

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Proof-of-Concept solution for RE-CENT service method design

Ilias C Tziviskos

Supervisor(or supervisors): Dr. Nikos Passas, Prof. Dionysis Xenakis

ATHENS

MAY 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Λυση Αποδειξης Ιδεας Για Σχεδιαση Μεθοδου Υπηρεσιας Re-
Cent

Ηλίας Χ Τζιβίσκος

Επιβλέπων (Επιβλέποντες): Δρ. Νίκος Πασσάς, Καθ. Διονύσης Ξενάκης

ΑΘΗΝΑ

ΜΑΪΟΣ 2023

BSc THESIS

Proof-of-Concept solution for RE-CENT model service

Ilias C Tziviskos

S.N.: 1115201500253

SUPERVISORS: Dr. Nikos Passas, Prof. Dionysis Xenakis

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Λυση Αποδειξης Ιδεας Για Σχεδιαση Μεθοδου Υπηρεσιας Re-Cent

Ηλίας Χ Τζιβίσκος

Α.Μ.: 1115201500253

ΕΠΙΒΛΕΠΟΝΤΕΣ Δρ. Νίκος Πασσάς, Καθ. Διονύσης Ξενάκης

ABSTRACT

With the increase in mobile devices and simultaneously the volume of data received and

transmitted by them, the current mobile network architecture faces challenges in

accommodating them. In recent years, innovative network architectures have emerged,

providing solutions to the issues present in the current network architecture. One such

method is the RE-CENT service design approach. In this thesis, we present a proof-of-

concept solution based on the RE-CENT service method, by utilizing widely available

hardware and software. We analyze i) the architecture of this solution by breaking it down

to its main components as well as the technologies used for both the network and

application layer, ii) the steps of the protocol designed for their communications and iii) the

test cases that measure the effectiveness of the solution. Through our results we showed

the viability of the proof-of-concept solution, having no penalty in performance no matter

the number of concurrent mobile users and amount of data requested and transmitted

through the network.

SUBJECT AREA: Telecommunications

KEYWORDS: SDN, IoT, OpenFlow, video streaming, Wi-Fi

ΠΕΡΙΛΗΨΗ

Με την αύξηση των κινητών συσκευών και παράλληλα του όγκου δεδομένων που

λαμβάνονται και μεταδίδονται από αυτές, η τωρινή αρχιτεκτονική του κινητού δικτύου

αντιμετωπίζει προκλήσεις στην προσαρμογή τους. Τα τελευταία χρόνια, εμφανίζονται

καινοτόμες αρχιτεκτονικές δικτύου που παρέχουν λύσεις στα προβλήματα που υπάρχουν

στην τωρινή αρχιτεκτονική δικτύου. Μία τέτοια μέθοδος είναι η προσέγγιση σχεδίασης

υπηρεσιών RE-CENT. Σε αυτήν τη διατριβή, παρουσιάζουμε μία λύση προσέγγισης

απόδειξης βασισμένη στη μέθοδο υπηρεσίας RE-CENT, χρησιμοποιώντας ευρέως

διαθέσιμο υλικό και λογισμικό. Αναλύουμε i) την αρχιτεκτονική αυτής της λύσης,

διαχωρίζοντας τα κύρια της συστατικά καθώς και τις τεχνολογίες που χρησιμοποιούνται

τόσο στο επίπεδο του δικτύου όσο και της εφαρμογής, ii) τα βήματα του πρωτοκόλλου που

σχεδιάστηκε για την επικοινωνία τους και iii) τις περιπτώσεις δοκιμών που μετρούν την

αποτελεσματικότητα της λύσης. Μέσω των αποτελεσμάτων μας, αποδείξαμε την

εφικτότητα της λύσης, χωρίς καμία ποινή στην απόδοση, ανεξαρτήτως αριθμού

ταυτόχρονων κινητών χρηστών και ποσότητας δεδομένων που αιτούνται και μεταδίδονται

μέσω του δικτύου.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τηλεπικοινωνίες

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: SDN, IoT, OpenFlow, video streaming, Wi-Fi

TABLE OF CONTENTS

1 INTRODUCTION AND MOTIVATION ... 1

2 KEY TECHNOLOGIES .. 9

2.1 SDN ...9

2.2 Open vSwitch .. 15

2.3 O-RAN .. 17

2.4 802.11 standard .. 19

2.5 Android .. 19

2.6 Blockchain... 22

2.7 Linux related programs .. 25

2.7.1 hostapd ... 25

2.7.2 dnsmasq ... 26

2.7.3 dhcpcd .. 26

2.7.4 FFmpeg .. 26

2.7.5 Nginx ... 28

2.7.6 MySQL .. 31

2.7.7 Flask ... 32

3 PROBLEM STATEMENT AND SOLUTION PROPOSITION 33

3.1 Preview of the Solution .. 34

3.2 Network Discovery and Pairing... 34

3.3 Service Negotiation and Registration .. 35

3.4 Online Service and Monitoring.. 35

3.5 Detailed Architecture ... 37

3.6 Access Point Discovery ... 37

3.7 Access Point Filtering and Shortlisting ... 38

3.8 Access Point Connection .. 38

3.9 Execution Scenarios .. 39

3.9.1 No Credentials .. 39

3.9.2 Registering a user... 39

3.9.3 Monitoring a user .. 40

3.9.4 Un-registering a user .. 41

3.10 Problems and Possible Bugs .. 41

3.10.1 DNS and ARP packet tracking for mobile registered users ... 41

3.10.2 Routed Access Point configuration... 41

3.10.3 Android application on untested operating systems ... 42

3.10.4 Android Wi-Fi connection ... 42

3.10.5 Streaming ready videos .. 42

3.10.6 Streaming server logging .. 42

3.10.7 Video streaming chunk sizes .. 42

3.10.8 Hostapd service AP initialization .. 43

When booting the Raspberry Pi device, there is a chance that the hostapd service might not initialize the

AP correctly. This problem is fixed by running the below command .. 43

sudo systemctl restart hostapd.service .. 43

4 IMPLEMENTATION ... 44

4.1 Android .. 44

4.2 Python .. 53

4.3 Bash ... 63

5 NUMERICAL RESULTS .. 65

5.1 Mobile Client Performance .. 66

5.2 SDN Controller data monitoring performance ... 67

5.2.1 Throughput for different server chunk sizes and client player buffer sizes 67

5.2.2 Throughput of video streaming to multiple users ... 69

5.2.3 Runtime Events and Response Time ... 69

6 INSTALLATION AND CONFIGURATION ... 72

6.1 Installing Python 3 .. 72

6.2 Python 3.9 virtual environment ... 72

6.3 OpenFlow switch and Access Point ... 72

6.3.1 Installing Raspbian OS ... 72

6.3.2 Accessing the device .. 75

6.3.3 Configuring the Access Point ... 75

6.3.4 OpenFlow Installation and Configuration ... 76

6.3.5 External SDN Controller ... 79

6.3.6 Hostname Configuration for Registration Server .. 79

6.3.7 Hostapd patch ... 79

6.4 RYU SDN controller .. 80

6.5 MP4 video meta info ... 81

6.6 Generate videos .. 81

7 CONCLUSION ... 83

8 REFERENCES .. 88

TABLE OF FIGURES

Figure 1: Mobile subscriptions by technology (billion) [2] ... 1

Figure 2: Cellular IoT connections by segment and technology (billion) [2] 2

Figure 3: Global mobile network data traffic (EB per month) [2] ... 3

Figure 4: user-driven RE-CENT service phases [4] .. 5

Figure 5: server-driven RE-CENT service phases [4] ... 6

Figure 6: Software Defined Network Architecture ... 10

Figure 7: OpenFlow Switch Architecture .. 11

Figure 8: OpenFlow Entry specification .. 12

Figure 9: OpenFlow Matching Procedure ... 12

Figure 10: Open vSwitch basic Architecture ... 15

Figure 11: Open vSwitch Basic Components and Tools offered ... 16

Figure 12: O-RAN Architecture ... 18

Figure 13: Information Element general format .. 19

Figure 14: Android OS Architecture .. 22

Figure 15: Block (a) and Blockchain Architecture (b) .. 24

Figure 16: Routed AP General Configuration ... 25

Figure 17: Bridged AP general configuration .. 26

Figure 18: FFmpeg transcoding process .. 27

Figure 19: FFmpeg simple (a) and complex (b) filtergraphs ... 28

Figure 20: NGINX Architecture ... 30

Figure 21: Vendor Specific element definition .. 33

Figure 22: Protocol Phases .. 34

Figure 23: Mobile Client .. 35

Figure 24: Network Infrastructure ... 36

Figure 25: Network Controller ... 36

Figure 26: No credentials.. 39

Figure 27: Registration Process ... 39

Figure 28: Flows Assigned per User for TCP, UDP (1a, 1b) and ARP (2a, 2b) Connections

 ... 40

Figure 29: Monitoring Users' data ... 40

Figure 30: Un-Registering Procedure ... 41

Figure 31: Average Scanning (left) and Connection (right) time ... 66

Figure 32: Average Throughput for Varying Chunk Sizes (Mbps) 68

Figure 33: Average Network Throughput for Multiple Concurrent Users 69

Figure 35: Bytes and throughput measured during a video session 71

Figure 34: Events from mobile client, SDN Controller and Negotiation Server 71

Figure 36: Raspberry Pi imager software ... 73

Figure 37: Raspberry Pi imager OS selection list (Latest OS) .. 74

file:///G:/My%20Drive/Thesis/Thesis300523.docx%23_Toc137244396
file:///G:/My%20Drive/Thesis/Thesis300523.docx%23_Toc137244399

TABLE OF TABLES

Table 1: Wi-Fi Scan Throttling .. 38

Table 2: MainActivity class ... 44

Table 3: HTTPSession class .. 47

Table 4: WifiReceiver class .. 47

Table 5: WiFiScanResults class ... 48

Table 6: WiFiConnection class ... 48

Table 7: Metrics class ... 50

Table 8: ExoVideoPlayer class ... 51

Table 9: ExeEventListener class .. 52

Table 10: ExoAnalyticalListener ... 52

Table 11: ExoTransferListener class .. 52

Table 12: ThroughputHandlerThread class .. 53

Table 13: ThroughputHandler class .. 53

Table 14: ControllerMonitor class ... 54

Table 15: RegistrationController class .. 56

Table 16: ControllerMetrics class ... 57

Table 17: userDataClass class ... 59

Table 18: switchInfo class... 60

Table 19: switchInfoList class ... 60

Table 20: flask_test.py functions .. 61

Table 21: shared_funtions.py functions .. 61

Table 22: flask_video_streaming.py functions .. 62

Table 23: sharder_functions functions .. 63

Table 24: Raspberry Pi 3B + Specifications ... 65

Table 25: Mobile Devices Specifications .. 65

Table 26: Big Buck Bunny video information .. 65

Table 27: Variables for chunk size based video streaming ... 67

Proof-of-concept solution for RE-CENT model service

1

I. Tziviskos

1 INTRODUCTION AND MOTIVATION

Over the last decade, mobile technology has had an incredible impact on society and

business. From a recent report [1], mobile subscriptions have surpassed 8 billion and it is
forecasted that will reach 9 billion in the coming years. The commercialization of 5G by
service providers globally has brought an influx of subscriptions by 98 million, bringing the
total number to 570 million during the third quarter of 2021, while it is estimated that this
number will reach 660 million by the end of 2021. In parallel, 4G subscriptions are still
dominant, totaling more than 4.7 billion, but projected to decline to around 3.3 billion by the
end of 2027 as subscribers migrate to 5G. The same principle applies for 3G and 2G
subscriptions as well.

Figure 1: Mobile subscriptions by technology (billion) [2]

At the same time, Internet-of-Things (IoT) finds use on applications related to large-scale
smart metering, smart buildings, transportation, logistics and security and surveillance.
Most of those applications operate under several broadband cellular network generations,
with 2G and 3G being dominant. As 5G New Radio (NR) [2] is being introduced in old and
new spectrum, and applications becoming more demanding in throughput and latency,
more and more IoT devices connected via 2G and 3G have been in slow decline since
2019 as it is speculated that by the end of 2027 40 percent of cellular IoT connections will
be broadband IoT (4G/5G), with 4G connecting the majority.

Proof-of-concept solution for RE-CENT model service

2

I. Tziviskos

Figure 2: Cellular IoT connections by segment and technology (billion) [2]

Connected devices will exceed 50 billion by 2025, including IoT devices. A major driving
factor for this imminent explosion in devices can be attributed to the low cost of production
as well as new application opportunities. For mobile cellular devices, over 400 5G enabled
smartphones to have been launched, accounting for 23 percent of global volume. This is
significantly higher than 4G’s volume for the same cycle, being 8.3 percent. For the later,
IoT devices have been rising due to their low-cost and ease of adaptation of several
technologies, e.g., broadband IoT with 4G and 5G, Massive IoT with NarrowBand-IoT (NB-
IoT) or Cat-M, as well as Legacy with 2G and 3G.

As the number of devices grows, data usage follows in similar pattern, estimated to
surpass the 160 Exabytes per month by the year 2024. Smartphones continue to be at the
epicenter of generating most of the mobile data traffic, calculated to be around the 97
percent. This growth in mobile data traffic per smartphone can be attributed to i) the
improved device capabilities, ii) an increase in data-intensive content, with video streaming
services being the most popular among users, and iii) more data consumption due to
continued improvements in the performance of deployed networks.

In view of that, the telecommunication industry has put considerable effort towards the
consolidation of the fifth generation (5G) of mobile data networks. Firstly, with the release
of a standalone version of the NR, 3GPP has specified the architectural options towards
the evolution of LTE-compliant networks to fully-fledged 5G systems, incorporating
forward-thinking radio access technologies, such as multi-GHz spectrum communications,
dynamic beamforming, and small-sized cellular hotspots. Secondly, via the means of
network softwarization and virtualization, the mobile network operators (MNOs) will be in
position to dynamically isolate network resources towards serving specific vertical
applications with guaranteed quality of service (QoS), or quality of experience (QoE), a.k.a.
network slicing [3], or even open up their core network functionality to other third-party
(OTT) service providers, e.g. authentication, authorization, accounting (AAA).

Proof-of-concept solution for RE-CENT model service

3

I. Tziviskos

Figure 3: Global mobile network data traffic (EB per month) [2]

The current network architecture for mobile data access is carried out through
heterogenous, multi-tier, multi-domain, multi-owned RAN islands, ranging from user-
installed access points for private use (e.g., Wi-Fi routers), to large-scale mobile data
networks enabling nation-wide coverage and world-wide roaming. Regardless, for clients to
access the cellular mobile data networks there need to be a predetermined data usage
plan, agreed with an MNO in the form of fixed term contracts. For non-cellular fixed
wireless access service for local area networks (WLANs), the option for long-term access
based on leasing backhaul connectivity to the Internet exists, yet again governed by an
internet service provider (ISP) in the form of service license agreements (SLAs). This
allows a set number of users to access the Internet by using given credentials. For short-
term access to the Internet, users are forced either to use money payments to acquire a
set amount of data or a limited time window, or with “free-of-charge” and open networks by
registering to a web server (e.g., captive portal) via a social media account, with which the
users agree on having their personal data harvested.

Recently, contract-less mobile data access models have seen an increase in popularity.
Contract-less models open up the currently proprietary network core of telecommunication
standards, allowing for more flexible service while on the same time, giving the opportunity
for OTT vendors to be enter today’s market. One of many proposed solutions is the
REsource sharing model for user-CENTric digital content delivery over beyond 5G mobile

data networks (RE-CENT) model [4].

In heterogeneous wireless networks, end users utilize different radio access technologies
(RATs) to access the available network tiers, having as an entry key pre-cached access
credentials provided by their home network operator, e.g., subscriber ID, IMSI, social
media account, network keys and passwords. Depending on the RAT and the access rights

Proof-of-concept solution for RE-CENT model service

4

I. Tziviskos

of end users, mobile data access is governed by factors like i) the coverage provided by
the accessible network tiers in the near area, ii) the status of nearby attachment points
(considering the additional load offered by other users and the backhaul connectivity
available), and iii) the mobile data usage plan agreed with the home operator per user.

In contrast, the RE-CENT model enables end users, access points and cellular base
stations to share, trade and consume their network assets (backhaul links, Internet
connectivity, cached content, etc.) in real-time and without the need for SLAs to be
established beforehand. Instead, end users (termed as RE-CENT clients) and service
providers (termed as RE-CENT servers) can set up on-the-fly service agreements and
implement blockchain-backed service charging on a per delivered video chunk basis in line
with their current service requirements, coverage, available assets and preferences.

The implementation of the RE-CENT model can be broken down in three phases, i) service
discovery and pairing, ii) service negotiation and parameterization and iii) online service
management and charging.

During the service discovery and pairing phase, RE-CENT clients communicate their
service requests to nearby RE-CENT servers, by specifying necessary parameters
regarding the target content, such as URL, author, keywords etc., and the target QoE key
performance indicators (KPIs). Some of the KPIs specified by RE-CENT users are
min/average video bitrate, delay tolerance, packet loss rate, available buffer, target screen
resolution. The service discovery and pairing can be implemented by either using a client-
driven or server-driven approach.

