
University of New Haven University of New Haven

Digital Commons @ New Haven Digital Commons @ New Haven

Honors Theses Student Works

5-16-2022

Investigation of Python Variable Privacy Investigation of Python Variable Privacy

Joshua Bartholomew

Follow this and additional works at: https://digitalcommons.newhaven.edu/honorstheses

 Part of the Computer Engineering Commons, and the Computer Sciences Commons

https://digitalcommons.newhaven.edu/
https://digitalcommons.newhaven.edu/honorstheses
https://digitalcommons.newhaven.edu/studentworks
https://digitalcommons.newhaven.edu/honorstheses?utm_source=digitalcommons.newhaven.edu%2Fhonorstheses%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.newhaven.edu%2Fhonorstheses%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.newhaven.edu%2Fhonorstheses%2F45&utm_medium=PDF&utm_campaign=PDFCoverPages

University of New Haven
Honors Program

	

2021-2022	Honors	Thesis	

	
	
	

Investigation	of	Python	Variable	Privacy	
	
	
	

Joshua	Bartholomew	
	
	

	
	

	
	

	
A thesis presented in partial fulfillment of the requirements of the Undergraduate Honors

Program at the University of New Haven.
	
	
	

	
	
	

	
	

	

	
Thesis	Advisor:	 	 ___	 	

																									(Signature)	
	

Department	Chair:	 	 ___	 	
																							(Signature)	

	
Honors	Program	Director:	 ___	 	

																					(Signature)	

Date	

Investigation of Python Variable Privacy

Joshua Bartholomew1,2

Advisor: Liberty Page1,3

1 University of New Haven, West Haven, USA
2 jbart9@unh.newhaven.edu

3 lpage@newhaven.edu

Abstract. This study looks at the relative security of Python regard-
ing private variables and functions used in most other programming lan-
guages. Python has only grown in popularity due to its simple syntax and
developing capabilities. However, little research has been published about
how secure Python code and programs compiled from Python code actu-
ally are. This research seeks to expose vulnerabilities in Python code and
determine what must be done for these vulnerabilities to be exploited by
hackers to abuse potentially sensitive information contained within the
program.

The proposed methodology includes examining the private variable con-
cept in other programming languages and conducting experiments to
determine whether Python has any vulnerabilities specific to a lack of pri-
vate variables and functions. Based on the findings of these experiments,
further research will be needed to explore the range of vulnerabilities in
Python code and how to protect against exploiting these vulnerabilities.

Keywords: Python · Private Variables · Secure Coding · Coding Vul-
nerabilities · Cybersecurity

1 Introduction

Due to the explosion of the computer industry, software development has
become essential to the modern economy. As such, the United States Bureau
of Labor Statistics [5] predicts the number of software developer jobs to jump
twenty-two percent from 2020 to 2030. Even smartphones are computers and
require the use of software as stated in [14]. Programmers often use programming
languages to develop software to accomplish specific tasks provided to them
based upon the needs of the computer according to IBM [4].

Whitney et al. [19] claims that Python is the number one programming
language to date. However, Python does have one design difference from most
other modern programming languages. Most programming languages allow the
programmer to specify whether a variable or function is private or public, but
Python does not allow variables to be defined with specific properties according
to [1]. Not having private variables opens Python code up to numerous vulner-
abilities and other dangers.

Investigation of Python Variable Privacy 3

Because this language is so popular, it is critical that developers are aware of
the weaknesses Python has, so they can make informed decisions when choosing
a programming language for a particular project. This research explores and doc-
uments the specific vulnerabilities that Python has because it does not support
private variables.

2 Background

Commonly used programming languages are usually object-oriented lan-
guages, which means that programmers write their code in a manner which
”packages” related information and operations into units called objects. These
objects are developed by what are called classes, which specify exactly what
pieces of information an object will have ”packaged” inside of it. Each piece of
information is referred to as a variable, and each operation is called a function.

As mentioned, in 3rd generations languages besides Python, variables can
be specified as private. With the use of private variables, only the code within
the class of the variable can access it. Only other functions packaged within the
class can read or change the value of that private variable. The only access for
code outside of the class is through public functions within the class, which are
under the complete control of the class writer so that the values cannot be read
or altered in any way that the class is not specifically designed to allow.

Public variables in a class, on the other hand, are completely available for any
part of the program to read, alter, or set to a new value. While these variables do
provide easier access in other parts of the code, they have no safeguards to protect
the values of these variables from being read or altered at an inappropriate time
or in an insecure fashion. A lack of protection is especially dangerous when a
program is written by multiple programmers. Unlimited access means that one
programmer might alter variables in a manner that causes errors or may even
perform operations that should be forbidden.

Python does not allow any variable to be specified as private, leaving all
variables as public in every situation. This leaves programmers to wonder how
secure Python is and to what attacks Python is vulnerable if it does not have
the protection that comes from private variables.

