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Abstract
Suppose that m drivers each choose a preferred parking space in a linear car park with n spots. In order,
each driver goes to their desired spot and parks there if possible. If the spot is already occupied then the car
parks in the first available spot after that; if no such spot is available then the car leaves the street without
parking. When m > n, there will always be defects–cars that are not able to park. Building upon the work
in Cameron et al. "Counting defective parking functions,"1 we introduce a multi-shuffle construction
to defective parking functions and investigate parking statistics of a defective parking function chosen
uniformly at random.
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1 INTRODUCTION

The study of parking functions began when Konheim
and Weiss2 investigated linear probes of hashing stor-
age structures in computer science. Since then, mathe-
matical researchers have applied the concept of parking
functions in many intersecting disciplines such as com-
binatorics, probability, and group theory. The parking
problem has counterparts in the enumerative theory
of labeled trees and forests3, in the analysis of non-
crossing partitions and hyperplane arrangements,4;5 in
the configuration of abelian sandpiles,6 among others.
We refer to Yan7 for a comprehensive survey.

The general structure of a parking function problem
takes the following form: Consider a parking lot with
n parking spots placed sequentially along a one-way
street. A line of m cars enters the lot, one by one. The
ith car drives to its preferred spot πi and parks there
if possible. If the spot is already occupied then the car
parks in the first available spot after that; if no such
spot is available then the car leaves the street without
parking.

Denote the list of such car preferences by π =
(π1, . . . , πm), where 1 ≤ πi ≤ n for every 1 ≤ i ≤ m.
We study the situation that m ≥ n and at least k ≤ n
cars park successfully, i.e., there are at most n − k un-
occupied spots. In the special case m = n = k, this
reduces to the classical situation where all cars get to
park and all spots are occupied. Allowing m > n ≥ k
introduces more complication to the parking scenario,
as not all cars can park under any circumstances and

there will always be cars that leave the street. These
parking preferences are therefore referred to as “de-
fective parking functions” (DPF) and are explored in
depth by Cameron et al.1. Their results include count-
ing defective parking functions DPF(m, n, k), providing
an equivalent expression given by Abel’s binomial the-
orem, and studying the asymptotics. If m > n = k, then
no spots are left unoccupied, so in some sense it still
describes a “successful” parking situation. We thus de-
note DPF(m, n, n) for brevity by SPF(m, n). By taking
the difference of having at least k + 1 cars park success-
fully and at least k cars park successfully, we can also
identify the parking preferences that lead to exactly k
cars parking successfully.

The reader might be curious as to why we inves-
tigate the situation where at least k cars park when
there are m cars and n spots rather than directly inves-
tigate under what condition exactly k cars park; the
following proposition explains why by relating the
parking preferences to u-parking functions. Given a
positive integer-valued vector u = (u1, . . . , um) with
u1 ≤ · · · ≤ um, a u-parking function of length m
is a sequence π = (π1, . . . , πm) of positive integers
whose non-decreasing rearrangement (λ1, . . . , λm) sat-
isfies λi ≤ ui for all 1 ≤ i ≤ m. We denote the set of
u-parking functions by PF(u).

Proposition 1.1. Take a sequence of positive integers π =
(π1, . . . , πm) with 1 ≤ πi ≤ n for all 1 ≤ i ≤ m. Then
π ∈ DPF(m, n, k) if and only if π ∈ PF(u), where u =
(n − k + 1, n − k + 2, . . . , n, . . . , n) is a vector of length m.
Explicitly, u is a concatenation of an increasing arithmetic
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sequence of length k starting from n − k + 1 and ending at
n and a constant sequence of length m − k where each term
takes value n.

Remark 1. Note that Proposition 1.1 implies that the
set of defective parking functions DPF(m, n, k) is invari-
ant under the action of Sm by permuting cars. This
proposition also gives a criterion for defective parking
functions.

Remark 2. To show this equivalence, we will use the pi-
geonhole principle to show that for a given DPF(m, n, k)
there is a u-parking function that will produce the same
parking result.

