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Abstract

An agent-based model (AMB) used to simulate the spread of Human African Trypanosomiasis is presented together with the
results of simulations of a focus of the disease. This model is a completely spatialized approach taking into account a series
of often overlooked parameters such as human behaviour (activity-related movements), the density and mobility of the disease
vectors —tsetse flie§{ossinaspp.) — and the influence of other tsetse feeding hosts (livestock and wild animal populations). The
agents that represent humans and tsetse flies move in a spatially structured environment managed by specialized location agen
Existing compartmental mathematical models governed by differential equations fail to incorporate the spatial dimension of the
disease transmission. Furthermore, on a small scale, transmission is unrealistically represented by entities less than one. Th
ABM was tested with data from one village of the Bipindi sleeping sickness focus (southern Cameroon) and with obtained
realistic simulations of stable transmission involving an animal reservoir. In varying different spatial configurations, we observe
that the stability of spread is linked to the spatial complexity (number of heterogeneous locations). The prevalence is very
sensitive to the human densities and to the number of tsetse flies initially infected in a given location. A relatively low and
durable prevalence is obtained with shortening the phase I. In addition, we discuss some upgrading possibilities, in particular
the linkage to a Geographical Information System (GIS). The agent-based approach offers new ways to understanding the
spread of the disease and a tool to evaluate risk and test control strafegigethisarticle: G. Muller et al., C. R. Biologies
327 (2004).
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Résumé

Un modéle multi-agent de la maladie du sommeil. Simulation d’un foyer forestier du Sud-Cameroun. La transmission
de la trypanosomiase humaine africaine ou maladie du sommeil dans un foyer forestier camerounais (Bipindi) est simulée par ur
modéle multi-agent. Ce modéle intégre la dimension spatiale, en prenant en compte les comportements humains (déplacemer
liés a l'activité), la densité et la mobilité des vecteurs (glossines ou mouche tsé-tsé), le réle des hétes non humains (animau:

domestiques, principalement les porcs dans le foyer considéré ou sauvages). Les agents humains et agents glossines évolus
dans un environnement possédant une structure spatiale gérée par des agents lieux spécialisés. Les modéles épidémiologiqt
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classiques régis par des équations différentielles (modéles dits « & compartiments ») ne prennent pas en compte la spatialisatic
De plus, ils ne peuvent simuler la transmission a petite échelle qu’en faisant intervenir des entités inférieures a l'unité, ce
qui n'est pas réaliste. Ce nouveau modeéle a été testé avec les données d'un village du foyer camerounais de Bipindi. Une
transmission stable a pu étre simulée de fagon réaliste avec l'intervention d’un réservoir animal. En faisant varier différentes
configurations spatiales, il apparait que la stabilité de la transmission est liée a la complexité introduite par la présence de
nombreuses zones hétérogénes. La prévalence est trés sensible au nombre de vecteurs infectés initialement, a la dens
humaine ainsi qu'a la durée de la premiére phase de la maladie. Une prévalence relativement basse et stable a été obten
en raccourcissant la durée de la premiéere phase. Différents moyens d’améliorer le modéle sont envisagés, notamment par |
jonction avec un systeme d'information géographique (SIG). Les modéles multi-agent offrent une nouvelle approche de la
compréhension de la transmission de la maladie du sommeil et un outil pour I'évaluation du risque et le test des méthodes de
contréle.Pour citer cet article: G. Muller et al., C. R. Biologies 327 (2004).
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1. Introduction each computer-generated basic entity has its own life
cycle, its own and rational defined behaviour. In an
Due to its propensity to develop into an epidemic, |BM, these entities, called ‘individual’ or ‘object’, cor-
human trypanosomiasis is one of the most serious pub-respond to real biological actors with attributes re-
lic health problems affecting Africa. Though in re- stricted to those relevant to their evolution and inter-
crudescence, the disease threatens close to 60 mil-actions in the model. In an ABM, these entities, called
lion people in sub-Saharan countries. The different «agents’, reify the biological entities and their interac-
processes involved in the transmission of the diseaseyjgng [11,12]. They represent the behaviour of one or

are very complex and stochastic events play an im- geyera| characters of the phenomena. The spatial loca-
portant role. The importance of spatial location in the tion, the scalability, the links, the aggregation are rep-
transmission of sleeping sickness has been underlinedresented as well. In IBM, only the basic entities are

o ok B e sen eatepresend and te behaiours are oughy pprx
Vi ' W v — '®Simated. In some case, an IBM may be restricted to

