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Abstract

Background: COVID-19 infection is associated with neu-
rologic and psychiatric morbidity that suggests a direct ef-
fect of the virus or secondary effect of an inflammatory pro-
cess. These neuropsychiatric consequences may increase the
likelihood of schizophrenia in the offspring of women who
become infected with COVID-19 during their pregnancy.

Methods: We performed a directed narrative review of the
literature focusing on the proposed pathophysiological pro-
cesses that lead to schizophrenia and known pathological
consequences of COVID-19 infection.

Results: Schizophrenia in adult offspring has been associ-
ated with maternal infections during pregnancy by a wide
range of respiratory and neurotropic pathogens. Spikes in
the incidence of schizophrenia approximately 20 years after
several influenza pandemics have been documented. There
are multiple lines of evidence suggesting that a similar pat-
tern may be seen due to the recent COVID-19 pandemic.
These include the nonspecific consequences of acute illness
and hyperpyrexia, as well as more specific derangements of
brain development related to direct effects of the virus or
secondary effects of the inflammatory response on the de-
veloping brain. There is the potential to prospectively test
this hypothesis by following the offspring of women who are
known to have developed COVID-19 during their pregnancy.

Conclusion: The COVID-19 pandemic is likely associated
with a range of future neuropsychiatric consequences in peo-
ple whose mothers suffered the infection during their fetal
development. It is important to try to follow these offspring
to determine the full range of consequences of COVID-19
infection.

Introduction

Schizophrenia is a severe psychiatric illness that manifests
with persistent deficits in motivation, cognition, and execu-
tive function, with intermittent episodes of psychosis mani-
festing with delusions and/or hallucinations. Despite its low
prevalence of 0.33–0.75% among non-institutionalized indi-
viduals worldwide [1, 2], it is one of the top 20 leading causes
of disability across the globe.[3] In the United States, the
prevalence lies between 0.25% and 0.64%.[4–6] It is typically
diagnosed in the late teens to early thirties [7, 8], but it is sus-
pected that the initial insult occurs in the prenatal period or
early in life, with consequent disruptions in the development
of the brain.[9]

One of the leading models regarding the pathogenesis of
schizophrenia is the infection hypothesis.[10, 11] The body
of evidence supporting this hypothesis, while almost ex-
clusively indirect and associational, is nonetheless substan-
tial.[10–12] Briefly, it is proposed that the mother’s expo-
sure to a neurotropic organism during the second trimester
of pregnancy may interfere with proper development of the
frontal cortex or mesocortical pathways. These structures
begin to myelinate in the early teen years and do not com-
plete maturation until age 24 or so.[13, 14] Consequently,
even though the damage has already occurred in early devel-
opment, clinical manifestation of the illness is delayed un-
til adolescence or early adulthood. A spike in the incidence
of schizophrenia among the children of women who were
pregnant during the 1918–20 influenza pandemic [12, 15] has
been central to the hypothesis. More recent understanding
of post-infectious inflammatory changes and other environ-
mental factors shed light on potential mechanisms.[11, 12,
16] Now, with a new viral pandemic of COVID-19 [17], we
have the opportunity to examine this question prospectively.

To begin this process, we will re-examine the data regarding
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neurotrophic changes caused by various organisms and the
inflammatory pathways that may be involved. We will fur-
ther examine the proposal that in utero and possibly direct ex-
posure to COVID-19 [18] may play a role in the pathogenesis
of schizophrenia, as has been suggested by some authors.[18,
19]

The is a guided narrative review and is not meant to be ex-
haustive or systematic.

Methods

We performed a directed narrative review of the literature.
We focused on previous work that linked pathophysiol-
ogy of neurotropic infections to subsequent development of
schizophrenia in some individuals and searched for similar
pathological processes with COVID-19 infection to deter-
mine the likelihood of similar outcomes with intrauterine ex-
posure to this virus. Only PubMed was queried. We used
the terms “schizophrenia”, “infection”, “exposure”, “viral”,
“COVID-19”, “neurotropism”, “neuropathology”, and “Mater-
nal Exposure” in different combinations to retrieve relevant
articles. The terms were chosen for their relevance and gen-
eralizability. No time frame was set on search parameters.
Initial title review included relevant articles only according
to title. We focused on previous work that linked pathophys-
iology of neurotropic infections to subsequent development
of schizophrenia in some individuals. We then extended our
search for similar pathological processes with COVID-19 in-
fection to determine the likelihood of similar outcomes with
intrauterine exposure to this virus. Identified articles were
read for content by all the authors. The sections in this article
were synthesized from the identified articles with additional
background data added for clarification. Citations in iden-
tified articles were also browsed for relevant data and were
included where appropriate.

