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Abstract

Pharmacogenomics aims at molecular subsetting of patients for more effective therapy. Transcriptomic profiling of the 60
human cancer cell lines (the NCI-60) used by the US National Cancer Institute serves that aim because the cells have beel
treated with>100,000 chemical compounds over the last 13 years. Patterns of potency can be mapped into molecular structures
of the compounds or into molecular characteristics of the cells. We discuss conceptual and experimental aspects of the profiling
as well as a number of bioinformatic computer programs that we have developed for biological interpretation of theTarofiles.
citethisarticle: J.N. Weinstein, Y. Pommier, C. R. Biologies 326 (2003).
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Résumé

Analyse du transcriptome dans|es 60 lignées cellulaires de cancers du NCI. Un des objectifs de la pharmacogénomique
est d'identifier des groupes de patients afin d’augmenter I'efficacité thérapeutique. Le profilage transcriptomique des 60
lignées cellulaires de I'Institut national du cancer des Etats-Unis répond & cet objectif, car la réponse de ces cellules a plus
de 100000 agents chimiques et chimiothérapeutiques a été caractérisée depuis 13 ans. Les profils de réponse peuvent é
répertoriés en fonction des structures des agents chimiques et des caractéristiques moléculaires des cellules. Nous discuto
les aspects conceptuels et expérimentaux appliqués au profilage, ainsi que les différents logiciels bioinformatiques que nou
avons développés pour l'interprétation biologique de ces profildpes.citer cet article: J.N. Weinstein, Y. Pommier, C. R.

Biologies 326 (2003).
0 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The principal goal of pharmacogenomics is clear:

— ) Use information on the molecular profiles of tumor
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E-mail addressesw4i@nih.gov (J.N. Weinstein), cells to individualize therapy for cancer or select more

pommier@nih.gov (Y. Pommier). appropriate therapy for particular subgroups of pa-
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tients. For the most part, that goal is being pursued  For pharmacological purposes, we would like to
through study of clinical tumors, but the task has study cancer cell types that have been exposed to large
proved more difficult than expected. There are sev- numbers of potential drugs. The most prominent such
eral reasons [1]:i] clinical tumors are difficult to cell setis the 60 human cancer line panel (the NCI-60)
study, given anesthesia effects, surgical trauma, andused by the Developmental Therapeutics Program
constraints (both logistical and ethical) on the design (DTP) of the US National Cancer Institute (NCI) to
of clinical trials; (i) clinical tumors often have com-  test for potential anticancer agents. The cells have
plex, fragmentary histories. Demographic and clini- been characterized pharmacologically by exposure to
cal information may be difficult to obtain because of more than 100,000 defined chemical compounds (plus
ethical or legal issuesiii() clinical studies are expen- a large number of natural product extracts), one at a
sive; (v) clinical tumors are heterogeneous — a mix- time and independently.
ture of cancer cells and stromal components, includ-
ing endothelial cells, fibroblasts, and infiltrating leuko-
cytes. Any molecular profile obtained for a bulk tu- 2. The NCI-60 cancer cellsand screen
mor is a mixture of the characteristics of those com-
ponents. Techniques such as laser capture microdis- As of 1985, the NCI was using P388 murine
section [2] can be used to isolate tumor cells, for ex- leukemia to screen compounds for anticancer ac-
ample in the pseudo-glandular epithelial structures of tivity. That strategy identified agents active against
adenocarcinomas. But then an amplification method leukemias but was not thought to be effective in iden-
must generally be used to generate enough DNA or tifying activity against the common solid tumors of
mMRNA for study. Methods of amplification available humans. Therefore, the decision was made to seek a
include T7-viral amplification, rolling circle amplifi-  different strategy for screening. The result after many
cation, two-primer PCR, and single-primer PCR, but competing factors were taken into account was the
their fidelity is still a significant question [1]. NCI-60 cell screen, which went into production mode
In contrast, cell lines have the advantage of be- in April of 1990. Since thenx100 000 chemically de-
ing homogeneous in cell lineage (though not in cell fined compounds (plus natural product extracts) have
cycle state). They can be obtained in quantity; they been screened. Since 1991, the 60 cell lines have in-
are reproducible from experiment to experiment and cluded leukemias, melanomas, and cancer cells of re-
year to year; they can be manipulated by transfection, nal, ovarian, colon, breast, prostate, lung, and cen-
knockout, selection for resistant forms, or exposure to tral nervous system origin. That list is by ho means
SiRNA, antisense RNA, drugs, or radiation. The prob- complete, but it includes the most common human tu-
lem, of course, is that they are not really representative mors. The guiding hypothesis was that selective ac-
of cancer cells in vivo. Even primary cultures of cancer tivity against cancers from a particular tissue or organ
cells have been removed from the influence of other would predict clinical activity against the same type of
cell types, cytokines, extracellular fluid, and the three- tumor. Such predictiveness has not been demonstrated,
dimensional architecture of the tumor. They have been but the NCI-60 system took on a new role: increas-
selected for growth on plastic in standard mediumwith ingly, it has been used for secondary profiling of com-
relatively fast cell-cycling. Therefore, prediction for- pounds already found to attack a defined molecule or
ward from cultured cells toward the clinic is uncertain; pathway. Even more generally, it became a system for
we can, at best, obtain clues to formulate hypotheses toprofiling both the compounds tested and the cell lines.
be validated in real tumors, either clinically or through Fig. 1 shows the NCI-60 system in highly schematic
pathological studies, for example using tissue arrays. form. Database (A) of activities can be mapped into a
When one extrapolates backwards from cell line stud- database (S) of structural characteristics of the com-
ies to the basic biology or pharmacology, however, one pounds tested and a database (T) of molecular targets
is on reasonably sound ground. Most of our knowledge and other cell characteristics. This set of databases
of the biology and pharmacology has, in fact, been ob- provides the conceptual architecture for the pharma-
tained from cultured cells or else from molecular stud- cogenomic studies to be described here. The first topic
ies, not from clinical materials [1]. to be discussed will be the screen itself.
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Fig. 1. Simplified schematic overview of an information-intensive
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tant to an understanding of the meaning and limita-
tions of the data from it.