(Glossmas_pp.) — and hum_ans vary S|gn|_f|cantly OVE " the matrix and its individuals’ indexed components.
space. Existing mathematical models fail to take into . . .
In an ABM, each agent is reactive (when it reacts to a

account the spatial distribution of humans and flies, imul ) tiv ble of ind ndent action
their random movements and human—fly contact. In stimu us), p o-ac g(capa. € otindependentactio S).
social (through its interactions with others) and au-

conventional compartmental models, transmission is i d h . its behavi
described using a system of differential equations [4— Fonomoqs with regards to others (since its benhaviour
is not driven by another agent). Moreover, its move-

8]. Over the past four years, the model of Artzrouni ) < ) i
and Gouteux [7] was improved to cover two patches ments are not limited to a grid [13—15]. Since an agent

displaying distinct epidemiological characteristics [9]. IS @n @utonomous and proactive entity, it is taially
This improved approach, however, has two drawbacks: event driven either. This kind of model can involve rel-
the first is the unavoidable oversimplification of het- atively little mathematics, but it can prove to be very
erogeneous areas, and the second lies in the a priori un-complex due to the amount of data processing.
solvable mathematical difficulties that arise from the ~ The aim of this new approach is first to identify
increased number of distinct transmission areas. the agents (individual or spatial), their relationships
In this context, an alternative is to use an individual- and their evolution over time, and then to observe
based model (IBM) or an agent-based model (ABM) results from the model at the population level. It would
in a multi-agent system of synchronisation and ob- then be possible to deduce if some of the hypotheses
servation [10]. IBM or ABM are models in which  made for the disease were true given the assumptions
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about the agents. A multi-agent model integrates some Table 1

relevant processes at work, which are not integrated in
deterministic models, such as the dynamic occupation
of space [10].

More recently, Artzrouni and Gouteux [16] submit-
ted a preliminary stochastic model of a microsimula-
tion that was the first IBM addressing transmission of
the Gambian form of the disease. This model is inter-
esting in that it opens up the possibility of introducing
a spatial dimension in the epidemic process. However,
only by assuming a constant influx of infected tsetse
flies from outside the study area, it can account for low
and stable transmission [16]. The low-level transmis-
sion able to maintain itself for several years remains a
central epidemiological enigma [17,18]. Models based
on differential equations can explain this phenomenon
on a very large scale but at a small scale — that is,
at the scale at which the transmission usually takes
place — such models become unrealistic, since they
use fractions of vectors or infected people. Indeed, the
differential equations paradigm assumes that popula-

Characteristics of the biological agents. The distribution between
two extreme values is linear

Glossina agents

1to 3 months
15 days to 1 month

Lifespan
Incubation phase

Infective phase Until death
Blood meals frequency Every 3 days
Susceptibility rate According to age
Movements Random

24%

Humans agents

Initial infection rate

First phase 4 months to 8 years
Second phase 5 months to 7 months
Time spent in plantation 2 days

Time spent in village 1 day

Time spent in forest 8 days

5%

62%

Random (10% of sedentary people)
00%

Mortality rate
Susceptibility rate
Movements

Initial infection rate

tions are large and can be considered as continuous2.1.1. The human hosts

guantities. It was therefore interesting to explore an
innovative approach, intrinsically discrete, spatial and

The parasite Frypanosoma brucei gambiensés
injected into the bloodstream of a human when an in-

agent based. This model considers tsetse flies and hufective tsetse fly bites him or her. In most cases, the
mans as agents and thus simulates their dynamic useparasite subsequently multiplies in the lymph nodes
of space. This paper describes the model, presents tesind blood, transferring a healthy susceptible human

results obtained from its application to data from the
Bipindi sleeping sickness focus in Cameroon, and dis-
cusses new prospects arising from the model. This fo-
cus is the most active in the country and was inten-
sively and comprehensively studied using molecular
biology techniques —fine-tuning the usual entomologi-
cal surveys — as well as epidemiological surveys con-
ducted among the local population [19-22].

