78
5p21 ab 65 67 8 11 12 67 73
Classab 58 63 69 73
mean

lisu f 61 61 4 4 4 100 100
1knt* f 47 44 3 3 4 75 100
Classf 54 53 88 100
mean

Total 59 60 74 76
mean

With the TH potential, the maximum @&@Son the
22-protein subset also occurs for hemoglobin (1hbg)
at 73% (Table 2. The mean value aSis less class
dependent: it is 62% for class 58% for classesb
andb. RSis much higher for class (81%), than for
classesab and b (69% and 63% respectivelyQH
is clearly better for classas andab (64% and 63%
respectively) than for clags(52%).RH has the same
class dependence RS being 78% for class, versus
73% and 70% for classexb andb, respectively. The
class f has been skipped from our statistical analysis
because it only comprises two elements.
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Fig. 2. Histograms of the fragments derived with both potentials
used in this study, on four examples: 1lhbg (alpha class), 2mcm
(beta class), 1bdm (alpha beta class) and lisu (few class). They are
constructed by summing up the pesce of a residue in a fragment
for 100 initial states. Below each curve are represented the various
SSE assigned by DSSP, and on the top the clusters from HCA. Solid
lines: TH potential, broken lines: MJ potential.

To better understand these resufig. 2represents
the histograms OC@) (seeMethod$ showing the
number of times each residue is involved in a fragment
over 100 Monte Carlo runs corresponding to 100 dif-
ferentinitial states. These histograms provide the final
fragmentation for a selection of four proteins (1hbg,
2mcm, 1bdm, lisu), one from each CATH class, with
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Fig. 3. 3D structures of the same proteins as$-ig. 2 represented with MOLSCRIP[33]. All proteins have been coloured such that all
inter-fragment regions are in grey, fragments derived from the TH potential are in green (left), and fragments derived from the MJ potential are
in blue (right). From top to bottom: 1hbg (clagy 1bdm (classb), 2mcm (clas®) and lisu (clasy).
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both MJ (broken line) and TH (solid line) potentials. do not belong to SSE1. As these two amino acids are
One important feature is the high conservation of the second neighbours along the sequence, they produce
limits of the fragments, whatever initial state the sim- a constant effect on the potential, as they are perma-
ulation starts from. This permits a clear determination nently in interaction. The fragment will be forced to
of the limits of the fragments by using an appropri- form by the presence of the hydrophobic residues lo-
ate cut-off for each potential. We actually use cut-off cated towards th&/ terminal. A common considera-
values of 65% for MJ potential and 50% for TH po- tion aboutFig. 2 and the difference between both po-
tential. The second feature is that, despite the different tentials is the fact that TH always produces more pro-
physical nature of the two potentials, their results are nounced separations between fragments.

similar for most of the predicted fragments. Inthe case  To better visualise the correspondence between
of 1hbg (mainly alpha) 7 SSE are assigned by DSSP, SSE and fragments, the same four examples of pro-
while the MJ potential predicts seven fragments and teins are represented Kig. 3 with the 3D structures
the TH 10.RSandRH are 100% and 88% for MJ, and the pieces of sequences corresponding to the pre-
while they are worth 57% and 75% for TH potential. dicted fragments are coloured in green when TH po-
The TH potential builds two minor peaks, which result tential was used and in blue for the MJ potential. For
in two new fragments: one in between SSE1 and SSE2, haemoglobin (1hbg), with the TH potential, most of
and the second one inside SSE5. Moreover, SSE6 cor-the long helices belong to a fragment. The last two par-
responds to one fragment with MJ potential, while it allel helices correspond to three fragments, with the
is split into two with the TH potential, with a mini-  central one, which contains the turn linking the two
mum between them close to zero, so that the new frag- helices. For the MJ potential, these two helices corre-
mentation is not due to any cut-off effect. SSE6 is a spond to two fragments, but the loop in between them
long helix, which contains four topohydrophobic posi- is included in the first fragment. In the case of 1bdm,
tions located in thev-terminal part. This might be the  malate dehydrogenase, the TH potential misses one
reason why this long helix is split into two fragments turn of the helix, which is alone to face the sheet. This
precisely at the position of the last topohydrophobic helix will be included, as well as the last strand, in a
residue. Besides, in the loop between SSE6 and SSE7 fragment with the MJ potential. For 2mcm, beta turns
there is a methionine, which will be included in the are mainly included in one single fragment, as well as
new fragment. With 2mcm (mainly beta), DSSP as- some longer loops, for both potentials. The only differ-
signs 10 SSE. TH potential still predicts more frag- ence between the two potersiaccurs for b5, which
ments than MJ (7 versus 6), but bd@sandRH are belongs to a fragment only for TH. With lisu, the SSE
better for TH in this case, because the number of pre- are fairly small, and they are all included in fragments,
dicted fragments with TH is closer to the actual num- whatever the potential, the only difference being that
ber of assigned SSE. The TH potential predicts a sec- the first fragment of MJ is clearly longer that with TH.
ond fragment shorter than MJ and better describes the

