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Abstract

A numerical simulation for the dynamics of a model that describes the sexual phase of Monogonont Rotifera repr
is presented. The simulation is carried out by means of a numerical method based on the integration along the cha
curves. The numerical experiments cover two basic situations: the existence of an asymptotic stable equilibrium sta
existence of an stable periodic solution. Our results are in agreement with the theoretical analysis made by Calsina a
(J. Math. Biol. 45 (2002) 22).To cite this article: O. Angulo et al., C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Simulation numérique de la dynamique de la phase sexuelle de reproduction des monogontes rotifères. Les rotifères
monogontes sont de petits animaux invertébrés qui vivent dans les milieuxaquatiques. Ces espèces de rotifères compren
des mâles et des femelles et leur cycle de reproduction, appeléparthénogenèse cyclique, qui constitue une combinaison d
reproduction sexuelle et asexuelle (deux phases), présente un intérêt considérable et fournit un modèle valable pour
l’allocation sexuelle. Nous présentons dans cet article une recherche numérique de la solution du modèle qui décrit la d
de la phase sexuelle des rotifèresmonogontes, réalisée à l’aide de différentes valeurs des paramètres et de conditions initiale
distinctes. Nous considérons à la fois les cas des équilibres stable et instable. Deplus, dans le cas de l’équilibre instable, no
étudions l’évolution vers le cycle limite (stable). Par ailleurs, nous obtenons la distribution de densité pour l’équilibre stable
ainsi que pour différentes étapes du cycle limite.Pour citer cet article : O. Angulo et al., C. R. Biologies 327 (2004).
 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Monogonont rotifera are small invertebrate anim
that inhabit aquatic media. These species of rotif
have males and females and their reproduction cy
namedCyclic Parthenogenesis, which is a combina
tion of sexual and asexual reproduction (two phas
has a considerable interest and provides a valu
model for the study of sex allocation [2].

The first phase is asexual with no male presenc
begins after the hatching ofresting eggs that become
amictic females. Then, there are only amictic fema
producingdiploid eggs that hatch right away to be
come new amictic females.

The second phase begins induced by environme
factors, there is sexual reproduction and it takes p
simultaneously with the other phase. The amic
females begin to produce amictic daughters and m
(sexual) ones. The virgin mictic daughters produ
haploid eggs when they reach maturity, these eg
become haploid males after hatching. The males ca
fertilize the virgin mictic females in the few hours
life of these ones. And, the mated mictic females (
mictic females fertilized) produce resting eggs a
the reproductive cycle begins again. More informat
about this reproduction cycle can be found in [3,4].

The model for the sexual phase of monogonont
tifera, presented in [5], involves three subclasses in
population: virgin mictic females (male-producing
mated mictic females (resting eggs producing) a
haploid males.

This problem has been modelled by means o
non-linear age-structured population model. In the
lowing, we try to explain the reasons that led the m
ellers to make this choice. The structured popula
modelling combines the knowledge about the individ
ual, its basic unit, and the study of the higher organ
tional level: the population. In other words, its aim
to know how the individual variability influences th
dynamics of the whole population, usually conceiv
as a frequency distribution of individuals that evolv
over time. This variability isintroduced into the mode
‘structuring’ the population, i.e. classifying the ind
viduals by some (continuous) internal variables as
(also, size, energy reserves or whatever variable(s)
reflects it and has an actual influence in the popula
dynamics). On the other hand, non-linearities ena
us to take into account the influence of the popula
dynamics in the individuals’ life history.

In [1], Calsina et al. made a theoretical study
such a model showing a unique stationary popula
density that is stable as long as a parameter, relate
male–female encounter rate, remains below a crit
value. Also, they obtained that the stationary solut
becomes unstable and a limit cycle appears, when
parameter increases beyond the critical value. T
thought that a study of this unstable equilibrium ca
from the evolutionary point of view, in order to obta
a better approach to this limit cycle, could be do
numerically. The present paper is devoted to carry
such a study.

Models such as those that we are going to in
duce often cannot be solved analytically, and req
numerical integration to obtain an approximation
the solution.

