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ABSTRACT

Quantum computers, leveraging the principles of quantum physics, have the potential to
revolutionize various domains by utilizing quantum bits (qubits) that can exist in superpo-
sitions and entanglement, allowing for parallel exploration of solutions. Recent advance-
ments in quantum hardware have enabled the realization of high-dimensional quantum
states on a chip-scale platform, proposing another potential avenue.

The utilization of qudits, quantum systems with levels exceeding 2, not only offer increased
information capacity, but also exhibit improved resilience against noise and errors. Exper-
imental implementations have successfully showcased the potential of high-dimensional
quantum systems in efficiently encoding complex quantum circuits, further highlighting
their promise for the future of quantum computing.

In this thesis, the potential of qutrits is explored to enhance machine learning tasks in
quantum computing. The expanded state space offered by qutrits enables richer data
representation, capturing intricate patterns and relationships. To this end, employing the
mathematical framework of SU(3), the Gell-Mann feature map is introduced to encode
information within an 8-dimensional space. This empowers quantum computing systems
to process and represent larger amounts of data within a single qutrit.

The primary focus of this thesis centers on classification tasks utilizing qutrits, where a
comparative analysis is conducted between the proposed Gell-Mann feature map, well-
established qubit feature maps, and classical machine learning models. Furthermore,
optimization techniques within expanded Hilbert spaces are explored, addressing chal-
lenges such as vanishing gradients and barren plateaus landscapes.

This work explores foundational concepts and principles in quantum computing and ma-
chine learning to ensure a solid understanding of the subject. It also highlights recent
advancements in quantum hardware, specifically focusing on qutrit-based systems.

The main objective is to explore the feasibility of the Gell-Mann encoding for multiclass
classification in the SU(3) space, demonstrate the viability of expanded Hilbert spaces
for machine learning tasks, and establish a robust foundation for working with geometric
feature maps.

By delving into the design considerations and experimental setups in detail, this research
aims to contribute to the broader understanding of the capabilities and limitations of qutrit-
based systems in the context of quantum machine learning, contributing to the advance-
ment of quantum computing and its applications in practical domains.

SUBJECT AREA: Quantum Computing, Machine Learning

KEYWORDS: quantum circuits, machine learning, quantum information, qutrits,

classification, supervised learning, neural networks





ΠΕΡΙΛΗΨΗ

Οι κβαντικοί υπολογιστές, εκμεταλλευόμενοι τις αρχές της κβαντικής μηχανικής, έχουν τη
δυνατότητα να μεταμορφώσουν πολλούς τεχνολογικούς τομείς, χρησιμοποιώντας κβαντικά
bit (qubits) που μπορούν να υπάρχουν σε υπέρθεση και εναγκαλισμό, επιτρέποντας, μεταξύ
άλλων δυνατοτήτων, την παράλληλη αναζήτηση λύσεων. Πρόσφατες εξελίξεις στο κβαντικό
υλικό επέτρεψαν την υλοποίησηπολυδιάστατων κβαντικών καταστάσεων σε νέες πλατφόρμες
μικροκυκλωμάτων, προτείνοντας μια ακόμη ενδιαφέρουσα προσέγγιση.

Η χρήση qudits, κβαντικών συστημάτων με υψηλότερες διάστασεις, προσφέρει αυξημένο
χώρο για αναπαράστη πληροφορίας, αλλά επίσης πειραματικές υλοποιήσεις έχουν επιδείξει
ανθεκτικότητα έναντι θορύβου και σφαλμάτων. Αυτό επισημαίνει περαιτέρω την θέση τους
στο μέλλον του κβαντικού υπολογισμού.

Σε αυτήν τη πτυχιακή, εξετάζεται η δυνατότητα των qutrits για την επίλυση προβλημάτων
μηχανικής μάθησης σε κβαντικό υπολογιστή. Ο επεκταμένος χώρος καταστάσεων που
προσφέρουν τα qutrits επιτρέπει πλουσιότερη αναπαράσταση δεδομένων. Για το σκοπό
αυτό, χρησιμοποιώντας το μαθηματικό πλαίσιο του SU(3), εισάγεται η χρήση των πινάκων
Gell-Mann για την κωδικοποίηση σε έναν 8-διάστατο χώρο. Αυτό εξοπλίζει τα συστήματα
κβαντικού υπολογισμού με τη δυνατότητα επεξεργασίας και αναπαράστασης περισσότερων
δεδομένων σε ένα μόνο qutrit.

Η έρευνα επικεντρώνεται σε προβλήματα ταξινόμησης χρησιμοποιώντας qutrits, όπου
διεξάγεται μια συγκριτική ανάλυση μεταξύ του προτεινόμενου χάρτη χαρακτηριστικώνGell-
Mann, κυκλώματωνπου χρησιμοποιούν qubits και μοντέλων κλασσικής μηχανικής μάθησης.
Επιπλέον, εξερευνούνται τεχνικές βελτιστοποίησης σε χώρουςHilbert υψηλών διαστάσεων,
με σκοπό την αντιμετώπιση προκλήσεων, όπως τα vanishing gradients και το πρόβλημα
των barren plateaus. Τέλος, καλύπτονται πρόσφατες εξελίξεις στον κβαντικό υλικό, με
ειδική έμφαση σε συστήματα βασισμένα σε qutrits.

Ο κύριος στόχος αυτής της πτυχιακής εργασίας είναι να εξετάσει τη δυνατότητα κωδικοποίησης
Gell-Mann για προβλήματα ταξινόμησης, να αποδείξει την εφικτότητα της επέκτασης των
χώρων Hilbert για εργασίες μηχανικής μάθησης και να ορίσει μια αξιόπιστη βάση για
εργασία με γεωμετρικούς χάρτες χαρακτηριστικών.

Αναλύωντας τις σχεδιαστικές επιλογές και πειραματικές διατάξεις λεπτομερώς, αυτή η
έρευνα στοχεύει να συμβάλει στην ευρύτερη κατανόηση των δυνατοτήτων και των περιορισμών
των συστημάτων με qutrits στο πλαίσιο της κβαντικής μηχανικής μάθησης, συνεισφέροντας
στην πρόοδο του κβαντικού υπολογισμού και των εφαρμογών του σε πρακτικούς τομείς.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κβαντική Πληροφορική, Μηχανική Μάθηση

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: κβαντικά κυκλώματα, μηχανική μάθηση, κβαντική πληροφορία, qutrits,
κατηγοριοποίηση, επιβλεπόμενη μάθηση, νευρωνικά δίκτυα
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Quantum Neural Networks with Qutrits

1. INTRODUCTION

1.1 Overview

Throughout the early 20th century, physicists embarked on a quest to unravel the fun-
damental rules governing the universe. They encountered phenomena that defied the
explanations provided by existing physics, indicating that the prevailing rules were not
entirely accurate. This prompted the development of a more comprehensive framework
known as ”quantum” physics, which remarkably accounted for these peculiar behaviors.

Exploiting the principles of quantum physics, quantum computers have the potential of a
paradigm shift in various fields, from cryptography and optimization to materials science.
Traditional computers operate on classical bits, representing information as either 0s or
1s, quantum computers utilize quantum bits, or qubits, which can exist in superpositions
of both 0 and 1 simultaneously. In addition, qubits can exhibit the phenomenon of en-
tanglement, where the states of multiple qubits become intrinsically linked. These unique
characteristics empower quantum computers to explore multiple solutions in parallel, po-
tentially providing exponential speedups for specific problems.