loop in between SSE2 and SSE3. Fragment 4 from MJ

has been split into two new fragments with TH and 4. Discussion

the inter-fragment region corresponds to the loop in

between SSE6 and SSE7. Thus the separations per- A simulation of protein folding on a discrete space
formed by the TH potential better account for the ac- has been performed. A (2,1,0) lattice has been used,
tual number of SSE in this case. If one looks at frag- which permits to reasonably approximate the back-
ment 3 by TH potential, it corresponds to two strands, bone geometry of real proteins. Two different po-
and the cut-off value of 50% is too low to separate tentials of mean force have been used, the classical
them. For 1bdm (alpha beta class) the number of frag- one from Miyazawa and Jernigan, and a new one
ments is increased by one with TH potential. In the that includes the particular behaviour of hydrophobic
case of lisu (few SSE class), there are four fragmentsresidues highly conserdeat a giverposition tirough

in each case of potential. The TH potential slightly bet- evolution. It is a clear improvement relative to sim-
ter fits the SSE1, and there are two topohydrophobic ple cubic lattice, especially in its ability to reproduce
residues at the end of cluster 1 (topFad. 2d), which the geometry of beta strands. During this folding sim-
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ulation, before one compagtobular state is reached, their lifetime, multiple fragment intermediate states
the protein is formed by a succession of compact frag- are not structurally stable, but they are stable in terms
ments whose limits in sequence are stable over time. of sequence. Their conformation does not freeze,
Our approach is restricted to the early steps of fold- which would be an obstacle to rapid folding. Our ap-
ing and is focused on the analysis of the fragments proach could conciliate the framework model of fold-
formed during this period. Care has been taken to se-ing and the nucleation condensation approach: on one
lect the time range for which the maximum number hand, hierarchic foldig seems to occur since com-
of fragments occurs, provided they have a sufficient pact fragments are observed, and on the other hand,
lifetime. This is an extension of our previous wg& their conformation is dynamically changing. Once a
where it was established that fragments are very much nucleation fragment is formed, it remains fairly con-
sequence-dependent and correspond to one or severatant in sequence, during approximately one order of
elements of secondary structures. Here we present re-magnitude of timescale, before a new state with fewer
sults on a set of 42 proteins of various folds where fragments appears, and so on until a single globule
we particularly investigated the correlation between is formed. From an analysis of th&-values of six
SSE and fragments. For this purpose, a one residuesmall proteins, Nélting and Andej23] conclude that
quality factorQShas been calculated to quantify the proteins (at least small ones) “proceed by means of
agreement between the states to which a residue is asformation of clusters of residues neighboured in the
signed. It is based on the classical quality factor Q3 3D structure which are particularly rich in residues
used for testing secondary-structure predictif2ty, that belong to regular secondary structures.” These
but restricted in our case to a two-state prediction. authors reconcile the nucleation-condensation mech-
There is a clear correspondence between calculatedanism (due to a non-uniform distribution of the struc-
fragments and SSE, as it can be seen froni8ever- tural consolidation) with the framework model (con-
all mean value (around 60% for both potentials). This solidation is higher at positions of SSE) for folding in
is corroborated by the matching between the numbers a generalized nucleation condensation. The main tran-
of fragments and SSE, giving a mean valueR$ sition state is composed of a few clusters of residues
around 78%. on average more included in SSE than the rest of the
A QSfactor of 60% is quite low from the point of  molecule. Thus our approach is compatible with the
view of prediction, but this was not our goal. By run- one of N6lting and Andert. Our results are also consis-
ning these simulations, we aimed at elucidating how tent with the work of Baldwin and Rog424,25], who
and to what extent the information on secondary struc- simulated the initial steps of folding and showed that
tures is introduced since the beginning of the folding the tendency of residues to take their native secondary-
process, guiding thus rapidly the protein towards the structure conformation exists at the beginning of fold-
tertiary structure. Our model simulates essentially the ing and is due to local interactions.
role of local interactions, in the sense of sequence. Global quality factors, illustrating the agreement
The formation of fragments in the SSE regions demon- between the numbers of predicted fragments and as-
strates that an important part of the sequence-structuresigned SSE, are similar whatever potential is em-
code is contained in these local interactions. We expect ployed. As the number of fragments is roughly poten-
that long-range interactions are necessary to stabilisetial-independent, this implies that the algorithm is ro-
the tertiary structure and adjust the limits of SSE. The bust towards this number of compact fragments. The
number of fragments is often smaller than the num- MJ potential seems to be sensitive to the class of pro-
ber of SSE, but a common feature, as can be seen inteins and produces the best correspondence in the case
the four histograms of fragment positions plotted in of alpha helices, i.e., in cases where the local inter-
Fig. 2, is that most of the inter fragment regions fall actions, in terms of sequence, are predominant even