2.2. The Activity (A) database

While analyzing data from pilot studies for the
screen in the late 1980’'s, Kenneth D. Paull realized
that the absolute potency of a compound gave much
less information on its mechanisms of action and
resistance than did the pattern @ative activities
across the cell lines. He therefore subtracted out the
log-mean over the 60 cell lines to obtain the very
useful ‘mean-graph’ representation of activity data.
The lack of information on mechanism in absolute

approach to cancer pharmacogenomics and pharmacoproteomicspotency values was later corroborated formally by

based on the NCI-60 cancer cell lines. Each row of the activity (A)

database represents the pattern of activity of a particular compound
across the 60 cell lines. The A database can be mapped into a

principal components analysis [3-5].
The mean graph representation of patterns led

structure (S) database containing 2D or 3D chemical structure [0 the COMPARE algorithm [6,7]. Given one com-
descriptors of the compounds and a target (T) database containingpound as a ‘seed’, COMPARE searches the data-
molecular profile information on the cells. The T database consists pase of screened agents and compiles a list of those

of data on individual molecules and omic data at the DNA, mRNA,
protein, and functional levels. The bioinformatic challenge is to

analyze and understand each of these databases separately, the

to integrate them with each other and with public information
resources for pharmacogenomic purposes. Modified from [25].

2.1. Methodology of the NCI-60 screen

most similar to the seed in their patterns of activ-
inty against the NCI-60 panel. Similar patterns gener-
ally indicate similarity in mechanism of action, mech-
anism of resistance, and/or molecular structure. The
similarity metric was initially taken as the Euclidean
distance, later as the Pearson correlation coefficient.
COMPARE has been applied productively to topoi-

somerase inhibitors [8—13], pyrimidine biosynthesis

The methodology of the NCI-60 screen has been inhibitors [14], compounds with preferential effects

described in detail elsewhere (sh#p://dtp.nci.nih.
gov). Briefly, on day zero the human tumor cell lines
are plated in 96-well microtiter format in RPMI 1640
medium with 5% fetal calf serum and 2 mMglu-
tamine. On day 1, the drug (dissolved in DMSO) is

against Nm23-expressing cells [15], anti-mitotics [16—
19], and agents active against epidermal growth factor-
expressing cells [20], among many other classes of
compounds.