Results

Our initial search yielded 755 articles. Title review excluded
most of these articles, leaving 79. These articles were further
refined by abstract and content review to result in 51 articles
that were included in the current review. An additional 25
articles were included from the citation review. Finally, 24
articles were added for background information.

Pathogenesis of Schizophrenia

Role of infections

Schizophrenia is a severe mental illness that manifests as a
triad of symptoms: positive symptoms of psychosis (delusions

or hallucinations) that are episodic superimposed on negative
symptoms of blunted affect, avolition, alogia, asociality, and
anhedonia that are chronic, and cognitive dysfunction that is
progressive. Risk for onset of the illness begins in early ado-
lescence and peaks in late adolescence and early adulthood.
There are many factors that have been associated with in-
creased risk of occurrence of this disorder, which include ge-
netic, environmental, and socio-economic; medical, such as
issues during pregnancy or subsequent brain injury; and sub-
stance use. Many researchers believe schizophrenia may be
a group of brain diseases with similar clinical presentations.

Neurotropic viruses that have been linked to psychosis
include herpesviruses, retroviruses, influenza, and en-
teroviruses.[19–25] Viruses are known to enter the brain via
direct invasion of the neuronal cells by binding to the periph-
eral axons and occupying the retrograde transport mecha-
nism or to gain entry via binding to the olfactory neurons.
They are also known to gain entry via infected leukocytes
crossing the blood-brain barrier (BBB).[26] Exposure to these
pathogens in the prenatal period or infancy, and possibly
even in childhood or early adolescence, may result in psy-
chosis. In particular, respiratory infections during the sec-
ond trimester are associated with increased risk of the ver-
tical transmission of these pathogens. Alternatively, hyper-
thermia, a common manifestation of infections, is known to
cause neural tube defects in animal models and has been as-
sociated with increased risk of schizophrenia in offspring if a
mother develops fever.[27–29] Placental and amniotic expo-
sure to viruses may result in infections that can cause mater-
nal and subsequently fetal hypoxia, which is another known
risk factor for schizophrenia.[30] One or a multitude of these
mechanisms may be involved in a possible association of in-
fections with subsequent appearance of schizophrenia in off-
spring of mothers with COVID-19 infections.

Viruses: Influenza infection during pregnancy can be
problematic and is associated with an increased risk of
miscarriage and other complications for the mother and
child.[31, 32] The association between the 1918–20 influenza
pandemic and schizophrenia has already been discussed.[12,
15] Similar associations have been described by multiple re-
searchers for various influenza epidemics [33] but not uni-
versally.[34] Just having a respiratory infection during the
second trimester nearly doubles the risk of having a child
who ultimately develops schizophrenia spectrum disorders
(SSD).[35] Similarly, associations between SSD and prenatal
exposure to varicella zoster, polio, and measles have been de-
scribed.[36–38] Cohort studies of mothers infected with in-
fluenza viruses during pregnancy (confirmed with increased
antibody titers), particularly during the first half of preg-
nancy, are associated with an approximately threefold in-
creased risk of SSD in their offspring compared to controls
without elevated titers.[37] Since influenza is not known
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to cross the placenta [39], it has been proposed that IgG
antibodies induced by influenza may traverse the placenta
and cause fetal brain developmental issues via molecular
mimicry.[40] Studies in pregnant animals infected with in-
fluenza reveal significant alterations in cortical volumes [41,
42], as well as altered exploratory behavior, deficits in pre-
pulse inhibition, and decreased contact with novel objects
[43], all findings consistent with schizophrenia.[44] Pericon-
ceptional genital and reproductive structure infections doc-
umented in obstetric records were associated with a fivefold
increased risk of schizophrenia in offspring.[45] Moreover,
elevated IgG antibodies generated in response to herpes sim-
plex type 2 viruses in mothers were found to give rise to
adults with psychosis, although the relationship was statis-
tically insignificant after adjusting for potential covariants
(odds ratio [OR] 1.22 [95% confidence interval (CI) 0.93–1.60];
P=0.14).[46] There was no relationship between Chlamy-
dia trachomatis infection during pregnancy and subsequent
schizophrenia in the offspring, suggesting that infection per
se is not sufficient and something specific may happen with
infections that increase schizophrenia risk in offspring.[46]

