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Abstract

The sequence of the human genome has been determined. The next task is to determine the function of the genes.
cellular forms of proteins encoded by human cDNA clones is a primary step toward understanding the biological
proteins and their coding genes. We report here our ongoing work on an automatic system to facilitate this classifica
system handles the transfection, incubation, acquisition of microscopic images of the cells, and the classification of fo
appearing in the images. Our system correctly classified proteins by their forms at a rate of 90% in feasibility studiesTo cite
this article: R. Minamikawa-Tachino et al., C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Classification à haut débit d’images de cellules transfectées par des ADNc.Le génome humain a été séquencé. Il
désormais nécessaire d’élucider la fonction des produits des gènes exprimés. Visualiser et classifier la forme cell
protéines codées par des clones d’ADNc humains constitue une première étape dans la compréhension du rôle bio
la protéine et des gènes qui la codent. Nous décrivons le développement en cours d’un système automatique de cla
d’images. Notre système englobe la transfection, l’incubation, l’acquisition d’images des cellules vues au microsco
classification automatique de ces images. Il permet d’obtenir une classification optimale dans 90 % des études de
Pour citer cet article : R. Minamikawa-Tachino et al., C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

Functional genomics is investigating the functio
of novel proteins and their coding genes in the Po
Genomic Era. Proteins encoded by novel human cD
clones cause morphological changes and/or protei
calization at the cellular level which result in vario
cellular forms. It has not been possible until now
classify cellular forms in order to further the study
functional genomics. Our system for image class
cation for genomic function analysis in cells (I-GEN
FACE) permits classification of microscopic images
morphological change and protein localization in
der to analyze the genomic function in cells.

Visual expression cloning methods have been p
posed for large-scale analysis of protein express
and function [1,2]. These studies have led to a no
cDNA cloning technology for identifying subcellula
localization of proteins tagged with a fluorescent p
tein [3]. Moreover, a systematic classification of t
subcellular localization of human proteins has be
developed for visual screening using full-length cDN
as a functional pointer. A major advantage of this
proach is that it does not require the physical sep
tion of subcellular components nor assumptions ab
the types of interaction that reflect the relationship
tween proteins and structures [4].

On the other hand, approaches for distinguish
the subcellular locations of proteins have been p
posed using pattern classification [5,6]. These
proaches classified forms of protein localization
ing known protein-localization forms of microscop
images of cells stained with monoclonal antibod
against specific proteins. Boland et al. found prote
localization forms by themselves under the mic
scope with the focus adjusted as appropriate. Thes
searchers correctly classified forms using their pro
dure based on the neural network at a rate of 83±4.6%
(mean±95% confidence interval). These research
latest work noted the classification of types of for
essentially correctly. If their procedure must be a
-

plied to the analysis of a considerable body of data
functional genomics, it is desirable to automatize
age acquisition and form identification.

A cellular screening system has been develo
which employs laser-based imaging and a wide ra
of techniques of image analysis in a high-through
manner [7]. This system is designed for continuo
operation, from generating cellular images to ana
ing them. So that this approach can be applied to fu
tional genomics, we are developing our I-GENFAC
system to more efficiently handle transfection, in
bation, the acquisition of microscopic images of ce
transfected with novel human cDNA clones, and
automatic classification of these images by the
sual forms of the proteins encoded by these clone
GENFACE is described here from the viewpoint of
algorithm for protein-localization image classificatio

2. System design

2.1. Requirements

I-GENFACE is required to automatically classi
the cellular forms of proteins encoded by novel hum
cDNA clones. However, it has been reported t
approximately 20% of the analyzed proteins ha
diffuse cellular distribution, and it should be not
that proteins of the secretory pathway or localiz
to multiple organelles are difficult to classify [4
I-GENFACE is therefore designed to be switcha
from fully automatic to semi-automatic, depending
the experimental situation.

