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ABSTRACT

The primary and most well-studied function of transfer RNAs (tRNAS) is their involvement
in protein translation, where they carry amino acid residues into the ribosomes and
participate in the codon-based sequential elongation of the nascent peptide chain.
Recently, tRNAs were shown to act as a pool for the biogenesis of numerous short RNAs
of regulatory potential. tRNA-derived fragments (tRFs) vary in their size and originate
from different parts of the tRNA cloverleaf-shaped molecule. The main tRF species are
~34nt 5" and 3' halves of tRNAs (tRHs) and the smaller (18-22nt) 5' and 3' tRFs.
Increasing evidence indicates that small tRFs are loaded into AGO proteins and guide
RISC-dependent post-transcriptional repression, in the same manner that microRNAs do.
In this thesis, tRF species were quantified from human small RNA-Seq (sSRNA-Seq)
datasets using Manatee tool. Manatee combines information on uniquely aligned read
clusters and known annotation of transcriptomic features to guide the efficient placement
of multi-mapping reads. The highly abundant tRFs that were identified were subsequently
utiized to guide the analysis of publicly available AGO-Cross-Linking
Immunoprecipitation (AGO-CLIP) sequencing experiments in relevant cell-lines using
microCLIP tool. Directly identified tRF-mRNA interactions were functionally interrogated
using pathway enrichment statistics. The results demonstrate the use of Manatee for the
quantification of tRFs for the first time and the limitations of such an approach, and the
subsequent characterization of tRF implication in gene expression regulation.

SUBJECT AREA: Bioinformatics

KEYWORDS: tRNA-derived fragments, microRNAs, AGO protein, small RNA-Seq, AGO-

Cross-Linking Immunoprecipitation, gene expression regulation






NEPIAHWYH

H mpwTtapxIKA Kal o KOAG peAeTnUEVN Aciroupyia Twv peTagopikwyv RNA (tRNAs) cival
N CUMPPETOXN TOUG OTNV HETAPPACN TWV TTPWTEIVWYV, OTTOU UETAPEPOUV AMPIVOEER OTa
PIBOCWUATA KAl CUPMETEXOUV OTN BACIOPEVN OTA KWOIKOVIA OIAdOXIKN ETTIUAKUVON TNG
VEOOUVTIOEUEVNG TTOAUTTETITIOIKAG aAuaidac. Mpdo@aTta deixBnke 0TI Ta tRNAs atroteAouv
TN Oggapevn yia 1n PBloyéveon TTOAUGPIBUWY RNAS pIKpoU PAKOUG HPE PUBUIOTIKEG
oduvatdétnteg. Ta mapayoueva amd tRNA Bpavopata (tRFs) troikiAouv wg TTpog 1O
MEYEBOG TOUG Kal TTpoEpxovTal aTTd dIaPOPETIKA onueia Tou popiou Tou tRNA, 10 oTT0I0
Exel oxnua TpIQUAAIoU. Ta Kupla €idn Twv tRFs cival Ta «piod» Twv tRNAs (tRHs) pe
MéyeBog ~34 voukAeoTidla kal Ta pIkpoTEPa (18-22 voukAeotidia) 3’ kal 5’ tRFs. ‘Evag
augavouevog Oykog dedopévwv uTTodEIkvUEl OTI PIKPA tRFS @opTwvovTal 0€ TTPWTEIVES
NG oikoyévelag AGO kal kaBodnyouv Tnv egaptwpevn atrd 10 ocuuttAoko RISC peta-
METAYPOAQPIKA KATAOTOAN TNG YOVIOIOKAG EKPPAONG, UE TOV idIO TPOTIO PE OTTOI0 dPOUV TA
microRNAs. 2& auTi TN SITTAWUATIKI €pyacia £yIVE TTOOOTIKOTTOINON TWV OIAQPOPETIKWY
eidwv tRFs atd avbpwiva dedopéva aAAnAdouxnong pikpwyv RNA (sRNA-Seq) pe Tn
xpnon tou epyaAciou Manatee. To Manatee cuvduddlel TTANPOPOPIEG ATTO CUOTADEG
MovadIkd XapToypa®nuévwy dlaBacudtwy Kal Tov Adn yvwoTd OXOAMACHO TwV
METAYPAPIKWY XAPOKTNPIOTIKWY Yyia va KaBodnynoel TNV ATTOTEAECUATIKY TOTTOBETNON
TWV dIABACUATWY TTOU XapTOYPAPOUVTAl O TTOAOTTAEG YEVWUIKEG Béoelg. Ta tRFs pe Tnv
MEYaAUTEPN a@Bovia TTou TaUTOTTOINONKAV XPNOIKOTTOINBNKAV OTn CUVEXEID yia vad
kabodnyrioouv Tnv avaluon dnuéocia  dIaBécipwy  TTEIPAPdTWY  aAAnAouxnong
dlaoTaupoupevng ouvdeong kal avoookaBilnong mpwreiviwv AGO (AGO-Cross-Linking
Immunoprecipitation, AGO-CLIP) og avTioToIXxeg avBpwITIVEG KUTTAPIKEG OEIPEG, YE TN
xpron Tou epyaAeiou microCLIP. AtreuBeiag aAAnAemdpdoeig petaglu Ttwv tRFs kal
MRNAs Trou TtautoTroIfOnkav, JdlgpeuvnOnNKav AEITOUPYIKA ME OTATIOTIKA avAdAuon
geUTTAOUTIONOU  povottatiwv  (pathway enrichment analysis). Ta amoreAéouarta
EMOEIKVUOUV TN XPHoN yia TTpwTn gopd Tou epyaleiou Manatee oTnv TTOCOTIKOTTOINGN
Twv tRFs, TOug TrepIOPIOPOUG MIag TETOIAG TIPOCEYYIONG Kal Tov  €TTaKOAouBo
Xapaktnpiopd TnG euTrAoKNG Twv tRFs 0Tn puBuion TNG yovidIoKkAG éKppaong.

OEMATIKH NMEPIOXH: BiomrAnpogopIkA

AEZEIZ KAEIAIA: Bpaucpara Ttapayoueva otmd tRNA, HIKPORNAS, TTpwTEiveg
oikoyévelag AGO, aAAnAouxnon uikpwv RNA, diactaupouluevn
ouvdeon Kal avoookabi¢non pwreiviwov AGO, puBuion yovidIaknig

EKppaong
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1.INTRODUCTION

1.1 Noncoding RNAs and their emergence as regulatory molecules

The Central Dogma of Molecular Biology traditionally placed RNA as an intermediate for
the transfer of genetic information from the DNA sequence of a gene to the protein that it
encodes. A growing number of exceptions to this rule has been reported over the last
decades. The term noncoding RNA (ncRNA) refers to RNA molecules that do not encode
for a protein. Until recently, most of the known ncRNAs fulfilled generic cellular functions,
with important structural and catalytic roles for gene expression: Small nuclear RNAs
(snRNAs) are involved in splicing of messenger RNAS (MRNAS); transfer RNAs (tRNAS)
decode the mRNA sequence into protein; ribosomal RNAs (rRNAs) are components of
the ribosomes which are ribonucleoprotein complexes macromolecular structures
essential for translation; small nucleolar RNAs (snoRNAs) are involved in the modification
of rRNAs [1]. Our understanding of ncRNAs completely changed with the discovery in
the 1990s that small ncRNAs could act as regulatory molecules, mediating post-
transcriptional gene silencing of complementary mRNAs [2,3].

Regulation of gene expression is a fundamental process, important for the development,
homeostasis, and adaptation of all living cells [4]. It requires high fidelity and precise
control and can occur at several levels by multiple mechanisms. Transcription is
considered the primary regulatory point in gene expression and has received the most
attention, however, post-transcriptional regulation adds extra levels of control and
complexity, and there seems to be considerable coordination and interdependence
between those two control points. Over the past few decades ncRNAs emerged as crucial
gene expression regulators. A large body of studies revealed the abundance of ncRNAs
and the existence of numerous distinct mechanisms of regulation in all three domains of
life (archaea, bacteria, and eukaryotes), and it is likely that their diversity, functions, and
underlying mechanisms are still underestimated [5,6].

