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Abstract

Pharmacogenomics aims at molecular subsetting of patients for more effective therapy. Transcriptomic profiling o
human cancer cell lines (the NCI-60) used by the US National Cancer Institute serves that aim because the cells h
treated with>100,000 chemical compounds over the last 13 years. Patterns of potency can be mapped into molecular s
of the compounds or into molecular characteristics of the cells. We discuss conceptual and experimental aspects of the
as well as a number of bioinformatic computer programs that we have developed for biological interpretation of the proTo
cite this article: J.N. Weinstein, Y. Pommier, C. R. Biologies 326 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Analyse du transcriptome dans les 60 lignées cellulaires de cancers du NCI. Un des objectifs de la pharmacogénomiq
est d’identifier des groupes de patients afin d’augmenter l’efficacité thérapeutique. Le profilage transcriptomique
lignées cellulaires de l’Institut national du cancer des États-Unis répond à cet objectif, car la réponse de ces cellu
de 100 000 agents chimiques et chimiothérapeutiques a été caractérisée depuis 13 ans. Les profils de réponse p
répertoriés en fonction des structures des agents chimiques et des caractéristiques moléculaires des cellules. Nou
les aspects conceptuels et expérimentaux appliqués au profilage, ainsi que les différents logiciels bioinformatiques
avons développés pour l’interprétation biologique de ces profilages.Pour citer cet article : J.N. Weinstein, Y. Pommier, C. R.
Biologies 326 (2003).
 2003 Académie des sciences. Published by Elsevier SAS. All rights reserved.
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1. Introduction

The principal goal of pharmacogenomics is cle
Use information on the molecular profiles of tum
cells to individualize therapy for cancer or select m
appropriate therapy for particular subgroups of
hed by Elsevier SAS. All rights reserved.
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tients. For the most part, that goal is being purs
through study of clinical tumors, but the task h
proved more difficult than expected. There are s
eral reasons [1]: (i) clinical tumors are difficult to
study, given anesthesia effects, surgical trauma,
constraints (both logistical and ethical) on the des
of clinical trials; (ii ) clinical tumors often have com
plex, fragmentary histories. Demographic and cli
cal information may be difficult to obtain because
ethical or legal issues; (iii ) clinical studies are expen
sive; (iv) clinical tumors are heterogeneous – a m
ture of cancer cells and stromal components, incl
ing endothelial cells, fibroblasts, and infiltrating leuk
cytes. Any molecular profile obtained for a bulk t
mor is a mixture of the characteristics of those co
ponents. Techniques such as laser capture micro
section [2] can be used to isolate tumor cells, for
ample in the pseudo-glandular epithelial structure
adenocarcinomas. But then an amplification met
must generally be used to generate enough DNA
mRNA for study. Methods of amplification availab
include T7-viral amplification, rolling circle amplifi
cation, two-primer PCR, and single-primer PCR, b
their fidelity is still a significant question [1].

In contrast, cell lines have the advantage of
ing homogeneous in cell lineage (though not in c
cycle state). They can be obtained in quantity; th
are reproducible from experiment to experiment a
year to year; they can be manipulated by transfect
knockout, selection for resistant forms, or exposur
siRNA, antisense RNA, drugs, or radiation. The pro
lem, of course, is that they are not really representa
of cancer cells in vivo. Even primary cultures of canc
cells have been removed from the influence of ot
cell types, cytokines, extracellular fluid, and the thr
dimensional architecture of the tumor. They have b
selected for growth on plastic in standard medium w
relatively fast cell-cycling. Therefore, prediction fo
ward from cultured cells toward the clinic is uncerta
we can, at best, obtain clues to formulate hypothese
be validated in real tumors, either clinically or throu
pathological studies, for example using tissue arra
When one extrapolates backwards from cell line st
ies to the basic biology or pharmacology, however,
is on reasonably sound ground. Most of our knowle
of the biology and pharmacology has, in fact, been
tained from cultured cells or else from molecular stu
ies, not from clinical materials [1].
For pharmacological purposes, we would like
study cancer cell types that have been exposed to l
numbers of potential drugs. The most prominent s
cell set is the 60 human cancer line panel (the NCI-
used by the Developmental Therapeutics Prog
(DTP) of the US National Cancer Institute (NCI)
test for potential anticancer agents. The cells h
been characterized pharmacologically by exposur
more than 100,000 defined chemical compounds (
a large number of natural product extracts), one
time and independently.