into loops, i.e. regions connecting regular §3E,22] in the native state. The TH potential is also class-
Thus fragments mainly correspond to one or several sensitive, maybe in a lesser extent: the valug3®dre
SSE, with a clear preference for a single SSE. nearly class-independeriut the agreement between

From a dynamical point of view, our simulations numbers of fragments and SSE, reflected by R&
provide insights to the folding mechanism. During factor has the same class dependence as for MJ, giv-
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ing the higher values for mainly alpha proteins. These
remarks are coherent with the fact that in vivo he-
lices are generally formed at a timescale smaller than
strands, due precisely to the predominance of local in-
teractions at the beginning of the proc§?4,25] We
noticed that in general proteins with disulfide bridges
have lowQSvalues, as indicated ifables 1 and 2
The presence of disulfide bridges, especially for small
proteins, is one limitation of our model in its present
state. One might try to overcome this point, by split-
ting in the PMF the two contributions of free cysteins
and half cystins, linked through a covalent disulfide
bridge. Free cysteins actually behave like hydrophobic
residues, in particular for the buried character, while
cystins do nof26].
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Gilis and Rooman in the early steps of foldifgp],
but they are slightly longer, as they are constituted of
several consecutive SSE.

The principals underlying the method developed in
the present paper are consistent with the notion of
closed loops introduced by Berezovsky and Trifonov
[31], which are fragments of preferred length around
27 amino acids. These closed loops, recently called
TEF for Tightened End Fragmenits2] are such that
on average both ends are close in the 3D structures,
and occupied by topohydrophobic residues. The corre-
spondence between these proto fragments and the TEF
must be further investigated.

There is a clear correspondence between predictedAcknowledgements

fragments and hydrophobic clusters derived from
HCA, revealed by the values of bofpH andRH fac-
tors. In this study, we compared a Monte Carlo sim-
ulation to the HCA data because this latter has been
proven to be a useful tool in the determination of pre-
cise SSE using only information from the sequence.
HCA is based on a physicochemical background, i.e.,
the phase separation of protein structures into hy-
drophobic core and hydrophilic envelope. The clear
observed similarity between these two conceptually
different methods lies on the fact that they basically
consider local interaaiins along the macromolecular
chain, which produce a local aggregation of hydropho-

bic residues. The fragments described in this paper can

be related to the concept of building blocks used in the
literature[27—29] The building blocks are defined as
compact units with a hydrophobic core and they are
composed either of a single secondary structure or of a
contiguous segment consisting of interacting structural
elements in the work by Tsai et §28]. In this latter
case, the building blocksan be combined to form hy-
drophobic folding units. Their building block is a con-
tiguous sequence fragment with a variable size, and
it is a highly populated transient structure. We do be-

lieve that the presently observed fragments correspond

to the non-overlapping building blocks of Tsai et al.
and we focus our analysis on a timescale such that
it leaves constant the size of the fragment. Their ap-

proach needs to have the structure of the protein, and

is thus an assignment, while we are interested in the
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