Proof-of-concept solution for RE-CENT model service

5

I. Tziviskos

Figure 4: user-driven RE-CENT service phases [4]

Under the client-driven approach, RE-CENT clients broadcast their service requests to
nearby RE-CENT servers. In turn, RE-CENT servers should be able to estimate its
capability to carry out a service request on the basis of the parameters specified by the RE-
CENT client and the locally available asset pools (content, spectrum, Internet connectivity,
processing and storage capacity, RAT interfaces, etc.). After the QoE estimation, RE-

Proof-of-concept solution for RE-CENT model service

6

I. Tziviskos

CENT servers respond with a targeted service offer, showing its interest on servicing the
user’s request.

Figure 5: server-driven RE-CENT service phases [4]

The server-driven approach has the RE-CENT servers advertise their available asset pools
by broadcasting to users in close proximity. Advertised assets include locally cached

Proof-of-concept solution for RE-CENT model service

7

I. Tziviskos

content, data rates for Internet connectivity, tariff list, etc. RE-CENT users receiving these
advertisements yet again need to target RE-CENT users to specify their service request
according to the servers’ assets and receive service offers and select the most suitable
server (pairing).

The service negotiation and parameterization phase resolves around the server selection
from a RE-CENT user and parameter negotiation between RE-CENT users and the
shortlisted servers necessary for the over-the-air content delivery. RE-CENT clients, having
received offers from nearby RE-CENT servers, deploy their own server selection
strategies, taking into consideration criteria with regards to i) the offer’s included price, ii)
the RAT options available by the RE-CENT server, iii) QoE KPIs, iv) how reputable the
server is and v) other service implementation options provided by the server (e.g. support
of selected codec, use of minimum encryption). With the offers shortlisted, clients initiate
negotiations with the remaining RE-CENT servers around service parameters spanning the
entire protocol stack. The target QoE KPIs are concluded having as basis the initial
request/offers. Following, parameters regarding the over-the-air content delivery are
specified such, but not limited to, the RAT technology to be utilized, the spectrum bands
through which the delivery will take place and the encryption protocol to be used. Finally,
the service peers should also agree on the payment relay service, if that is desired, for
reducing the on-chain costs attributed to service charging implementations or use micro-
payments.

After the negotiation and parameterization phase has concluded, a server has been
selected and the online service and management phase is initiated. Throughout this phase,
the RE-CENT client and server are responsible for establishing, maintaining, and
terminating the mobile video service at network-level. From the blockchain-level
perspective, the agreed payment timeplan from the negotiation and parameterization
phase is followed by the service peers, to implement blockchain-backed charging by
utilizing either a direct on-chain P2P payments, or off-chain through SC-certified payment
methods. According to the trust a peer has, the agreed payment plan can be tight in case
of service delivery among untrusted peers, or a single transaction can be implemented for
assured trustworthy peers. To ensure service continuity, network-level interactions are
necessary for handling mobility management and QoE-driven service provisioning
deployment. Under the RE-CENT mobile data access model, service management logic is
transferred to the client, assuming user-driven network-assisted service provisioning. The
client is responsible for any sudden service discontinuity (e.g., either due to reliability
issues with the selected RE-CENT server, or due to user’s mobility), taking actions to
control for such unforeseen events by incorporating network measurements provided by
the server.

Focusing on the advantages and disadvantages the two approaches of the service
discovery and pairing are modeled, the server-driven RE-CENT service discovery and
pairing has the RE-CENT servers advertise their generic service offers in timed intervals
without the need of RE-CENT users being present. This has the disadvantage of using up
precious network resources to broadcast a large number of messages. In addition, mobile
devices belonging to RE-CENT clients have to “listen” to said broadcasts, further straining

Proof-of-concept solution for RE-CENT model service

8

I. Tziviskos

the battery usage of their devices. On the other hand, the user-driven service discovery
and pairing has the advantage of having the RE-CENT client first go through a service
specification and broadcasting its request to nearby RE-CENT servers reactively. The
targeted nature of this procedure uses up less network resources, by using the medium
less freely, allowing for a more reactive service control. Although, this procedure can still
put a strain on the battery life of a device, it will still be noticeably less than the server-
driven approach.

In this paper, we give a proof-of-concept implementation of the user-driven RE-CENT
service model analyzed above, due to its resourcefulness of network resources and the
targeted nature of the protocol towards mobile terminal users, by utilizing modern and
broadly accessible technologies in development tools, the software and hardware.

The remainder of the paper is structured as follows. In Section 2 we list key technologies
that can aid in the modernization of the current stagnant network architecture as well as
used for the development of the aforementioned protocol. In Section 3 we give a
description of the proof-of-concept solution by enumerating the components that take part,
focusing on their functional split. Section 4 goes over the implementation of programs used
for each component. Section 5 we present the performance evaluation of the proposed
proof-of-concept implementation. Finally, we conclude in Section 6 and present directions
for future.

Proof-of-concept solution for RE-CENT model service

9

I. Tziviskos

2 KEY TECHNOLOGIES

In this section, the technologies aiding to the transition of the network's stagnant state are
enumerated. SDN technology was chosen due to its ability on separating the control and
forwarding plane, allowing for a more flexible approach to already existing
implementations. OpenFlow protocol allows for more thorough packet inspection, by not
being limited to the conventional ways of routing and switching already available to the
current network architecture. A big number of network gear is available in the market have
built-in support for the OpenFlow protocol. For devices that do not support this kind of
functionality the Open vSwitch software can be utilized to enable the OpenFlow protocol
functionality. Multi-Access Edge Computing (MEC) aims to enhance the network
performance and reliability by leveraging edge resources residing within coverage of 5G
cellular networks. O-RAN aims at expanding the ecosystem, with more vendors providing
the building blocks, there is more innovation and more options for OTTs, adding new
services. Android gives a development platform for creating applications on a variety of
devices, by accessing embedded functionalities ranging from Bluetooth through Wi-Fi
protocols. The blockchain technology has gained popularity over the last decade with the
emergence of cryptocurrencies. The technology can be used for fast payment plans,
outgrowing the fixed monthly payment plans and converting to a pay-as-you-go chunk
based content servicing.

2.1 SDN

Conventional networks utilize special algorithms implemented on dedicated devices to
control and monitor the data flow in the network, managing routing paths and determining
how different devices are interconnected in the network. In general, these routing
algorithms and sets of rules are implemented in dedicated hardware components such as
Application Specific Integrated Circuits (ASICs), designed for performing specific
operations. As an example, the packet forwarding process, in a conventional network, upon
the reception of a packet, an ASICs uses a set of rules embedded in its firmware to find the
destination device as well as the routing path for that packet. This operation takes place in
inexpensive routing devices. More expensive routing devices can treat different packet
types in different manners based on their nature and contents. Such a customized local
router setup allows more efficient traffic congestion and prioritization control.

As the number of connected devices is increasing, the amount of data applications transmit
and receive increases as well. The current network hardware poses severe limitations as
the demand for scalability, security, reliability, and network speed increases, thus hindering
their performance. Due to the hardwired nature of routing rules, they lack flexibility in
dealing with different packet types. In addition, the aforementioned network devices make
up the backbone of the Internet; have to be adaptable to changes both in hardware or
software without being strenuous.

Proof-of-concept solution for RE-CENT model service

10

I. Tziviskos

Figure 6: Software Defined Network Architecture

A solution to the above problem is known as Software-Defined Networking (SDN), a
dynamic, manageable, cost-effective, and adaptable architecture. As it is illustrated in
Figure 6, the control and forwarding planes are separated, giving a more flexible
architecture than the traditional network architecture. SDN controllers located in the control
layer are a logically centralized entity, overviewing demands from the application layer, via
the Northbound Interface, and transferring them to the Infrastructure layer via the Control to
Data-Plane Interface (CDPI), also known as Southbound Interface. Between a SDN
Controller and forwarding devices, a controller has programmatic control over a device’s
forwarding operations, advertisement of capabilities, statistics reporting and event
notification, in an open and vendor-neutral interoperable way.

Focusing on the control layer of the architecture and specifically the controller component,
several SDN-Controller software has been developed for the aforementioned functionality,
providing an ample selection for developers. The software available can be categorized in
i) open and community-driven initiatives and ii) vendor specific. Some community-driven

initiatives are Open Network Operating System (ONOS) [5], OpenDayLight [6], Faucet [7] ,
RYU controller framework [8] and Floodlight [9] to name a few, while Nuage Virtualized

Services Controller (VSC) [10], by Nokia, lightly.io [11], by PANTHEON.tech, and VortiQa

Open Network Director [12] , by Freescale Semiconductor all fall in the vendor specific
software category.

OpenFlow

In the SDN architecture, the Southbound interface is used to interconnect SDN controllers
with the forwarding devices on the Infrastructure layer. Although this interface uses several
protocols to establish this communication, with some being the Forwarding and Control

Element Separation (ForCES) [12], Protocol Oblivious Forwarding (POF) [13], OpFlex [14],

Proof-of-concept solution for RE-CENT model service

11

I. Tziviskos

OpenState [15], the protocol that has seen more extensive use is the OpenFlow protocol

[16]. With the adoption of the protocol from the Open Networking Foundation [17], a big
number of vendors have included OpenFlow in their devices. This justifies the major
companies and organizations deploying OpenFlow include Google, Alibaba, AT&T, the
U.S. National Security Agency (NSA) and Microsoft among many others.

Figure 7: OpenFlow Switch Architecture

OpenFlow-compliant switches come in two types: OpenFlow-only, and OpenFlow-hybrid.
OpenFlow-only switches support only OpenFlow operation, in those switches all packets
are processed by the OpenFlow pipeline and cannot be processed otherwise. OpenFlow-
hybrid switches support both OpenFlow operation and normal Ethernet switching
operation, i.e., traditional L2 Ethernet switching, VLAN isolation, L3 routing (IPv4 routing,
IPv6 routing...), ACL and QoS processing. Those switches should provide a classification
mechanism outside of Open-Flow that routes traffic to either the OpenFlow pipeline or the
normal pipeline. An OpenFlow-hybrid switch may also allow a packet to go from the
OpenFlow pipeline to the normal pipeline through the NORMAL and FLOOD reserved
ports.

The OpenFlow pipeline is part of every OpenFlow-compliant Logical Switches, consisting
of a set of flow tables and a group table, performing packet lookups and forwarding.
Matching begins at the first flow table, in priority order, and may continue to additional flow
tables down the pipeline.

Proof-of-concept solution for RE-CENT model service

12

I. Tziviskos

Figure 8: OpenFlow Entry specification

Each flow table on the switch contains a set of flow entries, consisting of:

• match fields: to match against packets. It consists of the ingress port, protocol packet
headers from Layers 2, 3 and 4 (e.g., Ethernet, IPv4, IPv6, TCP, UDP, ARP, ICMP,
MPLS), a packet type value, as well as optional fields such as metadata taken from the
previous table.

• counters: updated when packets are matched. In particular, the number of bytes and
packets matched against a flow entry and duration the entry has been established to
the switch's table tracked in second and nanosecond precision.

• instructions: to modify the action set or pipeline processing.

• timeouts: maximum amount of time or idle time before flow is expired by the switch.

• cookie: opaque data value chosen by the controller. May be used by the controller to
filter flow entries affected by flow statistics, flow modification and flow deletion requests.
Not used when processing packets.

• flag: alter the way flow entries are managed.

Figure 9: OpenFlow Matching Procedure

As depicted in Figure 9, when an incoming packet is matched against a table’s flow entry, a
set of actions are implemented, found in the instructions field of the matched flow entry. If
no matched entry is found in a flow table, the outcome depends on the configuration of the
table-miss flow entry. Most of the time, the packet is sent to the connected SDN-Controller
for further inspection.

Actions can either describe packet forwarding to a physical or logical port, packet
modification and group table processing. Actions are split into required and optional.

Proof-of-concept solution for RE-CENT model service

13

I. Tziviskos

Required actions are necessary for all OpenFlow-hybrid switches, while OpenFlow-hybrid
switches can use the later type. Some of the basic actions are:

• Required Action: Forward. An OpenFlow switch must support forwarding packets to
physical ports as well as the following virtual ports:

• ALL: Send the packet out all interfaces, not including the incoming interface.

• CONTROLLER: Encapsulate and send the packet to the controller.

• LOCAL: Send the packet to the switch’s local networking stack.

• TABLE: Perform actions in flow table. Only for packet-out messages.

• IN PORT: Send the packet out the input port.

• Optional Action: Forward. The switch optionally supports the below physical ports:

• NORMAL: Process the packet using the traditional forwarding path supported by
the switch (i.e., traditional L2, VLAN, and L3 processing).

• FLOOD: Flood the packet along the minimum spanning tree, not including the
incoming interface.

• Required Action: Drop. A flow-entry with no specified action indicates that all matching
packets should be dropped.

Every OpenFlow-compliant Logical switch is connected to a SDN-Controller via an
OpenFlow Channel. The OpenFlow Channel operates over the Transport Connection
Protocol (TCP) or the Transport Layer Security (TLS). The SDN-Controller installs and
maintains the switch using this link handles events and transmits data to the connected
switch. Multiple channels can be established with many SDN-Controllers sharing a switch’s
management. SDN-Controllers can add, update, and delete flow entries in flow tables, both
reactively, in response to packets, and proactively. Specifically, there are three message
types supported by the OpenFlow protocol, controller-to-switch, asynchronous and
symmetric.

The controller-to-switch messages are initiated by the SDN-Controller and used to directly
manage or inspect the state of the switch. Some of the messages are:

• Features: Request for the identity and basic capabilities of a switch; the switch must
respond with a features reply specifying the identity and basic capabilities of the switch.
This is commonly performed upon establishment of the OpenFlow channel.

• Configuration: The controller is able to set and query configuration parameters in the
switch. The switch only responds to a query from the controller.

• Modify-State: State management messages. Their primary purpose is to add, delete
and modify flow/group entries and insert/remove action buckets of group in the
OpenFlow tables and to set switch port properties.

Proof-of-concept solution for RE-CENT model service

14

I. Tziviskos

• Read-State: Information collection from the switch, such as current configuration,
statistics, and capabilities. Most requests and replies are implemented using multipart
message sequences.

• Packet-out: Used by the controller to send packets out of a specified port on the switch,
and to forward packets received via Packet-in messages. Packet-out messages must
contain a full packet or a buffer ID referencing a packet stored in the switch. The
message must also contain a list of actions to be applied in the order they are specified;
an empty list of actions drops the packet.

• Barrier: Used by the controller to ensure message dependencies have been met or to
receive notifications for completed operations.

• Role-Request: Used by the controller to set the role of its OpenFlow channel, its
Controller ID, or query these. This is mostly useful when the switch connects to multiple
controllers

Asynchronous messages are initiated by the switch for notifying the SDN-Controller about
network events and changes to a switch’s state. Asynchronous messages supported by a
switch are:

• Packet-in: Transfer the control of a packet to the controller. For all packets forwarded to
the CONTROLLER reserved port using a flow entry or the table-miss flow entry, a
packet-in event is always sent to controllers. Other processing, such as Time-To-Live
(TTL) checking, may also generate packet-in events to send packets to the controller.

• Flow-Removed: Inform the controller about the removal of a flow entry from a flow table.
Flow-Removed messages are only sent for flow entries with the
OFPFF_SEND_FLOW_REM flag set. They are generated as the result of a controller
flow delete request, the switch flow expiry process when one of the flow timeouts is
exceeded, or other reasons.

• Port-status: Inform the controller of a change on a port. The switch is expected to send
port-status messages to controllers as port configuration or port state changes. These
events include change in port configuration events, for example if it was brought down
directly by a user, and port state change events, for example if the link went down.

• Role-status: Inform the controller of a change of its role. When a new controller elects
itself master, the switch is expected to send role-status messages to the former master
controller

• Controller-Status: Inform the controller when the status of an OpenFlow channel
changes. The switch sends these messages to all controllers when the status of the
OpenFlow channel of any switch’s changes. This can assist failover processing if
controllers lose the ability to communicate among themselves.

• Flow-monitor: Inform the controller of a change in a flow table. A controller may define a
set of monitors to track changes in flow tables

Lastly, symmetric messages are initiated from either entityor sent without solicitation.

Proof-of-concept solution for RE-CENT model service

15

I. Tziviskos

• Hello: Messages exchanged between the switch and controller upon connection
startup.

• Echo: Messages that can be sent from either the switch or the controller and must
return an echo reply. Mainly used to verify the liveness of a controller-switch connection
and may as well be used to measure its latency or bandwidth.

• Error: Used by the switch or the controller to notify problems to the other side of the
connection. Mostly used by the switch to indicate a failure of a request initiated by the
controller.

• Experimenter: Experimenter messages provide a standard way for OpenFlow switches
to offer additional functionality within the OpenFlow message type space. This is a
staging area for features meant for future OpenFlow revisions.

2.2 Open vSwitch

Open vSwitch is a multilayer software switch licensed under the open-source Apache 2
license [18]. It can implement a production quality switch platform that supports standard
management interfaces and opens the forwarding functions to programmatic extension and
control.

Figure 10: Open vSwitch basic Architecture

Open vSwitch is well suited to function as a virtual switch in Virtual Machine (VM)
environments. In addition to exposing standard control and visibility interfaces to the virtual
networking layer, it was designed to support distribution across multiple physical servers.
Open vSwitch supports multiple Linux-based virtualization technologies including
Xen/XenServer, KVM, and VirtualBox.