3 Related Work

This review will start with a section on why Python is so widely used and
why it is still in wide use even though it has this potential weakness being
discussed. The next section will discuss the uses of private variables including
the cybersecurity concept of concealing information found in [2]. The third and
final section of the review will consider some uses of Python to provide context
of how Python is being implemented. This context both shows the usefulness of
this research and attempts to provide some security to Python variables.

4 J. Bartholomew

3.1 Python’s Usefulness:

Python has been around for over three decades according to [3] and has been
growing in popularity recently due to its easy-to-understand programming style
and simplicity. Lindstrom [13] gives numerous accounts of how Python coding
is much easier than most other languages, not requiring numerous lines of code
to be written before your first program which simply prints out “Hello World”
can be properly compiled and run. Python also has the functionality from being
an interpreted language. An interpretive language is one which does not need to
be completely written before the entire program is turned into computer code
and run. In this language, the code can be run as it is written, so a programmer
can execute a piece of code and read its output before writing other lines of
code which further use those same variables and functions without having to
restart the entire program. Python has many benefits when it comes to writing
basic code and accomplishing a task, but the simplicity comes at the cost of the
protections private variables and functions offer. There is a time and a place to
use Python, and this research will shed light on when it should not be used.

This idea of functionality correlates with Westra’s book [18] which reviews
the ability of Python for modular programming. Modular programming simply
means that pieces of code are organized into packets or “modules” so that they
can be easily found and called at an appropriate time. With a large section of
code kept together in a large packet, the module can be reused at an appropriate
time easily. The author goes over how to use modular programming in Python
to accomplish tasks through patterns such as “divide-and-conquer, abstraction,
encapsulation, wrappers, and extensibility”. The book ends with a look at how
to test and then deploy modules once they have been written, including how to
upload them to GitHub or even the Python Package Index, which is a well-used
site for distributing Python modules.

What [18] teaches is near the center of this research. Modular programming
is similar to object-oriented programming. And just as with the object-oriented
programming style for Python, there is no way to guarantee protection of any
value or function inside of a module in Python. There can be situations where
a function should not be executed except under explicit circumstances, but it is
impossible to prevent a programmer from calling any function within a module
at any time.

Further research has proven that Python makes programming easier to learn
and understand. One study by Jayal et al. [11] sought to determine whether
starting a high-school student with learning Python to handle the underlying
programming ideas in most languages before moving into Java to learn object-
oriented coding would help students master programming faster. Teaching stu-
dents with and without Python for a year yielded the results that starting with
Python did improve students’ understanding of programming concepts. The re-
sults were derived from quantitative analysis of the grades students received from
the two years, with numerical results that showed an increase in the success rate
when Python was used.

Investigation of Python Variable Privacy 5

Nikula et al. [15] discusses teaching programming to students at the col-
lege level, and whether Python as a starting language is beneficial. The scope
of the article looks at how different responsibilities of variables can be better
taught using Python to give less experienced programmers a better grip of how
they work. These responsibilities include “stepper”, “fixed-value”, “gatherer”,
and many others. The researchers concluded that the results supported their
hypothesis after looking at examples of different computer science courses at
three different colleges. All three colleges reported a quantitative analysis which
showed either an increase in the number of students who successfully completed
their program assignments or a decrease in the number of students who dropped
out of or failed the course.

Although Python is a beneficial starting language for inexperienced program-
mers, it does not provide them a proper understanding of how every variable in
every language has attributes such as the amount of space used to store the value
and the type of data being stored such as a number or a string of text. This weak-
ness causes problems when studying different languages. For example, Python
does not have a constant variable attribute which prevents programmers from
changing the value after the variable has been initialized, such as what C++ and
Java has. Constant variables can easily be used for the “fixed-value” declaration,
but Python does not have the ability to protect variables at all. While there are
ways to get around this problem, they require greater effort than a constant
declaration. Though there is no specific responsibility that would directly relate
to “private” variables as constant variables, advanced situations do require that
variables of many of these responsibilities be kept confidential, even from other
programmers.

[15] also references that teaching a language with Python’s unique program-
ming syntax might cause early programmers to have problems when trying to
learn the syntax of different languages which have similar syntaxes to each other.
This difficulty might push these programmers to stick with the language they
learned first, and continued use of Python without recognizing the security
threats imposed by no private variables can be dangerous for the user of the
software because it exposes data, which is why programmers must be informed
about the lack of security for Python code.

3.2 Private Variables/Object-oriented Programming:

Private variables are considered a cornerstone to object-oriented program-
ming and are taught at the college level as can be read in Fischer’s textbook [9],
an example of a college programming textbook which teaches encapsulation and
the importance of private variables. Encapsulation is used to hide the values or
state of a structured data object inside a class, preventing unauthorized parties’
direct access to them, which is a key attribute of object-oriented programming.
Khan et al. [12] lists the benefits of object-oriented programming, including
“objects, abstract data typing, inheritance, and polymorphism”. All of these are
principles accepted by and widely used in the coding community. The source
continues with several coding examples to display how simply certain situations

6 J. Bartholomew

can be implemented and how long it takes. One of these examples is a situation
of a bank account being inherited by a savings account. Through inheritance,
the savings account class contains all the code of a general bank account with
some slightly altered functions and values specific for a savings account.

