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Abstract

Understanding the regulation of genentrol networks and theirrsuing dynamics will be a critical component in the
understanding of the mountain of genomic data being currently collected. This paper reviews recent mathematical modeling
work on the tryptophan and lactose operons which are, respectively, the classical paradigms for repressible and inducible
operonsTo citethisarticle: M.C. Mackey et al., C. R. Biologies 327 (2004).

0 2004 Published by Elsevier SAS on behalf of Académie des sciences.
Résumé

Modélisation de la dynamique de I'opéron : les opérons tryptophane et lactose comme paradigmes. L'étude de
la régulation des réseaux de controles des génes et demidyres qui en découlent setme composante critique de la
compréhension de la masse de données génomiques collectées. Cet article fait le bilan des récents travaux de modélisatic
mathématique sur les opérons tryptophanes et lactoses, quiespeictivement les paradigmes classiques pour les opérons

répressibles et inductibleBour citer cet article: M.C. Mackey et al., C. R. Biologies 327 (2004).
0 2004 Published by Elsevier SAS on behalf of Académie des sciences.
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1. Introduction of the beatiful little book What is Life?[1] written
by Ernst Schrddinger (one of the fathers of quantum
Molecular biology as a field would probably not mechanics)What is Life?was the written account of
exist in its present form were it not for the impact a series of lectures given by Schrédinger at the Dublin
Institute for Advanced Studies in 1948/hat is Life?
mspondmg author. was partially inspired by the work of th@hysicistMax
E-mail addressmackey@cnd.mcgill.ca (M.C. Mackey). Delbriick and was probably instrumental in recruiting
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awhole generation dheoretical physicistike Walter operon. One of the most intensively studied of these
Gilbert, Leo Szilard, Seyior Benzer, and Francis systems from an experimental point of view is the
Crick away from physicper seand into the exciting  tryptophan operon. An excellent review of this system
new area of ‘molecular biology’ [2]. The results are and its regulatory mechanisms is to be found in [13].
history, but it has not ended there. For example,
the current director of the Whitehead Center for 2.1. The Bliss model
Genomic Research at the MIT is Eric Lander, whose
D. Phil. from Oxford was not in molecular biology but One of the first mathematical models of the tryp-
rather in mathematics (algebraic coding theory)! The tophan operon was introduced by Bliss et al. in 1982
mathematical and physical sciences continue to play a[14]. The independent variables of this model are the
large role in the whole area of molecular biology and trp mRNAconcentrationfM), the concentration of an-
some of the potential areas of impact are detailed in thranilate synthaséF) which, according to Bliss et
the March 2001 issue o€haosg[3]. al., of all the enzymes formed with the polypeptides
The operon concept [4], introduced by Jacob and of the tryptophan operon is the most important from
coworkers in 1960 [5], has had a profound and a regulatory point of view, and the tryptophan concen-
lasting effect on the biological sciences. Not long tration(T). The equations governing the dynamic evo-
after the operon concept was developed, Goodwin lution of these three quantities are
[6] gave the first mathematical analysis of operon
dynamics. Griffith then put forward a more complete — = KmOR(t — tm) — K1M Q)
analysis of simple repressible (negative feedback [7])
and inducible (positive feedback [8]) gene control g
networks, and Tyson and Othmer [9] have summarized —— = KpM (t — 1p) — K2E (2)
these results. Extensions considering the stability of
inducible operons were published by Selgrade [10, an
11] and Ji-Fa [12], but none of these treatments d7’
considered the role of the DNA transcription and dr
mRNA translation delays though Tyson and Othmer |n Eq. (1), K, is the intrinsic rate of transcription

pointed out that both should be considered. initiation of an operon that is not represseRi(T)

In this paper we present recent mathematical mod- js the probability that an operon is not repressed at
eling work on operon dynamics. In Section 2 we treat time ¢, 7, is the time delay between initiation of
the (repressible) tryptophan operon, and in Section 3 transcription and initiation of translation, is the total
the (inducible) lactose operon is considered. In both gperon concentration, anki; is a positive constant
cases we have made every effort to construct biolog- accounting formRNA depletion due to dilution by
ically realistic mathemtical models and to make ac-  growth and enzymatic degradation.
curate parameter estimation from the biological lit- Bliss et al. assumed th&tcan be modeled by a Hill
erature. In Section 4, we conclude the paper with fynction
some general comments related to our philosophical