2.2. Overview

Fig. 1 shows the basic organization of I-GENFAC
As the image-acquisition sub-system is provided
an alternative to the semi-automatic system, it is
connected to the robot. Researchers bring specim
to the image-acquisition system from either the ro
or elsewhere.
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Fig. 1. System organization of I-GENFACE. It consists of a ro
which assists in transfection, incubation and microscopic imag
(HTS-50, Panasonic Factory Solutions Co., Ltd., Tokyo, Jap
an image archive PC server, an image classification PC, an
image acquisition PC system controlling the focus and stage of
fluorescent microscopes (IX 71 and IX 81, Olympus Optical C
Ltd., Tokyo, Japan).

Fig. 2. Microscopic images of protein localization at endoplas
reticulum in HeLa cells. The size of this image is 696× 520 pixels
with 65 536 gray levels.

Cells are usually transfected with EYFP-tagg
cDNAs in plates with 96 wells by the robot and i
cubated inside the robot for 24 hours. Our two ima
ing facilities enable us to acquire images in ev
well through CCD cameras. Fig. 2 shows an exa
ple of protein-localization images acquired under
microscope. I-GENFACE automatically classifies i
ages into subcellular compartments. That is, firs
search for protein-localization forms in the image,
automatically classify them into subcellular compa
ments using the features extracted from the forms, t
to automatically integrate these compartments (ca
“classes” after classification) to classify the image.
Fig. 3. A variety of protein-localization forms corresponding
standard subcellular compartments in HeLa cells. On the left of e
set of forms is a typical form and on the right an atypical form.

protein-localization forms and these classes are m
available in a reference table for checking the clas
cation.

3. The algorithm used in I-GENFACE

In general, pattern classification is a procedure u
to classify patterns into classes using extracted
tures as parameters after learning the degree of
persion of the parameters obtained from known p
terns in every class. Fig. 3 shows various prote
localization forms for standard subcellular compa
ments of HeLa cells. Some forms are not clear a
there are a variety of shapes, sizes, and intens
even when there is localization of a protein. Class
cation of these very delicate forms is more accur
than ordinary computer-based classification appl
tions such as hand-written character recognition
visual inspection in industry. In each of the input im
age in our classification, such as that shown in Fig
there appears to be 10–30 protein-localization fo
in and out of focus, and in a variety of stages of p
ducing the protein. Our classification is composed
two steps to deal with this complexity. One is mach
learning based on the subspace method [8], a form
statistical pattern classification [9]. The other is ima
classification by considering classes of forms in an
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Fig. 4. Configuration of the algorithm. It consists of four proces
– form search, feature extraction, form classification, and im
classification. The form search uses the localization form mo
designed for common localization forms. The left side shows
flow for learning, the right for classification. Form search a
feature extraction are done on both sides. Features extracted
classification flow are normalized using the same parameters us
be normalized in the learning flow. The image classification func
assigns a class for the image by considering the classes of a
forms in the image.

age. As shown in Fig. 4, our algorithm consists of fo
processes: form search, feature extraction, form c
sification, and image classification.

3.1. Search using a form model

The form search identifies protein-localizati
forms in images using a localization-form model. Th
model is designed for use with common localizat
forms with sample images in an advanced mod
design process. Fig. 5 shows the configuration of
form search accompanied by the model design.
form search requires the average distance betw
cells to search for forms in images. Human ope
tors measure the average distance in sample im
and crop interactively sub-images into the avera
distance square for both the localization region a
the background in the model-design process. The fi
order component of the results of principal compon
analysis of the sub-images is used as the model.

The form search consists of three processes:
convolution of the image and the model is calculat
and local maxima in the convolution image are d
tected as candidates for focal points. The focal po
Fig. 5. The form-search process accompanied by the model d
process.

are selected from these candidates, after comparin
distances between the local maxima with the aver
distance. Focal points are the local maxima separ
by the average distance.