2. Material and methods

2.1. Overview of the parasitological cycle

The values assigned to epidemiological parameters
are those used in other existing models (Table 1)
and their justifications are provided in Artzrouni and
Gouteux [7] and Gouteux and Artzrouni [23].

into the group of first phase patients. We also assume,
as in Rodgers [4,5], a susceptibility rate of 0.62 (the
probability that a susceptible human eventually be-
comes infected after an infected vector bites him). This
value is just an order of magnitude for a parameter that
is difficult to estimate. With this parameter, it would
become possible to introduce subtle individual distinc-
tions, such as variable responses of the human host in
terms of age, sex, ethnic group, etc. The human lifes-
pan attains 50 years locally, but this value is ignored,
since simulations span six or 13 years only. As regards
the duration of the different phases of the disease, we
arbitrarily set the lower and upper limits of the first
phase to four months and eight years, respectively, and
for the second phase to 5 and 7 months, respectively.
The duration of these phases was selected at random
from a set range of lower to upper limits. These values
are realistic values consistent with the observed vir-
ulence of the epidemic in the forest focus of Central
Africa before medical screening [24—-27]. Only first-
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100 - : . .
considered stable, a newborn uninfected tsetse fly is

introduced in the model each time a fly dies.

2.1.3. Non human hosts
In the Gambian form of sleeping sickness, the para-
site is specifically adapted to human hosts but is found
to be of low virulence to experimental animals (cf.
[31], as recently reviewed by Gibson [32]). Infected
Z pigs or wild animals show no pathological symptoms
AV | and do recover spontaneously after a short time. How-
{ 2 3 4 5 6 7 8 9 ever, they may infect tsetse flies. Thus, it is possible
that animals play a part in the transmissionToy-
panosoma brucei gambieng8]. In Bipindi and oth-
Fig. 1. Probability of infection according the age of fly. Day-by-day  ers fociin Cameroon, infections with this parasite have
gstimation of infection risk (%) following a blood meal on an  peen detected in domestic and wild animals [18]. The
infected host. present model therefore includes animals as an addi-
tional reservoir for parasites. The susceptibility to in-
h1‘ection of animals by human parasites through the bite

Probability of infection

Glossina age (days)

stage carriers can transmit the parasite easily throug . e
fly bites. When these carriers enter the second stage OIDf an infected tsetse fly was initially set at 0.62.
go to hospital for treatment, they are considered ‘re-
moved’. Their risks of being bitten and of transmitting
the parasite become in those cases negligible.

2.2. Epidemiological data

Located in southern Cameroon, the Bipindi sleep-
ing sickness focus includes a dozen of villages. Data
2.1.2. The vector o used in the simulation runs emanate from the village of