1.2 Classes of regulatory noncoding RNAs

1.2.1 Long noncoding RNAS

Long noncoding RNAs (IncRNAs) are a diverse group of regulatory noncoding RNAs
arbitrarily considered to have a minimum size of 200nt [7]. IncRNAs represent a significant
portion of the mammalian transcriptome, with an estimated abundance of more than 5900
transcripts in humans [8]. Initially IncRNAs were thought to be transcriptional noise and
non-functional, despite the evidence suggesting that many of them exhibited
developmentally regulated expression and specific subcellular localization. The assertion
that INcRNAs are not functional seemed to be supported by their low sequence
conservation, although many examples of conserved IncRNAs exist and, in contrast to
protein-coding genes, INCRNASs require to maintain high conservation over short regions
of their length in order to preserve their function. Even though only a small fraction of
IncRNAs have been mechanistically characterized to date, it is evident that they fulfil a
broad range of functional roles, including the maintenance of nuclear architecture and the
regulation of gene expression.

23 V.Maroulis
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Regarding their functions, IncRNAs can mediate epigenetic changes by acting as guide
molecules for the recruitment of chromatin remodelling complexes to target genomic loci,
resulting to transcriptional silencing. A number of IncRNAs associate with enhancers and
promoters, modulating the binding of transcription factors or pre-initiation complex to
these elements, thus inducing or repressing the transcription of target genes. Long
NncRNAs can also affect post-transcriptional processing of mMRNAs, either indirectly via
targeting protein complexes to complementary mRNAs that promote stabilization or
degradation, or directly, interacting with mRNAs to modulate their splicing and translation.
Several IncRNAs can act as competing endogenous RNAs (ceRNAs) or miRNA sponges,
containing binding sites for one or multiple miRNAs and sequestering them away from
their canonical targets, thus fine-tuning gene expression. Many IncRNAs are not directly
connected to gene regulation, but rather act as scaffolds, forming structures together with
proteins that maintain and modulate nuclear architecture [9,10].

1.2.2 PIWI-interacting RNAS

PIWI-interacting RNAs (piRNAs) are small ncRNAs of 21-35 nucleotides in length, with
extremely diverse and rarely conserved sequences. They are transcribed as long single-
stranded precursor transcripts from one or both DNA strands on genomic loci called
piIRNA clusters via canonical or non-canonical transcription. These precursors are
processed in a Dicer-independent manner that involves endonucleolytic cleavage,
trimming and 2’-O-methylation of the 3’ end, to produce multiple and diverse mature
piRNAs from each precursor. Mature piRNAs possess 5° monophosphate and 2°-O-
methyl 3" ends and are loaded to the PIWI-clade of Argonaute proteins to guide the
silencing of complementary transcripts.

Regarding the functions of piRNAs, the ancestral and main known function is the silencing
of transposable and repetitive elements in the germline towards maintaining genomic
stability. In some invertebrates, viral RNAs can enter the piRNA pathway and produce
piRNAs that can be used to fight viral infection. There is also evidence that piRNAs may
have a role in regulating gene expression, by guiding the PIWI-dependent cleavage of
target mMRNAs during meiosis and spermatogenesis [11].

1.2.3 Small interfering RNAs (siRNAS)

Small interfering RNAs (siRNAs) are double-stranded RNA molecules of 21-25
nucleotides in length that are derived from longer double-stranded RNA precursors or
from precursors harboring long hairpins that may be produced endogenously or may be
supplied exogenously. siRNAs are produced in a similar way and have similar
mechanisms of action as microRNAs (miRNAs). They are processed from their
precursors by the RNase Ill endonuclease Dicer (but do not require Drosha) as duplexes
with a 2 nucleotide 3’ overhang on each strand. These duplexes are loaded to the RISC
ribonucleoprotein complex that contains a member of the Argonaute family of proteins.
Usually only one strand of the duplex is retained into the RISC complex and guides the
recognition and incorporation of complementary mRNAs into the RISC complex that leads
to translational repression by a yet unknown mechanism in case of an imperfect match,
or to cleavage of target mMRNAs in case of a near perfect match.

siRNAs mainly appear to act as an antiviral defence in plants and flies, where during
infection viral dsSRNAs produce siRNAs that target the complementary viral mMRNAs, and
a similar mechanism has been suggested in mammals. They also seem to have a role in
silencing transposable elements in the mammalian female germline, contributing to the
maintenance of genomic stability [12].
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1.2.4 microRNAS (miRNAS)
1.2.4.1 Introduction

microRNAs (miRNAs) are an abundant class of small RNAs in most somatic tissues,
found in plants, animals and some viruses. They are endogenous, evolutionarily
conserved RNAs, of approximately 22 nucleotides in length and regulate gene expression
at the post-transcriptional level by guiding translational repression or degradation of target
MRNAS. The first miRNA (lin-4) was discovered in C. elegans in 1993 and the first human
mMIiRNA (let-7) was discovered in 2000. Currently, the latest version of the reference
mMiRNA database miRBase (release 22.1) contains entries for 38,589 hairpin precursors
and 48,860 mature microRNAs from 271 organisms, including 2,654 human mature
miRNAs [13,14,15].

MIiRNA genes are one of the most abundant gene families, with multiple loci with similar
sequences that arose from gene duplication existing in many species. The majority of
mMiRNAs are located within introns or exons of noncoding genes, or within introns of
coding genes. Intergenic miRNAs also exist, and often several miRNA loci in proximity
are transcribed as a single polycistronic unit. Intergenic miRNAs have their individual
promoters, while other miRNAs share the promoters of their host genes. Most miRNA
genes are transcribed by RNA Pol Il as long primary miRNAs (pri-miRNAS) that possess
a 5’-cap but not always a 3’ end polyadenylation signal, and typically contain one or more
stem-loop structures and single stranded 5’ and 3’ sides.

Inside the nucleus, pri-miRNAs are processed by a complex called Microprocessor,
consisting of the RNase Ill Drosha and the RNA binding protein DGCRS, that cleaves the
stem-loop structure to release hairpin-shaped RNAs of ~70 nucleotides in length called
pre-miRNAs. pre-miRNAs are subsequently exported into the cytoplasm by the transport
complex formed by exportin 5 (XPO5) and the GTP-binding protein RAN (14). In the
cytoplasm, pre-miRNAs are cleaved near the loop by the RNase Il Dicer which in humans
is associated with the RNA binding protein TRBP, to produce small RNA duplexes with
2-3 nucleotide overhangs at their 3’ ends. This maturation procedure mediated by Drosha
and Dicer represents the canonical biogenesis pathway of miRNAs, however alternative
non-canonical pathways have been described that can be Drosha-independent or Dicer-
independent and generate miRNAs and miRNA-like small RNAs. A well-recognized
example of non-canonical miRNA biogenesis are miRNAs located within introns of coding
genes, where after splicing of the host gene mMRNA, the lariat structure of the intron is
debranched and forms a hairpin structure resembling a pre-miRNA which is subsequently
exported into the cytoplasm and continues into the canonical biogenesis pathway to be
processed by Dicer. In a similar, Drosha-independent manner some miRNA-like small
RNAs may be produced from other noncoding RNAs, such as tRNAs, tRNA-like
precursors and snoRNAs [16]. An overview schematic of miRNA biogenesis is provided
in Figure 1.
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Figure 1. Overview of miRNA biogenesis.In the canonical pathway the pri-miRNAs transcribed
from miRNA genes are cleaved into pre-miRNAs by the Microprocessor complex consisting of
Drosha and DGCRS8 in the nucleus. Subsequently they are exported to the cytoplasm by Exportin
5 and RAN, where they are cleaved by Dicer and form the RISC complex that mediates the
silencing of target mMRNAs. In the non-canonical pathway, the lariat structure of the intron forms a
structure resembling a pre-miRNA which is subsequently exported into the cytoplasm and
continues into the canonical pathway. (Figure reprinted by Saliminejad et al., 2019).