Toxoplasma gondii: T. gondii is a protozoan with global
distribution that must complete its life cycle in cats (i.e., cel-
lular mating must occur in cats).[47] While it is not a virus, it
is the best studied infection during pregnancy that may con-
tribute to subsequent schizophrenia in offspring. The para-
site is shed as dormant microcysts in the feces of cats and is
encountered by prey mice or other mammals or birds, who
may ingest the microcysts in the process of environmental
exploration. In the mice, the parasite infects the brain and
alters behavior in a fashion that increases the susceptibil-
ity of the mice to be captured and consumed by cats, al-
lowing the parasite to complete its life cycle.[47] T. gondii
does not appear to alter the behavior of adult humans (unless
they suffer from some immunodeficiency) but may impact
the fetuses of infected mothers.[47] Approximately 40–70%
of infected newborns who were asymptomatic at birth devel-
oped neurocognitive and neuromotor abnormalities resem-
bling those observed in adults with schizophrenia.[48–50]
The relationship between maternal infection and schizophre-
nia may be fairly specific, such that a relationship with bipo-
lar illness could not be identified.[51] Most studies docu-
mented T. gondii exposure by measuring IgG antibody pro-
duction, but it may be the antibodies themselves that cause
fetal brain injury; if so, pre-pregnancy T. gondii infection may
increase risk for schizophrenia in offspring.[50] T. gondii is
prototypic for infections with neurotropic agents that may
increase the subsequent risk for schizophrenia. Specifically,
the infection appears to result in methylation of 132–186
separate genes, resulting in altered gene expression that
may, directly or indirectly, impact brain development and
function.[52] This includes PPP1R1B, which codes for the
dopamine and cAMP-regulated phosphoprotein (DARPP-32),

which may be directly linked to schizophrenia.[52]

Role of inflammation

A balance between pro-inflammatory and anti-inflammatory
pathways during pregnancy is important for neurodevelop-
mental growth and synaptic pruning. Imbalance between
these pathways has been recognized to contribute to the de-
velopment of psychosis in the offspring.[53] One study found
significantly elevated tumor necrosis factor (TNF)-𝛼, inter-
leukin (IL)-1𝛽, and IL-6 (pro-inflammatory cytokines) dur-
ing the first half of pregnancy.[54] This study also indicated
that early pregnancy (10–20 weeks) may a be sensitive pe-
riod when cytokine alteration takes place, which may be re-
lated to the pathogenesis of schizophrenia. This is an im-
portant period when pyramidal neuron and interneuron pro-
liferation and migration take place, disruption of which in-
creases the risk of psychosis. Pro-inflammatory cytokines are
found to be elevated in the blood as well as the cerebrospinal
fluid (CSF) of patients with schizophrenia. IL-6 is specifically
linked to both the presence and the severity of the disease.[16,
55] C-reactive protein (CRP) and IL-6 in the childhood and
adolescence periods are associated with schizophrenia.[16,
56] Inflammatory complement, which plays a role in synap-
tic pruning, has also been found elevated in first-episode psy-
chosis.[57, 58]

Exposure to prenatal maternal infection leads to disrup-
tions in these vital neurodevelopmental pathways, particu-
larly in the frontal areas and the mesocortical pathway.[13]
Emergence of symptoms is often delayed until these indi-
viduals are exposed to psychosocial stressors in the peripu-
bertal/adolescence age that require frontal cortical activ-
ity, noted as frontal cortical demand.[13, 14] The dysfunc-
tional brain pathways now called on line with significant
stressors are the dual ingredients of the “two-hit hypoth-
esis”.[9] Infections, immunological responses, and biologi-
cal stressors causing hypothalamic-pituitary-adrenal (HPA)
axis activation result in elevated baseline cortisol levels and
microglial activation with elaboration of inflammatory cy-
tokines. These changes are associated with disruptions of
glutamatergic and dopaminergic pathways, as well as re-
duced hippocampal volumes, all observed in schizophre-
nia.[59, 60]