= KtEI(T) — G(T) — KT (3)

. K"
approach to the modeling of these systems. R(T)=—"1—
Km+1Tm
with m = 4. In Eq. (2), Kp denotes the rate of
2. Therepressibletryptophan operon translation initiation pemRNAmolecule, 7p is the

time delay between initiation of translation and the
After Jacob et al. introduced the operon concept appearance of functional enzyme, aiglis a positive
[5], the development of more refined experimental constant accounting for enzyme depletion due to
techniques and the acquisition of more data made it dilution by growth and enzymatic degradation. Finally,
clear that in addition to repression there are many in Eq. (3), K; is the tryptophan production rate
regulatory mechanisms involved in the control of per enzyme,I/(T) is the fraction of enzyme not
operons. These mechanisms vary from operon to inhibited by the end produc (T) is the tryptophan
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consumption rate, an& is the growth rate of the
bacterial culture.
This model clearly considers two different regula-

concentration(T'). The dynamic equations for these
variables are

tory mechanisms, repressi and enzymatic feedback & K T aRT O —KiM (4)
inhibition by tryptophan.R(T) accounts for repres- d ofkd+ Kol +n
sion, while I (T) stands for feedback inhibition. Bliss
et al. also assert thdl(7') can be modeled by a Hill dE = KpM — K2E (5)
function dr

K" and
(T)= ———-

. dr

Kl +T —ZKtE—GmaX—KT (6)

dr

The first term in the right-hand side of Eq. (4) is the
mRNAproduction rate, which is assumed to be pro-
portional to the concentration of unrepressed oper-
T + Ky ons, with a proportionality constatit,,. The concen-
The authors made a careful estimation of the para- tration of unrepressed operons is calculated by tak-
meters in this model based on the available experimen-ing into account the fact that active repressor mole-
tal data. They solved the model equations numerically cules reversibly bind operons to block transcription
and also performed an analytical stability analysis of initiation, and assuming that this reaction takes place
the steady states. They were able to reproduce the re-sufficiently rapidly that it is in a quasi-steady state.
sults of derepression experiments with cultures of wild From this, the concentration of unrepressed operons
and mutanE. colistrains reported in [15]. From these is OKo/(Ko+ Ra), Wherek is the dissociation con-
experiments, the tryptophan operon loses stability in stant of the repressor-operon reactighis the total
mutantE. coli cell cultures that have a partial loss of operon concentration, anila is the concentration of

with n = 2, and that the demand for tryptophan obeys
a Michaelis—Menten-like equation

G(T) = Gmax

of feedback inhibition. The previously stable steady
state is replaced by an oscillatory production of tryp-
tophan [15]. This mutation is modeled by increasing
K; to ten times its wild type value. However, to our

active repressor molecules.

When produced by thdérpR operon, repressor
molecules are unable to reprdags operons. For this
repression to take place, they need to be activated

knowledge, these experiments have never been suc-by two tryptophan molecules which sequentially bind

cessfully repeated. Moreover, more recent experimen-

tal evidence has demonstrated that the funcRonh),
which Bliss et al. used to model repression, is in dis-

agreement with the experimental facts about the in-

teraction between thigp operon and repressor mole-
cules. The issue of oscillations in tryptophan control
was revisited by Xiu et al. [16] in their investigation of
the role of growth and dilution rates on stability.

2.2. The Sinha model
In 1988, Sinha [17] introduced a different model

for the tryptophan operon regulatory system in which
the DNA-repressor interaction is modelled in a more

detailed way. The independent variables of the Sinha
model are the same as in the Bliss et al. model, i.e.

thetrp mRNAconcentratior{M), the anthranilate syn-
thase enzyme concentratigf), and the tryptophan

non-cooperatively in two independent places. From
this, and assuming that this reaction takes place in a
guasi-steady state, Sinha obtained the concentration of
active repressor givena =nT R/(T + Kq), where
n =2, R is the total repressor concentration, akigl
is the repressor activation dissociation constant.
Compared with the Bliss et al. [14] model, the
Sinha model considers tHaNA-repressor and repres-
sor-tryptophan interactions in a more detailed way.
It also ignores the fact that anthranilate synthase is
feedback inhibited by tryptophan as well as ignoring
the time delays inherent to the system. These are both
important features of the tryptophan operon regulatory
system.
It is also important to note that Sinha assumes a
constant tryptophan consumption raig,ax. Observ-
ing this, Sen and Liu [18] modified the Sinha model
to study the case of a non-linear tryptophan consump-
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tion rate given by a Michaelis—Menten-like function iologically attainable in wild type or mutant bacterial
G(T) = GmaxI' /(T + Kg). Sinha, as well as Sen and strains.