The future of quantum computing holds great promise, with the added prospect of tran-
sitioning from qubits to qudits, with levels exceeding 2 (d > 2), as the fundamental units
of information processing. Recent breakthroughs have demonstrated the power of high-
dimensional quantum systems. Scientists have successfully created a microchip capa-
ble of generating two entangled qudits, each with 10 states, resulting in a total of 100
dimensions—surpassing what could be achieved by six entangled qubits [1]. This achieve-
ment underscores the potential of high-dimensional quantum systems to offer increased
information capacity and improved resilience against noise and errors compared to con-
ventional qubit-based systems.

This experimental implementation has been realized using integrated photonics and this
in addition to other approaches including qutrits, has been a subject of ongoing research.
For example in the paper ”Quantum Information Scrambling on a Superconducting Qutrit
Processor,” the authors explore the dynamics of quantum information in strongly inter-
acting systems using qutrits (three-level quantum systems) instead of the conventional
two-level qubits [5]. This work demonstrates the potential of higher-dimensional quantum
systems like qutrits in achieving resource-efficient encoding of complex quantum circuits,
serving as a proof of principle for using qutrit-based quantum processors and paves the
way for building more advanced quantum information processors.

The expanded state space offered by qudits, compared to qubits, holds significant po-
tential for enhancing machine learning tasks in a quantum computer. By increasing the
number of distinct states that can be represented, qudits enable a higher-dimensional
encoding of information, allowing for the representation of more complex patterns and
relationships within the data. With qudits, the increased granularity of information encod-
ing enables a quantum machine learning algorithm to capture and process finer details,
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potentially leading to more accurate and nuanced models.

Furthermore, the expanded state space of qudits enhances the capacity for parallel pro-
cessing. Quantum algorithms can operate on multiple states simultaneously, leveraging
superposition, entanglement, and coherent manipulations. With qudits, this parallelism
can be further amplified, potentially accelerating computations and enabling the explo-
ration of a broader solution space.

Moreover, the increased state space of qudits can mitigate the impact of noise and er-
rors during quantum computations. Error correction techniques, such as quantum error
correction codes, rely on redundancy within the state space to detect and rectify errors.
With a larger state space, qudits offer more room for implementing robust error correction
protocols, enhancing the reliability and stability of quantum machine learning algorithms.

Quantum machine learning is an evolving field that seeks to merge the principles of quan-
tum mechanics with machine learning. While the majority of research in this domain has
predominantly concentrated on qubits, which are the prevalent quantum hardware avail-
able at present, this particular work focuses on leveraging the potential of qutrits and puts
forth a modular architecture that bears resemblance to a neural network.

In the pursuit of enhancing encoding capabilities, the Gell-Mann feature map is intro-
duced, which draws upon the mathematical framework provided by the special unitary
group SU(3). The utilization of the proposed Gell-Mann feature map enables the encod-
ing of information within an 8-dimensional space. This empowers the quantum system to
capture and process significantly larger amounts of data even within a single qutrit and
introduces a novel avenue for exploration within the realm of quantum machine learning.

1.2 Structure

The structure of this thesis is specifically designed to ensure clarity and accessibility for
readers who may not possess prior familiarity with quantum computing. Acknowledging
that the subject matter may initially appear intimidating, it is important to emphasize that
only a modest level of prerequisite knowledge is required. By commencing with the un-
derlying mathematical foundations of quantum information those who are new to quantum
computing can effectively engage with the subsequent chapters.

Thus, the initial three chapters provide essential background knowledge. Chapter two
delves into the theoretical aspects of quantum computing, while chapter three covers the
fundamentals of machine learning. The fourth chapter serves as a bridge between the
two, focusing on parameterised quantum circuits, with emphasis on the techniques used
in the proposed implementation. Readers who are already well-versed in these subjects
may opt to omit these sections.

The fifth chapter delves into a comprehensive analysis of the proposed feature map and
quantum neural network architecture, offering code examples, benchmarks and insights
into the obtained results. Following the implementation chapter, the sixth chapter provides
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conclusions drawn from the study and outlines potential avenues for future research and
development.

Finally, the Quantum Hardware Appendix presents an extensive collection of papers and
studies exploring high-dimensional quantum hardware, with a specific focus on qutrit-
based systems. These resources offer valuable insights into the capabilities and appli-
cations of qutrits, highlighting advancements and progress in high-dimensional quantum
systems research.

1.3 Objective

The main objective of this thesis is to thoroughly investigate the feasibility of utilizing the
Gell-Mann encoding for multiclass classification within the SU(3) space. With quantum
hardware employing qutrits on the horizon, this thesis seeks to exhibit the practicality of
utilizing this expanded dimensionality for information encoding and optimization in ma-
chine learning tasks.

A comprehensive comparison will be presented, evaluating the performance of the pro-
posedGell-Mann featuremap against existing qubit featuremaps that have shown promis-
ing results, as well as classical machine learning models. Given the nascent nature of
quantum machine learning, it is expected that achieving superior results to classical meth-
ods is often infeasible, and any claims suggesting otherwise should be approached with
skepticism.

The thesis will explore the methodology of developing a quantummachine learning model,
particularly focusing on the establishment of a flexible and modular framework for the
feature map that can be easily adapted to different datasets. Emphasis will be placed on
the subsequent analysis of results, optimization, and fine-tuning processes, with particular
attention given to addressing the challenges posed by vanishing gradients in an increased
Hilbert space. The thesis aims to explore techniques to combat this issue, building upon
existing advancements in qubit-based systems.

Ultimately, this research aims to explore the feasibility of the Gell-Mann encoding for clas-
sification tasks and investigate the information capacity of these models. By delving into
the design considerations and experimental setups, it seeks to contribute to the broader
understanding of the capabilities and limitations of qutrit-based systems in the context of
quantum machine learning, contributing to the advancement of quantum computing and
its applications in practical domains.
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2. QUANTUM INFORMATION

2.1 Mathematical Foundations

In order to work with quantum algorithms and systems, it is essential to have a solid foun-
dation in linear algebra, complex analysis and functional analysis. This first section of this
chapter serves as an introduction to the algebraic aspects of quantum computing, focus-
ing on vectors, linear transformations, matrix algebra, Hilbert spaces, group theory and
Lie algebra. Experienced readers in these subjects may choose to omit these sections.

2.1.1 Vector Space

A vector space over a field F is a non-empty set V together with two binary operations
that satisfy the eight axioms listed below. In this context, the elements of V are commonly
called vectors, and the elements of F are called scalars [6].

The first operation, called vector addition or simply addition, assigns to any two vectors v
and w in V a third vector in V which is commonly written as v +w, and called the sum of
these two vectors.

The second operation, called scalar multiplication, assigns to any scalar a in F and any
vector v in V another vector in V , which is denoted as av.