The cycle ofTrypanosoma brucespp. in the al- | ampj (500 inhabitants), epicentre of this focus, sur-
imentary tract of the tsetse fly is the most complex 5,nded by an open population of 5000 tsetse flies.
found among salivary trypanosomes [28]. After inges- \we defined a circular zone with a radius of 3 km and
tion of the parasite, a long incubation phase of about centred on the village. Inside this zone, the landscape
24 days begins. During it, the tsetse fly does not trans- sy rrounding the village is a mosaic of vegetation types
mit the parasite. The duration of this phase was se- thatincludes plantations, subsistence crop fields, aban-
lected at random from an arbitrarily set range of 15 doned fields, thalwegs and forests. Table 2 summarises
days to one month. The trypanosome multiplies by the major characteristics of this focus as deduced from
longitudinal division and eventually changes into an maps and field observations. Medical surveys in 1998
infective metacyclic trypanosome, i.e., into the form report a 1.2% pre\/a|ence of the disease in the popu-
that can be transmitted back to a host. The tsetse thenjation. The proportion of sedentary people (i.e., that
enters in the phase termed ‘active transmission peri- never leave the village) is estimated at around 10%.
od’, which persists until its death. The mean life span
of a tsetse fly is from one to three months. This value
is chosen at random in the model. The tsetse fly takes a3. Results
blood meal from an animal or human host every three
days on average. It may ingest the parasite if it bites 3.1. Description of the model
a person in the first phase of the disease, but very sel-
dom from a patient in second phase. The fly is most ~ This ABM structured around agent, group and role
likely to be infected in its first blood meal [29,30]. The interactions was developed using the Aalaadin meta-
newborn fly is termed ‘teneral’. The probability thata model developed by Ferber and Gutnecht [34]. Agents
tsetse develops an infection from an infective bite de- belong to well-defined groups (or levels) where they
creases with its age (Fig. 1). Since the population is have well-defined roles in their interaction with one
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Table 2

The Lambi village area. Characteristics of the location agents. The main animal hosts in Village are pigs. Elsewhere, there are wild animals. The
total is the estimated populations in the area. From an arbitrary distribution, the equilibrium densities of tsetse flies are obtained very quickly
after some steps of time

Location agents Surface (%) Densities of Glossina Distribution of
(tsetse kr2) animals (%)

Forest 450 496 166
Thalwegs % 2367 166
Forest footpaths 8 2894 166
Cocoa plantations 22 570 166

Crop fields 16 1240 84
Abandoned fields 5 2367 84
Water-holes ® 26042 84
Village 6.0 2170 84

Total 28 kn? 5000 tsetse 300 animals

another. The model itself is described using the Cas- vantageous, for two reasons. First, the mesh size is di-
siopea procedure [35], where the class structures of rectly related to the number of agents used, with a pos-
agents are described first, followed by the interactions sibility to link up with a geographic information sys-
that take place among them. If relationships change tem (GIS) [40—-42]. Since a GIS represents locations as
over time, a third step is devoted to defining this evo- polygons with attributes (e.g., area, number of humans
lution. Each human or tsetse fly appears in the model in each phase of the disease, etc.) attached to each lo-
under its own traits: longevity, current phase of the cation, it seems easy to associate these attributes with
disease, time since entering that phase, etc. The in-location agents of the model. Second, links between
teractions among agents are based on its groups andlifferent areas are captured in the group and/or role re-
roles: each agent belongs to one or more groups andlationships of agents. Although the number of agents
plays one or more roles in each group. A detailed needed increases with a more precise representation,
presentation of the model is in Muller [36]. The pro- this drawback is offset by the advantages of this ap-
gram, with installation and user guides, is available at proach.
http://www.emse.fr/~gmuller

For programming, we used the MadKit platform 3.1.2. Application to the epidemiological context
[37] from the Aalaadin meta-model [34]. Due to The model considers locations, vectors and humans
the large number of agents in Lambi simulation as agents in an epidemiological complex. The spa-
(eight locations, 500 humans, 50G0bssing, a single tial dimension is introduced through the ‘agentifica-
simulation using a powerful computer (PentiunfflV tion’ of the main sites occupied by the human and
128 Mo RAM, 1.4 GHz) ran for over 48 h. Through tsetse agents: village, lands surrounding the village
experiments, we reduced the number of agents by a(including water supply outlets, plantations and aban-
factor of 10 with no adverse effect on the system. The doned fields) and forests (including footpaths and river
initial proportions of the types of agents had to be banks). The group—role interactions that take place be-
retained (50 humans, 5@ ossing. Thus the time for tween location agents define the spatialisation links.

five concurrent simulations is no more than 10 h. Animals are not represented as agents, but their num-
ber within each location is taken into account. System
3.1.1. Spatialisation agents (schedulers and watchers) are present as well