Proof. For cars that do not park, their preference can
be any of the n available spots on the street. But for
cars that are able to park, their preference needs to sat-
isfy the pigeonhole principle. Having at least k spots
taken is equivalent to ensuring that among those cars
that park, we have at most one car prefer spot n, at
most two cars prefer spot ≥ n − 1, and for each i ≤ k
at most i cars prefer spot ≥ n − i + 1. This combined
condition for parked and unparked cars is further equiv-
alent to having at least k − 1 cars prefer spot ≤ n − 1,
at least k − 2 cars prefer spot ≤ n − 2, and at least
one car prefer spot ≤ n − k + 1. Forming the non-
decreasing rearrangement (λ1, . . . , λm) of the parking
preference (π1, . . . , πm) involves a switch of coordi-
nates from (i, #{j : πj ≤ i}) to (λj, j) and gives the
u-parking function criterion.

This paper is organized as follows: Section 2 illus-
trates the notion of parking function multi-shuffle that
decomposes a defective parking function into smaller
components (Definition 2.3 and Theorem 2.5); Section 3
uses the multi-shuffle construction introduced in Sec-
tion 2 to investigate parking statistics of a defective
parking function chosen uniformly at random. We give
exact and asymptotic formulas for the distribution of
the first parking coordinate in Proposition 3.1 and The-
orem 3.2. Due to permutation symmetry, the result may
be interpreted for any parking coordinate. Section 4
provides some further directions for research.

1.1 Notations

Let N be the set of non-negative integers. For m, n ∈ N,
we write [m, n] for the set of integers {m, . . . , n} and
[n] = [1, n]. For vectors u, v ∈ [n]m, denote by u ≤C v
if ui ≤ vi for all i ∈ [m]; this is the component-wise
partial order on [n]m. In a similar fashion, denote by
u <C v if ui ≤ vi for all i ∈ [m] and there is at least one
j ∈ [m] such that uj < vj. For v ∈ [n]m, we write [v] for
the set of u ∈ [n]m with u ≤C v.

Remark 3. With Proposition 1.1, we know that parking
functions are shuffle invariant, so any ordering will

produce the same result. The set [n]m refers to all re-
orderings of the arithmetic series [1 . . . n], which we
have shown to be equivalent to the non-decreasing or-
dering {1, 2, . . . , n}.

Remark 4. We will use [v] to refer to the set of vectors
that produce the same parking result as v, so any results
that apply to v will apply to those vectors which are
component-wise less or equal.

Example 1.2

Let v ∈ DPF(6, 6, 1), v = (1, 3, 3, 5, 6, 6). The fact that v is
a parking function can be recovered by using Proposition 1.1.
The set [v] will contain u = (1, 1, 1, 5, 5, 5) as well as u = (1,
3, 3, 5, 5, 6).

2 PARKING FUNCTION MULTI-SHUFFLE

From Proposition 1.1, we see that in order to character-
ize the structure of parking preferences in DPF(m, n, k),
we will be primarily concerned with examining u-
parking functions where u is a concatenation of an in-
creasing arithmetic sequence and a constant sequence,
and either of these sequences may be empty in the ex-
treme case (k = 1 and m = k respectively). In this
section, we explore the properties of such u-parking
functions through a parking function multi-shuffle con-
struction. The construction is an extension to the frame-
work studied in Yin8 where generic u-parking functions
u = (u1, . . . , um) with ui < ui+1 for every i was consid-
ered.

Remark 5. Multi-shuffles are a construction in which
some of the elements of the parking vector are given,
and the rest of the vector can be filled in with some
possibilities based on the number of successes k given.
The multi-shuffle is the set of possible values that would
satisfy k. This construction allows us to study more
general Defective Parking Functions by working with
a family of Parking Functions instead of one explicit
vector.

We will write our results in terms of parking coor-
dinates π1, . . . , πl for explicitness, where 1 ≤ l ≤ m is
any integer. But due to permutation symmetry estab-
lished in Proposition 1.1, they may be interpreted for
any coordinates. Temporarily fix πl+1, . . . , πm. Let

Aπl+1,...,πm =

{v = (v1, . . . , vl) : (v1, . . . , vl , πl+1, . . . , πm) ∈ DPF(m, n, k)},

(2.1)

where v is in non-decreasing order.

Proposition 2.1. Fix πl+1, . . . , πm. Then Aπl+1,...,πm =
[v] for a unique v.
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Remark 6. Here we are fixing the last m − l elements of
the vector. Then we show that [v] is exactly the set of
vectors which when combined with (πl+1, . . . , πm) will
be in the set of DPF(m, n, k).