The numerical integration of age-structured mo
els has been studied in several references du
the last two decades. In the following, we ma
a brief overview of the numerical integration tec
niques used to solve non-linear models related
the Gurtin–MacCamy one. Kostova [6] used the d
cretized method of lines in order to apply it to a spec
case of the Gurtin–MacCamy method. Schemes ba
on upwind discretization were analysed by Lóp
Marcos [7] and second-order numerical schemes
ing the box method were considered by Fairweat
and López-Marcos [8,9]. However, the most pop
lar technique to integrate numerically such type
problems is the characteristics method: Douglas
Milner [10] (explicit first-order schemes, with linea
boundary conditions), Chichia Chiu [11], Kostova [12]
(for a model describing interacting population dyna
ics), Kwon and Cho [13] and Milner and Rabbiolo [1
(explicit two-step methods based on the central dif
ence operator along characteristics with fertility r
independent of the total size of the population). T
latter authors also considered their numerical met
for the numerical solution of a two-sex model, a
analysed for linear modelsan explicit fourth-order
method based on the classical fourth-order Run
Kutta method. These methods are generalized in A
and López-Marcos [15] (numerical methods of ar
trary order based on general Runge–Kutta method
analysed). Integration along characteristics by mean
of a representation of the theoretical solution was
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troduced by Abia and López-Marcos [16] where i
plicit second-order schemes based on Padé rationa
proximations for the exponential were analysed. T
use of two-step methods (such as which was don
Milner and Rabbiolo [14] and Kwon and Cho [13
joint with open quadrature rules is presented in [17
obtain explicit numerical second-order methods.

It should be noted that several numerical meth
have been successfully applied to real life populati
in the past, such as intramolluscan trematode po
lations [18], the Nicholson’s blowflies (L. curpina)
and the gray squirrel population (Sciurus carolinen-
sis) [19] (also in demography [14]). Favorable com
parisons between the application of such schemes
models to populations indicate that they are valid to
to investigate biological systems. A more detailed
vision on the numerical integration of age-structu
population models can be founded in [20] and for si
structured models we refer to [21].

In this paper, we present the numerical investi
tion on the solution of the model that describes
dynamics of the sexual phase of monogonont rotife
Also, we get numerically a better approach to the lim
cycle that the linear approximation obtained in [
This is made with different parameter values and di
tinct initial conditions. We will consider both the st
ble and the unstable equilibrium cases. In addition
the unstable equilibrium case, we study the evolu
to the (stable) limit cycle. On the other hand, we o
tain the density distribution of the population for t
stable equilibrium and also for different stages of
limit cycle.

2. Formulation of the model

The population densities satisfy the following sy
tem of integro-differential equations that are based
the balance law of the population:

(1)


ṽτ (α, τ ) + ṽα(α, τ ) + µ̃ṽ(α, τ )

= −ẼH̃ (τ )ṽ(α, τ )χ[0,T̃ ](α)

mτ (α, τ ) + mα(α, τ ) + µ̃m(α, τ )

= ẼH̃ (τ )ṽ(α, τ )χ[0,T̃ ](α)

h̃τ (α, τ ) + h̃α(α, τ ) + δ̃h̃(α, τ ) = 0

with boundary conditions

ṽ(0, τ ) = B, m(0, τ ) = 0
- (2)h̃(0, τ ) = b

∞∫
M

ṽ(x, τ )dx

Where variablesα and τ represent age and time r
spectively, andṽ(α, τ ) is the density of virgin mic-
tic females,m(α, τ) is the density of mated micti
females and̃h(α, τ ) is the density of haploid male
with respect to ageα at timeτ . The total population o
each subclass is, respectively,Ṽ (τ ) = ∫ ∞

0 ṽ(x, τ )dx,∫ ∞
0 m(x, τ )dx andH̃ (τ ) = ∫ ∞

0 h̃(x, τ )dx. The other
time-independent positive parameters areδ̃ and µ̃,
the mortality rate for males and females respectiv
Ẽ, the male–female encounter rate;B, the recruit-
ment rate of mictic females;b, the fertility of male-
producing mictic females;M, the age at maturity fo
females and̃T , which verifiesT̃ � M, the threshold
age of fertilization. Also we note thatχ[0,T̃ ](α) is the
characteristic function of the interval[0, T̃ ].