In 1992, we introduced feed-forward, back-propag-

added to achieve five concentrations at 10-fold inter- ation neural networks (with statistical analysis by
vals, plus a negative control. The usual concentration cross-validation and sensitivity analysis) to discrimi-

range is 108 to 10~* M. After 48 h of drug exposure
at 37°C, the cells are fixed in situ with trichloroacetic

nate among various possible mechanisms of drug ac-
tion on the basis of activity patterns [21]. A large num-

acid. The supernatant is discarded (along with floating ber of other statistical and artificial intelligence tech-
cells and cell fragments), and the plates are washedniques have since then been applied to the relation-

five times, then air-dried. Colorimetric measurement
of sulforhodamine B (SRB) dye is used to quantitate
the cell material remaining attached to the well at the
end of the incubation period. The 50% growth inhibi-
tion (Glsp) is calculated as the concentration of drug
required to inhibit cell growth by a factor of two. The

fundamental parameter used as a measure of potency

is —log; o Glsp. The details of this protocol are impor-

ship between pattern and mechanism. Among those
methods have been principal components analysis [3—
5] and Kohonen self-organizing maps [5,22,23]. Self-
organizing maps in this context are used to represent
the structural or functional similarities of compounds
in the form of two-dimensional maps.

In 1994, we introduced clustering and ‘clustered
image maps’ (CIMs) for analysis and visualization
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2.3. The Structure (S) database

The chemical structures in S can be coded in terms
of any set of one-, two-, or three-dimensional de-
scriptors. Useful structural codings can be found at
the DTP’s web site. Analyses that relate the S and
A databases can be thought of as generalizations of
the Q-SAR (‘quantitative structure-activity’ relation-
ships) paradigm. A number of studies have highlighted
various aspects of these relationships for the NCI-60

= [4,26-30]. Genetic function approximation [31] (an

E amalgam of genetic algorithm for variable selection
™

E
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and regression splines for data fitting) proved a use-
ful approach [4,26,28]. Since structural descriptors are
available for>500000 compounds [32], it has been
A possible to map interesting patterns of activity into the
S database and develop abstract pharmacophore tem-
n plates with which to search the400 000 compounds
not yet screened and bring candidate compounds into
Fig. 2. Clustered Image Map of the relationship between compounds the testing process.
tested and molecular targets in the NCI-60 cells. This normalized
A-TT product matrix (where the superscript T indicates the ma- 2.4. The Target (T) database
trix transpose) correlates target patterns with patterns of growth in-
hibition for a set of 3989 important compounds. A red or orange .
point (high positive Pearson correlation coefficient) indicates that 2-4.1. Miscellaneous molecular targets
the agent tends to be selectively active in the SRB assay against ~ The first molecular target analyzed experimentally
cells lines that express the target in large amounts (or in functional and analytically was the drug resistance transporter
form). A dark blue point (high negative correlation) indicates the op- P-glycoprotein (Pgp), encoded by the multi-drug re-
posite. The 113 columns correspond to 76 distinct target molecules . . .
or functions, some represented multiple times in different mathe- sistance g_ene Mdr-1 [33__{36]' 'Flg. 2, a'clustered Image
matical transformations. Compounds and targets have been clus-Map obtained by combining information from the T
ter-ordered by an average linkage algorithm to bring like together and A databases, shows the importance of Pgp/Mdr-1
with like. To the right is shown one 61-leaf ‘twig’ of the overall g the pattern of drug sensitivities of the cell lines. The
3989-leaf cluster tree of compounds. Symbols for mechanisms of dark blue patch for compounds 513-667 indicates that
action are as follows: T1, topoisomerase 1 inhibitors; T2, topoiso- . .
merase 2 inhibitors; A, alkylating agents; Pt, platinum compounds; those compound§ are negat_|ve'ly correlated with tar-
Pt-Si, platinum agents containing a silane moiety; ?, mechanism g€ts 81 to 88, which are the indices of Pgp/Mdr-1 ex-
unknown. The most prominent features are a red patch that indi- pression and function. The statistics were impressive.
cates compounds (2802-3309) that tend to be active in the assay in\We analyzed NCI-60 data for a set of 35 compounds
cell lines with intact p53 function and a blue patch that indicates of diverse structure and mechanism that had been re-
compounds (513-667) selectively inactive in Mdr-1/Pgp-expressing . .
cells. Modified from [25]. ported previously, on the basis of transport assays, to
be Mdr-1 substrates [33,35,37,38]. Of those, 18 (51%)
fell within the blue patch, whereas only 4% would
of the pharmacological and molecular data [24,25]. have been expected to do so by chance. The proba-
Fig. 2 shows a CIM that correlates the activity patterns bility (exact binomial) of such an extreme enrichment
with molecular characteristics (‘targets’) of the cells, being found by chance is 0.0001. Eighteen of the 35
including gene expression data. CIMs have since reported substrates fell within the blue patch, whereas
become the most popular way to represent geneO of 12 compounds studied and reportect to be
expression data sets visually (although they by no substrates [33,35,37,38] did s& & 0.001 by Fish-
means capture all of the information available in those er’s exact test). As might have been expected from the