For V to be a vector space, the following eight axioms must be satisfied for every u, v,
and w in V , and a and b in F :

1. (u+ v) +w = u+ (v +w) (Associativity of addition)
2. u+ v = v + u (Commutativity of addition)
3. ∃0 ∈ V such that 0+ v = v (Existence of additive identity)
4. ∀v ∈ V, ∃(−v) ∈ V such that v + (−v) = 0 (Existence of additive inverse)
5. a · (u+ v) = a · u+ a · v (Distributivity of scalar multiplication over vector addition)
6. (a+ b) · v = a · v + b · v (Distributivity of scalar multiplication over scalar addition)
7. (ab) · v = a · (b · v) (Compatibility of scalar multiplication)
8. 1 · v = v (Identity element of scalar multiplication)

2.1.2 Inner and Outer Products

An inner product is a function that takes two vectors from a vector space and returns a
scalar, which is often used to measure similarity between vectors or to define geometric
concepts such as the length of a vector and the angle between two vectors. Inner products
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generalize the dot product and must satisfy specific properties such as linearity, positive
definiteness, and conjugate symmetry [7].

Formally, for a vector space V over a field F , an inner product is a function 〈·, ·〉 : V×V → F
that satisfies the following properties for all vectors u, v, w ∈ V and scalars a ∈ F :

1. Linearity in the first argument:

〈au,v〉 = a〈u,v〉

〈u+w,v〉 = 〈u,v〉+ 〈w,v〉

2. Conjugate symmetry:
〈u,v〉 = 〈v,u〉

3. Positive definiteness:
〈u,u〉 > 0 for u 6= 0

〈0,0〉 = 0

In the context of inner products, the length (norm) of a vector v is defined as:

‖v‖ =
√
〈v,v〉

The angle θ between two nonzero vectors u and v can be computed using the inner
product as follows:

cos(θ) = 〈u,v〉
‖u‖‖v‖

These properties ensure that the inner product provides a meaningful notion of similarity
and geometric properties within the vector space [7].

The outer product, denoted as u⊗ v, is a mathematical operation that takes two vectors,
u and v, and produces a matrix. Mathematically, the outer product is defined as:

u⊗ v = u · vT

where · represents the dot product and vT denotes the transpose of vector v [8].

A simple example to illustrate the concept:

Let u =

12
3

 and v =

45
6

. The outer product of u and v is calculated as:

u⊗ v =

12
3

 · [4 5 6
]
=

 4 5 6
8 10 12
12 15 18


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2.1.3 Matrix Algebra

Matrices are fundamental in representing and manipulating linear transformations and
systems of linear equations. They are an indispensable tool for modeling real-world phe-
nomena, allowing for the formulation and solution of intricate mathematical systems. Sev-
eral basic operations can be applied to modify matrices, including matrix addition, scalar
multiplication, matrix multiplication, transposition, and inverse [9].

Matrix Addition
Matrix addition is performed by adding corresponding elements of two matrices of the
same size. Given matrices A = [aij] and B = [bij] of size m × n, the sum C = A +B is
a matrix of the same size, where each element cij is obtained by adding aij and bij:

C = A+B = [aij + bij]

Matrix Scalar Multiplication
Matrix scalar multiplication is performed bymultiplying each element of a matrix by a scalar
value. Given a matrix A = [aij] and a scalar α, the scalar product αA is a matrix of the
same size, where each element cij is obtained by multiplying α and aij:

αA = [αaij]

Matrix Multiplication
Matrix multiplication is a binary operation that combines two matrices to produce a third
matrix. Given matrices A = [aij] of size m × n and B = [bij] of size n × p, the product
C = AB is a matrix of size m × p, where each element cij is obtained by taking the dot
product of the i-th row of A and the j-th column of B:

cij = ai1b1j + ai2b2j + . . .+ ainbnj

It is important to note that matrix multiplication is not commutative, meaning thatAB may
not be equal to BA.

Matrix Transpose
The transpose of a matrix A, denoted as A⊤, is a new matrix obtained by interchanging
its rows and columns. IfA has dimensionsm×n, then the transposeA⊤ has dimensions
n×m, and its elements are defined such that [A⊤]ij = [A]ji.

Matrix Inverse
The inverse of a square matrixA, denoted asA−1, is a matrix such thatAA−1 = A−1A =
I, where I is the identity matrix. Finding the inverse of a matrix involves solving a system
of linear equations or using other techniques such as Gaussian elimination or the adjugate
matrix method [9].
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2.1.4 Eigenvalues and Eigenvectors

In quantum computing, eigenvalues and eigenvectors play a significant role for repre-
senting the possible states of the system, for determining measurement probabilities and
forming the basis for the decomposition of the unitary operations.

An eigenvector of a square matrix A is a non-zero vector v such that when A is applied
to v, the resulting vector is parallel to v. The resulting vector is represented as λv, where
λ is the eigenvalue associated with the eigenvector v.

Av = λv

where A is the matrix, v is the eigenvector, and λ is the eigenvalue [10].

Eigenvalues and eigenvectors have the following properties:

1. Eigenvectors are non-zero vectors.

2. Eigenvalues can be real or complex numbers depending on the matrix.

3. A matrix can have repeated eigenvalues, and each eigenvalue may correspond to
multiple linearly independent eigenvectors.

4. The set of eigenvectors corresponding to distinct eigenvalues is linearly indepen-
dent.

5. The sum of eigenvalues equals the trace of the matrix, and the product of eigenval-
ues equals the determinant of the matrix.

2.1.5 Hilbert Space

Hilbert spaces, named after the German mathematician David Hilbert, are a class of math-
ematical structures used in functional analysis and quantum mechanics. They provide a
powerful framework for analyzing linear operators, function spaces, and various types of
convergence. The most familiar example of a Hilbert space is the Euclidean vector space
consisting of three-dimensional vectors, denoted byR3, and equipped with the dot product.

A Hilbert space is a real or complex inner product space that is also a complete metric
space with respect to the distance function induced by the inner product [11]. This means
that there is an inner product 〈x,y〉 associating a complex number to each pair of elements
x,y ofH that satisfies the following properties:

1. The inner product is conjugate symmetric; that is, the inner product of a pair of
elements is equal to the complex conjugate of the inner product of the swapped
elements:

〈y,x〉 = 〈x,y〉.
Importantly, this implies that 〈x,x〉 is a real number.

T. Valtinos 28



Quantum Neural Networks with Qutrits

2. The inner product is linear in its first argument. For all complex numbers a and b:

〈ax1 + bx2,y〉 = a〈x1,y〉+ b〈x2,y〉.

3. The inner product of an element with itself is positive definite:

〈x,x〉 > 0 if x 6= 0, 〈x,x〉 = 0 if x = 0.

It follows from properties 1 and 2 that a complex inner product is antilinear, also called
conjugate linear, in its second argument, meaning that:

〈x, ay1 + by2〉 = ā〈x,y1〉+ b̄〈x,y2〉.

The norm is the real-valued function:

‖x‖ =
√
〈x,x〉,

and the distance d between two points x,y inH is defined in terms of the norm by:

d(x,y) = ‖x− y‖ =
√
〈x− y,x− y〉.

That this function is a distance function means firstly that it is symmetric in x and y, sec-
ondly that the distance between x and itself is zero, and otherwise the distance between
x and y must be positive, and lastly that the triangle inequality holds:

d(x, z) ≤ d(x,y) + d(y, z).

