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Abstract

The sequence of the human genome has been determined. The next task is to determine the function of the genes. Classifyir
cellular forms of proteins encoded by human cDNA clones is a primary step toward understanding the biological role of
proteins and their coding genes. We report here our ongoing work on an automatic system to facilitate this classification. Our
system handles the transfection, incubation, acquisition of microscopic images of the cells, and the classification of forms there
appearing in the images. Our system correctly classified proteins by their forms at a rate of 90% in feasibility &iities.
thisarticle: R. Minamikawa-Tachino et al., C. R. Biologies 326 (2003).
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Résumé

Classification a haut débit d'images de cellules transfectées par des ADNce génome humain a été séquenceé. Il est
désormais nécessaire d'élucider la fonction des produits des génes exprimés. Visualiser et classifier la forme cellulaire de:
protéines codées par des clones d’ADNc humains constitue une premiere étape dans la compréhension du role biologique c
la protéine et des génes qui la codent. Nous décrivons le développement en cours d'un systéme automatique de classificatic
d’'images. Notre systeme englobe la transfection, I'incubation, I'acquisition d'images des cellules vues au microscope et la
classification automatique de ces images. Il permet d’'obtenir une classification optimale dans 90 % des études de faisabilité
Pour citer cet article: R. Minamikawa-Tachino et al., C. R. Biologies 326 (2003).
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1. Introduction plied to the analysis of a considerable body of data in
functional genomics, it is desirable to automatize im-
Functional genomics is investigating the functions age acquisition and form identification.
of novel proteins and their coding genes in the Post- A cellular screening system has been developed
Genomic Era. Proteins encoded by novel human cDNA Which employs laser-based imaging and a wide range
clones cause morphological changes and/or protein lo- Of techniques of image analysis in a high-throughput
calization at the cellular level which result in various manner [7]. This system is designed for continuous
cellular forms. It has not been possible until now to OPeration, from generating cellular images to analyz-
classify cellular forms in order to further the study of ing them. So that this approach can be applied to func-
functional genomics. Our system for image classifi- tional genomics, we are developing our I-GENFACE
cation for genomic function analysis in cells (I-GEN- System to more efficiently handle transfection, incu-

FACE) permits classification of microscopic images of bation, the acquisition of microscopic images of cells
morphological change and protein localization in or- {ransfected with novel human cDNA clones, and the

der to analyze the genomic function in cells. automatic classification of these images by the vi-

Visual expression cloning methods have been pro- sual forms (_)f the pr_oteins encoded by t_hese plones. I
posed for large-scale analysis of protein expression GENFACE is described here from the viewpoint of an

and function [1,2]. These studies have led to a novel algorithm for protein-localizationimage classification.

cDNA cloning technology for identifying subcellular
localization of proteins tagged with a fluorescent pro-
tein [3]. Moreover, a systematic classification of the
subcellular localization of human proteins has been
developed for visual screening using full-length cDNA
as a functional pointer. A major advantage of this ap-
proach is that it does not require the physical separa-
tion of subcellular components nor assumptions about

the types of interaction that reflect the relationship be- approximately 20% of the analyzed proteins had a

tween proteins and structures [4]. . diffuse cellular distribution, and it should be noted
On the other hand, approaches for distinguishing {hat proteins of the secretory pathway or localizing

the subcellular locations of proteins have been pro- multiple organelles are difficult to classify [4].

posed using pattern classification [5,6]. These ap- |.GENFACE is therefore designed to be switchable

proaches classified forms of protein localization us- from fully automatic to semi-automatic, depending on
ing known protein-localization forms of microscopic  the experimental situation.

images of cells stained with monoclonal antibodies

against specific proteins. Boland et al. found protein- 2.2. Overview

localization forms by themselves under the micro-

scope with the focus adjusted as appropriate. These re-  Fig. 1 shows the basic organization of I-GENFACE.
searchers correctly classified forms using their proce- As the image-acquisition sub-system is provided as
dure based on the neural network at a rate a£83% an alternative to the semi-automatic system, it is not
(mean+95% confidence interval). These researchers’ connected to the robot. Researchers bring specimens
latest work noted the classification of types of forms to the image-acquisition system from either the robot
essentially correctly. If their procedure must be ap- or elsewhere.