1.2.4.2 miRNA loading, RISC assembly and target mRNA recognition

The small RNA duplexes produced by Dicer are subsequently loaded into a member of
the AGO protein family to form the ribonucleoprotein complex known as RNA-induced
silencing complex (RISC) and guide the silencing of their complementary target mRNAs
through cleavage, translational repression, and/or degradation [17]. Loading of the RNA
duplex is mediated by chaperones and one of the two strands is selected as the
passenger strand and is ejected from the AGO protein, while the other strand becomes
the guide strand and is retained, a selection that depends on the thermodynamic stability
of the 5’-end as well as the identity of the 5’-end nucleotide. The guide strand is divided
into four functional domains, (i) the seed, (ii) central, (iii) supplementary and (iv) tail
regions (Figure 2A). The seed region, which includes nucleotides g2-g8 from the 5’-end,
is critical for target mMRNA recognition through base pairing. In target mRNAs, miRNA-
binding sites with perfect complementarity to nucleotides g2-g8 as well as an adenine at
residue t1 (Figure 2B), collectively termed the 8-mer site, present the highest affinity for
RISC. Binding sites with complementarity to g2—g8 (7-mer-m8), g2—g7 plus t1A (7- mer-
Al), g2—g7 (6-mer), and g3—g8 (Offset 6-mer) are also considered canonical binding
sites, despite their lower silencing efficacy. Non-canonical sites contain mismatches in
the seed region, require additional base pairing in the supplementary region and have
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much lower affinity. Most commonly, miRNA-binding sites are located in the 3’-UTR of
target mRNAs, but binding sites in the 5’-UTR or open reading frame (ORF) also exist,
although with lower efficiency [18].
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Figure 2. Target mMRNA recognition by RISC in animals.(A) Base pairing between the guide strand
of miRNA (red) and the target mRNA (blue). The guide strand is divided into 4 regions, the seed
(g2—g8), central (g9—g12), 3’ supplementary (g13—-g17), and tail (g18-3’end). The seed region is
important for target recognition, the central region is important for cleavage of target mRNA, the
3' supplementary region stabilizes target mRNA binding and the tail region regulates RISC
function. (B) Canonical and non-canonical target sites in animals. The non-canonical binding sites
have mismatches in the seed region and require additional base pairing in the 3' supplementary
region. (Figure reprinted by Iwakawal and Tomari, 2022)

1.2.4.3 Target mMRNA cleavage, translational repression, and/or degradation by
RISC

Target mMRNA cleavage requires extensive complementarity, with base pairing in the
central region in addition to the seed region of miRNAs, and is catalysed by the PIWI
domain of the AGO protein, although not all AGO proteins have this activity. Cleavage is
the main mechanism of action for plant miRNAs, but not for animal miRNAs, where it is
required for the silencing of only a few mRNAs.

The main mechanism of action for animal miRNAs is translational repression and mRNA
degradation, although the molecular details and the order in which these events co-
operate remain unclear and controversial [18]. The current consensus is that translational
repression occurs first, followed by mRNA degradation, although there is evidence that
translational repression may be independent from degradation and have an important
role by itself [19]. The GW182 protein (TNRC6 in mammals) plays a key role in mRNA
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degradation that includes deadenylation, decapping, and exonucleolytic degradation
(Figure 3A). This protein has glycine-tryptophan (GW) repeats that interact with the PIWI
domain of AGOs and acts as a scaffold, promoting the removal of the poly(A)-binding
protein (PABP) from the poly(A) tail of the mRNA and the recruitment of the deadenylation
complexes CCR4-NOT and PAN2-PAN3. The CCR4-NOT complex in turn acts as a
scaffold for the recruitment of decapping factors and activators (DCP1, DCP2, DDX6).
Finally, the deadenylated and decapped mRNA is degraded by the exoribonuclease
XRN1. The mechanisms of translational repression are less understood (Figure 3B).
PABP interacts with elF4G to form a closed-loop structure that facilitates translation
initiation, and it has been proposed that PABP displacement by RISC abolishes this
structure and inhibits translation initiation. Another proposed mechanism is the
recruitment of translational inhibitors by RISC, that target elF4E/4G, like DDX6. There is
also evidence suggesting that translational repression may occur through removal of
elF4F components, and more specifically of elF4A, a process that can be GW182-
independent [18].
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Figure 3. Action of RISC complex in animalsGW182 has glycine-tryptophan (GW) repeats that
interact with tryptophan (W) binding pockets of AGOs (A) GW182 destabilizes target mMRNAs by
recruiting the deadenylation complexes CCR4-NOT and PAN2-PAN3 and the decapping factor
DCP2. The decapped and deadenylated mRNA is then degraded by XRN1. (B) The mechanisms of
translational repression are less understood, and it can either occur by recruitment of inhibitors
that target elF4E/ 4G, such as DDX®6, or by displacement of PABP and elF4A from target mRNA.
(Figure reprinted by lwakawa and Tomari, 2022)

1.2.4.4 Functions of miRNAs and association with disease

Functional studies, as well as computational approaches have revealed the importance
of miRNAs in a wide diversity of biological processes and in a multitude of organisms.
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Plant miRNAs have the propensity to target Transcription Factor gene families that are
implicated in developmental processes such as patterning and cell differentiation. This
inclination is much less pronounced in animals with a small portion of animal miRNAs
being involved in developmental processes, while the rest are implicated in a wide variety
of biological processes. miRNAs have been involved in cell proliferation, apoptosis and
fat metabolism in flies, neuronal development in nematodes and hematopoietic lineage
differentiation, neuronal development and cell fate decisions in mammals (13). Changes
in the miRNA expression profile have been described in many human diseases, including
cancer, neurological disorders, cardiovascular disorders, diabetes, metabolic disorders
and viral infection. These dysregulations in miRNA expression can occur either through
epigenetic changes (such as promoter hypermethylation and histone modifications) and
genetic alterations in miRNA loci, that can affect the production, processing and
interactions of a miRNA with the target mRNAS, or by mutations that disrupt components
of the miRNA processing machinery and RISC complex. The association of miRNAs with
disease makes them useful as potential diagnostic, prognostic and predictive biomarkers,
and many relevant studies have highlighted many prominent candidate miRNAs with
biomarker capacity, although their utilization has yet to reach maturity [20].

1.2.5 Small RNAs derived from housekeeping noncoding RNAsS

The recent advances in high-throughput RNA sequencing (RNA-Seq) and bioinformatics
analysis have led to the discovery of a large humber of novel noncoding RNAs, among
them, small RNAs derived from abundant “housekeeping” noncoding RNAs (rRNA, tRNA,
SNRNA, snoRNA, etc.). These noncoding RNAs have a well-established role in generic
functions of the cell, such as splicing and translation, and small RNAs derived from these
noncoding RNA were initially considered as random degradation products. Yet evidence
suggests that these small RNAs are conserved and precisely processed. In particular,
small RNAs processed from tRNAs have been identified in a wide range of organisms,
and there is evidence suggesting that they may exert regulatory functions [6,24].

1.2.5.1 Transfer RNAs (tRNAS)

Transfer RNAs (tRNAs) are highly conserved and abundant RNAs, 70 to 90 bases in
length, that have an important role in protein synthesis. There are >500 tRNA genes
encoded in the human genome, as well as numerous genetic loci with sequences
resembling nuclear and mitochondrial tRNAs termed “tRNA-lookalikes”. The tRNA genes
are transcribed by RNA Pol lll as precursor tRNAs (pre-tRNAs), which contain additional
bases at the 5’ and 3’-ends called leader and trailer sequences that are subsequently
trimmed by RNase P and RNase Z respectively. Also, some eukaryotic tRNAs contain
introns that are spliced out, followed by folding and post-transcriptional modification. After
proper folding a tRNA has a cloverleaf structure with four distinct arms, namely the D arm,
anticodon loop, TYyC arm and variable loop (Figure 4). A CCA trinucleotide is then added
to the 3’ end by the enzyme tRNA nucleotidyl-transferase and the now mature tRNAs are
aminoacylated by their respective aminoacyl-tRNA synthetase and exported to the
cytoplasm, a procedure mediated by a nuclear export receptor [21].
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Figure 4. Biogenesis of tRNAs, types and functions of tRFs.Pre-tRNAs are transcribed from tRNA
genes by RNA pol lll and undergo nuclease cleavage by RNase P and RNase Z, modification
including the addition of a CCA trinucleotide and folding to form a cloverleaf structure. The 4

recognized types of tRFs (A, B, C, D) are produced by cleavage from different nucleases at
different points of the mature tRNAs. Functions of the tRFs include silencing of complementary
target mMRNAs (1), translational repression (2), regulation of cell proliferation (3), modulation of
MRNA stability (4, 5). (Figure reprinted by Keam and Hutvagner, 2015)