As a complete normed space, Hilbert spaces are by definition also Banach spaces. As
such, they are topological vector spaces, in which topological notions like the openness
and closedness of subsets are well-defined. Of special importance is the notion of a closed
linear subspace of a Hilbert space that, with the inner product induced by restriction, is
also complete and therefore a Hilbert space in its own right [11].

2.1.6 Group Theory

Group theory is a branch of mathematics that focuses on the study of an algebraic struc-
ture known as a group. A group consists of a set of elements along with a binary operation
that combines any two elements from the set to produce a third element. To be considered
a group, this binary operation must satisfy specific properties, including closure, associa-
tivity, identity, and inverse [12].

Within group theory, researchers delve into various properties and structures of groups,
including subgroup, group homomorphism, isomorphism, and group actions. It explores
the symmetries and transformations that can occur within mathematical structures and
has applications in many areas, including algebra, geometry, physics, and cryptography.

29 T. Valtinos



Quantum Neural Networks with Qutrits

Figure 2.1: Cyclic group with 6 elements

Definition 2.1.1. A group is a set G together with a binary operation ∗ that satisfies the
following properties:

1. Closure: For all a, b ∈ G, a ∗ b ∈ G.

2. Associativity: For all a, b, c ∈ G, (a ∗ b) ∗ c = a ∗ (b ∗ c).

3. Identity element: There exists an element e ∈ G such that for all a ∈ G, a ∗ e =
e ∗ a = a.

4. Inverse element: For every element a ∈ G, there exists an element a−1 ∈ G such
that a ∗ a−1 = a−1 ∗ a = e.

Example of a Group: The set of integers Z under addition.

Definition 2.1.2. Let G be a group. A non-empty subset H of G is called a subgroup of G
if H is itself a group under the operation inherited from G [13].

Example of a Subgroup:
Consider the group of integers under addition, Z. We can define a subgroup by taking the
set of even integers, denoted by 2Z, which consists of all multiples of 2.

To show that 2Z is a subgroup of Z, we need to verify the following:

1. 2Z is non-empty.

2. For any a, b ∈ 2Z, the sum a+ b is also in 2Z.

3. For any a ∈ 2Z, the inverse −a is also in 2Z.

Indeed, 2Z satisfies these conditions. It contains the element 0, which makes it non-empty.
For any two even integers a and b, their sum a+b is also even, as the sum of two multiples
of 2 is still a multiple of 2. Finally, for any even integer a, its negation −a is also even.

Therefore, 2Z forms a subgroup of Z under addition.
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2.1.7 Lie Algebra

In quantum computing, quantum gates are the fundamental building blocks of quantum
circuits. These gates are represented by unitary matrices, which are elements of Lie
groups. The Lie algebra associated with a Lie group provides a mathematical framework
for understanding and analyzing the generators of these unitary transformations.

Lie algebras are vector spaces equipped with a Lie bracket operation that satisfies the
Jacobi identity. They are closely related to Lie groups and have applications in various
areas of mathematics and physics, such as quantum mechanics and particle physics.

Lie groups are groups that are also smooth manifolds, and any Lie group gives rise to a Lie
algebra, which is its tangent space at the identity. Conversely, to any finite-dimensional
Lie algebra over real or complex numbers, there is a corresponding connected Lie group
unique up to finite coverings (Lie’s third theorem) [14].

A Lie algebra is a vector space g over some field F together with a binary operation [·, ·] :
g× g→ g called the Lie bracket satisfying the following axioms:

Bilinearity:
[ax+ by, z] = a[x, z] + b[y, z]

[z, ax+ by] = a[z,x] + b[z,y]

for all scalars a, b in F and all elements x, y, z in g.

Alternativity:

[x,x] = 0 for all x ∈ g.

The Jacobi identity:

[x, [y, z]] + [y, [z,x]] + [z, [x,y]] = 0 for all x,y, z ∈ g.

It is customary to denote a Lie algebra by a lowercase fraktur letter such as g, h, b, n. If
a Lie algebra is associated with a Lie group, then the algebra is denoted by the fraktur
version of the group: for example, the Lie algebra of SU(n) is su(n) [15].

Generators and Dimension
Elements of a Lie algebra g are said to generate it if the smallest subalgebra containing
these elements is g itself. The dimension of a Lie algebra is its dimension as a vector
space over F . The cardinality of a minimal generating set of a Lie algebra is always less
than or equal to its dimension.

Lie algebras exhibit richmathematical structures and classifications. The study of semisim-
ple and complex Lie algebras, in particular, has led to deep connections with diverse areas
of mathematics, such as algebraic geometry, combinatorics, and topology. The develop-
ment of techniques to analyze and classify Lie algebras has been a significant focus of
research in algebraic and geometric representation theory.
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2.1.8 Special Unitary Groups

The special unitary group SU(n) plays a crucial role in quantum mechanics and quantum
information theory. In mathematics, the special unitary group, denoted as SU(n), is a
group of n× n unitary matrices with determinant 1.

A unitary matrixU is a complex square matrix that satisfies the conditionUU † = U †U = I,
where U † represents the conjugate transpose of U , and I is the identity matrix. Unitary
matrices preserve the inner product and norm of vectors.

The special unitary group consists of unitary matrices with determinant 1. This condition
restricts the matrices to have a unit modulus determinant, ensuring that they have no
scaling effect on quantum states.

The special unitary group matrices are orthogonal under the unitary transformation. They
form a group under matrix multiplication, where the product of two unitary matrices is
another unitary matrix [16].

The special unitary group is a compact Lie group of dimension n2− 1. It is a manifold with
nontrivial topology, making it a subject of study in the field of algebraic topology.

2.1.9 The SU(2) Group

The SU(2) group is of great significance in the study of quantum systems, particularly in
the context of quantum spin, angular momentum, and quantum entanglement. It forms the
basis for the construction of quantum gates and the development of quantum algorithms.
The Pauli matrices are the fundamental elements of the SU(2) group:

σ1 =

(
0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)

The SU(2) group consists of 2× 2 unitary matrices, which are complex matrices satisfying
the condition UU † = U †U = I, where U † represents the conjugate transpose of U and I
is the 2× 2 identity matrix. Unitary matrices in SU(2) preserve the inner product and norm
of vectors, and have a determinant of 1.

The SU(2) group is closely related to the special orthogonal group SO(3). In fact, SU(2)
is a double cover of SO(3), meaning that every element in SO(3) has two corresponding
elements in SU(2) [16].

The SU(2) group provides the mathematical framework for spin representations. Spin is
a fundamental property of quantum particles, and the SU(2) matrices act as the rotation
operators for spin states.
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2.1.10 The SU(3) Group

The SU(3) group forms the basis for the construction of quantum gates and the develop-
ment of quantum algorithms for qutrit-based quantum computing. The Gell-Mannmatrices
are a set of eight linearly independent 3×3 traceless Hermitian matrices that span the Lie
algebra of the SU(3) group (as the Pauli matrices for SU(2)):

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0


λ3 =

1 0 0
0 −1 0
0 0 0

 λ4 =

0 0 1
0 0 0
1 0 0


λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


The SU(3) group is a special unitary group of 3×3 complex matrices with unit determinant.
It consists of all 3× 3 unitary matrices with determinant 1, det(U ) = 1.