The bulk of the code is written in platform-independent C and is easily ported to other
environments. The current release of Open vSwitch supports the following features:

• Standard 802.1Q VLAN model with trunk and access ports

• NIC bonding with or without LACP on upstream switch

Proof-of-concept solution for RE-CENT model service

16

I. Tziviskos

• NetFlow, sFlow(R), and mirroring for increased visibility

• QoS configuration, plus policing

• Geneve, GRE, VXLAN, STT, and LISP tunneling

• 802.1ag connectivity fault management

• OpenFlow 1.0 plus numerous extensions

• Transactional configuration database with C and Python bindings

• High-performance forwarding using a Linux kernel module

The included Linux kernel module supports Linux 3.10 and up.

Open vSwitch can also operate entirely in userspace without assistance from a kernel
module. This userspace implementation should be easier to port than the kernel-based
switch. OVS in userspace can access Linux or DPDK devices. Note Open vSwitch with
userspacedatapath and non DPDK devices is considered experimental and comes with a
cost in performance.

Figure 11: Open vSwitch Basic Components and Tools offered

The main components and provided tools of this distribution, as shown in Figure 11 are:

Components:

• ovs-vswitchd: a daemon program implementing the main functionality of the switch,
along with a companion Linux kernel module for flow-based switching.

• ovsdb-server: a lightweight database server that ovs-vswitchd queries to obtain its
configuration.

• ovs-dpctl: a tool for configuring the switch kernel module.

• ovs-vsctl: a utility for querying and updating the configuration of ovs-vswitchd.

Proof-of-concept solution for RE-CENT model service

17

I. Tziviskos

• ovs-appctl: a utility that sends commands to running Open vSwitch daemons.

Tools:

• ovs-ofctl: a utility for querying and controlling OpenFlow switches and controllers.

• ovs-pki: a utility for creating and managing the public-key infrastructure for
OpenFlow switches.

• ovs-testcontroller: a simple OpenFlow controller that may be useful for testing.

MEC

In recent years, there have been major changes to the Telco world on mobile
communications technologies. With highly capable end-devices, users have access to
services such as video, music, social networking, gaming, and other interactive
applications as well as emerging services such as augmented reality, resulting in a huge
data traffic volume, straining the current network infrastructure. Additionally, IoT networks,
Machine-Type-Communications will add a large number of devices that are less tolerant of
time delays. With this wide range of new and diverse services it becomes an integral part
of the mobile users’ entertainment and social life, increasing the expectations towards
immersive QoE as well. The related performance requirements include the support of 100
times higher data volumes, data rates equal to 10 Gb/s, vary low service level latency just
under 5ms and mass connectivity of up to 300,000 devices within a single cell, with ultra-
high reliability and reduced energy consumption by 90%.

The European Telecommunications Standards Institute (ETSI) has initiated Mobile Edge
Computing (MEC) standardization to promote and accelerate the edge-cloud computing in
mobile networks, by launching the MEC Industry Specification Group (ISG) in December
2014. Its objective is to create an open environment across multi-vendor cloud platforms
located on the Radio Access Network (RAN). By transferring data intensive tasks towards
the edge and locally processing data in proximity to the users, mobile network operators
can reduce traffic bottlenecks in the core and backhaul networks and assist in the offload of
heavy computational tasks from power constrained User Equipment (UE) to the edge. This
can provide the potential for developing a plethora of new applications, bringing innovation
and new business opportunities. By collecting contextual information and specific content,
proximity and location awareness can offer a tailored mobile broadband experience.

2.3 O-RAN

As it has already been analyzed, the emergence of IoT networks, M2M communications,
and data demanding mobile applications are straining the current Radio Access Network
(RAN). The co-existence of such a diverse ecosystem of applications requires a more
flexible network that satisfies all needed features. A possible solution is to design a
separate network for each type of application. No matter how enticing this concept is, it is
not feasible from operating expenses (OPEX) aspect. This has turned both the academia
and industries on making the mobile network more software driven, flexible, virtualized, and
intelligent and energy efficient while being reliable and cost-effective.

Proof-of-concept solution for RE-CENT model service

18

I. Tziviskos

Given the above requirements, it would be feasible to split the RAN into multiple parts
based on the functionality, making the architecture smarter and more versatile. This is
known as Open RAN (O-RAN). O-RAN approaches the current infrastructure in a more
software-oriented infrastructure, making it easier for the network to act according to the
QoS requirements of each application.

The architecture of O-RAN is shown in Figure 12. Many of the functions from the traditional
RAN architecture that were aggregated in a single node are now disaggregated. As a
result, this action increases the reliability by avoiding single points of failure. Additionally,
this allows the separation of control and user plane. Consequently, the function of the
control plane can be implemented on all server platforms, while real time functions can be
implemented on hardware level.

In a more in depth look at the architecture, trained models and real time control functions
are included in the RAN Intelligent Controller near-Real Time (RIC near-RT) for run time
execution. It utilizes the Radio Network Information database which tracks the state of the
underlying network via E2 and A1 interfaces. The E2 interface interconnects the RIC near-
RT and Control and Distributed Unit (CU/DU) that feeds data that include various RAN
measurements for radio resources management tracked by Artificial Intelligence/Machine
Learning (AI/ML). The latter interface is responsible for passing on the AI enable policy and
ML based training models to the RIC non-RT. In turn, the RIC non-RT is affiliated with the
Orchestration and Automation (OA) layer and controls functions for non-real time
intelligence radio resource management as well as supporting operations of RIC near-RT
functions.

Figure 12: O-RAN Architecture

Proof-of-concept solution for RE-CENT model service

19

I. Tziviskos

The adoption of O-RAN architecture can greatly influence the market, giving opportunities
to public network operators to achieve their core network technology. It is estimated that
the ease of use of O-RAN and modern learning methods may reduce the maintenance cost
up to 80%.

2.4 802.11 standard

IEEE 802.11, commercially known as Wi-Fi, is part of the IEEE 802 set of local area
network (LAN) technical standards and specifies the set of media access control (MAC)
and physical layer (PHY) protocols for implementing wireless local area network (WLAN)
computer communication. The standard and amendments provide the basis for wireless
network products using the Wi-Fi brand and are the world's most widely used wireless
computer networking standards. IEEE 802.11 is used in most home and office networks to
allow devices to communicate with each other and access the Internet without the
necessity of wires. It uses various frequencies, some of them being 2.4 GHz, 5 GHz, 6
GHz, and 60 GHz frequency bands.

An important feature included in this protocol is the advertisement of information elements.
An information element is transported in IEEE 802.11 management frames and a single
frame contains multiple information elements. Those frames are sent between Wi-Fi
access points and a mobile device, e.g., smartphones, tablets and any other device

capable of connecting to the Wi-Fi. Information Elements (IE) [19] have a common general
format consisting of a 1 octet Element ID field, a 1 octet Length field, an optional 1 octet
Element ID Extension field, and a variable-length element-specific Information field. Each
element is identified by the contents of the Element ID and, when present, Element ID
Extension fields as defined in this standard. An Extended Element ID is a combination of
an Element ID and an Element ID Extension for those elements that have a defined
Element ID Extension. The Length field specifies the number of octets following the Length
field.

Figure 13: Information Element general format

2.5 Android

In the past decade, mobile devices, such as cellphones and tablets, have become an
integral part of everyday life. They have made communicating, content consumption and
automation of everyday tasks effortless. Even though there has been no shortage of
manufacturers and operating systems (OS), since 2011, Android devices have been the
best-selling OS worldwide, with over three billion monthly active users and as of January
2022 it holds 69.74% of the market share [20]. Its openness and ease of use is a driving
factor for its massive adoption both in the development area and from normal users.
Without any license fee, the source code can be used to create applications which, after

Proof-of-concept solution for RE-CENT model service

20

I. Tziviskos

following the rule and condition in the license’s terms and conditions, can be uploaded to
the Google Store for others to download and use.

The OS running on every Android device is based on a modified version of the Linux kernel
in conjunction with other open software, designed primarily for touchscreen mobile devices.
Android is developed by a consortium of developers known as the Open Handset Alliance

(OHA)[21], and commercially sponsored by Google. Its architecture is comprised of several
components, ready to aid any need an Android device may have. The Android OS
architecture is mainly categorized in the i) System Applications, ii) Java API Framework, iii)
Native C/C++ Libraries, iv) Android Runtime, v) Hardware Abstraction Layer and vi) the
Linux Kernel.

Android comes with a set of core apps for email, SMS messaging, calendars, internet
browsing, contacts, and more. Apps included with the platform have no special status
among the apps the user chooses to install. So, a third-party app can become the user's
default web browser, SMS messenger, or even the default keyboard (some exceptions
apply, such as the system's Settings app). The system apps function both as apps for
users and to provide key capabilities that developers can access from their own app.

The entire feature-set of the Android OS is available to you through APIs written in the
Java language. These APIs form the building blocks you need to create Android apps by
simplifying the reuse of core, modular system components and services, which include the
following:

• A rich and extensible View System you can use to build an app’s UI, including lists,
grids, text boxes, buttons, and even an embeddable web browser

• A Resource Manager, providing access to non-code resources such as localized
strings, graphics, and layout files

• A Notification Manager that enables all apps to display custom alerts in the status bar

• An Activity Manager that manages the lifecycle of apps and provides a common
navigation back stack

• Content Providers that enable apps to access data from other apps, such as the
Contacts app, or to share their own data

The Application Runtime environment contains core libraries and either the Dalvik Virtual
Machine (DVM) for devices with Android 4.4 “KitKat'' installed or the Android Runtime
(ART) environment. For devices running Android version 5.0 (API level 21) or higher, each
app runs in its own process and with its own instance of the ART. ART is written to run
multiple virtual machines on low-memory devices by executing Dalvik Executable (DEX)
files, a bytecode format designed specifically for Android that's optimized for minimal
memory footprint. Build tools, such as d8, compile Java sources into DEX bytecode, which
can run on the Android platform.

Some of the major features of ART include the following:

Proof-of-concept solution for RE-CENT model service

21

I. Tziviskos

• Ahead-of-time (AOT) and just-in-time (JIT) compilation

• Optimized garbage collection (GC)

• On Android 9 (API level 28) and higher, conversion of an app package's Dalvik
Executable format (DEX) files to more compact machine code.

• An improved debugging support, including a dedicated sampling profiler, detailed
diagnostic exceptions and crash reporting, and the ability to set watchpoints to monitor
specific fields.

On the same layer, many core Android system components and services, such as ART
and Hardware Abstraction Layer (HAL), are built from native code that requires native
libraries written in C and C++. They provide support for applications regarding audio,
access to display subsystem, graphics (OpenGL ES), database access, functionality on
displaying web content (Mediakit) as well as security for establishing safe sessions across
the web.

Proof-of-concept solution for RE-CENT model service

22

I. Tziviskos

Figure 14: Android OS Architecture

The HAL provides standard interfaces that expose device hardware capabilities to the
higher-level Java API framework. It consists of multiple library modules, each of which
implements an interface for a specific type of hardware component, such as the camera or
bluetooth module. When a framework API makes a call to access device hardware, the
Android system loads the library module for that hardware component.

The foundation of the Android platform is the Linux kernel. It provides an abstraction layer
between the device hardware and the aforementioned layers. Its features include memory
management, allocation and management of processes, handling of the network stack as
well as ensuring the proper function of applications according to the installed drivers.

2.6 Blockchain

The rise of cryptocurrencies over the last years, specifically Bitcoin (BTC) [22] and

Ethereum (ETH) [23], have solidified blockchain-based systems and cryptocurrency

Proof-of-concept solution for RE-CENT model service

23

I. Tziviskos

technologies, opening up new possibilities towards the standardization of secure
distributed consensus networks. The transactions that take place on a cryptocurrency
network are all based on a public digital ledger implemented in a distributed manner
(without the presence of a central repository) and usually without a central authority (i.e. a
bank, company, or government). This ledger is called blockchain. It has enabled the
tracking of said transactions by a network of non-trusted peers, while eliminating the
double-spending of digital assets by enforcing distributed consensus on the sequence of
legitimate blocks of the blockchain in the long run.

Blocks record transactions of digital coins across end users containing metadata that are
necessary for sustaining, extending, and safeguarding the distributed ledger structure. As it
is shown in Figure 15a, a block consists of its block header and a data block. The block
header contains a hash value from the previous block header, a timestamp, the block
number, also known as blocks height in some networks, a hash representation of the block
data, e.g. generated by a Merkle tree, or by utilizing a hash of all combined block data and
a nonce value. In blockchain networks utilizing mining, the previous value is a number used
to solve a hash puzzle. Other networks see it as an optional field or giving it another
purpose other than solving a hash puzzle.

The block data contains a list of transactions and ledger events as well as other data.
Transactions, which summarize the transfer of digital coins (or balance updates) across the
end users, are disseminated across the consensus network nodes to enable them to fill up
and seal new blocks. In more recent blockchain systems, a coin transfer, known as a call,
to a blockchain user can be initiated by a smart contract (SC). SCs are self-executing
scripts that reside on the blockchain. They consist of publicly verifiable code that enables
general-purpose computations to occur in a deterministic on-chain fashion.

Proof-of-concept solution for RE-CENT model service

24

I. Tziviskos

Figure 15: Block (a) and Blockchain Architecture (b)

A consensus protocol is the core component of the crypto-currency system. It ensures a
unanimous agreement between all the participating nodes on a common transaction history
that is serialized and crystallized due time into sequential blocks, forming the blockchain,
as shown in Figure 15b. Well established consensus protocols, named Proof-of-Work
(PoW) protocols, are based on the participation of consensus nodes in a solution process.
Each node must identify a hash function output, termed nonce, that uses a hash value of
previous blocks and the payload of the current block. The structure of the hash function
makes the identification of the nonce difficult, as it can only be done by using brute-force.
This comes with substantially large amounts of energy, long-term security concerns due to
the decreasing mining rewards embedded in the consensus emission policy as well as low
transaction throughput.

For the above reasons, the blockchain community has put effort in the replacement of PoW

consensus protocol. New protocols have emerged based on Proof-of-Useful-Work [24],
Proof-of-Space [25], Proof-of-Storage [26], Proof-of-Elapsed-Time [27], Proof-of-Stake

(PoS) [28] and Proof-of-Authority (PoA)[29]. From the previously mentioned protocols, PoS
and PoA have stood out due to their low operational costs regarding their energy and
processing efficiency. In PoS consensus, block sealers are selected according to their
stakes in the crypto-currency platform. For the latter consensus, the generation and
appending of new blocks is set to a small set of nodes, called validators, providing proof of

Proof-of-concept solution for RE-CENT model service

25

I. Tziviskos

their identity publicly. Although PoA consensus is available in the ETH, integration of PoS
is still undergoing.

2.7 Linux related programs

2.7.1 hostapd

The HOST Access Point Daemon (hostapd) [30]is a user space daemon for access point
and authentication servers that runs in the background and acts as the backend
component controlling authentication. The IEEE 802.11 access point management, IEEE
802.1X/WPA/WPA2/EAP Authenticators, RADIUS client, EAP server and RADIUS
authentication server can all implemented by it.

For the access point configuration there are 2 different available schemas. A routed access
point can be created within an Ethernet network and can be used as a wireless access
point, creating a secondary standalone network, as shown in Figure 17. The resulting new
wireless network is entirely managed by the wireless interface of the device. The second
available configuration is a bridged access point. In this a device can be used as a bridged
wireless access point within an existing Ethernet network, as shown in Figure 18. This will
extend the network to wireless computers and devices.

Figure 16: Routed AP General Configuration

Proof-of-concept solution for RE-CENT model service

26

I. Tziviskos

Figure 17: Bridged AP general configuration

2.7.2 dnsmasq

Designed to be lightweight and have a small footprint, suitable for resource constrained
routers and firewalls, it provides network infrastructure for small networks: DNS, DHCP,

router advertisement and network boot [31]. It has also been widely used for tethering on
smartphones and portable hotspots, and to support virtual networking in virtualization
frameworks. Supported platforms include Linux (with glibc and uclibc), Android, *BSD, and
Mac OS X. It is included in most Linux distributions and the ports systems of FreeBSD,
OpenBSD and NetBSD. Dnsmasq provides full IPv6 support.

The DNS subsystem provides a local DNS server for the network, with forwarding of all
query types to upstream recursive DNS servers and caching of common record types (A,
AAAA, CNAME and PTR, also DNSKEY and DS when DNSSEC is enabled). The DHCP
subsystem supports DHCPv4, DHCPv6, BOOTP and PXE. The Router Advertisement
subsystem provides basic autoconfiguration for IPv6 hosts. It can also be used stand-alone
or in conjunction with DHCPv6.

2.7.3 dhcpcd

An implementation of the DHCP client specified in RFC 2131 [32]. It gets the host
information (IP address, routes, etc) from a DHCP server and configures the network
interface of the machine on which it is running. It daemonises and waits for the lease
renewal time to lapse. It will then attempt to renew its lease and reconfigure if the new
lease changes when the lease begins to expire or the DHCP server sends a message to
renew early. The dhcpcd program provides functionalities of the programs BOOTP (RFC

951 [33]), IPv6 Router Solicitor (RFC 4861 [34], RFC 6106 [35]), IPv6 Privacy Extensions

to Autoconf (RFC 4941 [36]), DHCPv6 client (RFC 3315 [37]).