2. The NCI-60 cancer cells and screen

As of 1985, the NCI was using P388 muri
leukemia to screen compounds for anticancer
tivity. That strategy identified agents active agai
leukemias but was not thought to be effective in id
tifying activity against the common solid tumors
humans. Therefore, the decision was made to se
different strategy for screening. The result after ma
competing factors were taken into account was
NCI-60 cell screen, which went into production mo
in April of 1990. Since then,>100 000 chemically de
fined compounds (plus natural product extracts) h
been screened. Since 1991, the 60 cell lines have
cluded leukemias, melanomas, and cancer cells o
nal, ovarian, colon, breast, prostate, lung, and c
tral nervous system origin. That list is by no mea
complete, but it includes the most common human
mors. The guiding hypothesis was that selective
tivity against cancers from a particular tissue or org
would predict clinical activity against the same type
tumor. Such predictiveness has not been demonstr
but the NCI-60 system took on a new role: incre
ingly, it has been used for secondary profiling of co
pounds already found to attack a defined molecul
pathway. Even more generally, it became a system
profiling both the compounds tested and the cell lin

Fig. 1 shows the NCI-60 system in highly schema
form. Database (A) of activities can be mapped int
database (S) of structural characteristics of the c
pounds tested and a database (T) of molecular tar
and other cell characteristics. This set of databa
provides the conceptual architecture for the phar
cogenomic studies to be described here. The first t
to be discussed will be the screen itself.
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Fig. 1. Simplified schematic overview of an information-intens
approach to cancer pharmacogenomics and pharmacoprote
based on the NCI-60 cancer cell lines. Each row of the activity
database represents the pattern of activity of a particular comp
across the 60 cell lines. The A database can be mapped in
structure (S) database containing 2D or 3D chemical struc
descriptors of the compounds and a target (T) database conta
molecular profile information on the cells. The T database con
of data on individual molecules and omic data at the DNA, mRN
protein, and functional levels. The bioinformatic challenge is
analyze and understand each of these databases separately
to integrate them with each other and with public informat
resources for pharmacogenomic purposes. Modified from [25].

2.1. Methodology of the NCI-60 screen

The methodology of the NCI-60 screen has be
described in detail elsewhere (seehttp://dtp.nci.nih.
gov). Briefly, on day zero the human tumor cell lin
are plated in 96-well microtiter format in RPMI 164
medium with 5% fetal calf serum and 2 mML-glu-
tamine. On day 1, the drug (dissolved in DMSO)
added to achieve five concentrations at 10-fold in
vals, plus a negative control. The usual concentra
range is 10−8 to 10−4 M. After 48 h of drug exposure
at 37◦C, the cells are fixed in situ with trichloroacet
acid. The supernatant is discarded (along with floa
cells and cell fragments), and the plates are was
five times, then air-dried. Colorimetric measurem
of sulforhodamine B (SRB) dye is used to quantit
the cell material remaining attached to the well at
end of the incubation period. The 50% growth inhi
tion (GI50) is calculated as the concentration of dr
required to inhibit cell growth by a factor of two. Th
fundamental parameter used as a measure of pot
is − log10GI50. The details of this protocol are impo
n

y

tant to an understanding of the meaning and lim
tions of the data from it.

2.2. The Activity (A) database

While analyzing data from pilot studies for th
screen in the late 1980’s, Kenneth D. Paull realiz
that the absolute potency of a compound gave m
less information on its mechanisms of action a
resistance than did the pattern ofrelative activities
across the cell lines. He therefore subtracted out
log-mean over the 60 cell lines to obtain the ve
useful ‘mean-graph’ representation of activity da
The lack of information on mechanism in absolu
potency values was later corroborated formally
principal components analysis [3–5].

