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ABSTRACT

Traffic signal control is an important challenge in urban planning and transport
management, with significant implications for congestion, vehicle emissions, and travel
times. Traditional traffic control algorithms are based on specific rules, static, and are not
able to adapt to the different situations of traffic flow. This has led to the exploration of
dynamic and machine learning algorithms to optimize traffic signal timings. This study
presents a comparative analysis of five traffic control algorithms - classical methods like
Webster's method, Greenwave, and Maxband, and more modern methods like Max
Pressure and a DQN model, across a variety of traffic scenarios.
The implementation of classical methods is relatively straightforward. Webster's method
aims to minimize delay by adjusting the cycle length of signals based on the critical lane
volume and the saturation flow rate. Greenwave facilitates the coordination of traffic
signals on arterial roads to create a "green wave" of successive green lights for vehicles.
Maxband also optimizes arterial roads by adjusting green times to create maximum
throughput.
The modern methods take a different approach. Max Pressure uses real-time data to
adjust signal timings, favoring directions with larger vehicle queues. Meanwhile, the DQN
model leverages reinforcement learning(RL) to learn optimal traffic signal timings based on
traffic states, actions, and corresponding rewards. The DQN model's architecture includes
an input layer that receives traffic state representation, hidden layers for capturing complex
correlations between traffic states and actions, and an output layer for predicting optimum
values for specific actions.
Evaluation of these methods is conducted through simulations using the SUMO traffic
simulator across seven scenarios, ranging from a simple single intersection to a complex
urban grid which resembles Manhattan. Performance metrics, including total delay and
total simulation time for all the vehicles to exit the grid, are used to compare these
methods.
Results reveal that the DQN method has better results over all other methods across all
scenarios, demonstrating superior efficiency even in less complicated situations and
showing flexibility in dealing with high complexity and traffic volume. DQN's adaptability
and learning capability allow it to optimize signals based on past experiences and adaptive
traffic flow dynamics, proving it to be a promising method for future traffic management.
While classical methods have their advantages, especially in certain circumstances,
modern AI-driven techniques like DQN could lead to more efficient traffic management and
reduction in waiting times. This study's findings indicate a potential shift in traffic signal
control towards machine learning-based methods. However, further research is needed to
investigate DQN's performance under other traffic scenarios and to determine how to
integrate such systems into real-world traffic management with a focus also on the cost for
installing and maintaining the system.
SUBJECT AREA: Transportation Engineering
KEYWORDS: traffic signal control, adaptive traffic management, machine learning, deep

reinforcement learning, traffic flow optimization, urban traffic congestion,

intelligent transportation systems, traffic simulation, traffic scenario

analysis, comparative study, intersection control, queue length

minimization, traffic delay reduction, traffic signal phase optimization



ΠΕΡΙΛΗΨΗ

Ο έλεγχος των φωτεινών σηματοδοτών κυκλοφορίας αποτελεί ένα καίριο πρόβλημα στον
σχεδιασμό των πόλεων και στη διαχείριση των μεταφορών, με σημαντικές επιπτώσεις στη
συμφόρηση, στις εκπομπές οχημάτων και στους χρόνους ταξιδιού. Οι παραδοσιακοί
αλγόριθμοι είναι βασισμένοι σε κανόνες, συχνά στατικοί και ανίκανοι να προσαρμοστούν
στην δυναμική κίνηση των οχημάτων. Αυτό οδήγησε στην προσπάθεια υλοποίησης
αλγορίθμων μηχανικής μάθησης για την βελτιστοποίηση των χρόνων των φωτεινών
σηματοδοτών. Η παρούσα μελέτη παρουσιάζει μια συγκριτική ανάλυση πέντε αλγορίθμων
ελέγχου της κυκλοφορίας - παραδοσιακών μεθόδων όπως η μέθοδος Webster, ο
Greenwave και ο Maxband, μαζί με σύγχρονες μεθόδους όπως o Max Pressure και ένα
μοντέλο μηχανικής μάθησης DQN - σε διαφορετικά σενάρια κυκλοφορίας.
Η υλοποίηση των παραδοσιακών μεθόδων είναι σχετικά απλή. Η μέθοδος Webster έχει ως
στόχο στην ελαχιστοποίηση της καθυστέρησης των οχημάτων προσαρμόζοντας το μήκος
του κύκλου των σηματοδοτών κυκλοφορίας βάσει του όγκου της κίνησης και του κορεσμού
σε έναν δρόμο. Ο Greenwave διευκολύνει τον συντονισμό των φωτεινών σηματοδοτών
στις αρτηριακές οδούς προκειμένου να δημιουργηθεί ένα "πράσινο κύμα" συνεχόμενων
πράσινων φωτεινών σηματοδοτών για τα οχήματα. Ο Maxband βελτιστοποιεί επίσης τις
αρτηριακές οδούς προσαρμόζοντας τους χρόνους των πράσινων φάσεων για να
επιτευχθεί η μέγιστη δυνατή ροή στην κυκλοφορία.
Οι σύγχρονες μέθοδοι ακολουθούν διαφορετική προσέγγιση. Ο Max Pressure
χρησιμοποιεί πραγματικά δεδομένα και σένσορες για να προσαρμόζει τους χρόνους των
σηματοδοτών, δίνοντας προτεραιότητα σε κατευθύνσεις με υψηλή συγκέντρωση
οχημάτων. Αντίθετα, το μοντέλο DQN αξιοποιεί την ενισχυτική μάθηση για να μάθει τους
βέλτιστους χρόνους των φωτεινών φάσεων βάσει των καταστάσεων της κυκλοφορίας, των
ενεργειών και των αντίστοιχων ανταμοιβών. Η αρχιτεκτονική του μοντέλου DQN
περιλαμβάνει ένα επίπεδο εισόδου που λαμβάνει την αναπαράσταση της κατάστασης της
κυκλοφορίας, κρυφά επίπεδα για την καταγραφή πολύπλοκων συσχετίσεων μεταξύ των
καταστάσεων της κυκλοφορίας και των ενεργειών, και ένα επίπεδο εξόδου για την
πρόβλεψη των καλύτερων δυνατών τιμών για συγκεκριμένες ενέργειες.
Η αξιολόγηση αυτών των μεθόδων πραγματοποιείται μέσω προσομοιώσεων
χρησιμοποιώντας το πρόγραμμα προσομοίωσης κυκλοφορίας SUMO σε επτά σενάρια,
που κυμαίνονται από ένα απλό μονό σημείο διασταύρωσης έως ένα πολύπλοκο αστικό
πλέγμα που αντιγράφει μια περιοχή στο Μανχάταν. Χρησιμοποιούνται μετρικές απόδοσης,
όπως ο συνολικός χρόνος καθυστέρησης και ο συνολικός χρόνος προσομοίωσης, για να
γίνει η σύγκριση αυτών των μεθόδων.
Τα αποτελέσματα αποκαλύπτουν ότι ο DQN είχε καλύτερες επιδόσεις από όλες τις άλλες
μεθόδους σε όλα τα σενάρια, επιδεικνύοντας υψηλή αποδοτικότητα και ευελιξία ακόμη και
σε απλές καταστάσεις κίνησης και επιδεικνύοντας ανθεκτικότητα σε υψηλή πολυπλοκότητα
και όγκο κυκλοφορίας. Η προσαρμοστικότητα και η δυνατότητα μάθησης του DQN του
επιτρέπουν να βελτιστοποιεί τα σήματα βάσει προηγούμενων εμπειριών και της δυναμικής
της κυκλοφορίας, καθιστώντας το έναν ελπιδοφόρο τρόπο για τη μελλοντική διαχείριση της
κυκλοφορίας.
Παρά τα πλεονεκτήματα των παραδοσιακών μεθόδων, ειδικά σε συγκεκριμένες
περιπτώσεις, οι σύγχρονες τεχνικές που βασίζονται σε τεχνητή νοημοσύνη, όπως ο DQN,
θα μπορούσαν να οδηγήσουν σε πιο αποτελεσματική διαχείριση της κυκλοφορίας και
μείωση των χρόνων αναμονής. Τα ευρήματα αυτής της μελέτης υποδεικνύουν μια δυνητική
αλλαγή στον έλεγχο των φωτεινών σηματοδοτών κυκλοφορίας προς μεθόδους που
βασίζονται σε μηχανική μάθηση. Ωστόσο, απαιτείται περαιτέρω έρευνα για να εξεταστεί η



απόδοση του DQN σε άλλα σενάρια κυκλοφορίας και του τρόπου ενσωμάτωσης αυτών
των συστημάτων στην πραγματική διαχείριση της κυκλοφορίας και να δοθεί έμφαση και
στο κόστος για εγκατάσταση και συντήρηση των συστημάτων.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Μεταφορών
ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Έλεγχος φωτεινών σηματοδοτών κυκλοφορίας, προσαρμοστική

διαχείριση κυκλοφορίας, μηχανική μάθηση, βαθιά ενισχυτική μάθηση,

βελτιστοποίηση ροής κυκλοφορίας, αστική συμφόρηση, έξυπνα

συστήματα μεταφορών, προσομοίωση κυκλοφορίας, ανάλυση

σεναρίων κυκλοφορίας, συγκριτική μελέτη, έλεγχος διασταυρώσεων,

ελαχιστοποίηση μήκους ουρών, μείωση καθυστέρησης κυκλοφορίας,

βελτιστοποίηση φάσεων φωτεινών σηματοδοτών.
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PROLOGUE

This thesis is conducted as part of the “Computer Science” Master’s program of the
National and Kapodistrian University of Athens.
As the world's population continues to grow and due to the urbanization of most countries,
the efficient management of transportation is becoming more important. Traffic congestion,
air pollution, and road accidents are among the most pressing issues faced by cities today.
Addressing these challenges requires innovative and effective solutions that will improve
traffic flow which will result in higher quality of life and lower environmental impact. One
such aspect that is important to the efficient management of transportation systems is
traffic signal control. This thesis aims to provide a comparative analysis of classical and
modern traffic signal control techniques, using simulation tools to better understand their
respective strengths and limitations.
The classical approach to traffic signal control has its roots in predetermined, fixed-time
plans, based on historical data. While these methods have contributed significantly to the
organization of urban traffic, they may not always be sufficient in addressing the dynamic
and complex nature of today's transportation systems.
The modern era has seen the rise of intelligent traffic signal control techniques, which
leverage cutting-edge technology, such as artificial intelligence, machine learning, and
connected infrastructure, to optimize traffic signal timings dynamically. These innovations
hold the potential to significantly enhance traffic flow efficiency, reduce congestion, and
decrease the environmental impact of transportation systems.
By employing a simulator, this thesis will explore the performance of various classical and
modern traffic signal control strategies under a range of traffic scenarios. The
simulation-based approach will enable a better understanding of the practical problems
and trade-offs associated with each method. Through this comparative study, we hope to
provide valuable insights that can guide the development and implementation of more
effective traffic signal control systems in the future.
During this thesis, we will go through history and innovations which will help us analyze
and understand the importance of traffic management in shaping sustainable, smart, and
efficient cities.
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1. INTRODUCTION

