

This work is licensed under a Creative Commons Attribution 4.0 International License. The license permits unrestricted
use, distribution, and reproduction in any medium, on the condition that users give exact credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if they made any changes.

Assessing the Impact of Microservices Architecture on Software
Maintainability and Scalability

Vamsi Krishna Thatikonda
Snoqualmie, Washington, USA

Abstract:
This evaluation delves into the influence of Microservices
Architecture (MSA) on crucial factors like software maintainability
and scalability, which are vital in today's software development.
Exploring MSA's features and benefits reveals how it streamlines bug
tracking, improves system comprehension, increases testability,
enables independent scaling of services, and optimizes resource
utilization. The assessment also identifies potential obstacles,
including distribution challenges, communication overhead, network
delays, and data consistency. Renowned organizations like Amazon

and Netflix have provided real-life scenarios with significant evidence of MSA's practicality and
limitations. Though MSA's importance in building durable, scalable systems is underlined, the evaluation
also stresses the need for solid design principles, practical management approaches, and constant
refinement of procedures.

Keywords: Microservices Architecture, Software Maintainability, Software Scalability, Monolithic Architecture,
Independent Scalability, Resource Utilization, Network Latency, Data Consistency.

Introduction
Microservices Architecture (MSA) brings a
unique approach to creating software systems.
This approach organizes various systems into
more minor, independent services that can
perform specific tasks and communicate with
each other efficiently to achieve business goals
(Di Francesco, Lago, & Malavolta, 2019). This
architectural style introduces a novel method of
handling and deploying software applications,
focusing on business capabilities and taking
advantage of fully automated deployment
machinery for independent deployment.

Efficient software development heavily relies on
two critical components: maintainability and
scalability. Maintainability is how a software
system or component can be altered to fix errors,
enhance performance, or adapt to

environmental changes (Dayanandan &
Vivekanandan, 2016). Conversely, scalability
refers to a system's ability to manage an
increasing workload by integrating additional
resources (Singh & Reddy, 2014). Both these
characteristics significantly affect the software's
cost-effectiveness, user satisfaction, and overall
market competitiveness.

The concept of Microservices Architecture is
primarily focused on software maintainability
and scalability. It enables the separate
components to be developed, deployed,
upgraded, and scaled independently. This
evaluation seeks to gauge the effect of
Microservices Architecture on these essential
software characteristics. It will determine
whether this architectural style enhances or
diminishes the important software properties.

Suggested Citation
Thatikonda, V.K. (2023). Assessing
the Impact of Microservices
Architecture on Software
Maintainability and Scalability.
European Journal of Theoretical and
Applied Sciences, 1(4), 782-787.
DOI: 10.59324/ejtas.2023.1(4).71

mailto:vamsi.thatikonda@gmail.com
https://orcid.org/0009-0006-1180-1606
https://doi.org/10.59324/ejtas.2023.1(4).71

www.ejtas.com EJTAS 2023 | Volume 1 | Number 4

783

Exploring the details of Microservices
Architecture, its impact on maintainability and
scalability, and the application of real-world case
studies will all contribute to the discussion.

Background of Microservices
Architecture
Microservices Architecture (MSA) is not an
entirely new idea but rather an integration of
beneficial practices from various tried-and-
tested methodologies, including Domain-Driven
Design, Continuous Integration, and Service-
Oriented Architecture, among others (Newman,
2021). The term "microservices" was first used
around 2014 to categorize a style of software
architecture that had been gradually forming in
response to the evolving conditions of software
development and deployment during the advent
of cloud-based systems, distributed systems, and
continuous delivery (Butzin, Golatowski &
Timmermann, 2016).

Previously, software applications were
commonly created with a Monolithic
Architecture approach, which involved merging
all application processes into a single self-

contained unit. This monolith integrated the user
interface, business logic, and data layer within
one application (Alpers et al., 2015). While this
architecture offered simplicity in deployment
and operation, it also presented certain
limitations.