Liu, studied the stability of their models for various
values of parameter&, and K> and found the cor-

responding stability regions in theo, K2) parame- Recently Santillan and Mackey [19] introduced a
ter space. However, theyititer compare their models  more detailed mathematical model of the tryptophan
with experimental data nor do they discuss whether the operon regulatory system, which is shown schemati-
values forK, and K> where stability is lost are phys- cally in Fig. 1. In this model, all of the known reg-

2.3. A more detailed model
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Fig. 1. Schematic representation of thgptophan operon regulatory systemeSke text for a detailed description.
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ulatory mechanisms of the tryptophan operon (repres- also contains an extended description of the model
sion, transcriptional attenuation, and enzyme feedback derivation.

inhibition) are taken into account. The system inher-
ent time delays due to transcription and translation

are also included, as well as tmmeRNA dynamics.

The model considers four independent variables: The
concentration oftrp operons with operators free to

be bound bynRNApolymerase molecule®@r), the
concentration ofrp mMRNAmolecules with fredrpE-
related ribosome binding sit€éa/r), the concentration
of the enzyme anthranilate synthg€®), and the tryp-
tophan concentratio(¥’).

Although five different polypeptides are synthe-

sized during the expression of the operon and they

The factor

K,
Ky + Ra(T)

in Eg. (7) is the fraction of unrepressed operons.
This follows from the factthat when active repres-
sor reversibly binds free operons, the experimentally
reported reaction rates allow one to make a quasi-
steady-state assumptioK; is the dissociation con-
stant of this reaction, an®a(T) is the active re-
pressor concentration. The experimentally reported
rates of the repressor activation reaction also support

combine to form the enzymes that catalyze the reac- a quasi-steady-state assumption. Repressor molecules
tion pathway which synthesizes tryptophan from cho- activate when two tryptophan molecules sequentially
rismic acid, this model concentrates on anthranilate pind an inactive repressor in two independent sites
synthase. The reason for this focus is that this enzyme non-cooperatively. From this

is the most important from a regulatory point of view
since it is subject to feedback inhibition by tryptophan
and is the first to play its catalytic role in the reaction

pathway [13].
Anthranilate synthase is a complex of tWiopE

and two TrpD polypeptides. From this, Santillan
and Mackey assume that the anthranilate synthase

production rate is one half that of tiepE polypeptide
and look only at theTrpE-related ribosome binding

sites of thenRNAchain. The equations governing the

dynamics of these variables are:
dOF _ Kr

& T Kt Raqn) 4O TR PLOFD

— Or(t — 1) ™)} — LOF (7)
dm
TF — kpP OF(t — tm)e "™ [1— A(T)]

— kop[ME(t) — ME(t — Tp)e """ ]

— (kdD + p)Mr(1) (8)
de 1
= = ékppMF(r —te)€ M — (y + WE(t) 9)
and
dr
o = KEA(E.T) = G(T) + F(T. Te — T (10)

RT (1)
RA(T) =

T(t) + Kt
where R is the total repressor concentration akigl
is the dissociation constant of the repressor activation
constant.

w is the growth rate of the bacterial culture. The
term 1 O stands for the operon production rate due to
DNA replication, which was assumed to be such that
it keeps the total operon concentration at a constant
value O, balancing dilution by growth.

The term

—kpP[Op(1) — Or(t — 1p) eXp(—117p) ]

accounts for the rate of free operons binding by
MRNApolymerase molecules and later freed when the
polymerases have traveled for a distance along the
operon in a timerp. kp is the reaction rate of the
DNA-polymerase binding reaction, assumed to be ir-
reversible, andP is the mRNApolymerase concen-
tration. The exponential factor egputp) takes into
account the dilution oD due to exponential growth
during the timerp.