1.2.5.2 Biogenesis of tRNA-derived short RNAs

Short RNAs derived from tRNAs are generally classified into two classes depending on
their biogenesis. tRNA-halves are produced under stress conditions (e.g., oxidative
stress, heat shock, ultraviolet irradiation, starvation) by cleavage of mature tRNAs in the
anticodon loop by the ribonuclease Angiogenin, are 31-40 bases long, and can be further
distinguished into 5’-halves and 3’-halves [22]. In contrast, tRNA-derived fragments
(tRFs) are shorter in length (13-32nt) and are produced through endonucleolytic cleavage
of mature and precursor tRNAs near the D or the TYC arm. tRFs can be further classified
into four main types based on the region of the pre-tRNA or mature tRNA they originate
from (Figure 4). The 5’-tRFs are produced through a cleavage in the TyC-arm, 3’-tRFs
are produced through a cleavage in the D arm and include the added CCA trinucleotide,
while simultaneous cleavage in the anticodon loop and either D arm or TyC arm produces
the internal tRFs (itRFs). Finally, 3’-U-tRFs are produced by the 3’-end of pre-tRNAs
through cleavage by RNase Z and include characteristic poly-U residues at the 3’-end
[23, 24]. In general little is known regarding the biogenesis of tRFs and it has been
proposed that they are produced in a manner similar to the canonical miRNA pathway.
Limited evidence suggests that some tRFs are generated in a Dicer-dependent manner
in humans, mice and flies and that Dicer is able to generate tRFs in vitro, but recent
evidence suggests that tRFs can also be produced independently of the canonical miIRNA
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machinery. RNase Z, required for maturation of tRNAs is indispensable for the generation
of 3’-U-tRFs, and another endonuclease, Elac2/RNaseZL has been shown to be required
for 3’-U-tRF generation. Angiogenin can also produce tRFs in vitro and in vivo under non-
stress conditions [24].

1.2.5.3 Functionality of tRFs

tRFs are deeply conserved and are present in almost every branch of life, including
archaea, bacteria, algae, protozoa, plants, flatworms, flies and mammals. Despite their
universality, a major occurring concern is that tRFs are just degradation products
generated by endonuclease activity, considering the universality, deep conservation and
abundance of their precursor molecules. As a response to that, there is a large amount
of evidence from independent groups supporting that tRFs are functional molecules.
Several studies suggest that tRFs have a role in translational repression, as they can bind
to the ribosomes and reduce translational efficiency, most likely by inhibiting elongation
[25, 26]. Another putative role for tRFs is regulation of cell proliferation. A 3’-tRF has been
reported to inhibit proliferation in mature human B cells, while a 3’-U-tRF has been
reported to promote cell proliferation [27, 28]. 3'-tRFs have also been shown to modulate
RNA stability, either by activating exonucleases or by binding and sequestering RNA-
binding proteins that stabilize transcripts [29, 30]. Probably the most important function
tRFs could have would be the ability to silence the expression of complementary target
MRNAs in a manner similar to miRNAs and siRNAs [31].

1.2.5.4 Binding of tRFs to AGO proteins and repression of target mRNAS

The similar size of tRFs and miRNAs makes it reasonable to assume that tRFs may be
bound to AGO proteins. Many different studies in human cell lines have identified through
AGO protein immunoprecipitation (AGO-IP) that different types of tRFs (5’-, 3’-, 3’-U-
tRFs) are indeed bound to AGO proteins and that, for many of these instances, the
binding is selective for specific members of AGO proteins. Furthermore, data from
Photoactivatable-Ribonucleoside-Enhanced Crosslinking and Immunoprecipitation
(PAR-CLIP) verified the selective binding of tRFs to AGO proteins and also suggested
that tRFs are loaded onto AGO proteins in a similar manner as miRNAs, as indicated by
the positioning of the crosslink-induced mutations. Binding of tRFs to AGO proteins has
also been reported for other organisms such as mice, flies and plants, as well as binding
of tRFs to the PIWI-clade of Argonaute proteins [32].

Evidence of AGO-bound tRFs functioning as miRNAs was first shown on viruses. It has
been shown that an abundantly expressed 3’-tRF in HIV-1 infected cells could be loaded
onto AGO2 and silence the complementary viral sequence and a complementary reporter
gene [33]. Similarly in RSV-infected cells, it was shown that an accumulated 5’-tRF could
silence complementary reporter genes and also was involved in regulating viral
replication [34]. These results, along with the high complementarity that 3’-tRFs have to
human endogenous retroviral sequences, suggest that tRFs may also have a role in
silencing those endogenous sequences. In another study it was reported that AGO-bound
3’- and 3’-U-tRFs could silence complementary target RNAs [35]. Finally, in another
example it was reported that overexpression of a particular tRNA led to up-regulation of
the respective 3’-tRFs and that these tRFs could in turn repress reporter genes with 3’-
UTR complementarity in a Dicer-independent but AGO-dependent manner [31]. In
addition to translational repression, tRFs may also exhibit a role in other AGO protein-
related functions, such as modulation of histone methylation, mRNA splicing, and DNA
damage repair [32].
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1.2.5.5 tRFs as potential disease biomarkers

The potential involvement of tRFs in infection and disease makes them useful as
biomarkers. As mentioned above, evidence suggests that tRFs have a role in viral
infection and can either repress the viral sequence and replication or promote viral
replication by modulating host genes’ expression [33, 34]. The strong association of tRFs
with cell proliferation [26, 27, 28] suggests that tRFs may be used to manipulate highly
proliferative cancer cells. There is also evidence that tRFs are differentially expressed in
tumors and their expression can distinguish tumor from normal tissue, while in another
study it was shown that tRFs can regulate and suppress oncogenic transcripts [23, 30,
36].
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2.1 Datasets

2.MATERIALS AND METHODS

SRNA-Seq datasets for two prostate cancer cell lines (i.e., 22Rv1 and DU145) and 10
prostate cancer samples from the TCGA-PRAD project were used for the quantification
of tRFs. AGO-PAR-CLIP-Seq datasets for 22Rv1 and DU145 cell lines were used for the
identification of tRF-gene interactions. The utilized datasets are described in Table 1.

Table 1. Description of SRNA-Seq and AGO-PAR-CLIP-Seq datasets analyzed for the

guantification of tRF expression and the identification of tRF-gene interactions.

Cell type/

Accession/id Repository Tissue Dataset type
SRR6082010 Sequence Read Archive 22Rv1 sRNA-Seq FASTQ
SRR6082021 Sequence Read Archive 22Rv1 SsRNA-Seq FASTQ
SRR5689199 Sequence Read Archive DuU145 SsRNA-Seq FASTQ
TEGAHC-7080-01A-1IR- | 1cGa-PRAD Prostate SRNA-Seq FASTQ
1964-13
TCCAKK-ATAU-0IALIR | 1oGA-PRAD Prostate sRNA-Seq FASTQ
A360-13
TCGA-KK-A8IK-01A-11R-

A36B-13 TCGA-PRAD Prostate SRNA-Seq FASTQ
TCGA-M7-A722-01A-12R-

A36B-13 TCGA-PRAD Prostate SRNA-Seq FASTQ
TCGA-VN-A88N-01A-11R-

A36B-13 TCGA-PRAD Prostate SRNA-Seq FASTQ
TCGA-XK-AAIW-01A-11R-

A41R-13 TCGA-PRAD Prostate SRNA-Seq FASTQ
TCGA-XQ-A8TA-01A-11R-

A36B-13 TCGA-PRAD Prostate SRNA-Seq FASTQ
TCGA-Y6-A9XI-01A-11R-

A41R-13 TCGA-PRAD Prostate SRNA-Seq FASTQ
TCGA-YL-A8HL-01A-11R-

A36B-13 TCGA-PRAD Prostate SRNA-Seq FASTQ
TCGA-YL-A8SA-01A-21R-

A37H-13 TCGA-PRAD Prostate SRNA-Seq FASTQ
SRR3502967 Sequence Read Archive 22Rv1 AGO-PAR CLIP-Seq
SRR3502969 Sequence Read Archive 22Rv1 AGO-PAR-CLIP-Seq
SRR3502970 Sequence Read Archive 22Rv1 AGO-PAR-CLIP-Seq
SRR3502975 Sequence Read Archive DU145 AGO-PAR-CLIP-Seq