There are different ways of representing space. One and their function is to synchronise the agents and ex-
solution is to define space as a grid. We opt for yet tract some variables — such as the prevalence of the
another approach: we ‘agentify’ it [38,39]. That is, disease, etc. —that make it possible to monitor the evo-
space is structured by agents interrelated through theirlution and even to visualise this evolution by means of
affiliations to different groups and roles, in a way a graphic display module. Moreover, interactions are
somewhat similar to a network. This solution is ad- static, which implies that the behaviour of an agent
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does not change in the course of a simulation. The time | Human 1 |

step is common to all agents and corresponds approxi-
mately to 12 h. This makes it possible to handle the
daily switch of human behaviour between night and
day, tsetse flies displaying an essentially diurnal acti-
vity. The total length of time spanned by one simula-
tion corresponds to six years, i.e. approximately 4000
iterations. In some cases, the simulation duration is ex-
tended to 13 years. As for the tsetse population, the %
number of humans is considered constant. When an
agent playing the role of human in the second phase
should die, it comes back in the system in the healthy v v
state.

Location 5

Fig. 2. Example of scenario (scenario 1). This scenario involves four
o agents. Human 1 an@lossina3 and 8 are enrolled in Location 5.
3.1.3. Characteristics of the human agents Both Glossinaare infecting and bite on the human. After each

The simulated agents move according to the qua_l- bite message, a probability calculation determines whether or not
itative traits of the real-life agents: the young and Human 1 will develop the disease. Here, only one bite contaminates
the aged remain in villages and lead sedentary lives, e uman (stan.
and the others are hunter-farmers, who travel to co-
coa plantations (the main cash crop), forests and water
supply outlets. The travel mode used by each individ-
ualis determined by the role he or she plays, the choice
of destination area from a given set, and the length of
time spent in each area, based on the type of area se-
lected (Table 1).

3.1.4. Characteristics of the location agents

A location agent is characterised by: (1) the surface
area (as a proportion to the total surface area) and
the position of its bounding box; (2) the number of
flies and humans present in an area, (3) the number of
animals that reside in the area, regardless of species.

The location agents are the supervisor of the other \\‘:\:\\»&\\

agents’ movements (tsetse and human agents) and w
permit the visualisation of system activities. They are \ T R T R T
the only ones who know the current numbers of tsetse \* N 3333**************3§33333333§@§®\

3
R
3

SN R S R
i i i S AR R AR R
flies and animals in the area they cover. Thus, one of fi R A TS

RS

T

th eir jObS iS to sen d blte messag es to hum an ag ents. R \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\§§§\\\ §§§§§§§§S\
Indeed, they can deduce tsetse fly densities and the \
number of bites inflicted on humans. The number
of animals determines the dilution level of the tsetse
bites. The more the animals in a unit surface area, the

less likely the bites will involve humans. Fig. 3. Example of scenario (scenario 2). This example shows the
clustering in three groups of location agen@s ¢ocoa plantations,

3.1.5. Example of an interaction between agents F: forests) around villages/(). Ellipses represent groups.

Fig. 2 describes a scenario with regards to the order
of appearance of the three types of agents: human 1,being in the infective phase), and the emission of a bite
tsetse 3 and tsetse 8 in location 5 (both tsetse agentanessage. It also highlights a useful trait of the system:
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VILLAGE 1

! |
(cossina ] [ Human ] [ ocation ] ( In-P1 J Roles

- -—

”
e Temporar y
’ _ Agents
/ @ ,/ Agents

Group

Random choice

Message Enrollment

Fig. 4. Architecture of the groups—roles—agents system. An agent ‘sees’ only other agents of his group, here ‘village 1'. This example of scenario
shows an option available for the agents human 1 and tsetse 1. The tsetse 1 goes in cocoa plantation C1 following a random choice. Idem fo
Human 1, but his displacement is also determined by his property (sedentary or not). Later, the possible encounter of these two agents in C:
(in-P1 role) is as well at random.

when an infective tsetse agent emits a bite message,7, and the village itself. Human agents from villages 1
whether the bite will effectively be infective or not, is and 2 can meet in plantation 4. Lastly, a tsetse agent
determined by the human agent. Fig. 2 shows that after present in plantation 4 can only bite human agents in
an initial bite message emanating from tsetse agentthis plantation but not elsewhere.