In Eq. (8),mm is the time it takes for a polymerase
to produce amRNAchain long enough to have an
available TrpE-related ribosome binding sited(T)

All the parameters in this model were estimated is the probability for transcription to be prematurely
from reported experimental results, and the details of terminated due to transcriptional attenuation. Santillan

the parameter estimatiorrqress are in [19], which

and Mackey [19] taked(T) = b[1—exp(—T /c)]. The
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term Table 1
The tryptophan model parameters as estimated in [19]

—kop[Mr(t) — Mp(t — ) eXp(—pu7,)] R~08uM 0~332x10-3 uM
in Eg. (8) accounts for the rate dhRNA being P~26uM kr~12min~t
bound by ribosomes and liberated after they travel for # =29 M kr > 460 ”Mfljfi”_l
a time 7, along themRNAchain. k, is themRNA =01 min kj=r20mime

. . . . tm =~ 0.1 min ki ~ 176 pM™ = min
ribosome pmdmg reaction rate apds the ribosomal £, ~0.05 min k_t~2.1 % 10* min—1
concentration. 7~ 0.66 min ke ~ 348 uM~1 min—1

The first term on the right-hand side of Eq. (9), is y ~0min~? kp == 3.9 pM~ L min~?

the anthranilate synthase production rate. The factor kgD ~ 0.6 min—! kp =~ 6.9 pM~t min—1
1/2 is incorporated because, as mentioned earlier, thenH = 1.2 1 ~10x10-2 min~1
enzyme production rate is assumed to be one half 2~ 085 c=40x 10__2j‘1""
that of TrpE polypeptide. TheTrpE production rate f}{z g'ﬁ,&‘M flfgg ‘;':'J::in,l
equals the rate of ribosome binding frégpE-related £~ 380 uM K ~ 1264 min-1

ribosome binding sites a timg ago.ze is the time it
takes for a ribosome to synthesize and releasgp&
polypeptide. The model was solved numerically, and the results
The tryptophan production rate, the first term on compared with derepression experiments performed
the right-hand side of Eq. (10), is assumed to be pro- by Yanofsky and Horn [20] on wild-type bacterial cul-
portional to the concentration of active (uninhibited) tures as well asrpL29 andtrpL75 mutant strains of
enzymes Ea) with a proportionality constank . An- E. coli. In these experiments, a bacterial culture is first
thranilate synthase is inhibited when two tryptophan grown in a medium with a high tryptophan concentra-
molecules bind th&rpE subunits in a sequential co-  tion during a period of time long enough for the
operative reaction with a Hill coefficient afy ~ 1.2. operon to reach a steady state. Then the bacteria are
The enzyme feedback inhibition reaction rate con- washed and shifted to a medium without tryptophan,
stants support a quasi-steady state assumption, fromand the response of the anthranilate synthase activity

which is measured as a function of time after the nutritional
K shift.
En(E,T) :E(T)'inH The trpL29 mutant strain has a mutatioA to
™ + K G at bp 29 in the leader region of thep operon.

Ki is the dissociation constant of this reaction. The This change replaces the leader peptide start codon
tryptophan consumption rate constant is modeled asby GUG, and decreases operon expression in cells

a Michaelis—Menten-type function growing in the presence or absence of tryptophan.
T This mutation is simulated by Santillan and Mackey
G(T) = Grax——— by decreasing the rate constagtto 0.004 times its
T + Ky normal value.
Finally, E. coli can incorporate tryptophan from the The straintrpL75 of E. colihas a mutation o& to

environment. This can be managed by different trypto- A at bp 75 in the leader region of tigp operon. This
phan permeases. The rate of tryptophan uptake is mod-change decreases the stability of the transcription an-

eled by Santillan and Mackey as titerminator structure, and increases transcription ter-
T mination at the attenuator. Consequently, it decreases
F(T, Tex) =d ext operon expression in cells growing in the presence or
e+ Tex{1+T/f] absence of tryptophan. This mutation was simulated

Text is the external tryptophan concentration. by increasing the value of parameterwhich deter-

All of the model parameters were estimated from mines the probability of transcriptional attenuation at
the available experimental data. The details are given high tryptophan levels. The normal value of this para-
in Reference [19] supplementary web material. In meter isb ~ 0.85, and to simulate the mutation it was
Table 1 the value of all these parameters is shown. increased t® ~ 0.9996.
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Fig. 2. Experimentaly measured points [20] and simulated curves ofeeniiite synthase activity vs. time after a nutritional shift (minirgal
tryptophan medium to minimal medium), witAY wild, (B) trpL29 mutant, and€) trpL75 mutant strain cultures d&. coli. Two different sets

of experimental results (crosses and pljigesthe wild-type strain are presented An One set of experimental points corresponding to the
trpL29 mutant strain is shown iB with circles. Another set oéxperimental points for thepL75 mutant strain is shown i€ with asterisks.
The corresponding simulations are shown with solid lines in all of theetlgraphics. The wild-type experéntal points and simulation are
repeated irB andC for comparison.