The mean graph representation of patterns
to the COMPARE algorithm [6,7]. Given one com
pound as a ‘seed’, COMPARE searches the d
base of screened agents and compiles a list of th
most similar to the seed in their patterns of act
ity against the NCI-60 panel. Similar patterns gen
ally indicate similarity in mechanism of action, mec
anism of resistance, and/or molecular structure.
similarity metric was initially taken as the Euclidea
distance, later as the Pearson correlation coeffic
COMPARE has been applied productively to top
somerase inhibitors [8–13], pyrimidine biosynthe
inhibitors [14], compounds with preferential effec
against Nm23-expressing cells [15], anti-mitotics [1
19], and agents active against epidermal growth fac
expressing cells [20], among many other classe
compounds.

In 1992, we introduced feed-forward, back-prop
ation neural networks (with statistical analysis
cross-validation and sensitivity analysis) to discrim
nate among various possible mechanisms of drug
tion on the basis of activity patterns [21]. A large nu
ber of other statistical and artificial intelligence tec
niques have since then been applied to the relat
ship between pattern and mechanism. Among th
methods have been principal components analysis
5] and Kohonen self-organizing maps [5,22,23]. Se
organizing maps in this context are used to repre
the structural or functional similarities of compoun
in the form of two-dimensional maps.

In 1994, we introduced clustering and ‘cluster
image maps’ (CIMs) for analysis and visualizati

http://dtp.nci.nih.gov
http://dtp.nci.nih.gov
http://dtp.nci.nih.gov
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Fig. 2. Clustered Image Map of the relationship between compou
tested and molecular targets in the NCI-60 cells. This normal
A·TT product matrix (where the superscript T indicates the m
trix transpose) correlates target patterns with patterns of growt
hibition for a set of 3989 important compounds. A red or oran
point (high positive Pearson correlation coefficient) indicates
the agent tends to be selectively active in the SRB assay ag
cells lines that express the target in large amounts (or in functi
form). A dark blue point (high negative correlation) indicates the
posite. The 113 columns correspond to 76 distinct target molec
or functions, some represented multiple times in different ma
matical transformations. Compounds and targets have been
ter-ordered by an average linkage algorithm to bring like toge
with like. To the right is shown one 61-leaf ‘twig’ of the overa
3989-leaf cluster tree of compounds. Symbols for mechanism
action are as follows: T1, topoisomerase 1 inhibitors; T2, topo
merase 2 inhibitors; A, alkylating agents; Pt, platinum compoun
Pt–Si, platinum agents containing a silane moiety; ?, mechan
unknown. The most prominent features are a red patch that
cates compounds (2802–3309) that tend to be active in the ass
cell lines with intact p53 function and a blue patch that indica
compounds (513–667) selectively inactive in Mdr-1/Pgp-expres
cells. Modified from [25].

of the pharmacological and molecular data [24,2
Fig. 2 shows a CIM that correlates the activity patte
with molecular characteristics (‘targets’) of the cel
including gene expression data. CIMs have si
become the most popular way to represent g
expression data sets visually (although they by
means capture all of the information available in tho
data).
2.3. The Structure (S) database

The chemical structures in S can be coded in te
of any set of one-, two-, or three-dimensional d
scriptors. Useful structural codings can be found
the DTP’s web site. Analyses that relate the S a
A databases can be thought of as generalization
the Q-SAR (‘quantitative structure-activity’ relation
ships) paradigm. A number of studies have highligh
various aspects of these relationships for the NCI
[4,26–30]. Genetic function approximation [31] (a
amalgam of genetic algorithm for variable select
and regression splines for data fitting) proved a u
ful approach [4,26,28]. Since structural descriptors
available for>500 000 compounds [32], it has be
possible to map interesting patterns of activity into
S database and develop abstract pharmacophore
plates with which to search the>400 000 compound
not yet screened and bring candidate compounds
the testing process.