The transportation field has evolved greatly over the past century, from the widespread
adoption of automobiles and the urbanization process. These changes have had a
significant impact on the way cities are planned and managed, with traffic signal control
systems playing the most important role in maintaining order and safety on the roads. In
this thesis, we explore classical and modern traffic signal control techniques, utilizing a
simulator to analyze their performance under various traffic conditions and scenarios.
Chapter 2 sets the foundation for understanding traffic signal control systems by
analyzing key parts such as phases and cycles, as well as providing an overview of
various classical and modern traffic signal control algorithms. Additionally, it offers an
introduction to neural networks, given their significance in modern control techniques.
Finally, this chapter includes a review of the relevant literature in this field.
Chapter 3 focuses on the detailed implementation of the various traffic signal control
algorithms discussed in the previous chapter. Here, the practical application of these
algorithms is revealed across different traffic scenarios. Furthermore, this chapter
presents the specifics of the custom-developed DQN implementation.
In Chapter 4 a comprehensive analysis of the extracted results from the various traffic
signal control algorithms and the DQN implementation is conducted which leads us to
conclusions for the performance of each algorithm in relation to different traffic
scenarios.
In Chapter 5, the conclusion of the thesis is discussed. The challenges, limitations, and
future potential work are analyzed.
Ultimately, this thesis seeks to contribute to the ongoing research on traffic signal
control by providing an in-depth analysis of the different techniques(classical and more
modern) available today. By examining their performance through simulation, we hope
to offer valuable information that can inform the development and implementation of
more effective traffic signal control systems in the future, leading to more efficient,
eco-friendly, and sustainable urban environments.

A. Niarchos-N. Tsiougkranas 12
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2. HISTORY AND EVOLUTION OF TRAFFIC SIGNAL CONTROL
SYSTEMS

Traffic signal control systems have played a crucial role in the management of urban
traffic and have evolved significantly over time. From ancient methods of controlling
traffic flow in huge cities in different cultures like Rome, Greece, China, and Egypt to the
development of classical and modern algorithms that optimize signal timings, the history
of traffic signal control systems is rich and diverse. In this chapter, we will briefly explore
the history of traffic signal control systems, starting with their earliest origins and
continuing through the classical and modern methods that are widely used today. We
will discuss the various algorithms and techniques that have been developed to address
the challenges of traffic management and improve traffic efficiency, focusing on their
implementation and potential benefits.

2.1 History of traffic control
Before analyzing the classical and modern traffic signal control systems, it is crucial to
understand the historical context from which these methods evolved. Traffic control has
been necessary since the emergence of organized human settlements, with ancient and
medieval societies devising innovative means to regulate the flow of pedestrians,
animals, and vehicles. This sub-chapter will explore the origins of traffic signal control,
focusing on the early attempts at managing traffic in ancient and medieval times, as well
as the development of traffic signal controls from the 1800s to the present day.
The ancient world saw the rise of great civilizations, such as the Egyptians, Greeks,
Romans, and Chinese which were characterized by bustling urban centers and complex
road networks. Despite the absence of modern automobiles, these societies faced
traffic challenges that necessitated the implementation of control systems[1-11]. In
medieval times, cities and towns experienced significant growth, resulting in the need
for traffic control systems to manage the movement of people, animals, and vehicles.
Although these systems were not as advanced as modern traffic signals, several
methods and regulations were implemented to maintain order and ensure the efficient
flow of traffic[12-14]. As technology advanced, traffic signal controls evolved
significantly since the 1800s, with interconnected systems, traffic signal controllers, and
modern traffic signal control systems being developed to improve traffic flow and
minimize congestion[15-18].

2.2 Basic Components of Classical Methods of Traffic Signal Control
In this chapter, we will delve deeper into classical methods of traffic signal control,
examining their origins, applications, and the underlying principles that have shaped
traffic management strategies over time. We will discuss fixed-time control and actuated
control, highlighting their respective strengths and weaknesses, as well as the factors
that have influenced their adoption and continued use in various traffic management
scenarios.
By understanding these classical methods and their impact on traffic signal control, we
can gain valuable insights into the factors that drive effective traffic management and
the continued development of advanced traffic control systems. This understanding will
provide a solid foundation for the analysis of modern and future traffic control
technologies, which will be the focus of the subsequent chapters of this thesis.

A. Niarchos-N. Tsiougkranas 13
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2.2.1 Traffic Light Cycle
A traffic light cycle, also known as a signal cycle or cycle length, is the complete
sequence of signal phases at a traffic light-controlled intersection, from the start of the
green phase for one movement direction to the time when the same green phase is
repeated. The traffic light cycle encompasses all the green, yellow, and red phases for
each movement direction at an intersection, ensuring that vehicles and pedestrians are
provided with the necessary time to safely navigate the intersection[18].

2.2.2 Traffic Light Phases
Traffic light phases, also known as signal timing, are a crucial aspect of traffic signal
control systems. They determine the sequence and duration of each color displayed by
the traffic lights at an intersection. An effective phase plan helps to ensure the smooth
and safe flow of traffic, minimize congestion, and optimize overall efficiency. This
section will provide a detailed explanation of the various traffic light phases and their
functions[18].

1. The green phase is the period during which the correlated traffic is allowed to
proceed through the intersection in a specific direction. The duration of the green
phase can vary depending on the specific requirements of the intersection, such
as traffic volume, speed limits, and the presence of pedestrians or cyclists. In
classical algorithms this phase has fixed time but in more modern approaches
the green phase may be extended or shortened in real-time based on traffic
conditions, using traffic sensors or cameras [18].

2. The yellow phase serves as a transition between the green and red phases. It
warns drivers that the signal is about to change to red, providing them with
enough time to stop safely. The duration of the yellow phase is typically
determined based on the speed limit and the width of the intersection, ensuring
that drivers have sufficient time to stop [18].

3. The red phase is the period during which traffic must stop. Its primary purpose is
to ensure safety by preventing collisions between vehicles traveling in different
directions. The duration of the red phase may vary based on factors such as
traffic volume, intersection geometry, and the presence of pedestrians or cyclists.
In some cases, the red phase may include an "all-red" interval, during which all
approaches to the intersection display a red signal to provide an additional safety
buffer between conflicting phases[18].

4. The pedestrian phase is designed to provide safe crossing opportunities for
pedestrians at signalized intersections. It typically includes a "walk" indication,
during which pedestrians are allowed to enter the crosswalk, and a "flashing
don't walk" indication, which warns pedestrians that the pedestrian phase is
ending and they should not start crossing. The duration of the pedestrian phase
is determined based on factors such as pedestrian crossing distance and walking
speed, ensuring that pedestrians have enough time to safely cross the street. For
this thesis, this phase will not be taken into consideration and analyzed
further[18].

5. The left-turn phase, or right-turn phase for countries with opposite driving such as
England, also known as a protected left-turn phase, is designed to facilitate safe
and efficient left-turn movements at signalized intersections. It provides a
dedicated green arrow signal for left-turning vehicles, allowing them to turn
without conflicting with oncoming traffic or pedestrians. The left-turn phase can

A. Niarchos-N. Tsiougkranas 14
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be configured as leading (before the through movement), lagging (after the
through movement), or split (separate from the through movement). The specific
configuration and duration of the left-turn phase depend on factors such as traffic
volume, intersection geometry, and safety considerations [18].

Image 1: All possible phases of a four-way intersection

2.2.3 Fixed-Time Control Traffic Light System
Fixed-time control, also known as pre-timed control or fixed-cycle control, is a classical
method of traffic signal control in which the green, yellow, and red phases are displayed
for predetermined durations at each intersection approach. These durations, or cycle
lengths, are typically calculated based on historical traffic patterns, peak demand
periods, and other relevant factors. Fixed-time control systems are relatively simple to
design, implement, and maintain, making them a popular choice for traffic management
in various contexts.
In a fixed-time control system, the cycle length, green time allocation, and phase
sequence are pre-determined and remain constant throughout the day, regardless of
fluctuations in traffic demand. The cycle length is typically divided into different phases,
with each phase providing green time for one or more movement directions [18]. The
green time allocation is determined based on factors such as traffic volume, pedestrian
demand, and intersection geometry.
To optimize traffic flow, fixed-time control systems often use different cycle lengths and
green time allocations for different times of the day, such as morning and evening peak
periods or off-peak hours. These changes can be implemented manually or
automatically using a pre-programmed schedule.
Fixed-time control traffic light systems offer several advantages, including:

1. Simplicity: The straightforward design and operation of fixed-time control systems
make them relatively easy to implement, maintain, and troubleshoot.

2. Predictability: The consistent cycle lengths and green time allocations provide
predictable traffic patterns, which can help drivers anticipate signal changes and
reduce the likelihood of accidents.

3. Efficiency: When properly designed, fixed-time control systems can efficiently
manage traffic flow during predictable demand periods, such as morning and
evening rush hours.

Despite their advantages, fixed-time control traffic light systems also have some
limitations, including:

1. Inflexibility: Fixed-time control systems are unable to adapt to real-time changes
in traffic demand, which can lead to inefficiencies during periods of unexpected
congestion or low traffic volumes.

2. Increased Delay: Due to their inflexible nature, fixed-time control systems may
cause unnecessary delays for drivers and pedestrians, particularly during
off-peak hours when traffic volumes are lower.
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3. Environmental Impact: The lack of adaptability in fixed-time control systems can
result in increased idling time, fuel consumption, and vehicle emissions.

2.2.4 Actuated Control Traffic Light System
Actuated control is a more dynamic method of traffic signal control that adjusts signal
timings in response to real-time traffic conditions. By using sensors, such as inductive
loops, video cameras, or microwave detectors, actuated control systems can detect the
presence of vehicles and pedestrians and adjust the green time allocation accordingly.
This adaptive approach allows for more efficient traffic management, reducing delays
and improving overall traffic flow.
In an actuated control traffic light system, sensors are installed at each intersection
approach to detect the presence and demand of vehicles and pedestrians. When a
sensor detects a vehicle or pedestrian waiting at the intersection, it sends a signal to the
traffic signal controller, which then adjusts the green time allocation for the
corresponding phase.
There are two primary types of actuated control systems: semi-actuated and fully
actuated.
Semi-actuated control systems: These systems use sensors on the minor street
approaches and pedestrian crossings, while the major street operates on a fixed-time
basis. Semi-actuated control systems are commonly used at intersections where the
traffic volume on the minor street is significantly lower than that on the major street.
Fully actuated control systems: In fully actuated control systems, sensors are installed
on all approaches and pedestrian crossings, allowing the signal controller to adapt the
green time allocation for all phases based on real-time traffic demand. Fully actuated
control systems are typically used at complex intersections with high traffic volumes and
variable demand patterns.
Actuated control traffic light systems offer several advantages, including:

1. Responsiveness: By adapting to real-time traffic conditions, actuated control
systems can reduce delays and improve traffic flow, particularly during periods of
unexpected congestion or low traffic volumes.