Matrices in SU(3) are unitary, which means they satisfy the condition:

UU † = U †U = I,

where U is a 3× 3 matrix and U † denotes the conjugate transpose of U .

The Gell-Mann matrices satisfy the orthogonality condition:

Tr(λiλj) = 2δij,

where δij is the Kronecker delta.

The Gell-Mann matrices can be used as generators to construct elements of the SU(3)
group. Any matrix U in SU(3) can be written as:

U = eiθ
aλa ,

where θa are real parameters and λa are the Gell-Mann matrices [17].
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2.2 Quantum Mechanics

2.2.1 Dirac Notation

In quantum mechanics, Dirac notation, or bra-ket notation, is a mathematical notation de-
veloped by physicist Paul Dirac to describe quantum states and operators [18]. It provides
a powerful and concise framework for representing and manipulating quantum states and
operators, making it a fundamental tool, particularly in the field of quantum information.

Kets and Bras
A ket vector, denoted as |ψ〉, represents a quantum state in a Hilbert space. Kets are
column vectors and can be expressed in a chosen basis. For example, in the position
basis, the ket vector |ψ⟩ corresponds to the state of a particle at a particular position.
The bra vector, denoted as ⟨ψ| is a row vector obtained by taking the complex conjugate
transpose of the corresponding ket vector.

Inner Product
The inner product of two ket vectors |ψ⟩ and |ϕ⟩ is denoted as ⟨ψ|ϕ⟩. It represents the
complex scalar obtained by taking the conjugate transpose of |ψ⟩ and multiplying it with
|ϕ⟩. The inner product is used to measure the similarity between quantum states.

Outer Product
The outer product of two ket vectors |ψ⟩ and |ϕ⟩ is denoted as |ψ⟩⟨ϕ|. It represents the
linear operator that maps the vector |ϕ⟩ to the vector |ψ⟩, effectively transforming states.
Operators
Quantum operators, such as observables and transformations, are represented by linear
operators. In Dirac notation, an operator is represented by a matrix, and its action on a
ket vector |ψ⟩ is given by A|ψ⟩, where A is the matrix representation of the operator.

Projection Operators
Projection operators are a special type of operator that project a quantum state onto a
specific subspace. They are represented by outer products of a ket vector with itself, such
as |ψ⟩⟨ψ|.
Measuring a qubit in the computational basis can be represented by projection operators.
For example, the projection operator onto the |0⟩ state is given by:

P0 = |0⟩⟨0| =
(
1 0
0 0

)
Normalization
Ket vectors are normalized to have a unit length. A normalized ket vector |ψ⟩ satisfies
⟨ψ|ψ⟩ = 1. Normalization ensures that probabilities calculated using the inner product
are valid [18].
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2.2.2 Bloch Sphere

Figure 2.2: Bloch Sphere

The Bloch sphere is a geometric representation of a qubit state in three-dimensional
space. It provides an intuitive visualization in quantum computing of the qubit’s state and
its transformations [19].

A qubit state can be represented as a linear combination of two basis states, typically
denoted as |0⟩ and |1⟩. The general form of a qubit state is:

|ψ⟩ = α|0⟩+ β|1⟩,

where α and β are complex probability amplitudes satisfying the normalization condition
|α|2 + |β|2 = 1.

Each point on the surface of the sphere corresponds to a unique qubit state. The qubit
state can be associated with a Bloch vector r = (x, y, z), where the coordinates (x, y, z)
determine the point’s position on the Bloch sphere.

The basis states |0⟩ and |1⟩ correspond to specific points on the Bloch sphere. The state
|0⟩ is represented by the north pole of the sphere, while the state |1⟩ is represented by the
south pole. The equator of the sphere represents a superposition of the two basis states.

2.2.3 Postulates of Quantum Mechanics

Quantum mechanics, a fundamental theory in physics, is described by a set of principles
known as postulates. The number of postulates may vary depending on the formulation or
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interpretation of quantum mechanics. However, the following four postulates outline the
basic assumptions and rules that govern the behavior of quantum systems [21].

Postulate 1. The state of a quantum system is completely described by a wave function
or state vector in Hilbert space. The wave function contains all the information about the
system and is represented by the symbol |Ψ〉.

Postulate 2. Physical quantities, such as position, momentum, and energy, can be mea-
sured by Hermitian operators called observables, which are linear operators that are equal
to their adjoint. Hermitian operators have real eigenvalues, and their eigenvectors form
a complete orthonormal set. This property ensures that the results of measurements are
real numbers and that the wave function can be expressed as a linear combination of
eigenvectors.

Postulate 3. The result of a measurement on a quantum system is one of the eigenvalues
of the operator corresponding to the observed quantity. The probability of obtaining a
particular eigenvalue is given by the square of the absolute value of the projection of
the wave function onto the eigenvector corresponding to that eigenvalue, also known as
the Born rule. After the measurement, the wave function collapses to the eigenvector
corresponding to the observed eigenvalue.

Postulate 4. The evolution over time of the wave function is governed by the Schrödinger
equation. The equation can be derived from the fact that the time-evolution operator must
be unitary, and must therefore be generated by the exponential of a self-adjoint operator,
which is the quantum Hamiltonian.

ih̄
d

dt
|Ψ(t)〉 =H|Ψ(t)〉 (2.1)

where t is time, |Ψ(t)⟩ is the state vector of the quantum system (Ψ being the Greek letter
psi), andH is an observable, the Hamiltonian operator.

These postulates provide the foundation for understanding and predicting the behavior of
quantum systems. They have been extensively tested and verified through numerous ex-
periments, making quantum mechanics one of the most successful and accurate theories
of the physical properties of nature at the scale of atoms and subatomic particles.

2.2.4 Superposition

Superposition is a fundamental concept in quantum mechanics, where a quantum system
can exist in multiple states simultaneously [22]. For example, a state |ψ⟩ can be written
as |ψ⟩ = c1|ϕ1⟩+ c2|ϕ2⟩, where c1 and c2 are complex coefficients and |ϕ1⟩ and |ϕ2⟩ are
orthogonal states.

This allows for the combination of different states with varying probabilities, resulting in a
complex state that cannot be described by classical probabilities. Mathematically, super-
position is represented by a linear combination of basis states:

T. Valtinos 36



Quantum Neural Networks with Qutrits

|ψ⟩ = α|0⟩+ β|1⟩,

where |α|2 and |β|2 represent the probabilities of finding the system in the states |0⟩ and
|1⟩, respectively. The coefficients α and β are complex numbers that satisfy the normal-
ization condition |α|2 + |β|2 = 1.

2.2.5 Qubits

While this thesis focuses on the exploration of qutrits, it is beneficial to begin with some
foundational information on qubits, which are mainly used in existing quantum hardware.