Monolithic architectures have significant issues,
such as a lack of flexibility, instability, and
inefficiency. The more giant the monolith, the
more complicated it gets to comprehend and
modify. A significant challenge with scalability is
that it requires altering the entire application
rather than just specific components.

Transitioning to Microservices Architecture
arose from challenges experienced with
monolithic systems. The goal is to dissect
complex applications into more minor, more
manageable services that are loosely connected.
These services can be developed, deployed, and
scaled independently (Megargel, Shankararaman,
& Walker, 2020). This transition sought to
enhance software systems' maintenance,
scalability, and productivity. It also promotes
swift and secure execution of alterations,
guaranteeing that the system adapts to escalating
workloads.

Figure 1. Monolithic Vs Microservices

Source: Kanjilal, J. (2021)

www.ejtas.com EJTAS 2023 | Volume 1 | Number 4

784

Understanding Microservices
Architecture
Microservices Architecture (MSA) offers a
unique approach to software design. It involves
creating an application that comprises multiple
loosely connected services that can be deployed
independently. These services are usually
organized based on specific business capabilities.
Each service can operate at its scale, use different
programming languages, and employ various
data storage technologies.

Componentization through Services

The central principle of MSA involves breaking
down complex systems into controllable,
isolated services. Each service independently
accomplishes a specific business function.
Independent deployments of these services
allow updates to a service without needing to
redeploy the entire application, thus enhancing
maintainability (Newman, 2021).

Organizing around Business Capabilities

Every microservice is designed to perform a
specific business function, ensuring that it
comprises all essential elements such as user
interface, databases, and backend services. This
organized approach promotes flexibility, making
adapting to evolving business needs easy.

Products rather than Projects

The Microservices Architecture promotes a
product-centric mindset where services are
treated as products owned by a team from start
to finish (Di Francesco, Lago, & Malavolta,
2019). This approach promotes accountability,
user-centeredness, and long-term planning,
resulting in higher-quality and easier-to-maintain
software.

Smart Endpoints and Dumb Pipes

Unlike SOA models, MSA employs
microservices that communicate with simple,
stateless protocols like HTTP REST or
messaging. The intelligence is located in the
endpoints rather than the communication
middleware, resulting in a system design that is
easier to understand, handle, and expand.

The main advantages of MSA stem from its
flexibility and scalability. This architecture
enables development teams to select the most
suitable technology stack for each service,
boosting productivity and ease of maintenance.
Additionally, since each service operates
independently, MSA allows for efficient scaling
to meet demand, which can improve system
resilience and minimize resource waste.

Impact on Software Maintainability
Software Maintainability refers to the ease with
which changes can be made to a software
product, whether to correct defects, improve
performance, or adapt to a new environment
(Dayanandan & Vivekanandan, 2016). This is a
crucial element of software quality, directly
affecting the cost, effort, and time required for
modifications or enhancements.

The Microservices Architecture, abbreviated as
MSA, has a profound influence on the
maintainability of software. Firstly, MSA
promotes more effortless bug detection and
rectification. The software, a blend of small,
independent services, can isolate a bug to one
specific service when it emerges. This isolation
simplifies the task of identifying, debugging, and
resolving the issue without causing any
disturbance to the entire system (Alshuqayran,
Ali, & Evans, 2016).

Secondly, the comprehension of the system
becomes simpler with MSA due to the
separation into modules. Each microservice has
its independent business capability and can be
comprehended separately (Da Silva, Justino, &
de Adachi, 2011). This approach results in a less
complex codebase, reduces the cognitive load on
developers, and ultimately improves
maintainability.

Thirdly, MSA improves software testability.
Testing each microservice separately allows for
more focused and efficient testing. Additionally,
automated testing becomes easier to perform,
leading to better maintainability.

www.ejtas.com EJTAS 2023 | Volume 1 | Number 4

785

Figure 2. Characteristics of Microservice Architecture

Source: Ashtari, H. (2022)

Although MSA offers many benefits, it also
presents several challenges regarding
maintainability. The complexity of the system
can increase due to the distribution of services.
Maintaining dependencies, ensuring consistent
data, and isolating faults among numerous
services can be challenging. Additionally,
effective communication between services is
crucial. This requires well-structured APIs and
messaging protocols to avoid negatively
impacting system performance and complicating
maintenance tasks. Proper management is
essential to avoid communication overhead.