2. System design
2.1. Requirements
I-GENFACE is required to automatically classify

the cellular forms of proteins encoded by novel human
cDNA clones. However, it has been reported that
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Fig. 1. System organization of I-GENFACE. It consists of a robot
which assists in transfection, incubation and microscopic imaging
(HTS-50, Panasonic Factory Solutions Co., Ltd., Tokyo, Japan),
an image archive PC server, an image classification PC, and an
image acquisition PC system controlling the focus and stage of two
fluorescent microscopes (IX 71 and IX 81, Olympus Optical Co.,
Ltd., Tokyo, Japan).

Fig. 2. Microscopic images of protein localization at endoplasmic
reticulum in HeLa cells. The size of this image is 6920 pixels
with 65536 gray levels.

Cells are usually transfected with EYFP-tagged
cDNAs in plates with 96 wells by the robot and in-
cubated inside the robot for 24 hours. Our two imag-
ing facilities enable us to acquire images in every
well through CCD cameras. Fig. 2 shows an exam-
ple of protein-localization images acquired under the
microscope. I-GENFACE automatically classifies im-
ages into subcellular compartments. That is, first to
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Fig. 3. A variety of protein-localization forms corresponding to
standard subcellular compartments in HeLa cells. On the left of each
set of forms is a typical form and on the right an atypical form.

protein-localization forms and these classes are made
available in a reference table for checking the classifi-
cation.

3. The algorithm used in I-GENFACE

In general, pattern classification is a procedure used
to classify patterns into classes using extracted fea-
tures as parameters after learning the degree of dis-
persion of the parameters obtained from known pat-
terns in every class. Fig. 3 shows various protein-
localization forms for standard subcellular compart-
ments of HelLa cells. Some forms are not clear and
there are a variety of shapes, sizes, and intensities
even when there is localization of a protein. Classifi-
cation of these very delicate forms is more accurate
than ordinary computer-based classification applica-
tions such as hand-written character recognition and
visual inspection in industry. In each of the input im-
age in our classification, such as that shown in Fig. 2,
there appears to be 10-30 protein-localization forms
in and out of focus, and in a variety of stages of pro-

search for protein-localization forms in the image, to ducing the protein. Our classification is composed of
automatically classify them into subcellular compart- two steps to deal with this complexity. One is machine
ments using the features extracted from the forms, thenlearning based on the subspace method [8], a form of
to automatically integrate these compartments (called statistical pattern classification [9]. The other is image
“classes” after classification) to classify the image. All classification by considering classes of forms in an im-
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Fig. 4. Configuration of the algorithm. It consists of four processes
— form search, feature extraction, form classification, and image aré selected from these candidates, after comparing the
classification. The form search uses the localization form model distances between the local maxima with the average
deSigned for common localization forms. The left side shows the d|stance Focal po|nts are the |Oca| max|ma Separated
flow for learning, the right for classification. Form search and ;

feature extraction are done on both sides. Features extracted in theby the average distance.
classification flow are normalized using the same parameters used to
be normalized in the learning flow. The image classification function 3.2. Feature extraction
assigns a class for the image by considering the classes of all the
forms in the image.

In I-GENFACE, our operators measure the average
cell-size in advance. A form-image is defined as the
age. As shown in Fig. 4, our algorithm consists of four average cell-size square centered at the focal point.
processes: form search, feature extraction, form clas- A set of features extracted from the form-image is re-
sification, and image classification. quired as parameters in machine learning to compre-
hensively characterize the form for accurate classifi-
cation. A set of features constructs a feature vector for
the form-image. Feature extraction should minimize

3.1. Search using a form model

The form search identifies protein-localization
forms in images using a localization-form model. This
model is designed for use with common localization
forms with sample images in an advanced model-

calculation time by reducing the number of dimen-
sions, from the number of pixels in the form-image to
that of the parameters in the feature vector. The visual
appearance of protein localization suggests that the