2.4. The Target (T) database

2.4.1. Miscellaneous molecular targets
The first molecular target analyzed experimenta

and analytically was the drug resistance transpo
P -glycoprotein (Pgp), encoded by the multi-drug
sistance gene Mdr-1 [33–36]. Fig. 2, a clustered im
map obtained by combining information from the
and A databases, shows the importance of Pgp/M
to the pattern of drug sensitivities of the cell lines. T
dark blue patch for compounds 513–667 indicates
those compounds are negatively correlated with
gets 81 to 88, which are the indices of Pgp/Mdr-1
pression and function. The statistics were impress
We analyzed NCI-60 data for a set of 35 compou
of diverse structure and mechanism that had been
ported previously, on the basis of transport assays
be Mdr-1 substrates [33,35,37,38]. Of those, 18 (51
fell within the blue patch, whereas only 4% wou
have been expected to do so by chance. The pr
bility (exact binomial) of such an extreme enrichme
being found by chance is< 0.0001. Eighteen of the 3
reported substrates fell within the blue patch, wher
0 of 12 compounds studied and reportednot to be
substrates [33,35,37,38] did so (P = 0.001 by Fish-
er’s exact test). As might have been expected from
known pharmacophoric properties of Pgp substra
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compounds 513–667 were highly enriched for n
ural products of high molecular weight, often cation
By linear discriminant analysis, we found that tho
three factors could predict with a specificity of 84
and sensitivity of 78% which compounds would
found in the blue patch (P < 0.0001). Columns 76
and 77 in Fig. 2 are indices of mRNA expression
Mrp-1, another transporter molecule associated w
multidrug resistance [34]. There was little overlap b
tween compounds sensitive to Mrp-1 and those se
tive to Pgp/Mdr-1. These calculations provided a pr
of principle for the pattern recognition process [2
Various other molecular targets have been asse
in the NCI-60 system, most prominently a set
molecular characteristics associated with p53 func
[39]. Data on miscellaneous targets can be foun
http://dtp.nci.nih.gov.

2.4.2. ‘Omic’ profiling
To complement studies in our laboratory and ma

others of individual targets in the NCI-60, we ha
taken an ‘omic’ approach [40,41], characterizing DN
mRNA, and protein species in the cells in aggreg
The result is the richest, most varied profiling of a
set of cells that we know of.

2.4.2.1. Proteomic and DNA-level profiling.We be-
gan with proteins in the early 1990’s, doing 2-D g
electrophoresis [42] and developing a MALDI-TO
mass spectroscopic protocol for identifying prote
on the gels [43]. However, by that time it was cle
that identification of hundreds or thousands of p
teins was not a job for a small academic laborato
Hence, we decided to wait for the proteomic techno
gies to improve and, meanwhile, dropped back to
transcript level, where the task appeared easier. T
studies will be described in the next sections.

In parallel, with the transcriptomic studies, we ha
undertaken collaborations with a number of labo
tories for profiling at the DNA level: with the lab
oratory of Ilan Kirsch and Anna Roschke (NCI) f
spectral karyotyping (SKY) and comparative genom
hybridization (CGH) ([44]; also Roschke, et al.,
preparation); with that of Kenneth Buetow (NCI) u
ing Affymetrix SNP chips for single nucleotide poly
morphisms (Alexander, et al., in preparation); w
that of Joe Gray at the University of California Ca
cer Center for CGH based on BAC arrays (Chen
al. and Bussey, et al., in preparation); with the la
oratories of David Munroe (NCI) and Andrew Fei
berg (Johns Hopkins University) for detailed seque
analysis of cytosine methylation in the promoter
gions of cancer-related genes (Reinhold, et al.
Maunakea, et al., in preparation).

Most recently, at the protein level, with Lance L
otta (NCI) and Emanuel Petricoin (Food and Dr
Administration), we have developed high-density ‘
verse-phase’ protein lysate microarray for proteo
profiling of the 60 lines without the need for sp
identification ([45] and Nishizuka, et al., in prepar
tion). For validation of hypotheses directed toward
clinic, we have used tissue arrays produced by
TARP (Tissue Array Program) Consortium at the N
[45]. The arrays consist of cores from 503 human
mors of disparate types plus 62 normal human tiss
Although this article focuses on the transcriptome,
worth noting that a major part of our effort is devot
to understanding, and capitalizing on, the relations
among the various types of data. Not entirely in je
we refer to this enterprise as ‘integromics’.