The equation of mated mictic females can be c
sidered separately whenever the other two equat
have been solved. Also, as in [1], a rescaling to red
the number of parameters is introduced:

α = Ma, τ = Mt

ṽ(α, τ ) = Bv(a, t), h̃(α, τ ) = BbMh(a, t)

We introduce new non-dimensional parametersµ =
µ̃M, δ = δ̃M, E = ẼBbM3 and T = T̃ /M. So,
the reduced system of equations (only virgin mic
females and haploid males) changes into

(3)

{
vt (a, t) + va(a, t) + µv(a, t)

= −EH(t)v(a, t)χ[0,T ](a)

ht (a, t) + ha(a, t) + δh(a, t) = 0

that consists on a non-linear first-order system of p
tial differential equations that represents the evo
tion of two age-structured populations. With non-lo
boundary conditions:

(4)v(0, t) = 1, h(0, t) =
∞∫

1

v(x, t)dx

and with initial conditions

(5)v(a,0) = v0(a), h(a,0) = h0(a)

the model is complete. The variablesa and t repre-
sents again age and time, respectively, and the a
maturity is 1.
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3. Numerical method

From a numerical point of view, the model (3
(5) has meaningful difficulties to keep in mind. Fir
the model consists on a system of partial differen
equations; second, the model is a non-linear one;
finally, these non-linearities are caused by non-lo
terms. So, the design of a numerical method t
solves that problem, its computational implementat
and the corresponding convergence analysis are
straightforward tasks. Due to the fine behavior of
numerical method studied in [22] for physiologica
structured population models, we have made suita
(and significant) changes on it to treat numerically
problem (3)–(5). The scheme designed is implicit and
second-order accurate.

The problem is integrated in a fixed time interv
[0, Tf] and we also consider a finite maximum a
Amax, which is chosen sufficiently large to make
realistic simulation.

The method that we are going to use integrates
model along the characteristic curves. In this case,
solutions of (3) have the following property: for ea
a0, with 0< a0 < Amax, and such thata0 + k < Amax,
then

v(a0 + k, t0 + k) = v(x0, t0)

(6)

× exp

(
−

k∫
0

(
µ + EH(t0 + τ )χ[0,T ](a0 + τ )

)
dτ

)

(7)h(a0 + k, t0 + k) = h(x0, t0)exp(−δk)

Now, we are going to describe the numeri
method. Given a positive integerJ , we definek =
Amax/J (recall that we have considered a maximu
age Amax) and we introduce a uniform partition of
the interval[0,Amax], aj = jk, 0� n � J . We define
the discrete time levels,tn = nk, 0 � n � N , where
N = [Tf/k].

We refer to the grid pointaj by a subscriptj
and to the time leveltn by a superscriptn. Let V n

j

and Hn
j be a numerical approximation tov(aj , tn)

and h(aj , tn), respectively, 0� j � J , 0 � n �
N ; we also denoteVn = (V n

0 ,V n
1 , . . . , V n

J ), Hn =
(Hn

0 ,Hn
1 , . . . ,Hn

J ), 0 � n � N , and with Ik(U) the
t

composite trapezoidal quadrature rule

Ik(U) =
J∑

j=1

k

2
(Uj−1 + Uj), U = (U0,U1, . . . ,UJ )

Now, we suppose that approximationsV0,H0 ∈
RJ+1 to the initial conditions given in (5). Then
the general recursion of the method is the followi
Suppose thatVn,Hn ∈ RJ+1, 0 � n � N − 1, are
known. Next, we obtain approximationsV n+1

j+1 and

Hn+1
j+1 to v(xj+1, tn+1) andh(xj+1, tn+1) for 0 � j �

J − 1, 0 � n � N − 1, by means of the following
discretization of the representation formulae (6), (7

(8)

V n+1
j+1 = V n

j exp

(
−k

2

(
2µ + E

(
Ik

(
Hn

)
χ[0,T ](aj )

+ Ik

(
Hn+1)χ[0,T ](aj+1)

)))
(9)Hn+1

j+1 = Hn
j exp(−δk)

and we complete the numerical method with
approximation to the boundary values

(10)V n+1
0 = 1

(11)Hn+1
0 = Ik

(�Vn+1)
where�V n+1

j = 0, aj < 1, �V n+1
j = V n+1

j , aj � 1; 0�
n � N − 1.

To solve the non-linear equations (8)–(11), we h
used an iterative method. If the numerical solut
(V n

0 , . . . , V n
J ), (Hn

0 , . . . ,Hn
J ), n � 0, is known, we ob-

tain the values(V n+1
0 , . . . , V n+1

J ), (Hn+1
0 , . . . ,Hn+1

J ),
by means of the following algorithm:

STEP 1
For eachm � 0,

V
n+1,m
0 = 1

STEP 2
For each 0� j � J − 1, m � 0,

H
n+1,m
j+1 = Hn

j exp(−δk)

STEP 3

V
n+1,0
j = V n

j , 1 � j � J ; H
n+1,0
0 = Hn

0

STEP 4
For eachj , 0� j � J − 1,
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n+1,m+1
j+1 = V n

j exp

(
−k

2

(
2µ + E

(
Ik

(
Hn

)
χ[0,T ](aj )

+ Ik

(
Hn+1,m

)
χ[0,T ](aj+1)

)))
STEP 5

H
n+1,m+1
0 = Ik

(�Vn+1,m+1)
STEP 6

If for any j , 1� j � J ,∣∣V n+1,m+1
j − V

n+1,m
j

∣∣ � tolerance∣∣Hn+1,m+1
0 − H

n+1,m
0

∣∣ � tolerance

thenm ← m + 1 and go toSTEP 4.