2. Efficiency: Actuated control systems can allocate green time more efficiently,
prioritizing phases with higher traffic demand and minimizing the time spent
waiting at red lights.

3. Environmental benefits: The adaptive nature of actuated control systems can
reduce vehicle idling time, fuel consumption, and emissions by minimizing delays
and optimizing traffic flow.

Despite their advantages, actuated control traffic light systems also have some
limitations, including

1. Complexity: Actuated control systems are more complex than fixed-time
systems, requiring the installation, maintenance, and calibration of sensors and
communication equipment.

2. Cost: The increased complexity of actuated control systems can result in higher
implementation and maintenance costs compared to fixed-time systems.

3. Sensor limitations: Sensor technologies can sometimes be affected by weather
conditions, dirt, or vehicle positioning, potentially leading to inaccuracies in traffic
detection and signal control[18].
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2.3 Classical traffic control strategies
Now that all the basic components are covered we will explore three classical traffic
signal control methods that have significantly contributed to the optimization of traffic
flow in urban areas. These methods continue to be relevant in various traffic
management scenarios. The three classical methods we will discuss in this thesis are
the Webster Algorithm, Greenwave, and MAXBAND.

2.3.1 Webster Algorithm
The Webster Algorithm is a widely used method for calculating the optimal cycle lengths
and green time allocations for fixed-time cycles. The algorithm aims to maximize the
traffic flow by minimizing the total delay at an intersection. This algorithm continues to
be a very relevant and popular method for traffic signal timing optimization, especially
for isolated intersections or simple traffic networks[18][19].
It calculates the optimal cycle length (C) and green time allocation for each phase (G)
using the following steps:

1. Determine the saturation flow rate (S) for each approach or movement direction
at the intersection. The saturation flow rate is the maximum number of vehicles
that can pass through the intersection per unit of time when the signal is green.

2. Calculate the flow ratio (v/S) for each approach or movement direction, which
represents the demand for green time as a proportion of the saturation flow rate.

3. Compute the lost time (L) for each phase. Lost time accounts for the time wasted
during the start and end of each green phase when vehicles are accelerating or
decelerating. The lost time is typically estimated using field observations or
derived from engineering guidelines.

4. Determine the total flow ratio (Σ(v/S)) and the total lost time (ΣL) for the
intersection by summing the flow ratios and lost times for all approaches or
movement directions.

5. Calculate the optimal cycle length (C) using the following formula: C = 1.5 * L + 5
/ (1 - Σ(v/S))

6. Compute the optimal green time allocation (G) for each phase by multiplying the
cycle length (C) with the flow ratio (v/S) for the respective approach or movement
direction.

The calculated cycle length and green time allocations can be implemented in a
fixed-time traffic signal control system to optimize the traffic flow and minimize delays at
the intersection.
Despite its widespread use, the Webster Algorithm has some limitations:

1. Applicability: The algorithm is primarily suitable for isolated intersections or
simple traffic networks. In more complex networks or situations where
coordinated signal timings are required, alternative optimization methods may be
more appropriate.

2. Assumptions: The Webster Algorithm assumes that traffic demand remains
constant throughout the cycle and does not account for variations in demand or
fluctuations in traffic conditions.
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3. Fixed-time control: As the algorithm is designed for fixed-time traffic signal
control systems, it does not consider the potential benefits of adaptive or
traffic-responsive control methods

2.3.2 Greenwave
Greenwave traffic control, also known as traffic signal coordination or progression, is a
classical traffic signal control method that synchronizes traffic signals along a corridor or
arterial road to create a continuous "green wave" for vehicles. By coordinating signal
timings, the green wave allows vehicles to travel through a series of intersections with
minimal stops, reducing delays, and improving overall traffic flow. Greenwave traffic
control is particularly effective in managing traffic along corridors with a dominant
direction of flow, such as in downtown areas or during peak hours[18].
The Greenwave traffic control strategy is based on adjusting signal offsets, which are
the time differences between the start of the green phase at adjacent intersections. The
key steps in implementing a Greenwave traffic control strategy are:

1. Determine the critical direction of flow: Identify the direction of flow with the
highest traffic demand, which will be the primary focus of the green wave.

2. Calculate travel time between intersections: Measure or estimate the time it takes
for a vehicle to travel between adjacent intersections at the desired speed or
posted speed limit.

3. Set cycle length: Establish a common cycle length for all intersections along the
corridor. This can be determined using optimization methods, such as the
Webster Algorithm, or through engineering guidelines and field observations.

4. Adjust signal offsets: Determine the optimal signal offset for each intersection
along the corridor based on the travel time between intersections. The offset
should be set such that when a vehicle arrives at the downstream intersection,
the green phase for the critical direction of flow is just beginning.

5. Implement and monitor: Apply the calculated cycle lengths and signal offsets to
the traffic signal controllers and monitor the system's performance to ensure the
green wave is functioning as intended. Adjustments may be needed to account
for changes in traffic patterns or demand.

Greenwave traffic control offers several benefits, including:
1. Reduced delays: By synchronizing traffic signals, Greenwave traffic control

reduces the number of stops and delays for vehicles traveling along the corridor,
improving overall travel time.

2. Improved traffic flow: The green wave facilitates smoother traffic flow along the
corridor, which can help mitigate congestion and increase the capacity of the
road network.

3. Enhanced fuel efficiency and reduced emissions: With fewer stops and more
consistent travel speeds, vehicles can operate more efficiently, resulting in
reduced fuel consumption and lower emissions.

4. Improved safety: Smooth traffic flow reduces the likelihood of rear-end collisions
due to sudden stops or erratic driving behavior.

Despite its advantages, Greenwave traffic control also has some limitations:
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1. Limited applicability: Greenwave traffic control is most effective along corridors
with a dominant direction of flow, and its benefits may be diminished in areas with
complex traffic patterns or balanced traffic demands.

2. Fixed-time control: Greenwave traffic control relies on fixed-time signal timings
and does not account for real-time traffic fluctuations, limiting its adaptability to
changing traffic conditions.

3. Potential side-street delay: The focus on optimizing signal timings for the main
corridor may result in increased delays for side-street traffic, as they may have to
wait longer for a green phase.

2.3.3 MAXBAND
MAXBAND is a classical traffic signal control method developed by Professors Nathan
H. Gartner and Nicos Geroliminis in the 1970s. It focuses on coordinating traffic signals
along an arterial road or corridor to maximize the bandwidth of green time for the critical
direction of flow. By optimizing the green time bandwidth, the MAXBAND method aims
to minimize stops and delays for vehicles traveling along the corridor, resulting in
smoother traffic flow and improved overall efficiency[20][21].
MAXBAND utilizes an optimization algorithm to determine the optimal signal offsets and
cycle lengths for a given corridor. The key steps in implementing MAXBAND are as
follows:

1. Determine the critical direction of flow: Identify the direction of flow with the
highest traffic demand, which will be the primary focus of the green-phase
bandwidth optimization.To identify the critical direction, it is necessary to consider
the travel demand patterns in both the inbound and outbound directions. During
peak hours, the inbound roads may have a higher travel demand as people travel
to work or other central destinations. In contrast, during the evening rush hour,
the outbound roads may have a higher travel demand as people head home or
leave the central area.

2. Establish a common cycle length: Determine a common cycle length for all
intersections along the corridor. This can be calculated using optimization
methods such as the Webster Algorithm, or through engineering guidelines and
field observations.

3. Calculate the optimal signal offsets: Using the MAXBAND optimization algorithm,
determine the signal offsets that maximize the bandwidth of green time for the
critical direction of flow along the corridor. The optimization process considers
both inbound and outbound roads, adjusting the signal offsets and cycle lengths
to create a continuous green wave in the critical direction. This coordination can
be applied separately for different periods, addressing the varying travel
demands between inbound and outbound roads during peak and off-peak hours.

4. Implement and monitor: Apply the calculated cycle lengths and signal offsets to
the traffic signal controllers, and monitor the system's performance to ensure that
the MAXBAND strategy is functioning as intended. Adjustments may be needed
to account for changes in traffic patterns or demand.

The MAXBAND traffic control method offers several benefits, including:
1. Reduced delays: By maximizing the bandwidth of green time along the corridor,

MAXBAND minimizes stops and delays for vehicles traveling in the critical
direction, improving overall travel time.
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2. Improved traffic flow: The optimized signal coordination achieved with MAXBAND
facilitates smoother traffic flow along the corridor, helping to mitigate congestion
and increase the capacity of the road network.

3. Enhanced fuel efficiency and reduced emissions: With fewer stops and more
consistent travel speeds, vehicles can operate more efficiently, resulting in
reduced fuel consumption and lower emissions.

Despite its advantages, the MAXBAND method also has some limitations:
1. Limited applicability: MAXBAND is most effective along corridors with a dominant

direction of flow and may be less effective in areas with complex traffic patterns
or balanced traffic demands.

2. Fixed-time control: Like the Greenwave method, MAXBAND relies on fixed-time
signal timings and does not account for real-time traffic fluctuations, limiting its
adaptability to changing traffic conditions.

3. Potential side-street delay: Similar to the Greenwave method, the focus on
optimizing signal timings for the main corridor may result in increased delays for
side-street traffic, as they may have to wait longer for a green phase.

2.3.4 Conclusion
In conclusion, classical traffic control methods have played a significant role in
managing traffic flow and reducing congestion in urban environments. These methods,
such as the Webster algorithm, Greenwave, and MAXBAND, have provided the
foundation for our understanding of traffic signal control systems and their impact on
urban mobility.
Throughout this chapter, we have explored the principles, methodologies, advantages,
and limitations of these classical methods. We have seen how fixed-time control
provides simplicity and ease of implementation, while actuated and traffic-responsive
control methods offer more adaptability to real-time traffic conditions. Additionally, signal
coordination strategies, such as the Webster algorithm, Greenwave, and MAXBAND,
have demonstrated their effectiveness in improving traffic flow and reducing delays
along arterial corridors.
However, we have also identified several limitations of classical traffic control methods,
including their reliance on pre-determined signal timings, no adaptability to changing
traffic patterns in different scenarios, and significant inefficiencies in managing complex
urban road networks. These limitations have boosted the development of modern traffic
control systems, which leverage sensors, and intelligent algorithms to enhance overall
network efficiency.