Qubits are often represented using two-dimensional complex vectors, and the state of a
qubit can be described as a superposition of basis states [20]. A qubit ket vector in the
computational basis can be represented as:

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)

The corresponding bra vectors are obtained by taking the complex conjugate transpose:

⟨0| =
(
1 0

)
, ⟨1| =

(
0 1

)
Inner Product
The inner product of two qubit ket vectors |ψ⟩ and |ϕ⟩ can be calculated as:

⟨ψ|ϕ⟩ = ψ∗
0ϕ0 + ψ∗

1ϕ1

Outer Product
The outer product of two qubit ket vectors |ψ⟩ and |ϕ⟩ gives the corresponding matrix
representation:

|ψ⟩⟨ϕ| =
(
ψ0ϕ

∗
0 ψ0ϕ

∗
1

ψ1ϕ
∗
0 ψ1ϕ

∗
1

)

2.2.6 Measurement

In quantum mechanics, measurements are represented by observables, which are repre-
sented by Hermitian operators. The outcome of a measurement is obtained by calculating
the expectation value, given by 〈ψ|A|ψ〉, where A is the observable and |ψ⟩ is the quan-
tum state.

To measure an observable, such as a Pauli operator, using the expectation value, the
following steps are typically followed:

37 T. Valtinos



Quantum Neural Networks with Qutrits

1. Consider a quantum system described by a quantum state |ψ⟩.

2. Apply the Pauli operator to the quantum state, for example σz|ψ⟩.

3. Calculate the inner product of the resulting state with the original state |ψ⟩, i.e.,
〈ψ|σz|ψ〉.

4. The expectation value is obtained as the absolute square of the inner product, i.e.,
|〈ψ|σz|ψ〉|2.

The expectation value represents the average value of the measurement outcome when
the measurement is repeated many times on identical systems prepared in the state |ψ⟩.
It helps to characterize the quantum state and understand its properties.

Expectation value is a statistical quantity, and individual measurements may not always
yield the exact expected value. However, repeated measurements on identically prepared
quantum systems will converge to the expectation value over time [20].

2.2.7 Entanglement

Entanglement, as a fundamental property of quantummechanics, enables remarkable ca-
pabilities in quantum information processing. It allows for the encoding and manipulation
of information in ways that go beyond classical systems. When two or more quantum
systems become entangled, their states become inseparably linked, and the state of one
system cannot be described independently of the others.

Mathematically, entanglement is represented using tensor products of ket vectors. For
example, if we have two quantum systems represented by the ket vectors |ϕ1⟩ and |ϕ2⟩,
their entangled state is given by |ψ⟩ = |ϕ1⟩⊗ |ϕ2⟩. This implies that the combined state
of the two systems cannot be expressed as a simple product of their individual states.

Entanglement finds significant applications in quantum computing algorithms, where en-
tangled qubits can be used to perform parallel computations and achieve exponential
speedup in certain tasks. It also plays a crucial role in quantum teleportation, allowing the
transmission of quantum states between distant locations by transferring the entanglement
to another system. In quantum cryptography, entanglement enables secure communica-
tion protocols, such as quantum key distribution, that are intrinsically protected against
eavesdropping.

A well-known example of entanglement involves a pair of qubits in the Bell state:

|ψ⟩ = 1√
2
(|00⟩+ |11⟩).

In this state, the two qubits are entangled in such a way that measuring the state of one
qubit instantaneously determines the state of the other qubit, regardless of the physi-
cal distance between them. This phenomenon, known as quantum entanglement, defies
classical intuition and plays a central role in understanding and harnessing the power of
quantum information processing [20].
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2.2.8 Tensors

In the context of quantum computing, tensors play a fundamental role for representing and
manipulating multi-qubit systems as well as multi-qudit systems. Tensors are mathemati-
cal objects that generalize vectors and matrices to higher dimensions [23].

Tensor Products
The tensor product is a fundamental operation that combines two or more vectors or ma-
trices to form a larger composite object. In quantum computing, the tensor product is used
to construct the joint state of multiple qubits.

For two quantum states |ψ⟩ and |ϕ⟩ represented by column vectors, their tensor product
is given by:

|ψ⟩⊗ |ϕ⟩ =


ψ1|ϕ⟩
ψ2|ϕ⟩

...
ψn|ϕ⟩

 ,

where ψi represents the ith component of |ψ⟩.
Similarly, for two quantum operatorsA andB represented bymatrices, their tensor product
is given by:

A⊗B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
... ... . . . ...

an1B an2B · · · annB

 ,

where aij represents the elements of matrix A.

Tensor Product of Operators
The tensor product of operators is used to describe the joint action of operators on com-
posite systems. For two operators A and B, their tensor product A ⊗ B represents the
combined action of A on one subsystem and B on another subsystem.

Mathematically, ifA andB are operators acting on Hilbert spacesH1 andH2 respectively,
then the tensor product A ⊗B acts on the composite Hilbert space H1 ⊗H2. The action
of the tensor product operator is defined as follows:

(A⊗B) |ψ1⟩⊗ |ψ2⟩ = (A|ψ1⟩)⊗ (B|ψ2⟩)

for all vectors |ψ1⟩ ∈ H1 and |ψ2⟩ ∈ H2.

The tensor product of operators is important in quantum computing as it allows us to
describe the combined dynamics of multiple subsystems or qubits. It forms the basis for
constructing multi-qubit gates and representing entangled states.

Tensor Contractions
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In the context of quantum computing, tensor contractions are often used to trace out sub-
systems. If we have a tensor T ijk representing a composite system, tracing out a subsys-
tem amounts to summing over the indices of that subsystem:

T ij =
∑
k

T ijk

The resulting tensor T ij represents the reduced system after tracing out the subsystem.

Furthermore, tensor contractions are used to calculate expectation values of operators.
For example, given a state vector |ψ⟩ and an operator A, the expectation value of A can
be calculated by contracting the indices of the operator with the state vector:

〈A〉 = 〈ψ|A|ψ〉 =
∑
i

〈ψi|A|ψi〉

where |ψ⟩i are the components of the state vector in a particular basis.

2.3 Qutrits

Qudits extend the concept of qubits, which have two distinguishable states, to a higher-
dimensional space of d distinguishable states, where d is a positive integer. Qutrits, in
particular, are qudits with three distinguishable states, often denoted as |0⟩, |1⟩, and |2⟩.

2.3.1 Qutrit States

A qutrit ket vector in the computational basis can be represented as:

|0⟩ =

1
0
0

 , |1⟩ =

0
1
0

 , |2⟩ =

0
0
1


The corresponding bra vectors are obtained by taking the complex conjugate transpose:

⟨0| =
(
1 0 0

)
, ⟨1| =

(
0 1 0

)
, ⟨2| =

(
0 0 1

)
Mathematically, qutrit states are represented as vectors in a three-dimensional Hilbert
space [24]. The state of a qutrit can be expressed as a linear combination of the basis
states |0⟩, |1⟩, and |2⟩. A general qutrit state |ψ⟩ can be written as:

|ψ⟩ = α|0⟩+ β|1⟩+ γ|2⟩,

where α, β, and γ are complex probability amplitudes that satisfy the normalization con-
dition |α|2 + |β|2 + |γ|2 = 1.
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2.3.2 Inner Product

The inner product of two qutrit ket vectors |ψ⟩ and |ϕ⟩ can be calculated as:
〈ψ|ϕ〉 = ψ∗

0ϕ0 + ψ∗
1ϕ1 + ψ∗

2ϕ2

2.3.3 Outer Product

The outer product of two qutrit ket vectors |ψ⟩ and |ϕ⟩ gives the corresponding matrix
representation:

|ψ⟩⟨ϕ| =

ψ0ϕ
∗
0 ψ0ϕ

∗
1 ψ0ϕ

∗
2

ψ1ϕ
∗
0 ψ1ϕ

∗
1 ψ1ϕ

∗
2

ψ2ϕ
∗
0 ψ2ϕ

∗
1 ψ2ϕ

∗
2



2.3.4 Trace

The trace of a qutrit operator represents the sum of its diagonal elements. Tracing out
qutrit subsystems plays a crucial role in calculations and measurements. The trace of a
qutrit operator O can be calculated as:

Tr(O) = O00 +O11 +O22

The trace allows us to obtain reduced density matrices and calculate expectation values
of observables.