design process. Fig. 5 shows the configuration of the form-images are generally formed on each organelle
form search accompanied by the model design. The with various pixel intensities. (See Fig. 3.) The forms
form search requires the average distance betweenare not clear enough to approximate geometric prim-
cells to search for forms in images. Human opera- itives such as vertices, lines, and polygons. In order
tors measure the average distance in sample imagedo characterize the forms precisely, not only geometri-
and crop interactively sub-images into the average- cal features but also statistical features are extracted as
distance square for both the localization region and much as possible, using conventional image process-
the background in the model-design process. The first- ing. Pratt shows that an image feature is a distinguish-
order component of the results of principal component ing primitive characteristic of the attribute of an im-
analysis of the sub-images is used as the model. age [10]. Some features are natural in the sense that
The form search consists of three processes: thethey are defined by the visual appearance of an image,
convolution of the image and the model is calculated, while other so-called artificial features result from the
and local maxima in the convolution image are de- manipulation of the measurements of an image. Nat-
tected as candidates for focal points. The focal points ural features include the brightness of a region of pix-
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Table 1

Features used in our algorithm

Category Features Num. of features

gray-level value histogram statistics of gray-level value in the whole image and the region 7
except background

edge element histogram statistics of the Laplacian image and differential image from the 12
smoothed image

geometry area, circumference, roundness, and complexity of the spots 8

texture using co-occurrence matrix mean, power, contrast, covariance, variance, and correlation coefficient of the 9
co-occurrence matrix

run-length the bright and dark run-length and ratio between them 3

els, the edge outline of objects, and gray-scale texturalin Table 1. The form-image is reduced to a 39-

regions, which might be calculated using artificial fea- dimensional feature vector.

tures. Features of gray-level images are generally de-

fined as the artificial features such as amplitude fea- 3.3. Machine learning and classification

tures, histogram features, edge features, spot and line

features, and texture features [10]. Machine learning has been performed using models
Histogram features are histogram statistics derived pased on statistics, logic, mathematics, neural struc-

from gray-level values and edge elements detected bytyres, information theory, and other heuristic search

the Laplacian operator defined as algorithms [12]. However, our algorithm adopts the

2 2 subspace method based on principal component analy-

9 f(xz’ Y) + 9 f(xz’ Y) sis because it had a solid statistical foundation [9].
dx dy The subspace method has been applied to robust im-

where f(x, y) is an image with a two-dimensional age analysis such as hand-written character recogni-

array whose element is a gray-level value at a pixel tion [13].

of (x, y). Each feature is normalized by centering and scal-
A spot is a relatively small region whose gray- ingto have mean 0 and variance 1 among sample im-

level value differs significantly from its surroundings. ages. The subspace method provides subspaces, which

Texture is the term used to characterize the surface of adifferentiate between classes, as the result of principal

given object in natural features and is used to describe component analysis of the feature vectors of sample

variations in intensity in two-dimensional arrays as images. This allows us to construct a subspace of few

artificial features. Texture is often calculated using the dimensions based on the eigenvectors of a matrix con-

V2 f(x,y) =

co-occurrence matrix defined as structed from the feature vectors. In the classification
o o process, form search, feature extraction, and normal-
Psi,j) (,j=012...n-1 izing using the parameters obtained from the sample

wherePs (i, j) is a matrix whose elementis probability images are performed on the input images as well as
ands = (Ax, Ay) a displacement, and the number ~ the sample images. The distance between every form
of gray levels for a given image. The co-occurrence and every subspace is calculated. The form is classi-
matrix Ps(i, j) expresses joint probability that a pair fied into the subspace with the shortest among these
of pixe|s in relative positiom has the pair of gray distances. Fina”y, the image is classified into the sub-
levels (i, j) [11]. One such method calculates texture Space with the shortest distance between their forms
based on the run-length, which is defined using a and subspaces in total.

run-length matrixPy (i, k). It is calculated using the

number of runs with pixels of gray-level valuieand 3.4. Reference table of protein-localization forms

run lengthk in the direction specified by. A total

of 39 features are extracted from the form-image For error checking, form-images and these classes
around the obtained focal point. They are summarized are made available in a reference table. This table is



998 R. Minamikawa-Tachino et al. / C. R. Biologies 326 (2003) 993-1001

=

(a) Original image (b) Image after convolution with the model (c) Obtained focal points

Fig. 6. Some results on form-search procelsy A(convolution image after matching with the model that was the first-order component of the
results of principal component analysis of sub-images cropped into the average-distance square. The white color represents regions with higl
correlation coefficencycf The local maximum positions were detected in the convolution image, and focal points were determined eliminating
the local maximum positions which were closer than the average distance to each other.