2.4 Modern Methods of Traffic Signal Control
In the modern era of rapid urbanization when the number of vehicles in big cities has
escalated, the need for more modern and adaptive traffic signal control systems has
skyrocketed. These systems use traffic sensors, clever algorithms, and more in order to
improve their adaptability over varying traffic scenarios.
We will begin by examining several modern traffic control systems in detail, including
the MAX-Pressure algorithm and the DQN algorithm. Throughout this chapter, we will
discuss the advantages of these modern systems, such as their ability to adapt and
generally improve the overall network efficiency. However, we will also address their
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limitations, such as dependency on sensors, computational complexity, and potential
challenges in a real-world implementation, which included the cost of installation and
maintenance.

2.4.1 Traffic-Responsive Control
Traffic-responsive control is an advanced method of traffic signal control that not only
adapts to real-time traffic conditions but also considers broader network-wide traffic
patterns. By continuously monitoring and analyzing traffic data from multiple
intersections, traffic-responsive control systems can optimize signal timings to improve
overall network performance. This strategic approach helps to reduce congestion,
minimize delays, and enhance the efficiency of the entire transportation system.
Traffic responsive control systems rely on a central traffic management center, which
collects and processes traffic data from various sources, such as sensors, cameras,
and traffic counters, across multiple intersections. The system employs advanced
algorithms and optimization techniques to determine the most efficient signal timings
based on the current traffic conditions and anticipated demand patterns.
The central traffic management center can then send updated signal timings to
individual traffic signal controllers at each intersection. This coordination among
intersections enables traffic-responsive control systems to optimize traffic flow and
reduce the impact of congestion on the broader network.
There are several traffic responsive control strategies, including:

1. Adaptive signal control: This strategy uses real-time traffic data to adjust signal
timings at individual intersections, ensuring that each intersection operates at
maximum efficiency.

2. Traffic signal coordination: This strategy synchronizes signal timings among a
series of intersections, creating a "green wave" effect that allows vehicles to
travel through multiple intersections with minimal stops.

3. Traffic network optimization: This strategy optimizes signal timings across the
entire traffic network, considering the interaction between intersections and the
broader traffic patterns to maximize overall network performance.

Traffic responsive control traffic light systems offer several advantages, including:
1. Network-wide optimization: By considering the entire traffic network, traffic

responsive control systems can maximize overall efficiency, reducing delays and
congestion across multiple intersections.

2. Real-time adaptability: Traffic responsive control systems can quickly adapt to
changing traffic conditions, ensuring that signal timings remain optimized even
during unexpected events, such as incidents or special events.

3. Enhanced performance: By optimizing signal timings and coordinating multiple
intersections, traffic-responsive control systems can improve overall traffic flow,
reduce travel times, and enhance the overall performance of the transportation
system.

Despite their advantages, traffic responsive control traffic light systems also have some
limitations, including:

1. Complexity: Traffic responsive control systems require a sophisticated central
traffic management center, advanced algorithms, and communication
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infrastructure, making them more complex and challenging to implement and
maintain than traditional control methods.

2. Cost: The increased complexity of traffic-responsive control systems can result in
higher implementation, maintenance, and operational costs compared to other
traffic control methods.

3. Data reliance: Traffic-responsive control systems rely heavily on accurate and
timely traffic data, making them susceptible to inaccuracies or failures in data
collection and communication systems.

2.4.2 MAX-Pressure Traffic Control Algorithm
The MAX-Pressure traffic control algorithm is a modern, adaptive traffic signal control
method that aims to minimize the total queue length across all approaches at an
intersection. Developed by Pravin Varaiya and his colleagues, this method is based on
a distributed control strategy and dynamically adjusts signal timings in response to
real-time traffic conditions. By minimizing the total queue length, the MAX-Pressure
algorithm can reduce delays, improve traffic flow, and enhance the overall efficiency of
urban road networks.
To continue into the better understanding of the Max Pressure algorithm, the
mathematical description of the algorithm will be analyzed.
Let's denote the set of intersections as I, and the set of all links (or approaches) as L.
Each intersection i ∈ I is associated with a set of incoming links Liin and a set of
outgoing links Liout. Traffic sensors collect the vehicle counts nl(t) for each link l ∈ L at
each time step t. The pressure Pl(t) for each link l ∈ L at each time step t is calculated
as the difference between the cumulative inflow and outflow:
Pl(t) = ∑(a∈Liin [na(t)]) - ∑(b∈Liout [nb(t)])
where na(t) and nb(t) represents the cumulative number of vehicles arriving at the
upstream approach a and departing from the downstream approach b, respectively.
The signal timings are updated at each time step t to prioritize the link l with the
maximum pressure:
l = argmaxl {Pl(t)}
The green phase is extended or granted to the link l to facilitate vehicle departure.
The MAX-Pressure algorithm uses traffic sensor data, such as vehicle counts and
occupancy measurements, to calculate the "pressure" at each approach of an
intersection. The pressure, as described earlier, is defined as the difference between
the cumulative number of vehicles arriving at the upstream approach and the
cumulative number of vehicles departing from the downstream approach. The algorithm
updates signal timings to prioritize the approach with the highest pressure, thereby
minimizing the total queue length at the intersection. The main steps in implementing
the MAX-Pressure algorithm are as follows:

1. Obtains real-time traffic measurements from sensors to monitor vehicle arrivals
and departures at each approach of the intersection.

2. For each phase of the traffic light, calculates the pressure by taking the
difference between the number of vehicles arriving at the upstream approach and
the number of vehicles departing from the downstream approach.
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3. At each time step, compares the pressures for all approaches and prioritizes the
approach with the highest pressure by extending or granting its green phase.
Adjust the signal timings dynamically to minimize the total queue length at the
intersection.

4. Continuously monitor the performance of the MAX-Pressure algorithm and
adjusts the parameters as needed to account for changes in traffic patterns or
demand.

The MAX-Pressure traffic control algorithm offers several benefits, including:
1. Adaptability: Unlike fixed-time control methods, such as Greenwave and

MAXBAND, the MAX-Pressure algorithm dynamically adjusts signal timings in
response to real-time traffic conditions, making it more adaptable to changing
traffic patterns and demands.

2. Distributed control: The MAX-Pressure method is based on a distributed control
strategy, which allows for efficient and scalable implementation in large-scale
urban road networks.

3. Reduced delays and improved traffic flow: By minimizing the total queue length
at intersections, the MAX-Pressure algorithm can reduce delays, improve traffic
flow, and enhance overall network efficiency.

4. Robustness: The MAX-Pressure algorithm is robust to variations in traffic
demand and can effectively handle both under-saturated and over-saturated
traffic conditions.

5. Several studies have been conducted to evaluate the performance of the
MAX-Pressure algorithm in various traffic scenarios and compared to other traffic
control methods. These studies have found that the MAX-Pressure algorithm
generally performs well in reducing delays, improving traffic flow, and enhancing
overall network efficiency.

Despite its advantages, the MAX-Pressure method also has some limitations:
1. Dependency on traffic sensors: The performance of the MAX-Pressure algorithm

depends on the availability and accuracy of real-time traffic sensor data.
Inaccurate or missing sensor data may reduce the effectiveness of the algorithm.

2. Computational complexity: The MAX-Pressure algorithm requires the continuous
calculation of pressures and dynamic updating of signal timings, which can be
computationally intensive, especially for large-scale networks.

3. MAX-Pressure algorithm optimizes an intersection and does not take account of
the neighboring intersections. As a result, it is not suitable for complex
intersection clusters where neighboring intersections affect each other.

Comparison with other traffic control methods: In several studies, as will be discussed
later in detail, the MAX-Pressure algorithm has been compared with other traffic control
methods both classical and modern and has shown that it can outperform the other
methods by reducing delays and improving traffic flow. Especially in scenarios with very
congested intersections.
Large-scale implementation: The MAX-Pressure algorithm has been successfully
implemented and tested in large-scale urban road networks, demonstrating its
scalability and adaptability to different traffic scenarios. This large-scale implementation
also highlights the potential of the MAX-Pressure method in real-world traffic control
applications.
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Robustness and efficiency: The MAX-Pressure algorithm is robust to variations in traffic
demand and can effectively handle both under-saturated and over-saturated traffic
conditions. This robustness and efficiency make the MAX-Pressure method a promising
traffic control solution for urban road networks.
In conclusion, MAX-Pressure is a serious candidate for modern traffic control systems
due to its distributed control and adaptability in different traffic scenarios despite its
dependency on traffic sensors and the higher computational complexity [22][23][24].

2.4.3 Deep Q-Networks (DQN) for Traffic Control
In this thesis in order to optimize the traffic signal control problem we implemented a
DQN algorithm that utilizes deep reinforcement learning (DRL) techniques. The
versatility of DQN is apparent in multiple applications which solve a vast range of
problems from games to autonomous vehicles. By using this advanced DRL technique
we aim to develop a system that will be able to be trained and address efficiently
multiple different traffic scenarios which will reduce traffic congestion and improve the
overall network efficiency.
In this section, we will discuss about the DQN method, analyzing its foundations in DRL.
We will explain the key concepts of Q-learning, DNNs, and the integration of both
techniques to form the DQN. We will then describe the specific DQN architecture and
training process used, detailing the state representation, action space and reward
function.
Following the introduction, we will present the implementation of the DQN-based traffic
control system, discussing the necessary modifications and adaptations to tailor the
method for traffic signal control. We will also outline the simulation environment used to
evaluate the performance of the DQN solution and compare it to classical and other
modern traffic control methods.

2.4.3.1 Q-learning
In order to make clear what DQN is we must first analyze what Q-learning is. It is a
non-model-bound, off-policy RL algorithm whose goal is to find the best policy for
decision-making problems by learning the Q-values, which in simpler terms are an
action-value function. These values are saved in the Q-table. As a result, the agent is
enabled to make optimal decisions without the need for a complete model of the
environment. The algorithm gets a specific state, estimates the expected reward per
action, and makes the action with the most profitable reward[25].
In Q-learning, the agent maintains a Q-table that stores the Q-values for each
state-action pair. The Q-values are updated iteratively using the Bellman equation:
Q(s, a) ← Q(s, a) + α * [r + γ * max_a' Q(s', a') - Q(s, a)]

● s: current state
● a: action taken
● r: immediate reward received after taking the action
● s': next state after taking the action
● a': possible actions in the next state
● α: learning rate (0 < α ≤ 1) determining the extent to which new information

overrides old information
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● γ: discount factor (0 ≤ γ < 1) representing the importance of future rewards
compared to immediate ones

The algorithm begins with an arbitrary initialization of Q-values and iteratively refines
them through interactions with the environment. The agent selects actions based on the
current Q-values, often using an exploration strategy such as ε-greedy to balance
exploration and exploitation. As the agent continues to interact with the environment,
the Q-values converge to their optimal values, which represent the expected cumulative
reward for each state-action pair following the optimal policy.
Once the Q-values have converged, the agent can make optimal decisions by selecting
the action with the highest Q-value for each state. Q-learning has been widely applied to
various decision-making problems, from robotics to game playing, and has proven to be
a powerful and effective RL algorithm[26].
While Q-learning with Q-tables has proven effective in many RL problems, it suffers
from a few limitations that make it unsuitable for large-scale or high-dimensional
problems:

1. Scalability: The size of the Q-table grows exponentially with the number of states
and actions in the environment. For problems with a large state space or many
possible actions, the Q-table can quickly become infeasible in terms of memory
requirements and computational complexity [26].

