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ABSTRACT

DEVELOPMENT OF NONORTHOGONAL WAVEFUNCTION THEORIES AND

APPLICATION TO MULTISTATE REACTION PROCESSES

Emily Michelle Kempfer

February 24, 2023

Many prominent areas of technological development rely on exploiting the photo-

chemical response of molecules. An application that has been of particular interest

to our research group is the control of molecular switches through a combination

of different external stimuli (light, electric field, deprotonation). However, despite

significant advances in theoretical approaches and numerous cases of successful appli-

cation of theory, simulating photochemical reactions remains a computational chal-

lenge. Theoretical methods for describing excited states can be broadly divided into

two categories: single-reference response methods and multireference methods. Sin-

gle reference methods provide reliable semiquantitative results for single excitations

in molecules with a well-defined set of Aufbau occupied orbitals in the ground state.

However, these methods cannot describe double excited states, Rydberg states, charge

transfer states, systems with strongly correlated ground states, or regions of the po-

tential energy surface with degeneracies between electronic states. Multireference

methods are alternatives for studying excited states and can provide accurate and

general results. However, multireference methods require significant technical and

chemical insight, and become computationally costly as the system size increases.

Here, I will discuss my work applying various types of excited state methods for un-

derstanding the electric field control of azobenzene isomerization. Due to the size and

complexity of the π structure in azobenzene, I will highlight the limitations of the

current excited state methodologies that prevent researchers from studying larger and

more complex systems. I will then turn to discuss new methodological developments

v



in projected double-hybrid density functional theory, which seeks to overcome several

of the problems of single reference excited state models. I will illustrate the underly-

ing ideas motivating the development of the method and its performance compared

to more established theories. Despite its success, projected double-hybrid density

functional theory is unable to account for ‘multiple correlation mechanisms’. As a

result, I will also introduce concepts in multiple correlation mechanisms and how they

can be exploited to perform nonorthogonal active space decomposition, along with

applications and paths for future improvements.
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CHAPTER 1

INTRODUCTION

The development of new light-based technologies (e.g. molecular switches) re-
quires accurate and computationally efficient excited state methodologies to model
medium and large systems. Examples of important processes which require an atom-
istic understanding of different photochemical pathways include light-harvesting (1;
2), biological fluorescence (3; 4), and solar cells (5; 6; 7). To understand the reac-
tivity and nature of photo-active molecules, the reaction needs to be examined over
multiple electronic states and points of degeneracy between states. Computationally,
the chemical reactivity of a molecule can be examined using the potential energy
surface (PES), which is a function describing the chemistry of the system, where the
total function can be divided into separate smaller functions representing individual
electronic states of the PES. The PES can describe many points of interest when
examining chemical reactivity, like minima, first-order saddle points, and possible
conical intersections. Locating these points allows us to computationally describe
the kinetic, thermodynamic, and photochemical reactivity of the molecule of interest.
As computational chemists, we aim to find a computationally efficient and accurate
method to describe the function.

Most conventional electronic structure theories like Hartree-Fock (HF) and den-
sity functional theory (DFT) were created with the purpose of examining electronic
ground state properties. The HF method is variational in the ground state, meaning
the computed energy is always higher than the exact energy. The DFT methodology
is also variational for an exact DFT functional however, functional approximation
can change variational ability. However, for both single reference methodologies, in
which approximations are used, the variational principle does not hold for excited
states because the formulation only allows for the upper bound of the exact ground
state energy to be determined. Consequently, excited states calculated by single de-
terminantal techniques can be more challenging and less accurate than the ground
state. Thus, there is a need for accurate and computationally efficient excited state
methodologies.
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One of the most common and accurate methodologies for excited states is config-
uration interaction (CI) method. The CI expansion is written as a linear combination
of excited determinants constructed from excitations of electrons among the ground
state optimized HF orbitals. Full CI is a method which includes any number of elec-
tron excitations in the CI expansion. While full CI is accurate, the expansion can
become extremely long and complex, making this method too computationally costly
even for the smallest of molecules. Truncation of the CI wavefunction can reduce
computational cost however, the resulting wavefunction is not necessarily size consis-
tent and converges slowly with the order of truncation. The simplest CI expansion
for excited states is configuration interaction singles (CIS) in which the wavefunction
is written as a linear expansion of singly excited determinants from the ground state
HF orbitals. The most prominent issue with CIS is that it only includes single ex-
cited Slater determinants and thus, cannot describe states with multiple excitation
character which are frequently needed for the description of the entire PES. Another
prominent type of single reference methodology is the time-dependent density func-
tional theory (TD-DFT) method in which, excited states can be calculated as a linear
response of the ground state reference to a small time-dependent external electric field
perturbation. The TD-DFT method is widely utilized due to its accuracy and compu-
tational efficacy for vertical excitation energies (VEEs) in large systems. Despite the
utility of TD-DFT, well-known issues include inabilities to describe charge-transfer
states, double-excited states, Rydberg states, and electronic degeneracies with the
ground state (8; 9; 10; 11). TD-DFT can be improved upon using the rungs of
Jacobs ladder or through different exchange-correlation functionals, which will be
discussed further in the following chapter. One problematic issue with using single
reference methods for describing the PES is that the orbitals for each excited state
configuration are not optimized for the excited electronic configuration, which can
cause significant errors in accuracy. Overall, however, with the improvement of CIS
or TD-DFT, there is no easy ’fix’ to the qualitative issues with these methodologies.

In comparison to single reference, multireference methods like complete active
space self-consistent field (CASSCF) and complete active space second order per-
turbation theory (CASPT2), which are known to be much better at describing the
entire PES, including points of degeneracy between states. Multireference methods
are closely related to the CI methodology in which a multideterminantal expansion
is used to express the total wavefunction where both the expansion coefficients and
orbitals are optimized. The multideterminantal expansion is created through an ac-
tive space (AS), comprised of occupied and virtual molecular orbitals of interest.
Multireference methodologies can be some of the most accurate methods currently
implemented; however, the accuracy of this method comes at a significant cost. Mul-
tireference methods are known for being difficult to use because they require the user
to have chemical intuition and significant knowledge about the system of interest.
After all, the resulting energies are utterly reliant on the user-selected orbitals in the
AS. These methods are also extremely limited in terms of system size in which the AS
selected cannot be larger than 16 electrons and 16 orbitals due to computational cost;
thus, multireference methods cannot be used for large or medium-sized molecules like
those in many photochemical reactions.
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Current methodologies for studying medium to large excited state systems, like in
the above examples, are extremely limited. Where DFT methodologies break down
for large-scale systems due to the sizable charge-transfer character of the excitations
and multireference character of the wavefunction (12). Highly accurate multireference
methods like CASSCF or CASPT2 are limited to simulating a single chromophore
due to the computational scaling of the methods themselves. The study of large-scale
systems is usually treated via a quantum mechanical embedded molecular mechan-
ics method, e.g. ONIOM or QM/MM (13). While these methods are beneficial in
large-scale systems, the study of photochemical nonadiabatic systems needs a quan-
tum mechanical description of the entire system due to the quantum nature of the
light absorption process and thus the QM layer requires the presence of the entire
photoactive region which can become quite large and computationally costly (14; 15).
Thus, there is a need for a computationally efficient and accurate quantum mechanical
methodology for simulating larger systems.

One approach generally overlooked for obtaining excited states is utilizing self-
consistent field (SCF) solutions. This method has been overlooked due to some pit-
falls, like the fact that nonvariational behavior is frequently observed or that solutions
may be challenging to use because during energy convergence, they can converge with
each other, disappear, or collapse to the ground state. These SCF solutions are also
known to be non-variational and also non-orthogonal to one another making them
complex to utilize. The disadvantages of this methodology can be overcome and
have been a significant interest in the field of quantum chemistry, like the creation
of techniques that address convergence issues for excited state optimization of SCF
solutions: the maximum overlap method (MOM) method and the initial maximum
overlap method (IMOM) method developed by Peter Gill and co-workers determine
the set of occupied orbitals that have the greatest overlap with the previous iteration
(16; 17), Van Voorhis and co-workers created the σ-SCF model in which they use
a targeted energy approach in combination with the convergence criteria based on
energy variance (18; 19). Neuscamman also created a method in which energy vari-
ation is used, and it also constructs Lagrangians for variational optimization of the
excited states (20; 21). Regardless of the optimization procedure, orbital spin and
spatial symmetry breaking is generally impossible to achieve if it is not included in
the initial guess. Thus, some computational methods require a global search of the
SCF solution space (22). The advantages of using SCF solutions for excited states
are unique to the methodology itself. The method can capture orbital relaxation
effects that are frequently missed in methods like CIS and TD-DFT. Methodologies
using SCF solutions can also perform post-SCF procedures just like the ground state,
allowing for the opportunity to capture additional correlation. Lastly, the process of
identifying and using the solutions can be easily parallelized allowing the calculation
to be utilized on larger systems without large computational cost unlike multiref-
erence methods. Currently, high-speed and efficient computers are being created,
including the largest and fastest computer in the world, Frontier, located in Oak
Ridge, Tennessee, which can deliver a quintillion calculations per second! Even with
the utilization of these high-speed computers, older methodologies like multireference
methods are not sped up by any significant amount of time because the incredible
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speed of calculations on newly developed computers relies on the methodology be-
ing parallelized. Thus, the advantage of the possible parallelization for SCF solution
methodologies is significant due to the finding and using of many SCF solutions in a
single calculation.

In this thesis, we want to explore current and new methodological treatments for
examining excited states, taking time to highlight both advantages and disadvan-
tages. Both wavefunction and density functional approaches are equally examined
in this work, demonstrating an extensive investigation of methodologies for excited
state systems. Overall, this thesis is divided into six main chapters beginning with
the current chapter, Introduction , in which we provide context and motivation for
the entirety of this work. This is then followed by Chapter 2: Foundational
Computational Methodology in which I briefly introduce the core tools of HF and
DFT methodologies which will are used throughout this thesis. The following chap-
ter, Chapter 3: Electric Field Control of Multistate Processes is our first
investigation of excited state processes using preexisting methodologies. This chap-
ter provides a basis for the capabilities of current multireference and single reference
methodologies in exploring the azobenzene and azobenzene derivative PESs. Chap-
ter 4: Symmetry Breaking and Projection Methods for Excited States and
Chapter 5: Application of Nonorthogonal Methods for Efficient Modeling
of Strongly Correlated Systems demonstrate introductory results demonstrating
a new methodology for excited state examination with SCF solution methodologies
for studying larger systems without the computational cost. Finally, Chapter 6:
Conclusion outlines the results achieved in this work and discusses the relevance to
the field of computational chemistry.

Several Appendices and references support the chapters in this thesis. Supporting
documents are provided in the final section at the end of each chapter, supplying
further information in tables and figures corresponding to the text. Appendix A
contains all relevant acronyms and should be referred to throughout the text.
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CHAPTER 2

FOUNDATIONAL COMPUTATIONAL METHODOLOGY

Wavefunction Method

The HF method assumes that a Nelec-body wavefunction can be approximated by a
single Slater determinant (SD) made up of Nelec spin-orbitals. Within the HF method,
approximations are made for this method to be useful in application. This section
takes the time to go through some of the core concepts of the HF methodology.
One of the core equations of describing molecular systems in quantum chemistry is the
time-independent Schrödinger equation, which is an eigenvalue equation describing a
chemical system composed of electrons and nuclei.

ĤΨ(r1, r2, ..., rNelec ,R1,R2, ...,RNatom) = EΨ(r1, r2, ..., rNelec ,R1,R2, ...,RNatom)
(2.1.1)

where, rNelec and RNatom are the x,y,z coordinates of electron Nelec and nuclei Natom.
The properties of the system are described using the Hamiltonian operator, Ĥ, and
E and Ψ are the eigenvalues and eigenvectors, respectively. Where E is the energy
corresponding with the wavefunction. The wavefunction, Ψ, is a function of all the
electron and nuclear coordinates, which provides all information about the system. As
stated previously, Ĥ is the Hamiltonian operator which operates on the wavefunction
through,

Ĥ = −
Nelec∑
i=1

1

2
∇̂2
i −

Natom∑
I=1

1

2MI

∇̂2
I −

Nelec∑
i=1

Natom∑
I=1

ZI
riI

+

Nelec∑
i=1

Nelec∑
j>i

1

rij
+

Natom∑
I=1

Natom∑
J>I

ZIZJ
RIJ

(2.1.2)
Equation 2.1.2 is expressed in atomic units, where i and j index electrons, Nelec is
the number of electrons, I and J index nuclei, Natom is the number of nuclei, ZI is
the charge of nucleus I, MI is the mass of nucleus I, ∇2

i is the laplacian operator
acting on the coordinates of particle i, rij is the distance between electrons i and
j, and lastly, RIJ is the distance between nuclei i and j. The first three terms are
one electron operators, kinetic energy operator and electron-nuclear potential op-
erator, which describe the kinetic energy of each particle. The last two terms are
two-electron operators which describe the two-electron interaction between particles.
The two-body operators in the Hamiltonian prevent calculation of the wavefunction
analytically because it is no longer possible to decouple electron and nuclear degrees
of freedom. Specifically, for the electron-nuclear coupling, it is assumed that nuclei
are fixed in position relative to the motion of the electrons due to the large difference
of mass between nuclei and electrons, which is known as the Born-Oppenheimer ap-
proximation (23). With this assumption, the kinetic energy terms of the nuclei are
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treated as having zero values and separately from electrons, allowing equations 2.1.1
and 2.1.2 to be reduced to only the electronic components.

Ĥelec(R)Ψ(r1, r2, ..., rN ; R) = E(R)Ψ(r1, r2, ..., rN ; R) (2.1.3)

Ĥelec = −
Nelec∑
i=1

1

2
∇̂2
i −

Nelec∑
i=1

Natom∑
I=1

ZI
riI

+

Nelec∑
i=1

Nelec∑
j>i

1

rij
(2.1.4)

Equation 2.1.4 can be further broken into the core Hamiltonian operator

ĥ =
1

2
∇̂2 −

∑
I

ZI
rI

(2.1.5)

and the electron-electron repulsion operator.

v̂ =
1

rij
(2.1.6)

The electronic Hamiltonian in equation 2.1.4 only depends on the spatial coordinates
of the electrons, r, however, to completely describe a system the spin of the electrons
need to be specified. The Hamiltonian has no terms that depend on spin however,
there are properties of the wavefunction that are dependent on spin. Thus, Wolfgang
Pauli showed that within relativistic quantum field theory, particles with half-integral
spin, electrons, require an antisymmetric wavefunction. In which, if two electrons
switch positions in the wavefunction, that wavefunction is then equal to the negative
original wavefunction.

Ψ(x1,x2, ...,xN) = −Ψ(x2,x1, ...,xN) (2.1.7)

2.1.1 Orbital Picture

After discussing the general Schrödinger equation, it is now beneficial to take time
to discuss the form of the wavefunction. However, before discussing more complex
wavefunctions, the wavefunction for a single electron system must be examined in
which, an orbital is a wavefunction for a single particle. A spatial orbital, ψi(r) is a
function of the position vector, r, and describes the spatial distribution of an electron.
The spatial wavefunction can be divided into radial and angular parts,

ψ(r, θ, φ) = R(r)Θ(θ, φ)Φ(φ) (2.1.8)

where, the angular part is obtained from spherical harmonics and the radial part is
the exponential decay function. Each function has an associated quantum number
from the boundary conditions; principle (n), angular (l), and magnetic (ml) quantum
numbers. Firstly, the principle quantum number (n) describes the size of the orbital,
by grouping the orbitals into their relative shells. The orbitals can then be further
divided into sub-shells that describes the shape of the orbital by the angular quantum
number (l). Orbitals have shapes that can be described as spherical (l = 0), polar (l
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= 1), or cloverleaf (l = 2). Orbitals can become much more complex shapes as the
angular quantum number becomes larger. For orbitals with angular quantum numbers
above l = 0, the shape of the orbitals allow for different orientations in space, thus the
third quantum number, magnetic (ml) quantum number, describes the orientation in
space, where ml=2l+1. Quantum numbers are important for uniquely describe each
solution and thus assist in the proper description of the system.

It is well known that beyond the one-electron system, the wavefunction becomes
a complicated function of all coordinates in the system. Thus, the Nelec wavefunction
can be approximated as a product of 1-electron orbitals.

ψ(r1, r2, ..., rNelec) = ψ(r1)ψ(r2)...ψ(rNelec) (2.1.9)

The above is exact for the hydrogen atom but for more than one electron the wave-
function does not have the properties required by equation 2.1.7 and thus must be
modified to account for antisymmetry.

2.1.2 Slater Determinants

When constructing the many electron wavefunction from 1-electron orbitals, the cor-
rect spin properties must be accounted for. The most straightforward approach is to
include spin explicitly in the orbital. A complete set for describing spin requires the
two orthonormal orbitals, α(ω) and β(ω) which accounts for spin up and spin down
configurations of the electron. Thus, the spin orbital, χ(x) can account for both spin
and space coordinates.

χ(x) =

{
ψi(r)α(ω)

ψi(r)β(ω)
(2.1.10)

Furthermore, for cases consisting of more than two electrons an antisymmetric
wavefunction can be formulated by arranging orbitals in a SD, as shown below.

Ψ(x1,x2, ...,xNelec) =
1√
Nelec!

∣∣∣∣∣∣∣∣∣
χ1(x1) χ2(x1) . . . χNelec(x1)
χ1(x2) χ2(x2) . . . χNelec(x2)

...
... . . . ...

χ1(xNelec) χ2(xNelec) . . . χNelec(xNelec)

∣∣∣∣∣∣∣∣∣ (2.1.11)

A SD will always satisfy the antisymmetry condition for any choice of the one electron
functions. Another consequence of the antisymmetry principle that follows the SD is
that if any 2 electrons have the same quantum numbers the wavefunction goes to zero.
Therefore, the SD is the most straightforward wavefunction that has the correct spin
properties. Use of the variational theorem to determine the best set of spin orbitals
in the SD is known as the HF method.

2.1.3 Self-Consistent Field Method

Within the HF methodology, the energy associated with the trial state is given by

EHF =
〈ΨHF |Ĥ|ΨHF 〉
〈ΨHF |ΨHF 〉

(2.1.12)
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which demonstrates the variational principle in which the approximate HF wavefunc-
tion is always greater in energy than the exact ground state energy of the system.
The wavefunction, ΨHF , is a description of the electronic configurations of atoms
in the molecular orbital (MO) basis however, with this form, the equation of the
wavefunction is a continuous function which a computer cannot represent. Thus, for
the wavefunction to be adapted for computation, basis sets were introduced where a
one-electron wavefunction is obtained by a linear combination of the basis sets. The
basis set most commonly chosen is that of the atomic orbital (AO) basis thus creating
the linear combination of atomic orbitals (LCAO) approach (24).

|ψi〉 =

Nbasis∑
µ

Cµi|φµ〉 (2.1.13)

With the wavefunction in the AO basis, new coefficients arise, C, which have a direct
dependence on the energy. Solving for the optimal C requires an iterative method
called the SCF procedure. There are many ways one can optimize the energy func-
tional via SCF methods in equation 2.1.12, the most well-known is the Roothan
method. Where, an improved set of orbital coefficients can be found by solving the
eigenvalue problem, FC = SCε with an initial guess of orbital coefficients, C. Where
ε is the diagonal matrix of eigenvalues, also known as the energies of the HF orbitals,
and F is the Fock matrix,

Fµν = hµν +
∑
λσ

Pλσ(2(µν|σλ)− (µλ|σν)) (2.1.14)

The second term of the Fock matrix equation is reliant on the input orbitals or density,
P, demonstrating the non-linearity of the equation. Where, the density is:

Pλσ =
∑
i

CλiC
∗
iσ (2.1.15)

A schematic version of the HF-Roothan-Hall SCF methodology can be observed in
figure 2.1. Where an energy solution is found when the coefficients, C, obtained by
the Fock matrix eigenvalue problem are unchanged between iterations (25).

Electron Correlation Energy Problem

While the HF approximation is very successful in many cases, it has limitations
due to the fact that the approximate wavefunction never corresponds to the exact
wavefunction. Thus, due to the variational principle, EHF is always an upper-bound
to the exact energy, E , and the difference between the two energies is the correlation
energy, Ecorr.

Ecorr = E − EHF (2.2.1)

Ecorr is noted as a negative value and is a measure of the error introduced through
the HF approximation. The error then leads to the correlation energy problem.
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Figure 2.1. Summary of HF-Roothan-Hall SCF Procedure

One source of error in the correlation is caused by the instantaneous repulsions among
electrons. In the standard HF methodology electron correlation is not fully described
because the electrostatic interaction between electrons is accounted for in an averaged
manner causing the electron-electron repulsion term of the Hamiltonian to not always
correctly describe the system. This error in the correlation energy can be described
as dynamical because it is the electron interactions that happen beyond the orbital
picture where missing dynamical correlation is significant when electrons are in close
proximity. In terms of the CI expansion dynamical correlation can be considered
as the case where many determinants have small but non-negligible CI weights in
the wavefunction. The second type of correlation energy is termed as strong or
static correlation. Where static correlation is the electron interactions that occur
due to degeneracies between orbitals, in which an electronic state does not have
a well defined set of Aufbau occupied orbitals. As a result, the wavefunction is an
entanglement of superposition of electron configurations, which represents permanent
electron interactions that occur over longer distances. The missing static correlation
is particularly significant when electrons are in different spatial orbitals which have
similar orbital energies. When static correlation is present, the wavefunction will
have few determinants with relatively large CI coefficients.
One of the most basic examples utilized to demonstrate the effect of correlation is
that of the dissociation of the H2 molecule, figure 2.2. At equilibrium distance, the
HF method gives a relatively good approximation to the exact energy due to the
correlation error being relatively small and caused exclusively by dynamical correla-
tion. As the bond stretches, the correlation error proceeds to increase. here at large
bond distances, the error is no longer due to dynamical but to static because of two
independent hydrogens each containing one electron on its center with no interac-
tion with each other. This causes there to be two different but energetically equal
configurations at long distances. restricted Hartree-Fock (RHF) methodology fails to
describe this behavior however, the unrestricted Hartree-Fock (UHF) method leads
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Figure 2.2. Potential energy curve of H2 from reference (24)

to near exact behavior due to the separate treatment of α and β spins but gives the
wrong wavefunction.

Post-Hartree-Fock Methods for Describing Electron
Correlation

Due to the lack of correlation energy being one of the largest contributions of error in
the SCF methodology, correlation energy can be added into the system by utilizing
post-HF methodologies. Post-HF methodologies include electron correlation through
incorporating excited state configurations after the SCF procedure in the HF method-
ology. Post-HF methods can be broadly divided into two categories: methods based
upon perturbation theory and methods based on the variational principle. Both types
of approaches are utilized throughout this thesis and thus more detailed descriptions
will be provided.

2.3.1 Configuration Interaction

CI methods are one of the conceptually most straightforward methods for solving the
many-body Hamiltonian. The CI method denotes that the exact many-body wave-
function can be written as a linear combination of SDs, where the exact wavefunction,
also known as full CI, can be written in the following form.

|ΦfullCI〉 = D0|Ψ0〉+
∑
i<a

Da
i |Ψa

i 〉+
∑
i<j
a<b

Dab
ij |Ψab

ij 〉+
∑
i<j<k
a<b<c

Dabc
ijk |Ψabc

ijk〉+ ... (2.3.1)

Ψa
i is describing a single excitation from occupied orbital i to virtual orbital a, Ψab

ij is
describing double excitations etc.̇The individual Ψ’s in the above equation can also
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be termed as configuration state functions (CSFs). In which, CSFs represent a linear
combination of SDs. In many cases, a one determinantal wavefunction is sufficient
for description of the system in question, however, in many cases it is not, which
allows the linear combination of CSFs to be utilized. In the CI methodology the
expansion coefficients, C, are optimized but the individual wavefunctions are not. CI
methods provide an exact solution to the many-body problem; however, the number
of N-electron determinants can be enormous even for small molecules. Thus, there is
a necessity for truncating the CI wavefunction by including only single (CIS), double
(CID), or single and double excitations (CISD) into the ground-state HF determi-
nant. As stated in Brillouin’s theorem, single excited determinants do not affect the
ground state energy, so the CIS method is solely useful for obtaining single excitation
excited states (24). The CI method is the simplest example of utilizing the variational
principle and it will later assist in the understanding of multiconfigurational methods.

2.3.2 Coupled Cluster

Another variational post-HF methodology is the coupled cluster (CC) method, which
uses the HF molecular orbital method and constructs the multi-electron wavefunction
using an exponential cluster operator to account for additional electron correlation.
The basic wavefunction can be written as;

|Φ〉 = eT̂ |Ψ0〉 (2.3.2)

where Ψ0 is the reference wavefunction which is typically a SD constructed from the
HF molecular orbitals. T̂ is the cluster operator which operates on Ψ0 to create a
linear combination of excited determinants from the reference wavefunction.

T̂ = T̂1 + T̂2 + T̂3 + ... (2.3.3)

where T̂1 is the operator of all single excitations, T̂2 is the double excitations operator,
and so on.

Similarly to the CI methodology, the full CC wavefunction can become very com-
putationally costly thus, truncation is most often needed. However, the largest dif-
ference between CI and CC methods is the utilization of the exponential ansatz. The
exponential ansatz greatly assists in correcting problems that are normally caused by
truncation like size extensivity, meaning that the energy of a dimer system is equal
to the two systems individually added together.

2.3.3 Møller-Plessent Perturbation Theory

The Møller-Plessent (MP) perturbation theory method differs from the CI method
in which the energy is solved by using perturbation theory instead of the variational
principle. Where the total electronic Hamiltonian is the sum of the unperturbed
Hamiltonian operator Ĥ0 and a small perturbation Ĥ ′ ,

Ĥ = Ĥ0 + λĤ
′

(2.3.4)
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Where, λ is a small real number that weights the perturbation and regulates the
order of perturbation, and Ĥ ′ are the relevent two-electron integrals. When using the
shifted Fock operator as the unperturbed Hamiltonian operator, the MP equations
can be derived where the first order MP energy is:

EMP1 = 〈Ψ0|Ĥ
′ |Ψ0〉 (2.3.5)

Due to Brillouin’s theorem mentioned previously in section 2.3.1, the first order MP
energy is equal to HF. The first and major contribution to the electron correlation is
through the second-order MP energy (MP2).

EMP2 =
∑
a<b
r<s

〈Ψ0|Ĥ ′|Ψrs
ab〉〈Ψrs

ab|Ĥ
′|Ψ0〉

εa + εb − εr − εs
(2.3.6)

Where the denominator is reliant on orbital energies of the relevant excitation. The
MP method will be utilized in the difference projection-after-variation double-hybrid
density functional theory (∆PAV-DH-DFT) methodology in Chapter 4 and there we
will discuss possible faults of the methodology.

2.3.4 Multiconfigurational Methods

Closely related to CI methods are multiconfigurational methods. Where, |Ψ0〉 in
equation 2.3.1, may not be a suitable wavefunction for the CI expansion due to the
fact that it is a single determinant wavefunction. Thus, two or more references can be
utilized to do the CI expansion, this method is noted as multi-reference configuration
interaction (MRCI). However, one large issue with MRCI is the choice of determinants
used for the reference to then build the expansion. CASSCF methodology provided
an alternative through the use of an AS. In which, the AS is a selection of orbitals in
which to do the expansion between, denoting the most important determinants for
the calculation. The accuracy, of the method itself, is reliant on the users selection
of the AS. The selection of the AS is known to be difficult due to the large amount of
chemical intuition that is needed by the user. Further detail about this methodology
will be presented in following chapters.

2.3.5 Nonorthogonal Configuration Interaction

The nonorthogonal configuration interaction (NOCI) methodology, details the CI
method however, instead of the use of orthogonal SDs, they are nonorthogonal. The
utilization of nonorthogonal determinants has been relatively recent in the compu-
tational community. However, the simplistic approach of allowing nonorthogonality
between determinants can capture additional correlation in the system that cannot
be captured in an orthogonal system. Because of the nonorthogonality between de-
terminants the calculation of energy needs to be examined. The energy of electronic
state A in the NOCI calculation is obtained from

EA =
∑
µν

hµνγ
A
µν +

1

2

∑
µνσλ

〈µν||σλ〉ΓAµνσλ (2.3.7)
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In which, γAµν and ΓAµνσλ are the one-electron and two-electron density matrices for
state A, respectively

γAµν = S−1
A

∑
IJ

C∗IACJANIJP
IJ
2µν (2.3.8)

ΓAµνσλ = S−1
A

∑
IJ

C∗IACJANIJP
IJ
1µνP

IJ
2σλ (2.3.9)

The energy in equation 2.3.7 is expressed in the AO basis. This is the same equation
that can be utilized in the orthogonal CI procedure, however, the main difference
between these two procedures is the corresponding values of the MO form of the
transition density matrices, P. In the orthogonal CI procedure these values are either
0 or 1 due to the Slater Condon Rules, however, in a nonorthogonal system the
values can fall between 0 and 1, creating the dependence of the energy not only on
the coefficients, C, but also the transition density matrices. The scaling factor, is the
inverse of SA which is a product of the overlap between two solutions, I and J.

SA =
∑
IJ

C∗IACJANIJ (2.3.10)

The matrix elements of NIJ are computed from the determinant of the occupied-
occupied (oo) overlap matrix, NIJ = det(IJM).

IJM =I C†occS
JCocc (2.3.11)

Where, Cocc is the occupied MO coefficient matrix and S is the AO overlap matrix.
The oo overlap matrix gives the projection of orbitals in the bra (ket) configuration
onto orbitals in the ket (bra) configuration. IJM is not necessarily symmetric due to
the fact that the occupied orbitals in the bra and ket may differ. The Hamiltonian
matrix elements HIJ are computed using the transition density matrices.

HIJ = ÑIJ〈I|Ĥ|J〉 = ÑIJ

(
〈hP3〉+

1

2
〈P1G(P2)〉

)
(2.3.12)

In which, G(P2) is the contraction of the transition density matrix with the two-
electron resonance integrals (2ERIs) and Ñ is the psuedodeterminant of IJM. The
psuedodeterminant is the determinant of the product of nonzero eigenvalues, thus ÑIJ

is equal to NIJ when IJM is nonsingular. The form of the transition density matrices
is dependent on the size of the null space of IJM which demonstrates the components
of the bra determinant that are orthogonal to the ket determinant. To compute P, the
null space must be separated using singular value decomposition (SVD) to transform
the orbital basis.

IJM = UIJΣV† (2.3.13)

Where, in the new basis, IC̃ = ICU and JC̃ = JCV and the overlap between the
two transformed orbitals is given by IJΣ. The transition density matrices can then

13



be computed using:

PIJ
1 =


JCIJM−1ICorJC̃IJΣ−1IC̃ for dim(ker(IJM)) = 0∑

j
JC̃j

IC̃†j/σjj for dim(ker(IJM)) = 1
JC̃j

IC̃†j for dim(ker(IJM)) = 2

0 for dim(ker(IJM)) > 2

(2.3.14)

PIJ
2 =


PIJ

1 for dim(ker(IJM)) = 0
IC̃i

JC̃†i for dim(ker(IJM)) ≤ 2

0 for dim(ker(IJM)) > 2

(2.3.15)

PIJ
3 =


PIJ

1 for dim(ker(IJM)) = 0
IC̃i

JC̃†i for dim(ker(IJM)) = 1

0 for dim(ker(IJM)) > 1

(2.3.16)

where the diagonal elements of IJΣ are in ascending order starting with index i. It
should be noted that the value of HIJ is the same regardless of how the transition
density matrices are computed. As stated earlier in this section, the equations above
are in the AO basis, in a later chapter this methodology will be discussed in the MO
basis.

Density Functional Theory

HF methodology is known to be one of the backbones of computational chemistry
however, it does not stand alone. DFT methodologies are some of the most widely
used computational procedures for electronic structure calculations. In comparison
to HF methodologies, DFT methods are based on the electron density, which is
experimentally measurable, unlike a wavefunction. The utilization of the electron
density, in DFT methodologies allows for the method to be a function of position
only, which is three variables (x, y, and z). In comparison, the wavefunction of an n-
electron system is a function of 4n-variables, three spatial and one spin coordinate for
every electron in the system. Regardless of the size of the system, DFT methodologies
will always be reliant on only three variables while wavefunction methods grow in
computational cost with every electron added into the system. The low computational
cost of DFT has led to a steady increase of utilization in computational chemistry.

2.4.1 Kohn-Sham Formulation of Density Functional Theory

Current DFT calculations are based on the Kohn-Sham (KS) approach. However,
before KS, two theorems were proposed by Hohenberg and Kohn which helped pave
the path for current DFT based methods. The first Hohenberg-Kohn theorem states
that all ground state properties of a molecule can be determined by the ground state
electron density functional, ρ0(x, y, z).

E0 = E[ρ0] (2.4.1)
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The theorem states that given the electron density, the energy can be calculated.
The second Hohenberg-Kohn theorem is the DFT counterpart of the wavefunction
variational method, stating that any trial electron density function will give an energy
higher than (or equivalent to, if it were exactly the true electron density function)
the true ground state energy.

Eν [ρν ] ≥ E0[ρ0] (2.4.2)

Where, ρν is the trial electron density and E0[ρ0] is the true ground state energy,
corresponding to the true electron density ρ0. The trial density must also satisfy the
condition

∫
ρν(r)dr = n where n is the total number of electrons in the n-representable

system. Overall, Hohenberg and Kohn demonstrated that there is a universal func-
tional of the density F, which does not depend on the details of the system and gives
its energy,

E[ρ(r)] =

∫
νn(r)ρ(r)dr + F [ρ(r)] (2.4.3)

where, νn is the external Coulomb potential created by the nuclei. This functional
of the energy is minimized by varying the electron density however, we do not have
a good starting point for the electron density and we also do not know the exact
functional F. The KS equations assists in combating both of these problems.
In the KS framework, the system is created with non-interacting electrons where the
ground state density is the same of the physical system. Because the electrons do
not interact, the wavefunction is denoted by a SD of orthonormal orbitals and the
density is given by

ρ(r) =
N∑
i=1

ψKS∗i (r)ψKSi (2.4.4)

These orbitals are calculated by solving the KS equations.[
−1

2
∇2
i + νn(r) +

∫
ρ(r2)

|r1 − r2|
+ νxc(r)

]
ψKSi = εiψ

KS
i (2.4.5)

It is often easier to understand the KS equation by rewriting equation 2.4.5 in terms
of energy,

Etot[ρ] = ET [ρ] + EV [ρ] + EJ [ρ] + EXC [ρ] (2.4.6)

The exchange-correlation, νxc and Exc, is a key piece to the KS equations. This term
accounts of the correlated motion of electrons which the Coulombic term lacks to
include. The exchange-correlation potential functional is a process of transforming
the electron density into the exchange-correlation energy. This energy compensates
for self-interaction error (SIE ), in which, when the electrons interacting are assumed
as a charge cloud. Within SIE , electrons can become much closer to one another than
in reality. The energy also accounts for the deviations in the kinetic energy due to the
non-interacting electrons. The exchange-correlation energy can be divided between
the exchange and correlation functionals.