data). known pharmacophoric properties of Pgp substrates,

3000} &

‘UM)-.- ¥
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compounds 513-667 were highly enriched for nat-
ural products of high molecular weight, often cationic.
By linear discriminant analysis, we found that those
three factors could predict with a specificity of 84%
and sensitivity of 78% which compounds would be
found in the blue patchK < 0.0001). Columns 76
and 77 in Fig. 2 are indices of mRNA expression for
Mrp-1, another transporter molecule associated with
multidrug resistance [34]. There was little overlap be-

tween compounds sensitive to Mrp-1 and those sensi-

tive to Pgp/Mdr-1. These calculations provided a proof
of principle for the pattern recognition process [25].
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al. and Bussey, et al., in preparation); with the lab-
oratories of David Munroe (NCI) and Andrew Fein-
berg (Johns Hopkins University) for detailed sequence
analysis of cytosine methylation in the promoter re-
gions of cancer-related genes (Reinhold, et al. and
Maunakea, et al., in preparation).

Most recently, at the protein level, with Lance Li-
otta (NCI) and Emanuel Petricoin (Food and Drug
Administration), we have developed high-density ‘re-
verse-phase’ protein lysate microarray for proteomic
profiling of the 60 lines without the need for spot
identification ([45] and Nishizuka, et al., in prepara-

Various other molecular targets have been assessedion). For validation of hypotheses directed toward the

in the NCI-60 system, most prominently a set of

clinic, we have used tissue arrays produced by the

molecular characteristics associated with p53 function TaArp (Tissue Array Program) Consortium at the NCI
[39]. Data on miscellaneous targets can be found at [45]. The arrays consist of cores from 503 human tu-

http://dtp.nci.nih.gov

2.4.2. 'Omic’ profiling

To complement studies in our laboratory and many
others of individual targets in the NCI-60, we have
taken an ‘omic’ approach [40,41], characterizing DNA,

mRNA, and protein species in the cells in aggregate.

The result is the richest, most varied profiling of any
set of cells that we know of.

2.4.2.1. Proteomic and DNA-level profilingWe be-
gan with proteins in the early 1990’'s, doing 2-D gel
electrophoresis [42] and developing a MALDI-TOF
mass spectroscopic protocol for identifying proteins
on the gels [43]. However, by that time it was clear
that identification of hundreds or thousands of pro-
teins was not a job for a small academic laboratory.
Hence, we decided to wait for the proteomic technolo-

mors of disparate types plus 62 normal human tissues.
Although this article focuses on the transcriptome, it is
worth noting that a major part of our effort is devoted
to understanding, and capitalizing on, the relationship
among the various types of data. Not entirely in jest,
we refer to this enterprise as ‘integromics’.