END

In the above iterative procedure, steps 1 and 2
made only once at the beginning of the algorithm. T
iterative procedure has showed its efficiency in so
previous works such as [15,16,22–24].

We do not present the convergence analysis of
method because the tools and the arguments ne
are completely similar to those ones used in [1
The only added difficulty of such analysis may
the complexity of the numerical scheme in terms
the notation of variables we need because we a
integrating a system of partial differential equatio
However, the analysis of the present model, which
age-structured, does not have the inherent comple
of a size-structured model as that considered in [2
We refer to [25] in order to take into account the effe
of the singularities of the solution on the accuracy
the numerical method.

4. Numerical experimentation

We have carried out an extensive numerical exp
mentation with the scheme introduced in the previ
section. We have used different initial conditions a
distinct parameter values in the numerical integrat
of the problem, although in this paper we present
most significant results.

The integration has been made for the valueTf = 50
and the maximum ageAmax = 37. In all cases we ar
going to present, we have used the next param
values µ = 0.9355, δ = 1.4463 andT = 0.4274.
d

For this choice, the equilibrium becomes unstable
values ofE, the male–female encounter rate, grea
than the critical valueEun = 501.832 (see [1], for
more details). We report the results obtained with
step sizek = 0.0074 and we present them by means
several figures.

We have chosen a first set of initial conditions th
are really far from the equilibrium and from the lim
cycle, for the two possible situations: stable or uns
ble equilibrium, respectively. With these numerical e
periments, we show the robustness of our numer
method, because it always reaches the target (equ
rium or limit cycle). Next, we have taken two set of in
tial conditions that are closer to the equilibrium (an
also, the limit cycle). The first one is located outs
the limit cycle and the other one inside it, whene
the male–female encounter rateE satisfiesE > Eun.
In all cases, we show that the solution of the num
cal method reaches the desired aims. In addition,
limit cycle (E > Eun) appears to have, at least num
ically, a stable behaviour.

For each initial condition set, we show the resu
with two values ofE, one of them belonging to a stab
equilibrium case and the other to an unstable one.
simulations for each case are presented using a co
of figures. The left-hand figure shows the evolution
the two populations,H(t) and V (t), along time. In
this graph, we show the time in thex-axis and the
total quantity of both population (H(t) andV (t)) in
they-axis. We use a solid line(−) to drawH(t) and
a hyphen-dotted line(−.) to drawV (t). In the right-
hand figure, we present the evolution of(H(t),V (t)),
for t ∈ [0, Tf].

To begin with, we present the numerical resu
obtained for the remote initial conditions set:

v0(a) = exp(−µa)

(12)h0(a) = exp(−δ e−µa − µ)

µ

In Fig. 1, we consider the valueE = 200 (asymptoti-
cally stable equilibrium).

The attractive character of the equilibrium is app
ent. We have obtained the same behavior in exp
ments carried out with other different values ofE,
E < Eun.

For the other case, we have usedE = 675.84, the
simulation is shown in Fig. 2. We see the limit cyc
that appears to be stable. We have to note that, in
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Fig. 1. Simulations with the initial conditions set (12) andE = 200.

Fig. 2. Simulations with the initial conditions set (12) andE = 675.84.

Fig. 3. Simulations with the initial conditions set (13),Tf = 50 andE = 500.
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Fig. 4. Simulations with the initial conditions set (13),Tf = 200 andE = 500.

Fig. 5. Simulations with the initial conditions set (13) andE = 675.84.

Fig. 6. Simulations with the initial conditions set (14) andE = 675.84.
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Fig. 7. Simulations with the initial conditions set (14),Tf = 200 andE = 500.
ond
ci-
re
i-
ied
-
les,
be-

able

ns
it

d th

the
l
d
e

limit

the

um

l in-
ons
f

op-
od
for

her

ave

ere
it
second graph, we have plotted the values corresp
ing to t ∈ [3.7,50], in other case we cannot appre
ate the limit cycle (recall that the initial conditions a
far from the limit cycle and for this situation, the d
mensions of the figure are small). Again, we have tr
with different values ofE, E > Eun and we have ob
tained the same results. With this two first examp
we show the robustness of the numerical method
cause we get both the stable equilibrium and the st
limit cycle beginning from remote initial conditions.