8 (enrolled in the same location as human agent 1),  The tree diagram visible in Fig. 4 displays the
the possibility of infective interaction was rejected, grchitecture of the groups, roles and agents system and
in accordance with the result of a 62% probability 1,4 ways in which the agents perceive one another.
calculation based on simple algorithm (carried out by When human agent 1 wants to be in a particular
hum_an agent 1_)' . . location, it considers the areas linked to its village

Fig. 3 depicts an imaginary example of agent , . L .

; . . . : (village 1): it has access to cocoa plantation 1, forest 2
groupings in relation to their group and role inter- 4 vill 1 It selects plantation 1 at q d
actions. Cocoa plantations and forests are clustered®” dVI age 1. 1t se e_csl, pap ation 1 a rﬁn pm Zn
around one village. The three ellipses surround groups gen S amessage to its location agent 39 that it updates

its counters (for the number of humans in each phase

from three distinct settlements. Plantations and forests : :
may belong to different villages, and, as a result, in- of the disease). Once human 1 and tsetse 1 are in the

fected people from one village may transmit the dis- Same location (plantation 1) and the tsetse needs a
ease to non-infected people from another village via blood meal, it selects one of the temporary agents in
the tsetse flies present in intersecting areas. A humanthe group ‘village 1’ with the role ‘in-Plantation 1'.

agent belonging to the group from village 1 can only Should it select human agent 1 at random, then it
appearinforestzones 1, 2, 3 and 8, plantations 4, 6 andcan send a bite message to it. Similarly, there is a
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Fig. 6. Sensitivity of transmission for spatialisation (1). Variation

in number of location agent¥all: Lambi example, eight location
agents (Table 2)VCF: the locations of Lambi example are merged
into two types, territory and forest, resulting in three location agents:
one Village, one Territory, one Fore$O: idem, territory and forest

are merged into a new Location agent (without realistic meaning).
V:idem, only one location, the Village where all flies, humans and
pigs are concentrate. During all these merges, we aggregated fly,
human, pig and the surfaces attributes of location agents. There are
50 humans in the village. Results are given for ten simulations.

Fig. 5. The human trypanosomiasis focus of Lambi. Simulations
with the Lambi’s field parameters (solid line). The percentage of
infected flies, whose depend on the location considered, is on
average 2.4%. Simulation with an artificially increased number
of infected flies (dotted line). The percentage of infected flies is
fixed to 10% for all locations. Prevalence: number of cases divided
by the total human population (average for ten simulations). The
simulation duration is extended to 13 years.

special signal on leaving a location so that the relevant

location agent may adjust its counters. 3.3. Sensitivity to spatialisation

L , , The effect of the size and number of transmission
3.2. The Bipindi focus simulation areas are of special interest. Fig. 7 shows simulation
results after a change to the organisation of space.

Three types of location are taken into account: Each line uses the average values from ten simulation
lands surrounding village, village and forest. Each lo- runs. This example shows how the model reacts to
cation displays particular characteristics as regards thespatialisation: the less the locations (cf. example V
number of individuals present and the surface areain Fig. 6), the more the infected humans throughout
it covers, making it possible to differentiate forests, the simulation runs. The second simulation trial for
forest footpaths, water-holes (cassava retting sites, spatialisation (Fig. 7) suggested different kinds of
bathing or washing areas), cocoa plantations, subsis-areas. The results show that staying in a territory-
tence crop fields, abandoned fields, thalwegs (river type area is more risky. The influence due to different
banks or swampy areas) and villages, given on the types of areas is not obvious, since those selected here
whole eight location agents (Table 2). From the initial differ mostly in their surface area. These observations
distribution, the random displacement of the flies pro- contribute to the idea that the spatial organisation plays
duces quickly a state of steady balance (Table 2). Fig. 5 an important part in the transmission of this disease.
presents the results obtained after 10 simulations of 13 In particular, it would seem that more the system is
years using data from the Lambi village. There are 50 heterogeneous and spatially complex, more the spread
Humans in the village. The number of infected human appears stable.
agents remains approximately between 5 and 8 during
the simulation runs, giving a prevalence of 10 to 16%. 3.4. Sensitivity for duration of first phase
If we artificially increase the number of infected flies,
the prevalence level reaches 10% in the second year, The prevalence is very sensitive to duration of the
and 40% after 6 years (Fig. 5). first phase, as Fig. 8 shows. With the first phase chosen
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Type of Locations