Exc[ρ] = Ex[ρ] + Ec[ρ] (2.4.7)
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A good functional will handle not only exchange and correlation errors but also SIE
and kinetic energy errors where, the Ex term corrects for the strongly correlated
motion of electrons of the same spin and removes nonphysical self-repulsion terms
in the potential energy term and Ec corrects the more weakly correlated motion of
electrons of opposite spin.
SIE is an error that is a consistent problem throughout DFT functionals. In DFT the
energy is a functional of the single-particle density so there is no way to distinguish
between Coulomb interactions and self-interaction (26). In the DFT methodology,
the interaction of each electron is characterized as an electron interacting with the
entire electron density, which includes its own density, as the Coulomb energy. The
self-interaction is removed from the Coulomb energy with the utilization of the ap-
proximate functionals discussed in the following subsection. However, the Coulomb
should cancel with the exchange exactly but in approximate DFT functionals it does
not thus causing the SIE . In comparison, HF methodologies do not experience SIE
due to the fact that the exchange term in HF is exact thus, the SIE is not present in
the calculation.
In DFT, the primary issue stems from devising a good exchange correlation functional,
Exc[ρ]. The sophistication of the Exc[ρ] has steadily increased and the hierarchy of
theory has been termed as Jacobs Ladder, where the top of the ladder will culminate
the divine functional, demonstrated in figure 2.3. In further sections, only functionals
from the 3rd, 4th, and 5th rung of Jacobs ladder are used. However, a very brief
description of each rung will be described below.

2.4.2 Jacobs Ladder: Including Electron Correlation into DFT

Figure 2.3. Illustration of Jacobs Ladder of DFT

The first rung and simplest approximation to the exchange-correlation energy is
from the Local Density Approximation (LDA). In which one assumes that at every
point in the molecule, the energy density has the value that would be given by a
locally homogenous electron gas. LDA functionals are generally, not accurate enough
for studying chemical systems due to the fact that the energy density can change
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drastically when moving across the molecular surface. However, these functionals are
useful for large scale materials. Because LDA assumes a constant density, for an im-
proved description of the exchange-correlation functional, a gradient is included in the
second rung of Jacobs ladder known as Generalized Gradient Approximation (GGA)
functionals. In GGA, the exchange functional utilizes both the electron density and
the gradient, which is the first derivative of the density with respect to position.
GGA corrections were a major advancement in practical DFT calculations, where
equation 2.4.7 is taken advantage of in combination with the utilization of both the
electron density and gradient, and the total exchange correlation energy functional
can be divided into an exchange, ex. B88, and a correlation functional, ex. LYP.
The 3rd rung of Jacobs ladder, termed meta-GGA, can provide further improvement
on the GGA approach by utilizing the second derivative of the density. However,
computing the second derivative can create some computational problems, but this
can be avoided by making the functional dependent on the kinetic energy density
rather than the electron density, by summing the squares of the gradients of the KS
molecular orbitals.
The functionals in the 4th and 5th rung of Jacobs ladder utilize HF exchange in
addition to the DFT exchange-correlation term. The justification lies in the adiabatic
connection in which the exchange-correlation energy can be taken as a weighted sum
of the DFT exchange correlation energy and the HF exchange energy. In hybrid DFT
functionals, 4th rung of Jacobs Ladder, the HF exchange is computed using the KS
orbitals of the non-interacting electrons. These electrons have no Coulomb interaction
but they do show Pauli repulsion of electrons. The total hybrid DFT functional
equation’s main distinguishing characteristic is the percentage of HF exchange.

Exc = (1− ax)EGGA
x + axE

HF
x + bEGGA

c (2.4.8)

Even further improvements to DFT come from the 5th rung of Jacobs Ladder, which
corresponds to double-hybrid (DH) methodologies, where the exchange contribution
is a hybrid of GGA and HF exchange and the correlation is a hybrid of DFT and
MP2-like correlation, computed with Kohn-Sham orbitals (27; 28).

Exc = (1− ax)EGGA
x + axE

HF
x + bEGGA

c + c(γααE
ααPT2
c + γαβE

αβPT2
c ) (2.4.9)

DH methods have shown their utility and accuracy for both ground (29; 30) and
excited state systems (31; 32; 33; 34) showing that they are the most reliable density
functional approximations that even rival wavefunction based approaches (35). The
efficacy of DH methodologies are examined in more detail in Chapter 4.
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CHAPTER 3

ELECTRIC FIELD CONTROL OF MULTISTATE PROCESSES

Electric Field Control

Control of chemical kinetics and thermodynamics is at the core of chemistry. While
the role of macroscopic properties, such as temperature, pressure and concentra-
tion are routinely used, recent developments have sought to control chemical reac-
tivity at the molecular level through the use of ultrafast lasers and electric fields
(36; 37; 38; 39; 40; 41). In particular, there has been significant recent interest in
electric field control of chemical reactions based on modifying the stability of differ-
ent charge distributions in structures along reaction pathways. There are two modes
by which electric field interaction with molecules can modify reactivity. Firstly, sys-
tems in which permanent multipole moments change significantly in direction and
magnitude as the reaction proceeds display behavior that can be rationalized by
classical electromagnestism. The effect of permanent electrostatics has been hypoth-
esized as playing a key role in enzyme catalysis (42; 43). Secondly, recent work has
demonstrated how relative contributions of valence bond structures to the molecular
wavefunction can be modified depending on (de)stabilization of charge distributions
within each configuration, demonstrating how systems with no net charge distribution
interact with electric fields (44). Together, the mechanisms of electric field interac-
tion with molecules modify reaction pathways and can be used to control chemical
reactivity.

The control and manipulation of chemical reactions through applied electric fields
have been demonstrated both experimentally and theoretically in a growing number of
chemical systems (45; 46; 47; 48). Shaik et al. calculated that selectivity of Diels-Alder
reactions could be controlled by the use of correctly oriented electric fields (49; 50),
which was subsequently corroborated experimentally (51; 52). In addition, oriented
external electric fields (OEEFs) have been investigated theoretically to control elec-
tron transfer reactions (53), reactions of iron porphyrins (54), substitution reaction
mechanisms (55), nitromethane decomposition (56), electrochemical CO2 reduction
(57) and radical stability (58). Experimentally, electric fields have been shown to
modulate component exchange in dynamic liquid crystals (59), selectivity in epoxide
rearrangement on an Al2O3 surface (60), direct desulfurization on Cu(111) surfaces
(61), and hydrogen evolution reactions on MoS2 nanosheets (62). Despite growing
understanding of electric field effects on molecular ground states, very few investi-
gations of OEEFs on excited state reaction pathways have been performed. Coote
et al. have examined electric field effects on vertical excitation energies of acetophe-
none (63), while Knoch et al. studied the effect of OEEFs on modifying accessibility
of electronic state crossings in p-coumaric acid (64). The study was motivated by
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the identification that the electronic states responsible for photoisomerization across
photobiological systems show charge separation that can be stabilized through the
protein electrostatic environment (65; 66). In particular, p-coumaric acid is the chro-
mophore of the photoactive yellow protein, where the electrostatic environment of
the protein environment was identified as enabling trans-to-cis isomerization (67).

Unsubstituted Azobenzene
1

3.2.1 Introduction

In this chapter we seek to understand the role of OEEFs on modulating the thermal
and photo-isomerization of azobenzene. The ultrafast photoisomerization of azoben-
zenes is well studied (68) and used to develop photochromic molecular switches in di-
verse applications including molecular machines (69), biomolecules and drug delivery
systems (70; 71), and solar thermal fuels (72; 73) through functionalizing the azoben-
zene scaffold. Azobenzenes have several interesting properties that suggest the use of
OEEFs as a design paradigm for developing advanced devices. In particular, azoben-
zene has among the largest dipole moments found in organic molecules (∼ 3.5 D in the
cis geometry compared to e.g. alkanes (< 1 D) and formaldehyde (2.33 D) (74)) and
the orientation of the dipole is strongly dependent on the geometry, suggesting that
OEEFs can selectively act on different regions of the PES. In addition to permanent
electrostatics, the contributions of different resonance structures arising from conju-
gation in azobenzene can be modified through application of OEEFs. Azobenzene
can be functionalized to obtain push-pull azobenzenes which can enhance the role of
OEEFs, which will be further discussed in section 3.3.1. Before functionalization can
be performed, it is necessary to understand how the scaffold itself responds to OEEFs.
Several previous studies have examined the isomerization response of azobenzenes un-
der electric fields, including using scanning tunneling microscopy over azobenzenes
adsorbed on surfaces (75; 76; 77), electrochemical processes (78; 79), in polar liquids
and liquid crystals (80), self-assembled monolayers of azobenzenes on gold (81), and
as a recording medium for polarization holography (82). However, only cis-to-trans
isomerization was observed to be enhanced and there has not been an examination of
the response to concerted perturbation by electric fields and light. Furthermore, the
shape of the PES around the intersection seam which is important for determining
photochemical reactivity has never been examined under applied field conditions.”

In this chapter we will demonstrate that the ground and exited-state PESs of
azobenzene can be manipulated based on the direction and magnitude of an applied
electric field enabling control of photoreaction products. Examination of different
field-free isomerization pathways have indicated the presence of both rotation and

1Adapted with permission from Kempfer-Robertson, E. M., Avdic, I., Haase, M. N., Pike, T.
D. & Thompson, L. M. Protonation State Control of Electric Field Induced Molecular Switching
Mechanisms. Physical Chemistry Chemical Physics 55, 5251-5261 (2023). Copyright 2023 The Royal
Society of Chemistry.
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inversion pathways on the S1 surface which decay via the same extended seam to the
S0 surface (83; 84; 85). In addition, the less-studied thermal isomerization can proceed
via either a rotation or inversion pathway, with recent work suggesting the inversion
isomerzation pathway is more energetically favored (85). First, we examine the effect
of OEEFs on the S1 pathway, including how electric fields modify accessibility to the
conical intersection (CI) as well as the shape of the branching space around the CI,
and so changes observed photoproducts and quantum yields (86; 87; 88). Secondly,
we demonstrate the effect of OEEFs on the accessibility of S0 rotation and inversion
pathways.

3.2.2 Theory and Computational Details

All calculations were performed using the CASSCF method within Gaussian 16 (89).
Ideally, the whole π system of azobenzene, 18 electrons and 16 orbitals, should be
included in the AS but computational expense necessitated truncation to 10 electrons
in 8 orbitals, as was used by Casellas et al (85). The omitted π orbitals were excluded
on the basis that the occupation numbers did not change significantly from two or
zero over the relevant regions of the field-free potential energy surface, and that use
of a 14 electron in 12 orbital AS did not result in a significant change geometries
or relative energies of test calculations. Fig. 3.1 shows the 8 AS orbitals at the
azobenzene trans geometry, containing π and π∗ benzene ring orbitals, π and π∗

azo group orbitals, and nonbonding nitrogen orbitals. Dynamic correlation has been
shown to play an important role in obtaining quantitative agreement with experiment
(84; 85). However, this study assumes that the CASSCF PES is qualitatively correct
and focuses on the changes induced by OEEFs on such a surface. As the principle
effect of OEEFs is on static correlation and the study is focused on the qualitative
changes of the PES that occur upon application of OEEFs, the conclusions are likely
to be valid even though we have not investigated the role of dynamic correlation.
Our field-free results are in agreement with those obtained from CASSCF references
used in CASPT2 studies suggesting that any discrepancy between our values and
experiment is as a result of neglecting dynamic correlation (84).

The azobenzene ground state has C2h symmetry in the trans isomer and C2 sym-
metry in the cis isomer. In the absence of an electric field, the orbitals belong to an
irreducible representation of the nuclear point group (indicated in Fig. 3.1 for the C2h

trans isomer). As a result of truncation of the AS, point group symmetry breaking
was observed in the reference orbitals, which captures additional correlation missing
in the multiconfigurational expansion. The results presented in this work are those
that allow symmetry-broken reference orbitals where present, rather than symmetry
adapted orbitals, although the relative energy difference between the approaches was
only around 1-2 kcal mol-1. The rationale for admitting a symmetry-broken reference
is that the nuclear point group is C1 at the S0/S1 CI so nuclear symmetry is not
preserved across the reaction path, and applied OEEFs lower the molecular symme-
try and so it would be inconsistent to require a higher symmetry of the field-free
calculations (90).
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(a)Nonbonding (ag) (b)Benzene π (bg) (c)Benzene π (au) (d)Nonbonding (bu)

(e)Azo π (au) (f)Azo π∗ (bg) (g)Benzene π∗ (bg) (h)Benzene π∗ (au)

Figure 3.1. Molecular orbitals selected for the 10 electrons in 8 orbitals CASSCF
calculation, shown at the ground state trans structure. Irreducible representation
labels shown are strictly only correct at the C2h symmetry shown, but are used as
labels throughout the text.

All stationary points along the rotation and rotation-inversion pathways were op-
timized using the 6-31G(d) basis set used in previous studies (84; 85). Although the
S2 surface is likely to play a role in the initial photoisomerization pathway, theo-
retical calculations have indicated that at low energies population of S2 is transient
and rapidly accesses the S1 surface before reaching the S0/S1 CI (91; 83; 84; 85).
Therefore, the present study is focused on the S0 and S1 electronic states. Geometry
optimization was performed using field-free conditions and was re-run at all mag-
nitudes of OEEFs applied along three different axes (fig. 3.2): the axis defined by
the dipole moment (Fdip), the N−−N axis (Fazo), and the axis defined by connecting
the centroid of a phenyl ring to the nearest azo N atom (Fphe). Note that there
are two Fphe axes which are usually degenerate due to symmetry. The electric field
sign convention is the same as that used by Shaik and coworkers (45), where positive
sign indicates that the field gradient along the specified axis points from the negative
charge to the positive charge. Electric fields were applied in increments of ±0.0025
au along each axis up to a field strength of ±0.0100 au, which is ∼ 0.1× the inten-
sity of a typical laser field and the same order of magnitude as electric fields found
inside protein active sites (92; 42; 93), at electrode surfaces (57; 94), and that result
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Figure 3.2. Orientation of external fields applied to azobenzene in this study show-
ing a) Fdip, b) Fazo and c) Fphe.

from dipole-dipole and hydrogen bonding in molecular systems (95; 96; 97) (1 au =
5.14× 103 MV cm−1).

3.2.3 Results

Before discussion of the electric field effect on the isomerization of azobenzene, we
first discuss the field-free reaction profile for comparison. The field-free results es-
sentially reproduce the CASSCF results of Conti et al(84) and the relative energies
and dipole moments are summarized in table 3.3. The optimized ground state cis
and trans minima (S0 (cis) and S0 (trans) structures respectively) and the transition
state structures of the rotation and inversion pathway (S0 (rot ts) and S0 (inv ts)
respectively) are shown in fig. 3.3. The S0 (trans) structure is planar and due to a
center of inversion has zero dipole moment. Through thermal or photoisomerization,
azobenzene is converted to the S0 (cis) structure, which was computed to have a
dipole of 3.4 D orientated between the phenyl groups and perpendicular to the azo
bond. The S0 (cis), S0 (rot ts), and S0 (inv ts) structures are 15.1, 59.0 and 47.9 kcal
mol-1 less stable than the S0 (trans) structure respectively suggesting thermal isomer-
ization occurs through the inversion pathway. The stability of the inversion pathway
transition state results from photoisomerization via inversion of an sp2-hybridized
orbital on one of the nitrogens which preserves the double bond character of the azo
group, while in the rotation pathway the azo bond length increases 0.1 Å reducing π
conjugation as the nonbonding and π-bonding orbtials on the azo group switch roles.

Starting from the S0 (trans) structure, excitation to the S1 state is then followed by
relaxation to the S0/S1 seam of electronic degeneracy. The minimum energy conical
intersection along the rotation pathway (S0/S1CIrot) and S1 structures optimized
with CNNC angles constrained to 180° and 0° (S1 (trans) and S1 (cis) respectively)
are shown in fig. 3.3. Motion orthogonal to trans-to-cis isomerization in the branching
space around S0/S1CIrot connects photodissociated (or vibrationally hot) products,
corresponding to azo dissociation and formation of 2Ph· + N2. The S1 (cis) and
S0/S1CIrot structures both contain permanent dipoles that are in the same direction
as their relative ground state structures but the total dipole moment is smaller because
the excitation is of nπ∗ character and results in charge transfer into the phenyl rings
opposing the ground state dipole (the S1 (cis) and S0/S1CIrot have dipoles of 1.4 D
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Figure 3.3. Optimized structures of azobenzene S0 and S1 potential energy surfaces
showing both S0 rotation and inversion pathways.

and 0.5 D smaller than their corresponding ground state structures (S0 (cis) and S0

(rot ts) rotation respectively). The S0/S1CIrot, S1 (trans), and S1 (cis) structures are
64.3, 69.4, and 87.1 kcal mol-1 above the S0 (trans) structure respectively. Unlike for
the ground state, there is no alternative isomerization pathway via inversion under
field-free conditions as this channel has a substantial barrier and the S0/S1 energy
gap is large across the reaction path (83).

Use of CASSCF permits analysis of the wavefunction in terms of configuration
weights. As each configuration has a different charge distribution, application of
OEEFs will change the character of the wavefunction through configuration weight
modification. To interpret the effect of OEEFs on wavefunction character, we first
discuss the field-free wavefunctions. In the following discussion, orbitals are labelled
by the character and irreducible representation at the C2h geometry given in fig. 3.1.
The trans S0 minimum (S0 (trans)) is dominated by a single configuration of squared
(and thus normalized) CI weight 0.90 with double occupation of nonbonding ag, ben-
zene π bg, benzene π au, nonbonding bu and azo π au. The cis S0 minimum (S0 (cis))
is also dominated by a single configuration with weight 0.90, but the configuration
corresponds to a π2π∗2 excitation of orbitals at the trans geometry, with double oc-
cupation of azo π∗ bg instead of azo πau as a result of torsion around the π bond.
We emphasize that the π∗ label is only with respect to occupation of orbitals at the
trans reference, but at the cis geometry the azo π∗ bg orbital is in fact occupied in
the ground state and corresponds to a π bonding orbital.

In the S0 transition structure wavefunctions (S0 (rot ts) rotation and S0 (inv ts)
inversion) there are two important configurations that are common to both wavefunc-
tions – the ground state configuration which dominates the S0 (trans) wavefunction
and a nπ∗ configuration which corresponds to a single excitation from nonbonding bu
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to azo π∗ bg. In the rotation pathway transition structure S0 (rot ts) the wavefunction
displays significant nπ∗ character (weight 0.44), although with the major contribution
still from the ground state configuration (weight 0.59), while the inversion pathway
transition structure S0 (inv ts) wavefunction remains of greater ground state char-
acter (weight 0.90) with a much smaller contribution from the nπ∗ configuration
(weight 0.04). Excited state structures show greater multireference character than
corresponding ground state structures. S1 (cis) has four important configurations –
two of nπ∗ character which differ as a result of single excitation from nonbonding ag or
nonbonding bu, with weights of 0.05 and 0.03 respectively, one n2π∗2 excitation (dou-
ble excitation from nonbonding bu) with weight 0.44, and the previously discussed
π2π∗2 with weight 0.44. The S1 (trans) wavefunction has two important configura-
tions both describing the nπ∗ excitation, with weights 0.90 (nonbonding ag) and 0.05
(nonbonding bu). Finally S0/S1CIrot has three important configurations with closed
shell ground state, nπ∗ (nonbonding ag), and π2π∗2 character, with weights 0.40, 0.46
and 0.03 respectively.

3.2.3.1 Modification of photoisomerization pathways

Having examined the electronic structures and geometries of azobenzene S0 and S1

PESs under field free conditions, we now discuss the effect of OEEFs on the azoben-
zene S1 PES. Application of negative Fdip (fig. 3.4a and 3.4b and table 3.4) stabilizes
S1 (cis) and S0/S1CIrot and causes an increase in the dipole, while positive Fdip
destabilizes charge separation and increases the energy at weak fields. In contrast,
S1 (trans) has no permanent dipole under field free conditions and so application of
any field regardless of the orientation allows charge separation and results in relative
stabilization compared to the field-free energy. At strong positive Fdip (≥ 7.5× 10−3

au), we observed a strong-field dipole-inversion effect in S1 (cis), in which the applied
field is strong enough that charge barycenters realign to be antiparallel to the applied
field. The result of the strong-field dipole-inversion effect is that the qualitative re-
sponse of the PES to the applied field follows a significantly different trend to that
at low-field strengths. With Fdip = +0.01 au, the strong-field dipole-inversion effect
causes S1 (cis) to be stabilized by 9.49 kcal mol-1, which is in fact only 0.50 kcal mol-1
higher energy than when Fdip = −0.01 au. The geometry changes of S0/S1CIrot are
relatively small, with the largest coordinate change being the NNCC torsion under
Fdip = ±0.01 au, which moves by −10.5◦ when the field is applied in the negative di-
rection and 13.2◦ when the field is applied in the negative direction. The effect of Fdip
on the various structures combined is that negative and weakly positive Fdip cause the
minimum energy rotation pathway CI to become more ‘peaked’ in character, while at
large positive Fdip, the energetic ordering of S0/S1CIrot and S1 (trans) is reversed and
the CI seam is energetically less accessible. Fig. 3.5 shows the minimum energy path-
way between S1 (trans) and S0/S1CIrot which also demonstrates that the sign of Fdip
can be used to change the qualitative shape of the PES around S0/S1CIrot. In addi-
tion, fig. 3.5 shows that +Fdip causes a minimum on the S1 CNNC torsion coordinate
at an angle of around 112.5◦ as a result of the strong-field dipole-inversion effect. As
the shape of the potential energy surface leading to the CI plays a role in determining
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Figure 3.4. Effect of +0.01 au (gold) and −0.01 au (red) orientated external electric
fields applied to photo and thermal isomerization pathways of azobenzene compared
to field-free conditions (black). Panels a, c and e (top row) shows positive fields and
panels b, d and f (bottom row) shows negative fields. Panels a and b (first column)
shows Fdip, panels c and d (middle column) shows Fazo and panels e and f (right
column) shows Fphe (4 – S0 inversion pathway, � – S0 rotation pathway, # – S1

rotation pathway). Energies are shown with respect to the field-free C2h structure.
Fig. 3.17 shows full results for all field strengths.

the excited state lifetime, which has traditionally been considered to correlate with
quantum yield, it would be expected that the quantum yield of photoisomerization
can be controlled by application of electric fields. Recent findings have demonstrated
the importance of vibronic coherence in determining quantum yield which cannot be
accounted for directly in our study (98; 99; 100). However, the changes in the shape
of the potential energy surface leading to the CI as well as the branching space (see
below) are likely to change the phase-matching mechanism required to yield the cis
isomer and so modify the quantum yield compared to the experimentally determined
field-free quantum yield on excitation to S1 of ∼ 0.2 (101).

We now discuss in more detail the effect of Fdip on the shape of the branching
space around S0/S1CIrot. The branching space coordinates that lift the electronic
degeneracy involve PhNNPh torsional motion along the derivative coupling vector
and symmetric NN stretching and PhNN bending along the gradient difference vector
(fig. 3.6). From S0/S1CIrot, coupled motion along both branching space vectors in the
forward (positive) direction leads to the S0 (cis) isomer, while motion in the reverse
(negative) direction leads to the S0 (trans) isomer. The PES defined by the branching
space vectors is shown in fig. 3.7 under field-free, Fdip = +0.01 a.u., and Fdip =
−0.01 a.u. conditions. The branching space PES under field free conditions shows
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Figure 3.5. Excited state rotation photoisomerization pathway under applied
electric fields of different orientations with strengths ±0.01 a.u. determined using
CAS(10,8)/6-31G(d) with constrained CNNC optimizations from vertical excitation
geometry (180◦) to conical intersection(90◦) (4 – positive fields, # – negative fields,
black – field-free, red – Fdip, green – Fazo field, blue – Fphe).

that energetically downhill degeneracy breaking occurs along the (+1,+1) or (-1,-1)
coordinate with an energy barrier along the (+1,-1) and (-1,+1) coordinates which
lead to molecular dissociation of the azo group. Under negative Fdip orientation, the
branching space is qualitatively similar to that under field-free conditions, although
the S0 surface is skewed with minima at (+1,+0.5) and (-1,-0.5) such that relaxation
to the cis or trans S0 minima involves a trajectory with vibrationally excited azo
bond. However, under positive Fdip the S0 surface is orientated 90◦ relative to the
field-free conditions, such that the energetically favorable and unfavorable degeneracy
lifting coordinates are now reversed. As a result, under strong positive fields the
rotation photoisomerization pathway of azobenzene is inhibited and photoexcitation
is channeled towards vibrationally hot NN and CN stretching modes.

Although the rotation pathway is now broadly accepted as the principle photoi-
somerization mechanism in azobenzene, the possibility of an inversion pathway has
been strongly articulated (102). To determine if OEEFs could allow access to the
inversion photoisomerization pathway, the S0/S1 energy gap was computed along
the interpolated pathway between S0/S1CIrot and the inversion thermal isomeriza-
tion transition state S0(ts, C2), which connect to each other through wagging of the
out-of-plane phenyl group (fig. 3.8). In addition, the interpolated pathway between
S0(ts, C2) and a planar inversion structure obtained by rotation of the out-of-plane
phenyl group was calculated. State averaged CASSCF calculations under field-free
conditions demonstrated that although the planar inversion structure had a smaller
energy gap than the nonplanar inversion structure, both structures had an S0/S1

energy gap of over 30 kcal mol-1. Application of Fdip changes the energy gap at the
nonplanar inversion structure by -4.21 kcal mol-1 under negative field orientations
and by +4.00 kcal mol-1 under positive field orientations, while the inverse effect is
observed at the planar inversion structure (+1.87 kcal mol-1 and -1.95 kcal mol-1 un-
der negative and positive Fdip fields respectively). Thus, even though the change in
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(a)Derivative Coupling (X1)

(b)Gradient Difference (X2)

Figure 3.6. Derivative coupling (panel a) and gradient difference vectors (panel
b) that define the branching space around S0/S1CIrot computed using CAS(10,8)/6-
31G(d).

S0/S1 energy gap along the inversion pathway is not trivial, the total gap is still sub-
stantial and so Fdip application does not permit photoisomerization via the inversion
pathway.

Unlike Fdip, application of Fazo results in stabilization of excited state structures
regardless of the orientation and strength of the applied field (fig. 3.4c and 3.4d and
table 3.5). To understand the behavior of Fazo, the S1 (cis) structure can be used as a
representative example. The S1 (cis) wavefunction has four important configurations
– π2π∗2, two nπ∗ and n2π∗2. The nπ∗ configurations show charge transfer into the
phenyl rings relative to the ground state, while the n2π∗2 and π2π∗2 configurations
preserve electron density on the azo group. Therefore, the nπ∗ configurations display
charge separation along the same axis as the Fazo orientation. Application of Fazo
breaks the C2 symmetry of the two nπ∗ configurations into a configuration that corre-
sponds to charge separation favored by Fazo and another which is disfavoured by Fazo.
The π2π∗2 and n2π∗2 configuration weights decrease slightly with Fazo application (to
0.27 and 0.28 respectively at Fazo = −0.01 au), while the stabilized nπ∗ configuration
weight increases (to 0.34 at Fazo = −0.01 au) and the destabilized nπ∗ configuration
weight decreases (to 0.00 at Fazo = −0.01 au), so that regardless of the orientation
of Fazo the effect on the relative energy is the same.
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(a)Fdip = +0.01 au

(b)Field-free conditions

(c)Fdip = −0.01 au

Figure 3.7. Potential energy surface of branching space around S0/S1CIrot com-
puted using CAS(10,8)/6-31G(d) under Fdip = +0.01 au (panel a), field-free (panel
b), and Fdip = −0.01 au (panel c) conditions. Coordinates are given by branching
space vectors shown in fig. 3.6. Surfaces are colored by energy relative to S0/S1CIrot,
with contour maps of S0 (red) and S1 (blue) surfaces shown below.
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Figure 3.8. Reaction coordinate between rotation, inversion, and inversion planar
transition structures under applied electric fields of different orientations with mag-
nitude of ±0.01au determined using stateaveraged CAS(10,8)/6-31G(d)(4 – positive
fields, # – negative fields, black – field-free, red – Fdip, green – Fazo field, blue – Fphe).

Whilst energy stabilization occurs regardless of applied Fazo orientation, S0/S1CIrot
is the only structure that has a different magnitude depending on Fazo orientation.
When Fazo is negative, S0/S1CIrot is 7% more stabilized than with positive field at
±0.0025 au and by 38% at ±0.0050 au. The differential stabilization results from
the fact that the S0/S1CIrot has reduced C1 nuclear symmetry compared to other
structures on S1 as a result of distortion of PhNN angles, so that one of the azo
nitrogens has a less negative partial charge than the other. Therefore, the resulting
symmetry broken nπ∗ configurations do not correspond to equal charge transfer and
so are differentially stabilized or destabilized depending on Fazo orientation. As a
result, fig. 3.5 demonstrates that both orientations of Fazo field preserve the peaked
nature of the conical intersection along with differential stabilization of S0/S1CIrot.
As for Fdip, Fazo did not result in the closing of the S0/S1 energy gap at either the
planar or nonplanar structures (fig. 3.8). However, of the three field axes examined,
Fazo had the largest effect on the S0/S1 energy gap, as (similarly to S0/S1CIrot) the
inversion isomerization structures have asymmetric electron density distribution over
the azo nitrogens.

The study of Fphe has two motivations. First, unlike Fdip the applied field is
orientated along an internal coordinate of the molecule and so provides a more realistic
simulation of an applied field that could be achieved in experiment, such as through
tethering the azobenzene molecule to a support. Second, upon nπ∗ excitation to the
S1 state, electron density moves from the azo group into the phenyl ring along the
axis of Fphe, suggesting that application of Fphe may be able to tune the gap between
S0 and S1. Application of Fphe results in similar relative energy modifications to Fdip
results (fig. 3.4e and 3.4f and table 3.6). However, Fphe has a component that interacts
with the charge redistribution that results from increased nπ∗ configuration weights in
S1 that is orthogonal to the S0 dipole. Negative Fphe applied to S1 (cis) increases the
weight of all important configurations except the nπ∗ (nonbonding bu) configuration
(weight 0.00 at Fphe = −0.01 au), stabilizing the field-free charge distribution and
increasing the permanent dipole to 7.45 D. However, positive Fphe stabilizes the nπ∗
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(nonbonding bu) configuration (weight 0.18 at Fphe = +0.01 au) while destabilizing
the nπ∗ (nonbonding ag), n2π∗2 and π2π∗

2 configuration (weights 0.01, 0.36 and 0.35
respectively at Fphe = +0.01 au).

Regardless of the axis or orientation of the applied field the vertical excitation
energy from S0 (trans) remains essentially constant. Fdip causes similar charge redis-
tribution in both electronic states as, owing to inversion symmetry, neither the S0 or
S1 surfaces possess a permanent dipole. Application of a field in either orientation
is symmetrically equivalent and reduces the symmetry of the wavefunction to allow
charge separation. Similarly, stabilization of S0 (trans) depends on the strength of
Fazo, while in the S1 state, Fazo aligns with the axis of charge separation in the two
dominant nπ∗ configurations that are equivalent but display opposite dipoles. Thus,
depending on the Fazo orientation one of the nπ∗ configurations is stabilized at the
expense of the other, but as both configurations are equivalent the energy stabiliza-
tion is identical. Application of Fazo shows the largest change in vertical excitation
energy of any of the three orientations, but only differs by 1 kcal mol-1 from the
field-free structure at ±0.01 au. Fphe similarly modifies the S1 (trans) wavefunction
by stabilizing one nπ∗ orientation over the other depending on orientation.

3.2.3.2 Modification of thermal isomerization pathways

In this section the effect of OEEFs on thermal isomerization pathways is examined.
First, we look at the Fdip applied to the S0 PES (figs. 3.4a and 3.4b and table 3.4).
Structures S0 (cis), S0 (rot ts), and S0 (inv ts) are stabilized by a negative field and
destabilized by a positive field; as the negative field vector stabilizes the zero-field
charge distribution and causes an increase in the permanent dipole. As in S1, the
exception on the S0 surface is S0 (trans) which does not exhibit a permanent dipole
and so application of the external field favors charge separation to counter the ap-
plied field and causes an opposing dipole moment regardless of the field orientation.
Application of −Fdip reduces the height of the rotation thermal trans-to-cis isomer-
ization barrier by up to 6.55 kcal mol-1 at -0.01 au, which is 11% of the field-free
barrier height. The inversion pathway follows a similar trend, with the trans-cis bar-
rier decreasing by 6.66 kcal mol-1 when Fdip = −0.01 au (fig. 3.9). In contrast to the
thermal trans-cis isomerization which is reduced, the height of the cis-trans reaction
barrier increases under −Fdip, with the rotation barrier increasing by 1.91 kcal mol-1
and the inversion barrier increasing by 1.80 kcal mol-1 (fig. 3.9). Despite the signif-
icant energetic effect of Fdip on reaction barriers (in absolute terms, rather than as
a fraction of the field-free barrier), the configuration weights of S0 structures do not
change significantly relative to the field-free wavefunction.