Proof. From the equivalence shown in Proposition 1.1,
it is sufficient to display the unique maximal v so
that (v1, . . . , vl , πl+1, . . . , πm) ∈ PF(u), where u =
(n − k + 1, n − k + 2, . . . , n, . . . , n) is a vector of length
m. We arrange πi for l + 1 ≤ i ≤ m in non-decreasing
order, denoted by π(l+1) ≤ · · · ≤ π(m). Set nl = 0.
We find the minimum index ni in order, starting with
nl+1, such that ni > ni−1 and uni ≥ π(i) for each
l + 1 ≤ i ≤ m. If such uni ’s cannot be located, then
Aπl+1,...,πm is empty. Otherwise excluding these uni ’s
from u gives the optimal v. From the parking scheme,
if v ∈ Aπl+1,...,πm , then w ∈ Aπl+1,...,πm for all w ≤C v,
where ≤C is the component-wise partial order. This
implies that if Aπl+1,...,πm is non-empty, then there is a
unique maximal element in component-wise partial or-
der v in Aπl+1,...,πm , when we require that v is arranged
in non-decreasing order.

Example 2.2. Take m = 8, n = 6, and k = 4. Con-
sider DPF(8, 6, 4) with associated u = (u1, · · · , u8) =
(3, 4, 5, 6, 6, 6, 6, 6). Take l = 5 and set π6 = 6, π7 = 4 and
π8 = 6. Then Aπ6,π7,π8 = [v] = [(u1, u3, u6, u7, u8)] =
[(3, 5, 6, 6, 6)]. See illustration below.

v1 3 u1
π(6) 4 ≤ 4 u2
v2 5 u3

π(7) 6 ≤ 6 u4
π(8) 6 ≤ 6 u5
v3 6 u6
v4 6 u7
v5 6 u8

We conclude from Proposition 2.1 and Example 2.2
that when the last m − l parking preferences of an el-
ement of DPF(m, n, k) are given, we only need to find
the largest feasible first l parking preferences. Corre-
spondingly, we introduce a combinatorial construction
which we term a parking function multi-shuffle to u-
parking functions of the form u = (n − k + 1, n − k +
2, . . . , n, . . . , n). This construction will connect the iden-
tification of the maximal element in Aπl+1,...,πm to the
decomposition of πl+1, . . . , πm into a multi-shuffle.

Definition 2.3 (parking function multi-shuffle). Take
1 ≤ k ≤ n ≤ m and 1 ≤ l ≤ m.

• (Generic mixed case) Let v = (v1, . . . , vl) ∈ [n]l be
such that n− k+ 1 ≤ v1 < · · · < vr < vr+1 = · · · =
vl = n for some r with r ≤ k − 1 and l − r ≤ m − k +
1. Say that πl+1, . . . , πm is a parking function multi-
shuffle of r + 1 u-parking functions α1 ∈ PF(n − k +

1, n − k + 2, . . . , v1 − 1), α2 ∈ PF(1, 2, . . . , v2 − v1 −
1), . . . , αr ∈ PF(1, 2, . . . , vr − vr−1 − 1), and αr+1 ∈
PF(1, 2, . . . , n− vr, . . . , n− vr) if πl+1, . . . , πm is any
permutation of the union of the r + 1 words α1, α2 +
(v1, . . . , v1), . . . , αr+1 + (vr, . . . , vr). (Some αj might
be empty.) We will denote this by (πl+1, . . . , πm) ∈
MS(v).

• (Special case: increasing arithmetic sequence) Let v =
(v1, . . . , vl) ∈ [n]l be such that n − k + 1 ≤
v1 < · · · < vl < n with l ≤ k − 1. Say that
πl+1, . . . , πm is a parking function multi-shuffle
of l + 1 u-parking functions α1 ∈ PF(n − k +
1, n − k + 2, . . . , v1 − 1), α2 ∈ PF(1, 2, . . . , v2 − v1 −
1), . . . , αl ∈ PF(1, 2, . . . , vl − vl−1 − 1), and αl+1 ∈
PF(1, 2, . . . , n − vl , . . . , n − vl) if πl+1, . . . , πm is any
permutation of the union of the l + 1 words α1, α2 +
(v1, . . . , v1), . . . , αl+1 + (vl , . . . , vl). (Some αj might
be empty.) We will denote this by (πl+1, . . . , πm) ∈
MS(v).