Specifically, [12] argues for the use of object-orientation because of its resem-
blance to the real world. A programming object can contain all the important
information about an object in the real world in its variables. However, some
information is inherently private and must be protected, for example a person’s
SSN and date of birth. If a coding language like Python does not enforce private
variables, then it could be as dangerous as if the real-world object had as little
protection as the code representation.

Object-oriented programming also is extremely useful in modular program-
ming. Cavaiani [7] looks at the use of modular programming in Java, a common
object-oriented programming language. This source is a guidance paper to pro-
vide instruction for newer programmers to learn object-oriented programming
in Java. Java is one of the top programming languages used which incorporate
encapsulation and other private variable features. The primary focus includes
inheritance and searching for classes and methods from the Java Class Library.

The concept of inheritance and public classes and methods are key to this
research, especially for what is hidden behind these methods and what the pro-
grammer can do in programming languages such as Java to greatly restrict what
other coders can access. Java, like Python, has a list of built-in libraries, but
downloading and incorporating new Java modules from other users into a pro-
gram can be much more difficult than with Python modules.

”Object-Oriented Programming” by Dyke, Richard, and Kunz [17] looks at
the use of object-oriented programming as early as 1989. This programming
style is the industry standard as of today, and [17] explains the reasons for using
this methodology. According to Booch [6], one of the guiding principles of object-
oriented programming is encapsulation. Encapsulation hides the value or state of
a structured data object inside a class, which withholds access. Without private
variables, encapsulation is impossible to implement in a program.

3.3 Python Uses/Security Patch Attempts:

Python is also well-known for allowing users to easily create and distribute
modules. Unfortunately, this level of distribution does lead to many potential
threats listed by Rahman et al. [16]. [16] references several “security smells”
found in thirty-one percent of Python Gists. Python Gists allow programmers
to distribute code segments. These smells are lines of code that open the code to
attacks and can range from having a password hard-coded into the code segment
to not using encryption with network connections which opens the program to
network attacks such as a man-in-the-middle attack where a hacker intercepts
data between two parties without either party ever knowing.

Many of these “security smells” can be further exploited because of the lack
of “private” variable protection. The most obvious example is the hard-coded
password which the programmer can access through a variable call even if he

Investigation of Python Variable Privacy 7

cannot get the value directly from the file. With one line of code, the programmer
can list all the variables of a class object. If the hacker sees a variable name that
appears promising, he can call that name and get the value, which in this case
would be a password that the hacker can use in a different attack.

There are some common security methods to control access such as role-based
access control models. Chou [8] looks at the role-based access control (RBAC)
model of providing security for variables and other information contained within
code. This model was modified for object-oriented programming specifically, so
that it could be incorporated with most major object-oriented languages such as
Java, which is used as an example in the paper. This method of coding allowed
the authors to provide tight restrictions on the data being used by the program.
The program would verify a user’s credentials to determine any roles that the
user possesses according to the information available to the computer. From
these roles, the program can verify whether any of those roles grant the user
permission to perform a certain task or if there is a need to block the user from
doing something beyond what their roles permit.

[8] provides an example of access control in an object-oriented environment
such as Python. The program provided is an example of security on the user
level, but not on the code level. Many of the variables and methods are publicly
accessible and exposed should a malicious line of code be introduced. There are
also private methods which should not be made available to other users under
any circumstances, but Python would not allow you to prevent anyone from
calling these methods themselves and receiving the results returned. The most
important of these methods is a password check method which returns whether
a password is valid for an account. Hackers could call this method themselves in
an attack to increase the speed of their attack.

The closest attempt to creating private variables in Python is by Gaiman et
al. [10], which references a prototype source material that altered the Python
infrastructure using another programming language to create Sython. Sython
is nearly identical to Python but includes the feature of private variables. The
private variables do not work in the way being researched in this paper. Sython
creates a style where variables are stored in a remote location with a running
server waiting to receive commands from the user. The Sython user code can
send commands to be done on these variables, which the server receives and
executes. However, the user cannot request the value of any specified private
variables. They can only send requests of how to alter it.

[10] explains an attempt to provide security to Python by creating a new
language rooted in the Python coding style. This source explores how to provide
privacy to Python variables, but in a completely different way. While Sython
does offer protection from reading private variables, there appears no mechanism
that prevents the client from altering the variable in any way they wish. If they
know what value they want that variable to hold, they can send the command
to change the value and the server end has no restrictions that stops it from
following the instruction.

8 J. Bartholomew

4 Apparatus

Table 1 lists the hardware and software used in this lab.