Maternal immune activation is known to play a signifi-
cant role in inflammation that may lead to development
of schizophrenia in childhood not associated with any one
pathogen. These inflammatory changes leading to abnormal-
ities in dopaminergic, GABAergic, and glutamatergic path-
ways, in addition to changes in microglia and Schwann cells,
along with psychosocial and environmental events, combine
to lead to the development of psychosis in susceptible indi-
viduals. Susceptibility is determined by fetal and maternal
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genetic factors and the neural damage induced by infection
or maternal responses to the infection.[54, 61]

Role of COVID-19

When considering risk of developmental complications that
are associated with maternal infection during pregnancy,
there are several potential mechanisms.[62] These include
direct infection of brain tissue by the infectious organism;
chemical mediators of infection, such as cytokines; indirect
effects of cytokine production, such as fever; cross reactiv-
ity between targets of the antibodies produced in response to
the infection and neural tissues; and medications given to the
mother in response to the infection, such as analgesics and
anti-inflammatory drugs.[62] For schizophrenia after SARS-
CoV-2 infection, risk to the fetus could be mediated by ex-
trauterine factors, such as fever or other elements of ma-
ternal immune activation, including cytokines and antibod-
ies.[52, 59] Alternatively, there may be a direct effect of the
virus. Vertical transmission to the fetus has been demon-
strated in some 3% of COVID-19-infected pregnant moth-
ers.[63] Each of these potential mechanisms has experimen-
tal support. However, these mechanisms are not mutually
exclusive and may each be associated with different risk fac-
tors or different phenotypic expression of the adult disease.

While the most common symptoms of COVID-19 are respi-
ratory in nature, the mental health impact of COVID-19 has
been a cause of concern since early in the pandemic.[64–66]
Up to 50% of the general population in a multitude of coun-
tries reported psychological distress and symptoms of anx-
iety, depression, and post-traumatic stress disorder.[67] Al-
terations in the developing brain of the fetus of an infected
mother can alter the process of brain development. Potential
mechanisms of COVID-19 infection–related alterations in a
developing brain are unknown and could be one or more of
the mechanisms identified with viral or non-viral infections,
including direct alteration due to the neurotropic nature of
SARS-CoV-2 and indirect or secondary consequences of im-
mune activation.

SARS-CoV-2 infection during pregnancy is associated with
a wide range of potential problems. In one study, women
with SARS-CoV-2 infection during pregnancy were at greater
risk for preeclampsia (OR 1.33 [95% CI 1.03–1.73]), preterm
delivery (OR 1.82 [95% CI 1.38–2.39]), or stillbirth (OR 2.11
[95% CI 1.14–3.90]).[68] Similarly, among women with SARS-
CoV-2 infection, more severe COVID-19 illness was associ-
ated with increased risk of Cesarean delivery (adjusted rel-
ative risk [aRR] 1.57 [95% CI 1.30–1.90]), hypertension (aRR
1.61 [95% CI 1.18–2.20]), and preterm birth (aRR 3.53 [95% CI
2.42–5.14]) compared with asymptomatic patients or mildly
affected individuals.[69] With increased risks for complica-
tions to the resulting infants when mothers acquire COVID-

19 illness during pregnancy, it is not surprising that there
are increases in neurodevelopmental issues in the first six
months [70] and one year of life.[71] Specifically, when chil-
dren born to mothers who had acquired the infection dur-
ing the pregnancy were followed for one year, there was
a greater rate of developmental disorders of speech or lan-
guage, motor function, or unspecified psychological devel-
opment compared to uninfected mothers.[71] The increased
risk for the children persisted even after data were adjusted
for race, ethnicity, insurance status, offspring sex, maternal
age, and preterm status (adjusted OR, 1.86 [95% CI, 1.03–
3.36]; P=0.04).[71]

Moreover, first-episode psychosis has been linked to COVID-
19 infections in adults. Several similar presentations of first-
episode psychosis were reported since the onset of the pan-
demic.[72–75] This particular observation may be linked to
methylation of PPP1R1B, which codes for the DARPP-32, a
process that is generally mediated by dopamine release.[52]
This has led to the hypothesis that the SARS-CoV-2 virus has
neurotropic properties and the potential to cause psychosis,
either acutely, as a post-infectious manifestation, or as a neu-
rodevelopmental pregnancy-associated risk factor.[18]

Neurotropism of SARS-CoV-2: While there is limited di-
rect evidence of the neurotropism of SARS-CoV-2, its struc-
ture and receptor-binding domain are similar to those of
SARS-CoV, which was isolated from specimens of brain tis-
sue from patients dying from the disease or presenting with
severe central nervous system (CNS) symptoms.[76–78] Ex-
amination of brain specimens from these patients revealed
neuronal necrosis and glial hyperplasia.