2.7.4 FFmpeg

FFmpeg is a free and open-source software project consisting of a suite of libraries and
programs for handling video, audio, and other multimedia files and streams[38]. At its core
is the command-line ffmpeg tool itself, designed for processing of video and audio files. It is
widely used for format transcoding, basic editing (trimming and concatenation), video

Proof-of-concept solution for RE-CENT model service

27

I. Tziviskos

scaling, video post-production effects and standards compliance such as the Society of
Motion Picture and Television Engineers (SMPTE) and International Telecommunication
Union (ITU).

FFmpeg also includes other tools: ffplay, a simple media player and ffprobe, a command-
line tool to display media information. Among included libraries are libavcodec, an
audio/video codec library used by many commercial and free software products,
libavformat (Lavf), an audio/video container mux and demux library, and libavfilter, a library
for enhancing and editing filters through a Gstreamer-like filtergraph.

The transcoding process in ffmpeg for each output can be described by the following
diagram.

Figure 18: FFmpeg transcoding process

ffmpeg calls the libavformat library (containing demuxers) to read input files and get
packets containing encoded data from them. When there are multiple input files, ffmpeg
tries to keep them synchronized by tracking lowest timestamp on any active input stream.

Encoded packets are then passed to the decoder (unless streamcopy is selected for the
stream, see further for a description). The decoder produces uncompressed frames (raw
video/PCM audio/...) which can be processed further by filtering.

https://ffmpeg.org/ffplay.html
https://ffmpeg.org/ffprobe.html
https://www.ffmpeg.org/doxygen/2.2/group__libavf.html
https://ffmpeg.org/libavfilter.html

Proof-of-concept solution for RE-CENT model service

28

I. Tziviskos

Figure 19: FFmpeg simple (a) and complex (b) filtergraphs

After filtering, the frames are passed to the encoder, which encodes them and outputs
encoded packets. Finally, those are passed to the muxer, which writes the encoded
packets to the output file.

FFmpeg is part of the workflow of many other software projects, and its libraries are a core
part of software media players such as VLC and have been included in core processing for
YouTube and Bilibili. Encoders and decoders for many audio and video file formats are
included, making it highly useful for the transcoding of common and uncommon media
files.

FFmpeg is published under the LGPL-2.1-or-later or GPL-2.0-or-later, depending on which
options are enabled.

2.7.5 Nginx

Nginx is an HTTP and reverse proxy server, a mail proxy server, and a generic TCP/UDP

proxy server, originally written by Igor Sysoev. For a long time, it has been running on

many heavily loaded Russian sites including Yandex, Mail.Ru, VK, and Rambler. It was

also used by: Dropbox, Netflix, Wordpress.com, and FastMail.FM.

The sources and documentation are distributed under the 2-clause BSD-like license.

Basic HTTP server features:

• Serving static and index files, autoindexing,open file descriptor cache

• Accelerated reverse proxying with caching,load balancing and fault tolerance

• Accelerated support with caching of FastCGI, uwsgi, SCGI, and memcached
servers,load balancing and fault tolerance

• Modular architecture. Filters include gzipping, byte ranges, chunked responses,
XSLT, SSI, and image transformation filter. Multiple SSI inclusions within a single

Proof-of-concept solution for RE-CENT model service

29

I. Tziviskos

page can be processed in parallel if they are handled by proxied or
FastCGI/uwsgi/SCGI servers

• SSL and TLS SNI support

• Support for HTTP/2 with weighted and dependency-based prioritization

TCP/UDP proxy server features:

• Generic proxying of TCP and UDP

• SSL and TLS SNI support for TCP

• Load balancing and fault tolerance

• Access control based on client address

• Executing different functions depending on the client address

• Limiting the number of simultaneous connections coming from one address

• Access log formats, buffered log writing, fast log rotation, and syslog logging

• IP-based geolocation

• A/B testing

• njs scripting language

Architecture

Nginx uses multiplexing and event notifications heavily and dedicates specific tasks to

separate processes. Connections are processed in a highly efficient run-loop in a limited

number of single-threaded processes called workers. Within each worker Nginx can handle

many thousands of concurrent connections and requests per second.

Proof-of-concept solution for RE-CENT model service

30

I. Tziviskos

Figure 20: NGINX Architecture

There's no specialized arbitration or distribution of connections to the workers in nginx; this

work is done by the OS kernel mechanisms. Upon startup, an initial set of listening sockets

is created. Workers then continuously accept, read from, and write to the sockets while

processing HTTP requests and responses.

The run-loop includes comprehensive inner calls and relies heavily on the idea of

asynchronous task handling. Asynchronous operations are implemented through

modularity, event notifications, extensive use of callback functions and fine-tuned timers,

so to be as non-blocking as possible. The only situation where nginx can still block is when

there's not enough disk storage performance for a worker process.

nginx conserves CPU cycles as well because there's no ongoing create-destroy pattern for

processes or threads. What nginx does is check the state of the network and storage,

initialize new connections, add them to the run-loop, and process asynchronously until

completion, at which point the connection is deallocated and removed from the run-loop.

Combined with the careful use of syscalls and an accurate implementation of supporting

interfaces like pool and slab memory allocators, nginx typically achieves moderate-to-low

CPU usage even under extreme workloads.

nginx runs several processes in memory; there is a single master process and several

worker processes. There are also a couple of special purpose processes, specifically a

cache loader and cache manager. All processes primarily use shared-memory

mechanisms for inter-process communication. The master process is run as the root user.

The cache loader, cache manager and workers run as an unprivileged user.

Proof-of-concept solution for RE-CENT model service

31

I. Tziviskos

The master process is responsible for the following tasks:

• reading and validating configuration

• creating, binding, and closing sockets

• starting, terminating, and maintaining the configured number of worker processes

• reconfiguring without service interruption

• controlling non-stop binary upgrades (starting new binary and rolling back if
necessary)

• re-opening log files

• compiling embedded Perl scripts

The cache loader process is responsible for checking the on-disk cache items and

populating nginx's in-memory database with cache metadata. Essentially, the cache loader

prepares nginx instances to work with files already stored on disk in a specially allocated

directory structure. It traverses the directories, checks cache content metadata, updates

the relevant entries in shared memory and then exits when everything is clean and ready

for use.

The cache manager is mostly responsible for cache expiration and invalidation. It stays in

memory during normal nginx operation, and it is restarted by the master process in the

case of failure.

2.7.6 MySQL

MySQL is an open-source relational database management system (RDBMS). A relational

database organizes data into one or more data tables in which data may be related to each

other; these relations help structure the data. In addition to relational databases and SQL,

an RDBMS like MySQL works with an operating system to implement a relational database

in a computer's storage system, manages users, allows for network access, and facilitates

testing database integrity and creation of backups.

MySQL is free and open-source software under the terms of the GNU General Public
License and is also available under a variety of proprietary licenses. It has stand-alone
clients that allow users to interact directly with a MySQL database using SQL, but more
often, MySQL is used with other programs to implement applications that need relational
database capability.It is a component of the LAMPweb applicationsoftware stack, which is
an acronym for Linux, Apache, MySQL, Perl/PHP/Python. It is used by many database-
driven web applications, including Drupal, Joomla, phpBB, and WordPress. In addition, a
number of popular websites, including Facebook, Flickr, MediaWiki,Twitter, and YouTube
use MySQL.

Proof-of-concept solution for RE-CENT model service

32

I. Tziviskos

2.7.7 Flask

Flask is a micro web framework written in Python. It is classified as a microframework

because it does not require tools or libraries[39]. It has no database abstraction layer, form

validation, or any other components where pre-existing third-party libraries provide

common functions. However, Flask supports extensions that can add application features

as if they were implemented in Flask itself. Extensions exist for object-relational mappers,

form validation, and upload handling, various open authentication technologies and several

common framework related tools.

Applications that use the Flask framework include Pinterest and LinkedIn.

Proof-of-concept solution for RE-CENT model service

33

I. Tziviskos

3 PROBLEM STATEMENT AND SOLUTION PROPOSITION

In this section, the proposed solution developed is analyzed from a more technical

standpoint. The main components that take place in the protocol are demonstrated,

emphasizing on their functional split. The phases of the proposed protocol are analyzed

before technologies that were used in both software and hardware levels are reviewed

along with their functionality.

I focused on developing a proof-of-concept implementation guided by the user-driven RE-

CENT service method. In short, a mobile client, termed RE-CENT client, broadcasts its

desired content to RE-CENT servers in its near vicinity. Following, RE-CENT servers able

to provide the client’s demand, reply with a targeted offer. After some parameters are set

through negotiation, the user picks a server, and the content delivery is initiated.

This approach can be implemented with an application developed for devices a mobile
client can use to gain access to this protocol, e.g., tablets, smartphones. By the RE-CENT
protocol standards, RE-CENT clients, i.e., mobile users, can access the wireless medium
by broadcasting and listening for offers for various wireless protocols (e.g., Wi-Fi,
broadband cellular networks). Applications for mobile device have limited access to such
functionality and are not yet on par with the functionality portrayed above and on the
introductory section.

For the proposed implementation, we used the Wi-Fi technology, as it is the most
accessible via an ample selection of devices that support it. A problem weencountered
from the beginning was the way mobile users can distinguish an AP. The SSID and
information elements are the main ways for mobile devices to distinguish APs apart from
one another. The information elements in particular, detail over a broad spectrum of
capabilities an AP has configured. Information about the SSID selected for the AP, the
country code the AP is set to operate, power constraints the equipment may have, as well
as reserved values for future use. The most configurable element is the vendor specific
element. It can carry information in a formatted way, so reserved element IDs can
keeptheir standard purpose. In turn, custom information is set in a beacon frame, being a
code word or a URL, notifying the user for the uniqueness of the AP. The element’s format
is shown inFigure 21.

Figure 21: Vendor Specific element definition

In short, a vendor specific element is comprised of an Element ID, always set to 221, the
length of the rest of the entry, an Organization Identifier as well as the desired content. The
Organization Identifier contains a public unique identifier assigned by IEEE. Its minimum
length (j) is the minimum number of octets required to contain the entire organizationally
unique identifier.

Proof-of-concept solution for RE-CENT model service

34

I. Tziviskos

3.1 Preview of the Solution

The protocol we developed can be broken down in three distinct phases, as it is depicted in
Figure 222. Those are i) network discovery and pairing, ii) service negotiation and
registration, iii) online service and monitoring.

Figure 22: Protocol Phases

3.2 Network Discovery and Pairing

The mobile client’s device boots up and listens, on network level, for network
advertisement messages emitted from network devices located in its vicinity, making their
presence known to the device. Different wireless technologies provide their set of
identifiers, broadcasted to mobile clients. For 802.11 based networks, the Specified
Service Set Identifier (SSID) and information elements included in a beacon frame, while
for cellular networks the Cellular Global Identifier (CGI) and the Physical Cell ID (PCI) are
noteworthy examples. After the device has a set of information regarding nearby network
devices, it shortlists them according to the criteria, and from the remaining ones, selects a
network and initiates the appropriate connection procedure.

Proof-of-concept solution for RE-CENT model service

35

I. Tziviskos

3.3 Service Negotiation and Registration

After gaining access to the selected network, the mobile client is requests access to the
device’s broadband connection, by connecting to an onboard server operating on the
device. The request is transferred in turn to an external network controller overseeing the
network device. The user is logged to the system by the controller and user specific
network rules are established to the device’s network layer. Following this outcome, a
confirmation is sent back to the connected mobile client.

3.4 Online Service and Monitoring

The mobile client has successfully gained access to the system and is ready to start using
network resources while it receives network measurements related to the chosen service.
In parallel, the network controller issues requests to the network infrastructure the client is
connected to regarding statistics collected from the established network rules, so its data
usage can be monitored with the purpose of taking actions when necessary if it sees fit.

The main components present in the above protocol are i) the mobile client, ii) the network
infrastructure and iii) the network controller. For a better understanding of each component,
their building blocks are split into the application network layer.

The Mobile Client device, as shown in Figure 233, has functions on the application layer for
registering the client to the system, QoE estimation functions, for shortlisting
advertisements and selecting networks to initiate a connection with, as well as capabilities
for video streaming and file transferring. On its network layer, network discovery for
advertisement reception and network connection for initiating a connection procedure
towards a specific network infrastructure, as well as content delivery to an application.

Figure 23: Mobile Client

Proof-of-concept solution for RE-CENT model service

36

I. Tziviskos

The Network Infrastructure, as shown in Figure 244, its application layer is responsible for
QoE Estimation of the connections established with mobile clients, the Negotiation Server
responsible for registering the user to the network controller’s monitoring system, and a
function for providing information related to connection sessions initiated by connected
mobile clients to the network controller.

Figure 24: Network Infrastructure

On its network layer, it advertises several identifiers to nearby mobile clients, connects the
device to the backhaul network to allow users to access the Internet and maintains
connections to an external SDN-Controller.

Lastly, the network controller, as shown in Figure 255, on the application layer is
responsible for registering mobile clients to the monitoring system, supervising their
network resources usage and managing all associated network infrastructure, by
responding to incoming events as well as issuing commands regarding their network
routing capabilities. On the network layer, it maintains connections to all associated
network infrastructure so the previously described application functionalities can be
delivered to one or more associated network infrastructure.

Figure 25: Network Controller

Proof-of-concept solution for RE-CENT model service

37

I. Tziviskos

3.5 Detailed Architecture

For the implementation of the above protocol and the already described protocols, several
technologies were utilized.

For the mobile client, an Android application was developed with the help of Java version
11. The application tackling the building blocks for both application and network layer has
different approaches and so it was developed and tested for devices with Android OS 7.0,
8.0 and 11.0, and will be explained in the coming subsections.

For the network infrastructure a Raspberry Pi 3 B+ was used. It was configured as an AP
with the use of an assortment of Linux programs, them being the hostapd, dnsmasq,
dhcpcd and iptables, all described in the Key Technologies section. The AP running on the
wireless interface (wlan0) was configured as a bridged AP, as shown in Figure 17.
Furthermore, the Raspberry Pi device is configured as an OpenFlow hybrid switch, with the
use of the Open vSwitch program to manage by the SDN-Controller entity.

The network controller, in turn, was developed with the use of the RYU framework. For
both AP configurations, bridged and routed, there is a different controller application that
monitors the data usage of a connected mobile user.

With the aforementioned technologies for the implementation as well as the protocol
phases, there are several problems encountered in i) Access Point Discovery, ii) Access
Point Filtering & Shortlisting, iii) Access Point Connection.

3.6 Access Point Discovery

This phase, as shown in Table 1, requires the module Network Detection. For an Android
application to detect APs in their near vicinity, they passively scan by listening on different
frequency bands for beacons emitted from APs in a short time frame. Depending on the
OS version installed on a device, initiating a passive Wi-Fi scan differs. Up until Android
8.0, developers had the ability to trigger passive Wi-Fi scanning by utilizing an API enabling

this functionality [40]. With the release of Android 9.0 and higher, Google restricted the use
of said API, effectively deprecating its use. Instead, OS initiated passive Wi-Fi scanning
was introduced after fixed timed intervals. Additionally, due to battery consumption
concerns on applications using network functions, Google throttled the frequency of Wi-Fi
scanning from Android 8.0 up until Android 10 and higher (Table 1).

Proof-of-concept solution for RE-CENT model service

38

I. Tziviskos

Table 1: Wi-Fi Scan Throttling

It should be noted that for applications running Android 10.0 and higher, a setting for
disabling Wi-Fi scan throttling has been introduced under the Developer options for local
testing.

3.7 Access Point Filtering and Shortlisting

For this phase, as shown from Figure 23, the building blocks Network Shortlisting and

Network Selection are both used from the application layer. After the passive scanning time

period is over, the information is passed from the network layer to application layer in the

form of a list, containing information about APs in the client’s area, to the first for the two

building blocks mentioned, Network Shortlisting. The information contained in the received

list range from an AP’s SSID, MAC address, supported 802.11 standards and information

elements included in the beacon frame, to name a few. For Android devices with OS until

version 10 (SDK version 29), the only way to distinct APs from one another was their

SSIDs. From Android 11 and onwards, Google gave access to previously restricted

Information Elements (IE) to developers, and in extent to applications. With them,

applications have another means of identifying significant APs, as it is already described in

Section 3. With the candidate APs filtered out with the aforementioned criteria, the

remaining APs are shorted out according to their Received Signal Strength Identifier

(RSSI) and the connection phase is initiated, under the functionality contained in the

Network Selection.

3.8 Access Point Connection

Having selected an AP to connect to, the application must initiate the connection
procedure. For this, the building blocks, illustrated on Figure 23, Network Selection, from
the application layer, and Network Connection, from the network layer were utilized.
Following the functionality described above for the Network Selection block, the approach
with which this action is executed differs for different OSes installed in the device. Devices

having OS version up until 9.0, applications have control over connecting [41],
disconnecting [42] and reconnecting [43] to an AP via APIs provided by Google. Since the
introduction of Android 10.0 OS, Google deprecated the aforementioned APIs, deeming
them too intrusive to the device’s system functionalities. Instead, developers, and in
extensions the applications developed, issue a list of Wi-Fi network suggestions to the

Proof-of-concept solution for RE-CENT model service

39

I. Tziviskos

system to connect to, along with other parameters that affect the behavior of the API [44].
The system will then connect to one of the provided APs whenever it sees fit.

3.9 Execution Scenarios

In this subsection, a list of scenarios that can occur in both solutions is analyzed.