2.4.2.2. Transcriptomic profiling. In part, the chal-
lenge at the mRNA level appeared easier beca
there are ‘only’ 30–60000 independent transcripts
perhaps 200,000 splice variants of those transcr
rather than the 500 000–2000 000 functional prot
states. We were able to generate transcript profiles
the NCI-60 using four different platforms: a 790
clone cDNA array with the Brown/Botstein labor
tory [46,47], a 6800-gene Affymetrix oligonucleotid
chip (Hu6800) with the Golub/Lander group [48], a
the Hu95 and Hu133 Affymetrix oligonucleotide chi
with Uwe Scherf at Gene Logic, Inc. Versions of t
first two data sets used for our calculations are av
able athttp://discover.nci.nih.gov.

Transcript expression profiling by cDNA arra
The methods used in this study have been descr
in detail elsewhere [46,47]. Very briefly, cells we
harvested (with less than 1 minute from incuba
to stabilization of the preparation) at approximat
80% confluence. Total RNA was stored and th
further purified to obtain poly-A mRNA shortly prio
to hybridization with microarrays (Synteni, Inc.; no
Incyte, Inc.) consisting of robotically spotted, PC
amplified cDNAs on coated glass slides [49].

http://dtp.nci.nih.gov
http://discover.nci.nih.gov
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The 9703 DNA elements on the array were cDN
from the Washington University/Merck IMAGE se
obtained from Research Genetics, Inc. The array
cluded 3700 named genes, 1900 human genes ho
ogous to those of other organisms, and 4104 EST
unknown function but defined chromosome map lo
tion. For each hybridization, cDNA from the test cel
mRNA was labeled by incorporation of Cy5-dNT
during reverse transcription. cDNA synthesized fro
pooled mRNA of 12 highly diverse cell lines out
the 60 [47] was analogously labeled by incorporat
of Cy3-dNTP. Cells for the pool were selected to s
isfy 3 criteria [47]: (i) at least one cell line from eac
organ of origin; (ii ) diversity of growth rates; (iii ) di-
versity in terms of protein expression pattern, ba
on prior two-dimensional gel studies [42]. After a
propriate filtering, we settled on a data set of 13
clones for detailed analysis and added forty misce
neous cancer-related targets from the DTP databa

Fig. 3a shows a cluster tree that represents the
terns of gene expression across the cell lines. As i
cated by the accompanying annotations, there is c
siderable, but not complete, regularity by organ of o
gin. Fig. 3b shows the strikingly different tree obtain
when the same cells are clustered on the basis of
activity. The ‘correlation of correlations’ [47] betwee
the two trees was only+0.21. The correlation of cor
relations,rc, is a parameter we developed to quantit
the similarity of two clusterings. In the present co
text, rc is the mean Pearson correlation coefficient
the Pearson correlation coefficients relating all 17
possible pairs of cell types in terms of their respo
to drugs and in terms of their gene expression. M
generally,rc can be used to quantitate the similar
of any two distance matrices such as those used in
erarchical clustering. For example, we have used
compare different distance metrics applied to one d
set and to compare the data obtained from differ
microarray platforms [50]. Values of 1, 0, and−1 in-
dicate perfect similarity, no similarity, and perfect i
verse similarity, respectively. We should perhaps h
expected the low correlation of correlations betwe
the drug- and gene-based clusterings, but we did
The reason for it appears to be that certain gene p
ucts, most prominently Pgp, have a disproportion
effect on activity profiles that cuts across organ of o
gin distinctions.
-