2.4.2.2. Transcriptomic profiling. In part, the chal-
lenge at the mRNA level appeared easier because
there are ‘only’ 30—60 000 independent transcripts and
perhaps 200,000 splice variants of those transcripts,
rather than the 500 000—2 000 000 functional protein
states. We were able to generate transcript profiles for
the NCI-60 using four different platforms: a 7907-
clone cDNA array with the Brown/Botstein labora-
tory [46,47], a 6800-gene Affymetrix oligonucleotide
chip (Hu6800) with the Golub/Lander group [48], and

gies to improve and, meanwhile, dropped back to the the Hu95 and Hu133 Affymetrix oligonucleotide chips
transcript level, where the task appeared easier. ThoseWith Uwe Scherf at Gene Logic, Inc. Versions of the

studies will be described in the next sections.

In parallel, with the transcriptomic studies, we have
undertaken collaborations with a number of labora-
tories for profiling at the DNA level: with the lab-
oratory of llan Kirsch and Anna Roschke (NCI) for
spectral karyotyping (SKY) and comparative genomic
hybridization (CGH) ([44]; also Roschke, et al., in
preparation); with that of Kenneth Buetow (NCI) us-
ing Affymetrix SNP chips for single nucleotide poly-
morphisms (Alexander, et al., in preparation); with
that of Joe Gray at the University of California Can-
cer Center for CGH based on BAC arrays (Chen, et

first two data sets used for our calculations are avail-
able athttp://discover.nci.nih.gov

Transcript expression profiling by cDNA array.
The methods used in this study have been described
in detail elsewhere [46,47]. Very briefly, cells were
harvested (with less than 1 minute from incubator
to stabilization of the preparation) at approximately
80% confluence. Total RNA was stored and then
further purified to obtain poly-A mRNA shortly prior
to hybridization with microarrays (Synteni, Inc.; now
Incyte, Inc.) consisting of robotically spotted, PCR-
amplified cDNAs on coated glass slides [49].
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The 9703 DNA elements on the array were cDNAs
from the Washington University/Merck IMAGE set,
obtained from Research Genetics, Inc. The array in-
cluded 3700 named genes, 1900 human genes homol-
ogous to those of other organisms, and 4104 ESTs of
unknown function but defined chromosome map loca-
tion. For each hybridization, cDNA from the test cell’s
mMRNA was labeled by incorporation of Cy5-dNTP
during reverse transcription. cDNA synthesized from
pooled mRNA of 12 highly diverse cell lines out of
the 60 [47] was analogously labeled by incorporation
of Cy3-dNTP. Cells for the pool were selected to sat-
isfy 3 criteria [47]: {) at least one cell line from each
organ of origin; (i) diversity of growth rates;iif) di-
versity in terms of protein expression pattern, based
on prior two-dimensional gel studies [42]. After ap-
propriate filtering, we settled on a data set of 1376 fig 3. pendrograms showing average-linkage hierarchical clus-
clones for detailed analysis and added forty miscella- tering of human cancer cell linesa)(Cluster tree of the 60 cell
neous cancer-related targets from the DTP database. Iine_s b_a_sed on their gene expression profiles for_1376 genes and

Fig3a shows a custr e fhl epresens thepat 40 MOV a3 107 o e oo e €0) 0
terns of gene expression across the cell lines. As indi- (LE) (6/6) clustered together. Seven out of 8 m‘elanoma lines (ME)
cated by the accompanying annotations, there is con-clustered together, the exception being the one reported to lack
siderable, but not complete, regularity by organ of ori- melanin production (LOX-IMVI). Seven out of 8 renal carcinoma
gin. Fig. 3b shows the strikingly different tree obtained '('8‘3/5) (ng :r'TL]‘;tleéZﬁ lﬁfe‘::r:vc :rscgilfs f(cl’_ucf) C;Tssﬁérzdo‘éifmtv;‘o 'g;fs
Wh_er_] the same Ce“S_are CIUStered_on the basis of drngferen.t branches, and thgose of breast origin (BR) appeared most
activity. The ‘correlation of correlations’ [47] between  heterogeneous. The estrogen receptor-positive breast lines, T-47D
the two trees was only-0.21. The correlation of cor-  and MCF7, appeared together and grouped with the colon lines,
relations,, is a parameter we developed to quantitate whereas the estrogen receptor-negative HS578T and BT-549 clus-
the similarity of two clusterings. In the present con- tered with CNS malignancies. NCI/ADR-Res is_of unknown origin_