The experiments of Yanofsky and Horn were sim- the transport of external lactose into the cell and its
ulated numerically. In all of the three cases (wild type conversionto glucose and galactose. Many experimen-
and two mutants), the model results show a reasonabletal studies have examined the control of the genes
qualitative agreement with the experiments, given the involved in lactose metabolism i&. coli. One of
simplifying assumptions inherent to the model. The re- the most recent mathematical modeling studies of the
sults of these simulations are shown in Fig. 2. lac operon was carried out by Wong and cowork-

ers [21]. Although many of the relevant biological
details were taken into account in their model, they

3. Theinducible lac operon failed to treat the transcriptional and translational de-
lays. Conversely, Mahaffy and Savev [22] modeled
3.1. Previous models lac operon dynamics and included transcriptional and

translational delays, but ignored the conversion of in-
The lac operon is the classical bacterial example ternal lactose to allolactose tBrgalactoside and the
of an inducible system which encodes the genes for spontaneous production rate of mMRNA together with
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the individual degradation terms for the proteins. In g-galactosidas€B). The allolactose feeds back to
this section we give a brief summary of the work on a bind with the lactose repressor and enable the tran-
recent model developed by Yildirim et al. [23] on the  scription process to procedd the absence of allolac-
lac operon including much of the relevant biological tose(A) the repressor binds to the operator region
detail considered by Wong and coworkers [21] as well and prevents the RNA polymerase from transcribing
as the transcriptional and translational delays consid- the structural genes. However, if allolactose is present,
ered by Mahaffy and Savev [22]. A more complete 5 complex is formed between allolactose and the re-
mathema_tical analysis of the model presented here Canpressor that makes binding of the repressor to the op-
be found in [23] and [24]. erator region impossible. In that case, the RNA poly-
merase bound to the promoter is able to initiate tran-
scription of the structural genes to produce mRNA.
When a mRNA chain, long enough for a ribosome

gion and three larger structural gerdasz, lacY, and t_o bi_nd_ 't has been produced, the process of transla-
lacA together with a preceding regulatory operon re- tion is |n!t|ated. ThdacZ gen_e encodes fort_he mMRNA
sponsible for producing a repressat) protein. To respon5|ble_fqrthe production gkgalactosidaséB)
understand the mechanism under this control network and transcription of thiacY gene produces mRNA ul-
easily, it is helpful to refer to Fig. 3. In the absence timately responsible for the production of a membrane
of glucose available for cellular metabolism, but in Permeasé&Pr). The mRNA produced by transcription
the presence of external lactodey), lactose is trans-  Of thelacA gene encodes for the production of thio-
ported into the cell by a permea$g). Intracellular galactoside transacetywhich is thought to not play
lactose(L) is then broken down into allolactosd ) a role in the regulation of thiac operon [25] and will
first and then glucose and galactose by the enzymenot be further considered here.

3.2. The mechanism

Thelac operon consists of a promoter/operator re-

“\ O === /&= Operon T
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1 3
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Fig. 3. Schematic representation of the lactose opemuiatory system. See the text for a detailed description.
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There is another control mechanism known as

219

of production ofB is proportional to the concentration

catabolite repression. The presence of glucose in theof M a timerg ago times a dilution factor due to cell

external medium inhibits the production of CAMP in
the bacterium. cAMP is nessary for transcription
initiation to take place efficiently. In the present
work we ignore these regulatory mechanism since
we compare with experimental in which there is no
glucose in the culture medium and thus, cAMP is
always produced at a high rate.