3.2. Feature extraction

In I-GENFACE, our operators measure the aver
cell-size in advance. A form-image is defined as
average cell-size square centered at the focal p
A set of features extracted from the form-image is
quired as parameters in machine learning to com
hensively characterize the form for accurate clas
cation. A set of features constructs a feature vecto
the form-image. Feature extraction should minim
calculation time by reducing the number of dime
sions, from the number of pixels in the form-image
that of the parameters in the feature vector. The vis
appearance of protein localization suggests that
form-images are generally formed on each organ
with various pixel intensities. (See Fig. 3.) The form
are not clear enough to approximate geometric pr
itives such as vertices, lines, and polygons. In or
to characterize the forms precisely, not only geome
cal features but also statistical features are extracte
much as possible, using conventional image proc
ing. Pratt shows that an image feature is a distingu
ing primitive characteristic of the attribute of an im
age [10]. Some features are natural in the sense
they are defined by the visual appearance of an im
while other so-called artificial features result from t
manipulation of the measurements of an image. N
ural features include the brightness of a region of p
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Table 1
Features used in our algorithm

Category Features Num. of featur

gray-level value histogram statistics of gray-level value in the whole image and the region
except background

7

edge element histogram statistics of the Laplacian image and differential image from the
smoothed image

12

geometry area, circumference, roundness, and complexity of the spots 8
texture using co-occurrence matrix mean, power, contrast, covariance, variance, and correlation coefficient of the

co-occurrence matrix
9

run-length the bright and dark run-length and ratio between them 3
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els, the edge outline of objects, and gray-scale text
regions, which might be calculated using artificial fe
tures. Features of gray-level images are generally
fined as the artificial features such as amplitude
tures, histogram features, edge features, spot and
features, and texture features [10].

Histogram features are histogram statistics deri
from gray-level values and edge elements detecte
the Laplacian operator defined as

∇2f (x, y) ≡ ∂2f (x, y)

∂x2 + ∂2f (x, y)

∂y2

where f (x, y) is an image with a two-dimension
array whose element is a gray-level value at a p
of (x, y).

A spot is a relatively small region whose gra
level value differs significantly from its surrounding
Texture is the term used to characterize the surface
given object in natural features and is used to desc
variations in intensity in two-dimensional arrays
artificial features. Texture is often calculated using
co-occurrence matrix defined as

Pδ(i, j) (i, j = 0,1,2, . . . , n − 1)

wherePδ(i, j) is a matrix whose element is probabili
andδ ≡ (∆x,∆y) a displacement, andn the number
of gray levels for a given image. The co-occurren
matrix Pδ(i, j) expresses joint probability that a pa
of pixels in relative positionδ has the pair of gray
levels(i, j) [11]. One such method calculates textu
based on the run-length, which is defined using
run-length matrixPθ (i, k). It is calculated using the
number of runs with pixels of gray-level valuei and
run lengthk in the direction specified byθ . A total
of 39 features are extracted from the form-ima
around the obtained focal point. They are summari
in Table 1. The form-image is reduced to a 3
dimensional feature vector.

3.3. Machine learning and classification

Machine learning has been performed using mod
based on statistics, logic, mathematics, neural st
tures, information theory, and other heuristic sea
algorithms [12]. However, our algorithm adopts t
subspace method based on principal component an
sis because it had a solid statistical foundation
The subspace method has been applied to robus
age analysis such as hand-written character reco
tion [13].

Each feature is normalized by centering and s
ing to have mean 0 and variance 1 among sample
ages. The subspace method provides subspaces, w
differentiate between classes, as the result of princ
component analysis of the feature vectors of sam
images. This allows us to construct a subspace of
dimensions based on the eigenvectors of a matrix c
structed from the feature vectors. In the classificat
process, form search, feature extraction, and norm
izing using the parameters obtained from the sam
images are performed on the input images as we
the sample images. The distance between every
and every subspace is calculated. The form is cla
fied into the subspace with the shortest among th
distances. Finally, the image is classified into the s
space with the shortest distance between their fo
and subspaces in total.

3.4. Reference table of protein-localization forms

For error checking, form-images and these clas
are made available in a reference table. This tabl
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Fig. 6. Some results on form-search process. (b) A convolution image after matching with the model that was the first-order component
results of principal component analysis of sub-images cropped into the average-distance square. The white color represents region
correlation coefficency. (c) The local maximum positions were detected in the convolution image, and focal points were determined elim
the local maximum positions which were closer than the average distance to each other.
on
s in

r-
cel-
as
led

ges

om-
olgi
o-
e
lls
gi,
P-
a

es-
ting
R,
n-
of

ade
lls.
D

ob-

ro-
for
80
s for

PC

a
he
im-
pos-
es
ca-
b-
ing to

ac-

on-
on
und.
d

the
-
a.

orm
produced as a worksheet using Microsoft® Excel. For
an image, a form-image is pasted over into a cell
the worksheet and its class is given to the next cell
the line.