. . . . (UK). (b) Cluster tree for the cells based on their patterns of sensi-
text, rc is the mean Pearson correlation coefficient of tivity to 1400 compounds tested. The color of the cell line name
the Pearson correlation coefficients relating all 1770 indicates its assigned organ of origin classification. The distance
possible pairs of cell types in terms of their response metric used was (1 — Pearson correlation coefficienthdicates
to drugs and in terms of their gene expression. More two cell lines (l\_/I_D_A M!3435 and MDA-N) Wi?h the gene expressiqn

. Lo and drug sensitivity signatures of melanotic melanoma but derived
generally,rc _can be useq to quantitate the Slm”a_”ty_ from a pleural effusion of a patient with breast cancer. Modified
of any two distance matrices such as those used in hi- from [47).
erarchical clustering. For example, we have used it to

compare different distance metrics applied to one data Fig. 4 shows a CIM that summarizes all possible
set and to compare the data obtained from different paijrwise relationships between the gene database and
microarray platforms [50]. Values of 1, 0, anel in- a set of 118 drugs of putatively known mechanism
dicate perfect similarity, no similarity, and perfectin-  of action. Each patch of color represents a story —
verse similarity, respectively. We should perhaps have which may be causally interesting, epiphenomenal, or
expected the low correlation of correlations between statistical coincidence. There is clearly not sufficient
the drug- and gene-based clusterings, but we did not. statistical power to eliminate most of the false positive
The reason for it appears to be that certain gene prod-associations without losing most of the true positive
ucts, most prominently Pgp, have a disproportionate ones. Hence, we must generally consult the literature
effect on activity profiles that cuts across organ of ori- and public databases for clues to determine which
gin distinctions. relationships are worth pursuing.
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Fig. 4. Clustered image map (CIM) relating activity patterns of 118 tested compounds to the expression patterns of 1376 genes in the 60
cell lines. Included in addition to the gene expression levels are data for 40 molecular targets assessed one at a time in the cells. A red poin
(high positive Pearson correlation coefficient) indicates that the agent tends to be more active (in the two-day assay) against cell lines that
express more of the gene; a blue point (high negative correlation) indicates the opposite tendency. Genes were cluster-ordered on the basis
their correlations with drugs (mean-subtracted, average-linkage clustered with correlation metric); drugs were clustered on the basis of their
correlations with genes (mean-subtracted, average-linkage clustered with correlation metric). Sharp edges of the colored patches reflect dee
forks in the corresponding cluster tree. The position of the topoisomerase 1 inhibitor camptothecin (and its analogues) is indicafed. Insert
shows a magnified view of the region around the point (white circle) representing the correlation between the dihydropyrimidine dehydrogenase
gene and 5-fluorouracil. InseB® is an analogous magnified view for the asparagine synthetase gene and theadpayaginase. Modified

from [47].

Gene expression profiling by Affymetrix oligonu- ably concordant across the 60 cell types [50]. That

cleotide chip. The methods used have been de-
scribed previously [48]. Very briefly, mMRNA was ob-
tained from the cells [47] and used to prepare bi-
otinylated cDNA, which was hybridized to Hu6800
arrays (Affymetrix, Santa Clara, CA). The resulting
cell clusters generally reflected what we had found
with the cDNA arrays. We then cross-compared the
oligonucleotide and cDNA array data to generate a ro-
bust database of 1600 transcripts for which results
from the two very different technologies are reason-

‘mutually validated’ database has proved particularly
useful when we want a firm statistical basis for further
analyses.