We now discuss the effect of Fazo application on the S0 PES (figs. 3.4c and 3.4d
and table 3.5). Application of Fazo causes smaller changes in relative energy and
geometry in comparison to Fdip. Stabilization of structures is equivalent regardless of
whether negative or positive Fazo is applied because there is no contribution to the
permanent dipole along the NN bond in any structure. Thus, Fazo applied in either
direction stabilizes charge separation across NN and lowers the overall energy. The
exception is the S0 (inv ts) transition structure where one phenyl ring moves while
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Figure 3.9. Effect of thermal isomerization reaction barrier computed using
CAS(10,8)/6-31G(d) under different field orientations and strength. Panel a shows
the trans-cis thermal isomerization reaction barrier and panel b shows the cis-trans
thermal isomerization reaction barrier (� – rotation pathway, 4 – inversion pathway,
black – Fdip, blue – Fazo, red – Fphe).

the other remains stationary, creating a small dipole contribution along the NN bond
(1.09 D component compared to a total dipole of 2.41 D) that is favored by a positive
Fazo and disfavored by negative Fazo. However, Fazo = −0.0075 au is strong enough
to invert the orientation of NN dipole component and stabilize the energy of S0 (inv
ts). Similarly to Fdip, the wavefunction configuration weights in each S0 structure
do not change significantly upon application of Fazo. The projection of the dipole
moments on the Fazo field for the S0 reaction, shown in figure 3.19, demonstrate that
the rotation barrier does not affect the dipole as much as it does for the inversion
pathway and that is dependent on the contribution to the dipole moment coming
from the same direction. The inversion pathway has much larger contribution to the
dipole moment than the rotation pathway which is causing the discrepancy between
the two pathways.

Application of Fphe to the S0 ground state results in relative energy changes of a
similar magnitude and direction to Fdip (fig. 3.4e and 3.4f and table 3.6). Application
of negative Fphe stabilizes all ground state structures while destabilization occurs with
positive Fphe. Although Fphe is not aligned with the permanent dipole, it is close in
orientation in structures S0 (cis), S0 (rot ts), and S0 (inv ts) resulting in similar,
although smaller, energy changes. The reaction barrier for the trans-cis rotation
pathway is lowered by 1.33 kcal mol-1 at Fphe = −0.01 au compared to 6.55 kcal
mol-1 at Fdip = −0.01 au. Similarly, the trans-cis inversion pathway reaction barrier
is stabilized by 3.18 kcal mol-1 at Fphe = −0.01 au compared to 6.66 kcal/mol at
Fdip = −0.01 au. For the thermal cis-trans isomerization, Fphe = −0.01 au increases
the rotation pathway barrier by 1.84 kcal mol-1 and reduces the inversion barrier
pathway by 0.01 kcal mol-1. At application of large positive Fphe, S0 (rot ts) and S0

(inv ts) structures are stabilized relative to application of medium positive Fphe as
the dipole moment inverts to align with the field. The strong-field dipole-inversion
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effect causes the barrier to be reduced in height relative to the field-free barrier even
though the field orientation destabilizes the structure with weak fields. For example,
at Fphe = +0.01 au the thermal cis-trans rotation barrier is reduced by 2.77 kcal
mol-1 as expected, while contrary to expectations based on the weak field response,
the inversion barrier is also reduced by 1.33 kcal mol-1. Therefore, the largest cis-
trans thermal inversion barrier is in fact found in the weak-field limit. In figure 3.20,
we show that the projection of the dipole on the Fphe field is somewhat similar to
the Fdip field especially for the rotation pathway. Therefore this pathway would be
a great alternative to the Fdip field which would be experimentally hard to achieve
with the changing dipole direction throughout the isomerization process.

Examining the effect of Fdip, Fazo and Fphe on the S0 PES, it is apparent that there
is no selective control enabling switching between inversion and rotation pathways as
both behave similarly regardless of the applied field, although it is possible to control
the barrier heights of both pathways. For example, application of Fdip can be used to
stabilize the S0 (cis) structure and reduce the rate of cis-trans thermal isomerization,
potentially providing a route to improved devices that use azobenzene as an energy
storage medium. In addition, Fdip is dependent on molecular geometry and a fixed
electric field that most favors stabilization of cis azobenzene would not stabilize the
transition structures to the same extent. Based on the values in 3.4, an electric field
which simultaneously stabilizes S0 (cis) and destabilizes the transition structures by
their ±0.01 a.u. energies could increase the cis-trans thermal isomerization barrier
by on the order of > 10 kcal mol-1. Similarly, a field that stabilizes the transition
structures while disfavoring S0 (cis) could decrease the cis-trans isomerization barrier
by > 10 kcal mol-1. The projection of the dipole moments on the applied field axes
(figs. 3.18–3.20) demonstrate the similarity of Fphe and Fdip, despite the fact that Fphe
is defined by an internal coordinate of the molecule. Therefore, the results of Fdip
could be reproduced (although requiring larger fields), by applying an external field
along Fphe. Such an axis could be determined by tethering of azobenzene molecules
to a surface attached by the para-position of one of the phenyl rings and applying
fields parallel or perpendicular to the surface.(103) Thus electric fields provide a route
for developing improved devices such as solar thermal fuels that utilize azobenzene
to store energy, by reducing thermal autodischarge and so improving storage lifetime
and facilitating thermal revision of the fuel form to produce heat.

3.2.4 Conclusions

The effect of orientation and magnitude of applied external electric fields on azoben-
zene PESs was explored theoretically to understand how OEEFs may provide a new
approach in the design of azobenzene-based devices. Through calculation of the
azobenzene S0 and S1 stationary points, it has been established that applied fields
can modify the energy ordering of vertical excitation and S0/S1 minimum energy
conical intersection geometries, such that the initial photorelaxation pathway on S1

involves an energetic barrier along the isomerization coordinate. The branching space
around the S0/S1 minimum energy conical intersection was found to be qualitatively
different under applied fields compared to the field-free conditions, with strong pos-
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itive fields changing the energetically favorable relaxation pathway on S0 from an
isomerization coordinate to an azo dissociation coordinate. Despite the changes to
the S1 PES, applied electric fields were unable to modify the S0/S1 energy gap such
that photoisomerization could proceed though a competing inversion pathway. We
conclude from our findings on the applied field response of the S1 PES that the quan-
tum yield of photoisomerization is likely to be significantly decreased or enhanced
through application of electric fields of specific orientations and strengths. On S0,
the inversion and rotation pathway transition structures were found to follow the same
trend in applied field response, and so there is no given field orientation or strength
that could switch thermal isomerization mechanisms. However, the barrier heights
of photoisomerization reactions could be modified by on the order of ±5 − 15 kcal
mol-1 such that electric fields could be used as a design motif to enhance or inhibit
thermal revision of the cis fuel form in solar energy devices. Finally, a strong-field
dipole-inversion effect was observed that resulted in electric field response trends at
strong fields being qualitatively different to that at weak fields. The dipole inversion
effect also has a geometric dependence that can lead to formation of new minima
in the PES that do not exist under field-free conditions. Future developments using
azobenzene as a scaffold to exploit and enhance the electric field response has the
potential to provide new directions in device design.

Substituted Azobenzene (Di-Hydroxy Azobenzene)
2

3.3.1 Introduction

Now that we have examined the PES and the effect of OEEFs on the unsubstituted
Azobenzene we will now examine the enhancement of azobenzene properties. In
order to enhance the properties of azobenzene in its function as a molecular switch,
a large number of azobenzene derivatives obtained by modification of aromatic rings
and/or addition of substituent groups have been synthesized and studied (104). Push-
pull azobenzenes, obtained through the addition of substituent groups to modify
resonance behavior, are a common strategy for decreasing isomerization lifetimes as
the polarization of the azo bond induces greater single-bond character. Related to
push-pull azobenzenes are dihydroxyazobenzenes, in which push-pull behavior can
be induced through protonation/deprotonation of the substituent groups providing
control of the isomerization rate (105; 106; 107; 108; 109; 110). Similar to inducing
push-pull character, OEEFs have also been demonstrated to modify isomerization
rates through polarization of the azo bond (111; 112). In this work, we examine the
use of OEEFs on dihydroxyazobenzene, in both protonated and deprotonated forms,
to examine how OEEFs i) interact differently with push-pull azobenzene compared

2Adapted with permission from Kempfer-Robertson, E. M. & Thompson, L. M. Effect of Ori-
ented External Electric Fields on the Photo and Thermal Isomerization of Azobenzene. The Journal
of Physical Chemistry A 124, 3520–3529 (2020). Copyright 2022 American Chemical Society.

33



to other azobenzenes, and ii) how a practical switch controlled by both OEEFs and
protonation state can be designed.

Although our previous work on the electric field response of azobenzenes provided
insight as to how OEEFs could be used as a control mechanism for molecular switches,
the modification of electric field response by tuning of substituent groups has not
been investigated. In this work we study protonated and deprotonated forms of di-
hydroxyazobenzene, which serves as a model system for understanding how push-pull
moieties that polarize the azo bond change the behavior with respect to symmet-
ric substituted species under electric fields. By performing a detailed mechanistic
study dihydroxyazobenzene, we reveal physical insight that is valid for all push-pull
species, even if the details may change depending on the exact nature of the sub-
stituents. Additionally, one of the hydroxyl groups serves as a moiety to enable
surface attachment. As a result, pH can be used to modify the protonation state
of the hydroxyl group exposed to the environment and consequently change the im-
portant resonance structures in the wavefunction by inducing push-pull character.
The findings provide insight into application of OEEFs combined with protonation
state and/or light to control electronic structure and hence modify the thermal and
photoisomerization kinetics and thermodynamics in order to control the lifetime of
switch states (107; 105).

3.3.2 Theory and Computational Details

Neutral and anionic forms of 4,4’-dihydroxyazobenzene were studied in which only
one hydroxyl group was deprotonated. The other hydroxyl group remained proto-
nated to simulate the situation where the oxygen is used as a linker to attach dihy-
droxybenzene to a surface, and so always has satisfied valencies. The calculations
were performed in gas phase except for the application of the homogeneous OEEF,
as direct solvent polarization of the molecule in a field addressable array device is
not expected to be significant relative to the applied field effect, and we assume
that the surface itself does not significantly perturb the molecule except for the ap-
plied field. Fig. 3.10 shows the molecular structures of protonated and deprotonated
molecules. Depending on the relative orientation of the free hydroxyl group with
respect to the azo group in HO−AB−OH, two possible geometries are possible. The
anti HO−AB−OH structure has the hydroxyl O−H bond oriented parallel to the azo
N−−N bond so that the molecule has a center of inversion with C2h symmetry, while
the syn HO−AB−OH structure has the hydroxyls O−H bond oriented perpendicular
to the azo N−−N bond, giving Cs symmetry and no center of inversion. Preliminary
calculations were performed and revealed that there is very little difference between
the anti and syn HO−AB−OH molecules. As a result, we focus on syn HO−AB−OH
and HO−AB−O– molecules in the remainder of this article. In addition to the struc-
tural differences between molecules, there is a dynamical difference depending on
which aryl ring is rotated along the isomerization pathway. However, as it is assumed
the molecule is tethered to a surface, only motion of the untethered ring is considered.

The Gaussian 16 suite of programs was used to perform all stationary point ge-
ometry optimizations (89). DFT and TD-DFT calculations were performed using
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Figure 3.10. Orientation of applied fields with respect to HO−AB−OH and
HO−AB−O– molecules. Arrows indicate the positive field direction and point from
the positive charge to the negative charge, while the ‘M’ label denotes the ring in
motion during isomerization.

B3LYP with the 6-311+G(d) basis set (113; 114). In order to study regions of the
PES where nonadiabatic effects were possible due to near-degeneracy of the S0, S1,
and S2 electronic states, CASSCF was performed with 10 electrons in 8 orbitals with
the 6-31+G(d) basis. All relevant geometries were first located under field-free condi-
tions, and then recomputed at different magnitudes of the applied OEEF. Stationary
points of the PES were confirmed by performing a normal mode analysis to ensure
the correct number of modes with imaginary frequencies (one for transition structures
(TSs) and zero for minima). The OEEF orientations are denoted as the FNN and
FOC fields, where the FNN field is applied along the azo bond of the molecule (fig.
3.10a for the protonated and fig. 3.10c for the deprotonated molecule) and the FOC
field is applied along the O−C bond of the phenyl ring attached to the surface that
is stationary during isomerization (fig. 3.10b for the protonated and fig. 3.10d for the
deprotonated molecule). The FNN field is studied because it directly connects the
two rings and so is most able to control push-pull behavior in the molecule, while the
FOC field is studied as it describes a field orientation perpendicular to a surface on
which the molecule is tethered. The electric field sign convention used in this work is
that a positive sign indicates the field gradient along a specified axis points from the
positive charge to the negative charge (the opposite of the Gaussian). Electric fields
were applied in increments of ±0.0025 a.u. up to ±0.0100 a.u. (1 a.u. = 5.14x103
MV cm-1) which are comparable to the electric field magnitudes found in scanning
tunneling microscopy break junction (STM-BJ) or at protein active sites (115; 116).
As the multipole moments of charged molecules are not invariant to the coordinate
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origin, the center of mass was used as the coordinate system origin when analyzing
the field-response properties in terms of the dipole.

In order to study the kinetics of ground-state isomerization reactions, the Eyring
equation was used to compute the rate constant for each isomerization mechanism ki

ki(E, T ) =
kBT

h
exp

{−∆‡Gi(E)

RT

}
(3.3.1)

where kB is the Boltzmann constant, T is the temperature (298K was used in this
study), h is Planck’s constant, ∆‡G is the Gibbs activation energy computed in the
rigid-rotor harmonic oscillator approximation, E is the electric field vector, and R
is the gas constant. The total rate constant ktotal is equal to the sum of the rate
constants for each isomerization mechanism

ktotal(E, T ) =
∑
i

ki(E, T ) (3.3.2)

and the half-life t1/2 could then be computed assuming that the isomerization mech-
anisms are first-order processes

t1/2(E, T ) = ln(2)/ktotal(E, T ) (3.3.3)

Eq. 3.3.2 gives the total rate constant of isomerization for a large number of molecules.
However, for any single molecule, the average isomerization half-life is computed using
the weighted average rate constant kav

kav(E, T ) =
∑
i

pi(E, T )ki(E, T ) (3.3.4)

where pi(E, T ) = N exp{−β(T )Ei(E)} is the normalized Boltzmann factor, with
β(T ) = 1/kBT . The expected half-life for the isomerization of any single molecule is
then obtained using eq. 3.3.3 with kav instead of ktotal.

3.3.3 Results

In this section we examine the behavior of the thermal and photo isomerization
pathways of 4,4’-dihydroxyazobenzene. First, we will discuss the field free thermal
isomerization pathways for both the protonated and deprotonated species. We will
then discuss and compare the thermal isomerization under the FNN and FOC fields.
In the following section, we detail the photochemical behavior of the protonated and
deprotonated forms by first examining the CI branching space and OEEF effects.
Finally, we will discuss the influence of the co mbination of pH and applied OEEFs
on the photochemical pathway.

3.3.3.1 Thermal Isomerization Pathways of 4,4’-dihydroxyazobenzene

3.3.3.1.1 Field-Free Ground State Potential Energy Surface Before dis-
cussing the application of OEEFs, we first detail the PES and dipole moments under
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Structure HO−AB−OH HO−AB−O–

∆E ∆G Dipole ∆E ∆G Dipole
S0 Trans 0.0 0.0 2.89 0.0 0.0 11.73
S0 Rot TS 45.2 45.5 3.83 29.9 28.3 3.63
S0 Rot Inv TS 44.2 43.1 4.43 41.9 40.7 9.69
S0 Inv TS 46.8 46.6 2.77 41.6 40.5 9.68
S0 Cis 17.1 17.0 4.37 17.0 17.0 8.86

Table 3.1. Relative bare electronic and Gibbs energies (kcal mol-1), and dipole
moments (Debeye) of optimized HO−AB−OH and HO−AB−O– S0 stationary points
under field-free conditions computed with B3LYP/6-311+G(d).

field free conditions, summarized in table 3.1. The thermal isomerization of azoben-
zene and its derivatives can occur through multiple different pathways: rotation,
rotation-inversion, and inversion pathways, where the inversion pathway has been
found to be the lowest energy pathway (117; 85). The rotation pathway involves tor-
sion of the CNNC dihedral concurrently with azo bond stretching. In contrast, the
inversion pathway moves along the NNC angle until it reaches 180◦ at the TS. Last,
the rotation-inversion pathway is a combination of both the rotation and the inver-
sion pathways, simultaneously moving along both CNNC dihedral and NNC angle
coordinates.

In HO−AB−OH, all three isomerization mechanisms have similar cis-to-trans
thermal isomerization Gibbs free energy activation barriers. The lowest Gibbs acti-
vation barrier is along the rotation-inversion pathway (∆‡G = 26.1 kcal mol-1), while
the rotation barrier is 2.4 kcal mol-1 higher, which is much closer to the inversion-
rotation pathway than in unsubstituted azobenzene (111). The activation energy
barriers for all three isomerization pathways are lower for dihydroxy azobenzene than
for unsubstituted azobenzene by 6.0 kcal mol-1 for rotation inversion, 18.9 kcal mol-1
for inversion, and 15.7 kcal mol-1 for rotation pathways. The lower activation energy
suggests that HO−AB−OH can achieve faster cis-to-trans isomerization (118). The
results are also in agreement with Crecca et al. (119) and confirm the preference
for the rotation-inversion pathway with functionalized azobenzenes. For the reaction
energy, cis dihydroxy azobenzene is less stable than the trans structure by 1.9 kcal
mol-1, in comparison to unfunctionalized azobenzene.

Deprotonation yields HO−AB−O– which, in comparison to the protonated coun-
terpart, gives lower energy activation barriers along all three pathways. The most
significant change in activation barrier upon deprotonation is along the rotation iso-
merization pathway. The reason for the change in the rotation pathway activation
energy is that this pathway requires a reduction in bond order in order to reach
the transition state, which reduces conjugation within the molecule and so is ener-
getically unfavorable. The available resonance structures for delocalization of the
negative charge on the oxygen upon deprotonation reduce the bond order of the azo
bond and so decrease the penalty for reducing conjugation to reach the TS (120).
The increase in bond length upon deprotonation is illustrated in fig. 3.11. In con-
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Figure 3.11. Azo bond length in rotation transition state at different FOC field
strengths for HO−AB−OH (blue) and HO−AB−O– (red), indicating electric-field
induced azo dissociation is not responsible for the reduced barrier height of inversion
via the rotation transition state.

trast, the inversion and rotation-inversion pathways do not require a reduction in
the bond order of the azo group, and so are not as affected by deprotonation as the
rotation pathway. The dipole moments of the deprotonated molecule are larger for
all structures than in the protonated molecule with the exception of the rotation TS,
suggesting the deprotonated molecule will show enhanced sensitivity to OEEFs. How-
ever, as different structures show different size changes in the dipole moment upon
deprotonation, it is expected that deprotonation will not only enhance the effect of
OEEFs, but fundamentally change the topology of the PES.

3.3.3.1.2 Electric Field Modification of the Ground State Potential En-
ergy Surface Having explored the S0 PES and associated charge distribution under
field-free conditions, we now study the electric-field response. Examining the effect of
the applied FNN field on the cis-to-trans thermal isomerization barrier heights (fig.
3.12a), it can be seen that positive fields cause a decrease in the rotation-inversion
activation energies (blue triangles), while negative fields increase the barrier height.
In comparison, the rotation pathway activation barrier (red circles) decreases in both
the positive and negative directions of the applied field because, although both the
cis minimum and rotation TS are stabilized with both directions of the applied field,
the rotation TS is stabilized to greater extent. Both the cis minimum and rotation
TS are stabilized regardless of the field orientation as the component of the dipole
along the applied field axis is small and changes direction to minimize the field-dipole
interaction energy. In contrast, the inversion barrier height (black squares) shows the
opposite behavior to rotation-inversion with respect to the field sign. As a result,
the inversion pathway is lowest energy with negative fields (∆‡G = 18.8 kcal mol-1
at FNN = −10.0 × 10−3 a.u.), and the rotation-inversion pathway is lowest energy
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Figure 3.12. Gibbs activation energies on S0 of reaction pathways leading from the
protonated (panels a and b) and deprotonated (panels c and d) cis structure (rotation
– red circles; rotation-inversion – blue triangles; inversion – black squares). Panels a
and c correspond to application of FNN and panels b and d correspond to application
of FOC .

with positive fields (∆‡G = 18.4 kcal mol-1 at FNN = 10.0 × 10−3 a.u.), while at
−2.5× 10−3 a.u., all three pathways have almost the same barrier height.

Applying FOC to the protonated molecule (fig. 3.12b) gives similar results to the
FNN field, but with several small but significant differences. The rotation-inversion
pathway (blue triangles) follows the same trend with both fields, with lower activation
barriers at positive fields and a higher activation barriers at negative fields, but with
larger magnitude negative FOC fields the trend reverses and the barrier height starts
to decrease slightly. As a result, it is not possible to increase the activation barrier
along the rotation-inversion pathway using the FOC field to the same extent as with
the FNN field. The inversion pathway (black squares) also gives a very similar trend
regardless of the field applied, but with FOC , the activation barrier field response is
smaller than with FNN . The reaction pathway that is most different between FOC
and FNN fields is the rotation pathway (red circles), which has a much larger field
response with negative FOC . The reason for the difference is that at the rotation TS,
the azo bond takes on more single bond character, and so increasing the single bond
character of the cis minimum decreases the reaction barrier. The FOC orientation
is almost perpendicular to the azo bond at the cis minimum, and so positive FOC
increases electron density on the azo group, while negative FOC decrease the electron
density of the azo group. As a result, negative FOC enhances the single bond character
of the azo group at the cis minima, and so reduces rotation barrier heights. For
the inversion and rotation-inversion TSs, the azo bond maintains its double bond
character across the reaction pathway and so negative FOC more equally destabilizes
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the cis minima and TSs.
We now discuss how deprotonation changes the OEEF response of the S0 sur-

face. The dipole of HO−AB−O– molecules is oriented from the hydroxyl ring (most
positive) to the deprotonated ring (most negative) so negative FNN is antiparallel
to the molecular dipole and hence most stabilizing. The cis structures have notably
larger field sensitivity than other geometries, leading to substantial changes in bar-
rier height (fig. 3.12c). The effect of the FNN field on barrier heights demonstrates
the thermal pathway can be switched depending on the direction and magnitude of
the field applied. Under field-free conditions and with a negative field, the rotation
pathway is the preferred cis-to-trans isomerization pathway. At large negative fields,
the energy barrier along the rotation pathway is removed. As demonstrated in fig.
3.11, which shows the N−−N bond length in the rotation TS of HO−AB−O– at dif-
ferent field strengths, the reduced barrier is not a result of field-induced azo bond
dissociation. Therefore, through the use of applied OEEFs, our results suggest it is
possible to induce rapid thermal isomerization from cis-to-trans forms of dihydroxy
azobenzene. Furthermore, with positive FNN , the preferred isomerization pathway
can be switched from the rotation to the inversion mechanism. As for the proto-
nated species, the FOC field response of HO−AB−O– barrier heights (fig. 3.12d) is
similar to the FNN field response. The key similarity is that application of negative
FOC fields can also drastically reduce the cis-to-trans isomerization activation energy.
At positive FOC fields, all three reaction pathways have a smaller activation barrier
than with the equivalent FNN field, although the change in energy ordering of TSs is
preserved.

In conclusion, application of the FOC can reproduce the behavior of the FNN
field which best controls the push-pull behavior of the isomer. In the protonated
molecule, barrier heights can be modified by up to 10 kcal mol-1 at the examined field
strengths and the preferred isomerization pathway can be modified depending upon
the field origin. Upon deprotonation, the rotation pathway is significantly stabilized,
and combined with a large field-response, it is possible to remove the energetic barrier
for cis-to-trans isomerization.

3.3.3.1.3 Kinetic Effects Resulting from Electric Field Modification De-
spite the small size of azobenzene and its derivatives, including dihyroxy azobenzene,
the mechanism of isomerization is complicated owing to the number of different pos-
sible reaction pathways. As illustrated in fig. 3.12, OEEFs can be used, not only
to control the activation barrier of a single pathway, but also to control the par-
ticular isomerization mechanism that is favored. From a kinetics perspective, the
important feature is the activation barrier, regardless of the particular isomeriza-
tion mechanism. However, at certain electric field strengths and orientations, several
isomerization mechanisms have similar activation barriers. In such a situation, the
kinetics of isomerization is not defined by a single reaction pathway, but must account
for the presence of multiple energetically viable pathways. As a result, OEEFs can
potentially be used to control the kinetics by increasing or decreasing the number
of routes for azobenzene to isomerize. Fig. 3.13 shows the half-lives of cis-to-trans
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Figure 3.13. Half-life of protonated (panels a and b) and deprotonated (panels
b and c) dihydroxyazobenzene upon application of FNN (panels a and c) and FOC
(panels b and d). Solid lines give the half-life on the left-axis (scale is different
between panels) and dashed lines give the log of the half-life on the right axis (scale
is comparable between panels). Blue triangles give the half-life computed using the
total isomerization rate constant (eq. 3.3.2), black squares give the half-live computed
using the rate constant of the fastest isomerization mechanism, and red circles give
the average isomerization half-life (eq. 3.3.4).

isomerization for the protonated and deprotonated molecules under FNN and FOC
fields. Note that the left axis shows raw half-life values (solid lines) on the most
suitable scale for the particular molecule and field plotted, while the right axis shows
logarithmic half-life values (dashed lines) in seconds on an axis that is common to all
four panels so different molecules and fields can be compared.

From fig. 3.13, it is apparent that deprotonation causes the half-life to decrease
substantially from months to fractions of a second. In addition, application of either
field orientation or sign to the protonated molecule can decrease the half-life from
months to seconds. For the protonated species, the presence of energetically similar
isomerization mechanisms affects the kinetics at the field-free conditions, causing the
total half-life to be 8 days shorter and the average half-life to be 7 days longer than if
only the lowest energy pathway (rotation-inversion) is considered. Application of the
FOC field always reduces the half life regardless of the field orientation, even though
the field orientation switches the most favorable isomerization mechanism from the
rotation pathway with negative orientation and the rotation-inversion pathway with
positive orientation (fig. 3.13b). At −0.5× 10−3 a.u. FOC , the rotation and rotation-
inversion activation barriers differ by 0.2 kcal mol-1, leading to a significant difference
between the total isomerization rate constant, average isomerization rate constant,
and the rate constants for each mechanism. As a result, the predicted total half-life
is 15 days and the average half-life is 17 days, instead of 16 days computed using
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the largest rate individual rate constant. The FNN field applied to the protonated
molecule (fig. 3.13a) gives a field response that mirrors that of the FOC field, although
at −2.5 × 10−3 a.u., all three activation barriers are within 1.5 kcal mol-1, causing
the total half-life to be 57 days and the average half-life to be 106 days, instead of 83
days for the fastest individual isomerization process. For the deprotonated molecule,
the sign of the field can be used to control the switching half-life (figs. 3.13c and
3.13d). The field-free half life is on the order of milliseconds, but both negative FNN
and FOC fields are able to remove the rotation barrier to give rapid isomerization.
With positive fields, due to the fact that FOC leads to greater stabilization of all
three reaction barriers compared to FNN , the isomerization half-life can be increased
to on the order of a second with FOC , while FNN can be used to increase the half-life
to almost one hour. As a result, in terms of half-life, the FOC field cannot exactly
reproduce the FNN field. However, the combination of deprotonation and electric field
yields a switch in which the half-life can be controlled from months to instantaneous.

3.3.3.2 Photoinduced Isomerization Pathways of 4,4’-dihydroxyazobenzene

3.3.3.2.1 Modification of Photoisomerization Branching Space Pathways
To understand how deprotonation and applied OEEFs modifiy photochemical behav-
ior, the location of minimum energy CIs and surrounding branching space topology
can provide insight into the available branching pathways and a qualitative discus-
sion of branching ratios, even though dynamics simulations are required to provide a
quantitative prediction. Mapping the field-response of the branching space topology
enables the change in branching pathways to be determined. In this section, the
S0/S1 minimum energy CI is discussed, providing a description of how the nonradia-
tive decay mechanisms along the rotation pathway are modified by OEEFs.

For the protonated molecule, the field-free PESs of the S0/S1 branching space is
shown in fig. 3.14a. The branching space coordinates involve NN stretching and PhNN
bending (bond-length alternation) along the derivative coupling vector, and PhNNPh
torsional motion along the gradient difference vector (fig. 3.21). The energetically
steepest descent path on the S0 surface leads from the CI to the (-1,+0.5) coordinate,
or in the opposite direction to (+1,-0.3), where the notation (x1,x2) gives the position
along the X1 and X2 axes respectively shown in fig. 3.14. This steepest descent
coordinate is closely aligned with the gradient difference vector, and is the cis-to-
trans isomerization coordinate. A high energy ridge on S0, which curves from (-0.7,-
1), through the CI at (0,0), to (0,+1), contains two TSs at (-0.3,-0.7) and (0.0,+0.4),
which are the two rotation TS structures. The S1 surface of both conformers has
a funnel-like topology, but where the energy rises less steeply along the torsional
gradient difference coordinate than the bond-length alternation derivative coupling
coordinate. Thus, in the field-free conditions, the nonradiative decay and subsequent
branching pathways can be described using a single torsional coordinate.

To understand the effect of OEEFs on the CI branching space of the protonated
molecule, fig. 3.15 shows the energy difference between S0 and S1 surfaces in the
branching space upon application of FNN . Due to the similar behavior of FNN and
FOC fields, only results for the FNN field are presented here. Negative fields are
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Figure 3.14. Potential energy surface in the branching space of the (a) protonated
(b) deprotonated HO−AB−OH around the S0/S1 CI computed using CAS(10,8)/6-
31+G(d) under field free conditions.

observed to move the minimum energy CI along the high-energy ridge towards the
(-0.3,-0.7) rotation TS geometry (fig. 3.15c). In contrast, positive fields move the
minimum energy CI closer to the cis minimum (fig. 3.15a). The movement of the
minimum energy closer to the cis minimum under positive fields indicates that the
branching space takes on a more sloped character and will funnel the molecule back to
the cis structure after photo-excitation, while the negative field preserves the peaked
topology of the field-free conditions. As a result, application of positive FNN can be
used to control the photodynamic equilibrium by reducing cis-to-trans photoisomer-
ization.

Turning to the effect of deprotonation, the field-free branching space vectors do
not differ significantly from those of the protonated molecule (fig. 3.22). However,
the deprotonated species differs in regard to the branching pathway towards the cis
minimum, which is at (-1,-0.9) instead of (-1,+0.5) in the protonated molecules (fig.
3.14b). As a result, the role of bond-length alternation in the rotation pathway is
opposite to the protonated molecule, moving from -0.9 to -0.4 along X2 instead of
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Figure 3.15. Energy difference between the S0 and S1 potential energy sur-
faces in the branching space of protonated HO−AB−OH (a-c) and deprotonated
HO−AB−O– (d-f) molecules with FNN computed using CAS(10,8)/6-31+G(d).

from +0.5 to -0.3. The increase in the azo bond length is justified by the increased
mesomeric resonance upon deprotonation reducing the double bond character of the
azo group. The change in the position of S0 minima upon deprotonation also leads
to a substantial change in the location of the high-energy ridge and the rotation TS,
which is at (0,-0.8). As a result, the rotation TS at (0,-0.8) is substantially lower in
energy than the rotation TS at (0,+0.4) and explains the large decrease in rotation
activation barrier upon deprotonation. On S1, deprotonation increases the restor-
ing force associated with displacement along the bond-length alternation coordinate.
Examining the effect of FNN on the branching space around the HO−AB−O– CI,
positive fields provide a similar response to the protonated molecule, with the CI
shifting to more positive X2 indicating more single bond character of the azo bond
(fig. 3.15d). Application of a negative field also shifts the position of the CI so that
the azo bond has more single bond character, which is in contrast to the protonated
molecules which are shifted towards more double-bond character.
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Structure ∆ E (kcal mol-1)
HO−AB−OH HO−AB−O–

S1 Trans 62.0 64.6
S1 Rot Ts 50.2 40.2

S1 Rot Inv Ts 63.6 73.6
S1 Inv Ts 70.1 74.1
S1 Cis 74.9 76.8
S2 Trans 78.6 64.7
S2 Rot Ts 114.1 85.2

S2 Rot Inv Ts 108.1 96.4
S2 Inv Ts 113.7 96.3
S2 Cis 106.5 82.7

Table 3.2. Relative energies in kcal mol-1 of S1 and S2 excitation energies
from the optimized S0 stationary points of anti HO−AB−OH, syn HO−AB−OH,
and HO−AB−O– under field-free conditions computed with B3LYP/6-311+G(d).
HO−AB−OH energies are shown relative to HO−AB−OH S0 trans structure for
protonated species and to the HO−AB−O– S0 trans structure for the deprotonated
species.

3.3.3.2.2 Relative energies of S0, S1 and S2 Field-Free Potential Energy
Surfaces Before discussing the effect of the applied OEEFs on the photochemical
pathways, we first summarize the field-free response of the S1 and S2 surfaces. The
S1 state is characterized by a n → π∗ transition from the azo nonbonding orbital to
the phenyl π∗ orbital, while the S2 state is characterized by a π → π∗ transition. The
reason for investigating the S2 surface is that in unsubstituted azobenzenes, excitation
to S2 subsequently decays to S1 via inversion of one of the phenyl rings, reminiscent
of the thermal inversion pathway (121). As the photochemical pathways involves
the same coordinates as the thermal pathways, an understanding of the effect of
deprotonation and applied electric fields on the photoisomerization mechanisms can
be determined from the vertical excitation energies of ground state geometries (114).
The energies of the S1 and S2 surfaces at the S0 HO−AB−OH and HO−AB−O–

geometries, energies are relative to their respective S0 trans structure, are summarized
in table 3.2. Deprotonation increases the energy of S1 surface relative to the S0 trans
minimum in comparison to the protonated structure, except for at the S0 rotation
TS geometry. For the S2 surface, deprotonation substantially decreases the energy
due to the mesomeric effect reducing the energy gap between π and π∗ orbitals by
increasing the single bond character of the azo bond.