Example 2.4. Take m = 10, n = 8, k = 6, and l = 3.

• (Generic mixed case) Set v1 = 4, v2 = 6, and
v3 = 8. Take α1 = (3) ∈ PF(3), α2 = (1) ∈
PF(1), and α3 = (2, 1, 1, 1, 2) ∈ PF(1, 2, 2, 2, 2). Then
(7, 5, 3, 8, 7, 8, 7) ∈ MS(4, 6, 8) is a multi-shuffle of the
three words (3), (5), and (8, 7, 7, 7, 8).

• (Special case: increasing arithmetic sequence) Set v1 =
3, v2 = 5, and v3 = 7. Take α1 = ∅, α2 = (1) ∈
PF(1), α3 = (1) ∈ PF(1), and α4 = (1, 1, 1, 1, 1) ∈
PF(1, 1, 1, 1, 1). Then (8, 8, 6, 4, 8, 8, 8) ∈ MS(3, 5, 7)
is a multi-shuffle of the four words ∅, (4), (6), and
(8, 8, 8, 8, 8).

Theorem 2.5. Take 1 ≤ k ≤ n ≤ m and 1 ≤ l ≤ m.
Let v = (v1, . . . , vl) ∈ [n]l be in non-decreasing order
as in Definition 2.3. Then Aπl+1,...,πm = [v] if and only if
(πl+1, . . . , πm) ∈ MS(v).

Remark 7. Here we are expanding on the result
from Proposition 2.1 by allowing (πl+1, . . . , πm) to be
non-consecutive, we need the extra requirement that
(πl+1, . . . , πm) is in the set of multi-shuffles for v.

Remark 8. For the special case where v is a constant
sequence with v1 = · · · = vl = n and l ≤ m − k + 1,
Aπl+1,...,πm = [v] if and only if (πl+1, . . . , πm) ∈ PF(u),
where u = (n − k + 1, n − k + 2, . . . , n, . . . , n) is a vector
of length m − l. Trivially, it is a multi-shuffle of only one
word.



Mann & You

Proof. Following the equivalence established in Proposition 1.1, set u = (n − k + 1, n − k + 2, . . . , n, . . . , n) to be a
vector of length m.

"=⇒" Take π = (v1, . . . , vl , πl+1, . . . , πm) a u-parking function, where v is maximally compatible with the fixed
πl+1, . . . , πm. Therefore we must have vi ≥ n − k + 1 and vi = uvi−n+k for every 1 ≤ i ≤ l since otherwise the
value of vi may be increased, contradicting the maximality assumption.

Hence excluding the first l cars, π has exactly v1 − n+ k − 1 cars with preference ≤ v1 − 1 (name the subsequence
α1), exactly v2 − v1 − 1 cars with preference ≥ v1 + 1 and ≤ v2 − 1 (name the subsequence α′

2), . . . . Construct
α2 = α′

2 − (v1, . . . , v1), α3 = α′
3 − (v2, . . . , v2), . . . . It is clear from the above reasoning that α1 ∈ PF(n − k + 1, n −

k + 2, . . . , v1 − 1), α2 ∈ PF(1, 2, . . . , v2 − v1 − 1), . . . . By Definition 2.3, (πl+1, . . . , πm) ∈ MS(v).
"⇐=" We first show that π = (v1, . . . , vl , πl+1, . . . , πm) is a u-parking function. This is immediate, since from

Definition 2.3, the non-decreasing rearrangement of π is a concatenation of α1, v1, α2 + (v1, . . . , v1), v2, . . . .
Next we show that πi = (v1, . . . , vi−1, vi + 1, vi+1, . . . , vl , πl+1, . . . , πm) is not a u-parking function for any

1 ≤ i ≤ l. This is clear when vi = n. Suppose vi < n, then the non-decreasing rearrangement of πi only differs
from the non-decreasing rearrangement of π in the (vi − n + k)-th position with value vi + 1 > vi = uvi−n+k.

Combining, we have Aπl+1,...,πm = [v].

Remark 9. Even though multi-shuffle is not explicitly mentioned in the main proof of Theorem 3.2, being able to
construct multi-shuffles on parking functions is a very important technique that allows for the counting of parking
functions.