2.4.2.3. The bioinformatics of transcript profiling.
Anyone who does gene expression profiling (or sim-
ilar omic experiments) for molecular targets finds that
most of the time and energy are spafier the experi-
ment — in statistical analysis of the data and then in bi-
ological interpretation. The problems are particularly
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acute in integromic studies because we are trying to and organizing the literature from PubMed searches
integrate so many types of information — at the DNA, on gene—gene and gene-drug relationships.
RNA, protein, functional, and pharmacological levels. MatchMiner [53] publicly available at http://
Motivated by the needs of our experimental program, discover.nci.nih.gowprovides a solution to the ma-
we have developed a number of algorithms and com- jor problem of translating among various gene iden-
puter program packages to assist in the analysis andtifier types for lists of hundreds or thousands of genes.
interpretation steps. These programs, publicly avail- Currently included are GenBank accession numbers,
able athttp://discover.nci.nih.ggvare proving useful IMAGE clone ids, common gene names, gene sym-
to others as well. bols, UniGene clusters, FISH-mapped BAC clones,
CIM-Miner generates color-coded Clustered Image Affymetrix identifiers, and chromosome locations.
Maps (CIMs) (also called clustered heat maps) to rep- The LookUp function in MatchMiner makes such
resent ‘high-dimensional’ data sets such as gene ex-yranslations, providing the user with diagnostics that

pression profiles. We introduced CIMs in the mid- jngicate how the translation was done. The Merge
1990's for data on drug activities, target expression nction finds the intersection of two lists of genes,

levels, gene expressiop values, and proteomic pr_ofileswhich may be designated by either the same or dif-
[24,25,51]. The clustering of both axes (or sometimes (oot igentifiers. This functionality is particularly im-

only one if there is another organizing principle for a0 t0 our ‘integromic’ efforts to meld information

the second axis) puts like together with_ like to create from the variety of different data types on the NCI-60.
patterns of color. A program for producing CIMs can GoMiner[54] publicly available ahttp://discover.

be found athttp://discover.nci.nih.govEach patch of nci.nih.govprovides an answer to the vexing question,

color in a CIM (e.g., in Fig. 4.) represents a possible “Now that I've done the gene expression experiment
story. But how can we determine whether a patch rep- . e h o
and identified a set of ‘interesting’ genes, what do

resents a causally interesting story, an eplphenomenalthose genes mean biologically?” To address that ques-

correlation (which still may identify a useful molecu- . . . .

- L : tion, GoMiner batch-processes and organizes lists of
lar marker), or statistical coincidence? As noted in the thousands or tens of thousands of aenes and provides
last section, the usual answer is that we must consult . L 9 P

two fluent, robust visualizations of the genes embed-

the biomedical literature and public databases. Sinced d within the f Kof the G ontol hi
that can beatediousprocess,wedevelopedaprograme within tne framework ot the t>ene LUntology hier-

package called MedMiner for efficient searching and archy. One '_‘Q’ a tree-,llke S"HCt“re? the other is a ‘di-
organization of the literature on complex gene, gene— "écted acyclic graph’. GoMiner calculates summary
gene, and gene—drug relationships. stat_lstlcs m_dlcatlng for each GQ categqry whether itis
MedMiner[52] publicly available ahttp://discover. ~ €nriched with, or depleted of, ‘interesting’ genes and
nci.nih.goy uses a combination of GeneCards from gives p-values with .WhICh to assess Fhe statistical ro-
the Weizmann Institute, PubMed from the National Li- Pustness of the enrichment or depletion.
brary of Medicine (NLM), syntactic analysis, trunca-  LeadScope/LeadMin&Y [55] provides a firm link
ted-keyword filtering of relationals, and user-control- Petween molecular markers and the drug discovery
led sculpting of Boolean queries to identify key sen- Process. More precisely, it links gene expression pro-
tences from pertinent abstracts. Those sentences ardiles for the NCI-60 (or other cell panels used for
then organized so that the user can access the mosgcreening) to a set of 27 000 chemical substructure de-
pertinent ones directly by clicking on a relational scriptors of the compounds tested against the cells.
relevance-term. Whole abstracts of interest can then One can use it, for example, to identify substructure
be accessed quickly through a direct link to PubMed classes that are found in compounds active in the
and dropped into a ‘shopping basket’ for display or screen against cell types that express large amounts of
for automated entry into a library under EndNote (ISI a particular gene. That is precisely what a medicinal
ResearchSoft, Berkeley, CA) or other bibliographic chemist or researcher designing a directed combina-
software. Experienced users have estimated that Med-torial library would like to be able to do in pursuing
Miner speeds up 5- to 10-fold the process of capturing pharmacogenomic goals.
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-1
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Fig. 5. Relationship between asparagine synthetase expression
levels and chemosensitivity of the NCI cell linesit@sparaginase.