produced as a worksheet using MicroSofixcel. For camera under an 1X71 fluorescent microscope at ob-
an image, a form-image is pasted over into a cell on jective magnification 28 and digitized into 696 520
the worksheet and its class is given to the next cells in pixels with 65536 gray levels. The obtained micro-
the line. scopic images were 1120 images with 160 images for
each compartment. Half of them, 560 images with 80
images for each compartment, were sample images for
learning, and half input images for classification.
Classification experiments were performed on a PC
system (CPU: Int& Pentiun® 4, Clock: 1.7 GHz,
RAM: 512 MB). Input images were enhanced with a
minimum-maximum contrast stretch, which took the
lowest and highest existing gray-level values in an im-
age and reallocated them to the lowest and highest pos-
sible gray-level values. All of the intermediate values
were then recalculated linearly based on the realloca-
tion of the minimum and maximum values. The sub-

spaces were defined as seven classes corresponding to
Organelles were selected as seven subcellular com-gp GOL. MEM. MITO. NUC. PER. and CYTO.
partments such as endoplasmic reticulum (ER), Golgi ' ’ ' ' '

complex (GOL), plasma membrane (MEM), mito-
chondrion (MITO), nucleolus (NUC), peroxisome
(PER), and cytoplasm (CYTO). Human HelLa cells
were transfected with pEYFP-ER, pEYFP-Golgi, In order to design a model, our operators interac-
pEYFP-Mem, pEYFP-Mito, pEYFP-Nuc, and pEYFP- tively cropped square sub-images of 986 pixels
Peroxi (Clontech, Palo Alto, CA), which encoded a with the average distance between cells, which con-
fusion protein consisting of enhanced yellow fluores- sisted of a total of 140 regions, with 20 localization
cent protein (EYFP) and each compartment-targeting regions for each class and 140 regions as background.
sequence for ER, GOL, MEM, MITO, NUC, and PER, Each sub-image with 9& 96 pixels was compressed
respectively. A vector for CYTO was made to en- to an 1152-dimensional feature vector, dividing the
code a fusion protein consisting of EYFP and one of sub-image into areas of 4 4 pixels and substitut-
the mitogen-activated protein kinase signaling cascadeing the local minimum and maximum for the area.
genes, MEK3, and transfected into human HelLa cells. Fig. 6 shows some results of each operationin the form
After incubation, the cells were captured by the CCD search.

4. Feasibility study

In order to confirm our algorithm, biological exper-
iments were performed using vectors to label subcel-
lular compartments with fluorescent proteins. It was
confirmed that subcellular compartments were labeled
properly in the obtained images. Half of these images
were used for learning and half for classification.

4.1. Testing the algorithm

4.2. Form search
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Table 2

Results of protein-localization image classification. The identified ratio and the classified ratio for each class were calculated in order to evaluat
the accuracy of our classifications. The identified ratio is the ratio of correct classification of images of which we know the class. The classified
ratio is the ratio of correct classification of all the images classified into a class. The classified ratio might be expected to more accurately reflect
the ability of our system than the identified ratio. The correct-classification ratio is defined as the mean of the identified ratio and the classified
ratio

Real class Classified class (num. of images) Identified

(num. of images) ER GoL MEM MITO NUC PER cYTo ratio (%)

ER 78 1 0 0 0 0 1 97.5

GOL 0 67 0 1 12 0 0 83.8

MEM 2 0 71 3 1 3 0 88.8

MITO 0 0 3 76 0 1 0 95.0

NUC 0 0 1 0 78 0 1 97.5

PER 0 1 1 9 0 65 4 81.3

CYTO 0 0 4 0 3 5 68 85.0

Classified

ratio (%) 980 97.0 890 85.0 830 880 920 90.0

The correct-classification ratio is 90.0%.

4.3. Form classification and image classification classified ratio in ER and MEM. The identified ratio is

less than the classified ratio in GOL, PER, and CYTO.