Example 2.6 (Continued from Example 2.4). Take m = 10, n = 8, and k = 6. Consider DPF(10, 8, 6) with associated u =
(3, 4, 5, 6, 7, 8, 8, 8, 8, 8). Then A7,5,3,8,7,8,7 = [(4, 6, 8)] is equivalent to (7, 5, 3, 8, 7, 8, 7) ∈ MS(4, 6, 8) and A8,8,6,4,8,8,8 =
[(3, 5, 7)] is equivalent to (8, 8, 6, 4, 8, 8, 8) ∈ MS(3, 5, 7). See illustration below.

π(4) 3 ≤ 3 u1
v1 4 u2

π(5) 5 ≤ 5 u3
v2 6 u4

π(6) 7 ≤ 7 u5
π(7) 7 ≤ 8 u6
π(8) 7 ≤ 8 u7
π(9) 8 ≤ 8 u8
π(10) 8 ≤ 8 u9

v3 8 u10

v1 3 u1
π(4) 4 ≤ 4 u2
v2 5 u3

π(5) 6 ≤ 6 u4
v3 7 u5

π(6) 8 ≤ 8 u6
π(7) 8 ≤ 8 u7
π(8) 8 ≤ 8 u8
π(9) 8 ≤ 8 u9
π(10) 8 ≤ 8 u10

3 PARKING STATISTICS

In this section, we use the multi-shuffle construction introduced in Section 2 to investigate parking statistics of
random defective parking functions and identify a sharp transition. We will utilize some counting formulas from
Cameron et al1 where it was shown that

|DPF(m, n, k)| = (n − k + 1)
m

∑
j=k

(
m
j

)
(n − k + j + 1)j−1(k − j − 1)m−j

= nm − (n − k + 1)
k−1

∑
j=0

(
m
j

)
(n − k + j + 1)j−1(k − j − 1)m−j, (3.1)

and in particular,

| SPF(m, n)| =
m

∑
j=n

(
m
j

)
(j + 1)j−1(n − j − 1)m−j = nm −

n−1

∑
j=0

(
m
j

)
(j + 1)j−1(n − j − 1)m−j. (3.2)

Here the equivalence of the expressions is due to Abel’s binomial theorem. Recall that parking coordinates satisfy
permutation symmetry, so the statements in this section may be interpreted for any parking coordinates and not
just the first parking coordinate.

Proposition 3.1. Take m > n ≥ k. The number of defective parking functions π ∈ DPF(m, n, k) with π1 = j is
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Figure 1. The distribution of π1 (the first parking coordinate) in 100, 000 samples of defective parking functions chosen uniformly at random
from DPF(120, 100, 95) (left plot) and DPF(120, 100, 99) (right plot).

Remark 10. We were most interested in the behavior for π1 = 1 because, as the distributions show, the asymptotic
behavior is more present at smaller values

n−1

∑
v=max(j,n−k+1)

(
m − 1

n − v + m − k

)
(n − k + 1)vk−n+v−2·

·
[
(n − v)n−v+m−k −

n−v−1

∑
s=0

(
n − v + m − k

s

)
(s + 1)s−1(n − v − s − 1)n−v+m−k−s

]

+

[
nm−1 − (n − k + 1)

k−1

∑
s=0

(
m − 1

s

)
(n − k + s + 1)s−1(k − s − 1)m−s−1

]
. (3.3)

Proof. From the parking scheme, if π1 = j, then Aπ2,...,πm = [v] for some max(j, n − k + 1) ≤ v ≤ n. By Theorem 2.5
and utilizing the equivalence between u-parking functions and defective parking functions derived in Proposition
1.1, we have the number of defective parking functions with π1 = j is

n−1

∑
v=max(j,n−k+1)

(
m − 1

n − v + m − k

)
|DPF(k − n + v − 1, v − 1, k − n + v − 1)|·

· | SPF(n − v + m − k, n − v)|
+ |DPF(m − 1, n, k)|. (3.4)

The conclusion readily follows. See Figure 1.

Theorem 3.2. Take m and n large with m = cn for some c > 1. For a defective parking function π chosen uniformly at
random from SPF(m, n), we have

E(π1) =
∑n

j=1 j#{π ∈ SPF(m, n) : π1 = j}
| SPF(m, n)| =

n
2

(
1 +

1
n

(
1 − d

c(1 − d)

)
+ O

(
1
n2

))
, (3.5)

where d is the unique solution in (0, 1) satisfying ce−c = de−d. In particular, d = 1 if c = 1, and d → 0 if c → ∞.