BAM

2.2 Extraction of tRF information from MINTbase v2.0

MINTbase v2.0 [37] is a repository containing information about tRFs found in a variety
of human tissues. The tRFs included in the database were identified by the analysis of
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11,719 human datasets, including 11,198 small RNA-Seq (SRNA-Seq) datasets from The
Cancer Genome Atlas (TCGA), using the MINTmap algorithm [38] and by retaining only
tRFs exhibiting a relative abundance of 2 1 Reads-Per-Million (RPM). MINTbase consists
of five ‘vistas’, each focusing into a different aspect of tRFs: genomic loci, RNA molecule,
tRNA alignment, expression, and summary. The ‘genomic loci’ vista is the most detailed
and focuses on the genomic information of each tRF, ‘RNA molecule’ vista contains basic
information about each tRF molecule, tRNA alignment’ vista focuses on the mature tRNA
molecule and the alignment with the tRFs that map to it, ‘expression’ vista provides
information on the tissues and datasets containing a given tRF and ‘summary’ vista
provides access to all the available information for a given tRF. Due to the finite number
of human tRNAs, it is feasible to enumerate all possible tRFs with a specific range of
lengths, and MINTbase contains a summary record for each possible tRF with a length
of 16-50 nt. MINTbase incorporates two different labeling schemes for tRFs. The genome-
centric labels contain information about the genomic coordinates of the tRNA gene, as
well as the start and end position relative to the mature tRNA and the length of the tRF.
The tRF license plates depend solely on the tRF sequence and are independent from the
genome-assembly.

The ‘genomic loci’ vista of all the 5’-, 3’- and i-tRFs with a relative abundance of 2 1 RPM
was downloaded from MINTbase. Since the tRF genomic coordinates included in
MINTbase correspond to the GRCh37/hgl9 genome assembly, they were remapped to
the GRCh38 genome assembly using the Remap tool from NCBI
(https://www.ncbi.nlm.nih.gov/genome/tools/remap). The information of the genomic
coordinates (chromosome, start/stop position and strand) together with the genome-
centric labels, the license plates and the tRF type for each tRF was incorporated into the
existing noncoding RNA annotation GTF file of Manatee
(https://qithub.com/jehandzlik/Manatee/blob/annotation/ncRNA hg38.qtf).

2.3 Quantification of tRFs from sRNA-Seq data with Manatee

SRNA-Seq is the gold standard high-throughput technique for the quantification of the
expression of small RNA (sRNA) species, as well as for the identification of novel SRNAs
and sRNA species. The analysis of SRNA-Seq data is less mature and requires additional
caution compared to RNA-Seq, due to technical hindrances that arise from the small
length of reads and transcripts. Short sequences tend to map to multiple genetic
locations, and this problem of multi-mapping is exacerbated by the fact that many small
RNAs originate from repeat genetic loci, and also undergo post-transcriptional
modifications. Current algorithms try to address the multi-mapping problem using various
approaches. One approach is alignment against known sRNA annotations, but in this
case the methods are limited to quantifying only known sRNAs, a limitation that is even
greater if the algorithm is dedicated to quantifying a single biotype of sSRNA. Another
approach is to assign multi-mapping reads to all their mapping positions, or to split them
between the mapping positions equally or in a weighted way, but still there can be loss of
biological information regarding the expression of different SRNA biotypes.

The sMAIl rNa dATa analysis pipElinE (MANATEE) is an algorithm for sRNA
guantification that attempts to address the multimap issue by combining information from
existing annotation and density of uniquely aligned reads without prioritizing any specific
SRNA biotype. The algorithm also attempts to salvage highly multimapping and unaligned
reads by aligning them against the transcriptome based on the provided annotation, while
gradually increasing the number of allowed mismatches. Manatee also enables the
detection of expressed unannotated genomic loci. The algorithm requires pre-processed
(barcode and adapter removed) FASTQ/FASTA sRNA-Seq files and ncRNAs annotation
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in GTF format as input and generates three tab-separated files containing the quantified
transcripts, isomiR sequences and putative novel expressed loci. The workflow of
Manatee is shown in Figure 5 [39].

The barcode- and adapter-cleaned FASTQ sRNA-Seq files were processed with Manatee
using the default parameter settings and the modified GTF annotation file that
incorporates the tRF information extracted from MINTbase.

[Input: Preprocessed sRNA-Seq {.1a, .fasta, fa.gz, fastq.gz) |
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Figure 5. The Manatee workflow.Multi-mapping reads are either (a) split between annotated and
uniquely aligned read (UAR) containing loci, (b) assigned to annotated and UAR-containing loci,
or (c) assigned to annotated loci. Highly multi-mapped and unmapped reads are aligned against
the transcriptome with a gradual increase in the number of allowed mismatches (Figure reprinted
by Handzlik et al., 2020)

2.4 Analysis of tRF-gene interactions from AGO-PAR-CLIP data with microCLIP

RNA transcripts in eukaryotes are subject to post-transcriptional control by RNA-binding
proteins (RBPs) and ribonucleoprotein complexes (RNPs) that modulate their expression.
More specifically, a large number of miRNAs bound to members of the Argonaute (AGO)
protein family mediate translational repression and/or degradation of complementary
target mMRNAs, and to explore and map those interactions different experimental
methodologies can be used. Photoactivatable-Ribonucleoside-Enhanced Crosslinking
and Immunoprecipitation (PAR-CLIP) is a method that includes the incorporation of 4-
thiouridine (4SU) into transcripts of cultured cells, followed by UV-triggered RNA-protein
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crosslinking and immunoprecipitation, partial digestion of protein bound RNA with RNase
treatment, separation of the protein-RNA complexes with SDS-PAGE, recovery of RNA
molecules and conversion to cDNA, and finally deep sequencing (Figure 6). The
crosslinking of 4SU to the protein amino acid side chains increases the frequency of T-
to-C transitions in the sequenced cDNA and these transitions reveal the crosslinked sites
[40]

; ; UV, 365 nm
\

lysis, 1P,
ANasa T1 reatment
T4 PNK, y<P-ATP

l
:

SDS-PAGE
autcradiography

- |

— | XL-ABP

electrosiution
pvo(cm':x K treatment

cDNA library preparation,
PCR amplification
L

(

.

Solexa sequencing

Figure 6. Overview of PAR-CLIP.The incorporation of 4-thiouridine into transcripts during cell
culture enhances the RNA-protein crosslinking by UV irradiation. The RNA-protein complexes are
then RNase-treated, immunoprecipitated and size-fractionated. The RNA is then recovered,
converted to cDNA and deep sequenced. The T-to-C transitions reveal the crosslinked sites.
(Figure reprinted by Hafner et al., 2010)

PAR-CLIP of AGO proteins is thus considered among the most powerful methods for
MiRNA target characterization on a transcriptome wide scale. Computational methods
developed for the complex analysis of AGO-PAR-CLIP data utilize different mathematical
models but fail to identify a large portion of true miRNA-gene interactions mainly due to
their dependence on the T-to-C conversions, introduced during PAR-CLIP, to identify
MiRNA-binding sites. microCLIP is an in silico framework for the identification of miRNA-
target interactions from AGO-PAR-CLIP-Seq data, that utilizes an extensive collection of
experimental data, including AGO-PAR-CLIP data, miRNA-binding events from highly
specific high/low throughput techniques and high throughput miRNA perturbation data.
microCLIP is based on a super learning scheme that combines deep learning, random
forest and gradient boosting classifiers and has been shown to perform better than a
single model. Positive/negative miRNA-target pairs extracted from the experimental data
combined with signal from AGO-PAR-CLIP were used for the training and validation of
the algorithm based on a set of 131 descriptors related to CLIP-Seq, MRE (miRNA
recognition elements) and miRNA/MRE hybrid derived characteristics. microCLIP utilizes
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a multi-layer super learner classification scheme, with nine base classifiers specialized
for subsets of features constituting the first layer and a gradient boosting meta-classifier
aggregating their outcomes in the second layer (Figure 7). microCLIP is the only available
implementation able to initiate the AGO-PAR-CLIP data analysis from SAM/BAM files and
requires a SAM/BAM AGO-PAR-CLIP alignment file and a list of miRNAs as minimum
input. It proceeds to scan the AGO-enriched read clusters for candidate MREs, including
a wide range of binding types (canonical and non-canonical), scoring them through a
super learner ensemble scheme, the first implementation to utilize such a scheme. Due
to indications that MREs supported by AGO-enriched clusters without T-to-C conversions
may have functional importance, microCLIP, unlike other implementations, processes
and scores all AGO-enriched clusters. The inclusion of MREs supported by non-T-to-C
clusters results in an increased number of identified interactions and an enhancement of
downstream analyses, such as pathway enrichment analysis. The utilization of an
extensive collection of experimental data coupled with a super learning scheme, and the
inclusion of previously omitted non-T-to-C clusters, result in an increased accuracy of
microCLIP in the identification of miRNA-target interactions, when compared with other
similar implementations [41].