3.9.1 No Credentials

Figure 26: No credentials

• A mobile client connects to the AP without the use of the Android application.

• Tries to access the internet.

• No table entry was matched (table miss entry). The packet is sent to the controller for
further inspection.

• The controller drops the packet.

3.9.2 Registering a user

Figure 27: Registration Process

1. The mobile client connects to the AP via the Android application.

2. The Android application initiates a HTTP session towards the onboard server.

3. The Android application negotiates parameters related to the video streaming with the
server.

Proof-of-concept solution for RE-CENT model service

40

I. Tziviskos

4. The SDN-Controller receives the information about the newly connected user as well as
the information for the video streaming server. It assigns a cookie value and makes a
new entry to a dictionary containing the received information.

5. Flows are sent to Table 0 for packets for protocols TCP, UDP and ARP. Flows for TCP
and UDP packets originating from a registered user (1a), the ingress port is the wlan0
NIC of the switch and the IP protocol number is set to 6 and 17 respectively. The same
values apply for packets destined for a connected user, with the exception being the
ingress physical port is the eth0 NIC.

6. Server responds with a 200 OK HTTP response, with all the necessary information for
the video streaming server.

Figure 28: Flows Assigned per User for TCP, UDP (1a, 1b) and ARP (2a, 2b) Connections

3.9.3 Monitoring a user

The following Figure describes the procedure of data monitoring.

Figure 29: Monitoring Users' data

• The SDN-Controller application requests flow statistics from each connected switch.

• An event from each switch is received.

• Controller calculates the data usage of each registered users, by utilizing the cookie
value assigned to them.

• Wait N amount of seconds before re-polling the connected switches.

Proof-of-concept solution for RE-CENT model service

41

I. Tziviskos

3.9.4 Un-registering a user

Figure 30: Un-Registering Procedure

1. The mobile user initiates an HTTP request to unregister from the monitoring system
when the video reaches its end.

2. The negotiation server forwards it to the SDN controller.
3. Upon reception, the SDN controller request the deletion of the dedicated flows

established for having access to the video streaming server.
4. The OpenFlow switch responds with messages about the successful deletion of the

user flows.
5. The user management server responds to the negotiation server with a 200 OK HTTP

response.
6. The negotiation server in turn responds to the user for its successful un-registration.

3.10 Problems and Possible Bugs

In this subsection, problems, and possible bugs that I have encountered during the proof-
of-concept solution are outlined.

3.10.1 DNS and ARP packet tracking for mobile registered users

DNS packets originating from mobile users connected to an AP that runs on an OpenFlow
switch are not sent on time and so the Android OS believes there is no connection in the
connected Wi-Fi AP. For that, in each switch a pair of flows is installed upon connecting
with the SDN controller, allowing requests and replies of DNS messages.

3.10.2 Routed Access Point configuration

From the beginning of the development of the proof-of-concept solution, there was a
severe problemwe encountered. As described in section 2, subsection hostapd, there can
be two different AP configurations. The routed AP, in short, creates a new network, with its
own IP and uses the Linux kernel to map incoming and outgoing traffic to and from mobile
users. This was found to be challenging when it came to the development of the SDN
Controller application and its connection with the Open vSwitch software.

Proof-of-concept solution for RE-CENT model service

42

I. Tziviskos

The problem that occurred was that there was no easy way on discerning the different
mobile userswhen they were connected to the AP and having a video streamed to them via
the local video streaming server. For this reason, the development of this solution could not
be found, and the bridged AP configuration, as shown in Figure 17, was developed.

3.10.3 Android application on untested operating systems

The Android application is developed and tested for devices with operating systems
ranging from 7.0 to 11.0, though it was tested for systems 7.0, 8.0, 9.0 and 11.0. The
application can be unpredictable for devices with Android operating systemversion 10.0.

3.10.4 Android Wi-Fi connection

For devices with Android 10.0 OS and later, an application no longer can programmatically
connect to a specific Wi-Fi AP. Instead, it suggests a Wi-Fi AP to the system to connect to.
This can happen in an arbitrary point in time. In some cases, the connection to a suggested
AP enters a loop. To avoid this, the user can turn off or on the Wi-Fi from the Wi-Fi settings
menu. Another problem is the connection of a suggested AP. If the user connects to
another AP and wants to switch to the suggested one, this action can only be done
manually from the Wi-Fi settings menu ones again. In general, Google opted on making the
Wi-Fi connect actions less automated in Android versions 10.0 and onwards.

3.10.5 Streaming ready videos

The video streaming server starts transmitting byte sections of a video to a connected

mobile user. In my case, the video is an mp4 file type. This file type contains a header

section containing information about the video a player needs before starting to play the

content. This header can be in any part of the file. Any player that receives the video must

have this information before starting to play the video. This is solved by moving this header

to the front of the video.

3.10.6 Streaming server logging

When developing the video streaming, we tried logging the bytes that the server was

sending to a mobile client. The bytes sent were not in accord with the bytes measured to

the android application. I tried using synchronous server configuration, using the flask [39]

library, asynchronous configurations, using the aiohttp [45], but the results are all the same.

3.10.7 Video streaming chunk sizes

In my test, I tried measuring the throughput of the video streaming server. I used different

chunk sizes when reading the video file before sending it to a user. I found out that there

was no difference in the throughput, both from the client’s and SDN controller’s

perspective. Once again, I developed the server in both synchronous and asynchronous

Proof-of-concept solution for RE-CENT model service

43

I. Tziviskos

configurations, as well as using the NGINX HTTP server for enabling and disabling the

HTTP server-side buffering, though no change found.

3.10.8 Hostapd service AP initialization

When booting the Raspberry Pi device, there is a chance that the hostapd service might

not initialize the AP correctly. This problem is fixed by running the below command

sudo systemctl restart hostapd.service

Proof-of-concept solution for RE-CENT model service

44

I. Tziviskos

4 IMPLEMENTATION

In this subsection, a brief explanation of the programs that were developed for this solution
is displayed.

This subsection is segmented in the following paragraphs:

• Android application
• Python
• Bash programs

Each one outlines the application’s classes, most of the times, these are separate files, and
in turn, their functions are drilled down.

4.1 Android

Classes developed for this application:

• MainActivity

• Metrics

• WiFiReceiver

• WiFiScanResults

• WiFiConnection

• HTTPSession

• VideoPlayer

o ExoVideoPlayer

o ExoEventListener

o ExoAnalyticsListener

o ExoTransferListener

o ThroughputHandlerThread

o ThroughputHandler

MainActivity:

Class facilitating the main functionality of the application. It is responsible for managing the

User Interface (UI) of the application, initializing variables related to networking actions,

implementing filters for intercepting events originating either from other application classes

or from the device’s OS as well as requesting permissions from the user which are vital for

the correct functionality of the application.

Table 2: MainActivity class

onCreate
Called when the activity is first created.

Permissions necessary for the proper operability of

the application are checked and requested from

Proof-of-concept solution for RE-CENT model service

45

I. Tziviskos

the user if missing, filters are created for

intercepting events.

onResume

Called after your activity has been stopped, prior to

it being started again. The views are set up to the

device’s UI.

configureLocalViewFilter
Function called for setting up an Intent filter to

capture messages from classes of this application.

configureWiFiReceiver

Function called for registering a class so Wi-Fi

scan results can be received by the application.

This function is used by devices with Android OS

8.0 and lower.

initializeViews

Function called to set several views, so a user can

operate application functionalities, the views being,

a button for initiating Wi-Fi scanning and

connection phases. The operations are only used

by devices with Android OS 8.0 and lower

installed.

registerGPSConnectionIntentFilter

Function called for registering a filter for

intercepting events related to the state of the GPS

Location.

unregisterGPSConnectionIntentFilter
Function called to unregister the GPS Location

receiver to avoid memory leakage.

setWiFiConnectionIntentFilter
Function setting up a filter for catching Wi-Fi state

changes.

wifiConnectionFilter

A receiver variable used to receive Intents

regarding Wi-Fi state changes, scan availability

and post-connection of a suggested AP.

unregisterScanReceiver

Function called for unregistering a class for

receiving Wi-Fi scan results. This class is exclusive

to devices with Android OS 11.0 and above.

registerScanReceiver

Function called for registering a class for receiving

Wi-Fi scan results. This function is exclusive to

devices with Android 11.0 OS installed.

gpsStateChangeReceiver Variable used for listening state alterations of the

Proof-of-concept solution for RE-CENT model service

46

I. Tziviskos

device’s GPS Location module. For devices with

Android 9.0 OS and above installed.

checkWiFiPermissions

Function called to check on permissions to ensure

proper application functionality. If any necessary

permission is missing, it is requested by the user

on runtime.

viewChanger
Variable used to receive Intent messages from

other classes related to the application’s UI.

startActivityIntent

Variable user for initiating another activity outside

of the scope of the main activity. Specifically, the

video streaming activity. Upon its completion, the

user disconnects from the connected Wi-Fi AP.

onRequestPermissionsResult
Function used for receiving the permission request

results.

checkLocationStatus
Function used to check if the GPS Location is

turned on.

cancelNotification Function used to cancel any active notifications.

createChannel
Function called to create a notification channel

before issuing any notifications to the user.

makeLocationNotification

Function used to generate a new notification,

informing the user that the GPS Location is

inactive. The user is then prompted to turn it on to

ensure the proper functionality of the application.

Implemented by devices with Android 8.0 OS and

above installed.

checkWiFiThrottling

Function used to check the state of the Wi-Fi scan

throttling option. If disabled, the user is prompted

with a notification. Implemented by devices with

Android 11.0 OS and above installed.

makeThrottlingNotification
Function that generates a notification suggesting to

the user to turn off the Wi-Fi scan throttling option.

onDestroy
Final call you receive before your activity is

destroyed by the operating system. Intent

message receiver variables are unregistered, and

Proof-of-concept solution for RE-CENT model service

47

I. Tziviskos

any present notifications are released.

HTTPSession

Class used for generic HTTP operations, GET and DELETE in this case. The class runs on

a thread different from the UI to avoid any freezes to the application.

Table 3: HTTPSession class

HTTPSession Constructor of the class. It initializes a dictionary containing
values for the upcoming session.

onPreExecute Function called before the session starts so several variables
related to the HTTP request is initialed.

doInBackground Session creation and connection to the negotiation server.

ccreateJSONResponse Helper function used for converting the headers and extra
information received from an HTTP response to a JSON object.

readStream Helper function used for parsing the HTTP response and
converting it to a JSON object.

WifiReceiver:

Class responsible for receiving Wi-Fi scan results. It sorts out APs with specific SSID set to

them, showcases the list to the application’s UI and logs scan related metrics.

Table 4: WifiReceiver class

WifiReceiver

Constructor function called when a new instance of this class is

instantiated. It initializes variables for the list of available APs, metrics

collector class and a context to showcase the received list to the user.

onReceive

Function called after a Wi-Fi scan has ended and a list of APs is

available. The list is displayed to the user and then is examined for any

APs with a specific SSID set to them and added to a new list, to later be

used to connect to one of them. Finally, a message is sent to the

MainActivity, signaling the transition to the connection phase.

sendMessage
Function used to signal the MainActivity that the user can proceed to the

connection phase.

WiFiScanResults:

Class that receives available Wi-Fi scan results in the form of a list. It is used to sort out the

received APs by either their SSID or vendor specific information elements and suggest to

the OS any APs to connect to. The list is displayed to the user via the applications UI. The

Proof-of-concept solution for RE-CENT model service

48

I. Tziviskos

class also provides methods for disconnecting from a suggested AP and also wiping out

any saved network suggestions. This class is only used by devices with Android 10.0 and

above installed.

Table 5: WiFiScanResults class

WiFiScanResults

Constructor of the class. Called when an instance is created.

Initializes class variables related to the list of suggested Wi-Fi

APs and the context with which the collected APs are shown.

calculateWiFiLevel
Function labeling the RSSI of a Wi-Fi AP as Weak, Moderate

and Strong.

onScanResultsAvailable

Function used to receive Wi-Fi scan results. For each Wi-Fi

AP included in the received list, its Vendor Elements are

examined and for APs with specific Vendor Elements value, it

is suggested to the system so the device can connect to it.

Finally, the results are displayed to the user.

showScanResults
Function used for displaying to the user all the received Wi-Fi

APs.

checkVendorElement

Function used to go through the information elements of a

received Wi-Fi scan result. The value of the Vendor Specific

Element is inspected for a specific string value. The function is

called only by devices with Android 11.0 and above OS

installed.

getSuggested_ssids Getter function that returns all the suggested networks’ SSIDs.

unregisterCurrentNetwork

Suggestion

Function used to disconnect from the current connected Wi-Fi

network. The network must be one of the suggested networks.

unregisterAllSuggestions
Function used to unregister all suggested Wi-Fi APs from the

system.

WiFiConnection:

Class used to initiate a connection towards a Wi-Fi network as well as registering the user

to an onboard local server so he/she can access the Internet.

Table 6: WiFiConnection class

WiFiConnection Constructor function of class WiFiConnection. Used to initialize class

Proof-of-concept solution for RE-CENT model service

49

I. Tziviskos

variables used on the following functions.

setMode
Function used for setting the mode for connecting to or disconnecting

from a selected Wi-Fi Access Point.

run

Function used to either initiate a connection to an AP or to disconnect

the device from an already connected AP. Implemented for devices

with Android 8.0 OS and below.

sendMessageVisib

leOFF

Function used to send a message to MainActivity to make the

Connect and Scan buttons to change visibility states. This function is

implemented only by devices with Android 8.0 OS and below

installed.

findBestRSSI

Function used on finding the best RSSI from a list of available Wi-Fi

networks. This function is implemented only by devices with Android

8.0 OS and below installed.

findAccessPoints

Function used to sort out a given list of Wi-Fi networks via their SSID.

For each acceptable network, the best RSSI is calculated and is

used to initiate the connection phase. This function is implemented

only by devices with Android 8.0 OS and below installed.

getExistingNetwor

kId

Function used to check if the Wi-Fi network is included to the

device’s saved networks. If it is included, its ID is returned. This

function is implemented only by devices with Android 8.0 OS and

below installed.

connectToNetwork

Function used to connect to a selected Wi-Fi network via its SSID.

Before connecting, if the device is already connected to a Wi-Fi

network, the user is prompted to accept on disconnecting from it.

This function is implemented only by devices with Android 8.0 OS

and below installed.

isNetworkConnect

ed

Function used to check if the connected Wi-Fi network has internet

connection. This function is implemented only by devices with

Android 8.0 OS and below installed.

startRegistration

Function that makes a GET HTTP request to a server so the user

can be registered and monitored for the chosen data, as well as get

information about the video streaming server.

Proof-of-concept solution for RE-CENT model service

50

I. Tziviskos

fillSessionVariable

s
Helper function creating a dictionary of header values.

removeNetwork

Function used to disconnect from the currently connected Wi-Fi

network. This function is implemented only by devices with Android

8.0 OS and below installed.

readHTTPRespon

se

Helper function used for extracting response information and sends

them to the MainActivity for the video streaming activity to be started.

startUnregistration
Function used for unregistering the device from the monitoring

system and disconnecting from the connected Wi-Fi Access Point.

sendMessage
Sends the outcome of the registration procedure to the MainActivity

class to display it to the user via the application’s UI.

Metrics:

Class used to calculate the elapsed time of procedures related to Wi-Fi scanning and Wi-Fi

connection.

Table 7: Metrics class

Metrics
Class constructor function used to initialize variables used

for the following functions.

setWiFiStartScanTime
Function that sets a timestamp for the beginning of Wi-Fi

scanning.

setWiFiEndScanTime
Function that sets a timestamp for the end of Wi-Fi

scanning.

setWiFiStartConnectTime
Function that sets a timestamp for the beginning of the Wi-Fi

connection phase.

setWiFiEndConnectTime
Function that sets a timestamp for the end of the Wi-Fi

connection phase.

logWiFiScanTime
Function used to calculate the elapsed time for the Wi-Fi

scanning procedure.

logWiFiConnectTime
Function used to calculate the elapsed time for the Wi-Fi

connection procedure.

Proof-of-concept solution for RE-CENT model service

51

I. Tziviskos

getAverageScanTime
Function used to calculate the mean elapsed time for the

Wi-Fi scanning procedure.

getTotalScanTime
Helper function used for calculating the sum of the scan

times array elements.

getStandardDeviationScan

Time

Helper function used for calculating the standard deviation

of the logged Wi-Fi scan timestamps.

getAverageConnectTime
Function used to calculate the mean elapsed time for the

Wi-Fi connection procedure.

getStandardDeviationCon

nectTime

Helper function used for calculating the standard deviation

of the logged Wi-Fi connect timestamps.

VideoPlayer

Package containing classes related to video streaming over HTTP, while listening to events

that may occur while the session is active.

ExoVideoPlayer:

Activity class responsible for initializing an ExoPlayer instance, connecting to an HTTP

video streaming server and logging information related to the session’s metrics.

Table 8: ExoVideoPlayer class

onCreate Function called upon creation of the activity. It receives
information from the MainActivity, initializes event listeners
for streaming session information and metrics and creates an
ExoPlayer video player class instance.

registerExoEventListener Registers a video player related event listener.

unregisterExoEventListener Helper function un-registering the video player related event
listener.

onStop Function called when the activity is stopped and put in the
background. It un-registers listeners and returns to the
MainActivity.

onDestroy Called before the activity is destroyed. Un-registers all the
video player related event listeners before returning to the
MainActivity.