Fig. 3. Dendrograms showing average-linkage hierarchical c
tering of human cancer cell lines. (a) Cluster tree of the 60 cel
lines based on their gene expression profiles for 1376 genes
40 individual targets. 100% of the colon cancer lines (CO) (7
the central nervous system lines (CNS) (6/6), and the leukem
(LE) (6/6) clustered together. Seven out of 8 melanoma lines (M
clustered together, the exception being the one reported to
melanin production (LOX-IMVI). Seven out of 8 renal carcinom
lines (RE) clustered together, as did four out of 6 ovarian li
(OV). Non-small-cell lung cancer cells (LC) clustered on two d
ferent branches, and those of breast origin (BR) appeared
heterogeneous. The estrogen receptor-positive breast lines, T
and MCF7, appeared together and grouped with the colon li
whereas the estrogen receptor-negative HS578T and BT-549
tered with CNS malignancies. NCI/ADR-Res is of unknown orig
(UK). (b) Cluster tree for the cells based on their patterns of se
tivity to 1400 compounds tested. The color of the cell line na
indicates its assigned organ of origin classification. The dista
metric used was (1 – Pearson correlation coefficient).* Indicates
two cell lines (MDA MB435 and MDA-N) with the gene expressio
and drug sensitivity signatures of melanotic melanoma but der
from a pleural effusion of a patient with breast cancer. Modifi
from [47].

Fig. 4 shows a CIM that summarizes all possi
pairwise relationships between the gene database
a set of 118 drugs of putatively known mechani
of action. Each patch of color represents a stor
which may be causally interesting, epiphenomena
statistical coincidence. There is clearly not sufficie
statistical power to eliminate most of the false posit
associations without losing most of the true posit
ones. Hence, we must generally consult the litera
and public databases for clues to determine wh
relationships are worth pursuing.
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Fig. 4. Clustered image map (CIM) relating activity patterns of 118 tested compounds to the expression patterns of 1376 genes
cell lines. Included in addition to the gene expression levels are data for 40 molecular targets assessed one at a time in the cells.
(high positive Pearson correlation coefficient) indicates that the agent tends to be more active (in the two-day assay) against cel
express more of the gene; a blue point (high negative correlation) indicates the opposite tendency. Genes were cluster-ordered on
their correlations with drugs (mean-subtracted, average-linkage clustered with correlation metric); drugs were clustered on the ba
correlations with genes (mean-subtracted, average-linkage clustered with correlation metric). Sharp edges of the colored patches
forks in the corresponding cluster tree. The position of the topoisomerase 1 inhibitor camptothecin (and its analogues) is indicatedA
shows a magnified view of the region around the point (white circle) representing the correlation between the dihydropyrimidine dehyd
gene and 5-fluorouracil. InsertB is an analogous magnified view for the asparagine synthetase gene and the drugL-asparaginase. Modifie
from [47].
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Gene expression profiling by Affymetrix oligon
cleotide chip. The methods used have been d
scribed previously [48]. Very briefly, mRNA was ob
tained from the cells [47] and used to prepare
otinylated cDNA, which was hybridized to Hu680
arrays (Affymetrix, Santa Clara, CA). The resultin
cell clusters generally reflected what we had fou
with the cDNA arrays. We then cross-compared
oligonucleotide and cDNA array data to generate a
bust database of>1600 transcripts for which resul
from the two very different technologies are reas
ably concordant across the 60 cell types [50]. T
‘mutually validated’ database has proved particula
useful when we want a firm statistical basis for furth
analyses.

2.4.2.3. The bioinformatics of transcript profilin
Anyone who does gene expression profiling (or s
ilar omic experiments) for molecular targets finds t
most of the time and energy are spentafter the experi-
ment – in statistical analysis of the data and then in
ological interpretation. The problems are particula



916 J.N. Weinstein, Y. Pommier / C. R. Biologies 326 (2003) 909–920

to
A,
ls.
m,

om-
and
ail-
l

ge
ep-
ex-

id-
ion
files
es

or
ate
an

ble
ep-
ena
u-
the
sult

ince
gram
nd

ne–

m
Li-
a-
ol-
n-

s ar
mos
al
hen
ed
or

ISI
hic

ed-
ing

hes

-
en-
es.
ers,
m-
es,
s.
h

hat
rge
s,

dif-
-
n
0.

on,
ent
do
ues-
s of
ides
ed-
r-

‘di-
ary
it is
nd
ro-

ery
ro-
or
de-

ells.
ure
the
ts of

inal
ina-
g

acute in integromic studies because we are trying
integrate so many types of information – at the DN
RNA, protein, functional, and pharmacological leve
Motivated by the needs of our experimental progra
we have developed a number of algorithms and c
puter program packages to assist in the analysis
interpretation steps. These programs, publicly av
able athttp://discover.nci.nih.gov, are proving usefu
to others as well.