Table 1: List of Tools Used

ITEM/PART VERSION USAGE

MacBook Pro 2018 macOS Monterey Primary machine used for
testing

Python 3.8.9 Used to run Python scripts

Python IDLE 3.8.9 Used to run Python scripts

Windows 10 / VirtualBox
6.1

Used to run tests requiring
Windows

HxD 2.3 Used to look at active mem-
ory in Windows virtual ma-
chine

grep Unix command (BSD grep, GNU compati-
ble) 2.6.0-FreeBSD

Used to search through the
Gigabytes of data that was
produced during experimen-
tation

xxd Unix command xxd V1.10 27oct98 by Juer-
gen Weigert

Used to interpret memory
dump in Sprint #4

5 Methodology

Research into Python was conducted in sprints, with each sprint based upon
the discoveries of previous sprints. Each sprint lasted approximately four weeks.
The time was comprised of an initial design phase where the experiments were
conceived and planned beforehand. Then the sprint continued with conducting
each experiment and documenting the results for analysis, which was then used
in the planning phase of the next sprint.

5.1 Planning Phase

This phase consisted of creative thinking regarding the implications of the
assumed hypothesis regarding what can be done without the use of private vari-
ables. The current understanding of the Python infrastructure was analyzed to
develop certain situations which would further reveal to what extent the Python
variable and function infrastructure was exposed. There were numerous impli-
cations at each sprint and the most practical use had to be deduced before
proceeding. A path had to be charted to decide what was deemed the most
useful and practical conclusions that the potential experiments would provide.

Investigation of Python Variable Privacy 9

There also had to be consideration of the amount of information that would
be produced to properly plan for how the outputted data would be stored and
analyzed. Some output from earlier sprints only consisted of a few dozen lines
which could simply be outputted to the terminal or shell and be easily interpreted
from there. Others produced gigabytes of data which had to be stored in text
files and analyzed for any specific information that would be desirable. Once the
amount of data was determined, the experiment had to be designed in a way
in which the resulting data could be stored for future analysis in an efficient
manner.

This phase of each sprint was given at least two weeks to ensure that enough
time was allocated to thoroughly analyze the desired task and minimize the risk
of overlooking a significant factor. As stated, there were numerous angles at
which this hypothesis could be looked at, but not every angle could be covered
before the due date of this thesis. The experiments that would produce the most
usable data had to be prioritized to ensure the results would be most useful for
both current programmers and future studies.

5.2 Execution Phase

This phase consisted of taking the plans made in the previous planning phase
and implementing them in Python with whatever environment or tools were
necessary. In each sprint, the Python script had to be written and executed to
determine to what extent the hypothesis of this thesis was correct. There were
multiple points at which the Python script had to be revised due to unforeseen
situations.

The Python script was written and executed in Python IDLE for efficiency
and ease of execution. The scripts were then stored in ordinary files with the
’.py’ extension to make it simpler to recognize and execute them when needed.
These files were quite small so transferring them to online drives and virtual
machines was relatively quick. Once the script was in the correct location, the
execution time increased with each experiment. The first sprint had scripts that
would only take a few moments to load and execute, but the rest of the sprints
required hours of time for the scripts to finish execution, and then often only
ended because of an error due to the length of time and amount of work the
script was completing.

In some cases, the custom code had to be copied into other Python executable
scripts that had already been written, which were then executed using IDLE.
This method allowed experimentation with normal Python scripts which further
provided evidence for the use of this thesis in real-world applications.

The results were either printed to the screen or stored to a local text doc-
ument and then searched using another Python script or via simple grep com-
mand. These results were then documented and used for designing future exper-
iments in the next sprint.

10 J. Bartholomew

6 Results

The following sections discuss what was explored in each sprint and the
results of the experiments conducted.

6.1 Sprint #1

The initial stage of the study consisted of discovering and confirming how
data is stored in Python during execution. After some research, it was confirmed
that every variable and function in Python is stored in a dictionary style object.
A dictionary object in Python is simply a list of variables, each assigned a string
of text as its name. Functions are also stored in this dictionary linking the name
of the function to where the code for the function exists. This allows developers
to save data and functions based upon a specific name and recall the same data
or function using that same name.

Further research revealed the highest-level dictionary can easily be accessed
through a reference to a function called ’globals()’. Every piece of information
within the entirety of the program can be traced through this dictionary. There-
fore, if you know the names of the variables and functions, you can access any
variable or function from any other point in the program. This does not even
require foreknowledge when the code is written. The names can be passed into
the program at any point and used as normal strings of text within the program
which are then used as a reference for the dictionary.

There is also the matter of the common misconception among Python pro-
grammers that a variable or function can be made private by adding two under-
scores to the beginning of the name. Most of the Python programming commu-
nity encourage the use of the double underscore on any variables or functions
that should be considered private. While Python etiquette states that these are
private and should be treated as such, the only protection provided is that the
name is altered for any part of the program too far away from the code. However,
the new name is still listed within a dictionary and is not altered to the point
that the original name could not easily be recovered.