3.3. A new mathematical model

The lac operon regulatory pathway is fairly com-
plex: it involves three repressor binding sites (opera-
tors), and two CAP binding sites. Moreover, one re-
pressor can bind two different operators simultane-
ously [26]. A detailed model of all these regulatory
elements is beyond the scope of this work. Nonethe-
less, according to Yagil andagil [27], the fraction of
free operators as a function of allolactqse) can be
modeled via a Hill-type function of the form:

1+ K1A"
A)=-——"1
f(A) K T KA

wheren, K and K; are parameters to be estimated
from experimental data. The dynamics of mMRNA
production are given by Eq. (12), which is derived
as follows. First, note that the production of mMRNA
from DNA via transcription is not an instantaneous
process but requires a period of timg before we
have a mRNA long enough to be bound by a ribosome.
The rate of change of the ribosome binding sites’
concentration /) is a balance between a production
termay f and a loss terniym + 1) M. The argument

of f in the production term is &™A,,, where
Aq, = A(t — v), to account for the timey required

to produce the ribosome binding site. The factof@
accounts for the growth dependent allolactose dilution
during the transcriptional period. The loss term in
Eq. (12) is made up of an mRNA degradation term
(ymM) and an effective loss due to dilution ¥/).

dm 14+ K1 (6™ A,)"
- _a
dr MK FKi(e FM AL, )"
The dynamics of the concentratioB) of g-ga-
lactosidase are described by Eq. (13) in whigh

is the time required foig-galactosidase production
through mRNA translation. We assume that the rate

(11)

- (m+wM (12)

growth during the translation proce$sg € "8 My;).
The loss rate oB is given by(yg + 1) B.

dB

O =ape "M, — (v + 1B (13)

For the allolactose concentratioa)dynamics, the
first term in Eq. (14) gives thg-galactosidase medi-
ated gain in allolactose from the conversion of lactose.
The second term accounts for allolactose loss via con-
version to glucose and gadtose (again mediated by
B-galactosidase). Since theye enzymatic reactions,
both of these expressions are taken to be in Michaelis—
Menten form. The last term takes into account the
degradation and dilution of allolactose.

dA L
dr KL+L

— BaB

—(ya+wA
(14)

The lactose concentratioil ) dynamics are more
complicated and given by Eg. (15). The first term
in Eq. (15) accounts for the increase of intracellular
lactose through the permease facilitated transport of
external lactose I{g). The second term deals with
intracellular lactose loss to the extracellular fluid
because of the reversible nature of the permease
mediated transport [28—-31]. The third term accounts
for the conversion of lactasto allolactose as well as
the hydrolysis of lactose to glucose and galactose via
B-galactosidaséB). The fourth term is the decrease in
internal lactose concentration due to degradation and
dilution.

— anB
*A Kat A

AL _ple 4 op L

U _ o p—te g p_L

dt  C Kio+Le TN KL +L
—anB - L 15
B (e +w) (15)

The permease concentratio)( dynamics are
given by Eq. (16). The first term reflects the as-
sumption that permease production is directly propor-
tional to the mRNA concentration a timg in the
past, whererp is the time it takes to translate a per-
mease polypeptide. The exponential factot€ ac-
counts for dilution of MRNA concentration due to cell
growth. The second term accounts for the degradation
and dilution of permease.

dp

g =P e "PMyp — (Yp+ )P

(16)
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Table 2

The estimated parameters for tlhe operon model, taken from [23, .

24] 035

n 2 tmax 347 x 1072 min! 03

w0411 min1 B 8.33x 104 min—1

YA 0.52 min—1 K 1000 3025

am 997x104mMmin~1 g 2.0 min 2 &

an  176x 10 mint Ki, 181lmM < =

og  1.66x102min~1 Ka 1.95 mM 0.15

Ba 2.15x 10 min—1 ™ 0.10 min

KL  97x1074M n 0.0 min~1 o

P 0.65 min—1 oL 2880 mirr ! 0.05

ap 10.0 min—1 P 0.83 min

B,  2.65x10°min—1 Kie 0.26 mM % 00l 002 003 004 005 006 007
K1 252x 1072 (uM)~2 L, (M)

Fig. 4. The region in théLe, A) space where a non-negative steady

3.4. Analysis of the model and comparison with state can exist as a function of external lactose leyeldor the
experimental data model when all parameters are held at the estimated values in