Impact on Software Scalability
The scalability of software refers to its ability to
handle increasing workloads by allocating
resources proportionately. An ideal scalable
system should be able to handle more requests

without sacrificing performance (Singh & Reddy,
2014). Scalability is crucial in today's constantly
changing business environment, where
applications must manage fluctuating traffic and
large data volumes.

MSA has a significant influence on software
scalability. Firstly, MSA allows each service to
scale independently. This contrasts with
monolithic architectures, where the entire
system must scale. Each microservice in an MSA
setup can be scaled based on its specific demand
(Li et al., 2021). This level of precision affords a
higher degree of control, ensuring more efficient
resource allocation.

Secondly, MSA can help effectively allocate
resources by minimizing underutilized resources
and avoiding over-provisioning. By deploying
each microservice in an environment that suits
its unique needs, such as computational power,

www.ejtas.com EJTAS 2023 | Volume 1 | Number 4

786

memory, storage, or hardware type, performance
can be improved while simultaneously reducing
the cost of running the system.

Despite these benefits, MSA does present
scalability-related challenges. The first is
network latency and communication between
services. As the number of microservices
increases, inter-service communication also
increases. This can result in network congestion
and latency, which may negatively impact the
system's overall performance.

Another challenge involves data consistency. In
MSA, each service usually has its database,
leading to consistency issues when services need
to share data. Synchronizing data across services,
particularly during scaling, can be complex and
resource-intensive (Taibi, Lenarduzzi, & Pahl,
2017).

Case Studies
Microservices Architecture has proven
successful for many businesses by improving
software maintainability and scalability. Here are
two examples of its successful implementation:

According to a study conducted by Ren and their
team in 2018, Amazon transitioned from a
monolithic setup to the microservices approach
to achieve superior scalability (Ren et al., 2018).
This shift allowed Amazon to independently
scale specific services during high-traffic periods
like Black Friday or Christmas. As a result,
Amazon was able to make significant cost
savings and improve the performance of its
system.

Another prime example is Netflix has
successfully adopted the microservices model, as
highlighted in a 2018 study by Ren and his team.
With a subscriber base of over 200 million
worldwide and a growing need for high-quality
streaming services, Netflix turned to MSA to
improve scalability and ensure excellent
customer service. By transitioning to
microservices, Netflix can now make thousands
of modifications to its global infrastructure daily
without causing any disruptions. This switch has

led to better maintainability and faster
innovation.

Conclusion
Microservices Architecture (MSA) dramatically
impacts the maintainability and scalability of
software positively. It provides several benefits,
including easier tracking of bugs, a better
understanding of the system due to the
separation of modules, the ability to scale
services independently, and more efficient use of
resources. However, it also presents some
challenges, such as increased complexity due to
the distribution of services, inter-service
communication overheads, network latency, and
potential issues with data consistency.

As businesses strive for agile, resilient, and
scalable systems, the significance of MSA is
expected to grow. To fully leverage the potential
of MSA, it is essential to adopt robust design
principles and efficient management strategies
and continuously refine practices to manage
inherent complexities. Future studies may
explore ways to simplify MSA implementation
and its link with emerging trends such as
serverless and edge computing.