To prove the concepts of this sprint, a simple script was written to go through
all of the variables in the ’globals()’ dictionary, then look through all the dic-
tionaries within those variables. These variables were then printed to the screen
with their corresponding name, each line indented to make it easier to read. Be-
low is the text for the program used in Listing 1.1 followed by the output results
in Listing 1.2.

1 class myClass:

2 def __init__(self):

3 self.__x=5

4 self.y=10

5

6 myObj = myClass ()

7

8

Investigation of Python Variable Privacy 11

9

10 #VERSION 1 (Recursive)

11

12 def stealAll(location=globals (), output=print , indent=’’,

endline=’’):

13 myList = location.copy()

14 for name ,obj in myList.items():

15 output(indent+str(name)+’:’+str(obj)+endline)

16 if hasattr(obj , ’__dict__ ’) and not name==’

__builtins__ ’:

17 stealAll(location=obj.__dict__ , output=output ,

18 indent=’\t’+indent , endline=endline)

Listing 1.1: Python ”stealAll” function version 1

1 __name__:__main__

2 __doc__:None

3 __package__:None

4 __loader__:<class ’_frozen_importlib.BuiltinImporter ’>

5 __module__:_frozen_importlib

6 __doc__:Meta path import for built -in modules.

7

8 All methods are either class or static methods to avoid

the need to

9 instantiate the class.

10

11

12 _ORIGIN:built -in

13 module_repr:<staticmethod object at 0x7fc77c17f430 >

14 find_spec:<classmethod object at 0x7fc77c17f460 >

15 find_module:<classmethod object at 0x7fc77c17f490 >

16 create_module:<classmethod object at 0x7fc77c17f4c0 >

17 exec_module:<classmethod object at 0x7fc77c17f4f0 >

18 get_code:<classmethod object at 0x7fc77c17f580 >

19 get_source:<classmethod object at 0x7fc77c17f610 >

20 is_package:<classmethod object at 0x7fc77c17f6a0 >

21 load_module:<classmethod object at 0x7fc77c17f6d0 >

22 __dict__:<attribute ’__dict__ ’ of ’BuiltinImporter ’ objects

>

23 __weakref__:<attribute ’__weakref__ ’ of ’BuiltinImporter ’

objects >

24 __spec__:None

25 __annotations__ :{}

26 __builtins__:<module ’builtins ’ (built -in)>

27 __file__ :/Users/joshuabartholomew/OneDrive - University of

New Haven/

28 Honors Thesis/Sprint 1 Code (Thief).py

29 myClass:<class ’__main__.myClass ’>

30 __module__:__main__

31 __init__:<function myClass.__init__ at 0x7fc77fd76ee0 >

12 J. Bartholomew

32 __dict__:<attribute ’__dict__ ’ of ’myClass ’ objects >

33 __weakref__:<attribute ’__weakref__ ’ of ’myClass ’ objects >

34 __doc__:None

35 myObj:<__main__.myClass object at 0x7fc77fd57610 >

36 x:5

37 y:10

38 stealAll:<function stealAll at 0x7fc77fa07ee0 >

39 f:<_io.TextIOWrapper name=’text.txt’ mode=’w’ encoding=’UTF -8

’>

40 mode:w

Listing 1.2: Python ”stealAll” function version 1 output

6.2 Sprint #2

The second sprint comprised of using the basic concept proven in Sprint #1
by implementing the code in other Python programs to determine what data
could be extracted.

During this process, the ”stealAll” function had to be revised to allow the
extraction of data from applications much larger than the simple program used
in the first sprint. In Listing 1.3, you can see the text of the improved version
which not only could read through more data, but could also be used to search
the outputted data for a specific keyword to save in the later stage.

1 #VERSION 3 (find)

2 def stealAll(output=print , indent=’\t’, endline=’’, find=’’):

3 location = globals ().copy()

4 myList = list(location.keys())

5 myList.reverse ()

6 while myList:

7 name = myList.pop()

8 data = name.split(’\5’)

9 if len(data) > 10:

10 continue

11 evalValue = ’location ’

12 for x in data:

13 if ’[’ in evalValue:

14 evalValue = evalValue + ’.__dict__ ’

15 evalValue = evalValue + ’["’ + x+ ’"]’

16 obj =eval(evalValue)

17 new_output = "".join([indent for x in range(0, len(

data) -1)])

18 +str(data [-1])+’:’+str(obj)+endline

19 if not find or find in new_output:

20 output(new_output)

21 if hasattr(obj , ’__dict__ ’) and not name==’

__builtins__ ’:

22 newlist = list(obj.__dict__.keys())

23 newlist.reverse ()

Investigation of Python Variable Privacy 13

24 for x in newlist:

25 myList.append(name+"\5"+x)

Listing 1.3: Python ”stealAll” function version 3 with search feature

All three programs allowed the extraction of a significant amount of data
stored in a local text file. Every application only terminated because of a error
from running the program for so long on so much data. All of the data can be
seen in Table 2 below.