The AGO-PAR-CLIP BAM files, together with a list of the 100 top-expressed tRFs from
the matched sRNA-Seq files, were processed with microCLIP using the default parameter
settings.

2.5 Enrichment analysis of the tRF-interacting genes

clusterProfiler is a R package that provides an interface that enables functional annotation
of genes as well as access, manipulation and visualization of enrichment results. The
enrichGO() function performs enrichment analysis of a gene set for GO (Gene Ontology)
terms. The enrichment analysis of the tRF-interacting genes for Biological Processes GO
terms. was performed using the Benjamini-Hochberg method and a FDR < 0.01.
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Figure 7. Overview of microCLIP framework.(a) Positive/negative miRNA-target pairs extracted
from high/low throughput techniques, signal from AGO-PAR-CLIP libraries and background CLIP-
Seq formed the training/test set of microCLIP. (b) The algorithm includes nine base classifiers in
the first layer, specialized for feature subsets, with 8 of them utilizing a super learning scheme. A
gradient boosting meta-classifier in the second layer aggregates the output from the first layer.
(Figure reprinted by Paraskevopoulou et al., 2018)
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3.RESULTS
3.1 Workflow
The overview of the applied workflow is shown in Figure 8.

Preprocessed sRNA-Seq
FASTQ files

Extraction of tRFs gemomic
Information from MINTbase v2.0 and
Incorporation Into Manatee workflow

Quantification of tRFs
with Manatee

1

Top-expressed tRFs

Matched AGO-PAR-CLIP-Seq

SE= |

Identification of tRF-gene
Interactions with microCLIP

Figure 8. Overview of the applied workflow.The adapter trimmed sRNA-Seq FASTQ files were
processed with a modified Manatee workflow that incorporates tRF information from MINTbase
v2.0, to quantify tRF expression. The top-expressed tRFs were subsequently used as input for the
identification of tRF-gene interactions from AGO-PAR-CLIP-Seq BAM files with microCLIP.

3.2 Quantification of tRF expression with Manatee

The output count files from the processing of the 10 TCGA and the 3 cell line sSRNA-Seq
datasets with Manatee were merged into a single count matrix containing counts for
16,498 tRFs. The datasets were labeled as “TCGA” and “cell line” accordingly and the
count matrix was filtered (with the filterByExpr() function of the edgeR R package) to keep
only tRFs that have sufficiently large read counts in a significant number of datasets (i.e.,
at least the size of the smallest group, in this case 3 datasets for the cell line group). The
filtered count matrix contained read counts for 741 tRFs and was normalized and the
values converted to counts per million (CPM) on a log2 scale (with functions
calcNormFactors(), and cpm() of edgeR R package). Hierarchical clustering was applied
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to the normalized and logz-scaled values to produce the heatmap (with pheatmap R
package) depicted in Figure 9.
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Figure 9. Heatmap showing hierarchical clustering of the normalized and log2-scaled expression
values of 741 tRFs that have sufficient large expression in a significant number of the datasets (at
least 3).

From the tRF expression heatmap it is evident that the datasets from the 22Rv1 and
DU145 cell lines (SRR6082010, SRR6082021, SRR5689199) cluster together and
separately from the TCGA datasets, with the two datasets from the 22Rv1l cell line
(SRR6082010 and SRR6082021) showing high similarity. The TCGA datasets exhibit
high heterogeneity of tRF expression, something that can be attributed to the fact that
they originate from human tissue samples and probably there are biological and technical
factors that may contribute to this heterogeneity.

The 100 top-expressed tRFs with a maximum length of 28nt for each cell line (for 22Rv1
the mean expression of the two datasets was used) were selected to be used as input for
the analysis of the cell line-matched AGO-PAR-CLIP-Seq datasets.

3.3 Analysis of tRF-gene interactions from AGO-PAR-CLIP-Seq data with
microCLIP

Four AGO-PAR-CLIP-Seq datasets (three for 22Rv1 cells and one for DU145 cells) were
processed with microCLIP to identify tRF-gene interactions for the 100 top-expressed
tRFs of each cell line that were identified in the previous step. The MREs (miRNA
recognition elements) in the output file of microCLIP were filtered in order to keep only
those MREs that overlap with the 3’ UTR gene regions in the GENCODE v.41 gene
annotation (downloaded from https://genome.ucsc.edu/). The total reads, number of
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MREs identified, and number of genes these MREs are located per dataset are shown in
Table 2. A significant positive correlation (Pearson’s coef. 0.99, p<0.05) exists between
the number of MREs and genes identified and the number of reads each dataset contains.

Table 2. Number of reads, MREs and genes per PAR-CLIP dataset.

Dataset Cell type | Number of reads Number of Number of
MREs genes
SRR3502967 22Rv1 4,478,609 319,859 5,891
SRR3502969 22Rv1 7,565,726 607,264 8,258
SRR3502970 22Rv1 432,603 8,535 1,009
SRR3502975 DU145 3,097,933 158,175 4,252

Additional metrics for each dataset regarding the number of genes each tRF interacts
with, the gene types, the number of MREs each gene harbors and the distribution of the
score that microCLIP calculates for each MRE are shown in Figures 10-13.
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Figure 10. Distribution of the number of genes each of the top-expressed tRFs interacts with.
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Figure 11. Distribution of gene types for the genes with identified MREs.
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Figure 12. Distribution of the number of MREs identified in each gene.
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Figure 13. Distribution of the scores predicted by microCLIP for the MREs.

It is evident that dataset SRR3502970 (22Rv1 cell line) is somewhat distinct from the
other datasets, probably because of the smaller number of reads it contains, and could
be best considered as an outlier. Each of the top-expressed tRFs seems to interact with
hundreds of genes, the number ranging from 500 to 1,500 for the majority of tRFs (this
number is a little smaller for dataset SRR3502975). Similarly, each gene harbors many
MREs, with the number ranging from a few to a hundred MREs for the majority of the
genes. As expected, the majority of genes interacting with tRFs are protein-coding genes,
and the gene types as well as their proportions are found to be similar between the
different datasets. Regarding the distribution of the microCLIP scores, it is left skewed
and we can assume that a cut-off of 20.8 is reasonable in order to filter for higher quality
MREs.

As mentioned in the Materials and Methods section, microCLIP supports the identification
of a wide range of canonical and non-canonical MRE binding types, also including in the
analysis AGO-enriched clusters without T-to-C conversions. These different types of
MREs may have different characteristics and/or functionalities. An exploration of the
possible differences between the different MRE types for the different datasets is shown
in Figures 14-17.
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Figure 14. Violin plots of the scores predicted by microCLIP for canonical and non-canonical MREs.
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Figure 15. Violin plots of the scores predicted by microCLIP for for MREs identified in TC and non-
TC clusters.
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Figure 17. Percentage of TC and non-TC clusters for different subsets of the MREs.