Viruses may access the CNS through either direct neuronal
dissemination or hematogenous spread.[79] SARS-CoV-2
generally enters cells through the angiotensin-converting en-
zyme 2 (ACE2) receptor. Thus, SARS-CoV and SARS-CoV-2
initially enter the body through the nose and reach the ol-
factory bulb by using ACE2 receptors to cross the olfactory
epithelium. They then infiltrate the CNS by passing through
the mitral cell-neuron synapse. Alternatively, they may in-
fect astrocytes, which are ACE2-expressing glial cells, by in-
vading astrocytic end-feet located near the BBB.[80–82]

Animal studies have suggested that the brain is a target of
infection for SARS-CoV in mice transgenic for human ACE2
receptors and have revealed that the virus enters mainly
through the olfactory bulb, rapidly spreading through the
neurons to other areas of the brain.[83] SARS-CoV-2 is re-
ported to be able to infect neurons when ACE2 receptors
are artificially over-expressed in animal models.[84–86] In-
terestingly, COVID-19 infection is more severe in these an-
imals.[87] Expression of ACE2 receptors is increased after
treatment with ACE-inhibitor medications, such as lisino-
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pril [88], raising the concern that treatment with this class of
medications may increase CNS symptoms. However, exami-
nation of COVID-19 infection outcome data in 8 million peo-
ple shows that ACE-inhibiting medications do not increase
overall severity of infection.[89] Moreover, once the virus has
infected central nervous tissue cells, its ability to reproduce
within those cells is limited and inefficient.[86] Nonetheless,
detection of viruses in the CNS of SARS patients, its presence
in brain tissue, its ability to infect the brain in animal mod-
els, and detection of SARS-CoV-2 RNA in human fetal and
placental tissues [90] corroborate the neuroinvasiveness and
neurovirulence of SARS-CoV-2 and suggest that it may also
be weakly neurotropic in selected brain areas.[86]

Several viruses are known to be vertically transmitted dur-
ing pregnancy and can cause congenital brain abnormalities
in the infant; these include parvovirus, Zika virus, human
immunodeficiency virus, varicella zoster virus, rubella, cy-
tomegalovirus, and herpesviruses 1 and 2.[91] As previously
mentioned, SARS-CoV-2 can also be vertically transmit-
ted.[63] Importantly, during the second trimester of human
fetal development, ACE2 receptors are expressed on develop-
ing neuronal progenitor cells in the hippocampus, which sub-
sequently migrate to other brain regions.[92] These mech-
anistic arguments are bolstered by direct observations of
SARS-CoV-2’s neurological effects. Involvement of the cen-
tral and peripheral nervous systems has been reported in
more than one-third of patients suffering from “long COVID”
following a severe COVID-19 infection.[93, 94] The most
common of these were “confusion”, unspecified “brain fog”,
and headache, found in up to 8% [95% CI 5.7–10.2% for
headache] of post-infective patients.[95] In addition, in-
creased rates of cerebrovascular incidents, meningitis, en-
cephalitis, and acute Guillain–Barré syndrome were reported
in a number of cases.[96, 97] Anosmia and ageusia have been
commonly observed as early symptoms of COVID-19, with
estimated global pooled prevalence of 38.2% [95% CI 36.5–
47.2] and 36.6% [95% CI 35.2–45.2], respectively, in a meta-
analysis of over 30,000 early-stage patients.[98]

Neuroinflammation: Neuroinflammation is a complex
immune response within the nervous system that happens in
response to damage, infection, or pathogens. A short-lived
and early response, triggered by activation of glial and en-
dothelial cells, is generally neuroprotective.[99] Astrocytes,
an abundant glial cell type in the CNS, play a role in reg-
ulating immune response and maintaining the BBB and are
responsible for the regulation of neuroinflammation in re-
sponse to pathogens.[100]