Table 2: List of Applications Tested

APPLICATION DATA EXTRACTED SIGIFICANT FINDS

API Integrator by article
author

57.59 GB Found Multiple API Keys

SongList by article author 15.52 GB Found Google file URL

OpenLP, a free open-
source software application
(GNU General Public Li-
cense)

255 MB Default data such as user-
name, password, and previ-
ous searches

As can be seen, there is a significant amount of data that can easily be
acquired, and the program only stopped because of miscellaneous errors likely
caused by the duration of the program to extract this much data. This data then
had to be sifted through using search methods such as the grep Unix command
or the Python script find feature added in version 3 of the ”stealAll” function
as seen in Listing 1.3.

One of the key pieces of information found in every application and can even
be seen in the example of Listing 1.2 is the file name and directory of the Python
script. Within this directory can be found not only the username of the account
where the file is located but also the list of folders which can be used if the file
system can be accessed in some other manner.

API Integrator In the first application, the API keys found could easily be used
to access data from secure websites. Further, the specific website that was used
could also be acquired by the URL and the name of the class the variables
were found in. Beyond that, nearly 60 gigabytes of data in raw text format was
produced by the application including variable names and corresponding data.
Most of this data came from the imported classes used for web uploads and other
related operations.

SongList The second application was a more simple application that linked to
a file on a personal Google drive to download data. This link was found within
the outputted data, though the authorization keys could not be found. The total
data amounted to over 15 gigabytes, again most of which was data found within
the Google API imports.

14 J. Bartholomew

OpenLP The last application was a program published free and open source for
the use of presenting song lyrics in churches. This application was chosen because
of the familiarity the author has with the application and the potential data that
could have been acquired. The default credentials as well as searches were found
within the application. Lastly, this application only produced 255 megabytes of
data as opposed to the gigabytes of data from the other two applications because
of its increased complexity.

6.3 Sprint #3

The third sprint them moved on to taking the data extracted from the pro-
gram and looking at the memory of the related program while the application
was still running. If you refer back to Listing 1.1 again, you can see that even
the functions of the application are printed with their relative memory address.
These memory addresses can be mapped to the volatile memory of the machine.

To complete this research, the API Program was transferred to the Windows
10 virtual machine and run actively with HxD opening the related memory to
the Python application. This was done because it was the best available option
to look at the memory directly related to the application while the application
was active.

The results of this experiment showed that the memory addresses from the
data output were valid links to active memory and could therefore be used to
locate functions in memory and even be used for reverse engineering of the script.

6.4 Sprint #4

The fourth and final sprint looked at the memory of the computer after the
script had been completed and terminated. This was done by creating a memory
dump from the MacBook Pro once the API Application was terminated. This
was then interpreted using the hex analyzer xxd Unix command.

Unfortunately, the memory address of the data output for the functions were
virtual memory addresses. Virtual memory addresses are abstract links to where
the actual data is being stored in the memory, called the physical memory ad-
dress. The only way a virtual memory address can be translated to the physical
memory address is through a table used by the program which can be difficult
to extract. Therefore, the virtual memory addresses were useless without finding
the table or other means to connect the virtual and physical memory addresses.

However, during the analysis of the memory dump, there was found several
fragments of the data produced by the ”stealAll” function which even included
the API keys mentioned before in several locations which could easily be stolen
and abused. Not only this, but one could also find the names of variables, func-
tions, and many other custom names which can give a useful insight to the
structure and usage of a program. Similar to how variables are linked to names
related to what data they store, classes and modules are usually named based
upon what type of information they contain. These class and module names can
provide insight into what data is contained by the class and module.

Investigation of Python Variable Privacy 15

7 Conclusion/Discussion

Programming securely has become a necessity in today’s technological age
with the cybersecurity threats that exist. This need implicates the requirement
of vetting all primary methods of developing programs to ensure that any data
being handled in the program is properly maintained and protected.

Python is widely used in the programming community, but lacks the ability
to protect data through private variables. The danger therefore lies in using
Python to develop programs that work with sensitive data that hackers wish to
access. Therefore, programmers must be made aware of these vulnerabilities and
be provided with better ways of protecting data.

8 Future Work

There are an infinite number of future works that can be derived from this
research. The foremost is methodology for protecting data from the access dis-
cussed in this paper. The options are various, though a likely possibility is to
obfuscate the data so it can only be read by the program that knows how to
interpret the variable values. However, this leads to the problem of protecting
the code that deciphers the data, since functions and their operations can also
be accessed by methodology in this research. Another option to protect the data
is to obfuscate the variable names. One of the primary means of deciphering
data from this research is by looking at the name of the variable

Another potential future work is the development of tools that can access
Python scripts and produce any valuable data found. The Python scripts devel-
oped for this research have some functionality for searching through the found
variables, but that ability is limited. Better methods to extract the valuable
information can certainly be developed and implemented in future works.