ExoEventListener:

The inner class ExoEventListener is used for capturing events from the Exo player.

Proof-of-concept solution for RE-CENT model service

52

I. Tziviskos

Table 9: ExeEventListener class

ExoEventListener Constructor of the class.

onPlayWhenReadyChanged Callback function signaling that the player class instance is
prepared.

onPlaybackStateChanged Callback function catching a change of the video player’s
state

ExoAnalyticalListener:

Class used for capturing events originating from an instance of an Exo Player. Specifically,

events related to buffering, starting, and stopping loading bytes from a remote source, as

well as errors regarding the connection between the player and the server.

Table 10: ExoAnalyticalListener

ExoAnalyticalListener Constructor of the class.

onBandwidthEstimate Callback function called on the end of the
loading of the video from the remote source
printing the estimated bitrate.

onLoadStarted Callback function called when the video
started loading from the remote source.

OnLoadCompleted Callback function called when the loading of
the video from the remote source reached its
end.

OnIsLoadingChanged Callback function called when the loading
state is changed.

OnLoadError Callback function called when an error
occurred on playback.

OnDroppedVideoFrames Callback function called when video frames
were dropped.

SendMessage Function creating a message that is sent to
the ThroughputHandler class.

ExoTransferListener:

A class responsible for logging transferring events that can occur during the loading of the

video from the remote source.

Table 11: ExoTransferListener class

ExoTransferListener Constructor of the class.

OnTransferInitializing Function called when a transfer is being initialized.

OnTransferStart Function called when the transfer of bytes has started from the
remote source.

Proof-of-concept solution for RE-CENT model service

53

I. Tziviskos

onBytesTransferred Function called incrementally during a transfer of bytes from the
remote source, while it also calculates the total bytes that are
transferred.

OnTransferEnd Function called upon the video was received in its total from the
remote source.

SendMessage Function creating a message that is sent to the
ThroughputHandler.

ThroughputHandlerThread:

Class handling messages from different event handlers of an ExoPlayer instance. It

calculates the bytes loaded from the remote source between intervals.

Table 12: ThroughputHandlerThread class

ThroughputHandlerThread Constructor of the class.

onLooperPrepared Callback function indicating the Looper is prepared.

getHandler Function for returning the handler instance.

ThroughputHandler:

The inner ThroughputHandler class extends that inherits the Handler class. Receives

incoming messages from both the analytics and transfer listeners.

Table 13: ThroughputHandler class

FormatTime Function formatting the time as HH:MM:SS

handleMessage Handler function for the incoming messages from the analytics and
transfer listeners.

CalculateThroughput Calculate the average throughput.

4.2 Python

In this subsection, programs developed on the Python language have their functionality

described. For each file, the classes present are firstly described, followed by functions

included in them.

The programs are segmented as follows:

• SDN Controller application

• Servers

SDN Controller application:

The SDN controller related files are listed below.

• controller_application.py

Proof-of-concept solution for RE-CENT model service

54

I. Tziviskos

• metrics_class.py

• mobile_users_classes.py

• switch_classes.py

• constant_values.py

• params.conf

controller_application.py:

This file facilitates the SDN-Controller functionality. The file has two classes.

• ControllerMonitor: Manages OpenFlow enabled switches by assigning flows and
monitoring registered users.

• RegistrationController: A WSGI server running on the configured IP address and
port listed in the run file. Its role is to receive requests from the negotiation server for
registering and unregistering mobile clients to the monitoring system of the first
class.

ControllerMonitor:

Following are the function contained in the ControllerMonitor class with a short description

of their purpose.

Table 14: ControllerMonitor class

_make_config_dictionary

Function used to make an OSLO configuration object

used to parse the configuration file holding values used

by the SDN-Controller application.

_find_config_flag
Inline function used for searching the configuration file

name from the arguments of the execution command.

__init__

Constructor class of the application. Called when the

class is created and used for initializing variables used

by the application

_get_IP

Inline function used for seeking and retrieving the flag

and given value of the IP from which the SDN-

Controller application listens for events from connected

OpenFlow enabled switches.

_print_app_parameters
Inline function used for displaying some of the

application’s variables.

_switch_state_change_handler Function used for listening on events regarding state

https://docs.google.com/document/d/1q7doSAZFIde_R2Fqh4-c-353nORQwr5XifT9h76Yvgw/edit#heading=h.4bvk7pj
https://docs.google.com/document/d/1q7doSAZFIde_R2Fqh4-c-353nORQwr5XifT9h76Yvgw/edit#heading=h.2r0uhxc

Proof-of-concept solution for RE-CENT model service

55

I. Tziviskos

changes of OpenFlow enabled switches.

_add_user_flows
Inner function of ‘_register_users’, used to add user

specific flows for a newly registered user.

_register_users

Function used for registering mobile users to the

monitoring system. Essentially, a TCP socket server is

created that listens for requests on a specific port, that

runs on a separate from the main event thread.

_make_new_entry

Function used for creating an instance of class

userDataClass, in order for the user’s data to be

monitored. A unique value, termed cookie, is given to

the user and is an opaque controller identifier.

send_features_request
Function used for requesting features from a recently

connected OpenFlow enabled switch.

send_port_desc_stats_request

Function used for sending a request regarding port

information to a newly connected OpenFlow enabled

switch.

_monitor_flows

Function requesting flow statistics from every

connected OpenFlow enabled switch registered to this

controller application. This function runs on a separate

from the main event thread.

_request_switch_stats
Function making requests for flow and wlan0 port

information from a specific OpenFlow switch.

_flow_stats_reply_handler

Function used for catching flow statistics replies from

connected OpenFlow switches, displaying the

established flows to the terminal window, and monitors

the data usage of registered mobile users.

_make_cookie_dictionary
Inner function of ‘_flow_stats_reply_handler’, used for

making a dictionary of available user cookies.

_del_flows
Function used on deleting a set of flows formerly added

for a registered mobile user.

port_desc_stats_reply_handler

Function used for receiving port description replies

from connected OpenFlow enabled switches. The

received information are displayed to the terminal

window in a formatted way.

Proof-of-concept solution for RE-CENT model service

56

I. Tziviskos

switch_features_handler

Function used for receiving switch features replies from

any connected OpenFlow enabled switch. The

information are displayed to the user in a formatted

way. In addition, initial flows for DHCP, ARP, DNS and

TCP protocols are sent to the switch.

redirect_table_flow

Method sending a flow for sending unmatched packets

from the mobile user specific table to the general rules

table.

unregister_user

Function used for removing users from the monitoring

system. It is called when a user has exhausted the

provided data. All the flows related to the user are

deleted and the cookie value is added back to the

available pool of cookies.

flow_removed_event

Function used for catching a flow removal event

originating from an OpenFlow enabled connected

switch. It keeps track of the amount of deleted flows

dedicated to a formerly registered mobile user.

send_flow
Function used to create a flow addition request to a

connected OpenFlow enabled switch.

packet_in_handler
Function used to receive missed packets from any

connected OpenFlow enabled switch.

RegistrationController:

Following are the functions contained under the RegistrationController class, with a short

description.

Table 15: RegistrationController class

__init__ Constructor of the class

register_mobile_user Function used for responding to requests from the
registration server to register a mobile user via the
ControllerMonitor class.

unregister_mobile_user Function used for responding to requests from the
registration server to unregister a mobile user via the
ControllerMonitor class.

Proof-of-concept solution for RE-CENT model service

57

I. Tziviskos

metrics_class.py:

File containing a class, named ControllerMetrics, logging controller related metrics.

Specifically, the elapsed time between flow statistics requests, the elapsed time for

establishing flows to a newly connected OpenFlow enabled switch as well as the difference

in bytes monitored from connected users.

Table 16: ControllerMetrics class

__init__
Class constructor initiating variables used by

the below functions.

_connect_to_sql_server
Function used for registering to a local mySQL

database.

new_user

Function creating a new entry in a dictionary

used to monitor the byte difference of each

registered user, whenever a flow statistics

response is handled by the SDN-Controller

application. The key value is the cookie value

given to the newly registered user.

log_port_stats

Function logging informations taken from the

'wlan0' interface of an OpenFlow switch.

Information logged are collisions, errors upon

reception and transmission and dropped

packets.

update_net_throughput

Function used to measure the Network

Throughput from flows related to streaming

HTTP videos

remove_user

Function called to remove any entry related to

dictionaries tracking information about the to-

be unregistered mobile user. Called when a

user is unregistered from the monitoring

system.

_write_switch_metrics
Function called for inserting network

throughput data recorded for a switch

_write_switch_metrics_to_database
Inline function used for inserting the recorded

data to the local mySQL database

Proof-of-concept solution for RE-CENT model service

58

I. Tziviskos

_write_switch_metrics_to_file

Inline function appending logged throughput

metrics from a user's temp file to the general

net throughput file

_write_user_metrics

Function called for inserting the data recored

of a user that is about to be un-registered from

the monitoring system

_write_user_metrics_to_database
Inline function called for uploading the metrics

logged on a user's temporary file

_write_user_metrics_to_file

Inline function appending logged throughput

metrics from a user's temp file to the general

net throughput file

_remove_temp_file Function removing a user's temporary file

set_start_timestamp_flow_stats
Function used to log the time stamp after a

request for flow statistics to a switch is made.

set_end_timestamp_flow_stats

Function used to log the time stamp after a

reply for flow statistics from a switch is

received.

_log_flow_stats_elapsed_time
Function called for calculating the elapsed

time between flow statistics request and reply.

set_start_timestamp_flows_establish

Function used to log the time stamp from the

beginning of sending flows to a connected

OpenFlow enabled switch.

set_end_timestamp_flows_establish

Function used to log the time stamp after

sending flows to a connected OpenFlow

enabled switch.

_log_established_flows_elapsed_time

Function called for calculating the elapsed

time of flow establishment to an OpenFlow

enabled switch.

mobile_users_classes.py:

File containing a class, named userDataClass, holding information about any registered

mobile user. The class contains methods for calculating the amount of data a user has

Proof-of-concept solution for RE-CENT model service

59

I. Tziviskos

consumed, checking if the user has exceeded the amount of data chosen, as well as

methods for receiving and logging information about the user.

Table 17: userDataClass class

__init__

Class constructor, used for initializing variables with user

information such as the IP and MAC address, the video server

address and port, the chunk size that the server will send data to

the mobile client and the cookie value given by the SDN-Controller

application.

__str__
Function returning a string containing several values in a formatted

way.

getIP Function that returns the IP address of a mobile user.

getMAC Function that returns the MAC address of a mobile user.

getCookie Function that returns the cookie value of a mobile user.

getServerAddress Function that returns the video streaming server address.

getServerPort Function that returns the video streaming server port.

getChunk
Function that returns the video streaming server transmission

chunk size.

getUserId Function that returns a unique user ID.

switch_classes.py:

File containing classes related to storing information about the connected switches to the

SDN-Controller application. The classes contained in this file are:

• switchInfo

• switchInfoList

switchInfo:

The switchInfo class holds information of an OpenFlow enabled switch connected to the

SDN-Controller application. Information such as its datapath class, its IP address and its

datapath id.

Proof-of-concept solution for RE-CENT model service

60

I. Tziviskos

Table 18: switchInfo class

__init__ Constructor of the class.

get_datapath_class Function returning the datapath class of a switch.

get_ip_address Function returning the IP address of a switch.

get_datapath_id Function returning the datapath ID of a switch.

switchInfoList:

The switchInfoList class is a list containing instances of the switchInfo class.

Table 19: switchInfoList class

__init__ Constructor of the class.

findIP Function seeking the index of a switch given an IP address.

findDatapathID Function seeking the index of a switch given a datapath ID.

get_datapath_class
Function that returns the datapath class of a connected switch

from a given switch id.

removeSwitchViaID
Function removing a switchInfo instance from the list given a

datapath ID.

get_switch_ids Function that returns all the connected switch IDs.

constant_values.py:

File containing constant variables used from the aforementioned files and their included

classes and functions.

params.conf:

Configuration file containing configuration parameters regarding the controller application,

such as its address and port to communicate with connected OpenFlow switches, switch

related parameters, like the polling intervals the controller requests information from

switches and general parameters.

Proof-of-concept solution for RE-CENT model service

61

I. Tziviskos

Servers:

Two servers were developed for this proof-of-concept solution.

• Negotiation server: A flask server used for communicating with mobile users and
registering and unregistering them to the monitoring system of the SDN controller’s
application.

• Video streaming server: A server able to transmit videos to multiple mobile users.

Negotiation server:

Files, classes, and functions used for this application are described below

• flask_test.py

• shared_functions.py

• constant.py

• servers.conf

flask_test.py:

File that facilitates the functionality of the negotiation server.

Table 20: negotiation_server.py functions

_register_user Internal function used for registering a mobile user to the SDN
Controller's monitoring application.

register_user Function listening for GET requests from HTTP clients. Upon
reception, the user is registered from the monitoring application.

_unregister_user Internal function used for communicating with the SDN controller's
server for requesting the un-registration of a connected mobile user to
the monitoring system.

unregister_user Function listening for DELETE requests from HTTP clients. Upon
reception, the user is unregistered from the monitoring application.

main Main function where the Flask server is initialized and started

shared_funtions.py:

File containing functions that can be used by both the negotiation and video streaming

server.

Table 21: shared_funtions.py functions

make_dictionary Function used for taking information from a configuration file regarding
registration and HTTP servers.

log_event General function used to write an event to a dedicated log file. The
event is in CSV format.

Proof-of-concept solution for RE-CENT model service

62

I. Tziviskos

set_controller_IP Set the controller ID by executing a shell command and parsing the
output

set_switch_ID Function used for acquiring the datapath ID of the OpenFlow enabled
switch. This is done via the ovs-ofctl to query the OvS system for
switch information. The output is concatenated, and the ID is returned.

constants.py:

File that contains constant variables used by both the negotiation and video streaming

servers.

servers.conf:

Configuration file containing information used by the negotiation server, such as the

server’s port and SDN controller negotiation server, and video streaming server, like the

address and port and the quality of the video to be streamed.

Video Streaming server:

Responsible for streaming a video to a mobile user.

• flask_video_streaming.py

• shared_functions.py

• constants.py

• servers.conf

flask_video_streaming.py:
Table 22: flask_video_streaming.py functions

__init__ Constructor of the class.

throughput_monitor Function used for monitoring the number of bytes read from the
video file being sent to a client.

get_chunk Function returning a set of values for the byte chunk to be sent to
the client, and a boolean value showing if the file has reached its
end.

_read_from_file Function returning the chunk size to be sent to the client.

_move_file_reader Function used for moving the file descriptor of the file. The
function returns a boolean value indicating the end of file.

get_file_path Getter function returning the full file path of the video file

generate_video_chunk Function that reads chunks from a selected video file.

stream_video Function serving clients making requests.

Proof-of-concept solution for RE-CENT model service

63

I. Tziviskos

shared_functions.py:

File containing functions that can be used by both the negotiation and video streaming

server.

Table 23: sharder_functions functions

make_dictionary Function used for taking information from a configuration file regarding
registration and HTTP servers.

log_event General function used to write an event to a dedicated log file. The
event is in CSV format.

set_controller_IP Set the controller ID by executing a shell command and parsing the
output

set_switch_ID Function used for acquiring the datapath ID of the OpenFlow enabled
switch. This is done via the ovs-ofctl to query the OvS system for
switch information. The output is concatenated, and the ID is returned.

constants.py:

File that contains constant variables used by both the negotiation and video streaming

servers.

servers.conf:

Configuration file containing information used by the negotiation server, such as the

server’s port and SDN controller negotiation server, and video streaming server, like the

address and port and the quality of the video to be streamed.

4.3 Bash

In this subsection, scripts written in Bash language have their functionality is described.
Specifically:

• generatevendorelement.sh

• run

generatevendorelement.sh:

A script used to generate a vendor element, as described inFigure 21. It takes as an input
a string value, it checks for its length to be less than 255 bits, otherwise the user is
prompted to rerun the program with a shorter value. If no input string is given, the user is
prompted to give a value. This value can be used by the hostapd to be broadcasted to
mobile devices

Proof-of-concept solution for RE-CENT model service

64

I. Tziviskos

run:

Script used to initiate the SDN-Controller application. The port and IP in which the
application will be ran are set and the application is executed via the ryu-manager
command.

Proof-of-concept solution for RE-CENT model service

65

I. Tziviskos

5 NUMERICAL RESULTS

In this subsection, we evaluate the performance of the proof-of-concept solution for all its

components. Referencing the main components of the solution from section 4.4, for the

network infrastructure, as shown in Figure 24, we used a Raspberry Pi 3B+, the mobile

clients, as shown in Figure 23, were 3 Android smartphones, with Android OS versions 7.0,

9.0 and 11.0, and lastly for the network controller, as shown on Figure 25, the RYU SDN

controller framework was used.