4. Feasibility study

In order to confirm our algorithm, biological expe
iments were performed using vectors to label sub
lular compartments with fluorescent proteins. It w
confirmed that subcellular compartments were labe
properly in the obtained images. Half of these ima
were used for learning and half for classification.

4.1. Testing the algorithm

Organelles were selected as seven subcellular c
partments such as endoplasmic reticulum (ER), G
complex (GOL), plasma membrane (MEM), mit
chondrion (MITO), nucleolus (NUC), peroxisom
(PER), and cytoplasm (CYTO). Human HeLa ce
were transfected with pEYFP-ER, pEYFP-Gol
pEYFP-Mem, pEYFP-Mito, pEYFP-Nuc, and pEYF
Peroxi (Clontech, Palo Alto, CA), which encoded
fusion protein consisting of enhanced yellow fluor
cent protein (EYFP) and each compartment-targe
sequence for ER, GOL, MEM, MITO, NUC, and PE
respectively. A vector for CYTO was made to e
code a fusion protein consisting of EYFP and one
the mitogen-activated protein kinase signaling casc
genes, MEK3, and transfected into human HeLa ce
After incubation, the cells were captured by the CC
camera under an IX71 fluorescent microscope at
jective magnification 20× and digitized into 696×520
pixels with 65 536 gray levels. The obtained mic
scopic images were 1120 images with 160 images
each compartment. Half of them, 560 images with
images for each compartment, were sample image
learning, and half input images for classification.

Classification experiments were performed on a
system (CPU: Intel® Pentium® 4, Clock: 1.7 GHz,
RAM: 512 MB). Input images were enhanced with
minimum-maximum contrast stretch, which took t
lowest and highest existing gray-level values in an
age and reallocated them to the lowest and highest
sible gray-level values. All of the intermediate valu
were then recalculated linearly based on the reallo
tion of the minimum and maximum values. The su
spaces were defined as seven classes correspond
ER, GOL, MEM, MITO, NUC, PER, and CYTO.

4.2. Form search

In order to design a model, our operators inter
tively cropped square sub-images of 96× 96 pixels
with the average distance between cells, which c
sisted of a total of 140 regions, with 20 localizati
regions for each class and 140 regions as backgro
Each sub-image with 96× 96 pixels was compresse
to an 1152-dimensional feature vector, dividing
sub-image into areas of 4× 4 pixels and substitut
ing the local minimum and maximum for the are
Fig. 6 shows some results of each operation in the f
search.
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Table 2
Results of protein-localization image classification. The identified ratio and the classified ratio for each class were calculated in order te
the accuracy of our classifications. The identified ratio is the ratio of correct classification of images of which we know the class. The
ratio is the ratio of correct classification of all the images classified into a class. The classified ratio might be expected to more accura
the ability of our system than the identified ratio. The correct-classification ratio is defined as the mean of the identified ratio and the
ratio

Real class Classified class (num. of images) Identi
(num. of images) ratio (%)ER GOL MEM MITO NUC PER CYTO

ER 78 1 0 0 0 0 1 97.5
GOL 0 67 0 1 12 0 0 83.8
MEM 2 0 71 3 1 3 0 88.8
MITO 0 0 3 76 0 1 0 95.0
NUC 0 0 1 0 78 0 1 97.5
PER 0 1 1 9 0 65 4 81.3
CYTO 0 0 4 0 3 5 68 85.0

Classified
ratio (%) 98.0 97.0 89.0 85.0 83.0 88.0 92.0 90.0

The correct-classification ratio is 90.0%.
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4.3. Form classification and image classification

A form-image with the average cell-size of 90× 90
pixels centered at a focal point was cropped from
image. Subsequently, the form-image was enhan
by the minimum-maximum contrast stretch. The to
of 39 features shown in Table 1 was extracted fr
the enhanced form-image to construct a feature ve
Learning for seven compartments was performed w
a total of 560 sample images and every subspace
defined by 80 sample images. The dimensions of
subspace were determined when the feature vecto
the sample images were most correctly re-classifie
themselves, increasing the dimensions until 39.
resultant dimensions were 20. Our classification w
tested with 80 input images for each subspace w
identical dimensions. In form classification, featu
vectors were scattered over each subspace. The
image was classified into a subspace with a minim
of mean square errors of the distances between
feature vectors and each subspace.