2. Generalization: Q-tables store and update Q-values for each individual
state-action pair, which means they do not generalize well to unseen states or
situations. In contrast, neural networks are capable of learning continuous,
smooth functions that can generalize to similar but unseen states, enabling them
to handle larger state spaces more effectively [32].

3. Sample efficiency: Q-learning with Q-tables can be slow to converge, as it
requires many samples (state-action-reward-next state tuples) to update the
Q-values accurately. Neural networks, especially DNNs, can learn complex
representations and generalize from a smaller number of samples, leading to
faster convergence and better overall performance [29].

To address these limitations, Q-learning can be combined with neural networks, leading
to the DQN algorithm [27]. By replacing the Q-table with a neural network, the DQN
algorithm can efficiently learn the action-value function in large-scale and
high-dimensional problems. The neural network approximates the Q-values, taking the
state as input and producing Q-values for each possible action as output. This approach
significantly reduces the memory requirements and enables the algorithm to generalize
better to unseen states, leading to improved performance and faster convergence in
complex environments.

2.4.3.2 Deep Neural Network
A DNN is a type of artificial neural network that consists of multiple layers of
interconnected nodes or neurons, which enables the network to learn complex,
hierarchical representations of input data [30]. DNNs have gained significant attention in
recent years due to their ability to achieve state-of-the-art performance in various
domains, including image recognition, natural language processing, and RL [31].
DNNs consist of an input layer, multiple hidden layers, and an output layer. The input
layer receives the raw data, while the output layer produces the final predictions or
decisions. The hidden layers, which contain the majority of the network's neurons,
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transform the input data into increasingly complex and abstract representations through
a series of non-linear transformations [32].
Each neuron in a DNN receives input from multiple neurons in the previous layer,
computes a weighted sum of these inputs, applies a non-linear activation function, and
passes the result to the neurons in the next layer. The weights and biases of the
neurons are the learnable parameters of the network, which are adjusted during the
training process to minimize the difference between the network's predictions and the
ground truth.
DNNs are typically trained using the backpropagation algorithm, which calculates the
gradient of the loss function with respect to each weight and bias by applying the chain
rule of calculus [33]. The gradients are then used to update the parameters using an
optimization algorithm such as stochastic gradient descent (SGD) or one of its variants
[34].
The depth of a neural network, or the number of hidden layers, is a crucial factor in its
ability to learn complex and hierarchical representations. Deep networks have been
shown to outperform shallow networks in various tasks, as they can learn to extract and
compose high-level features from raw input data [35].

2.4.3.3 Neurons
A neuron is the most important building block of a neural network. It is a computational
element that connects to other neurons forming layers and is inspired by the biological
neurons of the brain and works very similarly. It receives input from other neurons or
external sources (if the neuron is at the input layer), processes the information, and
passes the output to other neurons or generates a final output for the network (if the
neuron is at the output layer)[36].
Each neuron in an artificial neural network performs the following operations:
Input aggregation: The neuron receives input from multiple sources, which can be
neurons in the previous layer or external input data. Each input is multiplied by a
corresponding weight, and the weighted inputs are then summed together with an
additional bias term. The weighted sum can be expressed mathematically as:
z = ∑(wi * xi) + b
where z is the weighted sum, wi is the weight for the i-th input, xi is the i-th input, and b
is the bias term.
Activation: After computing the weighted sum, the neuron applies a non-linear activation
function to the result. This function transforms the input, introducing non-linearity into
the network, and allowing it to learn and represent complex patterns and relationships in
the data. Common activation functions include the sigmoid, hyperbolic tangent (tanh),
and rectified linear unit (ReLU) [37].
a = f(z)
where a is the activation, f is the activation function, and z is the weighted sum
calculated earlier.
Output: The activation value 'a' is the output of the neuron, which is passed to other
neurons in the subsequent layer or used as the final output of the network. In the case
of multi-class classification problems, the output layer often employs a softmax
activation function, which converts the activations of the neurons into probabilities that
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sum to 1. This helps in determining the most likely class or decision for a given input
[38].
Neurons in a neural network are typically organized into layers, including the input layer,
one or more hidden layers, and the output layer. The input layer is responsible for
receiving the raw data which resemble the problem state, while the output layer
generates the final predictions or decisions which resemble the action space. The
hidden layers, which contain the majority of the network's neurons, perform a series of
non-linear(most of the time) transformations to learn and extract features from the input
data [32].
The learning process in a neural network involves adjusting the weights and biases of
the neurons to minimize the difference between the network's predictions and the actual
target values. This is typically achieved through a process called backpropagation,
which will be analyzed later, and computes the gradients of the loss function with
respect to the weights and biases and updates them using an optimization algorithm
[39].

2.4.3.4 Weights
Weights in a neural network are numerical values associated with the connections
between neurons, which determine the strength or influence of the connections. They
play a critical role in the learning process, as they are adjusted during training to
minimize the difference between the network's predictions and the actual target values.
Weights enable the network to adapt and capture the underlying patterns and
relationships in the input data [32].
In an artificial neural network, each neuron receives input from other neurons or
external sources. The input is multiplied by its corresponding weight before being
summed together with other weighted inputs and a bias term.
Weights serve several purposes in a neural network:

1. Importance of connections: The weights determine the significance of a
connection between neurons. A larger weight implies that the input has a greater
impact on the output, while a smaller weight indicates a weaker influence [38].

2. Learning process: During training, the weights are updated to minimize the error
between the network's predictions and the actual target values. The learning
algorithm, such as gradient descent, adjusts the weights based on the gradients
of the loss function with respect to the weights [39].

3. Feature extraction: The weights, especially in DNNs, help the network learn
hierarchical representations of the input data. Lower-level features are combined
and transformed by the weights in subsequent layers to form higher-level, more
abstract features [30].

4. Function approximation: The weights, in combination with activation functions,
enable the neural network to approximate complex, non-linear functions and
relationships between inputs and outputs [40].

2.4.3.5 Activation Function
An activation function in a neural network is a non-linear function applied to the
weighted sum of inputs at each neuron. The activation function introduces non-linearity
into the network, allowing it to learn and represent complex patterns and relationships in
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the input data. It is a crucial component of neural networks, as without non-linearity, the
network would be limited to modeling only linear relationships, significantly reducing its
expressive power [32].
Mathematically, the activation function as mentioned before takes the form:
a = f(z)
where a is the activation, f is the activation function, and z is the weighted sum
calculated as the sum of the product of the input values (xi) and their corresponding
weights (wi) along with the bias term (b).
There are several popular activation functions used in neural networks:

1. Sigmoid function: The sigmoid function, also known as the logistic function, maps
the input values to a range between 0 and 1. It is defined as:
f(z) = 1 / (1 + exp(-z))
The sigmoid function is smooth and has a simple derivative, which is useful for
gradient-based optimization algorithms. However, it can suffer from the vanishing
gradient problem, where the gradients become very small during
backpropagation, causing slow learning [37].

Image 2: Sigmoid activation function

2. Hyperbolic tangent (tanh) function: The tanh function is similar to the sigmoid
function, but it maps the input values to a range between -1 and 1. It is defined
as:
f(z) = (exp(z) - exp(-z)) / (exp(z) + exp(-z))
The tanh function shares many properties with the sigmoid function, but its output
is zero-centered, making it more suitable for certain applications.

Image 3: Tanh activation function

3. Rectified Linear Unit (ReLU) function: The ReLU function is a piecewise linear
function that maps the input values to a range between 0 and positive infinity. It is
defined as f(z) = max(0, z)
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The ReLU function is computationally efficient and helps alleviate the vanishing
gradient problem. However, it can suffer from the dying ReLU problem, where
some neurons become inactive during training, producing zero gradients [41].

Image 4: ReLU activation function

Activation functions play a vital role in determining the output of neurons and the overall
behavior of the network. They help the network learn complex, non-linear relationships
and improve the network's capacity to generalize and make predictions based on the
input data.

2.4.3.6 Error function
Error function, also known as the loss function or cost function, is a measure of the
discrepancy between the network's predictions and the actual target values. The
objective of the training process is to minimize the error function. Different error
functions are used for different tasks:

1. Mean Squared Error (MSE): Commonly used for regression tasks, the MSE
calculates the average squared difference between the predicted and actual
values:
MSE = (1/n) * Σ(yi - ŷi)^2
where yi is the actual target value, ŷi is the predicted value, and n is the number
of samples.

2. Cross-Entropy Loss: Widely used for classification tasks, the cross-entropy loss
measures the difference between the predicted probability distribution and the
actual probability distribution:
Cross-Entropy = -Σ(yi * log(ŷi))
where yi is the actual probability distribution (usually one-hot encoded) and ŷi is
the predicted probability distribution.

The choice of error function depends on the problem being solved, as different functions
have different properties and sensitivities to prediction errors. The error function is one
of the key components for the back-propagation step.
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2.4.3.7 Back-propagation
Back-propagation is an algorithm used in the training of artificial neural networks and is
in simple terms the learning procedure. It is based on the chain rule of calculus and is
used to compute the gradients of the loss function based on the weights of the network.
These gradients are then used by an optimization algorithm, such as gradient descent,
to update the weights and biases, minimizing the error between the network's
predictions and the actual target values [33].
The backpropagation algorithm involves the following steps:

1. Forward pass: The input is passed through the network to compute the output
(predictions) for each neuron. This involves calculating the weighted sum of
inputs and applying the activation function for each neuron in each layer.

2. Compute the error: The error or loss function quantifies the difference between
the network's predictions and the actual target values. Common loss functions
include mean squared error for regression tasks and cross-entropy loss for
classification tasks [38].

3. Backward pass: First the calculation of the gradient for each neuron in the output
layer is done and then propagates the gradients backward through the network,
layer by layer.

4. Update the weights and biases: The optimization algorithm, such as gradient
descent updates the weights and biases using the computed gradients. This
process is repeated for multiple iterations or episodes until the network
converges to a satisfactory level of performance or the error reaches a minimum
threshold [32].

Backpropagation is an extremely efficient method for training neural networks, as it
allows for the calculation of the gradients in linear complexity. The method has been
widely adopted in most deep-learning fields.