Table 24: Raspberry Pi 3B + Specifications

CPU
Broadcom BCM2837B0, Cortex-A53
(ARMv8) 64-bit SoC @ 1.4GHz

RAM 1GB LPDDR2 SDRAM

Wireless
Protocols

• 2.4GHz and 5GHz IEEE
802.11.b/g/n/ac Wi-Fi

• Bluetooth 4.2

• BLE (Bluetooth Low Energy)

Ethernet
Gigabit Ethernet over USB 2.0
(maximum throughput 300 Mbps)

IO Ports 4 USB 2.0 ports

Power 5V/2.5A DC

Table 25: Mobile Devices Specifications

Model Names

Specifications

One Plus Nord N100
Xiaomi Redmi

Note 4
Xiaomi Redmi

Note 6

Processor Snapdragon 460 Snapdragon 625 Snapdragon 636

RAM 4 GB 3 GB 3 GB

OS Version 11.0 7.0 9.0

Wi-Fi Versions a/b/g/n/ac a/b/g/n a/b/g/n/ac

Table 26: Big Buck Bunny video information

Resolution@
Frame Rate

1920x1080@30fps 1280x720@30fps 640x480@30fps

File Size (bytes) 342.416.819 197.601.700 94.671.927

Duration (minutes,
seconds)

10.34 10.34 10.34

Bitrate (bits/sec) 4.316.631 2.491.039 1.193.468

The streaming and negotiation server was configured with the Flask framework. For the

streaming server the Gunicorn python HTTP server was used for managing the number of

workers serving a video to a connected client and the NGINX server the routing and

buffering of data between the Flask streaming server and a mobile client’s device. For the

Proof-of-concept solution for RE-CENT model service

66

I. Tziviskos

video, we chose the Big Buck Bunny in 3 different resolutions, 1080, 720 and 480, with

frame rate of 30 fps (frames per second) to achieve compatibility with the devices used.

From the mobile client’s side, the ExoPlayer [45] media player was used and configured for

progressive HTTP video download.

5.1 Mobile Client Performance

The performance of APIs for scanning for and connecting to a Wi-Fi AP was evaluated. For

this purpose, three different smartphones were used, all with a different Android OS

version, as they are described in Table 25.

For the devices with Android OS until 9.0, the scanning time was measured from the

moment the user issues a command to the system, by pressing a button, to collect any

APs in its vicinity until the results are received as a callback to a class. For devices though

with OS version 10 and onwards, the scanning procedure has been automated and the

application waits from the system to scan the device’s area. A callback class was created

to capture these results each time.

Figure 31: Average Scanning (left) and Connection (right) time

For the average scan time, devices with Android OS 7.0 and 9.0, the connect time was

measured from the moment the user issues a connect command to the application, again

by pressing a button present on the screen, until its successful connection to the selected

AP. In similar fashion with the scanning procedure, devices with OS version 10.0 and

onwards had the connection procedure automated. The connection time was measured

after the reception of the first batch of Wi-Fi APs scan results up to the successful

connection to a suggested AP, signaled with the reception of a callback event from the

Proof-of-concept solution for RE-CENT model service

67

I. Tziviskos

system. For the device with Android 11 OS, the average scan of Wi-Fi APs and connection

time to a suggested AP was measured with the Wi-Fi throttling option was enabled.

As shown in Error! Reference source not found., devices with Android OS 7.0 and 9.0

showed more favorable results in scanning for Wi-Fi APs from the device with OS version

11. It is noticeable that the device with OS version 9.0 gave instantaneous scan results

related to the device with Android 7.0 version. The average scanning time for the Android

11 OS version, both with and without Wi-Fi throttling, were worse. This behavior is

translated to the Wi-Fi connection average time as well. Lastly, the performance of the

scanning, and subsequently connecting, time for the Android 11 device with and without

the Wi-Fi scan throttling option is negligible, with a difference of 2 seconds.

5.2 SDN Controller data monitoring performance
In this subsection, the performance of the developed proof-of-concept solution is

showcased for different scenarios of video streaming between the streaming server and

one or more mobile clients. With varying parameters in both the streaming server and

mobile client, the network throughput was measured as well as the responsiveness of the

controller to events generated by a connected network infrastructure.

5.2.1 Throughput for different server chunk sizes and client player buffer sizes

We analyzed the average network throughput of the video streaming server behavior,

measured on the SDN controller monitoring application. The video streaming server was

developed to be a HTTP progressive video server, meaning there was a fixed bitrate for

each video used.

Table 27: Variables for chunk size based video streaming

Chunk Sizes
(kilobytes)

16 64 256

Video Resolutions
(height)

480p 720p 1080p

Min/Max Buffer Sizes
(milliseconds)

30/50 50/100 100/150

For the video streaming server, three different chunk sizes were used for reading the video

file before sending the data to the registered mobile client. The video player of the client’s

device had three minimum and maximum buffers configurations for receiving a video.

Finally, three different video resolutions were used, with varying file sizes. All the

parameters are described in Table 27.

Proof-of-concept solution for RE-CENT model service

68

I. Tziviskos

Error! Reference source not found. shows the network throughput performance for the

above variables. From the figure, we deduce that the throughput for the different video

resolutions increases when increasing the resolution from 480p to 1080p. This was

expected, due to the increase of the video file size as well as the bitrate for those

resolutions, as shown on Table 26. We also observe the increase of the network

throughput per resolution due to the increase of the min and max buffers with which the

client’s video player loads data from the video streaming server. By increasing the buffers,

the client demands more data from the server for the video to be played to the user.

However, different chunk sizes for the same buffer configurations yielded the same results.

At first those results don’t seem logical, though in the case of the current video server, the

client can only select the amount of bytes to be sent to its video player, as it can be seen

from the throughput for different min and max buffers.

Figure 32: Average Throughput for Varying Chunk Sizes (Mbps)

Proof-of-concept solution for RE-CENT model service

69

I. Tziviskos

5.2.2 Throughput of video streaming to multiple users

Figure 33 compares the average network throughput for three different video resolutions. In

addition, the scenario was repeated for three min and max buffer sizes configurations on a

mobile client’s video player, and for up to three concurrent users, with a fixed chunk size

transmitted from the HTTP progressive video server.

Figure 33: Average Network Throughput for Multiple Concurrent Users

We observe that by increasing the boundaries on the min and max buffers, the throughput

increases per video quality. This is expected, since the user demands lengthier video

segments, to which a greater number of bytes are transmitted. In addition, the throughput

increases with both the improvement of the streamed video’s resolutions and the increase

of concurrent mobile users. This is yet expected, as the previous result can be applied to

multiple users cumulatively, thus the throughput increases as the number of concurrent

users is increased.

5.2.3 Runtime Events and Response Time

For the execution of this scenario, one mobile client was used, with the 1080p version of

the Big Buck Bunny video, the minimum and maximum buffers of the player are set to 50

and 100ms. The SDN Controller requests every 5 seconds flow and port statistics from the

OpenFlow switch. For the event timestamps, UNIX time was used to ensure uniformity

among devices. The starting point of this scenario is calculated from the connection of the

OpenFlow switch and ends when the mobile user successfully unregisters from the

monitoring system.

Figure 34Error! Reference source not found. shows the requests and responses of

different events that can occur during runtime, on an Android mobile device, the SDN

Proof-of-concept solution for RE-CENT model service

70

I. Tziviskos

controller application and the negotiation server. We observe that, the SDN Controller

application has little to no latency between requests and responses. Looking in the

registration and un-registration of a mobile user through all three devices, again, the

responses between devices have time difference in the scale of milliseconds.

Figure 35 shows the data transmitted by the video streaming server and captured from a

mobile client’s device. From the first two graphs, the transmission and reception of

segments of the video are in the same data ranges, with a small deviation of 1.46

megabytes because a mobile client counts only the bytes that it receives without any

headers while the SDN Controller counts them. The last plot graph shows the network

throughput as it is measured from the SDN Controller. The controller program polls the

connected switch for flow statistics and calculates the network throughput. The throughput

is in-line with the bytes measured from the two plots. During the playback of the video, the

player encountered no errors related to buffering or lost packages.

Proof-of-concept solution for RE-CENT model service

71

I. Tziviskos

Figure 35: Bytes and throughput measured during a video session

Figure 34: Events from mobile client, SDN Controller and Negotiation Server

Proof-of-concept solution for RE-CENT model service

72

I. Tziviskos

6 INSTALLATION AND CONFIGURATION

In this section a thorough tutorial on how to install and configure any software used is
highlighted.

6.1 Installing Python 3

This part is optional if the system already has a version of python 3 installed.

Before installing any program to the Raspberry Pi device, it is advised to execute the below
commands to check the system is updated:

sudo apt update
sudo apt upgrade

All programs written in the Python language are run in the third version:

sudo apt install python3
sudo apt-get install python3-pip

6.2 Python 3.9 virtual environment

This part is optional if the system already has the Python 3.9 as its default version.

The SDN controller application utilizes packages that can only function properly on python
3.9. Although there are many ways to change the default python version installed in ones
system, I opted on creating a virtual environment.

The venv module supports creating lightweight virtual environments, each with their own
independent set of Python packages installed in their site directories. A virtual environment
is created on top of an existing Python installation, known as the virtual environment’s base
Python, and may optionally be isolated from the packages in the base environment, so only
those explicitly installed in the virtual environment are available.

To create a new environment, execute the following command

python3.9 -m venv<path-to-new-virtual-environment>

, where the path is the folder the SDN controller application is located.

6.3 OpenFlow switch and Access Point

6.3.1 Installing Raspbian OS

To install the image firmware you either the Raspberry Pi imager software [48] , or if you are

using Linux based systems, use the dd [49] command.

Proof-of-concept solution for RE-CENT model service

73

I. Tziviskos

Using the Raspberry Pi imager

Launch the Raspberry Pi imager, shown in Figure 36.

Figure 36: Raspberry Pi imager software

Press the CHOOSE OS button. For the latest version of Raspbian OS, choose the first
selection, otherwise, choose the second selection, and navigate to the directory where you
have installed the preferred image.

Proof-of-concept solution for RE-CENT model service

74

I. Tziviskos

Figure 37: Raspberry Pi imager OS selection list (Latest OS)

Press the CHOOSE STORAGE button and select the micro-SD card you chose to flash the
firmware.

Afterwards, the button WRITE should be ready to choose. By pressing it, the installation
will begin, and you will be prompted upon completion.

Using the dd command for Linux-based systems

Plug the SD card in the computer you have downloaded the image firmware. To identify the
micro-SD card, run the following command as super user

sudodmesg

The most recent message should give you the SD card device name, such as sdb or sdf or
similar. Ensure the drive was not auto mounted by your OS.

From root, use dd command to copy the image file to the device you identified

dd if=<imagename>.img of=/dev/sdX bs=2M conv=fsync

sync

Remove the X part of sdX with the letter the previous step has shown for your SD
card.Remove the card and install it to the Raspberry Pi. Plug the charger to boot it up.

Proof-of-concept solution for RE-CENT model service

75

I. Tziviskos

6.3.2 Accessing the device

To access the device, use either SSH from your device or attach a keyboard and mouse to
the device and connect to a monitor with an HDMI cable. I opted for the second option as
there are networking related configuration steps following and SSH connections will be lost
upon execution.

6.3.3 Configuring the Access Point

Following is the procedure of configuring the Raspberry Pi device to an AP. The hostapd
software is used for that purpose:

sudo apt install hostapd

Enable the access point service and set it to start when the device boots:

sudosystemctl unmask hostapd
sudosystemctl enable hostapd

For providing DNS and DHCP services to mobile users, install the dnsmasq software:

sudo apt install dnsmasq
sudo nano /etc/dhcpcd.conf

Go to the end of the file and add the following:

interface eth0

noipv4

interface wlan0

noipv4
interface br0

To ensure Wi-Fi radio is not blocked on your Raspberry Pi, execute the following
command:

Sudorfkill unblock wlan

and is automatically restored upon boot time.

Proof-of-concept solution for RE-CENT model service

76

I. Tziviskos

Create the hostapd configuration file, located at /etc/hostapd/hostapd.conf, to add the
various parameters for your new wireless network:

sudo nano /etc/hostapd/hostapd.conf

and add the following lines:

country_code=GR
interface=wlan0
ssid=MyRaspberryPiAP
hw_mode=g
channel=7
macaddr_acl=0
auth_algs=1
ignore_broadcast_ssid=0
wpa=0
vendor_elements=dd0b6c656173655f74696d650a

For the changes to be established, the device needs to be rebooted.

6.3.4 OpenFlow Installation and Configuration

Go to directory /home/pi:

cd ~

From the official site of Open vSwitch [] choose a version to be installed. For this
implementation, version 2.13.3 was chosen as it was the more stable at the moment:

wgethttps://www.openvswitch.org/releases/openvswitch-2.13.3.tar.gz

Upon completion, a tar.gz file will be shown in the directory. Execute the following
command to extract a folder and enter to it:

tar -xvf openvswitch-2.13.3.tar.gz

cd openvswitch-2.13.3

Install an assortment of prerequisite programs in super user mode:

sudosu

https://www.openvswitch.org/releases/openvswitch-2.13.3.tar.gz

Proof-of-concept solution for RE-CENT model service

77

I. Tziviskos

apt-get install python-simplejson python-qt4 libssl-dev python-twisted-conch
automakeautoconf

Next, install a Linux header. Use the command:

uname -r

and find the most recent header version for linux-header-x.x.x-x-rpi and install it. For this
implementation, version 4.9.0-6 was most recent:

apt-get install linux-headers-4.9.0-6-rpi -y

Upon completion, execute file configure by specifying the full path of the recently
downloaded linux header:

./configure –with-linux=/lib/modules/4.9.0-6-rpi/build

The Configuration procedure may take some time to complete. Afterwards, execute the
following commands in order the openvswitch program to be executed when the device is
booted up:

cd datapath/linux

modprobeopenvswitch

echo “openvswitch” >> /etc/modules

cd ../../

For keeping any configured items between boots of the system, a database is created

touch /usr/local/etc/ovs-vswitchd.conf

mkdir -p /usr/local/etc/openvswitch/

ovsdb-tool create /usr/local/etc/openvswitch/conf.dbvswitchd/vswitch.ovsschema

Create a new file:

nano script

and add the following instructions inside:

Proof-of-concept solution for RE-CENT model service

78

I. Tziviskos

#!/bin/bash

ovsdb-server --remote=punix:/usr/local/var/run/openvswitch/db.sock \

 --remote=db:Open_vSwitch,Open_vSwitch,manager_options \

 --private-key=db:Open_vSwitch,SSL,private_key \

 --certificate=db:Open_vSwitch,SSL,certificate \

 --bootstrap-ca-cert=db:Open_vSwitch,SSL,ca_cert \

 --pidfile --detach

ovs-vswitchd --pidfile --detach

ovs-vsctl --no-wait init

ovs-vsctl show

After saving the file, change the credentials of the file to be an executable:

chmod +x script

The file needs to be executed when the device is booted up. For

that, go to home directory and open the .bashrc file:

cd ~ &&vim .bashrc

and add the following line at the end of the file

sudo openvswitch-2.13.3/script

This will make the system execute the file, loading any configuration a user has made.

Create a new OVS bridge

ovs-vsctl add-bridge br0

Set the OpenFlow version for the bridge

ovs-vsctl set Bridge br0 protocols=OpenFlow13

Proof-of-concept solution for RE-CENT model service

79

I. Tziviskos

The Ethernet and wireless NICs will not be given any IP address from the dhcpcd program,
since it is added to the bridge br0, while the OVS bridge br0 will automatically be given an
IP address.

Add the Ethernet and wireless NICs to the OVS bridge. If you are accessing the device via
a SSH connection, see section Accessing the device.

ovs-vsctl add-port br0 eth0
ovs-vsctl add-port br0 wlan0

Restart the dhcpand hostapddaemons for the above instructions to take effect

sudosystemctl restart dhpcd.service
sudosystemctl restart hostapd.service

6.3.5 External SDN Controller

Set an external SDN-controller for the OVS bridge br0 to connect to

ovs-vsctl set-controller br0 tcp:<address-of-controller>:6634

6.3.6 Hostname Configuration for Registration Server

For the onboard registration server an alias was set by using the device IP and a host
name. Open the hosts file:

vim /etc/hosts

and add the following lines at the end of the file:

<IP-of-raspberry>leaseconnection

With this addition the android application can connect to the registration server without
knowing the IP of the server beforehand.

6.3.7 Hostapd patch

For the solution to be functional the hostapd needs to be patched so it can be used an AP
can be created in bridged mode and added in the Open vSwitch logical interface. For that,
download the patch from Git

Proof-of-concept solution for RE-CENT model service

80

I. Tziviskos

git clone https://github.com/Unomic/hostapd_ovs.git

Go into the newly created folder and access the hostapd directory. Once there, build the
patch. Then, reboot for the changes to be established.

cd hostapd_ovs/hostpad

make

sudo reboot

6.4 RYU SDN controller

Installation of RYU Framework

The RYU framework depends on some programs to be pre-installed to the system before it
is installed

sudoapt install gcc python-dev libffi-dev libssl-dev libxml2-dev libxslt1-dev zlib1g-dev
python-pip

Upon completion, install the RYU controller either via the pip3 python installer or from a git
repository

Using the pip3 installer

sudo pip3 install ryu

Using the project’s git repository, clone the repository, access it and run the installation
script via python3 with super user privilidges.

git clone git://github.com/osrg/ryu.git

cd ryu

sudo python3 setup.py install

Installing and Updating Dependencies

Before any application is executed, install via pip3 some additional python module
dependencies. For ease of use, create a text file

Proof-of-concept solution for RE-CENT model service

81

I. Tziviskos

vim module_dependencies.txt

and add the following packets as they are shown

packaging
termcolor
netaddr
eventlet==0.31.1
oslo_config
routes
tinyrpc==1.0.4
msgpack
ovs
webob

Save and exit the text editor and execute the following command to install and or update
already installed modules

pip3 install -r module-dependencies.txt

6.5 MP4 video meta info

For a video to be played to a mobile user as soon as it is received, the meta information

needs to be placed at the front of the video file so the client’s media player can access

them quicker.