Next, we are going to use nearer initial conditio
to the aims. The first one is located outer the lim
cycle, when it exists. We put

(13)

v0(a) = exp

( −a

2V ∗
un

)

h0(a) = 2V ∗
unexp

(
− V ∗

una

H ∗
unexp(1/(2V ∗

un))
− 1

2V ∗
un

)
Besides the commented parameters we have use
value ofH ∗

un = 0.01409837599,V ∗
un = 0.1556062271

that are approximations for the value ofH andV at
the equilibrium.

For the stable equilibrium case, we have used
value E = 500 a nearbyEun value. The numerica
results withTf = 50, showed in Fig. 3, could lea
us to think that numerically the equilibrium could b
unstable due to the possible appearance of the
cycle.

However, Fig. 4, in which graphs we have used
sameE value and a largerTf value,Tf = 200, shows
the stability of such equilibrium.
-

e

Fig. 8. Age structure of the population densities in the equilibri
state.

Then we have to take care about the numerica
tegration, because it could lead to wrong conclusi
if the integration parameters, such as the final time o
computation, are not suitable for the dynamical pr
erties of the problem. Again, the numerical meth
shows its nice properties because the integration
a long time is carried out successfully. On the ot
hand, if we useE = 675.84, we get the limit cycle
that appears to be stable, as shown in Fig. 5. We h
also employed with different values ofE, greater or
less thanEun with the same results.

Finally, we present the numerical simulations wh
we have used initial conditions located inside the lim
cycle, whenever it exists. We take:
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Fig. 9. Age structure of the population densities fordifferent values of a period of the limit cycle.
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(14)
v0(a) =

{
e−(µ+EH)a, a < T

e−(µa+EHT ), T � a

h0(a) = δH e−δa

whereH = 0.0011 is the total population of haplo
males at the equilibrium. The aim of these n
simulations consists in showing, numerically, th
the limit cycle is stable even when we use init
conditions near the (unstable) equilibrium (Fig. 6). W
have used the parameter valueE = 675.84.

Although, when we use a value lower than t
critical value the stable equilibrium appears. In t
case, we present in Fig. 7 the results obtained w
E = 500.

The numerical simulations not only show the d
namics of the problem but also get the age str
ture of the population density of virgin mictic femal
(v(a, t)) and haploid males(h(a, t)). This fact en-
ables us to know the age structure of the stable e
librium and that of the limit cycle. In Figs. 8 and
we show the age in thex-axis and the population den
sity in they-axis. The range of the age variable us
in the figures is[0,4] instead of[0,37], because the
population density is not significant for greater v
ues of such variable. We drawv(a,Tf) by means a
solid line(−) andh(a,Tf) by means an hyphen-dotte
line (−.).

First, in Fig. 8, we show the population age stru
ture when the equilibrium is reached. We have ta
E = 500. And, finally, we present in Fig. 9 the evol
tion in time of the distribution density of both pop
lations in one period of the limit cycle. TakingE =
675.84, we show the age structure of both popu
tions at time valuest = 96.2, t = 96.95, t = 97.72,
t = 98.48, t = 99.24, andt = 100.1 (note that in this
case the period is near to 3.91).

Another matter that we have to take into accoun
that the graphs in Figs. 8 and 9 show a discontin
in the first derivative of thev(t) age-structured popu
lation at the threshold fertilization ageT , which our
numerical method is able to obtain. This discontinu
is theoretically shown for the equilibrium state in [1
but we show that it also appears in the case of the
ble limit cycle, which is in agreement with the fir
equation of (3), because its right-hand side invol
the characteristic function of the interval[0, T ].
5. Discussion

We have studied the numerical integration o
model that describes the sexual phase of monogo
rotifera reproduction proposed in [1].

We have shown the robustness and the reliabilit
our numerical method by means of numerical exp
iments that cover different situations. The schem
so robust that it is able to get the solutions for lon
time intervals and also it can obtain discontinuities
the first derivative of the distribution of virgin mic
tic females. We have also shown that the method
be used to analyse the dynamics of the populat
when the values of the encounter male–female ratE

is close to its critical valueEun.
The results of our numerical study are in agreem

with the theoretical results derived in [1], and obta
the age structure of the populations for the stable li
cycle [20,21,25].
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