the leukemic subpanel, and in that case the correlation
was a striking—0.98 (bootstrap 95% confidence inter-
val —1.00 to —0.93). This value survived even a Bon-
ferroni correction for statistical multiple comparisons.
Furthermore, the two ALL-derived lines expressed
the lowest levels of asparagine synthetase mRNA and
were the most sensitive to-asparaginase, as might
have been predicted. These results supported the pos-
sible use of asparagine synthetase as a marker for clin-
ical decisions about-asparaginase therapy [47].

We then asked whether any other cell line panel
showed similar correlation. The answer was ‘yes’,
though not as strongly. The correlation coefficient
for the ovarian lines was-0.88 (confidence interval

Main effects have been removed for both cells and drugs. Hence, —0.23 to —0.99) [47]. Early clinical trials done with

a negative lo@Glsg) value of 1 for sensitivity indicates a 10-fold

an assortment of solid tumors showed occasional re-

higher than average sensitivity of the cell line to the agent. The sponses tm-asparaginase in melanoma. chronic gran-

asparagine synthetase expression level is plotted as the abundanc
of the asparagine synthetase transcript, relative to its abundance
in the reference pool of 12 cell lines. A value &2 indicates

l?Jlocytic leukemia, lymphosarcoma, and reticulum cell

sarcoma but not in other tumor types (see [47] for ref-

4-fold higher expression than in the reference pool. The large circles erences). The microarray findings, however, support
indicate leukemia cell lines. The linear regression line (correlation 5 closer look at.-asparaginase therapy for solid tu-

coefficient= —0.98; P value <0.01) was fitted to the leukemia data.

Modified from [47].

2.4.3. Pharmacogenomic use of NCI-60 transcript

profiles: An example

mors, particularly for a subset of ovarian cancers low
in asparagine synthetase. Further studies of this cor-
relation are underway in collaboration with D. von
Hoff (Arizona Cancer Center). The preferred material
for a clinical trial would be the polyethylene glycol-

The white rectangle on the gene expression vs. modified forms of.-asparaginase, which shows much

drug sensitivity CIM in Fig. 4 points to a story with

better pharmacokinetic and immunological properties

Ilkely causal Significance on the basis of literature than does the native bacterial form of the enzyme.

information. That story [47] involves the gene as-

paragine synthetase and the bacterial enzyme-drug

L-asparaginase. Many acute lymphoblastic leukemias

(ALL) lack asparagine synthetase and therefore must 3. Concluding remarks

scavenge exogenousasparagine to survive. This de-
pendence is exploited by treating ALL with bacterial
L-asparaginase, which depletes extracellutaspara-

Pharmacogenomic profiling — or, in accord with the

gine and selectively starves the cancer cells. Fig. 5 title of this contribution, should we call it *pharma-

shows the relationship betweerasparaginase activ-

cotranscriptomic profiling — holds undeniable promise

|ty and asparagine Synthetase expression across théor molecular Subsetting of patientS and for individu-
NCI-60. As might have been predicted on the basis alization of therapy. Much of the research to realize
of the above mechanism, there was a Statistica”y ro- those aims can be done with clinical materials, rather

bust negative correlation{0.44; bootstrap 95% con-
fidence interval-0.59 to —0.25) between expression
of the asparagine synthetase gene afa$paraginase
sensitivity in the 60 cell lines [47]. Although statis-
tically robust, the correlation was only moderately
strong. We knew, however, to focus specifically on

than cultured cells, if a number of purely technical
challenges are overcome. But the limitation of clini-
cal tumors that cannot be overcome, is this: they have
not been exposed to large humbers of chemical com-
pounds one at a time and independently under well-
defined experimental control.
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