2.4.3.8 DQN(deep Q-learning network)
DQN is an extension of the Q-learning algorithm that combines the power of DNNs with
the principles of RL. DQN was introduced by Volodymyr Mnih and his colleagues at
DeepMind in 2013 and demonstrated a significant breakthrough in RL by achieving
human-level performance on a wide range of Atari games [28].
In RL, an agent interacts with an environment to learn the optimal policy that maps
states to actions, maximizing the expected cumulative reward over time. Q-learning is a
popular RL algorithm that learns an action-value function, Q(s,a), representing the
expected value of taking action in state s and following the optimal policy thereafter.
The DQN algorithm extends the traditional Q-learning approach by approximating the
action-value function Q(s,a) using a DNN instead of a Q-table. This neural network,
called the Q-network, takes the state as input and outputs the Q-values for all possible
actions.
The DQN algorithm involves the following key components and modifications to the
standard Q-learning approach:

1. Experience Replay: DQN stores the agent's experiences (state, action, reward,
next state) in a replay buffer. During training, random mini-batches of
experiences are sampled from the buffer to update the Q-network. This approach
breaks the correlation between consecutive experiences and improves the
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stability and convergence of the learning process [42]. Since experience replay
was a very important aspect of our training we will delve into it later.

2. Target Network: To stabilize the learning process, DQN uses a separate target
network, which is a copy of the Q-network but with fixed parameters. The target
network is used to compute the target Q-values for the loss function. The
parameters of the target network are updated periodically by copying the
parameters from the Q-network [32].

3. Loss Function and Optimization: DQN minimizes the mean squared error
between the predicted Q-values and the target Q-values, computed using the
target network and the immediate reward:
Loss = (Q(s, a) - (r + γ * max_a' Q_target(s', a')))^2
where Q(s, a) is the predicted Q-value, r is the immediate reward, γ is the
discount factor, and Q_target(s', a') is the target Q-value from the target network.
The optimization is performed using gradient descent or its variants (e.g.,
RMSProp, Adam).

4. Exploration-Exploitation Trade-off: DQN uses an ε-greedy policy to balance
exploration and exploitation. With probability ε, the agent takes a random action
to explore the environment, while with probability 1-ε, the agent selects the action
with the highest Q-value (exploitation). The value of ε is gradually decayed over
time to encourage more exploration initially and more exploitation as the agent
learns the optimal policy.

The DQN algorithm has been a significant milestone in the development of RL
algorithms and has inspired numerous extensions and improvements, such as Double
DQN, Dueling DQN, and Prioritized Experience Replay.

2.4.3.9 Experience Replay
Experience Replay is an essential component of the DQN algorithm, which addresses
critical challenges in training DRL agents. In RL, an agent interacts with an environment
and learns from its experiences to improve its decision-making policy over time.
However, when using DNNs to approximate the Q-values, several issues arise that can
hinder learning:

1. Temporal correlations: In traditional RL, the agent's experiences are obtained
sequentially, and the training data are highly correlated. This correlation violates
the assumption of independent and identically distributed (i.i.d.) data, which
many optimization algorithms, such as stochastic gradient descent, rely upon.
The correlated data can lead to inefficient learning and instability in the training
process.

2. Overfitting: Due to the limited number of experiences available, the agent may
overfit to a small set of recent experiences, leading to a biased policy that does
not generalize well to unseen situations.

3. Catastrophic forgetting: As the agent updates its Q-network, it may overwrite the
knowledge gained from previous experiences, leading to a phenomenon known
as catastrophic forgetting. This forgetting can result in the agent repeatedly
learning and forgetting the same experiences, which hampers the learning
process.

Experience Replay addresses these challenges by maintaining a replay buffer, which
stores the agent's experiences as tuples (state, action, reward, next state). During
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training, the agent samples random mini-batches of experiences from the buffer to
update its Q-network. This approach has several benefits:

1. Breaking temporal correlations: By sampling random experiences from the buffer,
Experience Replay breaks the correlations between consecutive experiences.
This approach approximates the i.i.d. assumption, enabling more efficient and
stable learning.

2. Reducing overfitting: Random sampling from a diverse set of experiences helps
to prevent overfitting by providing a broader view of the environment and
encouraging the agent to learn a more general policy.

3. Mitigating catastrophic forgetting: The replay buffer retains past experiences,
allowing the agent to revisit and reinforce the knowledge gained from previous
interactions with the environment. This approach mitigates the issue of
catastrophic forgetting and helps the agent to learn more effectively.

In summary, Experience Replay plays a crucial role in improving the stability, efficiency,
and robustness of the learning process in DRL algorithms, such as DQN[32][42].

2.5 Related work

This chapter will include a comprehensive overview of the related work in the field of
traffic signal control, specifically focusing on adaptive and learning-based approaches.
The objective of this review is to provide the reader with a clear understanding of the
state-of-the-art techniques, the underlying principles, and the challenges faced by
researchers and practitioners in this domain. We begin by discussing traditional
methods, such as fixed-time and actuated traffic signal control, which have been widely
implemented in practice. Subsequently, we delve into the more recent advances in
adaptive traffic signal control (ATSC) algorithms, highlighting their contributions and
limitations. The approach will be on a per paper basis in order to be more clear what the
results and the contribution of each paper for the field.

2.5.1 Deep Reinforcement Q-Learning for Intelligent Traffic Signal Control with
Partial Detection [43]
In this paper, the authors present a novel deep Q-learning model for traffic signal control
at single intersections with partial detection over connected vehicles. They introduce a
new state representation for partially observable environments called partial Discrete
Traffic State Estimator (DTSE) and a new reward function for traffic signal control, total
squared delay. The proposed model is evaluated against two existing actuated traffic
signal control algorithms, Max Pressure and Self-Organizing Traffic Lights (SOTL), in a
two-step comparative analysis by episode mean total delay. The model shows improved
performance over Max Pressure and SOTL in full detection, particularly in more
complex intersection configurations with varying traffic demands and for 4-phase
programs. The model also performs efficiently for connected vehicle (CV) penetration
rates as low as 20% in partially observable environments. In conclusion, the proposed
deep Q-learning model offers a more efficient and adaptive approach to traffic signal
control compared to existing actuated methods, with acceptability and optimality
thresholds estimated at 20% and 40% CV penetration rates, respectively. The authors
suggest several avenues for future research, including exploring probabilistic estimation
methods, generalizing partial DTSE across multiple intersection sizes, developing
reward functions based only on CVs, improving performance at low CV penetration
rates, extending the model to decentralized multi-agent RL for coordinated traffic light
grids, and validating the model on real-world simulated networks.
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2.5.2 An Open-Source Framework for Adaptive Traffic Signal Control [44]
This study optimized hyperparameters and compared the performance of different
controllers, such as Max-pressure, DQN, DDPG, Uniform, Webster's, and SOTL. The
results showed that hyperparameters significantly impact the performance of the
controllers, especially learning-based controllers. The Max-pressure algorithm achieved
the best performance, while the SOTL controller exhibited the worst results. The DQN
and DDPG controllers demonstrated interesting performance differences, with the DQN
performing well during the demand peak but poorly during low-traffic demand periods. In
contrast, the DDPG controller achieved low queues and delay at the beginning and end
of the simulation but was surpassed by the DQN controller during the demand peak.
The study highlights the importance of understanding the sensitivity of adaptive traffic
signal controllers to hyperparameters and suggests future research to investigate the
performance difference between RL traffic signal controllers and explore richer function
approximators and RL algorithms to improve their performance.

2.5.3 Using a Deep Reinforcement Learning Agent for Traffic Signal Control [45]
The main goal of this paper is implementing the Deep Q-Learning Traffic Signal Control
Agent (DQTSCA). The experiments were conducted with each training epoch
representing 1.25 hours of simulated traffic. The intersection geometry and traffic
movements were designed to mimic real-world conditions, and the agent was trained
using a biologically-inspired process known as experience replay. The study also
developed a shallow neural network Traffic Signal Control Agent (STSCA) for
comparison purposes. The results showed that the DQTSCA outperformed the STSCA
in three out of four traffic metrics, reducing average cumulative delay by 82%, average
queue length by 66%, and average travel time by 20%. The improved performance is
attributed to the use of the DTSE and the deep architecture employed in the DQTSCA.

2.5.4 Multi-intersection Traffic Optimisation: A Benchmark Dataset and a Strong
Baseline[46]
The authors explore a variety of traffic signal control methods, with a focus on their
proposed Edge-Weighted Graph Convolutional RL (EGU-RL) model. EGU-RL leverages
the advantages of graph convolutional networks (GCNs) to capture spatial relationships
between traffic junctions and RL to learn optimal traffic signal control policies. The
model is designed to jointly control multiple traffic junctions while maintaining
computational efficiency, achieving better performance and generalization compared to
other methods like fixed-rule controllers, random controllers, and other multi-agent RL
models. Competing methods include fixed-rules controller, random controller,
auction-based model, single-agent for single-junction multi-agent RL model (MARL-s),
and grouped multi-agent RL model (MARL-g). The experiments are conducted on
various maps of Suzhou, Manhattan, and synthetic scenes. The EGU-RL model
demonstrates promising results, outperforming other methods in most cases. It can
reduce total vehicle waiting time by over 80% compared to fixed-schedule controllers
and surpasses other methods by a large margin, especially in complex environments.
The EGU-RL model has fewer parameters and demonstrates better generalization
ability to unseen environments. In ablation studies, removing either the edge-weighted
graph convolutional encoder or the unified structure decoder significantly reduces the
model's performance, indicating the importance of these components.
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2.5.5 Reinforcement Learning Benchmarks for Traffic Signal Control[47]
In this paper the experimental section is divided into three parts. First, the authors
validate their benchmark algorithms' implementation by comparing their results to
previous publications. Second, they present a comparative study between
state-of-the-art approaches in realistic traffic scenarios. Finally, they draw general
conclusions that characterize the algorithms and their performance. In the validation
phase, the researchers closely replicate the scenarios presented in the original
publications of the algorithms, such as MPLight and (Federated Multi-Agent
Actor-Critic)FMA2C, and compare their performance to previously reported results.
MPLight is a model-free, DRL algorithm designed for traffic signal control in urban
environments. It employs a single-agent approach and utilizes a DQN to learn the
optimal traffic signal timings based on the current traffic state. MPLight focuses on
minimizing the traffic delay by making decisions on traffic signal timings at each
intersection. FMA2C is another RL-based traffic signal control algorithm that aims to
optimize traffic signal timings in urban networks to improve traffic flow and reduce
congestion. FMA2C uses a coordinated multi-agent approach, where multiple traffic
signal controllers in the network communicate and cooperate to achieve global
optimization. The algorithm employs a federated learning framework, allowing agents
(traffic signals) to learn local policies based on their local observations and experiences.
These local policies are then periodically shared and aggregated to update the global
policy, which in turn is distributed back to the agents. This federated learning approach
enables the agents to learn and adapt to different traffic scenarios while maintaining
coordination and cooperation among them. They find that the implemented algorithms in
their study exhibit performance trends consistent with the original publications. In the
comparative study, the authors evaluate the benchmark RL controllers on a range of
realistic traffic scenarios without tuning their hyperparameters for each scenario. The
results suggest that decentralized control algorithms are more robust than coordinated
control algorithms when considering realistic traffic scenarios. The authors speculate
that this is due, in part, to the efficient data aggregation of the independent learners
utilizing convolutional layers. Future work should examine merging this efficient data
representation with state-of-the-art coordinated control approaches. It is highlighted the
importance of the time elapsed before an algorithm reaches its best performance, as
this is crucial for real-world implementation. In this regard, the MPLight algorithm
presents a trade-off of reliability and converged performance for learning speed, while
FMA2C requires a large amount of time to achieve its best performance on challenging
synthetic coordination problems.