A form-image with the average cell-size of 3®0 Therefore, classification of a part of the forms of GOL,

pixels centered at a focal point was cropped from an PER, and CYTO succeeded roughly because they
image. Subsequently, the form-image was enhancedwere similar to the forms used in learning. However,
by the minimum-maximum contrast stretch. The total some of these forms may not have been sufficiently
of 39 features shown in Table 1 was extracted from learned to classify them correctly. There appears to be
the enhanced form-image to construct a feature vector. a wide variety of forms of GOL, PER, and CYTO. The
Learning for seven compartments was performed with resultant correct-classification ratio satisfies our initial
a total of 560 sample images and every subspace wastarget ratio of 90%. In image classification without
defined by 80 sample images. The dimensions of the CYTO [14], the ratio was 94.2% under the same
subspace were determined when the feature vectors ofconditions except for adding sample images and input
the sample images were most correctly re-classified by images of CYTO. Note that the forms of CYTO are
themselves, increasing the dimensions until 39. The hard to distinguish from forms that should be classified
resultant dimensions were 20. Our classification was into classes such as MEM, NUC, and PER. Also, some
tested with 80 input images for each subspace with forms of PER were similar to the forms that should be
identical dimensions. In form classification, feature classified into classes of MITO and CYTO. Therefore,
vectors were scattered over each subspace. The inputhere appears to be a wide variety of forms that belong
image was classified into a subspace with a minimum to a class and there is considerable similarity between
of mean square errors of the distances between all classes.

feature vectors and each subspace. Fig. 7 shows a positive control example of the ref-
erence table in classification for ER, GOL, MEM,
4.4. Results and discussion MITO, NUC, PER, and CYTO. For every protein-

localization form that was found by the form search

Table 2 shows the results of our classification of in an input image, the form-image was optimized for
input images. The identified ratio is greater than the observation in the reference table to be enhanced by

classified ratio in MITO and NUC. Some forms of the minimum—maximum contrast stretch. A darker

GOL and PER were similar to forms which should protein-localization form than other forms is observed

be classified into NUC and MITO after learning, more distinctly in the table than in the input image.

respectively. The identified ratio is almost equal to the However, the protein-localization forms in Fig. 7 are
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Fig. 7. An example of reference tables of protein-localization forms.

out of focus and the quality of the image should be
improved for accurate image classification. Improve-
ment of image acquisition by adjusting the focus of
the microscope is underway in I-GENFACE. This im-

provement will permit application to proteins encoded
by novel human cDNA clones, which is required to

make a distinction between peroxisomes and, for ex-
ample, lysosomes.

Although the quality of the image should be im-
proved, the effectiveness of the algorithm of image
classification has been confirmed in the feasibility
study. That is, the correct-classification ratio satisfies
our initial target ratio of 90%. It can be said that the

subspace method, a form of statistical pattern classi-

fication, is useful in the classification of images that
show a diversity of protein-localization forms.
However, the highest ratio achieved was 96.1% in
the image classification without CYTO, which is about
2% higher than our past work [14], an improvement

made possible by improved focal-point selection in the
form search. Adding sample images and input images
of CYTO caused a decline in the ratio. It must be
established that the total of 39 features in Table 1 is
enough to represent a form accurately.

5. Conclusion

A powerful approach to investigating functional ge-
nomics is to classify in a high-throughput manner vis-
ible cellular forms of proteins encoded by novel hu-
man cDNA clones. Our short-range research goal is to
develop the I-GENFACE system as a cellular screen-
ing system for this visual classification using image
processing and pattern recognition. We have proposed
an algorithm based on the subspace method for auto-
mated form search and the classification of protein-
localization images, and have tested the algorithm with
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images of known localization. The resultant correct-
classification ratio satisfies our target ratio of 90%.

1001

cDNA products as a tool in functional genomics, J. Biotech-
nol. 80 (2000) 143-157.

Our results suggest that the subspace method is a prac-[3] J:C- Simpson, R. Wellenreuther, A. Poustka, R. Pepperkok,

tical technique for analyzing images acquired under a
fluorescent microscope. However, image acquisition,
feature extraction, and the recognition method must
be improved for application to images of unknown lo-
calization of proteins encoded by novel human cDNA
clones.

We are now working on automatic transfection with
novel human cDNA clones using the robot. Multiple
organelles and other/unknown localizations occupied
about one-third in total [15]. Our work in the future
will be directed to improving our classification algo-
rithm so as to classify these multiple organelles and
other/unknown localization forms with increased ac-
curacy. This may be achieved by developing more flex-
ible error-checking methods. Furthermore, we have a
plan to classify morphological changes using visible
cellular forms by exploiting our algorithm.
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