From Figures 14-15 it is apparent that canonical MREs possess a slightly higher score
than non-canonical MREs, while there is no difference in the score between MREs
identified from TC and non-TC clusters. Non-canonical MREs are predominant over
canonical MREs, with their number being much larger, and the same is the case with
MREs identified from TC and non-TC clusters, with non-TC clusters being the majority
(Figure 16). The TC to non-TC proportion is unaltered from that of the total MREs when
filtering for canonical MREs, non-canonical MREs, higher quality MRES (ScoremicrocLip =
0.8), or a combination of these (Figure 17). This observation implies that MREs identified
from non-TC clusters may have similar efficacy and functionality as the MRESs identified
from TC clusters. It is again evident that dataset SRR3502970 stands out from the rest of
the datasets, and is also noticeable that dataset SRR3502975 has a lower proportion of
TC clusters compared to the other datasets, something that could be attributed to
technical and/or biological factors.

45 V.Maroulis



Abundance and regulatory roles of tRNA-derived fragments: a computational exploration using Next-Generation Sequencing data

3.4 Functional analysis of microCLIP-derived tRF-gene interactions

A next step was to perform enrichment analysis, in an effort to determine if the genes
harboring MREs for the top-100 expressed tRFs are enriched for genes associated with
specific GO (Gene Ontology) Biological Processes for each dataset. The enrichment
analysis resulted in a number of enriched Biological Processes (n = 1054, 1176, 109, 986
respectively) shown in Table 3. Hierarchical clustering (with pheatmap R package) of the
logio-transformed adjusted p-values resulted to the heatmap depicted in Figure 18. It is
evident that datasets SRR3502967 and SRR3502967 (22Rv1 cell line) cluster together,
something to be expected, while the 22Rv1l SRR3502970 dataset seems to be clustering
together with the DU145 dataset SRR3502975, confirming its outlier state.

Table 3. Number of enriched GO biological processes with adjusted p-value < 0.01 per dataset.

Dataset Number of enriched
biological processes
with adjusted p-value

<0.01
SRR3502967 1054
SRR3502969 1176
SRR3502970 109
SRR3502975 986

SRR3502967 SRR3502969 SRR3502970 SRR3502975

Figure 18. Heatmap of the logio-transformed adjusted p-values of enriched biological processes.
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Interestingly, focusing on the down left corner of the above heatmap reveals a set of 13
Biological Processes that are extremely enriched (i.e., adjusted p-value < 109) in both
SRR3502967 and SRR3502969 22Rv1 datasets (Figure 19).
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proteasome-mediated ubiquitin-dependent protein catabolic process
regulation of mRNA metabolic process
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mRNA catabolic process
RNA catabolic process
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Figure 19. Subset of the most significantly enriched biological processes in two 22Rv1 cell
datasets.

In a further investigation of the characteristics of the MREs that are canonical, non-
canonical, residing in TC and residing in non-TC clusters, the enrichment analysis was
repeated, as described above, for those 4 distinct sets of MRES, while also retaining only
MREs with a microCLIP score = 0.8. The resulting heatmap is depicted in Figure 20.
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Figure 20. Heatmap of the logie-transformed adjusted p-values of enriched biological processes
for the canonical, non-canonical, TC, non-TC MREs with a score 2 0.8.
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The above heatmap clusters non-canonical and non-TC MREs of 22Rv1l datasets
(SRR3502967 and SRR3502969) on one side, and the canonical and TC MREs on the
other side, irrespective of which dataset they originate from. Also, the extreme enrichment
of the same set of biological processes described previously is retained, although the
non-canonical and non-TC MREs exhibit less pronounced adjusted p-values than the
canonical and TC MREs (Figure 21).
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Figure 21. The enrichment of the specific set of biological processes is retained even after
grouping MREs into their different types.

The enriched Biological Processes in the SRR3502967 and SRR3502969 22Rv1 datasets
are shown in Table 4.

Table 4. List of enriched biological processes in the two 22Rv1 datasets.

GO ID Description Number of genes of Number of genes
the process in the included in the
datasets process
(SRR3502967/
SRR3502969)
G0:0006402 | mRNA catabolic process 243/277 376
GO0:0006401 | RNA catabolic process 258/297 415
G0:0008380 | RNA splicing 281/345 487
G0:0019080 | viral gene expression 149/162 195
G0:0019083 | viral transcription 138/149 178
G0:0000375 | RNA splicing, via transesterification reactions 236/282 393
G0:0000377 | RNA splicing, via transesterification reactions 233/279 390
with bulged adenosine as nucleophile
G0:0000398 | mRNA splicing, via spliceosome 233/279 390
G0:0022613 | ribonucleoprotein complex biogenesis 270/348 482
GO0:1903311 | regulation of MRNA metabolic process 211/239 344
G0:0000956 | nuclear-transcribed mRNA catabolic process 147/166 210
G0:0010498 | proteasomal protein catabolic process 259/326 483
GO0:0043161 | proteasome-mediated ubiquitin-dependent 232/289 424
protein catabolic process
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Focusing on these most significantly enriched processes, a supplemental analysis was
conducted to interrogate whether any tRFs act predominantly as major regulators for
them, i.e., possessing a significant proportion of MRESs in the associated genes. Isolation
of genes that are associated with these processes resulted in 918 (SRR3502967) and
1140 (SRR3502969) genes, with 910 of them being common to both datasets. There is
also considerable overlap of the associated genes between the different processes. The
distribution of the number of genes of the 13 enriched processes that seem to be
regulated by each tRF (harboring MREs for it) is presented in the upper half of Figure 22.
The percentage of genes each single tRF seems to regulate for each specific process
(i.e., amount of genes of the process a tRF regulates over the number of genes of the
process in the dataset including all 100 tRFs) was calculated and the mean percentage
of genes for all the processes has a distribution shown in the lower half of Figure 22.
Both distributions are right-skewed, indicating there is a small number of tRFs that
regulate a greater number of genes or a greater proportion of genes per process in
average. The top 10 tRFs in terms of number of genes or mean proportion for all the
processes are shown in Table 5.
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Figure 22. Distributions for the number of genes in total for all the enriched processes (upper half)
and the mean of the proportion of genes for each process (lower half) that each tRF seems to
regulate.
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Table 5. The top-10 tRFs in terms of number of total genes or mean proportion for all processes.

SRR35029

67 dataset

SRR35029

69 dataset

tRF Number of genes from | tRF Number of genes from
the total of 918 genes the total of 1140 genes
for all the 13 for all the 13
processes processes
tRF-18-SP5830D4 337 tRF-16-SP5830D 523
tRF-16-SP5830D 334 tRF-18-SP5830D4 522
tRF-18-P4R8YP04 314 tRF-18-P4R8YP04 520
tRF-25-SP58309MUK 305 tRF-25-SP58309MUK 488
tRF-21-RXF4P2PS0 303 tRF-25-SP5830MMUK 464
tRF-17-18YKISM 298 tRF-19-6998L0OJX 463
tRF-25-SP5830MMUK 291 tRF-17-18YKISM 462
tRF-18-S5R83004 278 tRF-18-S5R83004 458
tRF-19-R118LOJX 278 tRF-21-RXF4P2PS0 458
tRF-19-6998L0OJX 269 tRF-16-MBQ4NKD 430
SRR3502967 dataset SRR3502969 dataset

tRF

Mean proportion of
genes for each of the
13 processes

tRF

Mean proportion of
genes for each of the
13 processes

tRF-18-SP5830D4 38.7% tRF-18-P4R8YP04 48.7%
tRF-16-SP5830D 37.5% tRF-16-SP5830D 48.1%
tRF-18-P4R8YP04 36.4% tRF-18-SP5830D4 47.3%
tRF-21-RXF4P2PS0 34.6% tRF-18-S5R83004 44.4%
tRF-25-SP58309MUK 34.2% tRF-19-6998L0OJX 44.2%
tRF-17-18YKISM 33.7% tRF-25-SP58309MUK 43.9%
tRF-18-S5R83004 32.8% tRF-17-18YKISM 42.6%
tRF-25-SP5830MMUK 32.4% tRF-25-SP5830MMUK 41.4%
tRF-19-R118LOJX 32.0% tRF-21-RXF4P2PS0 41.2%
tRF-18-H9R8B7D2 31.3% tRF-19-R118LOJX 41.0%

Evidently, there is significant overlap of the top 10 tRFs between the two 22Rv1 datasets.
No single tRF appears to dominate the regulation of the 13 enriched processes, but rather
a number of tRFs with significant contribution in the regulation of all the enriched
processes. In order to investigate if there is a tRF that dominates the regulation of a single
or a few of the 13 enriched processes the proportion of genes regulated by each tRF for
each individual process was calculated. The top 10 tRFs in terms of this proportion are

shown in Table 6.
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Table 6. The top-10 tRFs in terms of gene proportion for each process.