Examining the energy gaps between electronic states for the HO−AB−OHmolecules,
the smallest S0 → S1 energy gap is at the S0 rotation TS geometry at 4.93 kcal mol-1,
owing to the close proximity of the S1/S0 CI. As the HO−AB−OH rotation TS is
geometrically close to the S1/S0 CI, it can be used it determine the field-response
of the rotation photoisomerization pathway. The HO−AB−OH S0 rotation-inversion
TS and S0 inversion TS vertical excitation energies to S1 are 19.4 and 23.3 kcal mol-1
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respectively. All HO−AB−OH S0 TS structures have a relatively large S1 → S2 ver-
tical excitation energy (43.58 kcal mol-1 for the inversion pathway, 44.5 kcal mol-1 for
the rotation inversion pathway, and 64.0 kcal mol-1 for the rotation pathway) indicat-
ing the presence of a CI between S1 and S2 along the inversion pathway is unlikely.
In terms of relative S0 → S1 and S1 → S2 energy gaps for the deprotonated species,
deprotonation increases the S0 → S1 energy gap (32.5 kcal mol-1 for the inversion
pathway, 31.7 kcal mol-1 for the rotation inversion pathway, and 10.3 kcal mol-1 for
the rotation pathway) but decreases the S1 → S2 energy gap (22.2 kcal mol-1 for the
inversion pathway, 22.9 kcal mol-1 for the rotation inversion pathway, and 45.0 kcal
mol-1 for the rotation pathway) as a result of the how mesomeric donation impacts
the different electronic states.

3.3.3.2.3 Electric Field Modification of Nonadiabatic Decay Mechanisms
In order to understand how applied OEEFs can be used to modify the energy gaps
between electronic states along each isomerization pathway, fig. 3.16 illustrates the
vertical excitation energy at each S0 TS geometry between S0 and S1 (panels a-d)
and S1 and S2 (panels e-h). The effect of FNN on the HO−AB−OH S0 → S1 en-
ergy gap is shown in fig. 3.16a. The energy gap at the rotation TS (red circles)
decreases with both field directions for HO−AB−OH, to the extent that the n→ π∗

transition energy is negative at −10.0×10−3 a.u. At the rotation-inversion TS geom-
etry (blue triangles), positive fields increase the S0 → S1 energy gap while negative
fields decrease the S0 → S1 energy gap. However, the inversion TS (black squares)
demonstrates inverse behavior in which the negative fields increase and positive fields
decrease the S0 → S1 energy gap, although with lower field-sensitivity than at the
rotation-inversion TS. Although the rotation-inversion S0 → S1 energy gap can be
significantly reduced using negative FNN , it remains large at 9.3 kcal mol-1, while the
inversion TS S0 → S1 vertical energy gap also remains large (22 kcal mol-1). As a
result, it is not possible to use FNN to control nonadiabatic decay between S0 and
S1 along either the inversion or rotation-inversion pathways. The FOC field induces
a similar S0 → S1 change to FNN (fig. 3.16b).

Upon deprotonation, a very different field response is observed, although FNN
and FOC are again observed to be very similar (figs. 3.16c and 3.16d). Deprotonation
increases the energy gap at the rotation TS under field-free conditions, but by apply-
ing a +1.0× 10−3 a.u. field, a nonadiabatic decay process between S0 and S1 can be
induced along the rotation pathway. This response appears to contradict the energy
difference plot in fig. 3.15d which shows the CI moves away from the lowest energy TS
in the branching space. However, as shown in fig. 3.23a, application of positive fields
to the deprotonated molecule significantly changes the S0 topology in the branching
space such that the TS at positive X2 is lowest in energy, explaining the observed field
effect on the rotation pathway. For the inversion and rotation-inversion pathways, the
field response of the S0/S1 energy gap in the deprotonated molecule is essentially the
same. Positive fields have very little effect on the energy gap, which remains similar
to the field-free value of 31.2 kcal mol-1 for the rotation-inversion barrier and 32.0
kcal mol-1 for the inversion TS. Only larger negative fields have a significant effect on
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Figure 3.16. HO−AB−OH and HO−AB−O– molecules relative energy gaps be-
tween S0 and S1 stationary points (a)HO−AB−OH with FNN , (b) HO−AB−OH
FOC , (c) HO−AB−O– FNN , and (d) HO−AB−O– FOC and between S1 and S2

(e)HO−AB−OH with FNN , (f) HO−AB−OH FOC , (g) HO−AB−O– FNN , and (h)
HO−AB−O– FOC for the rotation (red circles), rotation inversion (blue triangles),
and inversion (black squares) for the three fields examined.

the S0/S1 energy gap, which at −1.0× 10−3 a.u. decreases to 15.4 kcal mol-1 and 8.3
kcal mol-1 for the rotation-inversion pathway under FNN and FOC fields respectively,
and to 15.1 kcal mol-1 and 9.5 kcal mol-1 for the inversion pathway under FNN and
FOC fields respectively. As the lowest energy barriers observed for the deprotonated
molecule are similar to the protonated molecule, the findings indicate that there is
no nonadiabatic decay mechanism possible along the inversion or inversion-rotation
pathway regardless of the protonation state.

Examining the S1/S2 energy gap, the FNN field gives the same trends for the
vertical excitation energy at all three S0 TS structures, with large magnitude fields of
either sign giving the smallest energy gap (fig. 3.16e). The S1/S2 energy gaps of the
the HO−AB−OH molecule, at FNN field magnitude of −10.0×10−3 a.u., is 10.96 kcal
mol-1 at the rotation-inversion TS and 12.04 kcal mol-1 at the inversion TS. While
these energy gaps are much lower than that of the field free gaps, which are 44.52 and
43.58 kcal mol-1 for the rotation inversion and inversion pathways respectively, they
are still large enough to suggest that it is not possible to induce S1/S2 nonadiabatic
decay using an applied electric field in the protonated molecule. Compared to the FNN
field response, the FOC field induces a similar S1/S2 energy gap change (fig.3.16f).
The effect of deprotonation on the S1/S2 energy gap is not as dramatic as for the
S0/S1 energy, with the energy gap decreasing regardless of the field direction for all
three isomerization pathways. However, with large negative FNN or FOC , it is possible
to induce a nonadiabatic decay mechanism along all three isomerization pathways.
For the inversion and rotation-inversion mechanisms, the nonadiabatic decay can be
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induced with −7.5 × 10−3 a.u. fields, while −10 × 10−3 a.u. is required to allow
S1/S2 nonadibatic decay along the rotation pathway. In conclusion to this section,
we have demonstrated that OEEFs can influence the energy gaps between electronic
states that govern the photochemical reaction pathways. As a result, it is possible to
control the possibility of S1/S2 nonadiabatic decay which plays an important role in
the non-Kasha behavior observed in the photochemistry of azobenzene (85).

3.3.4 Conclusions

In this work, we examined the role of applied OEEF, deprotonation and photon ab-
sorption on the thermal and photo isomerization pathways of dihydroxyazobenzene.
The protonated HO-AB-OH molecule was found to prefer thermal isomerization via
the rotation-inversion pathway upon application of positive fields and the rotation
pathway with negative fields. For the deprotonated molecule, thermal isomerization
occurs via the rotation pathway with all fields except high positive fields, in which all
three possible pathways are competitive. Our work demonstrates that it is possible
to remove the cis-to-trans isomerization barrier through the combined action of de-
protonation and applied OEEF. The finding that rapid cis-to-trans isomerization can
be achieved on the ground state has application, not only for molecular switches, but
for solar thermal batteries that utilize azobenzene, where cis-to-trans isomerization is
required to recover energy from the charged device. Owing to the observed ability of
OEEFs to tune the number of energetically viable isomerization pathways, we exam-
ined how the kinetics of thermal isomerization can be modified. Although half-lives
could be reduced by up to 50%, there was no qualitative change in the reaction ki-
netics when considering the multiple viable pathways. However, although it was not
observed in this system, the extent to which half-lives can be modified suggests that
there may be other systems for which the electric field does not modify the kinetics
by changing the barrier height of the lowest energy reaction pathway, but by lowering
the barrier height of other pathways so that there are multiple energetically viable
reaction pathways.

Considering the role of OEEFs and deprotonation on the excited state behavior,
this work also demonstrated the S0/S1 and S1/S2 nonadiabatic decay mechanisms
could be controlled. First, the branching space of the S1/S0 CI in HO−AB−OH could
be modified by a positive field such that the minimum energy point on the seam was
displaced towards the cis minimum. As a result, we hypothesized that an electric
field could be used to shift the photodynamic equilibrium towards the cis minimum.
From a device-design perspective, shifting the photodynamic equilibrium is useful for
selectively populating the cis minimum via excitation to S1 while avoiding the reverse
photoisomerization caused by overlapping absorption bands of cis and trans minima.
Examination of the energy gaps between the three lowest energy singlet states along
each of the thermal isomerization pathways was used to establish whether electric
fields could be used to induce or inhibit nonadiabatic decay mechanisms. In the
protonated molecule, it was not possible to change the qualitative field-free behavior
of the S0/S1 energy gap, with the rotation pathway always giving a small energy
gap and the inversion and rotation-inversion pathways always giving an large energy
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gap, indicating that there was a state crossing in the vicinity of the rotation pathway
only. However, deprotonation increased the S0/S1 energy gaps along all isomerization
pathways and this effect could be enhanced by applying negative fields, while positive
fields could be used to induce nonadiabatic decay along the rotation pathway. The
S1/S2 energy gap is large for both the protonated and deprotonated molecules under
field-free conditions. Application of either field sign was found to significantly decrease
the S1/S2 energy gap, but only when the molecule was deprotonated and a negative
field was used did the gap decrease to the extent that it indicated the possibility of
a nonadiabatic decay mechanism along all three isomerization pathways. Overall,
we established that OEEFs and protonation state can be used in concert to achieve
large changes in thermal and photo-isomerization behavior which are valuable in the
design of molecular-scale devices.

Overall Conclusions

Overall, through our investigations of azobenzene with both CASSCF and TD-DFT
methodologies interesting behavior was observed with applied electric fields. To con-
tinue this work we wanted to examine larger systems like bis-azobeznenes, where two
azobenzene units are bonded covalently at the para position. Bis-azobenzenes are
of interest because these types of molecules can enhance the photoreactivity of an
azobenzene molecule by up to twice the amount of a single azobenzene. However,
these molecules have not been able to be studied computationally due to the com-
putational cost of multireference methods and/or the inability to describe the full
PES with DFT methodologies. In our first examination of azobenzene an AS of 10
electrons in 8 orbitals was utilized with the CASSCF methodology. If the same or-
bitals were utilized for a CASSCF calculation of bis-azobenzenes, the AS would be
twice the size, consisting of 20 electrons and 16 orbitals. Single reference methods,
like DFT, could be used for studying this molecule however, these methods fail to
describe the entire PES especially around points of degeneracy and as our studies
concluded above. For azobenzene systems, one of the most important interesting
points of the PES is the CI, which is, in itself, a point of degeneracy between elec-
tronic states, which cannot be described by single reference methods. Overall, new
methodologies, like the utilization of SCF solutions for excited states, are needed for
describing systems like azobenzene efficiently and accurately.

The utilization of SCF solutions for studying excited states have many advantages,
like the capturing of orbital relaxation effects which are often missed in methods like
CIS and TD-DFT. SCF solution methodologies can also be easily parallelized allowing
for utilization with larger molecules without computational cost. Generally, SCF
solutions can be described as a single determinantal wavefunction that is optimized
to describe particular electronic configurations. SCF solutions can be employed in a
variety of ways however, the two methods in which SCF solutions will be utilized for
examining excited states in the following chapters are with difference self-consistent
field (∆SCF) and NOCI methodologies.
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Supporting Documents – Electric Field Control of
Multistate Processes Unsubstituted Azobenzene

3.5.0.1 Structural parameters, relative energies and dipole moments under field-free
conditions

Structure Distance (Å) Angle (degrees)
∆E (kcal mol-1) Dipole Moment (D)r(NN) r(CN) CNN CNNC NNCC

S0(trans) 1.24 1.43 115.0 -179.9 179.9 0.00 0.00
S0(rot ts) 1.35 1.40 115.8 -89.5 176.8 59.02 2.89
S0(inv ts) 1.22 1.45 116.7 -90.0 178.5 47.90 2.41
S0(cis) 1.24 1.44 122.9 -4.1 126.0 15.12 3.42
S1(trans) 1.26 1.38 127.3 -179.9 179.9 69.36 0.00
S0/S1CIrot 1.28 1.38 131.1 -92.1 173.7 64.26 2.28
S1(cis) 1.24 1.39 139.1 -1.1 152.2 87.10 1.95

Table 3.3. Structural parameters, relative energies in kcal mol-1, and dipole mo-
ments in Debeye of optimized S0 and S1 stationary points of azobenzene under field-
free conditions computed with CAS(10,8)/6-31G(d). Energies are shown relative to
S0(C2h).
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3.5.0.2 Relative energies under applied Fdip

Structure Fdip field (10-3 a.u.)
10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0

S0(trans) -3.27 -2.09 -1.25 -0.17 0.00 -0.17 -1.25 -2.07 -3.70
S0(rot ts) 58.61 58.16 57.31 56.01 59.02 57.04 54.68 51.93 48.77
S0(inv ts) 49.55 50.28 50.34 49.77 47.85 46.77 44.34 41.25 37.49
S0(cis) 19.97 19.4 18.45 17.01 15.12 12.78 9.98 6.72 2.96
S1(trans) 66.03 67.49 68.53 69.16 69.36 69.16 68.53 67.49 66.03
S0/S1CIrot 68.04 67.62 66.79 65.61 63.89 62.34 60.21 57.46 54.11
S1(cis) 77.61 78.74 88.45 88.04 87.10 85.64 83.66 81.17 78.11

Table 3.4. Relative energies in kcal mol-1 of optimized S0 and S1 stationary points
of azobenzene under Fdip field computed using CAS(10,8)/6-31G(d). Energies are
shown relative to zero-field S0(C2h).
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3.5.0.3 Relative energies under applied Fazo

Structure Fazo field (10-3 a.u.)
10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0

S0(trans) -6.09 -3.68 -1.96 -0.92 0.00 -0.92 -1.96 -3.68 -6.09
S0(rot ts) 53.71 56.04 57.70 58.69 59.02 58.68 57.69 56.03 53.71
S0(inv ts) 38.57 42.48 45.43 47.46 47.85 48.80 48.16 46.64 43.87
S0(cis) 10.35 12.48 13.96 14.84 15.12 14.83 13.96 12.48 10.36
S1(trans) 63.10 65.85 67.80 68.97 69.36 68.97 67.80 65.85 63.10
S0/S1CIrot 60.22 62.28 63.62 64.22 63.89 63.30 62.62 59.98 57.23
S1(cis) 71.36 75.52 78.66 80.80 87.10 80.81 78.66 75.53 71.37

Table 3.5. Relative energies in kcal mol-1 of optimized S0 and S1 stationary points
of azobenzene under Fazo field computed using CAS(10,8)/6-31G(d). Energies are
shown relative to zero-field S0(C2h).
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3.5.0.4 Relative energies under applied Fphe

Structure Fphe field (10-3 a.u.)
10.0 7.5 5.0 2.5 0.0 -2.5 -5.0 -7.5 -10.0

S0(trans) -7.48 -4.44 -2.29 -1.01 0.00 -1.01 -2.29 -4.44 -7.48
S0(rot ts) 58.87 59.75 60.09 59.83 59.02 60.98 55.70 53.22 50.21
S0(inv ts) 49.14 50.03 50.21 49.72 47.85 46.76 44.27 41.09 37.19
S0(cis) 17.74 17.86 17.34 16.54 15.12 13.21 10.80 7.89 4.47
S1(trans) 61.58 65.01 67.44 68.88 69.36 68.88 67.44 65.01 55.90
S0/S1CIrot 65.77 66.15 66.02 65.32 63.89 62.38 60.27 57.52 54.15
S1(cis) 75.53 78.44 80.47 81.63 87.10 85.86 83.21 79.85 75.72

Table 3.6. Relative energies in kcal mol-1 of optimized S0 and S1 stationary points
of azobenzene under Fphe field computed using CAS(10,8)/6-31G(d). Energies are
shown relative to zero-field S0(C2h).
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3.5.1 Potential energy surfaces at different field sizes and orientations

3.5.1.1 Full results of potential energy surface electric fields response

Figure 3.17. Effect of all orientated external electric fields applied to photo and
thermal isomerization pathways of azobenzene (see legend for colors identifying field
strength). Panels a, c and e (top row) shows positive fields and panels b, d and f
(bottom row) shows negative fields. Panels a and b (first column) shows Fdip, panels
c and d (middle column) shows Fazo and panels e and f (right column) shows Fphe (4
– S0 inversion pathway, � – S0 rotation pathway, # – S1 rotation pathway). Energies
are shown with respect to the field-free C2h structure.
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3.5.2 Projected dipole moments on field axes

The change in the topology of the potential energy surface under an applied field can
be rationalized in terms of a dipole-dipole interaction. Considering that the energy
of point 1 on the potential energy surface is

E1 = E0
1 − F.µ1 (3.5.1)

and the energy of point 2 on the potential energy surface is

E2 = E0
2 − F.µ2 (3.5.2)

where F is the applied electric field vector, µ is the molecular dipole vector, E0 is
the energy under field free conditions, and E is the total energy. Subtracting these
two equations gives an expression for the energy difference as a result of an applied
electric field

∆E = ∆E0 − F.∆µ (3.5.3)

so that the projection of the difference dipole on the axis of the applied field |P (µ1−
µ2)| defines the energy change when the field is applied. According to eq. 3.5.3 the
change in the energy between two points on the potential energy surface should be
linear with respect to the size of the applied field. However, such an expression does
not take account of changes to the electronic structure or geometry in response to
the applied field. The following figures show the projection of the difference dipole
moment on the three different field axis and so demonstrate how a field applied along
one of the axes studied is able to modify the potential energy surface of the S0 surface,
up to the approximations just outlined.
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3.5.2.1 Projection of dipole moments on Fdip electric field
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Figure 3.18. Projection of the S0 cis/trans minimum to rotation/inversion transition
structure field-free difference dipole moment on the Fdip axis (cis/rotation TS – black,
cis/inversion TS – green, trans/rotation TS – red, trans/inversion TS – blue)
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3.5.2.2 Projection of dipole moments on Fazo electric field
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Figure 3.19. Projection of the S0 cis/trans minimum to rotation/inversion transition
structure field-free difference dipole moment on the Fazo axis (cis/rotation TS – black,
cis/inversion TS – green, trans/rotation TS – red, trans/inversion TS – blue)
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3.5.2.3 Projection of dipole moments on Fphe electric field
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Figure 3.20. Projection of the S0 cis/trans minimum to rotation/inversion transition
structure field-free difference dipole moment on the Fphe axis (cis/rotation TS – black,
cis/inversion TS – green, trans/rotation TS – red, trans/inversion TS – blue)
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Supporting Documents – Electric Field Control of
Multistate Processes Substituted (Di-Hydroxy)
Azobenzene

3.6.1 Thermal Isomerization Pathways of 4,4’-dihyroxyazobenzene

3.6.1.1 Electric Field Modification of the Ground State Potential Energy Surface of
HO−AB−OH

Structure FNN field (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

S0 trans -1.78 0.18 1.12 1.06 0.00 -2.05 -5.10 -9.15 -14.23
S0 rot ts 32.99 42.71 45.13 45.93 45.22 43.00 39.27 34.01 27.19

S0 rot inv ts 42.45 45.18 46.24 45.89 44.21 41.19 36.80 31.00 23.59
S0 inv ts 32.36 38.32 42.66 45.47 46.78 46.60 44.90 41.60 36.65
S0 cis 12.58 15.52 17.21 17.71 17.05 15.23 12.23 8.02 2.54

Table 3.7. Relative energies in kcal mol-1 of optimized S0 stationary points of ceHO-
AB-OH under FNN field computed using B3LYP. Energies are shown relative to the
zero-field S0 trans.
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Structure FOC field (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

S0 trans -13.48 -7.51 -3.34 -0.86 0.00 -0.75 -3.11 -7.17 -13.03
S0 rot ts 38.68 42.66 45.03 45.88 45.22 43.02 39.24 33.82 26.70

S0 rot inv ts 43.23 45.22 46.05 45.72 44.21 41.34 36.99 30.84 23.38
S0 inv ts 40.91 44.23 46.31 47.16 46.79 45.17 42.26 38.01 32.34
S0 cis 17.92 19.11 19.35 18.67 17.05 14.50 11.01 6.55 1.11

Table 3.8. Relative energies in kcal mol-1 of optimized S0 stationary points of ceHO-
AB-OH under FOC field computed using B3LYP. Energies are shown relative to the
zero-field S0 trans.
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Structure Field Strength (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

FNN S0 rot ts 20.56 26.90 27.96 28.44 28.46 28.05 27.26 26.11 24.59
FNN S0 rot inv ts 28.60 28.14 27.70 27.02 26.05 23.38 22.39 20.78 18.39
FNN S0 inv ts 18.78 21.50 25.40 27.64 29.51 31.02 32.14 32.88 33.18
FOC S0 rot ts 20.20 23.24 25.80 27.49 28.46 28.78 28.43 27.36 25.45

FOC S0 rot inv ts 23.92 24.86 25.63 26.12 26.05 23.70 23.47 21.38 21.12
FOC S0 inv ts 22.85 24.95 26.78 28.31 29.51 30.35 30.84 30.93 30.56

Table 3.9. ceHO-AB-OH molecules ∆G relative barrier heights from the S0 cis
structure in kcal mol-1 for the three transition states examined in all two electric
fields.
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3.6.1.2 Electric Field Modification of the Ground State Potential Energy Surface of
HO−AB−O–

Structure FNN field (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

S0 trans 3.27 4.42 4.25 2.77 0.00 -4.05 -9.35 -15.91 -23.70
S0 rot ts 23.55 27.07 29.32 30.28 29.89 28.09 24.81 19.92 13.29

S0 rot inv ts 46.24 48.03 47.85 45.78 41.89 36.22 28.79 19.61 8.55
S0 inv ts 46.29 48.05 47.79 45.61 41.58 35.75 28.14 18.74 7.43
S0 cis 24.34 25.08 24.10 21.40 17.02 10.95 3.24 -6.10 -17.14

Table 3.10. Relative energies in kcal mol-1 of optimized S0 stationary points of
HO−AB−O– under FNN field computed using B3LYP. Energies are shown relative
to the zero-field S0 trans.
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Structure FOC field (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

S0 trans 10.09 11.17 9.82 6.08 0.00 -8.37 -18.95 -31.69 -46.54
S0 rot ts 24.19 27.88 30.07 30.77 29.89 27.33 22.93 16.46 7.69

S0 rot inv ts 49.27 50.66 49.75 46.79 41.89 35.11 26.47 15.96 3.49
S0 inv ts 50.33 51.09 49.48 46.28 41.58 35.44 27.83 18.71 8.01
S0 cis 24.55 24.44 23.13 20.65 17.02 12.24 6.32 -0.75 -9.02

Table 3.11. Relative energies in kcal mol-1 of optimized S0 stationary points of
HO−AB−O– under FOC field computed using B3LYP. Energies are shown relative
to the zero-field S0 trans.
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Structure Field Strength (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

FNN S0 rot ts -1.52 1.10 4.18 7.64 11.31 15.97 20.41 24.89 29.45
FNN S0 rot inv ts 20.52 21.61 22.45 23.13 23.71 24.14 24.38 24.51 24.46
FNN S0 inv ts 20.63 21.70 22.47 23.04 23.49 23.76 23.82 23.71 23.38
FOC S0 rot ts -1.46 2.41 5.95 9.05 11.31 13.86 15.53 16.33 16.28

FOC S0 rot inv ts 22.96 24.66 25.24 24.90 23.71 21.68 18.90 15.38 11.19
FOC S0 inv ts 24.32 25.09 25.05 24.49 23.49 22.16 20.41 18.22 15.60

Table 3.12. HO−AB−O– molecules ∆G relative barrier heights from the S0 cis
structure in kcal mol-1 for the three transition states examined in all two electric
fields.
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3.6.2 Photoisomerization Pathways of 4,4’-dihydroxyazobenzene

3.6.2.1 Electric Field Modification of Excited State Potential Energy Surfaces of
HO−AB−OH

Structure FNN field (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

S1 trans 59.72 61.91 63.02 63.06 62.03 59.94 56.79 52.57 47.25
S1 rot ts 35.96 44.72 48.93 50.49 50.15 48.04 44.14 38.38 30.59

S1 rot inv ts 51.74 55.86 59.58 62.25 63.62 63.67 62.43 59.95 57.23
S1 inv ts 58.68 63.94 67.48 69.49 70.10 69.40 67.47 64.21 59.61
S1 cis 70.84 73.83 75.33 75.65 74.85 72.98 70.03 65.94 60.62
S2 trans 59.14 75.78 78.21 79.17 78.51 76.19 72.26 66.88 60.16
S2 rot ts 86.52 98.67 109.91 115.03 114.12 111.48 107.14 101.11 85.34

S2 rot inv ts 63.23 80.77 95.41 102.54 108.14 112.01 105.27 89.59 75.63
S2 inv ts 64.56 89.25 105.23 112.73 113.68 109.33 103.77 90.06 72.92
S2 cis 71.79 89.15 102.19 105.61 106.53 103.16 97.48 89.64 78.21

Table 3.13. Relative energies in kcal mol-1 of S1 and S2 transition energies from
the relative S0 stationary points of HO−AB−OH under FNN field computed using
TD-B3LYP. Energies are shown relative to the zero-field S0 trans.
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Structure FOC field (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

S1 trans 39.97 53.52 58.29 61.09 62.03 61.14 58.40 53.71 39.39
S1 rot ts 40.79 46.34 49.45 50.67 50.13 47.80 43.62 37.43 28.77

S1 rot inv ts 53.08 57.44 60.68 62.75 63.62 63.52 62.77 60.46 55.72
S1 inv ts 64.10 67.42 69.52 70.40 70.10 68.60 65.90 61.95 56.68
S1 cis 75.79 76.97 77.19 76.47 74.85 72.33 68.92 64.61 59.35
S2 trans 46.70 63.38 71.80 76.64 78.51 76.99 72.47 62.90 46.99
S2 rot ts 86.62 99.37 111.05 114.84 114.13 111.77 107.77 102.11 94.72

S2 rot inv ts 67.29 84.45 95.83 102.66 108.13 112.36 114.05 110.42 97.61
S2 inv ts 77.46 94.47 107.22 113.53 113.68 109.53 104.15 97.53 89.10
S2 cis 86.42 98.60 106.55 108.36 106.53 102.35 96.71 90.22 82.98

Table 3.14. Relative energies in kcal mol-1 of S1 and S2 transition energies from
the relative S0 stationary points of HO−AB−OH under FOC field computed using
TD-B3LYP. Energies are shown relative to the zero-field S0 trans.
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3.6.2.2 Electric Field Modification of Excited State Potential Energy Surfaces of
HO−AB−O–

Structure FNN field (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

S1 trans 34.11 48.23 57.62 62.39 64.49 60.75 55.74 49.39 31.66
S1 rot ts 47.86 47.33 45.71 43.21 39.87 35.62 30.10 22.39 16.83

S1 rot inv ts 61.65 77.85 80.69 77.85 73.10 66.44 57.92 47.70 36.38
S1 inv ts 61.36 77.52 81.25 78.41 73.61 66.86 58.19 47.79 36.20
S1 cis 51.09 62.88 71.45 77.63 75.24 69.73 61.76 51.52 39.23
S2 trans 45.79 54.32 64.22 66.91 64.96 63.00 58.43 49.47 41.80
S2 rot ts 49.91 64.15 74.38 81.09 85.44 87.36 75.80 59.50 41.15

S2 rot inv ts 72.41 81.65 88.31 93.91 96.62 95.79 92.65 79.25 57.81
S2 inv ts 71.33 82.07 87.76 93.57 96.45 95.62 92.52 79.19 57.28
S2 cis 58.16 70.88 78.81 78.82 83.34 85.04 81.18 62.54 40.70

Table 3.15. Relative energies in kcal mol-1 of S1 and S2 transition energies from the
relative S0 stationary points of deprotonated HO−AB−O– under FNN field computed
using TD-B3LYP. Energies are shown relative to the zero-field S0 trans.
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Structure FOC field (10-3 a.u.)
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

S1 trans 16.82 31.86 44.86 55.88 64.51 56.16 45.40 32.27 16.86
S1 rot ts 45.00 50.53 47.94 44.35 39.88 34.40 27.25 18.75 13.00

S1 rot inv ts 57.61 69.50 80.75 78.33 73.11 65.78 56.38 45.06 32.32
S1 inv ts 59.82 65.05 76.98 78.06 73.62 67.41 59.43 49.73 38.29
S1 cis 43.09 54.41 65.02 74.66 75.26 71.46 65.88 58.50 47.11
S2 trans 40.31 57.46 70.44 70.11 64.98 59.10 49.58 37.83 19.66
S2 rot ts 52.97 58.29 69.36 78.47 85.44 87.92 73.45 55.37 34.74

S2 rot inv ts 66.26 82.41 81.50 89.99 96.62 96.20 92.01 71.19 46.55
S2 inv ts 77.68 81.81 80.76 87.77 96.48 96.33 90.99 70.79 47.97
S2 cis 68.63 76.49 77.87 77.52 83.34 85.35 82.51 66.08 49.51

Table 3.16. Relative energies in kcal mol-1 of S1 and S2 transition energies from the
relative S0 stationary points of deprotonated HO−AB−O– under FOC field computed
using TD-B3LYP. Energies are shown relative to the zero-field S0 trans.
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3.6.2.3 S0/S1 Branching Space Normal Modes

Figure 3.21. Gradient difference (a) and derivative coupling (b) vectors that define
the branching space of the anti and syn protonated derivatives of AB around the
S0/S1 CI computed using CAS(10,8)/6-31+G(d)
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Figure 3.22. Gradient difference (a) and derivative coupling (b) vectors that define
the branching space of the anti and syn deprotonated derivatives of AB around the
S0/S1 CI computed using CAS(10,8)/6-31+G(d).

3.6.2.4 Potential Energy Surfaces of Deprotonated Molecule Under Applied Field
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Figure 3.23. S0 and S1 potential energy surfaces of HO−AB−O– under FNN field
in the S0/S1 branching space. The difference between potential energy surfaces are
shown in fig. 3.15.
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CHAPTER 4

SYMMETRY BREAKING AND PROJECTION METHODS FOR
EXCITED STATES

Introduction
1,2 Excited-state methodologies can be broadly divided into two categories – multiref-
erence approaches based on the explicit construction of the wavefunction (122) and
single-reference response-based approaches (123), both of which were demonstrated
in chapter 3. Alternatively, ∆SCF based models are a third approach in which elec-
tronic states of interest are individually optimized. However, due to the individual
optimization the treatment of correlation is not equivalent in ground and excited
states.

The most widely used approaches for recovering dynamic correlation are DFT and
second-order Møller-Plesset theory (MP2). The unification of the two approaches
proposed by Grimme resulted in the formulation of double-hybrid density functional
theory (DH-DFT) (124; 125), which was found to give improved results over hybrid
DFT in ground-state calculations. Inclusion of MP2 correlation has the advantage
that it can be obtained noniteratively, although it requires integral transformation to
the MO basis and so scales as O(N5). Extension of DH-DFT to the study of excited
states has been reported via linear response (LR) on the underlying hybrid functional
followed by an additive perturbative correction (126; 127; 128; 129; 130; 131; 132).
However, because DH-DFT recovers a very limited amount of strong correlation,
a naïve application to compute excited state energies through a difference double-
hybrid density functional theory (∆DH-DFT) approach is likely to give poor results.
Despite the apparent limitations of DH-DFT, the nature of excited electronic states
with singly-occupied MOs suggests that symmetry breaking of the reference SCF
solution will be common, and that remaining strong correlation can be recovered
by subsequent symmetry restoration. Spin-symmetry restoration has experienced a
significant amount of recent interest, with the projected HF work of Scuseria and
coworkers (133; 134) based on the Wheeler-Hill coordinate generator method (135;
136; 137; 138; 139) providing the basis for a number of subsequent developments,
including projected MP2 method (140).

1Reprinted from Kempfer-Robertson, E. M., Pike, T. D. & Thompson, L. M. Difference
projection-after-variation double-hybrid density functional theory applied to the calculation of ver-
tical excitation energies. J Chem Phys 153, 074103 (2020), with the permission of AIP Publishing.

2Adapted with permission from Kempfer-Robertson, E. M., Haase, M. N., Bersson, J. S., Avdic,
I. & Thompson, L. M. Role of Exact Exchange in Difference Projected Double-Hybrid Density
Functional Theory for Treatment of Local, Charge Transfer, and Rydberg Excitations. J Phys
Chem 126, 8058–8069 (2022). Copyright 2022 American Chemical Society.

72



Although focus in recent years has been on variational optimization of orbitals
after projection, a noniterative projection on top of the variationally optimized wave-
function is easier to implement, has a much smaller computational prefactor, and does
not affect iterative convergence behavior. Additionally, projection-after-variation
(PAV) recovers only strong correlation, and so permits separation of correlation types.
When used in combination with perturbation theory, PAV has been shown to give
good quality PESs, free from the distortions and spurious minima present when pro-
jection is applied to a mean-field wavefunction (141; 142; 143; 144). In this work, we
test the performance of ∆PAV-DH-DFT as a method for exploring the photophysics
and photochemistry of molecules. In the remainder of this work, we first discuss
the details of the ∆PAV-DH-DFT implementation, how it relates to other excited-
state computational approaches, and the workflow for obtaining benchmark data.
We then discuss in detail the performance of the model in comparison to results from
CASPT2 calculations. The analysis first examines how each term in ∆PAV-DH-DFT
contributes to the accuracy of the model, before detailing the performance for specific
classes of molecules. In the final results subsection, we show that ∆PAV-DH-DFT
can achieve standard deviations for the benchmark molecular excitations similar to
linear response coupled cluster (LR-CC) methods.

4.1.1 Symmetry Breaking in Hartree-Fock

When performing HF calculations one can choose to either preserve or break sym-
metries of the Hamiltonian. It has been demonstrated that for a stretched hydrogen
molecule, the broken symmetry HF solution can achieve an energy closer to that of the
exact solution. This phenomenon relates to the energetic ordering of orbitals as the
distance changes, where at the equilibrium distance, the antibonding and bonding
orbitals are well-separated energetically. However, at long distances the antibond-
ing and bonding orbitals become degenerate. Thus, the electronic configuration of
the double occupation of the antibonding orbital and the double occupation of the
bonding orbital exhibit similar configuration weights in the exact wavefunction. The
symmetry-adapted HF solution does not give a good description of this due to the
fact that it assumes the solution is only described by the double occupation of the
bonding orbital, thus giving an incorrect approximation to the exact solution.