4.4. Results and discussion

Table 2 shows the results of our classification
input images. The identified ratio is greater than
classified ratio in MITO and NUC. Some forms
GOL and PER were similar to forms which shou
be classified into NUC and MITO after learnin
respectively. The identified ratio is almost equal to
f

t

classified ratio in ER and MEM. The identified ratio
less than the classified ratio in GOL, PER, and CYT
Therefore, classification of a part of the forms of GO
PER, and CYTO succeeded roughly because
were similar to the forms used in learning. Howev
some of these forms may not have been sufficie
learned to classify them correctly. There appears to
a wide variety of forms of GOL, PER, and CYTO. Th
resultant correct-classification ratio satisfies our ini
target ratio of 90%. In image classification witho
CYTO [14], the ratio was 94.2% under the sam
conditions except for adding sample images and in
images of CYTO. Note that the forms of CYTO a
hard to distinguish from forms that should be classifi
into classes such as MEM, NUC, and PER. Also, so
forms of PER were similar to the forms that should
classified into classes of MITO and CYTO. Therefo
there appears to be a wide variety of forms that bel
to a class and there is considerable similarity betw
classes.

Fig. 7 shows a positive control example of the r
erence table in classification for ER, GOL, MEM
MITO, NUC, PER, and CYTO. For every protein
localization form that was found by the form sear
in an input image, the form-image was optimized
observation in the reference table to be enhance
the minimum–maximum contrast stretch. A dark
protein-localization form than other forms is observ
more distinctly in the table than in the input imag
However, the protein-localization forms in Fig. 7 a
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Fig. 7. An example of reference tables of protein-localization forms.
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out of focus and the quality of the image should
improved for accurate image classification. Impro
ment of image acquisition by adjusting the focus
the microscope is underway in I-GENFACE. This im
provement will permit application to proteins encod
by novel human cDNA clones, which is required
make a distinction between peroxisomes and, for
ample, lysosomes.

Although the quality of the image should be im
proved, the effectiveness of the algorithm of ima
classification has been confirmed in the feasibi
study. That is, the correct-classification ratio satis
our initial target ratio of 90%. It can be said that t
subspace method, a form of statistical pattern cla
fication, is useful in the classification of images th
show a diversity of protein-localization forms.

However, the highest ratio achieved was 96.1%
the image classification without CYTO, which is abo
2% higher than our past work [14], an improveme
made possible by improved focal-point selection in
form search. Adding sample images and input ima
of CYTO caused a decline in the ratio. It must
established that the total of 39 features in Table
enough to represent a form accurately.

5. Conclusion

A powerful approach to investigating functional g
nomics is to classify in a high-throughput manner v
ible cellular forms of proteins encoded by novel h
man cDNA clones. Our short-range research goal i
develop the I-GENFACE system as a cellular scre
ing system for this visual classification using ima
processing and pattern recognition. We have propo
an algorithm based on the subspace method for a
mated form search and the classification of prote
localization images, and have tested the algorithm w
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images of known localization. The resultant corre
classification ratio satisfies our target ratio of 90
Our results suggest that the subspace method is a
tical technique for analyzing images acquired unde
fluorescent microscope. However, image acquisit
feature extraction, and the recognition method m
be improved for application to images of unknown
calization of proteins encoded by novel human cDN
clones.

We are now working on automatic transfection w
novel human cDNA clones using the robot. Multip
organelles and other/unknown localizations occup
about one-third in total [15]. Our work in the futur
will be directed to improving our classification alg
rithm so as to classify these multiple organelles a
other/unknown localization forms with increased a
curacy. This may be achieved by developing more fl
ible error-checking methods. Furthermore, we hav
plan to classify morphological changes using visi
cellular forms by exploiting our algorithm.
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