A third area of future research is the research into methods of injection-style
attacks toward Python scripts and how this research can be used once a pay-
load can be sent into another executing script. Python code does not need to
be complete before it is executed, which allows lines of Python code not origi-
nally written in the program to be inserted into the program during execution,
potentially by those with malicious intent. The better we understand attacks on
Python scripts, the better we can protect against future attacks.

The last avenue of future research discussed here is the potential for the
forensic analysis of computers that recently executed Python scripts. Authorities
may reach computers after a Python script has been executed and the files
deleted beyond recovery. With future memory analysis tools based upon this
research, authorities can take a memory dump of a computer and search through
it for any pieces of the Python script that had been executed. This can provide
essential evidence for the prosecution of criminals or other related information
to an investigation.

16 J. Bartholomew

References

1. 6. data types and variables, https://python-course.eu/python-tutorial/data-
types-and-variables.php

2. Cyber security principles, https://www.cyber.gov.au/acsc/view-all-content/
advice/cyber-security-principles

3. General python faq¶, https://docs.python.org/3/faq/general.html
4. What is software development?, https://www.ibm.com/topics/software-

development

5. Software developers, quality assurance analysts, and testers : Occupational outlook
handbook (Sep 2021), https://www.bls.gov/ooh/computer-and-information-
technology/software-developers.htm

6. Booch, G.: Object-oriented analysis and design with applications. The Benjam-
in/Cummings series in object-oriented software engineering, Benjamin/Cum-
mings Pub. Co. (1994), http://unh-proxy01.newhaven.edu:2048/login?url=
https://search.ebscohost.com/login.aspx?direct=true&db=cat04460a&AN=
unh.143970&site=eds-live&scope=site

7. Cavaiani, T.P.: Object-oriented programming principles and the java
class library. Journal of Information Systems Education 17(4), 365 –
368 (2006), http://unh-proxy01.newhaven.edu:2048/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=mfi&AN=23720681&site=
eds-live&scope=site

8. Chou, S.C.: Embedding role-based access control model in object-oriented
systems to protect privacy. The Journal of Systems and Software 71(1-
2), 143–161 (04 2004), http://unh-proxy01.newhaven.edu:2048/login?url=
https://www-proquest-com.unh-proxy01.newhaven.edu/scholarly-journals/
embedding-role-based-access-control-model-object/docview/229598408/

se-2?accountid=8117, copyright - Copyright Elsevier Sequoia S.A. Apr 2004;
Document feature - tables; charts; references; Last updated - 2021-09-12; CODEN
- JSSODM

9. Fischer, A.: Exploring C++ (2014), http://docplayer.net/23245803-
Exploring-c-alice-e-fischer-university-of-new-haven-january-2009-

revised-to-september-5-2012-copyright-c-by-alice-e.html

10. Gaiman, M., Simha, R., Narahari, B.: Privacy-preserving programming
using sython. Computers & Security 26(2), 130 – 136 (2007), http:

//unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/
login.aspx?direct=true&db=edselp&AN=S0167404806001386&site=eds-
live&scope=site

11. Jayal, A., Lauria, S., Tucker, A., Swift, S.: Python for teaching intro-
ductory programming: A quantitative evaluation. ITALICS: Innovations
in Teaching & Learning in Information & Computer Sciences 10(1), 86
– 90 (2011), http://unh-proxy01.newhaven.edu:2048/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=edo&AN=66717664&site=
eds-live&scope=site

12. Khan, E., Al-A’ali, M., Girgis, M.: Object-oriented programming for struc-
tured procedural programmers. Computer 28(10), 48 – 57 (1995), http:

//unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/
login.aspx?direct=true&db=edseee&AN=edseee.467579&site=eds-live&scope=
site