CIM-Miner generates color-coded Clustered Ima
Maps (CIMs) (also called clustered heat maps) to r
resent ‘high-dimensional’ data sets such as gene
pression profiles. We introduced CIMs in the m
1990’s for data on drug activities, target express
levels, gene expression values, and proteomic pro
[24,25,51]. The clustering of both axes (or sometim
only one if there is another organizing principle f
the second axis) puts like together with like to cre
patterns of color. A program for producing CIMs c
be found athttp://discover.nci.nih.gov. Each patch of
color in a CIM (e.g., in Fig. 4) represents a possi
story. But how can we determine whether a patch r
resents a causally interesting story, an epiphenom
correlation (which still may identify a useful molec
lar marker), or statistical coincidence? As noted in
last section, the usual answer is that we must con
the biomedical literature and public databases. S
that can be a tedious process, we developed a pro
package called MedMiner for efficient searching a
organization of the literature on complex gene, ge
gene, and gene–drug relationships.

MedMiner[52] publicly available athttp://discover.
nci.nih.gov) uses a combination of GeneCards fro
the Weizmann Institute, PubMed from the National
brary of Medicine (NLM), syntactic analysis, trunc
ted-keyword filtering of relationals, and user-contr
led sculpting of Boolean queries to identify key se
tences from pertinent abstracts. Those sentence
then organized so that the user can access the
pertinent ones directly by clicking on a relation
relevance-term. Whole abstracts of interest can t
be accessed quickly through a direct link to PubM
and dropped into a ‘shopping basket’ for display
for automated entry into a library under EndNote (
ResearchSoft, Berkeley, CA) or other bibliograp
software. Experienced users have estimated that M
Miner speeds up 5- to 10-fold the process of captur
l

e
t

and organizing the literature from PubMed searc
on gene–gene and gene-drug relationships.

MatchMiner [53] publicly available at http://
discover.nci.nih.govprovides a solution to the ma
jor problem of translating among various gene id
tifier types for lists of hundreds or thousands of gen
Currently included are GenBank accession numb
IMAGE clone ids, common gene names, gene sy
bols, UniGene clusters, FISH-mapped BAC clon
Affymetrix identifiers, and chromosome location
The LookUp function in MatchMiner makes suc
translations, providing the user with diagnostics t
indicate how the translation was done. The Me
function finds the intersection of two lists of gene
which may be designated by either the same or
ferent identifiers. This functionality is particularly im
portant to our ‘integromic’ efforts to meld informatio
from the variety of different data types on the NCI-6

GoMiner [54] publicly available athttp://discover.
nci.nih.govprovides an answer to the vexing questi
“Now that I’ve done the gene expression experim
and identified a set of ‘interesting’ genes, what
those genes mean biologically?” To address that q
tion, GoMiner batch-processes and organizes list
thousands or tens of thousands of genes and prov
two fluent, robust visualizations of the genes emb
ded within the framework of the Gene Ontology hie
archy. One is a tree-like structure; the other is a
rected acyclic graph’. GoMiner calculates summ
statistics indicating for each GO category whether
enriched with, or depleted of, ‘interesting’ genes a
givesp-values with which to assess the statistical
bustness of the enrichment or depletion.