3. IMPLEMENTATION AND EVALUATION OF TRAFFIC SIGNAL
CONTROL METHODS

The previous chapters have provided an overview of the history of traffic signal control,
classical methods, and modern techniques like MAX-Pressure and techniques
incorporating DRL, specifically the DQN algorithm. In this chapter, we present the
implementation and evaluation of the traffic signal control methods discussed earlier in
the thesis. We will describe the simulation environment used to model realistic traffic
conditions, along with the parameters and configurations of each control method.
Furthermore, we will analyze what performance metrics we used to evaluate the
effectiveness of each method in managing traffic flow, reducing congestion, and
minimizing delays.
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3.1 Implementation details
3.1.1 Webster
The standard Webster algorithm calculates the optimal cycle duration based on static
saturation flows and divides the total available green time of an intersection into its
phases proportional to these predefined saturation flows of each phase. However, this
approach is not effective in various real-world traffic scenarios where traffic conditions
are dynamic and constantly changing.
In order to address this issue, we have implemented a dynamic Webster algorithm that
adapts better to real traffic conditions by continuously monitoring traffic data in order to
change the cycle durations. First, the vehicle counts and saturation flows are initialized
with default values per intersection. Then, at regular intervals of a few hundred steps,
we keep a record of the vehicles that have passed through an intersection at that time,
in order to calculate the new saturation flows and cycle durations of each intersection.
Finally, the total available green time is distributed to each phase proportionally to their
saturation flows.
These steps are repeated during the simulation to make sure that the cycle duration is
adapting to current traffic conditions and it allows for more optimal traffic management.
By taking this approach, the Webster algorithm is able to handle multiple traffic
scenarios more efficiently.

3.1.2 Greenwave - MAXBAND
The Greenwave and Maxband algorithms are specifically designed for managing traffic
flow along arterial roads, where the intersections are closely spaced, and the primary
goal is to minimize the number of stops and delays experienced by vehicles traveling in
a coordinated manner. Due to the specialized nature of these algorithms, their
implementation differs from the more general Webster algorithm. In both methods, the
offset between intersections, determined by considering the distance and average
speed between intersections, is adapted while keeping the cycle length fixed.
Specifically MAXBAND algorithm also takes into account the volume of incoming traffic
added from previous intersections and from intersecting roads to optimize its offset and
traffic cycle phases in order to maximize the bandwidth of green time for the critical
direction of flow. For instance, for a downstream intersection along the arterial road, the
volume of vehicles will likely be higher since cars join from the connecting side streets.
Therefore, MAXBAND carefully factors these traffic influxes into its calculation of
optimal offsets and the distribution of green time across phases.
Finally the scenarios for these two algorithms have to be very specific and generally are
difficult to be compared with the rest of the algorithms since in different scenarios their
results are far worse since they are designed to optimise the flow in arterial roads not
small non-linear intersections.

3.1.3 MAX-pressure
The Max Pressure is designed to maximize the throughput at an intersection by
selecting the phase that alleviates the most pressure between incoming and outgoing
lanes. In this implementation, the calculation and decision of the next phase are
performed after a minimum green time of 10 simulation steps, ensuring that the traffic
signal control system continuously adapts to the changing traffic conditions. By having a
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minimum green time ensures that we do not have big red - yellow to green time ratio
which results in worse traffic conditions overall.
Specifically every 10 simulation steps the algorithm calculates the phase pressures for
each phase per traffic light and makes a decision to change the active phase based on
the maximum phase pressure. If the current phase is about to change then a yellow
phase is added in between the old and the new phase to ensure a smooth transition.
Finally, MAX-pressure is a very versatile algorithm that can be adapted to any scenario
and is not limited to specific scenarios, thus we were able to compare it with all the
other algorithms.

3.1.4 DQN
3.1.4.1 Architecture
The architecture of the DQN we employ in our traffic signal control system follows a
sequential structure. This means that the layers are organized in a straightforward
sequence where the output from one layer serves as the input to the next. The network
is constructed using six layers in total, with each layer serving a distinct purpose.

● Input Layer: The first layer, which acts as the input layer to the network, consists
of a volatile number of neurons which is directly connected to the dimensions of
our state representation for the traffic situation.

● Hidden Layers: Following the input layer, our network includes four fully
connected hidden layers, each containing 100 neurons. These hidden layers also
use the ReLU activation function. The role of these layers is to discover and
represent the intricate correlations between our traffic states and the respective
actions.

● Output Layer: The final layer in our network serves as the output layer. This is a
dense layer with the number of neurons equivalent to the number of possible
actions in our traffic signal control system, which are defined by the number of
different phases. This layer uses a linear activation function, meaning the outputs
of the neurons are used directly without any further transformation. Each output
corresponds to the predicted Q-value for a specific action, given the input state.

● Compilation: Once the structure of our model is defined, it needs to be compiled
for training. We utilize MSE as our loss function, a standard approach for
regression tasks, and particularly suitable for Q-learning where we aim to
minimize the disparity between the predicted and target Q-values. For
optimization, we use the Adam optimizer with a specified learning rate. Adam, an
adaptive learning rate optimizer, is highly effective in training deep learning
models. The model also tracks accuracy as a metric, which can provide useful
insight into the learning process of the network.
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Image 5: Our neural network architecture

3.1.4.2 State representation
In our DQN implementation for traffic signal control, the state is represented by a
two-dimensional grid for each incoming road, with each road possibly having multiple
lanes. The intersection in focus is dissected into various incoming lanes, and each lane
is further segmented into equal parts. Each segment or grid cell corresponds to a
particular portion of the lane, and the value in each cell is a count of the current number
of vehicles occupying that specific segment. This approach effectively transforms the
real-world traffic scenario into a structured numerical representation. The grid-based
state encapsulation provides a scalable and detailed view of the traffic situation at the
intersection. This comprehensive representation captures the spatial distribution and
congestion levels on the incoming lanes, providing an efficient input state to the DQN
for decision-making on traffic signal control.

Image 6: How the state of a road representation is quantified

3.1.4.3 Action representation
Our action space is represented by the different green and partial green phases of the
traffic signal at the intersection. Each phase is a unique configuration of the traffic signal
control system. For instance, for a specific incoming road with two potential directions,
the traffic control system can assume a variety of phases. These phases can range
from all green lights (indicating clear passage), all red lights (indicating a halt), all yellow
lights (signifying an impending change in signal), to partial green phases (where, for
instance, a road conflicting with the opposing one might still have the green light). Only
green and partial green phases constitute distinct actions that the DQN agent can take.
For every given state of the traffic situation, the agent chooses an action - i.e., a phase
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of traffic lights - that it expects to be most effective according to its current policy. This
approach of defining actions provides a direct mapping from the agent's decisions to the
operations of the real-world traffic signal system, enabling a practical and intuitive
framework for traffic signal control.

3.1.4.4 Reward
The reward function plays a critical role in guiding the agent towards optimal actions.
The reward is intricately tied to the queue length in each lane at the agent's intersection,
with the goal of the DQN agent being to minimize these queue lengths, thus promoting
smooth and efficient traffic flow. Specifically, we quantify the total queue length for each
state-action pair. The reward assigned to the agent is the negative of this total queue
length. The negative sign is crucial because it instructs the DQN to maximize its
cumulative reward, which effectively means minimizing the total queue length at the
intersection. This reward value is subsequently utilized by the Adam optimizer - an
algorithm for first-order gradient-based optimization of stochastic objective functions.
The optimizer uses this signal to adjust the weights of the neural network. By using the
negative of the total queue length as a performance indicator, the neural network is
effectively guided to learn the most beneficial traffic signal phases for reducing
congestion at the intersection. As a result, the RL agent consistently refines its policy,
becoming more proficient at controlling the traffic signals as it accumulates more
experience.

Image 7: Reward function results during the 30 episodes of training

3.1.4.5 Training
Each simulation run, or "episode", lasts for 5000 steps inside of SUMO, and the entire
training process comprises 30 such episodes. In our model, every traffic signal is
managed by a separate DQN agent. These agents interact with the traffic environment
and learn from it concurrently, allowing for a distributed and efficient approach to
managing complex traffic scenarios. The training procedure leverages the concept of
experience replay, a technique widely used in DQN models.
An "experience" is a fundamental unit of information that the DQN agent uses to learn
and update its policy. Each experience is a tuple that consists of four elements: a state,
an action, a reward, and the subsequent state.

● The "state" is the current representation of the traffic situation at an intersection,
captured as a 2-dimensional grid for each incoming road, as discussed earlier.
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● The "action" is the decision made by the DQN agent in response to the current
state, represented by the selected traffic signal phase.

● The "reward" is the feedback received after executing the action, computed as
the negative of the total queue length at the intersection.

● The "next state" is the traffic situation resulting from the execution of the action,
again represented in the form of a 2-dimensional grid.

Over the course of each episode, the agents' experiences are stored in a memory pool.
From this experience pool, 100 experiences are sampled randomly to form a mini-batch.
The DQN agent then makes predictions for the Q-values based on the current state and
updates its estimates using the observed reward and the maximum predicted Q-value
for the next state, effectively following the Q-learning update rule. This stochastic batch
update process is repeated 20 times, allowing the network to iteratively refine its
estimates of the Q-values. This method of training allows for a more stable and robust
learning process, by breaking the correlation between experiences and enabling the
agent to learn from a diverse set of past actions and outcomes. As a result, the trained
DQN agent is equipped to effectively control the traffic signals, adapting to the dynamics
of the traffic flow and making decisions that minimize queue lengths at the intersections.

3.2 Evaluation Techniques
Now we will discuss about the evaluation techniques and methods used to compare the
performance of the five traffic control algorithms, Webster's method, Greenwave,
Maxband, Max Pressure, and DQN. To obtain a deep understanding of the strengths
and weaknesses of each algorithm, a variety of scenarios will be created to simulate
different traffic conditions and environments. Furthermore, specific scenarios will be
designed to highlight the unique characteristics and advantages of each algorithm. The
comparison will be based on performance metrics to ensure a fair assessment of each
method.