Symmetry broken solutions are prevalent in many systems, but can be demon-
strated in mostly open-shell systems. A symmetry broken solution is detected during
the SCF optimization procedure where near degeneracies are identified. The SCF op-
timization procedure then locates an SCF minima by breaking the symmetry of the
Hamiltonian. The broken-symmetry solution can partially account for the additional
correlation needed to describe the degeneracies of the system. Broken symmetry SCF
states can become solutions of the HF procedure, however this can only be achieved
by utilizing an initial broken symmetry state to reach that SCF solution. So, if the
initial solution does not contain broken symmetries, the resulting SCF solution will
also lack the broken symmetry. With broken symmetry solutions one can recover
correlation that otherwise would not be built into the wavefunction. However, there
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are problems that arise with the utilization of broken symmetry SCF solutions like
the existence of bad quantum numbers due to the spin contamination in the system.

4.1.1.1 Construction of projection operators

The projection-after-variation double-hybrid density functional theory (PAV-DH-DFT)
method applied in this work has been described in ref. 144. This section serves to
provide some background to projection methods, highlight specific features of the
implementation used, and describe how the implementation differs from alternative
formulations. Although difference projected double-hybrid density functional theory
(∆-Proj-DH-DFT) uses a KS determinant, the formulation is analogous to methods
constructed from a HF determinant, and so in this section, we describe in general
terms the construction of projection operators in the context of the wavefunction.
Further modifications for projection of KS based methods are then developed in the
following section.

Projectors can be used to recover good quantum numbers from symmetry-broken
approximate wavefunctions |Φ0〉 by removing terms with incorrect S andMS quantum
numbers resulting from spin contamination. Generally, any wavefunction (including
post-SCF) can be written in terms of the contributions from eigenfunctions with
different S and MS quantum numbers

|Φ0〉 =
∑
S

∑
MS

cS,MS
|S,MS〉 (4.1.1)

where cS,MS
are expansion coefficients. For spin-adapted wavefunctions, all but one of

the cS,MS
are zero, while for wavefunctions that have spin polarization (collinear and

noncollinear), only cS,MS
with the same MS are nonzero. In the case that electron

spins are not confined along a common spin axis (coplanar or noncoplanar), all cS,MS

may be nonzero. If only the component of the wavefunction with spin quantum
numbers S ′ and M ′

S is desired, undesired components can be removed by acting on
the wavefunction with the projector P̂S′,M ′

S

|S ′,M ′
S〉 = P̂S′,M ′

S
|Φ0〉 = N

∑
S

∑
MS

cS,MS
|S ′,M ′

S〉〈S ′,M ′
S|S,MS〉 (4.1.2)

where N normalizes the wavefunction, and due to the orthonormality of spin eigen-
functions, 〈S ′,M ′

S|S,MS〉 = δSS′δMSM
′
S
, thus selecting only the desired spin compo-

nent of the wavefunction. In the remainder of this text we deal only with projection
of collinear SCF solutions. One approach to realize the projection expressed in eq.
4.1.2 is to diagonalize the Hamiltonian built from a determinant expansion in the
space of biorthogonal orbital pairs which have non-unit overlap. The eigenvectors
then provide the coefficients that indicate how each spin-adapted eigenfunction of
the Hamiltonian contributes to the symmetry-broken wavefunction. The projected
energy EP can then be obtained from

EP =

∑
I∈〈Ŝ2〉=Sz(Sz+1) c

∗
IcIEI∑

I∈〈Ŝ2〉=Sz(Sz+1) c
∗
IcI

(4.1.3)
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where the summations only include pure-spin states of the desired 〈Ŝ2〉 value and the
denominator normalizes the wavefunction. While the formalism of eq. 4.1.3 is useful
for conceptually understanding how projection works, the factorial scaling of the size
of the determinant expansion in terms of the number of biorthogonal orbital pairs
with non-unitary overlap undermines its practical utility.

Instead of explicitly constructing and diagonalizing the Hamiltonian in the basis
of the biorthogonal determinant expansion, Löwdin proposed a projector that, while
not resolving the factorial scaling required to fully project the wavefunction, can be
used to project only the spin states that most contaminate the wavefunction (145)

P̂S =

1
2

(Nα+Nβ)∏
Kz=Sz+1

Ŝ2 −Kz(Kz + 1)

Sz(Sz + 1)−Kz(Kz + 1)
(4.1.4)

where Sz = 1
2
(Nα −Nβ), i.e. the total electron spin projected along the axis of spin

quantization, and Nα and Nβ are the number of α and β electrons respectively. In
the case of single excitations where a single electron pair is broken, the Sz + 1 spin
state contaminates to a far greater extent than any other. As a result, the projector
in eq. 4.1.4 can be truncated at Kz = Sz + 1 and the resulting projector is known as
the annihilation operator

ÂS+1 =
Ŝ2 − (Sz + 1)(Sz + 2)

Sz(Sz + 1)− (Sz + 1)(Sz + 2)
(4.1.5)

Alternatively, the Wheeler-Hill coordinate generator formulation (146; 134) leads to
a projector that ensures invariance of the wavefunction with respect to the axis of
spin quantization

P̂S =
2Sz + 1

2

∫ π

0

dβ sin(β)dSMSMS
(β)eiβŜy (4.1.6)

where dSMSMS
(β) is the Wigner small d matrix and eiβŜy is the collective rotation of

the angle of spin quantization by an angle β. The advantage of the approach in eq.
4.1.6 is that projection of all contaminating spin states is possible at mean-field cost,
and so resolves the factorial scaling or truncation of the Löwdin projector.

4.1.1.2 Projection-after-variation double-hybrid density functional theory

In the ∆-Proj-DH-DFT approach, the ground and excited states are computed by
local optimization of two SCF solutions representing each state of interest which are
generally symmetry broken. For the excited state, breaking an orbital pair always
results in spin contamination at the SCF level that requires projection to resolve,
while low spin open shell electronic structure in the ground state will also require
projection. In the current implementation, the projector of eq. 4.1.5 is used to provide
a corrected energy using

EP =
〈Φ0|ĤÂS+1|Φ0〉
〈Φ0|ÂS+1|Φ0〉

(4.1.7)
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where as above, the exact nature of |Φ0〉 depends upon the specific methodology being
used. The projector in eq. 4.1.5 is strictly valid only when one electron spin-pair is
broken in the excitation and when the remaining orbitals are closed shell in both the
ground and excited state. However, our previous work indicated that severe degra-
dation of VEEs does not occur until 〈Ŝ2〉 closely approaches (Sz + 1)(Sz + 2), which
is indicated by an increase in 〈Ŝ2〉 upon annihilation. An additional source of error is
the inability of symmetry breaking and projection to describe more than a single cor-
relation mechanism, in which natural orbitals from several different symmetry-broken
SCF solutions are required to capture the static correlation (147; 148).

In the case where |Φ0〉 is a HF or KS determinant, inserting eq. 4.1.5 into eq. 4.1.7
yields the projected SCF energy EPSCF

EPSCF = 〈Φ0|Ĥ|Φ0 + Φ̃1〉 (4.1.8)

where

|Φ̃1〉 =
∑
ijab

|Φab
ij 〉〈Φab

ij |Ŝ2|Φ0〉
〈Ŝ2〉 − (Sz + 1)(Sz + 2)

(4.1.9)

is the correction to the SCF solution, in which |Φab
ij 〉 are determinants obtained from

double substitution of electrons with respect to |Φ0〉, with indices i, j, k . . . referring
to occupied orbitals and a, b, c . . . referring to virtual orbitals. In the case of MP2,
the projected energy EPMP2 is

EPMP2 = 〈Φ0|Ĥ|Φ0 + Φ1 + Φ̃′1〉 (4.1.10)

where |Φ̃′1〉 is obtained by Gram-Schmidt orthogonalization of the first order correc-
tion

|Φ1〉 = −
∑
ijab

|Φab
ij 〉〈Φab

ij |Ĥ|Φ0〉
∆ijab

(4.1.11)

where ε is the orbital energy and ∆ijab = εa + εb − εi − εj, with |Φ̃1〉, yielding

|Φ̃′1〉 = |Φ̃1〉
(

1 +

∑
ijab〈Φ0|Ŝ2|Φab

ij 〉tabij {〈Ŝ2〉 − (Sz + 1)(Sz + 2)}∑
ijab |〈Φ0|Ŝ2|Φab

ij 〉|2

)
(4.1.12)

where tabij are the MP2 amplitudes

tabij =
〈ij||ab〉
∆ijab

(4.1.13)

Owing to the singularities in tabij due to the small orbital energy gaps in the denomi-
nator, which is particularly acute when performing MP2 corrections to excited states
(and with low amounts of exact exchange in the case of DH-DFT), we have further
investigated the use of regularized amplitudes t̃abij (149)

t̃abij = tabij (1− exp{−λ∆ijab})2 (4.1.14)
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which goes to zero as ∆ijab → 0 and where λ is a parameter that controls the reg-
ularization strength. The regularized amplitudes are used in both |Φ1〉 and |Φ̃′1〉
components of the DH-DFT functional.

Using a double-hybrid Kohn-Sham density in eq.4.1.10 , the projected double-
hybrid density functional theory (PDH-DFT) energy can be written as

EPDH = 〈Φ0|Ĥ|Φ0 + γ(Φ1 + Φ̃′1)〉 (4.1.15)

where γ is the parameter than governs the amount of MP2 correlation in the double-
hybrid functional. The exchange-correlation components of eq. 4.1.15 can be written
as

EPDH
xc = (1− ax)E

GGA
x + axE

HF
x + bEGGA

c + c(γσσEσσPT2
c + γαβE

αβPT2
c + γαβE

Proj
c )

(4.1.16)
where the first three terms are standard exchange and correlation terms from hybrid
DFT, the fourth and fifth terms are the MP2 correlation terms, which can be broken
into same-spin (σσ) and opposite-spin (αβ) components, and the final term is the
projection contribution accounting for symmetry breaking in the reference Kohn-
Sham orbitals. The coefficients ax, b, c and γ are free parameters which can be
fitted to a training set. An advantage of projection is that it does not increase
the number of empirical parameters in the functional. As a result, in our previous
work, we were able to examine the use of three functionals (PBEQIDH, B2PLYP and
DSDPBEP86), along with MP2, without having to determine a suitable parameter
for the projection term. Although a significant improvement was found upon use
of a Kohn-Sham reference, there was no significant difference in the performance
of different functionals. However, all functionals tested used a large amount of HF
exchange, with ax between 0.53 and 0.69, which raised the question about whether
the apparent failure of difference projected density functional theory (∆-Proj-DFT)
observed in our previous study resulted from a combination of suboptimal parameters.
In addition, high HF exchange character leads to greater symmetry breaking of the
reference, and so may over-emphasize the importance of projection.

4.1.2 Connection to Other Excited State Methods

Having introduced the form of the difference projection-after-variation double-hybrid
density functional theory (∆PAV-DH-DFT), in this section we examine how the pro-
posed method compares with other approached to facilitate the discussion of the
performance of different methods. In particular, we discuss the connection between
LR-CC methods difference second-order Møller-Plesset theory (∆MP2), as well as
additional correlations obtained using projection combined with a density functional
reference.

Combining LR with CC methods provide a systematic route to the investigation
of excited states (150). Except for relatively small systems, including the effect of
triple substitutions that describe the simultaneous interaction of three electrons is
unfeasible. Therefore, application of LR-CC to medium and large molecular systems
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is essentially limited to inclusion of single and double substitutions only – equation-
of-motion coupled cluster singles and doubles (EOM-CCSD) (151) or linear-response
coupled cluster singles and approximate doubles (LR-CC2) (152). The motivation
for this work is that in several benchmark studies (153; 154), the LR-CC2 method is
frequently found to perform as well as or better than EOM-CCSD approach despite
coupled cluster singles and approximate doubles (CC2) being an approximation to
coupled cluster singles and doubles (CCSD) in which the doubles amplitudes are
correct to first order in the fluctuation potential rather than to second order. However,
CC2 is iterative O(N5

basis) cost and generally provides energies of similar quality to
noniterative O(N5

basis) MP2, with both giving the correct energy to second order in
the fluctuation potential. The advantage of CC2 over MP2 is in the computation of
properties as it includes orbital relaxation through single substitution terms (which
is the basis for its use in LR formalisms).

The difference between CC2 and MP2 can be analyzed directly in terms of the
cluster operators. The CC and MP2 energy corrections to a HF reference |Φ0〉 can be
written as (using the linked cluster formalism rather than the similarity transformed
Hamiltonian)

ECC
2 = 〈Φ0|Φ̂(T̂2 +

1

2
T̂ 2

1 )|Φ0〉 (4.1.17)

EMP2
2 = 〈Φ0|Φ̂T̂ (1)

2 |Φ0〉 (4.1.18)

where Φ̂ is the electron-electron fluctuation potential and T̂1 and T̂2 are single and
double substitution cluster operators respectively. The cluster operators are written

T̂1 =
∑
ia

tai Ê
a
i (4.1.19)

T̂2 =
1

2

∑
ijab

tabij Ê
a
i Ê

b
j (4.1.20)

where i, j, k . . . denote occupied orbitals, a, b, c . . . denote virtual orbitals, {t} are the
cluster amplitudes, and Êia = a†aai is an electron excitation operator that annihilates
an electron in orbital i and creates an electron in orbital a. The cluster amplitudes {t}
are determined by projection onto the set of substituted bra determinants in which
approximation depends on the order of truncation in the cluster operator T̂ . In MP2
the doubles amplitudes are obtained from

tabij = − 〈Φab
ij |Φ̂|Φ0〉

εa + εb − εi − εj
(4.1.21)

where εp is energy of orbital p and Φab
ij is a doubly substituted determinant, while in

CC2 relaxation is permitted in the HF reference

tabij = −〈Φ
ab
ij |Φ̂ exp(T̂1)|Φ0〉
εa + εb − εi − εj

(4.1.22)
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where the single substitution cluster amplitudes tai are determined through a mod-
ified set of coupled cluster singles (CCS) amplitude equations involving the double
amplitudes, and hence is solved iteratively until self-consistency. Thus the distinction
between CC2 and MP2 is in the former methods ability to account for large changes
in the reference orbitals such as those which may occur upon excitation or other type
of perturbation.

Although MP2 cannot account for orbital relaxation explicitly, where two different
HF references are used for ground and excited states, correlation is introduced through
Thouless’ theorem (155) and can be shown to of essentially the same type as the
additional correlation in CC2

E∆SCF
2 = 〈Φ1|Ĥ{exp(T̂1)− 1}|Φ1〉 (4.1.23)

where |Φ1〉 is the unoptimized HF reference of the excited state obtained by occupied-
virtual (ov) orbital swaps in the ground state reference |Φ0〉. Note the presence of
the second term in eq. 4.1.23 results from the fact the correction is to the difference
between two states, as opposed to eq. 4.1.22 which gives the correction to a single
state. Unlike CC2, the orbital relaxation in ∆MP2 is not directly coupled to the
perturbation (there is no orbital relaxation resulting from the inclusion of electron-
electron correlation at second order in the fluctuation potential). However, orbital
relaxation resulting from electron-electron correlation is expected to be negligible in
comparison to relaxation in response to an external perturbation (photon absorbtion)
which is included in ∆MP2. Thus, the conclusion of this paragraph is that a ∆MP2
approach should provide similar quality excitation energies to LR CC2 but with
noniterative O(N5) cost.

Although ∆MP2 is expected to provide similar performance to CC2, the LR for-
malism has several advantages. First, LR does not, in principle, require any additional
user input parameters beyond those for the ground state (a black-box approach); sec-
ond, an orthogonal set of solutions are obtained such that identification of electronic
states is unambiguous; and third, zeroth-order references are not required for each
state of interest. However, in reality, the main issue that has prevented the widespread
adoption of difference methods is the variational collapse of the excited state optimiza-
tion. As discussed in section 4.1, recent developments have resolved many of the issues
in variationally optimizing to excited state SCF solutions to the extent that we have
been able to perform benchmark studies of ∆SCF and post-∆SCF methods in this
work. An additional issue of LR-CC is that it is based on a HF wavefunction reference.
Alternative KS references have the advantage of incorporating correlation with low-
order scaling through parameterization of the exchange-correlation functional rather
than through the cluster expansion that must be truncated due to computational
expense. Through using a KS reference, we can define a ∆DH-DFT model for the
study of excited states. Therefore, in addition to capturing long-range correlations
through the MP2 correction, the KS reference introduces a limited amount of static
correlation and an improved description of the short-range exchange-correlation hole.

Finally, we comment on the last correlation contribution absent from ∆DH-DFT,
which is that arising from a significant difference in the strong correlations present
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between the ground and excited states. Despite the use of a KS reference combined
with permitting symmetry breaking to mimic static correlation to an extent, DFT is
still unable to fully account for strong correlations. While multireference perturbation
theories (e.g. CASPT2) have been developed and successfully applied (156), explicit
construction of the wavefunction places significant technical demands on the user
and frequently cannot be applied to correlate sufficiently large orbital subspaces for
molecular problems. Alternatively one can opt for an empirical approach like that
of density functional theory with modified on-site repulsion (DFT+U) in which an
on-site repulsion penalty can be added to tune DFT and capture the remaining static
correlation (157). Recently, work using the on-top pair density has been developed to
recover the remaining correlations in DFT (158). Another approach, and theDPAVHF
option we have chosen in this work, is to use projection of the symmetry broken KS
reference determinant to restore quantum numbers (see section 4.1.1.2). In the results,
we demonstrate that spin projection is required for bringing errors in ∆DH-DFT into
line with LR-CC, although the use of projection means that the method is no longer
size extensive or size consistent for individual states. However, provided the projector
is able to recouple the required number of electrons, projection is size intensive and
so the quality of excitation energies does not deteriorate with system size.

Local Excited State Benchmarking Set

In this section, we examine the performance of ∆PAV-DH-DFT calculations of VEEs
specifically examining local excitations. We first discuss the terms within the model
(eq. 4.1.16) and the relative importance in improving agreement with benchmark
CASPT2 results. Subsequently, we discuss how the model performs for different
molecule types represented in the benchmark set and explain why the nature of
certain molecule classes result in less satisfactory performance. Finally, we compare
the ∆PAV-DH-DFT model to other types of methods used to study the excited states
of molecules.

In this study, the performance of the ∆PAV-DH-DFT approach is examined us-
ing the local excited state benchmark of Schreiber and coworkers (153). The test
set comprises 28 organic molecules covering important classes of chromophores in
organic photochemistry. Within the test set, there are 7 unsaturated aliphatic hy-
drocarbons, 11 aromatic hydrocarbons and heterocycles, 6 carbonyl compounds, and
4 nucleobases. Geometries for each molecule were the same MP2/6-31(d) optimized
structures as used in the original study. All calculations in this work used the TZVP
basis set to compare directly with the previously reported CASPT2 results. Ground
states were determined by computing the lowest energy real restricted (RR) solution
with a standard direct inversion of the iterative subspace (DIIS) procedure using
Aufbau occupations, followed by optimization along the eigenvectors corresponding
to ov rotation instabilities until a stable real unrestricted (RU) solution was obtained.
Excited states were obtained by swapping the relevant ov orbital pair in the lowest
energy RR determinant and then optimizing with RU symmetry using DIIS with
orbital occupation determined by MOM (159). All subsequent DH-DFT calculations
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Functional
component MP2 PBEQIDH B2PLYP DSDPBEP86

PDH -0.1228 (1.1278) -0.2703 (0.5417) -0.4933 (0.5024) -0.2945 (0.5295)
DH -0.7690 (1.1294) -0.3450 (0.6615) -0.6083 (0.6320) -0.3999 (0.6636)
PRef. 0.8454 (2.4164) 0.0126 (1.1436) -0.0182 (0.9846) -0.0414 (1.1501)
Ref. 0.0843 (1.0875) -0.1290 (0.8440) -0.3159 (0.7677) -0.1696 (0.8635)

Table 4.1. Mean error in eV of ∆PAV-DH-DFT/TZVP excitation energies with re-
spect to CASPT2/TZVP results. The standard deviation in eV is shown in parenthe-
sis. Results for four double-hybrid functionals are shown (MP2, PBEQIDH, B2PLYP,
DSDPBEP86) broken down into the reference hybrid functional (Ref.), the projected
reference hybrid functional (PRef.), the double hybrid functional (DH), and the pro-
jected double hybrid functional (PDH).

were performed on top of the reference wavefunctions. The double-hybrid density
functional examined in this study were B2PLYP (124), PBEQIDH (160), and DSDP-
BEP86 (161; 162), in addition to standard MP2. Calculations were performed using
a modified version of Gaussian 16 (89).

4.2.1 Overall performance

In table 4.1, we show the performance of each of the difference methods examined
in terms of the mean error and standard deviation with respect to CASPT2 results.
As the number of terms included in the functional decreases with descending rows
in the table, it is expected that the methods in the bottom row give poorer results
than methods in the top row. In terms of standard deviation, the expected pattern is
generally observed, with the exception being that difference projection-after-variation
density functional theory (∆PAV-DFT) (table 4.1, row 3) gives substantially poorer
results than difference density functional theory (∆DFT) (table 4.1, row 4). Such
a result suggests that projection should not be used with ∆DFT calculations be-
cause of reduced error cancellation. The addition of MP2 correlation to the reference
functional to give ∆DH-DFT (table 4.1, row 2) shows that the additional correlation
energy improves the standard deviation by around 0.2 eV for all reference models
compared to the reference functional ∆DFT (table 4.1, row 4). Subsequent projec-
tion of the double hybrid functional to give ∆PAV-DH-DFT improves the standard
deviation by 0.1 eV.

Different double hybrid functionals are represented in each of the columns of table
4.1. The exception is the first column that shows MP2 results. Between the three
double hybrids (PBEQIDH, B2PLYP, DSDPBEP86), the trends are very similar,
suggesting that the result is relatively insensitive to the underlying functional. The
main difference between functionals is in the mean error, the magnitude of which
is inversely correlated with HF exchange (B2PLYP – 53%, PBEQIDH – 69% and
DSDPBEP86 – 69%). However, the standard deviations are very similar, showing a
small positive correlation with HF exchange. Thus, ∆PAV-B2PLYP gives the largest
mean error (0.49 eV) but the smallest standard deviation (0.50 eV). Additionally,
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there is no apparent distinction between standard double hybrids and those that use
scaled component spin (DSDPBEP86). The double hybrids are a clear improvement
over the results using a HF reference (table 4.1, column 1). While the difference
Hartree-Fock (∆HF) results are worse than ∆DFT results by around 0.2 eV in the
standard deviation, ∆MP2 does not improve on ∆HF while ∆DH-DFT gives signif-
icantly better results than ∆DFT. Additionally, the use of projection only gives a
marginal improvement in the ∆MP2 results.

Fig. 4.1 shows in greater detail the distribution of VEEs reported in table 4.1.
Inspection of how the distribution changes as different terms are added gives a better
sense of how each term corrects errors in the model. As an initial point, we first
discuss the reference functions (fig. 4.1, row R4) in which the distribution of VEEs
shows an approximately normal distribution. Comparing ∆HF (row R4 column C1)
results with ∆DFT (row R4, columns C2-C4), it is apparent that the number of
outliers that overestimate the VEE in HF are reduced by correlation introduced
through the density functional reference. Examining the effect of including correlation
through perturbation (comparing rows R2 and R4 of fig. 4.1) gives a similar trend
as the effect of using a density functional reference, with fewer overestimated VEEs.
It is somewhat unexpected that the inclusion of dynamic correlation through MP2
correlation generally decreases the VEE, as one would expect that there is a greater
amount of dynamic correlation in the ground state than the excited state. As a result,
the ground state should be stabilized to a greater extent than the excited state and
so the VEE should increase. However, MP2 is not variational and may increase the
energy of the ground state relative to the excited state resulting in a smaller VEE.
Besides, the excited state reference is obtained via nonlinear optimization, and so
is not necessarily variational, in which case it is unknown how the MP2 correction
applied to the excited state will affect the VEE.

The effect of projection can be determined by examining the change in the distri-
bution between rows R3 and R4 of fig. 4.1. Regardless of the reference, the standard
deviation deteriorates when projection is applied, generally because the number of
overestimated excitation energies increases significantly, causing ∆PAV-DFT to have
the best mean VEE but the worst standard deviation. The spread in VEE as a result
of projection can be understood by considering that while projection in the ground
state will generally reduce the energy, in the excited state projection is more likely to
increase the energy as the high spin contaminating spin state in the symmetry-broken
wavefunction is generally below the low spin energy. However, while in most cases
projection increases VEEs, the VEE decreases in some cases due to the contaminat-
ing high spin state lying above the low spin energy. Projection of the double-hybrid
density functional also results in VEEs shifting in either direction depending on the
relative energy of the contaminating triplet state. As for projection of the reference,
the overall shift causes the mean VEE to increase (fig. 4.1, row R1 and R2). However,
owing to a balanced description in correlation types, the standard deviation decreases
upon changes in VEE due to projection.

Fig. 4.2 shows the correlation plots between the various difference methods tested
in this work and CASPT2 results along with the coefficient of determination (R2)
values. The ∆PAV-DH-DFT results display the best correlation, while there is little
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Figure 4.1. Histograms showing frequency of deviation (bin width 0.1 eV) and
normal distribution of computed ∆PAV-DH-DFT/TZVP excitation energies from
CASPT2/TZVP results. Four double-hybrid functionals are shown in columns (MP2,
PBEQIDH, B2PLYP, DSDPBEP86), while rows show the frequency of deviation for
the reference hybrid functional, the projected reference hybrid functional, the double
hybrid functional, and the projected double hybrid functional.

83



to distinguish different double hybrids. The correlation for all methods improves as
more terms are added into the model, except for difference projection-after-variation
Hartree-Fock (∆PAV-HF). Even though the standard deviation of ∆PAV-DFT is
larger than ∆DFT, there no difference in correlation of either method with CASPT2
results. Generally, the trend lines show overestimated low-energy excitations and
underestimated high-energy excitations. Therefore, it is possible to apply an energy-
dependent scaling factor that may further reduce the standard deviation, although
such a parameter has no obvious physical significance. Fig. 4.2 also demonstrates that
the mean error of ∆PAV-B2PLYP is larger than the other double hybrids because it
performs better in computing high energy excitations. Thus, slightly less HF exchange
appears to result in a better overall performance at the expense of larger systematic
energy shifts.

4.2.2 Performance for molecule classes and illustrative examples

We now turn to discuss the performance of the difference methods examined for dif-
ferent classes of molecules in the test set. For clarity and readability, we do not
provide a detailed analysis of all molecules examined, but give illustrative examples
and refer the reader to tables S1-S16 in reference (163) for detailed results. Table
4.2 shows the standard deviation for the various molecule classes. The general trend
within each molecular class is the same as the overall trend, with the performance
of the models improving as the number of terms in the energy expression increases.
The poorest performance for ∆PAV-DH-DFT was in the unsaturated aliphatic hy-
drocarbons class, in which the addition of MP2 correlation to the reference functional
does not improve the model, although projection reduces the standard deviation by
around 0.2 eV. Examining the VEE of individual states reveals that the linear unsat-
urated aliphatic hydrocarbons have a much larger standard deviation than the cyclic
molecules. We now focus on two illustrative examples of linear polyenes that demon-
strate where the ∆PAV-DH-DFT model performs well and where caution should be
used.

First, the ethene 11B1u state has been well-studied both computationally and
experimentally, where the VEE has been found hard to predict due to the mixed-
valence and Rydberg character. The CASPT2 (2 electrons, 2 orbitals active space)
results of Schreiber and coworkers gave a VEE of 8.62 eV, while LR-CC methods give
energies in the range of 8.37-8.51 eV. Enlargement of the basis set from TZVP to
d-aug-cc-pV5Z the linear-response coupled cluster singles, doubles and approximate
triples (LR-CC3) gave a VEE of 7.88 eV, while a multi-state CASPT2 result with a
much larger 8 electrons, 20 orbital active space gave a value of 7.83 eV. Experimen-
tally, the VEE is believed to lie between 7.7 and 8.0 eV, with Schreiber suggesting a
value of 7.8 eV as the best estimate. The ∆PAV-DH-DFT results show a functional
dependence, with MP2 giving 9.06 eV, B2PLYP 6.85 eV, PBEQIDH 7.19 eV and
DSDPBEP86 7.68 eV, demonstrating that although the overall results are similar
for different functionals, there are variations for individual calculations. Therefore,
even though the ∆PAV-DH-DFT ethene 11B1u states are in larger error than LR-CC
with respect to the CASPT2 results, the ∆PAV-DH-DFT values are actually in closer

84



Figure 4.2. Correlation plots of computed ∆PAV-DHDFT/TZVP and
CASPT2/TZVP excitation energies showing least squares regression line and as-
sociated coefficient of determination. Four double-hybrid functionals are shown in
columns (MP2, PBEQIDH, B2PLYP, DSDPBEP86), while rows show the frequency
of deviation for the reference hybrid functional, the projected reference hybrid func-
tional, the double hybrid functional, and the projected double hybrid functional.

85



Functional
component MP2 PBEQIDH B2PLYP DSDPBEP86

Unsaturated Aliphatic Hydrocarbons
PDH 1.0505 0.7201 0.7140 0.6317
DH 0.9407 0.9288 0.9006 0.9376
PRef. 1.8449 0.7434 0.6920 0.7481
Ref. 1.1242 0.9786 0.9383 0.9802

Aromatic Hydrocarbons and Heterocycles
PDH 1.0739 0.5922 0.5413 0.5983
DH 1.0979 0.6650 0.6231 0.6560
PRef. 2.1466 1.1347 0.9828 1.1427
Ref. 1.0983 0.8720 0.7803 0.9125

Aldehydes, Ketones and Amides
PDH 0.8894 0.3069 0.2810 0.3351
DH 1.1142 0.5249 0.5698 0.5987
PRef. 2.8806 1.3377 1.1000 1.3448
Ref. 1.2673 0.7248 0.5983 0.7343

Nucleobases
PDH 0.6772 0.3709 0.3372 0.3554
DH 0.4093 0.4081 0.3793 0.3943
Pref. 0.9922 0.8180 0.7337 0.8093
Ref. 0.6949 0.5769 0.5667 0.5645

Table 4.2. Standard deviation in eV of ∆PAV-DHDFT/TZVP excitation energies
with respect to CASPT2/TZVP results for different classes of benchmark molecules.
Results for four double-hybrid functionals are shown (MP2, PBEQIDH, B2PLYP,
DSDPBEP86) broken down into the reference hybrid functional (Ref.), the projected
reference hybrid functional (PRef.), the double hybrid functional (DH), and the pro-
jected double hybrid functional (PDH).

correspondence with the likely experimental value. The unprojected methods (with
or without the MP2 correlation added for all functionals including MP2) tended to
significantly underestimate excitation energies giving a range of 5.86-6.44 eV. Pro-
jection on top of the reference tended to overestimate the VEE giving 8.90-9.01 eV,
demonstrating that inclusion of dynamic and static correlation together is important
for correctly reproducing experimental values.

Second, we examine the 11Bu and 21Ag states of E-butadiene of which Sund-
strom and Head-Gordon have discussed the various theoretical results (164). To
summarize, the ordering of the two states was inconsistent between different methods
but has been determined as 11Bu at 6.21 eV followed by the 21Ag state at 6.41 eV,
while the reference CASPT2 calculations gave 6.47 and 6.83 eV respectively. Ob-
taining the correct order of the two states requires a balance of correlation types
as the two states are dominated by either dynamic (11Bu) or static (21Ag) correla-
tion effects. The 21Ag state also includes a significant amount of double excitation
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character (HOMO→LUMO) in addition to multiple single-excitation determinants
(HOMO-1→LUMO and HOMO→LUMO+1). For all difference methods, the cor-
rect ordering of 11Bu and 21Ag states was obtained (even ∆HF). The 11Bu state
was underestimated by all functionals at the ∆PAV-DH-DFT level of theory (5.02-
5.67 eV), but not when projected MP2 was used (6.68 eV). In contrast, the 21Ag
state is typically overestimated (8.52 eV with MP2 and 6.98-7.42 eV with double-
hybrids). However, the results of ∆PAV-DH-DFT are in line with LR-CC VEEs of
7.63 eV (LR-CC2) and 7.42 eV (EOM-CCSD) which indicate the importance of in-
cluding triples (LR-CC3 gives 6.77 eV). The determinant used as the reference for
the 21Ag state is the HOMO-1→LUMO as it has the correct symmetry, while the
HOMO→LUMO+1 determinant has Au symmetry. Therefore, rather than through
direct ov orbital swapping, the HOMO→LUMO+1 character is incorporated entirely
through orbital relaxation, while HOMO→LUMO double excitation is incorporated
through disconnected terms in the orbital relaxation.

The other molecular class in which the error standard deviation was relatively
large was the aromatic hydrocarbons and heterocycles. We discuss here the results
from benzene as an example of the molecule in the aromatic class. The ground state
of benzene is a model system for multireference behavior, with an open-shell singlet
ground state as a result of the doubly degenerate e1g HOMO. The low-lying π → π∗

excited states of benzene involve single excitations into the degenerate e2u LUMO and
so are close in energy, with best estimates provided by Schreiber and coworkers of 5.08
eV (11B2u), 6.54 eV (11B1u) and 7.13 eV (11E1u) (153). Additionally, the 21E2g state
is found at 8.41 eV and has HOMO→LUMO double excitation character. The VEE
of 11B2u is predicted reliably by all LR-CC methods (5.07-5.27 eV) compared to the
CASPT2 result of 5.05 eV. ∆PAV-DH-DFT gave consistently higher energies for the
11B2u state (5.51-5.64 eV), but were marginally better than the projected MP2 (5.72
eV). The LR-CC 11B1u (6.68-6.74 eV) and 11E1u (7.44-7.65 eV) were slightly above the
best estimates, with LR-CC2 and LR-CC3 being essentially identical for both states.
However, ∆PAV-DH-DFT underestimated the VEEs by around 1 eV for both states
(5.52-5.66 eV for 11B1u and 5.97-6.51 eV for 11E1u) while projected MP2 actually gave
the best results (5.94 eV for 11B1u and 7.45 eV for 11E1u), suggesting discrepancies
in these states of ∆PAV-DH-DFT with best estimates result from an imbalance in
the way correlation is introduced through the density functional. Finally, the double
excited character of the 21E2g state is apparent in the large difference between LR-
CC2 and LR-CC3 (9.03 eV and 8.43 eV respectively), where LR-CC3 is believed
to give an essentially correct answer. In the case of the 21E2g state the projected
MP2 value of 9.45 eV is similar in error to the LR-CC2 and EOM-CCSD (9.21 eV)
results, while PAV-DH-DFT (8.65-9.08 eV) give a marginal improvement. In line
with the findings in the 21Ag state of E-butadiene, we conclude that ∆PAV-DH-DFT
suffers a similar inability to quantitatively determine the VEEs to electronic states
with significant double excitation character, but that the numerical error is smaller
in ∆PAV-DH-DFT.
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∆MP2 ∆PMP2 ∆B2PLYP ∆PB2PLYP LR-CC2a EOM-CCSDa LR-CC3a

ME -0.77 -0.12 -0.61 -0.49 0.29 0.49 0.20
SD 1.13 1.13 0.63 0.50 0.41 0.58 0.27

Table 4.3. Mean error (ME) and standard deviation (SD) in eV of benchmarked
methods with respect to CASPT2/TZVP results. aResults reproduced from ref. 153.