SARS-CoV-2 has been shown to activate microglia and astro-
cytes, leading to a neuroinflammatory response.[101] How-
ever, this response has also been linked to the “cytokine
storm,” an unregulated immune response due to overproduc-

tion of pro-inflammatory cytokines, most importantly TNF-
𝛼, IL-1𝛽, and IL-6.[102] This can cause direct neuronal dam-
age, leading to the observed neurological manifestations of
COVID-19. These cytokines are also known to play a role
in the pathogenesis of schizophrenia.[103, 104] The brain
is particularly vulnerable to the cytokine storm due to “mi-
croglial priming,” a state in which microglia are more sen-
sitive to stimuli and produce more cytokines and inflam-
matory mediators in the setting of chronic and sustained
stimulation, affecting synaptic plasticity and neuronal sur-
vival.[105] Several studies have found evidence of microglio-
sis and astrogliosis in COVID-19 patients who have died, sug-
gesting a significant impact of neuroinflammation in the dis-
ease.[106–108]

Discussion

COVID-19 is associated with neurologic and psychiatric mor-
bidity that suggests a direct effect of the virus or secondary
effect of an inflammatory process. These neuropsychiatric
consequences can be seen during acute infection or as a long-
term residual in adults. Vertical transmission of the virus
probably occurs, and pregnancy-related adverse outcomes
have been reported. Acute infections with a wide range
of pathogenic organisms can adversely affect fetal develop-
ment and have been associated with an increased likelihood
of subsequent schizophrenia in adults born to mothers with
the infection. COVID-19 may be associated with increased
neuropsychiatric manifestations due to the nonspecific acute
consequences of infection, such as hyperpyrexia, but in utero
exposure may also cause specific abnormalities in brain de-
velopment that can lead to schizophrenia or more nonspecific
neurobehavioral issues in adulthood since neuron progeni-
tors that express the ACE2 receptor are localized to specific
brain structures, such as the hippocampus, and migrate to
schizophrenia-specific pathophysiologically important areas,
such as the prefrontal cortex.

The balance between inflammatory and anti-inflammatory
pathways plays an important role in intrauterine neurode-
velopment, especially early in pregnancy. There is evidence
that dysregulation of these pathways during this critical
developmental period may contribute to the pathogenesis
of schizophrenia later in life by disrupting pyramidal neu-
ron and interneuron proliferation and migration. In par-
ticular, elevated levels of TNF-𝛼, IL-1𝛽, and IL-6 have been
implicated.[16, 55] These inflammatory processes may lead
to abnormalities in dopaminergic, GABAergic, and gluta-
matergic pathway development in addition to changes in mi-
croglia and Schwann cell function. COVID-19 is associated
with neuroinflammatory dysregulation through a “cytokine
storm,” which elevates the same cytokines that have been
implicated in schizophrenia (TNF-𝛼, IL-1𝛽, and IL-6).[102]
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While unfortunate, this presents us with a unique opportu-
nity to test the inflammatory hypothesis of schizophrenia.

This hypothesis can be directly tested. First, one would need
to identify a cohort of patients who had been exposed to
the SARS-CoV-2 virus during their pregnancy, whose off-
spring would be followed into adolescence and early adult-
hood. Exposure to the virus would be confirmed using poly-
merase chain reaction assays for SARS-CoV-2 in plasma sam-
ples obtained during pregnancy.[109] Documentation would
include the gestational age at time of exposure. A minimum
of three groups would need to be studied: (1) the offspring
of women who became infected with SARS-CoV-2 during
pregnancy, (2) the offspring of women who have never been
infected with SARS-CoV-2, and (3) the offspring of women
who had antibodies to SARS-CoV-2 prior to pregnancy. A
fourth group of women who received the vaccine during their
pregnancy would be informative but is unlikely to be iden-
tified.[110] Cytokine measurements would be obtained reg-
ularly by the pregnant mothers throughout their pregnan-
cies and by the offspring throughout their childhood and into
adulthood. All groups would share demographics, socioeco-
nomic background, and geographic locale. The three groups
would allow for clarity in determining whether it is the ac-
tive infection that is related to neuropsychiatric anomalies or
the body’s response to the infection.

Such data can be supplemented with animal model studies, in
which mice or rats would be infected with SARS-CoV-2 when
neurons are developing and migrating in the brain (i.e., the
equivalent of the human second trimester).

While clearly difficult and expensive, collection of prospec-
tive data is important to avoid the ambiguity of having purely
associational data without any insight into possible mech-
anisms, as is the case with influenza and other respiratory
viruses.

Conclusions

The COVID-19 pandemic is likely associated with a range
of future neuropsychiatric consequences in people whose
mothers suffered the infection during their fetal develop-
ment. It is important to try to follow these offspring to deter-
mine the full range of consequences of COVID-19 infection.
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