3.2.1 Evaluation Technique
The evaluation of the five traffic control algorithms will be conducted through SUMO
which allows the creation of realistic traffic scenarios with customizable parameters,
such as network configurations, different traffic patterns, and signal timings. The
software will also facilitate data collection on various performance metrics, providing a
quantitative basis for the comparison of the algorithms.

3.2.2 Performance Metrics
To ensure a fair comparison, the algorithms will be evaluated based on performance
metrics. These metrics will provide a quantitative assessment of each algorithm's
effectiveness in managing traffic flow and minimizing delays. The key performance
metric is the total delay experienced by vehicles at signalized intersections. Another
metric used for the arterial road scenario was the total simulation time. In order to
simulate an arterial road just like a real-world one, you want maximum congestion. The
total delay performance metric does not work because there is no infinite space inside
of the simulation environment to have all the vehicles at once. So the best use is to
check when the simulation will finish(the last time a vehicle was still inside of the
simulation)
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3.2.3 Scenarios Analysis and Comparison
To carry out a comparative evaluation and comparison of the traffic control algorithms,
an assortment of scenarios has been developed. Each of these scenarios is designed to
simulate diverse traffic conditions and environments, incorporating various levels of
complexity, road infrastructure, and traffic congestion. The performance metrics
collected from the simulations will be analyzed to determine the effectiveness of each
algorithm in various scenarios. The comparison will involve examining the performance
of each algorithm across all scenarios, and identifying the strengths and weaknesses of
each method. The analysis will also highlight the unique advantages of specific
algorithms in specialized scenarios, showcasing their potential applications in real-world
traffic management.
Scenario 1: This represents the simplest case, involving a single intersection where two
roads intersect at a 90-degree angle, each road having two incoming lanes for each
side.

Image 8: Single intersection with two lines each

Scenario 2: Building on the first scenario, this features a double intersection, mirroring
the structure of the single intersection but with one more intersection next to the first
one.

Image 9: Double connected intersection

Scenario 3: Building on the first scenario, this scenario features an intersection with
unbalanced traffic. Involving a single intersection where two roads intersect at a
90-degree angle, one road having three lanes and the other one with two lanes.
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Image 10: Unbalanced single intersection with three lanes on the main road and two lanes on
the vertical

Scenario 4: Introducing a higher degree of complexity, this scenario mimics a block of
congested roads in city centers, simulated through a 3x3 grid of intersections.

Image 11: 3x3 grid with two lanes on each road

Scenario 5: To further escalate the complexity and closely simulate real-world traffic
conditions, this scenario utilizes a 4x4 grid of intersections, reflecting highly congested
city blocks.
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Image 12: 4x4 grid with two lanes on each road

Scenario 6: This scenario is designed to replicate an arterial road, which features a
three-lane road intersecting with two different two-way roads at two distinct points.

Image 13: Arterial road with one way three lane road and two verical two lane road

Scenario 7: Finally, the most complex scenario draws from reality, replicating a
large-scale urban traffic scenario from the center of Manhattan with 18 intersections of
varying sizes.
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Image 14: Real case scenario, depicting neighborhood in Manhattan

4. RESULTS AND DISCUSSION
Following the implementation details, we will analyze the results of the comparative
analysis, highlighting the strengths and weaknesses of each method under different
traffic conditions and scenarios. This analysis will provide insights into the suitability of
each approach for various traffic management applications and help identify potential
areas for improvement and future research. Finally, we will discuss the implications of
our findings, drawing conclusions about the overall performance of classical and
modern traffic signal control methods, and providing recommendations for traffic
management practitioners and policymakers. This chapter aims to bridge the gap
between theory and practice, ultimately contributing to the development of more efficient
and adaptive traffic signal control systems for our increasingly urbanized world.
Scenario 1: The simplest scenario witnessed the lowest waiting time with the DQN
algorithm, reducing waiting time by 7.2% compared to Max Pressure, and 27.3%
compared to the classical Webster method. This demonstrates the efficacy of modern
AI techniques, even in less complicated traffic situations.
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Image 15: Scenario 1 - Single intersection results

Scenario 2: Similar to the first scenario, DQN performed the best. It reduced waiting
time by 51.7% compared to Max Pressure, and 28.1% compared to Webster. It further
underscores the potential of DQN for larger, yet not overly complex, traffic systems.

Image 16: Scenario 2 - Double connected intersection results

Scenario 3: In this scenario, DQN outperformed both other algorithms, with waiting
times less by 11.5% and 23.7% than Max Pressure and Webster, respectively. It
indicates that DQN can handle unbalanced traffic more efficiently.

Image 17: Scenario 3 - Unbalanced intersection results

A. Niarchos-N. Tsiougkranas 44



Comparative study on classical and modern ways of traffic signal control with the use of a simulator

Scenario 4: DQN's performance remains superior even in more complex scenarios like
the 3x3 grid. It reduced waiting time by 19.5% compared to Max Pressure and by 40.5%
compared to Webster. The DQN's ability to learn and adapt from larger data sets makes
it suitable for managing dense urban traffic.

Image 18: Scenario 4 - 3x3 grid results

Scenario 5: For the highly congested 4x4 grid, DQN again delivered the lowest waiting
times. It performed 33.6% better than Max Pressure and 49.3% better than Webster.
This result strengthens the argument for DQN's robustness in dealing with high
complexity and traffic volume.

Image 19: Scenario 5 - 4x4 grid results

Scenario 6: DQN performed the best, followed closely by Max Pressure and Webster,
which showed identical results. Interestingly, both Greenwave and Maxband, dedicated
arterial road algorithms, outperformed by DQN. It demonstrates that DQN's adaptive
learning capability is beneficial, even in specific traffic layouts like arterial roads.
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Image 20: Scenario 6 - Arterial road results

Scenario 7: In our most complex scenario, DQN again provided the lowest waiting time,
outperforming Max Pressure by 48.3% and Webster by 55.9%. Despite the complexity
and diversity of the Manhattan scenario, DQN demonstrated consistent superiority,
indicating its utility for large-scale, real-world urban traffic management.

Image 21: Scenario 7 - Real case results

In conclusion, the DQN algorithm demonstrated superior performance across all
scenarios. It outperformed both the dynamic Webster algorithm and the more modern
Max Pressure algorithm. DQN's adaptability to traffic flow and its learning capability,
which allows it to optimize signals based on past experiences, contribute to its
effectiveness. This implies a potential shift in traffic signal control towards machine
learning-based methods like DQN. While classical methods have their advantages and
are useful under certain circumstances, modern AI-driven techniques could lead to
more efficient traffic management and a reduction in waiting times. However, further
research is needed to investigate DQN's performance under other traffic scenarios, and
how to most efficiently integrate such systems in real-world traffic management.

5. CONCLUSIONS
This thesis presents a comparative study of five distinct traffic control algorithms,
ranging from classical methods such as Webster's method, Greenwave, and Maxband,
to dynamic approaches, namely the Max Pressure method and a Deep Q-Network
(DQN) model. The research encapsulates a variety of traffic scenarios simulated via
SUMO traffic simulator, and utilizes performance metrics such as total delay and total
simulation time.
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Upon evaluating the results, the DQN model consistently outperformed all other
methods across all traffic scenarios. The modern AI-based DQN approach showcased
superior efficiency, robustness, and adaptability, reducing waiting times significantly
compared to other methods, even in highly complex scenarios. These findings indicate
a potential shift in traffic signal control towards machine learning-based methods,
particularly those deploying reinforcement learning like DQN.
5.1 Challenges
However, the implementation of DQN isn't without its challenges. The method incurs
substantial installation costs, and the complexity of training the model can increase in
exceptionally high traffic scenarios, particularly when traffic is congested due to
blockage. Moreover, this method demands servers with high availability and reliable
fallback mechanisms to ensure consistent performance. Lastly, the reliance on sensors,
which are subject to potential issues and costly repairs, could lead to chaotic traffic
situations if not managed properly.
5.2 Limitations
Some limitations that we had to follow in order to be able to conduct the simulations
were:

● One type of vehicles: Standard size vehicles which is given by SUMO. Also no
pedestrians were included in the simulations. As a result the generic traffic data
were not real world derived but they were automatically created.

● Most of the intersections were 4-way intersections with two lanes in order to
simplify the traffic scenarios.

● No special scenarios like accidents, constructions and emergency vehicles were
included in the simulation scenarios.

● Fixed-phase durations: Fixed minimum green time of 10 simulation steps and
fixed yellow phase time of 3 simulation steps.

● The DQN agents have to be trained for each scenario specifically because the
traffic lights have different input and output states.

5.3 Future work
In the future we should delve into further research and experimentation in diverse traffic
scenarios, including possible strategies to mitigate the aforementioned challenges. This
research is vital before such systems can be seamlessly integrated into a real-world
traffic light management system.
In detail, some real-world tests with a bigger variety of vehicles, extreme scenarios,
multiple phase configurations and complex road networks could be conducted.
Moreover, our DQN approach follows the pattern of a single agent per traffic light in
order to simplify the state and action spaces. In theory, the ideal approach could be to
have a single agent for the whole network which will have the context of the whole
network and will be able to make the optimal decisions but this is extremely hard to
scale in complex urban scenarios. Another approach to mitigate this scaling issue could
be having agents that control a cluster of traffic lights, this could potentially solve the
scaling issue because the state and action spaces would be limited.
Despite these challenges, the potential of the DQN model in optimizing traffic
management is undeniable. Its robustness and adaptability, and its ability to learn from
past experiences and adapt to dynamic traffic flows, make it a promising contender for
future traffic management.
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In conclusion, while classical methods hold their advantage in specific circumstances,
the introduction of AI and machine learning in traffic signal control can revolutionize the
industry, offering more efficient traffic management and substantially reducing waiting
times. The future of urban traffic management appears to be taking a significant shift
towards AI-based solutions, driving into an era of smarter, more responsive cities.
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ABBREVIATIONS - ARCHIVES - ACRONYMS

SUMO Simulation of Urban MObility

DQN Deep Q-Network

DNN Deep Neural Network

RL Reinforcement Learning

DRL Deep Reinforcement Learning

Tanh Tangent hyperbolic

ReLU Rectified Linear unit

MSE Mean Squared Error

i.i.d. independent and identically distributed

DTSE Discrete Traffic State Estimator

DDPG Deep Deterministic Policy Gradient

SOTL Self-organizing Traffic Lights

CV Connected Vehicles

DQTSCA Deep Q-network Traffic Signal Control Agent

STSCA Swallow network Traffic Signal Control Agent

DTSE Discrete Traffic State Encoding

EGU-RL Edge-Weighted Graph Convolutional Reinforcement Learning

GCN Graph Convolutional Network

MARL-s single-junction multi-agent RL

MARL-g grouped multi-agent RL

FMA2C Feudal Multi-agent Advantage Actor-Critic
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