Table 2 and whe = 2.26 x 10~2 min~L. The shaded area shows
. . the region where a steady state is not defined, while the solid line
We have carried out an extensive search of the is the locus of(Le, A) values satisfying the steady state. The inset

existing literature for data that would allow us to box shows that at large values bt there is still a separation of
estimate the model parameters in Egs. (12)—(16) which the line for the steady state from the region where steady states are
are summarized in Table 2. and the details of how we "°t defined. Notice that for thesalues of the parameters there is a

ived at th t | be f din 24 range ofLe values for which there are three coexisting steady-state
arrived at these parameter values can be found in [24]. values of allolactosei. The point marked with a * corresponds to

The model as formulated in Egs. (12)—-(16) can the minimum lactose level for induction at this growth rate, and
have one, two, or three steady states depending onpredicts that induction should oactor a lactose concentration of
the values of the parametefg, Le). The details of about 620 pM.
how these steady states are determined are contained
in [23] and [24]. The results of these considerations are ment with the experimentally-observed dynamic be-
presented in Fig. 4. There we show(ihe, A) space havior ofE. colicultures. On the other hand, the model
the region where a non-negative steady state can exist.also predicts a range dfe values in which both the
Note in particular that for a range dfe values there  uninduced and the induced stable steady states coex-
may be coexisting two stable and one unstable steadyist. If this bistability behavior is real, an hysteresis
state values of the intracellular allolactose levels, phenomenon must be observed in inducing and unin-
and, consequently, @i/, B, A, L, P). ducing thelac operon of a given bacterial culture by

In other words, analytical and numerical stud- changing the external lactose concentration. This pre-
ies of the model predict that for physiologically re- diction is qualitatively confirmed by the observations
alistic values of external lactose and the bacterial in [32] and [33].
growth rate, a regime exists where there may be a  Although a full analysis of the stability properties
bistable steady state behavior, and that this corre- of the model is not possible due to its complexity,
sponds to a cusp bifurcation in the model dynam- we have found that the basic properties contained in a
ics. This means that, as the external lactose con-reduced version of this model [23] (which considered
centrationLe is increased, the baatal culture must only the dynamics ofV/, B, and A) are apparently
switch from a low-internal-allolactose-concentration retained in this much momplicated model as far as
uninduced steady state to a high-internal-allolactose- we are able to ascertain agptitally and numerically.
concentration induced steady state. For very lbyw Given the parameter values determined in Table 2,
values, only the uninduced state exists. Conversely, for we numerically solved the model equations to com-
very highLe concentrations, only the induced state is pare the predicted behavior with three distinct exper-
available for the system. All these facts are in agree- imental data sets. The first data set is from [34]. In
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Fig. 5. 8-galactosidase activity vs. time whég = 8.0 x 1072 mM.

The experimental datasets were taken from [34]Eoicoli ML30

(o) and from [35] forE. coli 294 (¢). The model simulation (solid
line) was obtained using the parameters of Table 2 with a growth
ratefi = 2.26 x 10~2 min~—L. For details see, [24].

there, the activity ofs-galactosidase in aB. coli cul-
ture (strain ML 30) was measured after the bacteria
were switched from a glucose-rich non-lactose to a
non-glucose lactose-rich medium. The second data se
is from [35]. In this paper, Pestka et al. studied spe-
cific inhibition of translation of single mMRNA mole-
cules and gave data for the specific activity®fa-
lactosidase versus time f&r coli 294 in the presence
of IPTG. These two data sets and the model simula-
tion determined usintyat | ab’s dde23 [36] routine
are shown in Fig. 5.

For this simulation, initial values for the variable
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the case with the experiments of Knorre [34] since,
in such case, the bacterial were originally growing in
a medium rich in glucose. Notice however that the
time course of both experimental data is quite similar.
This does not necessarily justifies the comparison
of such experimental data with our model results,
but highlights the necessity of including catabolite
repression in further mathematical models of the
operon in order to test its influence on the system
dynamic behavior.

As a third test of the model, a data set from Good-
win [37] was used. In this paper, the dynamic behavior
of B-galactosidase was studied in chemostat cultures
of E. coli synchronized with respect to cell division
by periodic phosphate feeding at a period equal to the
bacterial doubling time. Experimentally, oscillations
in B-galactosidase conceation were observed with
a period equal to the feeding period. Since in these ex-
periments, there is no glucose present in the environ-
ment, we can attempt to simulate them with our model.