Territory
Forest — — -

Nb Humans Phase1

3 4
Time (Years)

Fig. 7. Sensitivity of transmission for spatialisation (2). Simulations
with two different kinds of locationsTerritory: location where the
humans live (plantations, abandoned fields, crop-fields, thalwegs:
globally more flies, less spacdjorest: location where the Humans
can go but are not going frequently (water holes, forest footpaths,
deep forest: lot of space, less flies). There are 50 humans in the
village. Results are given for ten simulations.

Phase1 Duration Sensitivity

Long phase1
Medium phase1
Short phase1

Prevalence (%)

Time (Years)

Fig. 8. Sensitivity of transmission for duration of phase 1. Simula-
tions with different durations of phasellong phase 1 corresponds

to a duration between 4 months and 12 yebtsdium phase 1, 4
months to 8 years anghort phase 1, 4 months to one year. There
are 50 humans in the village. Results are given for ten simulations.
Prevalence in percentage of the total human population.

4. Discussion

ABMs are little explored as yet, but may offer
great potential [43]. This method is quite new in
epidemiology and do seem to hold promise [44].
For modelling sleeping sickness, the ABM appears
appropriate, for two principal reasons. In this disease,
(1) the transmission depends greatly on stochastic
events and, (2) geographical locations are deciding
factors. The aim is to develop an ABM that would
evaluate trypanosomiasis risks in areas following their
ecological and human specificities and which serves as
a tool for the search for strategies of optimum control.

4.1. Upgrading possibilities

To reduce the number of co-evolving tsetse agents,
it was envisaged to restrict the representation of the
tsetse to teneral (newborn) and infective flies alone,
as suggested by Artzrouni and Gouteux [14]. In the
present model, the movements of the flies are random,
which is not what happens in reality [2]. An upgraded
version, presently in preparation, incorporates a set of
ground rules concerning these movements as a way
to better reflect the real-life behavioural complexity
of the tsetse flies. Water holes and areas of high pig
density will act as ‘attractors’ that would slow down
the progress of the flies. In a similar way, forest bor-
ders will be considered as pathways for flies when the
concentration effect of the flies in these ecotones are
mapped and agentified as proper locations. The link-
age with a Geographical Information System (GIS)
may be envisaged. Other improvements include the in-
corporation of a matrix model simulating the evolu-
tion of tsetse populations to modulate the number of
flies according to variations of the seasonal survival
rates [45]. The model will also be improved in its han-
dling of the different population dynamics of humans
and pigs. The main characteristic of the ABM is to en-
large their complexity easily to represent reality; this
improvement of the model remains limited only by the

between 4 months and 12 years, the prevalence reachrcomputer capacities. On the other hand, taking into ac-

up to 18%. With a short Phase 1 corresponding to
a duration spanning from 4 months to one year, the
prevalence was down to 4-5%. Trials of simulations
with shorter duration of the first phase showed lower

count new processes in mathematical models necessi-
tates new models that are not always feasible or effi-
cient.

4.2. Phases duration problems and questions

prevalence. What is remarkable is that in these cases

the prevalence is relatively stable over a long period
(13 years).

The epidemiological profile of various foci of
sleeping sickness is mainly determined by the duration
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