SRR3502967 dataset

tRF Proportion of genes Biological process
for the process
tRF-16-SP5830D 46.3% viral gene expression
tRF-16-SP5830D 44.9% viral transcription
tRF-18-P4R8YP04 43.6% regulation of mMRNA metabolic process
tRF-18-SP5830D4 43.0% viral gene expression
tRF-18-SP5830D4 41.3% viral transcription
tRF-25-SP58309MUK 40.9% proteasome-mediated ubiquitin-dependent
protein catabolic process
tRF-25-SP58309MUK 40.5% proteasomal protein catabolic process
tRF-21-RXF4P2PS0 40.3% regulation of MRNA metabolic process
tRF-19-6998L0OJX 39.8% regulation of MRNA metabolic process
tRF-18-SP5830D4 39.8% regulation of MRNA metabolic process
SRR3502969 dataset
tRF Proportion of genes Biological process
for the process
tRF-18-P4R8YP04 56.1% regulation of MRNA metabolic process
tRF-16-SP5830D 53.7% viral gene expression
tRF-19-6998L0OJX 53.1% regulation of MRNA metabolic process
tRF-18-SP5830D4 53.1% regulation of MRNA metabolic process
tRF-16-SP5830D 52.3% viral transcription
tRF-17-18YKISM 51.5% regulation of MRNA metabolic process
tRF-16-SP5830D 51.5% regulation of MRNA metabolic process
tRF-18-P4R8YP04 51.1% RNA splicing, via transesterification reactions
tRF-18-P4R8YP04 51.0% viral transcription
tRF-18-P4R8YP0O4 50.9% RNA splicing, via transesterification reactions

with bulged adenosine as nucleophile

Although there is a relative increase in the proportion, and in some cases the proportion
of genes regulated by a tRF for a single process is above 50%, again no single tRF exists
that dominates the regulation of a single process, as these tRFs exhibit comparable
proportions of regulated genes for the rest of the processes. Finally, to further expand
this investigation, the proportion of genes regulated by each tRF for each individual
biological process that can considered significantly enriched (adjusted p-value < 0.01)
was calculated. The top-10 tRFs in terms of this proportion are shown in Table 7.
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Table 7. The top-10 tRFs in terms of gene proportion for all processes with adjusted p-value <

0.01.

SRR3502967 dataset

tRF Proporti Biological process Adjusted Number of Number of
on of p-value genes of the genes
genes process in the included in
for the dataset the process
process
tRF-25-SP5830MMUK 87.5% positive regulation of | 0.0042 8 10
oxidative phosphorylation
tRF-16-MBQ4NKD 80.0% protein localization to cell-cell 0.0016 10 13
junction
tRF-17-18YKISM 78.6% positive regulation by host of | 0.000028 14 17
viral transcription
tRF-19-R118LOJX 77.8% chromatin-mediated 0.0093 9 13
maintenance of transcription
tRF-16-MBQ4NKD 75.0% mitotic  nuclear envelope 0.0042 8 10
reassembly
tRF-18-H9R8B7D2 75.0% mitotic  nuclear envelope | 0.0042 8 10
reassembly
tRF-16-KPM43RB 75.0% regulation of cyclic- | 0.0042 8 10
nucleotide
phosphodiesterase activity
tRF-17-18YKISM 75.0% regulation of cyclic- | 0.0042 8 10
nucleotide
phosphodiesterase activity
tRF-19-6998L0OJX 75.0% positive regulation of | 0.0042 8 10
oxidative phosphorylation
tRF-16-SP5830D 75.0% positive regulation of | 0.0042 8 10
oxidative phosphorylation
SRR3502969 dataset
tRF Proporti Biological process Adjusted Number of Number of
on of p-value genes of the genes
genes process in the included in
for the dataset the process
process
tRF-19-R118LOJX regulation of nuclear- 0.0087 11 14
transcribed mRNA poly(A) tail
90.9% shortening
tRF-18-S5R83004 90.9% RNA decapping 0.0087 11 14
tRF-18-S5R83004 methylguanosine-cap 0.0087 11 14
90.9% decapping
tRF-16-SP5830D mitotic  nuclear envelope | 0.0044 9 10
88.9% reassembly
tRF-25-SP5830MMUK mitotic  nuclear envelope 0.0044 9 10
88.9% reassembly
tRF-16-MBQ4NKD mitotic  nuclear envelope 0.0044 9 10
88.9% reassembly
tRF-18-P4R8YP04 mitotic chromosome | 0.000029 15 16
86.7% condensation
tRF-18-SP5830D4 83.3% SREBP signaling pathway 0.0014 12 14
tRF-18-S5R83004 82.4% P-body assembly 0.00030 17 21
tRF-17-18YKISM 82.4% stress granule assembly 0.0018 17 23
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In this case it is notable that there is a further increase in the proportion of genes regulated
by a tRF for a single process, and in some cases the proportion is above 90%, but all
these processes include a relative small number of genes and this subsequently results
in much larger adjusted p-value (compared to adjusted the p-value of the 13 extremely
enriched processes that lies in the range of 10-%° to 10-°°), and whether the enrichment of
these processes is really significant should be further investigated.
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4.CONCLUSIONS AND FUTURE WORK

tRNA-derived fragments (tRFs) are short (13-32nt) RNAs that are produced through
endonucleolytic cleavage of mature and precursor tRNAs, and are classified into into four
main types based on the region of the pre-tRNA or mature tRNA they originate from (5'-,
3’-, i-, 3’-U-tRFs. Despite their deep conservation and universal presence in almost every
branch of life, tRfs were initially considered as random degradation products, but
increasing evidence indicates that tRFs are functional molecules and more specifically
that are loaded into AGO proteins and guide RISC-dependent post-transcriptional
repression, in the same manner that microRNAs do.

In this thesis we quantified the expression of tRF species from small RNA-Seq (sRNA-
Seq) datasets for two prostate cancer cell lines (i.e., 22Rv1 and DU145) and 10 prostate
cancer samples from TCGA. Quantification was performed by incorporating the genomic
coordinates of tRFs, extracted from MINTbase v2.0, to the workflow of Manatee. The top-
100 expressed tRFs were subsequently utilized to guide the analysis of AGO-CLIP
datasets for relevant cell-lines using the microCLIP tool, to identify genes interacting with
those tRFs. The identified tRF-interacting genes were further investigated for enrichment
for specific biological processes

Our results demonstrate the use, for the first time, of the Manatee workflow for the
quantification of tRFs. One possible drawback is that the current Manatee workflow does
not account for the post-transcriptional modifications of tRFs, and that may affect the
accuracy of the quantification. The analysis of the tRF-gene interactions demonstrated
that each of the top-expressed tRFs seems to interact with hundreds of genes and
similarly each gene harbors hundreds of MREs. Interestingly the enrichment analysis for
the tRF-interacting genes highlighted a set of 13 biological processes that are extremely
enriched (adjusted p-value < 10-3%) in two of 22Rv1 datasets, an enrichment that is
retained even if we filter for subsets of the MREs. Further analysis revealed that no single
tRF appears to dominate the regulation of the 13 enriched processes, but rather a
combination of tRFs with significant contribution in the regulation of all the enriched
processes.

Regarding future plans, one first step would be to expand the analysis to a larger number
of datasets, including more cell lines. A second step would be to try and incorporate
miRNAs into the sRNA-gene interaction analysis and the subsequent functional analysis.
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ABBREVIATIONS - ACRONYMS

tRNA transfer-RNA

MRNA messenger-RNA

tRFs tRNA-derived fragments

MIiRNASs micro-RNAs

AGO Argonaute proteins

RISC RNA-Induced Silencing Complex

SRNA-Seq small RNA sequencing

AGO-CLIP AGO-Cross-Linking
ImmunoPrecipitation

MRE microRNA Response Element

GO Gene Ontology
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