Remark 11. ce−c = de−d is a Lambert W Function. This function has two roots, one greater than 1 and one between
0 and 1. We know c from m = cn, so the other root d must be less than 1. When we have found these two roots, the
formula is quite good for finding the expected distribution.
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Figure 2. The distribution of π1 (the first parking coordinate) in 100, 000 samples of defective parking functions chosen uniformly at random
from SPF(100, 100) (left plot) and SPF(120, 100) (right plot).

Remark 12. Take m = n large, it was derived in Kenyon & Yin9 that

E(π1) =
n
2

(
1 −

√
π

2n
+

10
3n

+ O(n−3/2)

)
. (3.6)

We observe a sharp change as c → 1 in the next leading order term of the moment asymptotics. See Figure 2. In this
notation, O(n−3/2) means all the preceding terms are omitted as their contribution is relatively small.

Remark 13. The asymptotics in Equation (3.5) is quite accurate. Take m = 240 and n = 200 with c = 1.2. The exact
value of E(π1) = 98.8379, while the asymptotic approximation gives 98.5551.

Proof. By (3.2), the denominator of (3.5) is

| SPF(m, n)| = nm −
n−1

∑
j=0

mj

j!
nm−je−c(j+1)(j + 1)j−1·

·
(

1 − j(j − 1)
2cn

− c(j + 1)2

2n
+

j(j + 1)
n

+ O
(

n−2
))

. (3.7)

The tree function F(z) = ∑∞
j=0

zj

j! (j+ 1)j−1 is related to the Lambert W function via F(z) = −W(−z)/z, and satisfies

F(ce−c) = d
c ec, where d is the unique solution in (0, 1) such that ce−c = de−d. By the chain rule,

F′(z) =
F2(z)

(1 − zF(z))
,

F′(ce−c) =
d2

c2(1 − d)
e2c, F′′(ce−c) =

d3(3 − 2d)
c3(1 − d)3 e3c. (3.8)

We recognize that (3.7) is of the form

nm

[
1 − e−c

∞

∑
j=0

(ce−c)j

j!
(j + 1)j−1

(
1 +

1
n
(A1 + A2 j + A3 j2) + O

(
n−2

))]
, (3.9)

where

A1 = − c
2

, A2 = −c +
1
2c

+ 1, A3 = − c
2
− 1

2c
+ 1. (3.10)

Using F(z) this can be written as (with z = ce−c):

nm
[

1 − e−c
(

F(z) +
1
n

(
A1F(z) + A2zF′(z) + A3(z2F′′(z) + zF′(z))

)
+ O

(
1
n2

))]
. (3.11)



Parking Functions

From Proposition 3.1, the numerator of (3.5) is the sum of I1 and I2, with

I1 =

[
n

∑
j=1

j

] [
nm−1 −

n−1

∑
s=0

(
m − 1

s

)
(s + 1)s−1(n − s − 1)m−s−1

]
, (3.12)

I2 =
n−1

∑
j=1

j
n−1

∑
v=j

(
m − 1
m − v

)
vv−2

[
(n − v)m−v −

n−v−1

∑
s=0

(
m − v

s

)
(s + 1)s−1(n − v − s − 1)m−v−s

]
. (3.13)

For I1, we have

I1 =
n2

2

(
1 +

1
n

)[
nm−1 −

n−1

∑
s=0

ms

s!
nm−s−1e−c(s+1)(s + 1)s−1·

·
(

1 − s(s + 1)
2cn

− c(s + 1)2

2n
+

(s + 1)2

n
+ O

(
n−2

))]
.