References
Alpers, S., Becker, C., Oberweis, A. & Schuster,
T. (2015). Microservice based tool support for business
process modelling. 2015 IEEE 19th International
Enterprise Distributed Object Computing
Workshop.
https://doi.org/10.1109/edocw.2015.32

Alshuqayran, N., Ali, N., & Evans, R. (2016). A
systematic mapping study in microservice architecture.
2016 IEEE 9th International Conference on
Service-Oriented Computing and Applications
(SOCA). https://doi.org/10.1109/soca.2016.15

Ashtari, H. (2022). Microservices definition,
examples, architecture, and best practices.
Retrieved from
https://www.spiceworks.com/tech/devops/art
icles/what-are-microservices/

https://doi.org/10.1109/edocw.2015.32
https://doi.org/10.1109/soca.2016.15
https://www.spiceworks.com/tech/devops/articles/what-are-microservices/
https://www.spiceworks.com/tech/devops/articles/what-are-microservices/

www.ejtas.com EJTAS 2023 | Volume 1 | Number 4

787

Butzin, B., Golatowski, F. & Timmermann, D.
(2016). Microservices approach for the internet of things.
2016 IEEE 21st International Conference on
Emerging Technologies and Factory
Automation (ETFA).
https://doi.org/10.1109/etfa.2016.7733707

Da Silva, C.E., Justino, Y. & de Adachi, E.
(2011). Spread: Service-oriented process for
reengineering and DevOps. Service Oriented
Computing and Applications, 16(1), 1–16.
https://doi.org/10.1007/s11761-021-00329-x

Dayanandan, U. & Vivekanandan, K. (2016). An
empirical evaluation model for software
architecture maintainability for Object Oriented
Design. Proceedings of the International Conference on
Informatics and Analytics, 1-4.
https://doi.org/10.1145/2980258.2980459

Di Francesco, P., Lago, P. & Malavolta, I. (2019).
Architecting with microservices: A systematic
mapping study. Journal of Systems and Software, 150,
77–97.
https://doi.org/10.1016/j.jss.2019.01.001

Kanjilal, J. (2021). Microservice scalability
challenges and solutions. Retrieved from
https://www.developer.com/design/microserv
ices-scalability-challenges/

Li, S., Zhang, H., Jia, Z., Zhong, C., Zhang, C.,
& Shan, Z. (2021). Understanding and

addressing quality attributes of microservices
architecture: A systematic literature review.
Information and Software Technology, 131, 106449.
https://doi.org/10.1016/j.infsof.2020.106449

Megargel, A., Shankararaman, V., & Walker,
D.K. (2020). Migrating from monoliths to cloud-
based microservices: A banking industry
example. Computer Communications and Networks,
85–108. https://doi.org/10.1007/978-3-030-
33624-0_4

Newman, S. (2021). Building microservices: Designing
fine-grained systems. 2nd ed. O’Reilly Media, Inc..

Ren, Z., Wang, W., Wu, G., Gao, C., Chen, W.,
& Wei, J. (2018). Migrating web applications from
monolithic structure to microservices architecture.
Proceedings of the Tenth Asia-Pacific
Symposium on Internetware.
https://doi.org/10.1145/3275219.3275230

Singh, D. & Reddy, C.K. (2014). A survey on
platforms for Big Data Analytics. Journal of Big
Data, 2(1). https://doi.org/10.1186/s40537-
014-0008-6

Taibi, D., Lenarduzzi, V., & Pahl, C. (2017).
Processes, motivations, and issues for migrating
to microservices architectures: An empirical
investigation. IEEE Cloud Computing, 4(5), 22–
32. https://doi.org/10.1109/mcc.2017.4250931

https://doi.org/10.1109/etfa.2016.7733707
https://doi.org/10.1007/s11761-021-00329-x
https://doi.org/10.1145/2980258.2980459
https://doi.org/10.1016/j.jss.2019.01.001
https://www.developer.com/design/microservices-scalability-challenges/
https://www.developer.com/design/microservices-scalability-challenges/
https://doi.org/10.1016/j.infsof.2020.106449
https://doi.org/10.1007/978-3-030-33624-0_4
https://doi.org/10.1007/978-3-030-33624-0_4
https://doi.org/10.1145/3275219.3275230
https://doi.org/10.1186/s40537-014-0008-6
https://doi.org/10.1186/s40537-014-0008-6
https://doi.org/10.1109/mcc.2017.4250931