4.2.3 Comparison with other excited state methods

In order to ascertain how the difference models tested in this work compare to es-
tablished computational methods, particularly LR-CC methods, we report the mean
error and standard deviation of various computational methods for the same test set
(table 4.3). In particular we focus on standard deviations as mean errors can be cor-
rected by systematic shifts provided that the standard deviation is sufficiently small.
First we briefly outline the results of LR-CC methods obtained in ref. 153. Although
LR-CC2 is an approximation to EOM-CCSD, LR-CC2 gave better performance in
both mean error and standard deviation, implying some amount of error cancella-
tion. LR-CC3 was found to give the closest agreement with CASPT2, with standard
deviation of 0.27 eV – less than half the standard deviation of EOM-CCSD. The per-
formance of LR-CC3 is a result of an improved description of double excitations. We
sought to corroborate the relative performance of LR-CC methods by examining the
standard deviations with respect to CASPT2 of a more recent benchmark by Azarias
and coworkers for n → π∗ excitations (154). Although the standard deviations of
LR-CC2 (0.41 eV in ref. 153 and 0.40 eV in ref. 154) and EOM-CCSD (0.58 eV in ref.
153 and 0.68 eV in ref. 154) are consistent, the LR-CC3 results (0.27 eV in ref. 153
and 0.40 eV in ref. 154) show that LR-CC3 does not consistently give VEEs in closer
agreement to CASPT2 than LR-CC2, although depending on the system, LR-CC3
results may be superior to CASPT2 in reproducing experiment.

Turning to the results of the difference methods, the average VEE is underesti-
mated in both projected and unprojected difference MP2 and DH-DFT while LR-CC
methods overestimate the mean VEE. ∆DH-DFT has a standard deviation (0.63 eV)
similar to that of EOM-CCSD (0.58 eV). The decent performance of unprojected
∆DH-DFT is useful because it is size extensive. However, the additional correla-
tion energy obtained through projection in the ∆PAV-DH-DFT approach enables
the standard deviation (0.50 eV) to improve to an intermediate level between EOM-
CCSD and LR-CC2. As LR-CC2 is an approximation to EOM-CCSD there is no
reason that LR-CC2 should have superior performance, and so the ∆PAV-DH-DFT
standard deviation indicates similar performance to LR-CC methods including up
to double excitation cluster operators. The ∆MP2 and ∆PMP2 method have over
double the standard deviation (1.13 eV) compared to LR-CC2 despite the similari-
ties in the underlying physics discussed in section 4.1.2 showing the importance of
the double hybrid reference functional in obtaining accuracy comparable to LR-CC
values.
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Single-Reference Challenge of Non-Local Excited States

The most popular methodology for studying the excited states of large systems is TD-
DFT, which provides a semiquantitative description of local excitations in the vertical
excitation region (165; 166). Despite the utility of TD-DFT, well known issues include
inabilities to describe charge-transfer states, double-excited states, Rydberg states,
and electronic degeneracies with the ground state (8; 9; 10; 11). Numerous improve-
ments to the TD-DFT methodology have partially resolved some issues, including
range separated functionals to describe charge transfer (167; 168; 169) and inclusion
of select double-substituted determinants to describe conical intersections (170). In
addition, improved accuracy can be obtained using a double-hybrid TD-DFT formal-
ism (34; 132; 131; 33; 32; 31) or within a wavefunction formalism using LR-CC2 or
EOM-CCSD approaches (171; 152).

Although DH approaches increase the computational scaling of TD-DFT ap-
proaches to noniterative O(N5), they can often rival the accuracy of more expensive
wavefunction-based approaches (35; 163) while correcting TD-DFT errors in systems
such as singlet-singlet valence excitations in large organic dyes (172; 173), electronic
circular dichroism spectra (174), and excited states in polycyclic aromatic hydro-
carbons (175). Despite the successes of DH methods, they give an unsatisfactory
description of charge transfer and Rydberg states (176; 177; 178; 179), which can
be partially ameliorated through use of range separation (180; 181; 167; 182; 183).
However, the range separation parameter is system-dependent (184) and although
the exact exchange parameter has been investigated for ground state transition metal
complexes (185), there was yet to be a study of how exact exchange affects the ac-
curacy of charge transfer, Rydberg, and local vertical excitation energies within a
difference formalism.

Local, Charge Transfer, and Rydberg Excited State
Benchmarking set

In the previous section, we have described an alternative DH-DFT approach for mod-
eling local excited states which was found to give results of similar quality to LR-CC2
or EOM-CCSD despite the lower computational scaling (163). The previous section
focused only on local excitations and revealed surprisingly that ∆PAV-DFT gave
significantly worse performance than ∆DFT. As a result, in this section we exam-
ine a broader class of excitation types, including local, charge-transfer, and Rydberg
states. We investigate how inclusion of exact exchange affects the relative perfor-
mance of ∆PAV-DH-DFT and underlying methodologies. The goal of this study
is to provide a systematic understanding of how the exact exchange parameter can
be tuned for different excitation types, as well as establish if the previous failures
of ∆DFT are a result of the functional parameterization. The exchange parameter
is investigated due to the understanding of spin contamination where it is relevant
to note that DFT suffers from spin contamination to a lesser extent than HF wave-
functions, although for low-spin open shell systems, any single-reference methodology
will eventually exhibit symmetry breaking (186). In the context of excited electronic
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states, the breaking of an electron pair will always lead to large contributions from
contaminating spin states, while the amount of HF exchange may modulate the ex-
tent of symmetry breaking in the remaining N − 2 electrons. Correlation generally
reduces spin contamination (although not always (187)), although the presence of spin
contamination is known to significantly impact the convergence of the Møller-Plesset
perturbation series (188; 189).

In the remainder of the section, we first discuss the overall performance of ∆PAV-
DH-DFT on three types of vertical excitation energies – local, charge transfer and Ry-
dberg excitations, and compare the results with conventional time-dependent double-
hybrid density functional theory (TDDHDFT). The local excitations tested are a
different set to those used in our previous work, so our goal is to ensure our previous
findings are transferrable as well as provide additional data on the models perfor-
mance. As our previous work found insignificant difference between functionals, we
only use the DSDPBEP86 functional throughout this study. Second, we examine the
role of the HF exchange contribution for improving the description of difference VEEs,
particularly for Rydberg and charge transfer excitations which from linear-response
TD-DFT are known to require nonlocal exchange to correct for self-interaction error
and describe the long-range component of the exchange correlation hole. Lastly, we
conclude by describing the successes, limitations and future directions of the ∆PAV-
DH-DFT methodology.

In order to ascertain the role of HF exchange on the accuracy of ∆PAV-DH-
DFT calculations, we first examined the performance using the benchmark set of
Tozer etȧl.̇(190) The benchmark set consists of 32 local excitations, 14 charge trans-
fer excitations, and 13 Rydberg excitations. Owing to the similarity in the per-
formance of different functionals previously observed, only DSDPBEP86 was used,
as spin-component scaled terms have been implicated in separating the parameter-
ization of long-range (same-spin) and short-range (opposite-spin) interactions im-
portant for a balanced description of correlation energy change upon excitations
(191; 192; 193). The basis sets used were: cc-pVTZ for dipeptide, β-dipeptide, tripep-
tide, N-phenylpyrrole (PP), 4-(N,N-dimethylamino)benzonitrile (DMABN) and HCl;
and d-Aug-cc-pVTZ for N2, CO and H2CO. The use of diffuse functions when study-
ing N2, CO, and H2CO was due to the Rydberg character of the excited electronic
states. Ground states were determined by computing the lowest energy real restricted
solution and then performing analysis of the orbital-rotation Hessian to ensure no in-
stabilities with respect to ov rotations were present. All molecules were found to have
stable restricted SCF solutions in the ground state. Excited states were obtained by
swapping relevant ov orbital pairs in the real-restricted determinant, and then opti-
mizing using MOM (159; 194) or state-targeted energy projection (STEP) (195) with
real-unrestricted symmetry. A more detailed description of the workflow required to
determine the SCF solutions corresponding to both ground and excited states is out-
lined in section 4.5.6 of the supplementary information. Both ground and excited state
energies were calculated using the reference functional (PBEP86), the projected ref-
erence functional (projected PBEP86), the double-hybrid functional (DSDPBEP86),
and the projected double-hybrid functional (projected DSDPBEP86). To ascertain
the role of HF exchange, the value of ax in eq. 4.1.16 was varied in increments of
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0.1 from zero to one. Vertical excitation energies were also computed using TD-
DSDPBEP86 in order to compare the performance of linear response and difference
DH-DFT. All calculations were performed using a modified version of Gaussian 16
(89), other than TDDHDFT calculations which used Orca (196), and the Wheeler-
Hill coordinate generator projection method which was implemented in a stand-alone
code using the MQCPack library (197) interfaced with Gaussian. Difference ver-
tical excitations energies were compared to benchmark reference values determined
in ref. 190 from gas-phase experimental data, state specific CASPT2 and LR-CC2
computational data.

First, we discuss the performance of ∆PAV-DH-DFT VEEs for different excita-
tion types using original parameterization for the ground state (69% HF exchange)
used in our original study and compare the result with state-of-the-art conventional
TDDHDFT. We then discuss how the performance of ∆PAV-DH-DFT VEEs changes
depending on the percentage of HF exchange. Our analysis breaks the performance
down into local, charge transfer and Rydberg excitations, as well as overall perfor-
mance.

4.4.1 DSDPBEP86 Vertical Excitation Energies Using Original Parameterization

The standard deviations and mean errors of difference unprojected and projected hy-
brid and double-hybrid functionals for computing VEEs of local, charge transfer, and
Rydberg states using the original parameterization (69% HF exchange) are shown in
table 4.4. We first comment on the performance of the local excitations in the Tozer
benchmark set (ref. 190) and contrast the results with our previous study, in which
the Thiel benchmark set (ref. 153) consisting of only local excitations was used. Sub-
sequently, we examine the results of difference unprojected and projected functionals
for computing charge transfer and Rydberg states, which have not previously been
explored using difference methods. Results using a difference formalism are compared
to TDDHDFT results with the same functional.

The results shown in column 3 of table 4.4, which detail the local excitations
of the Tozer benchmark, are broadly in agreement with the results using the Thiel
benchmark in column 6, with decreasing mean error and standard deviation with
the number of terms in the functional (163). In terms of standard deviations, all
methods gave slightly better results in the Tozer benchmark than the Thiel bench-
mark, improving by 0.09 – 0.26 eV depending on the number of terms included in
the functional. ∆DFT gave the largest improvement in standard deviation between
benchmarks by 0.26 eV, although still performed worse than either of the two MP2
corrected methods. As was observed in the Thiel test set, the Tozer test set also
revealed ∆PAV-DFT gave a worse standard deviation than the unprojected ∆DFT,
indicating that without MP2 correlation, projection should not be used with ∆DFT
results. In terms of mean error, the Tozer benchmark corroborated the findings using
the Thiel benchmark that difference methods systematically underestimate VEEs.
MP2 corrected methods give improved mean errors in the Tozer benchmark, while
the reference functionals give worse mean errors. As a result, the Tozer benchmark
gives the expected order of improvement in mean error with the number of terms in
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Method/Functional
This work (Tozer) Ref. 163 (Thiel)

Type of Excitation
Local Charge Transfer Rydberg Local

∆-Proj-DSDPBEP86 ME -0.19 -0.66 -0.16 -0.29
MAE 0.37 0.75 0.51 0.58
SD 0.44 0.57 0.61 0.53

∆-DSDPBEP86 ME -0.31 -0.31 -0.24 -0.40
MAE 0.47 0.52 0.33 1.09
SD 0.53 0.44 0.37 0.66

∆-Proj-PBEP86a ME -0.35 -1.02 -0.27 -0.04
MAE 0.82 1.12 1.14 0.69
SD 1.07 0.67 1.37 1.15

∆-PBEP86a ME -0.50 -0.35 -0.35 -0.17
MAE 0.67 0.47 0.53 0.94
SD 0.61 0.46 0.60 0.86

Table 4.4. Mean error (ME), mean absolute error (MAE), and standard deviation
(SD) in eV for vertical excitation energies to local, charge transfer, and Rydberg
electronic states compared to benchmark values in refs. 190 and 153, computed using
∆-Proj-DSDPBEP86 and underlying methods. aMethods use nonstandard 69% exact
exchange.

the functional. The fact that functionals without MP2 correlation give worse results
is likely a result of the larger standard deviation, so that the anomalously low mean
error of ∆PAV-DFT in the Thiel benchmark (-0.04 eV) was a consequence of sign can-
cellation. Despite the fact that both the Tozer and the Thiel benchmark sets showed
projection increased the standard deviation of ∆DFT, both benchmarks showed pro-
jection reduced the mean error, even though the mean error of ∆PAV-DFT was
inconsistent between benchmarks. In comparison to the TD-DFT results (table 4.5),
the DFT difference methods result in larger standard deviations than those obtained
using TD-DFT except for TD-DSDPBEP86, which surprisingly had greater standard
deviation that any of the lower-rung density functionals (TD-PBE standard deviation
is 0.27 eV, TD-B3LYP is 0.26 eV, TD-CAM-B3LYP is 0.27 eV, and TD-DSDPBEP86
is 0.43 eV). The performance of TDDHDFT in terms of standard deviation, was
almost identical to ∆PAV-DH-DFT, and yet better than unprojected ∆DH-DFT.
While the mean error of ∆DFT is larger than any of the functionals tested using
TD-DFT, ∆PAV-DFT and ∆DH-DFT give similar mean errors to TD-PBE (-0.31
eV), while ∆PAV-DH-DFT gives a mean error similar to TD-B3LYP (-0.15 eV) and
TD-DSDPBEP86 (-0.19 eV) for local excitations. The competitiveness of TD-DFT
with difference methods is perhaps unsurprising as TD-DFT is known to perform well
for local excitations.
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Method/Functional Type of Excitation
Local Charge Transfer Rydberg

TD-DSDPBEP86 ME -0.19 -1.52 -0.21
MAE 0.38 1.68 0.49
SD 0.43 1.42 0.54

TD-CAM-B3LYPa ME 0.02 -0.81 -0.50
MAE 0.20 0.27 0.50
SD 0.27 0.31 0.18

TD-B3LYPa ME -0.15 -1.35 -1.11
MAE 0.22 1.36 1.11
SD 0.26 0.86 0.23

TD-PBEa ME -0.31 -2.60 -1.84
MAE 0.33 2.60 1.84
SD 0.27 1.37 0.30

Table 4.5. Mean error (ME), mean absolute error (MAE), and standard deviation
(SD) in eV for vertical excitation energies to local, charge transfer, and Rydberg
electronic states compared to benchmark values in ref. 190, computed using time-
dependent density functional theory with different functionals. aResults from ref.
190.

We now turn to discuss the Rydberg and charge transfer excitations which were
not included in the Thiel benchmark set, and so it is not possible to evaluate results
from the Tozer benchmark in the context of previous results. A key finding of ref.
190 is that additional HF exchange improves the performance of all excitations in
linear-response TD-DFT, particularly for Rydberg and charge transfer states, and so
the high HF exchange of double-hybrid functionals is likely to give good performance
in difference methods. All difference methods, (table 4.4, column 4) give results
for charge transfer excitations that are better than TD-PBE, TD-B3LYP, and TD-
DSDPBEP86 in terms of both mean error and standard deviation. Only unprojected
methods – with or without the MP2 correction – are able to approach the standard
deviation of TD-CAM-B3LYP, although TD-CAM-B3LYP has a much larger mean
error. The standard deviations and mean errors of charge transfer states show un-
projected methods give better results than projected methods, regardless of whether
MP2 correlation is included in the functional. Using difference methods to compute
VEEs of Rydberg states, all methods gave better mean errors than TD-CAM-B3LYP
or TD-DSDPBEP86, with the number of terms in the functional correlating with a
decrease in the mean error. However, difference methods gave a larger standard devi-
ation than linear-response approaches, with projection diminishing the performance
of hybrid and double-hybrid functionals. Based on these findings, while projection
improves the performance of difference methods for studying local excitations, for
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charge transfer and Rydberg excitations, the use of projection can lead to reduced
accuracy and/or precision. As a result, we seek to understand the origin of the failure
of projection when applied to Rydberg and charge transfer states, and whether the
performance can be improved by alternative parameterizations.

4.4.2 Effect of Exact Exchange Parameter on ∆-Proj-DH-DFT Vertical Excitation
Energies

In this section, we seek to establish the role of the value of ax in tuning the perfor-
mance of ∆-Proj-DH-DFT methods for local, charge transfer and Rydberg excita-
tions.

4.4.2.1 Local Excitations

The mean error and standard deviation of local excitation VEEs as a function of HF
exchange percentage are shown in fig. 4.3, with numerical values provided in table
4.13. The results in table 4.4, with the original HF exchange parameter, are indicated
by squares, while circles indicate results with differing values of HF exchange ranging
between 0% and 100%. The mean error of ∆PAV-DH-DFT, shown in fig. 4.3a (red),
does not change significantly between 40% and 80%, with values between -0.31 eV and
-0.17 eV. At 60% and 70% ∆PAV-DH-DFT is the best performing functional in terms
of mean error, although the smallest ∆PAV-DH-DFT mean error is actually obtained
at 50% HF exchange (-0.17 eV). Therefore, the standard HF exchange value of most
double-hybrid functionals, which typically lie between 50% and 70%, is likely to be a
reasonable choice for calculating local VEEs. At low amounts of HF exchange, both
projected and unprojected double-hybrid methods rapidly degrade in performance
and the hybrid functionals become the best performing methods. ∆PAV-DFT (blue)
is the best performing method at 50% HF exchange and below. In fact, the global
minimum mean error in terms of functional and HF exchange percentage is ∆PAV-
DFT with 40% HF exchange, which gives a value of -0.11 eV. At 20% HF exchange,
∆PAV-DFT is competitive with the best performing double-hybrid parameterization
in terms of both mean error and standard deviation. However, as will be demonstrated
below and is observed in TD-DFT, the performance of hybrid functionals is not
transferable to charge transfer and Rydberg VEEs.

The reason the double hybrids systematically fail with low HF exchange contribu-
tions is a result of double counting static correlation through both the DFT exchange
and MP2 correlation parts, which has previously been highlighted by Grimme (27).
Additionally, recent findings by Santra and coworkers have indicated that double-
hybrid functionals parameterized with lower HF exchange, which results in a smaller
frontier orbital energy gap (198), may benefit from regularization (199), indicating
that the reduced performance of double-hybrids with low HF exchange is also in-part
due to the numerical consequences of the smaller orbital energy gap. The effect of
the HOMO-LUMO energy gap on the relative performance of hybrid and double hy-
brid functionals is illustrated in fig. 4.4 for all excitation types, while figs. 4.11, 4.12,
and 4.13 show the same trend broken down by excitation type. At low amounts of
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Figure 4.3. Mean error (panel a) and standard deviation (panel b) of local excita-
tion vertical excitation energies as a function of Hartree-Fock exchange percentage for
∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and ∆DFT (black)
compared to benchmark values. Squares show the results at 69% Hartree-Fock ex-
change.

HF exchange the average frontier orbital energy gap rapidly approaches zero (black
line, left axis), resulting in the mean error of both projected and unprojected dou-
ble hybrid functionals (green and red lines respectively, right axis) increasing to a
greater extent than either unprojected or projected hybrid functionals (black and
blue respectively). Using regularization at low amounts of exact exchange, in which
eq. 4.1.14 is employed with λ = 1.45, changes the mean error of ∆PAV-DH-DFT to
-0.41 eV from -1.05 eV, suggesting the presence of small HOMO-LUMO gaps has an
effect on the methods performance.

Figure 4.4. Role of exact exchange in controlling the average excited state HOMO-
LUMO energy difference (black squares, left axis) and the correlation between mean
error (right axis) in ∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue),
and ∆DFT (black). Graph shows results for all excitation types (local, charge transfer
and Rydberg).

At high amounts of HF exchange, the projected methods drop off in performance,
whether the projection is performed on the hybrid or double-hybrid functional. At
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80% HF exchange and above, the unprojected ∆DH-DFT becomes the best perform-
ing methodology, while at the same HF exchange value, ∆DFT overtakes ∆PAV-DFT
in performance. One reason for the failure of projection at high HF exchange val-
ues is due to the fact that symmetry breaking is greater when more HF exchange
is included, potentially cause the Löwdin annihilator to fail when spin polarization
of electron pairs that are not involved in the excitation occurs. When the analysis
is performed excluding states where the 〈Ŝ2〉 increases upon annihilation (fig. 4.9),
the projected methods are found to improve slightly, but not change the qualitative
results when including these ill-behaved states. The robustness of the Löwdin an-
nihilation operator to multiple spin contaminants in both the Thiel and the Tozer
benchmarks is somewhat surprising, as it is known to lead to completely incorrect
behavior in the dissociation of linear H4 (200). However, while annihilation of the
(Sz + 1) contaminating state that leads to an increase in 〈Ŝ2〉 is a clear indicator of
failure of the projection, it is also possible that even in cases where projection 〈Ŝ2〉
does not increase, the contamination of unprojected higher-order spin multiplicities
may still adversely affect performance. As demonstrated below for charge-transfer
excitations, higher order contamination can still pay a significant role even in cases
where 〈Ŝ2〉 does not increase upon annihilating the (S + 1) contaminating state. As
a result, the reduced performance of the projected methods at high HF exchange is
a consequence of the limitations of the particular form of the projector used, rather
than projection generally.

The trend in standard deviation (fig. 4.3b) follows almost exactly the same trends
as the mean error, with MP2 correlation corrected functionals performing worse at
low HF exchange percentage and projected functionals performing worse at high HF
exchange percentages. All four methods are, at some HF exchange percentage, the
best performing method in terms of standard deviation. Interestingly, despite being
the better performing method in terms of mean error, ∆PAV-DFT has significantly
worse standard deviation than ∆DFT at all but low HF exchange percentages. The
lowest standard deviation of ∆PAV-DH-DFT is achieved when the HF exchange is
at 69%, indicating the default parameters are the most suitable for calculating VEEs
of local excitations. As a result, the combination of low mean error and standard
deviation indicates that ∆PAV-DH-DFT is the functional that will deliver the most
accurate and precise results.

4.4.2.2 Charge Transfer Excitations

In this section we discuss the performance of ∆PAV-DH-DFT in describing charge
transfer excitations as a function of HF exchange (fig. 4.5). In terms of mean error, the
best performing functional is unprojected ∆DH-DFT (green) at 80% exact exchange,
which gives a value of -0.01 eV (fig. 4.5a). The mean error of unprojected ∆DH-DFT
does not change significantly from 80-100% HF exchange, and in fact at 90% the
VEEs are slightly overestimated in contrast to the general trend which underestimates
VEEs. At low HF exchange values, the poor performance of MP2 corrected methods
that was apparent in the local excitations is also present in charge transfer excitations,
causing the hybrid functionals to become the better performing functionals between
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Figure 4.5. Mean error (panel a) and standard deviation (panel b) of charge trans-
fer vertical excitation energies as a function of Hartree-Fock exchange percentage for
∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and ∆DFT (black)
compared to benchmark values. Squares show the results at 69% Hartree-Fock ex-
change.

0% and 60% HF exchange. Below 60% HF exchange, projection improves the VEE
of charge transfer excitations, while at 60% HF exchange and above, projection gives
worse performance as was also observed for local excitations. While the performance
of ∆PAV-DFT (blue) diminishes rapidly at 60% exact exchange and above, ∆PAV-
DH-DFT (red) reaches a minimum mean error of -0.59 eV at 80% HF exchange
before performance diminishes. At around 70% HF exchange, the performance of
hybrid and double-hybrid functionals cross, so that at 69% HF exchange (squares)
used in the standard parameterization, ∆DH-DFT gives a slightly smaller mean error
than ∆DFT.

In terms of standard deviation (fig. 4.5b), projection does not result in a signif-
icant change in performance below 70% HF exchange. Above 70% HF exchange,
the projected hybrid functional (blue) standard deviation rapidly deteriorates, while
the projected double-hybrid (red) performance is slightly worse than the unprojected
functionals. For both projected and unprojected double-hybrid functionals, the stan-
dard deviation is minimized with 80% HF exchange, while for hybrid functionals, the
best standard deviation is at 70%. As for local excitations, diminished performance
of projection methods at high HF exchange is partly due to the limitations of the
Löwdin annihilation operator used as a projector in this work. In order to estab-
lish the extent to which the projector choice affects the functional performance, the
analysis was recomputed excluding excitations to states in which 〈Ŝ2〉 increased upon
projection (fig. 4.6). At 70% HF exchange, one data point was removed, at 80%,
five data points were removed, while at 90% seven data points were removed, and at
100% eight data points were removed. As shown in fig. 4.6a, both the projected hy-
brid and double-hybrid mean error and standard deviation improve at 70-100% once
the anomalous data points are removed. However, even removing the anomalous data
points, projection still resulted in larger mean error at high HF exchange.

97



Figure 4.6. Mean error (panel a) and standard deviation (panel b) of charge transfer
vertical excitation energies as a function of Hartree-Fock exchange percentage for
∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and ∆DFT (black)
compared to benchmark values, without data in which 〈Ŝ2〉 of the reference increases
upon projection. Squares show the results at 69% Hartree-Fock exchange.

To further assess if the increased mean error upon projection at high exact ex-
change is a result of higher-order contaminating states that cannot be projected by
the Löwdin annihilator, even when the value of 〈Ŝ2〉 does not increase upon projec-
tion, table 4.6 shows the energy change as a result of increasing numbers of projected
spin states on the unrestricted Hartree-Fock charge-transfer excited state energy. It
is expected that, as higher spin states generally contribute less to contamination of
symmetry-broken states, the energy change should decrease with each term in eq.
4.1.4 as higher spin states are projected, i.e. the magnitude of the values should
decrease across the row from column 3 to column 6 of table 4.6. Indicated in the final
column of table 4.6 is the percentage exact exchange at which the excited PBE calcu-
lation showed an increase in the value of 〈Ŝ2〉 upon annihilation of the triplet state.
It is expected that states for which 〈Ŝ2〉 increases at some amount of exact exchange
would show larger energy changes when higher spin states are projected, than states
for which 〈Ŝ2〉 never increases upon projection. Analyzing table 4.6 it can be seen
that states for which 〈Ŝ2〉 increased for some amount of Hartree-Fock exchange in the
projected DFT calculations displayed greater energy change upon projection of any
contaminating spin state than states for which 〈Ŝ2〉 always decreased. For example,
〈Ŝ2〉 always decreases upon triplet annihilation of the dipeptide n1 → π∗2 state, which
shows smaller energy change upon projection than in the π1 → π2 state, for which
〈Ŝ2〉 increases at 80% and above. However, even for states where 〈Ŝ2〉 decreases re-
gardless of the amount of exact exchange, the energy change upon annihilation of
the (S + 2) contaminating state (table 4.6, column 4) is comparable to the energy
change upon annihilation of the (S + 1) contaminating state (table 4.6, column 3).
Using the dipeptide n1 → π∗2 as an example again, annihilation of the (S+1) state
changes the energy by -14.66 kcal mol-1, while further projecting the (S+2) state
increases the energy by 10.23 kcal mol-1 over the (S+1) annihilated state. The large
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Molecule Excitation
Energy change on annihilation of indicated spin states (kcal mol-1) % exact exchange at

which excited state
PBE 〈Ŝ2〉 increases∆E

Â(S+1)
UHF

∆E
Â(S+1,S+2)

Â(S+1)
∆E

Â(S+1,S+2,S+3)

Â(S+1,S+2)
∆E

Â(S+1...S+∞)

Â(S+1,S+2,S+3)

Dipeptide n1 → π∗2 -14.66 10.23 -0.18 -0.39
π1 → π∗2 -57.31 45.30 -2.56 -0.13 80, 90, 100

β-Dipeptide n1 → π∗2 -15.12 10.53 -0.18 -0.09
π1 → π∗2 -62.12 49.48 -3.12 -0.13 90, 100

PP 2 1B2 -12.84 19.86 -1.05 -0.06 90, 100
3 1A1 -45.42 37.25 -3.43 -0.06 80, 90, 100

DMABN 1A -51.74 56.77 -7.31 0.18 70, 80, 90, 100
HCL 1Π -2.67 6.70 -0.04 -0.04
Tripeptide π1 → π∗2 -9.85 16.77 -0.76 -0.07 100

π2 → π∗3 -57.48 45.56 -2.72 -0.13 80, 90, 100
π1 → π∗3 -66.01 52.72 -3.37 -0.13 80, 90, 100
n1 → π∗3 -16.41 11.31 -0.19 -0.08
n2 → π∗3 -16.23 11.30 -0.21 -0.06
n1 → π∗2 -16.59 11.55 -0.22 -0.53

Table 4.6. Change in the ∆-PHF vertical excitation energy of charge transfer ex-
citations as a function of number of annihilated spin states in kcal mol-1. The final
column shows the exact exchange percentages at which 〈Ŝ2〉 of the excited state PBE
calculation increased upon triplet annihilation Â(S + 1).

energy changes upon annihilation of both (S+ 1) and (S+ 2) demonstrates the large
role these two states play in the contamination of the charge transfer excited states.
Annihilation of the (S + 3) state, (table 4.6, column 5), has little effect on the en-
ergy for all but the most contaminated charge transfer states, eg. DMABN, while full
projection reveals that contamination beyond the (S + 3) state is small for all states
(table 4.6, column 6). Although it is not possible to directly compare the results
in table 4.6 which use a symmetry broken HF determinant instead of PBE like the
results in fig. 4.6, it is apparent that even in cases where 〈Ŝ2〉 does not increase upon
annihilation of the (S + 1) state, it is still possible that the (S + 2) state can play
a large role. The use of DFT generally reduces the effect of spin contamination and
so will decrease the importance of annihilating (S + 2) and higher states. However,
the findings illustrated by fig. 4.6 and table 4.6 imply that improved performance of
∆PAV-DH-DFT requires use of a more general projector that can recouple arbitrary
numbers of symmetry broken electron spin pairs.

4.4.2.3 Rydberg Excitations

Rydberg excitations are known to be challenging for TD-DFT owing to the diffuse
nature of the virtual orbitals which accept an electron and are not properly described
due the incorrect asymptotic behavior of the exchange-correlation contribution to
the density (201). Use of exact HF exchange has been found to significantly improve
the prediction of VEEs in TD-DFT calculations, although there has been little in-
vestigation of difference approaches for studying Rydberg states. Fig. 4.7 shows the
performance of the four difference methods in describing VEE to Rydberg states.
Examining the mean error with respect to HF exchange in fig. 4.7, it can be seen
that Rydberg states show a different trend to local and charge transfer excitations,
with little difference between projected and unprojected functionals, or between hy-
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Figure 4.7. Mean error (panel a) and standard deviation (panel b) of Rydberg
vertical excitation energies as a function of Hartree-Fock exchange percentage for
∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and ∆DFT (black)
compared to benchmark values, without data in which 〈Ŝ2〉 of the reference increases
upon projection. Squares show the results at 69% Hartree-Fock exchange.

brid and double-hybrid functionals, and a linear correlation between VEE and HF
exchange. As a result, all functionals cross the zero mean error line between 70%
and 80% HF exchange, with the MP2 corrected functionals crossing at slightly lower
values (72.2% for ∆PAV-DH-DFT and 72.9% for ∆DH-DFT) than the hybrid func-
tionals (75.5% for ∆PAV-DFT and 75.0% for ∆DFT). Due to the similar performance
of all functionals in terms of mean error, the best performing functional for comput-
ing Rydberg excitations can be selected using the lowest standard deviation at the
point that the mean error crosses zero (fig. 4.7b). The performance of ∆PAV-DFT
is poor at all amount of HF exchange, while ∆PAV-DH-DFT only performs well at
high HF exchange. MP2 correlation significantly improves the standard deviation of
projected functionals, while unprojected functionals only give a noticeable difference
in performance above 60% exact exchange. The best standard deviation is achieved
at 70% exact exchange for unprojected methods, and at 80% exact exchange for
projected methods. However, even though above 80% exact exchange, ∆PAV-DH-
DFT gives the best results, which is the opposite behavior to charge transfer and
local excitations, increasing HF exchange causes the performance of all functionals
to diminish.

4.4.2.4 Overall Performance

The performance for all three excitation types in the Tozer benchmark is shown in
fig. 4.8. The trend in mean error reflects that of local and charge transfer excita-
tions, with projection giving better performance at low HF exchange, while the use
of perturbation theory improves the result at high HF exchange. At 60-70% HF ex-
change, the crossover between the two effects leads to a very similar mean error in
all four methods tested. Increasing the HF exchange to around 80% in unprojected
double-hybrid density functional theory will lead to the lowest mean error, and the
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Figure 4.8. Mean error (panel a) and standard deviation (panel b) of all classes
of vertical excitation energies as a function of Hartree-Fock exchange percentage for
∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and ∆DFT (black)
compared to benchmark values. Squares show the results at 69% Hartree-Fock ex-
change.

unprojected double-hybrid is the only method that crosses the zero mean error axis.
The mean error for the projected double-hybrid functional is also minimized at 80%
HF exchange. For unprojected hybrid functionals, the best HF exchange parameter
is 100%, although this value is a consequence of error cancellation where Rydberg
excitations overestimate the VEE, while local and charge transfer excitations underes-
timate the VEE. Projected hybrid functionals are the best choice for low HF exchange,
particularly at the 15-30% range of many common hybrid functionals. However, even
projected hybrid functionals would benefit from a larger amount HF exchange, around
60%, in order to minimize error in the calculation of Rydberg VEEs.