https://python-course.eu/python-tutorial/data-types-and-variables.php
https://python-course.eu/python-tutorial/data-types-and-variables.php
https://www.cyber.gov.au/acsc/view-all-content/advice/cyber-security-principles
https://www.cyber.gov.au/acsc/view-all-content/advice/cyber-security-principles
https://docs.python.org/3/faq/general.html
https://www.ibm.com/topics/software-development
https://www.ibm.com/topics/software-development
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
https://www.bls.gov/ooh/computer-and-information-technology/software-developers.htm
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat04460a&AN=unh.143970&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat04460a&AN=unh.143970&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=cat04460a&AN=unh.143970&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=mfi&AN=23720681&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=mfi&AN=23720681&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=mfi&AN=23720681&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://www-proquest-com.unh-proxy01.newhaven.edu/scholarly-journals/embedding-role-based-access-control-model-object/docview/229598408/se-2?accountid=8117
http://unh-proxy01.newhaven.edu:2048/login?url=https://www-proquest-com.unh-proxy01.newhaven.edu/scholarly-journals/embedding-role-based-access-control-model-object/docview/229598408/se-2?accountid=8117
http://unh-proxy01.newhaven.edu:2048/login?url=https://www-proquest-com.unh-proxy01.newhaven.edu/scholarly-journals/embedding-role-based-access-control-model-object/docview/229598408/se-2?accountid=8117
http://unh-proxy01.newhaven.edu:2048/login?url=https://www-proquest-com.unh-proxy01.newhaven.edu/scholarly-journals/embedding-role-based-access-control-model-object/docview/229598408/se-2?accountid=8117
http://docplayer.net/23245803-Exploring-c-alice-e-fischer-university-of-new-haven-january-2009-revised-to-september-5-2012-copyright-c-by-alice-e.html
http://docplayer.net/23245803-Exploring-c-alice-e-fischer-university-of-new-haven-january-2009-revised-to-september-5-2012-copyright-c-by-alice-e.html
http://docplayer.net/23245803-Exploring-c-alice-e-fischer-university-of-new-haven-january-2009-revised-to-september-5-2012-copyright-c-by-alice-e.html
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0167404806001386&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0167404806001386&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0167404806001386&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edselp&AN=S0167404806001386&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edo&AN=66717664&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edo&AN=66717664&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edo&AN=66717664&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.467579&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.467579&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.467579&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.467579&site=eds-live&scope=site

Investigation of Python Variable Privacy 17

13. Lindstrom, G.: Programming with python. IT Professional, IT Prof 7(5),
10 – 16 (2005), http://unh-proxy01.newhaven.edu:2048/login?url=
https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=
edseee.1516083&site=eds-live&scope=site

14. Lundberg, J.C.: When is a phone a computer. Washington Journal of Law,
Technology & Arts 8(4), 473 – 486 (2013), http://unh-proxy01.newhaven.edu:
2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=
edshol&AN=edshol.hein.journals.washjolta8.28&site=eds-live&scope=site

15. Nikula, U., Sajaniemi, J., Tedre, M., Wray, S.: Python and roles of
variables in introductory programming: Experiences from three educa-
tional institutions. Journal of Information Technology Education 6, 199
– 214 (2007), http://unh-proxy01.newhaven.edu:2048/login?url=https:
//search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ807663&site=
eds-live&scope=site

16. Rahman, M.R., Rahman, A., Williams, L.: Share, but be aware: Se-
curity smells in python gists. 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Software Maintenance
and Evolution (ICSME), 2019 IEEE International Conference on pp.
536 – 540 (2019), http://unh-proxy01.newhaven.edu:2048/login?url=
https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=
edseee.8919248&site=eds-live&scope=site

17. Ten Dyke, Richard, P., Kunz, J.C.: Object-oriented programming. IBM
Systems Journal 28(3), 465 (1989), http://unh-proxy01.newhaven.edu:
2048/login?url=https://www.proquest.com/scholarly-journals/object-
oriented-programming/docview/222408366/se-2, name - IntelliCorp; Copyright
- Copyright International Business Machines Corporation 1989; Last updated -
2021-09-10; CODEN - IBMSA7

18. Westra, E.: Modular Programming with Python. Community Experience
Distilled, Packt Publishing (2016), http://unh-proxy01.newhaven.edu:
2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=
nlebk&AN=1242579&site=eds-live&scope=site

19. Whitney, L., Staff, T., Wolber, A., Pernet, C., Alexander, M., Combs,
V.: The best programming languages to learn in 2022 (Apr 2022),
https://www.techrepublic.com/article/the-best-programming-languages-
to-learn-in-2022/

http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.1516083&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.1516083&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.1516083&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edshol&AN=edshol.hein.journals.washjolta8.28&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edshol&AN=edshol.hein.journals.washjolta8.28&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edshol&AN=edshol.hein.journals.washjolta8.28&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ807663&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ807663&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=eric&AN=EJ807663&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8919248&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8919248&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=edseee&AN=edseee.8919248&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://www.proquest.com/scholarly-journals/object-oriented-programming/docview/222408366/se-2
http://unh-proxy01.newhaven.edu:2048/login?url=https://www.proquest.com/scholarly-journals/object-oriented-programming/docview/222408366/se-2
http://unh-proxy01.newhaven.edu:2048/login?url=https://www.proquest.com/scholarly-journals/object-oriented-programming/docview/222408366/se-2
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1242579&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1242579&site=eds-live&scope=site
http://unh-proxy01.newhaven.edu:2048/login?url=https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1242579&site=eds-live&scope=site
https://www.techrepublic.com/article/the-best-programming-languages-to-learn-in-2022/
https://www.techrepublic.com/article/the-best-programming-languages-to-learn-in-2022/

	Investigation of Python Variable Privacy
	Investigation of Python Variable Privacy

	Date: 5-16-22
		2022-06-09T09:21:35-0400
	Matthew Wranovix

		2022-05-16T10:43:35-0400
	Ali Golbazi

		2022-05-15T21:49:23-0400
	Liberty Page