To mimic the periodic phosphate feeding in our
simulation, we assumed that the bacterial growth rate
varies as a function of time in manner given by

t

p(t) = —amodt, T) (17)
Here, i is the maximal growth rate for the bacteria,
T is the period of the feeding and is a positive
parameter with dimension mis. modz, T) is a
function that gives the remainder on division of
by T. Selection of this type of function is motivated by

were chosen close to the steady state values whenthe observation that growth rates decrease as nutrient

Le=8.0x 102 mM. (With this value ofLe there is a

levels fall and sharply increase after the addition of

single uninduced steady state.) To compare these twonutrient.

sets of experimental data with the model simulation

The maximal value of.(¢) corresponds the times

predictions, the data were scaled so the steady-statethat phosphate was added. The minimal value of this

values of measureg-galactosidase activities and

function represents the minimal amount of nutrient

those produced by the simulation were equal. As seenleft in the vessel. Assuming no nutrient is left

in Fig. 5, there is relatively good agreement between

minutes before the addition of phosphate and letting

both sets of experimental data and the model predictede — 0, « can be estimated if the doubling tim&)

temporal approach oB-galactosidase activity to its
steady-state value.

Inthe experiments of Pestka et al. [35], the bacterial
culture medium has no glucose all of the time. This

is known:a >~ i/T. In Fig. 6, we compare the data
on B-galactosidase activitirom the forced culture as
a function of time with the model predictions for a
feeding period off = 100 min which is the population

means that catabolite repression is not a factor in the doubling time. Again, there is a reasonable good
regulation of thdac operon and thus, the comparison agreement between the model predicted curve and this
with our simulations is straightforward. This is not dataset.



222
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Fig. 6. Oscillation ing-galactosidase activity in response to periodic
phosphate feeding with periofl = 100 min, which is the culture
doubling time, andi = 2.26 x 1072 min~1. The experimental
data §) together with the model simulation (solid line) using the
parameters of Table 2 are presentBlde experimental data are taken
from [37]. In the numerical simulation, periodic phosphate feeding
was imitated by choosing a periodic function given by Eq. (17).
The simulation was calculated by numerically solving the system
of delay differential equationsgn by Egs. (12)—(16). For details,
see [24].

4. Discussion and conclusions
Given the virtual flood of information that is

emerging from the current initiatives in molecular
biology, we feel that mathematical modeling of the

M.C. Mackey et al. / C. R. Biologies 327 (2004) 211-224

tic, and if every effort is made to identify the values
of parameters appearing in the models from published
data or from experiments explicitly designed to mea-
sure these parameters.

The paucity ofdynamicdata (as opposed to steady-
state data) with which we were able to compare the
predictions of our models for the tryptophan and lac-
tose operons highlights a serious problem in the in-
teraction between experimentalists and mathematical
modelers. Namely, we feel that there must be a close
and cooperative relationship between these two groups
if maximal use is to be made of the experimental data
that is being so laboriously collected and if the mathe-
matical models constructed to explain these data.

The last area that we want to touch on is the na-
ture of the mathematical models that are constructed.
Those that we have discussed in this paper are all writ-
ten with the explicit assumption that one is dealing
with large numbers cells (and hence of large numbers
of molecules) so that the law of large numbers is oper-
ative. However, the situation is quite differentif one is
interested in the dynamics of small numbers (or single)
prokaryotic or eukaryotic cells, for then the numbers
of molecules are small. Adequate means to analyti-
cally treat such problems do not exist in a satisfactory
form as of now [38], and one is often reduced to mostly
numerical studies [39—-41]. The situation is analogous
to examining the interactions between small numbers
of interacting particles (where the laws of mechan-

dynamics of molecular control systems will assume an ics or electrodynamics hold), and then deriving from
essential role in the coming years. The reasons for this these formulations the behavior of large numbers of

are threefold:

identical units as is done (nobmpletely successfully
even at this point) in statistical mechanics. We view

1. Mathematical modeling offers a concise summary this connection betweenghmicro’ and ‘macro’ lev-

of many biological facts and insights in an easily
manipulable language.

els as one of the major mathematical challenges facing
those interested in the understanding of gene control

2. The consequences of analyzing these models cannetworks.

reveal potentially new dynamical behaviors that
can be then searched for experimentally.

3. Failures ofrealistic mathematical models to ex-
plain experimentally observed behavior often
point to the existence of unknown biological de-
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