Although it is possible to tune all four functionals to obtain mean errors of -
0.5 eV below the benchmark value, the standard deviation gives good reason to use
double-hybrid functionals over hybrid functionals. Fig. 4.8b shows that the minimum
standard deviation for double-hybrid functionals is at 70% HF exchange, while for
hybrid functionals, the lowest standard deviation is at 60%. However, for unprojected
hybrid functionals, the lowest mean error is at 100%, where all four functionals show
increased standard deviation. For the projected hybrid functional, even though the
lowest mean error and standard deviation coincide at the same HF exchange, the
standard deviation is twice as large as for all three other methods. The double-
hybrid functionals give similar mean error and standard deviation at both 70% and
80% HF exchange, indicating the advantage of double hybrid functionals in providing
low mean error and standard deviation at the same value of HF exchange. For ∆DH-
DFT, the performance limit is a mean error of 0 eV with a standard deviation of 0.5
eV. While projection gives better performance for local excitations, the failures for
charge transfer states at high HF exchange means that overall it does not improve the
performance. However, as the failure of projection appears to be a result of multiple
contaminating states at high HF exchange which cannot be accounted for with the
Löwdin annihilator, development of alternative projection formalisms may further
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improve the performance and yield better results than the unprojected approach
across all excitation types.

The failure of the Löwdin projector at high amount of exact exchange can be
emphasized by examination of the average 〈Ŝ2〉 for the excited state calculation.
With the standard parameterization (69%) where ∆PAV-DH-DFT performs best,
the average 〈Ŝ2〉 is 1.04 for local excited states, 1.07 for charge transfer states, and
1.02 for Rydberg states. These results indicate that regardless of the character of the
excited state, all excitations could be characterized as breaking a single electron pair
where the Löwdin projector should work well, with very little spin polarization of the
remaining N-2 electrons in response to the excitation. Increasing the exact exchange
to 100% gives average 〈Ŝ2〉 of 1.18 for local excitations, 1.22 for charge transfer,
and 1.08 for Rydberg states. As a result, it is apparent that higher amounts of exact
exchange lead to greater spin contamination, although it appears that Rydberg states
are less affected, suggesting that local and charge transfer states are most likely to
lead to failure of the Löwdin projector.

4.4.3 Conclusions

In this section we performed a systematic investigation of the performance of differ-
ence approaches for studying different types of electronic excitations (local, charger
transfer, and Rydberg). In particular, we examined how hybrid and double-hybrid
functionals performed, along with the importance of including projection to account
for strong correlation from breaking an electron pair in the excitation. Through eval-
uation using the test set of Schreiber and coworkers (exclusively local excitations),
∆PAV-DH-DFT was found to give similar quality results to LR-CC2 and EOM-
CCSD. Additionally, ∆DH-DFT, which has the advantage of being size extensive,
performed only marginally worse than EOM-CCSD. The advantage of ∆PAV-DH-
DFT is that the scaling is noniterative O(N5), compared to iterative O(N5) for
LR-CC2 and iterative O(N6) for EOM-CCSD. Therefore ∆PAV-DH-DFT can be ap-
plied to larger systems than other approaches that give similar accuracy. It appears
that ∆PAV-DH-DFT can describe excited states that are described by multiple sin-
gle excitations and, although significant double excitation character appears to limit
the performance of ∆PAV-DH-DFT, its performance was superior to LR-CC2 and
EOM-CCSD. However, for excitations with leading double-excitation character, it is
possible to use a reference that reflects the double excitation at zeroth order. A fur-
ther advantage of ∆PAV-DH-DFT is that all developments applicable to the ground
state for the computation of properties are also available to excited states.

Furthermore, given the known importance of using exact HF exchange for properly
describing charge transfer and Rydberg excitations within the Tozer benchmarking
set, we examined the role of the HF exchange parameter on controlling the mean
error and standard deviation. Overall, the local excitation VEEs corroborated the
findings from both benchmarking sets, which demonstrated that projected double-
hybrid functionals give the smallest standard deviation. However, in the previous
section, detailing the local excitations, the default HF exchange of the double-hybrid
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functional was used for all functionals tested. As a result, the poor performance of
hybrid functionals may have been a reflection of the poor parameterization used.

When examining how different terms in the functional change the performance as
a function of HF exchange, two clear trends were observed. First, at low amounts
of HF exchange, MP2 correlation significantly degrades the performance of local and
charge transfer VEEs. The poor double-hybrid performance with low amounts of
exact exchange is a result of double counting of strong correlation, as the low amount
of exact exchange implies a high amount of DFT exchange, which accounts for static
correlation through inclusion of an exchange hole. In addition, low HF exchange
contribution reduces the frontier orbital energy gap causing numerical issues in the
correlation term, which may be partially fixed by regularization. Second, projection
degrades the performance of functionals at high amounts of HF exchange due to the
increased contributions of higher-order contaminating spin states which the Löwdin
projector is unable to account for. Implementation of the method using alternative
forms of the projector that can recouple arbitrary numbers of electron pairs may
improve the performance and extend the applicability of the model to multi-electron
excitations and open-shell ground states. Future work should also involve developing
transition dipole moments to enable spectral simulation and work in the group is cur-
rently progressing in this direction. One of the other disadvantages of ∆PAV-DH-DFT
include the requirement to identify and optimize individual excited state reference de-
terminants and the nonorthogonality of electronic states. With the development of
additional techniques for locating reference determinants and improved understanding
of the global self-consistent field solution space (202), we anticipate reduced difficul-
ties with identifying relevant excited state reference wavefunctions. The fact that
we have been able to identify references associated with each of the electronic states
in the test set demonstrates that many of the issues associated with finding excited
state references have been partially resolved. However, the approach still requires an
understanding of the character of relevant excited states, and so is not black-box like
LR-CC methods. Resolving the issue of orthogonality between electronic states is
more problematic. One could abandon the difference method altogether and apply
linear response to the reference function and then add the correlation resulting from
perturbation theory and projection. However, such an approach is likely to suffer
from many of the issues that limit linear-response methods. Alternatively, it may be
possible to exploit the connection between nonorthogonal configuration interaction
and the projection operator, although the extension to density functional references
may prove problematic due to the uncontrolled double-counting of correlation.

Supporting Documents – Symmetry Breaking and
Projection Methods for Excited States

4.5.1 ∆PDSDPBEP86 Vertical Excitation Energies

103



Molecule Excitation Ref. PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86 〈Ŝ2〉0 〈Ŝ2P̂ 〉0 〈Ŝ2〉1
Dipeptide n1 → π∗1 5.62 5.36 5.60 4.29 4.77 1.0167 0.1342 1.0108

n2 → π∗2 5.79 5.59 5.85 4.51 5.00 1.0176 0.1413 1.0105
β-Dipeptide n1 → π∗1 5.40 5.36 5.62 4.26 4.76 1.0189 0.1515 1.0097

n2 → π∗2 5.10 5.43 5.68 4.33 4.81 1.0189 0.1517 1.0108
PP 1 1B2 4.85 5.07 4.95 5.23 5.00 1.0847 0.6733 1.2245

2 1A1 5.13 4.72 4.90 4.67 5.00 1.1027 0.8224 1.2139
DMABN 1B 4.25 4.01 4.53 3.46 4.47 1.1617 1.2357 1.1738
Tripepitde n1 → π∗1 5.74 5.41 5.67 4.33 4.82 1.0189 0.1516 1.0096

n2 → π∗2 5.61 5.61 5.87 4.54 5.03 1.0192 0.1544 1.0103
n3 → π∗3 5.91 5.67 5.92 4.57 5.06 1.0193 0.1553 1.0103

H2CO
1B1 8.68 8.55 8.60 7.70 7.81 1.0150 0.1198 1.0346
1A2 3.94 3.43 3.68 2.38 2.85 1.0228 0.1830 1.0180

N2
1∆u 10.27 12.05 9.66 14.13 10.44 1.0009 0.0074 1.4975
1Σ−u 9.92 9.62 9.66 8.37 8.44 1.0097 0.0777 1.0315
1Π−g 9.31 8.73 8.63 8.68 8.50 1.0182 0.1447 1.0820

CO D1∆ 10.23 9.73 9.83 8.48 8.67 1.0093 0.0744 1.0167
I1Σ− 9.88 9.73 9.83 8.48 8.67 1.0093 0.0744 1.0167
A1Π− 8.51 7.89 7.27 8.21 7.09 1.0178 0.1425 1.1557

Acene (n=1) 1B2u 4.88 4.43 3.97 5.19 4.39 1.0383 0.3054 1.3106
1B3u 4.46 4.53 4.72 4.54 4.91 1.1034 0.8298 1.2066

Acene (n=2) 1B2u 3.69 3.26 2.90 3.89 3.27 1.0443 0.3553 1.3042
1B3u 3.89 3.81 4.20 3.56 4.31 1.1353 1.0913 1.1994

Acene (n=3) 1B2u 2.90 2.48 2.18 3.03 2.49 1.0507 0.4076 1.3069
1B3u 3.52 3.84 4.00 4.12 4.43 1.0826 0.6709 1.1423

Acene (n=4) 1B2u 2.35 1.96 1.69 2.43 1.95 1.0557 0.4480 1.3122
1B3u 3.27 3.15 3.34 3.35 3.71 1.0912 0.7386 1.1539

Acene (n=5) 1B2u 1.95 1.56 1.30 1.99 1.54 1.0598 0.4820 1.3188
1B3u 3.09 2.58 2.80 2.71 3.13 1.1014 0.8275 1.1577

PA oligomer 1 1Bu 5.92 5.71 4.65 6.76 5.07 1.0054 0.0429 1.4372(n=2)
PA oligomer 1 1Bu 4.95 4.67 3.87 5.54 4.25 1.0116 1.4132 0.0924(n=3)
PA oligomer 1 1Bu 4.41 3.99 3.40 4.70 3.73 1.0184 0.1474 1.3841(n=4)
PA oligomer 1 1Bu 4.27 3.52 3.09 4.11 3.38 1.0262 0.2095 1.3556(n=5)

Table 4.7. ∆PAV-DSDPBEP86 results for local excitations with 69% HF Exchange
where 〈Ŝ2〉0 is the 〈Ŝ2〉 value from the reference, 〈Ŝ2P̂ 〉0 is the reference 〈Ŝ2〉 value
after projection and 〈Ŝ2〉1 is the double hybrid 〈Ŝ2〉 value

4.5.2 Linear-Response Double-Hybrid Vertical Excitation Energies

4.5.2.1 Excitation Energies of Local Excitations
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Molecule Excitation Ref. PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86 〈Ŝ2〉0 〈Ŝ2P̂ 〉0 〈Ŝ2〉1
Dipeptide n1 → π∗2 8.07 6.61 6.92 7.08 7.68 1.0216 0.1735 1.0093

π1 → π∗2 7.18 6.75 7.46 5.60 6.98 1.1011 0.7638 1.0607
β-Dipeptide n1 → π∗2 9.13 8.39 8.69 7.71 8.29 1.0216 0.1745 1.0001

π1 → π∗2 7.99 7.12 7.48 7.20 7.89 1.0816 0.6405 1.1087
PP 2 1B2 5.47 5.56 5.63 5.66 5.79 1.0270 0.2001 1.1650

3 1A1 5.94 5.47 6.15 4.34 5.69 1.1490 1.1391 1.0719
DMABN 1A 4.56 4.11 4.34 4.01 4.44 1.1660 1.2725 1.3019
HCL 1Π 8.23 7.70 7.72 7.36 7.39 1.0106 0.0844 1.0362
Tripepitde π1 → π∗2 7.01 7.07 7.12 7.51 7.61 1.0521 0.4176 1.1366

π2 → π∗3 7.39 6.97 7.61 5.96 7.21 1.1038 0.7900 1.0582
π1 → π∗3 8.74 7.52 8.12 7.20 8.37 1.0988 0.7660 1.0667
n1 → π∗3 9.30 7.27 7.60 7.78 8.43 1.0334 0.2694 1.0055
n2 → π∗3 8.33 7.49 7.78 7.00 7.56 1.0222 0.1787 1.0038
n1 → π∗2 8.12 7.26 7.58 6.72 7.36 1.0248 0.1998 1.0012

Table 4.8. ∆PAV-DSDPBEP86 results for charge transfer excitations with 69% HF
Exchange where 〈Ŝ2〉0 is the 〈Ŝ2〉 value from the reference, 〈Ŝ2P̂ 〉0 is the reference
〈Ŝ2〉 value after projection and 〈Ŝ2〉1 is the double hybrid 〈Ŝ2〉 value

Molecule Excitation Ref. PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86 〈Ŝ2〉0 〈Ŝ2P̂ 〉0 〈Ŝ2〉1
H2CO

1A2 9.22 8.16 8.44 7.09 7.63 1.0316 0.2517 1.0112
1A2 8.38 7.94 8.17 6.91 7.36 1.0232 0.1889 1.0116
1B2 8.12 7.79 8.01 6.85 7.27 1.0252 0.2008 1.0150
1A1 7.97 9.12 7.41 10.43 7.70 0.9423 0.0136 1.3388
1B2 7.09 7.01 7.24 6.04 6.48 1.0226 0.1812 1.0122

N2
1Πu 13.24 13.18 12.29 14.79 13.21 1.0148 0.1171 1.2139
1Σ+

u 12.98 12.53 12.75 12.68 13.10 1.0110 0.0876 0.9985
1Πu 12.90 12.60 12.80 12.76 13.15 1.0109 0.0869 1.0025
1Σ+

u 12.20 11.88 11.99 12.18 12.39 1.0055 0.0791 1.0165
CO F 1Σ+ 12.40 13.47 12.89 14.06 13.02 1.0135 0.1072 1.1715

E1Π 11.53 11.10 11.35 10.61 11.09 1.0653 0.5156 1.0478
C1Σ+ 11.40 10.91 11.24 10.30 10.93 1.0826 0.6541 1.0571
B1Σ+ 10.78 10.39 10.57 10.00 10.36 1.0639 0.5806 1.0653

Table 4.9. ∆PAV-DSDPBEP86 results for Rydberg excitations with 69% HF Ex-
change where 〈Ŝ2〉0 is the 〈Ŝ2〉 value from the reference, 〈Ŝ2P̂ 〉0 is the reference 〈Ŝ2〉
value after projection and 〈Ŝ2〉1 is the double hybrid 〈Ŝ2〉 value

4.5.2.2 Excitation Energies of Charge Transfer Excitations
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Molecule Excitation Ref. TD-DSDPBEP86
Dipeptide n1 → π∗1 5.62 4.89

n2 → π∗2 5.79 5.11
β-Dipeptide n1 → π∗1 5.4 4.85

n2 → π∗2 5.1 4.96
PP 1 1B2 4.85 4.90

2 1A1 5.13 4.86
DMABN 1B 4.25 4.59
Tripepitde n1 → π∗1 5.74 4.86

n2 → π∗2 5.61 5.08
n3 → π∗3 5.91 5.16

H2CO
1B1 8.68 8.74
1A2 3.94 3.51

N2
1∆u 10.27 11.17
1Σ−u 9.92 9.23
1Π−g 9.31 9.23

CO D1∆ 10.23 10.37
I1Σ− 9.88 10.59
A1Π− 8.51 8.53

Acene (n=1) 1B2u 4.88 4.80
1B3u 4.46 3.91

Acene (n=2) 1B2u 3.69 3.36
1B3u 3.89 3.46

Acene (n=3) 1B2u 2.9 2.64
1B3u 3.52 3.03

Acene (n=4) 1B2u 2.35 2.10
1B3u 3.27 3.21

Acene (n=5) 1B2u 1.95 1.73
1B3u 3.09 2.69

PA oligomer 1 1Bu 5.92 6.43(n=2)
PA oligomer 1 1Bu 4.95 5.24(n=3)
PA oligomer 1 1Bu 4.41 4.51(n=4)
PA oligomer 1 1Bu 4.27 3.99(n=5)
ME -0.19
MAE 0.38
STDDEV 0.43

Table 4.10. Local vertical excitation energy results for linear response methods, TD-
DSDPBEP86 and TD-ωB2PLYP as well as inclusion of mean error, mean absolute
error, and standard deviation.
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Molecule Excitation Ref. TD-DSDPBEP86
Dipeptide n1 → π∗2 8.07 8.54

π1 → π∗2 7.18 7.88
β-Dipeptide n1 → π∗2 9.13 8.20

π1 → π∗2 7.99 6.13
PP 2 1B2 5.47 4.19

3 1A1 5.94 4.30
DMABN 1A 4.56 3.73
HCL 1Π 8.23 7.91
Tripepitde π1 → π∗2 7.01 6.18

π2 → π∗3 7.39 5.93
π1 → π∗3 8.74 5.68
n1 → π∗3 9.3 7.64
n2 → π∗3 8.33 4.59
n1 → π∗2 8.12 3.86

ME -1.52
MAE 1.68
STDDEV 1.42

Table 4.11. Charge transfer vertical excitation energy results for linear response
methods, TD-DSDPBEP86 and TD-ωB2PLYP as well as inclusion of mean error,
mean absolute error, and standard deviation.
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Molecule Excitation Ref. TD-DSDPBEP86 TD-ωB2PLYP
H2CO

1A2 9.22 9.46 8.49
1A2 8.38 8.52 8.02
1B2 8.12 8.65 7.96
1A1 7.97 8.16 9.63
1B2 7.09 6.64 7.09

N2
1Πu 13.24 12.29 13.22
1Σ+

u 12.98 12.29 13.51
1Πu 12.9 11.86 13.73
1Σ+

u 12.2 12.00 13.73
CO F 1Σ+ 12.4 13.08 14.09

E1Π 11.53 11.16 11.75
C1Σ+ 11.4 10.80 11.61
B1Σ+ 10.78 10.52 11.29

ME -0.21 0.45
MAE 0.49 0.65
STDDEV 0.54 0.78

Table 4.12. Rydberg vertical excitation energy results for linear response meth-
ods, TD-DSDPBEP86 and TD-ωB2PLYP as well as inclusion of mean error, mean
absolute error, and standard deviation.

4.5.2.3 Excitation Energies of Rydberg Excitations
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Percentage of HF Exchange Functional Component
PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86

0% -1.05(2.44) -6.38(7.38) -0.43(0.57) -1.05(0.65)
10% -1.22(1.00) -1.80(1.40) -0.31(0.56) -0.90(0.63)
20% -0.95(0.81) -1.36(1.03) -0.22(0.57) -0.75(0.56)
30% -0.44(0.72) -0.80(1.02) -0.11(0.60) -0.63(0.54)
40% -0.28(0.65) -0.58(0.91) -0.11(0.70) -0.55(0.51)
50% -0.17(0.56) -0.42(0.79) -0.12(0.78) -0.50(0.50)
60% -0.18(0.47) -0.36(0.63) -0.23(0.93) -0.50(0.53)
70% -0.22(0.45) -0.32(0.52) -0.39(1.09) -0.51(0.61)
80% -0.31(0.52) -0.29(0.49) -0.65(1.30) -0.55(0.73)
90% -0.59(0.87) -0.31(0.58) -1.25(2.07) -0.65(0.87)
100% -0.98(1.52) -0.37(0.72) -1.93(3.25) -0.78(1.03)

Table 4.13. Mean error and standard deviation (in parentheses), in eV, for
∆PAV-DSDPBEP86 excitation energies for local states in reference to gas phase and
CASPT2/CC2 values from reference.

Percentage of HF Exchange Functional Component
PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86

0% 1.81 6.49 0.55 1.05
10% 1.37 1.93 0.50 0.90
20% 1.11 1.51 0.47 0.77
30% 0.71 1.06 0.43 0.68
40% 0.61 0.90 0.47 0.63
50% 0.49 0.73 0.53 0.60
60% 0.37 0.56 0.67 0.63
70% 0.38 0.48 0.84 0.68
80% 0.47 0.49 1.13 0.76
90% 0.78 0.58 1.77 0.84
100% 1.22 0.68 2.61 0.96

Table 4.14. Mean absolute error, in eV, for ∆PAV-DSDPBEP86 excitation energies
for local states in reference to gas phase and CASPT2/CC2 values from reference.

4.5.3 ∆PDSDPBEP86 Vertical Excitation Energy Mean Error and Standard Devi-
ation

4.5.3.1 Mean Error and Standard Deviation for Local Excitations

109



Percentage of HF Exchange Functional Component
PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86

0% -3.00(1.57) -3.49(1.61) -1.76(1.09) -2.26(1.14)
10% -2.65(1.50) -2.83(1.44) -1.48(1.02) -1.92(1.07)
20% -1.99(1.08) -2.12(1.03) -1.14(0.91) -1.55(0.96)
30% -1.77(0.90) -1.89(0.85) -0.84(0.89) -1.23(0.93)
40% -1.69(1.01) -1.77(1.01) -0.84(0.80) -1.11(0.82)
50% -1.47(0.96) -1.64(1.07) -0.84(0.84) -1.00(0.90)
60% -1.24(0.95) -1.09(0.94) -0.93(0.68) -0.73(0.72)
70% -0.65(0.43) -0.28(0.40) -1.06(0.64) -0.35(0.45)
80% -0.59(0.38) -0.01(0.33) -1.39(0.83) -0.57(0.76)
90% -0.86(0.56) 0.05(0.37) -2.25(1.39) -0.70(0.81)
100% -1.43(1.23) -0.04(0.41) -3.40(2.66) -0.91(0.89)

Table 4.15. Mean error and standard deviation (in parentheses), in eV, for ∆PAV-
DSDPBEP86 excitation energies for charge transfer states in reference to gas phase
and CASPT2/CC2 values from reference.

Percentage of HF Exchange Functional Component
PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86

0% 3.00 3.49 1.84 2.26
10% 2.65 2.83 1.57 1.92
20% 1.99 2.12 1.23 1.55
30% 1.99 2.12 1.23 1.55
40% 1.69 1.77 0.93 1.14
50% 1.66 1.64 1.01 1.06
60% 1.24 1.09 0.99 0.80
70% 0.66 0.38 1.13 0.69
80% 0.63 0.26 1.46 0.71
90% 0.90 0.32 2.30 0.85
100% 1.48 0.34 3.40 1.06

Table 4.16. Mean absolute error, in eV, for ∆PAV-DSDPBEP86 excitation energies
for charge transfer states in reference to gas phase and CASPT2/CC2 values from
reference.

4.5.3.2 Mean Error and Standard Deviation for Charge Transfer Excitations
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Percentage of HF Exchange Functional Component
PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86

0% -2.05(1.82) -2.54(1.85) -1.27(1.26) -1.48(1.12)
10% -2.35(0.92) -2.51(0.89) -1.36(0.94) -1.59(0.72)
20% -1.15(1.31) -1.24(1.23) -0.54(1.50) -0.67(1.42)
30% -1.28(1.18) -1.39(1.20) -0.27(1.50) -0.43(1.50)
40% -1.40(1.03) -1.49(1.000) -0.32(1.65) -0.45(1.55)
50% -0.86(1.39) -0.87(1.33) -0.14(1.32) -0.15(1.15)
60% -0.80(0.77) -0.69(0.69) -0.40(1.01) -0.18(0.72)
70% -0.66(0.44) -0.28(0.40) -1.10(0.66) -0.36(0.42)
80% -0.47(0.35) 0.00(0.34) -1.13(0.81) -0.35(0.46)
90% -0.49(0.38) 0.05(0.37) -1.25(0.76) -0.49(0.52)
100% -0.74(0.19) -0.04(0.41) -1.68(0.43) -0.69(0.59)

Table 4.17. Mean error and standard deviation (in parentheses), in eV, for ∆PAV-
DSDPBEP86 excitation energies for charge transfer states, without data in which
the 〈Ŝ2〉 of the reference increases upon projection in reference to gas phase and
CASPT2/CC2 values.

Percentage of HF Exchange Functional Component
PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86

0% -4.61(-1.87) -5.57(-2.31) -4.00(-2.06) -4.30(-1.54)
10% -3.53(-1.68) -4.15(-1.43) -3.46(-1.97) -3.77(-1.36)
20% -3.22(-1.63) -3.45(-1.27) -2.92(-1.91) -3.21(-1.22)
30% -2.45(-1.56) -2.66(-1.20) -2.28(-1.86) -2.60(-1.07)
40% -1.92(-1.23) -2.11(-0.83) -1.79(-1.72) -2.05(-0.90)
50% -1.17(-1.07) -1.33(-0.69) -1.12(-1.62) -1.41(-0.72)
60% -0.69(-0.80) -0.81(-0.44) -0.71(-1.46) -0.87(-0.62)
70% -0.13(-0.59) -0.20(-0.36) -0.25(-1.36) -0.30(-0.61)
80% 0.45(-0.47) 0.47(-0.47) 0.20(-1.33) 0.30(-0.68)
90% 0.92(-0.56) 1.08(-0.69) 0.48(-1.50) 0.86(-0.86)
100% 1.45(-0.80) 1.69(-0.94) 0.94(-1.82) 1.45(-1.07)

Table 4.18. Mean error and standard deviation (in parentheses), in eV, for ∆PAV-
DSDPBEP86 excitation energies for rydberg states in reference to gas phase and
CASPT2/CC2 values from reference.

4.5.3.3 Mean Error and Standard Deviation for Rydberg Excitations

4.5.4 ∆PDSDPBEP86 Local and Rydberg Vertical Excitation Energy Mean Error
and Standard Deviation Excluding Excitations where 〈Ŝ2〉 Increases After An-
nihilation of S + 1 State
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Percentage of HF Exchange Functional Component
PDSDPBEP86 DSDPBEP86 PPBEP86 PBEP86

0% 4.61 5.57 4.15 4.30
10% 3.53 4.15 3.68 3.77
20% 3.27 3.45 3.18 3.21
30% 3.27 3.45 3.18 3.21
40% 2.12 2.11 2.28 2.05
50% 1.50 1.39 1.84 1.43
60% 0.99 0.86 1.48 0.94
70% 0.46 0.29 1.12 0.53
80% 0.51 0.61 1.14 0.58
90% 0.92 1.13 1.34 0.94
100% 1.45 1.72 1.69 1.46

Table 4.19. Mean absolute error, in eV, for ∆PAV-DSDPBEP86 excitation energies
for Rydberg states in reference to gas phase and CASPT2/CC2 values from reference.

Figure 4.9. Mean error (panel a) and standard deviation (panel b) of local excitation
vertical excitation energies as a function of Hartree-Fock exchange percentage for
∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and ∆DFT (black)
compared to benchmark values, without data in which 〈Ŝ2〉 of the reference increases
upon projection. Squares show the results at 69% Hartree-Fock exchange.

4.5.5 Correlation Between Average HOMO-LUMO Gap and Mean Error in Differ-
ence Double Hybrid Functional Theory
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Figure 4.10. Mean error (panel a) and standard deviation (panel b) of Rydberg
excitation vertical excitation energies as a function of Hartree-Fock exchange percent-
age for ∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and ∆DFT
(black) compared to benchmark values, without data in which 〈Ŝ2〉 of the reference
increases upon projection. Squares show the results at 69% Hartree-Fock exchange.
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Figure 4.11. Role of exact exchange in controlling the average HOMO-LUMO
energy difference (black squares, left axis) and the correlation between mean error
(left axis) in ∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and
∆DFT (black) for local excitations.

4.5.6 Workflow and Gaussian keywords for obtaining initial guesses in difference
self-consistent field methods

To compute ∆ SCF and ∆ post-SCF vertical excitation energies, two different SCF
must be obtained for each state of interest. Assuming one of the states is the ground
state, the work flow for identifying these states is as follows:

1. Perform a restricted or restricted open-shell SCF optimization to find the closed
shell representation of the ground state that preserves orbital symmetries where
present.

2. Perform orbital swaps on the restricted representation of the ground state to
obtain the restricted or restricted open-shell initial guess of the excited state
of interest. In Gaussian, orbital swaps can be performed using the guess=alter
keyword.
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Figure 4.12. Role of exact exchange in controlling the average HOMO-LUMO
energy difference (black squares, left axis) and the correlation between mean error
(left axis) in ∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and
∆DFT (black) for charge transfer excitations.
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Figure 4.13. Role of exact exchange in controlling the average HOMO-LUMO
energy difference (black squares, left axis) and the correlation between mean error
(left axis) in ∆PAV-DH-DFT (red), ∆DH-DFT (green), ∆PAV-DFT (blue), and
∆DFT (black) for Rydberg excitations.

3. Perform a local SCF optimization of the restricted or restricted open shell ex-
cited state initial guess to obtain the unrestricted excited state SCF solution.
A modified version of Gaussian is required to prevent variational collapse.

4. Perform analysis of the orbital rotation Hessian and follow any ov orbital ro-
tation eigenvectors that lower the energy in order to obtain the unrestricted
ground state SCF solution. In Gaussian, the stability eigenvector test and
eigenvector following can be accomplished with the stable=opt keyword.

5. Projected double-hybrid density functional theory has been implemented in
Gaussian 16 and subsequent versions. Performing projected double-hybrid den-
sity functional theory on excited states may require the Gaussian keyword
IOp(8/11=1) to avoid errors in the case of negative frontier orbital energy gaps.
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This keyword will only print a warning in the case of small orbital energy gaps
which leads to divergences in the second order energy correction.
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CHAPTER 5

APPLICATION OF NONORTHOGONAL METHODS FOR
EFFICIENT MODELING OF STRONGLY CORRELATED SYSTEMS

Introduction
1

Strong correlation, otherwise known as non-dynamical or static correlation, arises
when an electronic state does not have a well-defined set of occupied orbitals. As
a result, the wavefunction is an entangled superposition of electron configurations,
with permanent interactions between electrons at fractionally occupied sites that
occur over long distances. A challenge in the development of electronic structure
methods that are able to account for strong correlation is the identification of the
relevant correlated orbital space {|ψi〉} (203). Once the correct orbital subspace has
been identified, accounting for the interactions between all N sites can be performed
numerically by solving for the wavefunction in the Hilbert space H constructed as
the tensor product of {|ψi〉}

H =
N⊗
i

|ψi〉 (5.1.1)

which leads to O(N !) scaling in the dimensionality of H. Due to the factorial scaling
with the number of strongly correlated sites, it is desirable to minimize the value of N .
Through oo and virtual-virtual (vv) orbital transformations, it is possible to minimize
the expansion in eq. 5.1.1 by ‘concentrating’ the strong correlation in as small a subset
of orbitals as possible. Löwdin was the first to recognize that the smallest possible
orbital subset that recovers the strong correlation is the fractionally occupied natural
orbitals (NOs) of the full configuration interaction (FCI) density (145). In order to
establish the correct subset of orbitals without resorting to their explicit calculation,
Pulay and coworkers developed unrestricted natural orbitals (UNO) approach, in
which the fractionally occupied NOs of symmetry broken self-consistent field density
matrices are used (204; 205). While it is known that symmetry breaking in mean-field
wavefunctions is a marker of strong correlation, only recently has it been possible to
demonstrate the validity of the UNO approach by comparison with the very large
active spaces afforded by density matrix renormalization group (DMRG) (206).

Despite the success of the UNO approach, difficulties are encountered in the pres-
ence of multiple correlation mechanisms (MCMs). MCMs can be defined as situations

1This chapter is adapted with permission from Kempfer-Robertson, E. M., Mahler, A. D., Haase,
M. N., Roe, P., & Thompson, L. M. Nonorthogonal Active Space Decomposition of Wave Functions
with Multiple Correlation Mechanisms. The Journal of Physical Chemistry Letters 13, 12041-12048
(2022). Copyright 2022 American Chemical Society.
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in which one or more strongly correlated occupied orbitals has multiple correlation
partners (205; 206). An alternative definition of MCMs is that all possible refer-
ence SCF solutions have fractionally occupied NOs that describe only a subspace
of the FCI NOs, such that any determinant expansion in one of the SCF solution
NOs is unable to span the strongly correlated subspace of the FCI Hilbert space.
As a result, strong correlations in wavefunctions with MCMs cannot be treated by
projection-after-variation methods or standard UNO approaches, because SCF sym-
metry breaking cannot fully reveal the set of strongly correlated orbitals. Early in
the development of the UNO method, it was noted that multiple correlation mech-
anisms are signaled by the presence of several nearly-degenerate SCF solutions. To
resolve this issue in the UNO framework, the NOs of the averaged density matrices
were used (206). While the averaged-density UNO method enables the identification
of the minimum required subset of orbitals to describe the strong correlation, the
approach still has factorial scaling in the number of correlated orbitals according to
eq. 5.1.1. A question that arises is whether the partitioning of the wavefunction in-
dicated by different SCF solutions can be utilized in a different way that avoids the
factorial scaling in the correlated orbital space. In other words, can interactions be-
tween correlated mechanisms be treated differently to interactions within correlation
mechanisms in such a way that the method scales polynomially with the number of
correlation mechanisms?

Theory and Computational Details

In this chapter, we propose to couple together separate UNO expansions through
nonorthogonal Hamiltonian blocks, which can dramatically reduce the scaling of the
required wavefunction expansion. The proposed nonorthogonal active space decompo-
sition (NO-ASD) approach is related to several other methods, including active space
decomposition (207), block-localized wavefunction (208), molecular orbital-valence
bond theory (209), NOCI-F (210), and constrained constrained density functional
theory configuration interaction (CDFTCI) (211), in that fragment wavefunctions
are constructed and used to partition a CI active space. However, the proposed ap-
proach differs as the fragments are defined entirely self-consistently, rather than using
arbitrary constraints or spatial partitioning of the molecule. Instead of solving for the
wavefunction in the Hilbert space defined by eq. 5.1.1, the wavefunction is determined
in the Hilbert space formed from the direct sum of the separate UNO expansions on
each SCF solution

H =

NCM⊕
I

(
NI⊗
i

|Iψi〉
)

(5.2.1)

where the index I indicates the correlation mechanism. As a result, the formulation
in eq. 5.2.1 properly treats entanglement between orbitals within each correlation
mechanism, but gives an unentangled superposition of different correlation mecha-
nisms. However, because each correlation mechanism is generally constructed from a
set of orbitals that are nonorthogonal to the set of orbitals in other correlation mecha-
nisms, orbitals in each correlation mechanism can be expressed as disconnected single
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excitation cluster operators acting to infinite order in the basis of a common set of
orthogonal orbitals (155). As a result, entanglement between orbitals in different
correlation mechanisms that is not formally included in the determinant expansion
is implicitly wrapped in. Therefore, NO-ASD recovers entanglement through an ef-
fective Hamiltonian approach, in contrast to explicit tensor decomposition (212). It
is important to note that the full tensor product in eq. 5.2.1 may produce larger de-
terminant expansions than necessary, and these additional determinants may in fact
lead to greater errors. As demonstrated in the context of multistate DFT, a mini-
mal active space with half-projection of open-shell determinants is all that should be
required (213; 214; 215). However, here we opt for complete active space (CAS) ex-
pansions is to ensure the connection with the active space decomposition philosophy
embodied by eq. 5.2.1 and to enable direct comparison with CAS wavefunctions.