2.3.5 Density Operator

In quantum mechanics, the density operator, denoted by ρ, is a mathematical represen-
tation of a quantum state that accounts for both pure and mixed states. It provides a way
to describe the statistical properties of a quantum system. For a qutrit system, the density
operator is a 3× 3 matrix given by:

ρ =
2∑

i,j=0

ρij|i⟩⟨j|

where ρij represents the matrix elements of the density operator and |i⟩⟨j| represents the
outer product of the qutrit ket vectors.

The density operator is Hermitian: ρ† = ρ, Positive Semidefinite: All eigenvalues of ρ are
non-negative, and has Normalized Trace: Tr(ρ) = 1.

The density operator allows us to describe mixed states, which are statistical ensembles
of pure states. The density operator also provides a way to calculate expectation values
of observables. The expectation value of an observable A with respect to the density
operator ρ is given by:

〈A〉 = Tr(ρA)
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2.3.6 Entanglement and Density Operator

To investigate whether a quantum state is entangled, one can perform a partial trace op-
eration on the density operator. Let’s consider a composite system of two subsystems,
labeled as A and B, with corresponding Hilbert spaces HA and HB. To check for entan-
glement, performing a partial trace over one of the subsystems, say subsystem B, the
resulting reduced density operator, denoted by ρA, is obtained:

ρA = TrB(ρAB)

If the reduced density operator ρA is a pure state (i.e., rank-1 operator), then the original
state of the composite system is entangled. On the other hand, if ρA is a mixed state (i.e.,
a statistical ensemble of states), then the original state is separable and not entangled.

The eigenvalues of the reduced density operator ρA can also provide information about the
entanglement of the system. If at least one eigenvalue is zero, it indicates the presence
of entanglement in the composite system.

2.3.7 Measurement

Similar to qubits, measurements on qutrits are represented by observables, which are
Hermitian operators.

The outcome of ameasurement is determined by calculating the expectation value 〈ψ|A|ψ〉,
where A is the observable and |ψ⟩ is the qutrit state:

〈ψ|A|ψ〉 =
2∑

i,j=0

ψ∗
iAijψj

where ψi and ψj are the probability amplitudes of the qutrit state in the computational
basis, and Aij represents the elements of the matrix representation of the observable A.

2.3.8 Operators

The quantum logic gates operating on single qutrits are represented as 3× 3 unitary ma-
trices [25]. Specifically, the rotation operator gates for SU(3) are defined as:

Rot(Θ1,Θ2, . . . ,Θ8) = exp

(
−i

8∑
a=1

Θa
λa

2

)
(2.2)

Here, λa refers to the ath Gell-Mann matrix, which was introduced in the previous section.
The Θa values are real numbers with a periodicity of 4π.

These operators have significant importance in this thesis as they are utilized for both the
encoding of the feature map and the rotations within the variational layer of the parameter-
ized circuit. Detailed explanation on their use will be presented in subsequent chapters.
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3. MACHINE LEARNING

3.1 Machine Learning Fields

Before delving into the exciting and rapidly changing field of quantum machine learning, a
brief overview of machine learning is provided, which can be broadly classified into three
subfields: supervised learning, unsupervised learning, and reinforcement learning.

In supervised learning, the goal is to learn a function that maps labeled data to new, unseen
inputs. The labeled data typically consists of input-output pairs, where the input is a set
of features or variables and the output is a known label or target value. The algorithm’s
objective is to find a function that generalizes to new, unseen data, allowing for accurate
predictions or classifications to be made [26].

Unsupervised learning, on the other hand, aims to identify patterns and structure in unla-
beled data. The algorithm is not provided with any explicit labels or target values. Instead,
it must find structure and relationships within the data itself. Examples of unsupervised
learning include clustering, dimensionality reduction, and anomaly detection.

Reinforcement learning is a type of machine learning that focuses on maximizing rewards
in response to environmental stimuli. In this paradigm, an agent interacts with an environ-
ment and learns to take actions that maximize a cumulative reward signal. The objective
is to find an optimal policy that maximizes the expected cumulative reward over time.

Supervised learning can be further classified into two major tasks: regression and classi-
fication. In regression, the goal is to predict a continuous output value, such as the yield
of a crop based on factors like temperature, rainfall, and soil quality. On the other hand,
in classification, the goal is to predict a discrete label or class, such as whether a tumor is
malignant or benign based on its size, shape, and other characteristics.

Moreover, classification can be subdivided into binary classification and multi-label classi-
fication. In binary classification, the output label is either true or false, such as predicting
whether an email is spam or not. In contrast, multi-label classification involves predicting
multiple output labels, such as predicting which topics a news article might be relevant to.

3.2 Supervised Learning

Supervised learning involves training on a labeled dataset consisting of input data, or
features, x ∈ Rn, and corresponding output labels, or targets, y ∈ Y . The goal is to
learn a mapping between the input data and output labels, so that the algorithm can make
predictions on new, unseen data.

This is achieved by minimizing a loss function L(y, f(x)) that measures the difference
between the predicted output ŷ = f(x) and the true output y. The mapping function f(·) is
typically parameterized by a set of learnable parameters θ, and the optimization problem
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can be formulated as follows:

θ∗ = argminθ 1
N

∑N
i=1 L (yi, fθ(xi))

whereN is the number of labeled examples in the dataset. The model is trained by finding
the parameters θ that minimize the loss function L(θ) that measures the quality of the
model with respect to the training data set [26].

3.2.1 Cost Function

The loss function can take various forms, depending on the type of problem being solved.
For example, for a regression problem where the output y is a continuous variable, a
common loss function is the mean squared error:

L(ŷ, y) = 1
2
(y − ŷ)2

For a classification problem where the output y is a categorical variable, a common loss
function is the cross-entropy loss:

L(ŷ, y) = −
∑C

i=1 yi log(ŷi)

where C is the number of classes, yi is a binary indicator (0 or 1) of whether the true label
is class i, and ŷi is the predicted probability of class i.

The goal of training is to find the values of the parameters θ that minimize the average
loss over the entire dataset:

J(θ) = 1
m

∑m
i=1 L(f(x

(i); θ), y(i))

Once the algorithm has been trained on the labeled dataset and the model parameters θ∗
are obtained, it can be used to make predictions on new, unseen data [27].