(3.14)

We recognize that (3.14) is of the form

nm+1

2

(
1 +

1
n

)[
1 − e−c

∞

∑
s=0

(ce−c)s

s!
(s + 1)s−1

(
1 +

1
n
(B1 + B2s + B3s2) + O

(
n−2

))]
, (3.15)

where

B1 = − c
2
+ 1, B2 = −c − 1

2c
+ 2, B3 = − c

2
− 1

2c
+ 1. (3.16)

Using F(z) this can be written as (with z = ce−c):

nm+1

2

(
1 +

1
n

) [
1 − e−c

(
F(z) +

1
n

(
B1F(z) + B2zF′(z) + B3(z2F′′(z) + zF′(z))

)
+ O

(
1
n2

))]
. (3.17)

For I2, we have

I2 =
n−2

∑
v=0

(
m − 1

v

)
(v + 1)v−1(n − v − 1)m−v−1 (v + 1)2

2

(
1 +

1
v + 1

)

−
n−2

∑
v=0

n−v−2

∑
s=0

(
m − 1

v, s, m − 1 − v − s

)
(v + 1)v−1(s + 1)s−1(n − v − s − 2)m−v−s−1 (v + 1)2

2

(
1 +

1
v + 1

)

=
1
2

n−2

∑
v=0

mv

v!
nm−v−1e−c(v+1)

(
(v + 1)v+1 + (v + 1)v

) (
1 + O

(
n−1

))
− 1

2

n−2

∑
v=0

n−v−2

∑
s=0

mv+s

v!s!
nm−v−s−1e−c(v+s+2)

(
(v + 1)v+1 + (v + 1)v

)
(s + 1)s−1

(
1 + O

(
n−1

))
. (3.18)

The generalized tree functions G(z) = ∑∞
s=0

zs

s! (s + 1)s =
(

∑∞
s=0

zs

s! ss−1
)′

and H(z) = ∑∞
s=0

zs

s! (s + 1)s+1 =(
∑∞

s=0
zs

s! (s − 1)s−1
)′′

are related to the tree function F(z), and respectively satisfy

G(ce−c) =
d

c(1 − d)
ec, H(ce−c) =

d
c(1 − d)3 ec. (3.19)

We recognize that (3.18) is of the form

1
2

nm−1e−c
∞

∑
v=0

(ce−c)v

v!

(
(v + 1)v+1 + (v + 1)v

) (
1 + O

(
n−1

))
− 1

2
nm−1e−2c

∞

∑
v=0

∞

∑
s=0

(ce−c)v+s

v!s!

(
(v + 1)v+1 + (v + 1)v

)
(s + 1)s−1

(
1 + O

(
n−1

))
. (3.20)
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Using F(z), G(z), and H(z) this can be written as (with z = ce−c and I(z) = G(z) + H(z)):

1
2

nm−1e−c
[

I(z) + O
(

1
n

)]
− 1

2
nm−1e−2c

[
I(z)F(z) + O

(
1
n

)]
. (3.21)

Dividing (3.11) into (3.17)+(3.21) and simplifying we get our desired result.

Figure 3. The distribution of π1 (the first parking coordinate) in 100, 000 samples of defective parking functions chosen uniformly at random
from SPF(120, 100). The upper left plot is for p = 0 and the upper right plot is for p = 1. The lower left plot is for p = 0.1 and the lower right
plot is for p = 0.9. Note the preference symmetry between p and 1 − p. p = 1 corresponds to the deterministic parking protocol studied in this
paper.
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4 FURTHER RESEARCH

In Durmic et al10, a probabilistic parking protocol was
considered, which added one more layer of complexity
to the parking scenario. Fix p ∈ [0, 1] and consider a
coin that flips to heads with probability p and tails with
probability 1 − p. If a car arrives at its preferred spot
and finds it unoccupied it parks there. If instead the
spot is occupied, then the driver tosses the biased coin.
If the coin lands on heads, with probability p, the driver
continues moving forward in the street. However, if the
coin lands on tails, with probability 1− p, the car moves
backward and tries to find an unoccupied parking spot.
We see that the deterministic parking protocol where
the car always moves forward if its desired spot is taken
corresponds to p = 1.

Only the effect of the probabilistic protocol on the
classical parking situation (m = n = k) was investi-
gated in Durmic et al10. The authors are further inter-
ested in similarly researching the probabilistic effect
on defective parking functions. See Figure 3 for some
initial simulations.

5 CONCLUSION

The focus of our paper was to analyze the asymp-
totic behavior of Defective Parking Function distribu-
tions. First, we looked at the equivalence of DPF(m, n, k)
to some u-parking functions, which allowed us to
more easily analyze DPFs. We also analyzed the multi-
shuffles of DPFs and exhibited an algorithm for build-
ing multi-shuffles. The main results were in counting
the number of Defective Parking Functions as well as
the distribution of certain preferences which exhibited
the asymptotic behavior that we see in the graphs.
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