The workflow of performing the NO-ASD scheme is as follows: First, the relevant
set of SCF solutions must be identified. In this regard, UNO and NO-ASD approaches
are equivalent in the extent to which they are black-box. More generally, understand-
ing and identifying relevant SCF solutions is still a challenge and an active area of
research (216; 217), with several local SCF optimization techniques and global search-
ing algorithms having been developed in recent years (218; 219; 147; 220; 221; 22; 195).
Typically, the nearly-degenerate low-energy SCF solutions are the relevant set, which
simplifies solution identification. Subsequently, from the identified SCF solutions, a
determinant CAS expansion is constructed in the fractionally occupied set of NOs
for each SCF solution. The resulting orthogonal determinant expansions are then
coupled using NOCI (fig. 5.1). In section 2.3.5, the NOCI methodology is discussed
in the AO basis. This work however, utilizes the MO basis where the molecular or-
bitals are fixed, and the CI coefficients are linearly optimized. As described in section
2.3.5, nonorthogonal Hamiltonian matrix elements can be computed according to the
generalized Slater-Condon rules (222; 223) and the energy determined by solving the
generalized eigenvalue problem

HD = NDE (5.2.2)

where H is the Hamiltonian matrix, N is the Slater determinant or configuration
state function overlap matrix, and D and E are the eigenvectors and eigenvalues
respectively. The NO-ASD wavefunction for state A is then written as

ΨA =

NCM∑
I

(
IAD0|IΨ0〉+

∑
ux

IADux|IΨx
u〉+

∑
uvxy

IADuvxy|IΨxy
uv〉+

∑
uvwxyz

IADuvxyz|IΨxyz
uvw〉+ . . .

)
(5.2.3)

where u, v, x . . . indicate active space orbitals that are occupied in the reference de-
terminant |IΨ0〉, x, y, z . . . are active space orbitals that are virtual in the reference
determinant, and {D} are the CI coefficients. Evaluation in the AO basis yields a
maximum O(N4

basis) scaling for each matrix element, although in practice diagonal
blocks can be computed using standard orthogonal CI techniques, and matrix ele-
ments in off-diagonal nonorthogonal blocks only need to be evaluated if the number
of occupied orbitals with zero overlap between determinants is less than or equal to
two, where the overlap can be evaluated at O(N3

elec) cost.
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Figure 5.1. Schematic for formation of the nonorthogonal active space decomposi-
tion scheme Hamiltonian ĤASD and overlap NASD indicating diagonal block orthog-
onal and off-diagonal block nonorthogonal components.

Given the nature of the determinant expansion in NO-ASD, a more effective al-
gorithm is to evaluate matrix elements in the nonorthogonal blocks in the MO basis,
owing to the fact that only a single integral transformation atO(N5

basis) cost is required
for each pair of correlation mechanisms included in the calculation. The subsequent
contractions required to compute matrix elements are then reduced to O(N4

occ). The
rules for matrix elements in the MO basis are as follows:

IJH =



IJN

(∑
ij
IJhij

IJM−1
ji + 1

2

∑
ijkl

IJ〈ij||kl〉IJM−1
ki

IJM−1
lj

)
for dim(ker(IJM)) = 0

IJÑ

(∑
ij
IJhijUipVjp +

∑
ijkl

IJ〈ij||kl〉UjpVlpIJM+
ki

)
for dim(ker(IJM)) = 1

IJÑ
∑

ijkl
IJ〈ij||kl〉UiqUjpVkqVlp for dim(ker(IJM)) = 2

0 for dim(ker(IJM)) > 2

(5.2.4)
where i, j, k . . . are occupied orbital indices, p, q, r . . . are indices of biorthogonalized
orbitals with zero overlap between determinants I and J , dim(ker(IJM)) indicates
the size of the null space (number of biorthogonalized orbitals with zero overlap) of
the oo overlap matrix IJM, which is computed as

IJM = IC†occS
JCocc (5.2.5)

IJÑ is the reduced overlap, computed from the pseudodeterminant of IJM, IJM+

indicates the Moore-Penrose pseudoinverse of IJM, hij and 〈ij||jk〉 are one-electron
and antisymmetrized two-electron integrals in the MO basis respectively, and the
matrices U and V are computed from singular value decomposition of IJM

IJM = UIJσV† (5.2.6)

119



Very recent work by Burton invoking a nonorthogonal generalized Wick’s theorem has
been shown to further reduce the scaling to be independent of system size entirely
(224; 225). Although the generalized Wick’s theorem approach requires storage of
a large number of sets of transformed two-electron integrals and so has a greater
memory cost than the MO basis calculation presented, the reduction in the cost of
subsequently evaluating each matrix element from O(N4

occ) to O(1) has the potential
to significantly extend the size of NO-ASD determinant expansions.

A well-known issue with the selection of the active space based on occupation
number thresholds is the presence of discontinuities in the PES. In fact, these discon-
tinuities are present in all multiconfigurational calculations (204; 226). To minimize
threshold-based discontinuities, the same approach could be used in NO-ASD as
in UNO, in which natural orbitals are computed at the geometry which gives the
largest active space, and then the identified active space used across the entire PES.
Alternatively, natural orbitals of half-projected determinants may also ameliorate
discontinuities (227). However, natural orbitals of individual symmetry broken SCF
solutions typically display greater fractional occupation (lower levels of intermediate
correlation) than the averaged density, and so NO-ASD is less likely to suffer from
the choice of threshold than averaged density UNO methods (section S5.6). A re-
lated issue that leads to discontinuities is the disappearance of SCF solutions as the
geometry changes, which is fundamentally related to changes in the correlation mech-
anisms that are acting at a given geometry. As the relevant SCF solutions are the
same in UNO and NO-ASD, both methods are likely to be affected by disappearing
solutions to the same extent. However, using holomorphic solutions (228; 229) or
coupled-determinant orbital reoptimization (230) may provide a solution to resolve
the effect of vanishing solutions.

In the remainder of this work, NO-ASD results are compared to average-density
UNO-CI and UNO-CAS results. The goal is to establish the extent to which the de-
composition in eq. 5.2.1 affects the performance with respect to results from large ac-
tive space CASSCF and DMRG calculations. The systems studied are the highly mul-
tireference ozone molecule, and transition-metal containing species nickel-acetylene
and ammonia µ-oxo dicopper ammonia (geometries can be found in tables 5.4-5.7).
The cc-PVTZ basis set was used for ozone and ni-acetylene calculations and cc-PVDZ
basis set was used for µ-oxo dicopper ammonia calculations. The for the occupation
number thresholds for NO-ASD were 0.02-1.98 and 0.01-1.99 for ozone, 0.02-1.98 for
ni-acetylene, and 0.02-1.98 for µ-oxo dicopper. The code was implemented in a stand-
alone in-house code that utilizes the MQCPack library (197) as well as interfacing
with a modified version of Gaussian 16 (89).

Results

We first consider the ozone system, in which two stable UHF solutions differing by
0.085 Hartree describe the correlation mechanisms within the system (labeled UHF
1 and UHF 2 in table 5.8 which shows occupation numbers (ONs) of NOs of all
methods discussed here). Both SCF solutions have two fractionally occupied NOs
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Figure 5.2. Occupation numbers of valence natural orbitals in ozone compared with
a full valence DMRG for different methods indicated in the legend with the cc-pVTZ
basis set.

(ONs between 0.02 and 1.98), although UHF 2 has more diradical character than
UHF 1. As a result, the correlation mechanism described in UHF 1 is n→ π∗, while
UHF 2 shows σ → π∗ character (fig. 5.5). In contrast, the NOs of large active space
CASSCF calculations (12 electrons in 9 orbitals) and DMRG calculations indicate
that the fractionally occupied NO space contains 7 and 9 orbitals respectively. As
discussed by Pulay (206), only two of these fractionally orbitals lie in the strong
correlation regime, while the remaining orbitals have ONs close to the closed shell
limit and so can be considered as intermediately correlated. ONs from the averaged
density of the two SCF solutions indicate four fractionally occupied orbitals, where
coupling of the two correlation mechanisms results in doubling of the required active
space.

Fig. 5.2 illustrates how the ONs of the different methods examined compare with
DMRG, where more positive (negative) ONs for low (high) orbital indices indicates
a shift towards closed shell, and the HOMO orbital is index 12, while the LUMO
orbital is index 13. The averaged density NO ONs (orange cross), show that orbitals
10 and 11 are the additional fractionally occupied NOs because their value is similar
to or less than the DMRG NO. The resulting six electron in four orbital active space
can be treated through either using complete active space configuration interaction
(CASCI) (205) or CASSCF (204). Interestingly, the NO analysis of the CASCI
(blue star) and CASSCF (brown open square) densities suggests that there are only
three and two orbitals respectively in the correlated orbital space. Changing the
criteria for fractionally occupied orbitals to ONs between 0.003 and 1.997 to capture
additional intermediate correlation, leads to an eight electron in seven orbital active
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space (CASCI – cyan solid circles, CASSCF – green solid triangles). Including these
additional orbitals gives ONs that are much closer to the DMRG and CASSCF using
12 electrons in 9 orbitals (purple solid square), with a seven orbital correlated space.
Using the 0.02-1.98 NO criteria for the fractionally occupied orbitals leads to a NO-
ASD(2e,2o;2e,2o) active space (red open circles), i.e. a two electron in two orbital
expansion in the orbitals of UHF 1, and the same in the orbitals of UHF 2. Using
NO 0.01-1.99 as the criteria leads to NO-ASD(4e,4o;2e,2o), with four orbitals from
UHF 1 in the correlated space (black open circles). Both the NO-ASD calculations
give NO ONs that are close to the CASCI(6,4) and CASSCF(6,4) results, with the
NO-ASD(4e,4o;2e,2o) very closely reproducing the CASSCF(6,4) results.

Table 5.1 shows how the number of Hamiltonian matrix elements of each method
correlates with the correlation energy remaining, assuming DMRG gives the exact
result. Orbital reoptimization of CAS six electron in four orbital active space only
reduces the energy by 2.6 kcal mol-1, although with the eight electron in seven orbital
active space, the difference was 28.2 kcal mol-1, suggesting that the NOs of inter-
mediate correlated orbitals change their shape to a greater extent than the strongly
correlated orbitals. Increasing the active space from six electrons in four orbitals, to
eight electron in seven orbitals increases the number of matrix elements from 102 to
106, with the correlation energy error decreasing by 49.4 kcal mol-1 for fixed orbitals,
and 75.0 kcal mol-1 for reoptimized orbitals. Increasing the active space to twelve
electrons in nine orbitals leads to an order of magnitude increase in the number of
Hamiltonian matrix elements, while the correlation energy error decreases by only
8.4 kcal mol-1 and remains 157.8 kcal mol-1 compared to the full valence active space
DMRG calculation. In comparison, the NO-ASD(2e,2o;2e,2o) method with only 64
Hamiltonian matrix elements gives results comparable to CAS(6e,4o), which is has
four times as many elements. When the stricter criteria for determining fractional
occupied orbitals are used, the NOASDC(4e,4o;2e,2o) reduces the correlation energy
error by 10.2 kcal mol-1 even though the number of matrix elements increases just
over six-fold.

The second system investigated is nickel-acetylene, which was identified by Keller
and coworkers as possessing two correlation mechanisms (206). The two correlation
mechanisms in nickel-acetylene are represented by two UHF solutions, that differ in
energy by just 1.03 kcal mol-1 using the cc-PVTZ basis set (table 5.9). The higher
energy solution (labelled UHF 1 in table 5.9) involves the bonding and antibonding
orbital pair consisting of Ni dxy and acetylene π∗y orbital fragments. The UHF 2
correlation mechanism involves the interaction of orbitals from UHF 1 with the Ni
d2
z and Ni 3s orbitals (fig. 5.6). Fig. 5.3 shows how the ONs of NOs differ from a

DMRG(18e,33o) calculation for the methods discussed in the remainder of this para-
graph. Orbital 21 is the HOMO orbital index and orbital 22 is the LUMO orbital
index. UHF 1 indicates a two electron in two orbital correlated space, while UHF
2 indicates a four electron in four orbital active space. The NO ONs of the DMRG
calculation indicate a thirteen orbital correlated space is required, although all but
four of these orbitals are in the intermediately correlated regime. The averaged den-
sity from the two UHF solutions (orange crosses) gives NO ONs that suggest a four
electrons in four orbital correlated space. Performing CASCI(4e,4o) with the strongly
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Method # Hamiltonian
matrix elements ∆E (kcal mol-1)

aDMRG
18e,32o 6.189x1029 0.0

CASSCF
12e,9o 4.978x107 157.8

aUNO-CASCI
8e,7o (AVG) 1.501x106 194.4

aUNO-CASSCF
8e,7o (AVG) 1.501x106 166.2
aUNO-CASCI
6e,4o (AVG) 256 243.8

aUNO-CASSCF
6e,4o (AVG) 256 241.2

NO-ASD
2e,2o;2e,2o 64 242.4

NO-ASD
4e,4o;2e,2o 1,600 233.6

Table 5.1. Number of Hamiltonian matrix elements and error in correlation energy
with respect to full valence DMRG calculation for different methods in the calculation
of ozone using the cc-pVTZ basis set. aResults from ref. 206.

correlated NOs of the average density matrix (blue stars) leads to a density matrix
with ONs that improve marginally on the UHF averaged density. Reoptimizing the
orbitals in a CASSCF(4e,4o) calculation (green open squares), significantly improves
the density, giving much closer agreement to DMRG in the ONs of the four strongly
correlated NOs, although the intermediately correlated orbitals are not identified
and remain closed shell. Capturing the intermediately correlated orbitals requires a
twelve electron in fourteen orbital calculation, using an NO threshold of 0.001-1.999,
in which there is no significant difference in the NO ONs regardless of whether fixed
orbitals (cyan solid circles) or reoptimized orbitals (purple solid squares) are used.
The NO-ASD(2e,2o;4e,4o) suggested by the NO ONs of the UHF solutions (red open
circles) gives a significant improvement over the CASCI(4e,4o) calculation, indicating
the additional two electron in two orbital active space in NO-ASD replicates orbital
reoptimization in CASSCF(4e,4o), but does not capture intermediate correlated or-
bitals.

Analyzing the size of the Hamiltonian with respect to the error in the correlation
energy (table 5.2), as was done above for ozone, it is apparent that the marginal
increase in the size of the Hamiltonian of NO-ASD(2e,2o;4e,4o) with respect to
CASCI(4e,4o) leads to an order of magnitude improvement in the correlation en-
ergy error (-23.9 kcal mol-1) than orbital reoptimization with CASSCF(4e,4o) (-2.7
kcal mol-1). To analyze where NO-ASD(2e,2o;4e,4o) lies in the hierarchy of increas-
ing active space size, table 5.10 shows the energy of averaged density UNO-CASCI
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Figure 5.3. Occupation numbers of valence natural orbitals in nickel-acetylene
compared with DMRG(18e,33o) for different methods indicated in the legend with
the cc-pVTZ basis set.

with increasing active spaces. It can be seen that the NO-ASD(2e,2o;4e,4o) energy
is slightly better than UNO-CASCI(8e,8o) despite comprising significantly fewer de-
terminants. Including all the intermediate correlated orbitals increases the size of
the Hamiltonian by 1010 matrix elements, and without orbital reoptimization still
leaves 96.7 kcal mol-1 correlation energy error. The larger improvement in correlation
energy upon orbital reoptimization with larger determinant expansions observed in
ozone is also observed in nickel acetylene, reducing the error in correlation energy by
61.3 kcal mol-1, again indicating that the intermediately correlated orbitals are more
sensitive to orbital reoptimization than the strongly correlated orbitals.

Lastly, transition metal compounds containing [Cu2O2]2+ are known to have high
catalytic activity with biological relevance (231). Due to the variety of ways that
copper(I) can bind to oxygen, there are several different possible structures that can
exist in biological systems. Previous studies have shown that [Cu2O2]2+ systems have
significant multireference character and as a result, it is difficult to predict the relative
energies of the different structures (232; 233; 234; 235). Here, we examine the µ-oxo
dicopper ammonia complex, and the relative energies of the bis and per structures
(fig. 5.4). The multireference character of the molecular wavefunction indicates large
computationally infeasible active spaces are required. The two correlation mecha-
nisms were represented by UHF solutions that were separated by 0.1201 Hartree in
the bis geometry, and by 0.1000 Hartree in the per geometry. The two correla-
tion mechanisms both include copper dxy orbitals interacting with oxygen px and py
orbitals in the first case, and with oxygen pz in the second case (fig. 5.7 and 5.8).
Natural orbital ONs at the bis geometry are shown in table 5.11, and for the per
geometry are shown in table 5.12.

Examining the average density NOs indicates an eight electron in seven orbitals
active space at the bis geometry, while at the per geometry, the indicated active
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Methods Number of
Hamiltonian Elements ∆E (kcal mol-1)

aDMRG
18e,33o 2.212x1030 0.0

CASSCF
12e,14o 8.132x1013 35.4

aUNO-CASCI
12e,14o (AVG) 8.132x1013 96.7
aUNO-CASCI
4e,4o (AVG) 1,296 188.3

aUNO-CASSCF
4e,4o (AVG) 1,296 185.6

NO-ASD
2e,2o;4e,4o 1,600 164.4

Table 5.2. Number of Hamiltonian matrix elements and error in correlation energy
with respect to full valence DMRG calculation for different methods in the calculation
of nickel-acetylene using the cc-pVTZ basis set. aResults from ref. 206.

Figure 5.4. Bis and per isomers of µ-oxo dicopper ammonia complex.

space is six electrons in five orbitals, based on a threshold for strongly correlated or-
bitals of 0.01-1.99 (the NO with NO 0.00998 was also included at the bis geometry).
The averaged density active spaces lead to Hamiltonian matrices with 10,000 matrix
elements for (6e,5o) and 1.501 × 106 matrix elements for (8e,7o) (table 5.3). For
the NO-ASD calculation, a (4e,4o;4e,4o) active space containing Hamiltonian matrix
containing 5184 matrix elements was used, which is 52% of the smaller (6e,5o) ac-
tive space and < 1% of the larger (8e,7o) active space used with the average density
NOs. Despite the smaller size of the NO-ASD Hamiltonian, the absolute energy for
the bis isomer is energetically lower than that of the average density CASCI(6e,5o)
calculation by 7.3 kcal mol-1. One of the strongest demonstrations for the perfor-
mance of NO-ASD is that the absolute energy for the per isomer it is lower than
the average density CASCI(6e,5o) and CASCI(8e,7o) calculations by 4.2 and 4.0 kcal
mol-1 respectively. Even the bis CASCI(8e,7o) calculation is 1.8 kcal mol-1 lower in
energy than the NO-ASD(4e,4o;4e,4) calculation, while orbital reoptimization with
CASSCF recovers a greater amount of correlation energy by 5.7 and 33.4 kcal mol-1
for the (6e,5o) and (8e,7o) active spaces respectively. NO ONs of NO-ASD, CASCI
and CASSCF calculations all indicate four strongly correlated orbitals.

Examining the difference in energy between the two geometries, NO-ASD gives
similar results to the average density CASCI of both size active spaces, in which the
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Methods Number of
Hamiltonian Elements E(bis)− E(per) (kcal mol-1)

aDMRG-CASPT2
24e,24o 5.347x1025 22.6

bUNO-CASCI
8e,7o (AVG) 1.501x106 -8.9

bUNO-CASSCF
8e,7o (AVG) 1.501x106 8.2
bUNO-CASCI
6e,5o (AVG) 10,000 -0.1

bUNO-CASSCF
6e,5o (AVG) 10,000 9.4

NO-ASD
4e,4o;4e,4o 5,184 -3.2

Table 5.3. Relative energies between bis and per geometries of µ-oxo dicopper
ammonia calculated using different methods with cc-PVDZ basis set, except DMRG
calculation using ANO-RCC basis set. aResults taken from ref. 235. bResults are
obtained from the methodology of ref. 206.

per geometry is lower in energy than the bis geometry. DMRG calculations indicate
the opposite energy order of bis and per geometries (235). Allowing for orbital
relaxation with CASSCF calculations yields energy ordering consistent with DMRG
calculations, suggesting that orbital relaxation is important for properly describing
the correct energy order, rather than the error in NO-ASD resulting from a break-
down of the correlation mechanism approximation.

Conclusions

In conclusion, we have introduced the concept of the NO-ASD methodology in which
correlation mechanisms are used to partition strong correlation. NO-ASD was then
assessed against average density CASCI and CASSCF calculations, as well as very
large active space DMRG calculations. We demonstrated that NO-ASD gives results
consistent with average density CAS expansions despite the smaller active space, in-
dicating that the partitioning and recouping of strong correlation in the wavefunction
by correlation mechanism can be used to avoid the computational expense of explicit
entanglement of all orbitals. The methodology was assessed both in terms of NO
ONs and correlation energy error with respect to DMRG calculations. Especially
with larger determinant expansions, orbital reoptimization leads to improvements in
the average density CAS calculations. As a result, nonorthogonal orbital reoptimiza-
tion may provide a route to improve the NO-ASD method (230). While performing
orbital reoptimization on the whole NO-ASD determinant expansion may not be com-
putationally feasible, it is also possible to perform orbital reoptimization through a
non-orthogonal multiconfigurational self-consistent field (NOMCSCF) calculation of
the underlying SCF solutions that indicate the correlation mechanism. The subse-
quent reoptimized basis determinants used to partition the wavefunction and perform
NO-ASD expansion are likely to capture correlation that is absent from the indepen-
dently optimized SCF solutions.
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Supporting Documents – Application of Nonorthogonal
Methods for Efficient Modeling of Strongly Correlated
Systems

5.5.1 Molecular geometries

5.5.1.1 Ozone [O3]

O 0.8822749 0.6839687 0.0000000
O 0.1946029 -0.3909559 0.0000000
O -1.0768778 -0.2930128 0.0000000

Table 5.4. Ozone cartesian coordinates

5.5.1.2 Nickel-actelyene [NiC2H2]

Ni 0.0000000 0.0000000 -1.5826858
C 0.6420065 0.0000000 0.1340163
H -1.5920883 0.0000000 0.6573266
H 1.5920883 0.0000000 0.6573266
C -0.6420065 0.0000000 0.1340163

Table 5.5. Ni-actylene cartesian coordinates

5.5.1.3 Bis (µ-oxo) dicopper ammonia [(Cu(NH)3)2O2]

Cu 0.000000 1.400000 0.000000
Cu 0.000000 -1.400000 0.000000
O 0.000000 0.000000 1.150000
O 0.000000 0.000000 -1.150000
N 0.000000 3.400000 0.000000
N 0.000000 -3.400000 0.000000
H -0.939693 3.742020 0.000000
H 0.939693 -3.742020 0.000000
H 0.469846 3.742020 0.813798
H -0.469846 -3.742020 -0.813798
H 0.469846 3.742020 -0.813798
H -0.469846 -3.742020 0.813798

Table 5.6. Bis (µ-oxo) dicopper ammonia cartesian coordinates
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5.5.1.4 Per (µ-oxo) dicopper ammonia [(Cu(NH)3)2O2]

Cu 0.000000 1.800000 0.000000
Cu 0.000000 -1.800000 0.000000
O 0.000000 0.000000 0.700000
O 0.000000 0.000000 -0.700000
N 0.000000 3.800000 0.000000
N 0.000000 -3.800000 0.000000
H -0.939693 4.142020 0.000000
H 0.939693 -4.142020 0.000000
H 0.469846 4.142020 0.813798
H -0.469846 -4.142020 -0.813798
H 0.469846 4.142020 -0.813798
H -0.469846 -4.142020 0.813798

Table 5.7. Per (µ-oxo) dicopper ammonia cartesian coordinates
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5.5.2 Total energies and occupation numbers
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Figure 5.5. Pictorial Representation of the Natural Orbitals of Ozone’s two UHF
solutions
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Method Energy
NO-ASD -1583.6956934e,4o x 2e,2o

UNO-CASCI
-1583.6575174e,4o

Average
UNO-CASCI

-1583.6857846e,6o
Average

UNO-CASCI
-1583.6931308e,8o

Average
UNO-CASCI

-1583.72118010e,10o
Average

UNO-CASCI
-1583.76943512e,12o

Average

Table 5.10. Energy of NO-ASD(4e,4o;2e,2o) compared to averaged density UNO-
CASCI with active spaces of increasing size.
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Figure 5.6. Pictorial Representation of the Natural Orbitals of Ni-Acetylene’s two
UHF solutions
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Figure 5.7. Pictorial Representation of the Natural Orbitals of Bis µ−oxo dicopper
ammonia’s two UHF solutions
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Figure 5.8. Pictorial Representation of the Natural Orbitals of Per µ−oxo dicopper
ammonia’s two UHF solutions
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Figure 5.9. Selected natural orbital occupation numbers along the O-O-O bending
coordinate of ozone.

Effect of Natural Orbital Occupation Number
Thresholds on Energy Discontinuities

To test the hypothesis that NO-ASD is less affected by the exact choice of thresh-
old than averaged density UNO methods, we examined the SCF density and average
density natural orbitals along the O-O-O bending coordinate for the two SCF de-
terminants identified in this study (fig. 5.9). Using the 0.02-1.98 threshold, natural
orbitals 12 and 13 are always included in the active space regardless of whether the
density of SCF 1, SCF 2, or the averaged density is used. Natural orbital 11 is always
outside the active using SCF 1 or SCF 2 densities, but inside the active space using
the averaged density. Natural orbital 10 is always outside the active space using SCF
1 or SCF 2 density, but switches from being outside the active space at 105 degrees,
to being inside the active space at 110 degrees. The average density show a much
greater variation in occupation number of close-to-threshold natural orbitals 10 and
11 than the individual SCF densities, supporting the hypothesis that NO-ASD will
suffer less from the effect of occupation number threshold crossing discontinuities.
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CHAPTER 6

CONCLUSIONS

Throughout this work, we examined both preexisting and newly developed method-
ologies for the description of excited state systems to understand the photoreactivity
in molecules like azobenzene.

The first work, in Chapter 3, demonstrated the utilization of preexisiting method-
ologies like CASSCF and TD-DFT for understanding electric field response to both
unsubstituted and substituted azobenzene molecules for chemical control of the pho-
tochemical system. With unsubstituted azobenzene, significant findings were ob-
served specifically in modification of the branching space of the CI with applied
electric fields, demonstrating clear limitation or enhancement of the photoisomeriza-
tion pathway through modification of the size and direction of an electric field. This
was the first work to report a dipole inversion effect in which electric field response
trends at strong fields were qualitatively different to that at weak fields allowing for
the formation of new minima in the PES that did not exist in field free conditions.
With the study of the substituted azobenzene we were interested in examining the
effects of not just the applied electric field but also pH/deprotonation. We showed
that with application of strong electric fields some of the thermal isomerization path-
ways become barrier-less. This result is significant because it can be used in systems
where a fast thermal response is needed in which, with the application of a field, the
trans molecule can be reproduced almost immediately without the need to overcome
a transition barrier. We also examined the half-lives of the thermal barriers when
the thermal pathways are competitive showing that there is a lower half-life when the
pathways are energetically competitive.

Overall, the investigations of our first work of azobenzene with CASSCF and TD-
DFT methodologies produced significant work detailing the reactions of azobenzene
molecules with electric field control. With the continuation of this work, to enhance
azobenzene properties further larger azobenzene systems became of interest. However,
the examination of these systems is impossible with the methodologies utilized within
the first work which is why we turned our focus onto the method development of SCF
solution methodologies for excited states.

The first development we examined was that of the ∆SCF methodology in which
the electronic states of interest are individually optimized. However, because the
SCF solutions are individually optimized an issue arises with the unequal treatment
of correlation between the ground and excited states. Thus, to allow for an equal
treatment of correlation the ∆PAV-DH-DFT methodology was created in which the
static correlation is achieved through symmetry breaking and projection and the
dynamic correlation is achieved through DFT and MP2. Our first benchmarking
of this methodology examined solely local excitations of small and medium sized

140



molecules which demonstrated ∆PAV-DH-DFT methodology showed similar quality
results to LR-CC2 and EOM-CCSD. This result is significant because the scaling of
the ∆PAV-DH-DFT method is noniterative O(N5), compared to iterative O(N5) for
LR-CC2 and iterative O(N6) for EOM-CCSD. Meaning this methodology can give
similar quality results to high performance pre-existing methodologies without the
computational cost.

We expanded this work by examining the effect of HF exchange on describing
a second benchmarking set consisting of local, charge transfer, and Rydberg states.
It was observed that at low amounts of HF exchange several issues arise causing
poor results for all excitations. Some issues are noted as: double counting of strong
correlation, caused by the increase of DFT exchange in the description, and numerical
issues caused by the reduced frontier orbital energy gap. Other issues were also
observed at the opposite end of the HF exchange in which the projector fails due to
increased contributions of higher order spin contaminating states. Implementation
of a projector that can recouple all electron pairs would be needed to fix the issues
at higher HF exchange values. Overall, the ∆PAV-DH-DFT methodology has many
advantages however, it is still a single reference methodology thus, it fails at describing
points of degeneracy and the entire PES however, it is very efficient for describing
VEEs.

The second development of utilizing SCF solutions was in the NO-ASD approach
where fragment wavefunctions are constructed and used to partition a CI active
space. The NO-ASD was utilized in comparison to average-density UNO-(CI,CAS) for
systems containing MCM. We demonstrated preliminary results with the NO-ASD
methodology showing that we can achieve energies similar to that of an average-
density UNO-(CI,CAS) calculation with substantially fewer Hamiltonian elements.
This signifies the importance of nonorthognality on reducing computational cost just
through nonorthogonality of the SCF solutions. It was observed with some systems
orbital reooptimization is important for achieving accurate descriptions of energy.
However, orbital optimization on the entire NO-ASD determinant expansion has a
high computational cost but it is feasible to perform the optimization on the under-
lying SCF solutions.

The results indicated in this work demonstrates a limitation of current method-
ologies for studying excited state systems but also introduces and examines two newly
developed methods for study of larger systems. This work provides new directions
for excited state methodologies. While the newly developed methodologies are still in
their elementary stages, this work provides a new perspective for examining excited
states using SCF solutions.
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Appendix A: Commonly Used Acronyms

Commonly Used Acronyms in text, organized alphabetically.

∆DFT: Difference Density Functional Theory
∆DH-DFT: Difference Double-Hybrid Density Functional Theory
∆HF: Difference Hartree-Fock
∆MP2: Difference Second Order Møller-Plesset Perturbation Theory
∆PAV-DFT: Difference Projection-after-Variation Density Functional Theory
∆PAV-DH-DFT: Difference Projection-after-Variation Double-Hybrid Density Func-
tional Theory
∆PAV-HF: Difference Projection-after-Variation Hartree-Fock
∆SCF: Difference Self Consistent Field
AS: Active Space
AO: Atomic Orbital
CAS: Complete Active Space
CASCI: Complete Active Space Configuration Interaction
CASPT2: Complete Active Space Second Order Perturbation Theory
CASSCF: Complete Active Space Self Consistent Field
CSFs: Configuration State Functions
CDFTCI: Constrained Density Functional Theory Configuration Interaction
CC: Coupled Cluster
CCS: Coupled Cluster Singles
CCSD: Coupled Cluster Singles and Doubles
CC2: Coupled Cluster Singles and Approximate Doubles
CI: Configuration Interaction
CIS: Configuration Interaction Singles
CI: Conical Intersection
DFT: Density Functional Theory
DFT+U: Density Functional Theory with Modified On-Site Repulsion
DH: Double-Hybrid
DH-DFT: Double-Hybrid Density Functional Theory
DIIS: Direct Inversion of the Iterative Subspace
DMRG: Density Matrix Renormalization Group
EOM-CCSD: Equation-of-Motion Coupled Cluster Singles and Doubles
FCI: Full Configuration Interaction
GGA: Generalized Gradient Approximation
HF: Hartree-Fock
KS: Kohn-Sham
LCAO: Linear Combination of Atomic Orbitals
LDA: Local Density Approximation
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LR: Linear Response
LR-CC: Linear Response Coupled Cluster
LR-CC3: Linear Response Coupled Cluster Singles, Doubles, and approximate
Triples
LR-CC2: Linear Response Singles and Approximate Doubles
MCM: Multiple Correlation Mechanism
MO: Molecular Orbital
MOM: Maximum Overlap Method
MP : Møller-Plesset Perturbation Theory
MP2: Second Order Møller-Plesset Perturbation Theory
MRCI: Multireference Configuration Interaction
NO: Natural Orbitals
NO-ASD: Nonorthogonal Active Space Decomposition
NOCI: Nonorthogonal Configuration Interaction
NOMCSCF: Nonorthogonal Multiconfigurational Self Consistent Field
OEEFs: Oriented External Electric Fields
NO: Occupation Numbers
oo: Occupied-Occupied
ov : Occupied-Virtual
PAV: Projection-after-Variation
PAV-DH-DFT: Projection-after-Variation Double-Hybrid Density Functional The-
ory
PES: Potential Energy Surface
RHF: Restricted Hartree-Fock
RR: Real Restricted
RU: Real Unrestricted
STM-BJ: Scanning Tunneling Microscopy Break Junction
SCF: Self Consistent Field
SD: Slater Determinant
SIE : Self-Interaction Error
STEP: State-Targeted Energy Projection
SVD: Singular Value Decomposition
TD-DFT: Time Dependent Density Functional Theory
TDDHDFT: Time Dependent Double-Hybrid Density Functional Theory
TS: Transition Structure(s)
2ERIs: Two-Electron Integrals
UHF: Unrestricted Hartree-Fock
UNO: Unrestricted Natural Orbitals
VEE: Vertical Excitation Energy
vv : Virtual-Virtual
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