LeadScope/LeadMinerTM [55] provides a firm link
between molecular markers and the drug discov
process. More precisely, it links gene expression p
files for the NCI-60 (or other cell panels used f
screening) to a set of 27 000 chemical substructure
scriptors of the compounds tested against the c
One can use it, for example, to identify substruct
classes that are found in compounds active in
screen against cell types that express large amoun
a particular gene. That is precisely what a medic
chemist or researcher designing a directed comb
torial library would like to be able to do in pursuin
pharmacogenomic goals.

http://discover.nci.nih.gov
http://discover.nci.nih.gov
http://discover.nci.nih.gov
http://discover.nci.nih.gov
http://discover.nci.nih.gov
http://discover.nci.nih.gov
http://discover.nci.nih.gov
http://discover.nci.nih.gov
http://discover.nci.nih.gov
http://discover.nci.nih.gov
http://discover.nci.nih.gov
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Fig. 5. Relationship between asparagine synthetase expre
levels and chemosensitivity of the NCI cell lines toL-asparaginase
Main effects have been removed for both cells and drugs. He
a negative log(GI50) value of 1 for sensitivity indicates a 10-fol
higher than average sensitivity of the cell line to the agent.
asparagine synthetase expression level is plotted as the abun
of the asparagine synthetase transcript, relative to its abund
in the reference pool of 12 cell lines. A value of+2 indicates
4-fold higher expression than in the reference pool. The large cir
indicate leukemia cell lines. The linear regression line (correla
coefficient= −0.98;P value<0.01) was fitted to the leukemia dat
Modified from [47].

2.4.3. Pharmacogenomic use of NCI-60 transcript
profiles: An example

The white rectangle on the gene expression
drug sensitivity CIM in Fig. 4 points to a story wit
likely causal significance on the basis of literatu
information. That story [47] involves the gene a
paragine synthetase and the bacterial enzyme-
L-asparaginase. Many acute lymphoblastic leukem
(ALL) lack asparagine synthetase and therefore m
scavenge exogenousL-asparagine to survive. This d
pendence is exploited by treating ALL with bacter
L-asparaginase, which depletes extracellularL-aspara-
gine and selectively starves the cancer cells. Fig
shows the relationship betweenL-asparaginase activ
ity and asparagine synthetase expression acros
NCI-60. As might have been predicted on the ba
of the above mechanism, there was a statistically
bust negative correlation (−0.44; bootstrap 95% con
fidence interval−0.59 to−0.25) between expressio
of the asparagine synthetase gene andL-asparaginas
sensitivity in the 60 cell lines [47]. Although stati
tically robust, the correlation was only moderate
strong. We knew, however, to focus specifically
e

the leukemic subpanel, and in that case the correla
was a striking−0.98 (bootstrap 95% confidence inte
val −1.00 to−0.93). This value survived even a Bo
ferroni correction for statistical multiple comparison
Furthermore, the two ALL-derived lines express
the lowest levels of asparagine synthetase mRNA
were the most sensitive toL-asparaginase, as mig
have been predicted. These results supported the
sible use of asparagine synthetase as a marker for
ical decisions aboutL-asparaginase therapy [47].

We then asked whether any other cell line pa
showed similar correlation. The answer was ‘ye
though not as strongly. The correlation coefficie
for the ovarian lines was−0.88 (confidence interva
−0.23 to −0.99) [47]. Early clinical trials done with
an assortment of solid tumors showed occasiona
sponses toL-asparaginase in melanoma, chronic gr
ulocytic leukemia, lymphosarcoma, and reticulum c
sarcoma but not in other tumor types (see [47] for r
erences). The microarray findings, however, sup
a closer look atL-asparaginase therapy for solid t
mors, particularly for a subset of ovarian cancers
in asparagine synthetase. Further studies of this
relation are underway in collaboration with D. vo
Hoff (Arizona Cancer Center). The preferred mate
for a clinical trial would be the polyethylene glyco
modified forms ofL-asparaginase, which shows mu
better pharmacokinetic and immunological proper
than does the native bacterial form of the enzyme.

3. Concluding remarks

Pharmacogenomic profiling – or, in accord with t
title of this contribution, should we call it ‘pharma
cotranscriptomic profiling – holds undeniable prom
for molecular subsetting of patients and for individ
alization of therapy. Much of the research to real
those aims can be done with clinical materials, rat
than cultured cells, if a number of purely technic
challenges are overcome. But the limitation of cli
cal tumors that cannot be overcome, is this: they h
not been exposed to large numbers of chemical c
pounds one at a time and independently under w
defined experimental control.
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