Execute the following command to achieve it

ffmpeg -i input.mp4 -movflagsfaststart -acodec copy -vcodec copy output.mp4

6.6 Generate videos

FFmpeg can resize a video and generate a new file. For this solution, I generated a 1080p,

720p and 480p videos from the big buck bunny video in 2160p resolution.

The command to resize a video to a set of height and width is the following

ffmpeg -i input.mp4 -vf scale=<width>:<height> -preset slow -crf 18fps=30

 output.mp4

Proof-of-concept solution for RE-CENT model service

82

I. Tziviskos

The width and height values for the aforementioned resolutions are 1920:1080, 1280:720

and 640:480 respectively. It should be noted that due to hardware limitations of the tested

devices, the frame rate is set to 30.

The input.mp4 is the 2160p video resolution and the output.mp4 video is every desired

resolution.

Proof-of-concept solution for RE-CENT model service

83

I. Tziviskos

7 CONCLUSION

In this paper, we have proposed a proof-of-concept solution for the user-centric RE-CENT
method over the Wi-Fi protocol. In the solution was included an application for Android
devices, and an SDN-Controller application for two different access point configurations,
them being the bridged and routed access point configurations. The performance of the
Android application was evaluated for the responsiveness of different APIs related to
retrieving information about Wi-Fi APs in a device’s vicinity as well as the connection to a
selected Wi-Fi network. Results revealed the prowess of APIs able to initiate on-demand
functions for the aforementioned cases. For the SDN-Controller applications, the bridged
access point configuration proved to be more superior due to its simplicity on monitoring
data usage of different mobile users at the same time. Future work includes the expansion
of this solution to cellular systems as well as the development of the Android application for
the latest Android OS.

Proof-of-concept solution for RE-CENT model service

84

I. Tziviskos

ABBREVIATIONS - ACRONYMS

IoT Internet-of-Things

NR New Radio

MNO Mobile Network Operator

QoS Quality of Service

QoE Quality of Experience

OTT OTher Third-party

AAA Authentication, Authorization, Accounting

RAN Radio Access Network

WLAN Wireless Local Area Network

ISP Internet Service Provider

SLA Service License Agreement

RE-CENT REsource sharing model for user-CENTric

RAT Radio Access Technology

IMSI International Mobile Subscriber Identity

KPI Key Performance Indicator

ASIC Application Specific Integrated Circuit

SDN Software-Defined Networking

CDPI Control to Data-Plane Interface

ACL Access Control List

ONOS Open Network Operating System

VSC Virtualized Services Controller

ForCES Forwarding and Control Element Separation

POF Protocol Oblivious Forwarding

NSA National Security Agency

U.S. United States

VLAN Virtual Local Area Network

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

TLS Transport Layer Security

TCP Transmission Control Protocol

UDP User Datagram Protocol

Proof-of-concept solution for RE-CENT model service

85

I. Tziviskos

ARP Address Resolution Protocol

ICMP Internet Control Message Protocol

MPLS MultiProtocol Label Switching

TTL Time-To-Live

VM Virtual Machine

KVM Kernel-based Virtual Machine

NIC Network Interface Controller

LACP Link Aggregation Control Protocol

GRE Generic Routing Encapsulation

VXLAN Virtual Extensible LAN protocol

STT Stateless Transport Tunneling

LISP Locator/Identifier Separation Protocol

DPDK Data Plane Development Kit

MEC Multi-access edge computing

ETSI European Telecommunications Standards
Institute

MEC Mobile Edge Computing

ISG Industry Specification Group

UE User Equipment

OPEX OPeratingEXpenses

O-RAN Open Radio Access Network

CU/DU Control and Distributed Unit

AI/ML Artificial Intelligence/Machine Learning

OA Orchestration and Automation

RIC near-RT RAN Intelligent Controller near-Real Time

RIC RAN Intelligent Controller

LAN Local Area Network

PXE PrebooteXecution Environment

MAC Media Access Control

PHY Physical Layer

OHA Open Handset Alliance

SMS Short Message Service

API Application Programming Interface

UI User Interface

Proof-of-concept solution for RE-CENT model service

86

I. Tziviskos

DVM Dalvik Virtual Machine

ART Android RunTime

DEX Dalvik Executable

AOT Ahead-Of-Time

JIT Just-In-Time

GC Garbage Collection

HAL Hardware Abstraction Layer

OpenGL Open Graphics Library

BTC Bitcoin

ETH Ethereum

SC Smart Contract

PoW Proof-of-Work

PoS Proof-of-Stake

PoA Proof-of-Authority

UCI Unified Configuration Interface

DNS Domain Name System

DHCP Dynamic Host Configuration Protocol

NAT Network Address Translation

ISA Instruction Set Architecture

HOSTAPD HOST Access Point Daemon

RADIUS Remote Authentication Dial-In User Service

EAP Extensive Authentication Protocol

SSID Service Set Identifier

DNAT Destination NAT

AP Access Point

Wi-Fi Wireless-Fidelity

IEEE Institute of Electrical and Electronics Engineers

URL Uniform Resource Locator

ID Identifier

CGI Cellular Global Identifier

PCI Physical Cell ID

OS Operating System

SDK Software Development Kit

Proof-of-concept solution for RE-CENT model service

87

I. Tziviskos

RSSI Received Signal Strength Identifier

HTTP Hyper Text Transport Protocol

JSON JavaScript Object Notation

REST REpresentational State Transfer

RSD Relative Standard Deviation

SMPT Society of Motion Picture and Television
Engineers

ITU International Telecommunication Union

SNI Server Name Indication

SSI Server Side Includes

XSLT eXtensible Stylesheet Language

ISAM Indexed Sequential Access Method

VSAM Virtual Storage Access Method

SQL Structured Query Language

RDBMS Relational Database Management System

CPU Central Processing Unit

Proof-of-concept solution for RE-CENT model service

88

I. Tziviskos

8 REFERENCES

[1] P. R. Newswire, The Public Safety LTE & Mobile Broadband Market: 2016 - 2030 - Opportunities,

Challenges, Strategies & Forecasts., 2016.

[2] 3GPP, "NR; NR and NG-RAN Overall Description; Stage 2," 2018.

[3] Ibrahim Afolabi, Tarik Taleb, Konstantinos Samdanis, Adlen Ksentini, and Hannu Flinck, "Network

slicing and softwarization: A survey on principles, enabling technologies, and solutions," IEEE

Communications Surveys and Tutorials, vol. 20, no. 3, 2018.

[4] Dionysis Xenakis, Anastasia Tsiota, Christos Thrasyvoulos Koulis, Christos Xenakis, and Nikos

Passas, "Contract-Less Mobile Data Access beyond 5G: Fully-Decentralized, High-Throughput and

Anonymous Asset Trading over the Blockchain," IEEE Access, vol. 9, pp. 73963-74016, 2021.

[5] Open Networking Foundation, "Open Network Operating System (ONOS) | SDN Controller for

SDN/NFV Solutions,". [Online]. https://opennetworking.org/onos/

[6] OpenDaylight. OpenDaylight. [Online]. https://www.opendaylight.org/

[7] Faucet. Faucet SDN Controller. [Online]. https://faucet.nz/

[8] RYU. Ryu SDN Framework. [Online]. https://ryu-sdn.org/

[9] Confluence. Floodlight Controller. [Online].

https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview

[10] Nuage Networks. Virtualized Services Platform. [Online].

https://www.nuagenetworks.net/platform/virtualized-services-platform/

[11] Software Development Kit. The Ultimate SDN Framework. [Online]. https://lighty.io/

[12] B Laurie, A Langley, and E Kasper, "RFC 6962 | Certificate Transparency," 2070-1721, 2013.

[13] Shengru Li et al., "Protocol Oblivious Forwarding (POF): Software-Defined Networking with Enhanced

Programmability," IEEE Network, vol. 31, no. 2, pp. 58-66, Mar. 2017.

[14] Cisco. Cisco ACI and OpFlex Connectivity for Orchestrators. [Online].

https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Cisco_ACI_and_OpFlex_

Connectivity_for_Orchestrators.html

[15] Carmelo Cascone, Luca Pollini, Davide Sanvito, Antonio Capone, and Brunilde Sansò, "SPIDER: Fault

Resilient SDN Pipeline with Recovery Delay Guarantees," Nov. 2015. [Online].

http://arxiv.org/abs/1511.05490

[16] Open Networking Foundation. OpenFlow. [Online]. https://opennetworking.org/sdn-

resources/customer-case-studies/openflow/

[17] Open Networking Foundation. Open Networking Foundation. [Online]. https://opennetworking.org/

[18] Linux Foundation Collaborative Projects. Open vSwitch. [Online]. https://www.openvswitch.org/

https://opennetworking.org/onos/
https://www.opendaylight.org/
https://faucet.nz/
https://ryu-sdn.org/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://www.nuagenetworks.net/platform/virtualized-services-platform/
https://lighty.io/
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Cisco_ACI_and_OpFlex_Connectivity_for_Orchestrators.html
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/aci/apic/sw/kb/b_Cisco_ACI_and_OpFlex_Connectivity_for_Orchestrators.html
http://arxiv.org/abs/1511.05490
https://opennetworking.org/sdn-resources/customer-case-studies/openflow/
https://opennetworking.org/sdn-resources/customer-case-studies/openflow/
https://opennetworking.org/
https://www.openvswitch.org/

Proof-of-concept solution for RE-CENT model service

89

I. Tziviskos

[19] IEEE, "IEEE Std 802.11™-2016," 2016.

[20] Statcounter Global Stats. (2023, Mar.) Mobile Operating System Market Share Worldwide. [Online].

https://gs.statcounter.com/os-market-share/mobile/worldwide

[21] Open Handset Alliance. (2012) Open Handset Alliance. [Online]. www.openhandsetalliance.com

[22] Y A Min, "A study on the performance evaluation items of the private blockchain consensus algorithm

considering consensus stability," Journal of the Korea Society of Computer and …, 2020.

[23] Vitalik Buterin, "A next-generation smart contract and decentralized application platform," Etherum, no.

January, 2014.

[24] Sunny King, "Primecoin: Cryptocurrency with Prime Number Proof-of-Work," King, Sunny, vol. 4, no. 2,

2013.

[25] Sunoo Park, Krzysztof Pietrzak, Joel Alwen, Georg Fuchsbauer, and Peter Gazi, "Spacecoin : A

Cryptocurrency Based on Proofs of Space," IACR Cryptology ePrint Archive, 2015.

[26] Andrew Miller, Ari Juels, Elaine Shi, Bryan Parno, and Jonathan Katz, "Permacoin: Repurposing

bitcoin work for data preservation," Proceedings - IEEE Symposium on Security and Privacy, 2014.

[27] The Hyperledger White Paper Working Group, "An Introduction to Hyperledger," Advances in

Computers, vol. 121, 2018.

[28] B. Vitalik and G. Virgil, "Casper the Friendly Finality Gadget," Oct. 2017. [Online].

http://arxiv.org/abs/1710.09437

[29] OpenEthereum. Aura - Authority Round. [Online]. https://openethereum.github.io/Aura

[30] Debian Manpages. hostapd. [Online]. https://manpages.debian.org/testing/hostapd/hostapd.8.en.html

[31] Debian Wiki. dnsmasq. [Online]. https://wiki.debian.org/dnsmasq

[32] Ralph Droms, "RFC 2131 | Dynamic Host Configuration Protocol,". [Online].

https://datatracker.ietf.org/doc/html/rfc2131

[33] "RFC 951 | Bootstrap Protocol,". [Online]. https://datatracker.ietf.org/doc/html/rfc951

[34] William A. Simpson, Dr. Thomas Narten, Erik Nordmark, and Hesham Soliman, "RFC 4861 | Neighbor

Discovery for IP version 6 (IPv6),". [Online]. https://datatracker.ietf.org/doc/html/rfc4861

[35] Syam Madanapalli, Jaehoon Paul Jeong, Soohong Daniel Park, and Luc Beloeil, "RFC 6106 | IPv6

Router Advertisement Options for DNS Configuration,". [Online].

https://datatracker.ietf.org/doc/rfc6106/

[36] Dr. Thomas Narten, Richard P. Draves, and Suresh Krishnan, "RFC 4941 | Privacy Extensions for

Stateless Address Autoconfiguration in IPv6,". [Online]. https://datatracker.ietf.org/doc/html/rfc4941

[37] Michael Carney, Charles E. Perkins, Bernie Volz, Ted Lemon, and Jim Bound, "RFC 3315 | Dynamic

https://gs.statcounter.com/os-market-share/mobile/worldwide
www.openhandsetalliance.com
http://arxiv.org/abs/1710.09437
https://openethereum.github.io/Aura
https://manpages.debian.org/testing/hostapd/hostapd.8.en.html
https://wiki.debian.org/dnsmasq
https://datatracker.ietf.org/doc/html/rfc2131
https://datatracker.ietf.org/doc/html/rfc951
https://datatracker.ietf.org/doc/html/rfc4861
https://datatracker.ietf.org/doc/rfc6106/
https://datatracker.ietf.org/doc/html/rfc4941

Proof-of-concept solution for RE-CENT model service

90

I. Tziviskos

Host Configuration Protocol for IPv6 (DHCPv6),". [Online]. https://datatracker.ietf.org/doc/html/rfc3315

[38] FFmpeg License and Legal Considerations. [Online]. https://www.ffmpeg.org/legal.html

[39] Flask Documentation. [Online]. https://flask.palletsprojects.com/en/2.2.x/

[40] Android Developers and Google. WifiManager | startScan. [Online].

https://developer.android.com/reference/android/net/wifi/WifiManager#startScan()

[41] Android Developers and Google. WifiManager | enableNetwork. [Online].

https://developer.android.com/reference/android/net/wifi/WifiManager#enableNetwork(int,%20boolean)

[42] Android Developers and Google. WifiManager | disconnect. [Online].

https://developer.android.com/reference/android/net/wifi/WifiManager#disconnect()

[43] Android Developers and Google. WifiManager | reconnect. [Online].

https://developer.android.com/reference/android/net/wifi/WifiManager#reconnect()

[44] Android Developers and Google. WifiManager | addNetworkSuggestions. [Online].

https://developer.android.com/reference/android/net/wifi/WifiManager#addNetworkSuggestions(java.ut

il.List%3Candroid.net.wifi.WifiNetworkSuggestion%3E)

[45] Progressive - ExoPlayer. [Online]. https://exoplayer.dev/progressive.html

[46] Yang Xiao, Ning Zhang, Wenjing Lou, and Y. Thomas Hou, "A Survey of Distributed Consensus

Protocols for Blockchain Networks," IEEE Communications Surveys and Tutorials, vol. 22, no. 2, 2020.

[47] GitHub - bilibili/ijkplayer: Android/iOS video player based on FFmpeg n3.4, with MediaCodec,

VideoToolbox support. [Online]. https://github.com/bilibili/ijkplayer

[48] Unomic. GitHub - HostApd version 2.6 with patch from Helmut Jacob to make it compatible with

OpenVswitch. [Online]. https://github.com/Unomic/hostapd_ovs

[49] Linux man page. iptables(8). [Online]. https://linux.die.net/man/8/iptables

[50] Raspberry Pi. Raspberry Pi OS. [Online]. https://www.raspberrypi.com/software/

[51] Site-specific configuration hook. [Online]. https://docs.python.org/3/library/site.html#module-site

[52] NXP Semiconductors. VortiQa® Software for Networking. [Online].

https://www.nxp.com/design/software/embedded-software/vortiqa-software-for-networking:VORTIQA

[53] aiohttp 3.8.4 documentation. [Online]. https://docs.aiohttp.org/en/stable/

https://datatracker.ietf.org/doc/html/rfc3315
https://www.ffmpeg.org/legal.html
https://flask.palletsprojects.com/en/2.2.x/
https://developer.android.com/reference/android/net/wifi/WifiManager#startScan()
https://developer.android.com/reference/android/net/wifi/WifiManager#enableNetwork(int,%20boolean)
https://developer.android.com/reference/android/net/wifi/WifiManager#disconnect()
https://developer.android.com/reference/android/net/wifi/WifiManager#reconnect()
https://developer.android.com/reference/android/net/wifi/WifiManager#addNetworkSuggestions(java.util.List%3Candroid.net.wifi.WifiNetworkSuggestion%3E)
https://developer.android.com/reference/android/net/wifi/WifiManager#addNetworkSuggestions(java.util.List%3Candroid.net.wifi.WifiNetworkSuggestion%3E)
https://exoplayer.dev/progressive.html
https://github.com/bilibili/ijkplayer
https://github.com/Unomic/hostapd_ovs
https://linux.die.net/man/8/iptables
https://www.raspberrypi.com/software/
https://docs.python.org/3/library/site.html#module-site
https://www.nxp.com/design/software/embedded-software/vortiqa-software-for-networking:VORTIQA
https://docs.aiohttp.org/en/stable/