3.2.2 Regularization

Regularization is a common technique used to prevent overfitting in machine learning
models. L1 regularization, also known as Lasso regularization, adds a penalty term to the
cost function proportional to the sum of the absolute values of the model’s weights. In
other words, it encourages the model to have sparse weights by shrinking some of them
to zero. This can be helpful when the number of features in the dataset is large, and many
of them are not relevant to the prediction task.
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R1(θ) = λ
n∑

i=1

|θi| (3.1)

L2 regularization, also known as Ridge regularization, adds a penalty term proportional to
the sum of the squares of the model’s weights. This encourages the model to have small
weights by spreading the influence of each weight across all the features.

R2(θ) = λ

n∑
i=1

θi
2 (3.2)

In both cases, θ represents the model parameters, n is the number of parameters, and λ
is the regularization strength hyperparameter [27].

3.2.3 Optimization

In the context of machine learning, optimizers are algorithms used to iteratively update
the parameters of a model in order to minimize the loss function. Different optimizers use
different strategies for updating the parameters, with some methods being more efficient
or effective than others depending on the problem at hand.

Gradient-based methods aim to identify an optimal solution by finding a point where the
gradient is equal to zero. Some common optimizers include stochastic gradient descent
(SGD), which updates the parameters in the direction of the negative gradient of the loss
function, and variants such as momentum-based methods, which use a moving average
of past gradients to smooth the update process and accelerate convergence. For the
purposes of this thesis, optimizers from the SGD family were primarily used, specifically
Adam and RMSProp proposed by Geoffrey Hinton.

RMSprop, short for Root Mean Square Propagation, is an optimization algorithm that
adapts the learning rate for each parameter individually based on the magnitude of re-
cent gradients. This adaptive learning rate helps to mitigate the issues of vanishing or
exploding gradients, making it suitable for training deep neural networks. The algorithm
maintains a moving average of the squared gradients for each parameter, which is then
used to update the parameters. By dividing the learning rate by the square root of this
average, RMSprop scales the learning rate based on the history of gradients. This helps
to converge faster in regions with consistent gradients while being more cautious in fluc-
tuating or noisy regions.

In RMSProp (Root Mean Square Propagation) the idea is to divide the learning rate for a
weight by a running average of the magnitudes of recent gradients for that weight. The
running average is calculated in terms of mean square as:

v(w, t) := γv(w, t− 1) + (1− γ) (∇Qi(w))
2
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The concept of storing the gradients as a sum of squares is borrowed from Adagrad and
”forgetting”, with the forgetting factor γ, is introduced to solve Adagrad’s diminishing learn-
ing rates in non-convex problems by gradually decreasing the influence of old data [28].
The parameters are updated as follows:

w := w − η√
v(w,t)
∇Qi(w)

RMSProp has shown good adaptation of learning rates and is capable of working with
mini-batches. A simple outline of the algorithm can be seen below.

Algorithm 1 Root Mean Square Propagation

• Initialize parameters: θ

• Initialize first moment variable: v = 0

• Initialize learning rate: α

• Initialize decay rate: ρ

While stopping criterion not met

1. Compute gradient: g ← ∇L(θ)
2. Update first moment estimate: v ← ρv + (1− ρ)g2

3. Update parameters: θ ← θ− α√
v+ϵ

g {ϵ is a small constant for numerical stability}

Another popular optimizer is Adam (short for Adaptive Moment Estimation) [29], a 2014
update to the RMSProp optimizer combining it with the main feature of the Momentum
method. In this optimization algorithm, running averages with exponential forgetting of
both the gradients and the second moments of the gradients are used. While Adam
was trialed, it encountered difficulties in navigating the loss landscapes of these partic-
ular quantum models. Consequently, RMSProp emerged as the primary choice for the
training process.

Now, gradient-based optimization often can be challenging as it may converge slowly and
can fail to find the global optimum due to the presence of multiple local minima in the
optimization problem. In these scenarios, gradient-free methods can be a useful alter-
native, as they can overcome the issue of local minima. However, they require higher
computational capacity, especially for problems with high-dimensional search spaces.

It is important to note that finding an exact minimum of the loss function is not always
necessary, as the ultimate goal is to create a model that can make accurate predictions.
Regardless of the optimization method, determining the direction to search in a flat loss
landscape can be challenging, a phenomenon known as a barren plateau [30]. In situa-
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tions where gradient-based optimization is applicable, but the gradient is not available in
closed form, Cobyla and L-BFGS-B can be valuable optimization methods to consider.

COBYLA is a derivative-free optimization algorithm that is designed for constrained opti-
mization problems [31]. It approximates the objective function using a linear model and
then minimizes the model within the constraints. It is particularly useful when gradient
information is not available or when the objective function is noisy.

L-BFGS-B, on the other hand, is a quasi-Newton optimization algorithm that is designed
for optimizing a function with bound constraints [32]. It approximates the inverse Hes-
sian matrix using previous iterations and gradients, which makes it very efficient for high-
dimensional problems. It is typically used for optimizing smooth, non-linear functions with
bound constraints. These two alternatives were used for the optimization of the qubit-
based circuits in this thesis for the purpose of comparison.

3.3 Principal Component Analysis

Principal Component Analysis (PCA) is a popular method for dimensionality reduction,
which involves transforming higher-dimensional data into a smaller space, while preserv-
ing as much of the original information as possible. Dimensionality reduction is particularly
useful when working with datasets with many features that may make the training of the
models computationally expensive.

PCA works by finding the directions in the feature space that capture the most variance
in the data [33]. These directions are called principal components, and they can be used
to derive new, transformed features that retain most of the important information of the
original features. The first principal component captures the direction of largest variance,
the second principal component captures the direction of second largest variance, and so
on.

To find the principal components, PCA applies a linear transformation on the original fea-
tures such that the transformed features (the principal components) are uncorrelated and
have decreasing variance. The first principal component is the linear combination of the
original features that captures the most variance, and the second principal component is
the linear combination of the original features that captures the most variance among all
linear combinations that are uncorrelated with the first principal component, and so on.

In this thesis, Principal Component Analysis (PCA) is employed on real-world datasets
characterized by highly correlated features. Retaining only the initial few components in
these, reduces the dimensions and enhances computational efficiency, without compro-
mising accuracy.

Quantum principal component analysis (qPCA) algorithms have also been proposed. In
the paper by Lloyd, Mohseni and Rebentrost it is demonstrated how the quantum phase
estimation algorithm can be used to estimate the eigenvalues of the dataset’s covariance
matrix, which are necessary for computing the principal components [34]. By using mul-
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tiple copies of a quantum system with density matrix , qPCA can construct the unitary
transformation e−it, allowing to identify the eigenvectors that correspond to the large eigen-
values of an unknown low-rank density matrix much faster than any existing algorithm.

Although this topic is not within the scope of this thesis, it is worth mentioning that qPCA
algorithms can provide exponential speedups compared to classical algorithms and have
the potential to accelerate machine learning tasks such as clustering and pattern recog-
nition. However, it is important to note that these algorithms require quantum random
access memory (qRAM) [35], for which there is currently no feasible hardware options.

3.4 Support Vector Machines

Support Vector Machines (SVM) are a type of supervised learning algorithm used for clas-
sification and regression tasks in machine learning. They are particularly well-suited for
handling high-dimensional data and are known for their ability to find the optimal separa-
tion between classes or to predict a continuous target variable.

The main idea behind SVM is to find the best hyperplane that separates different classes
in the feature space [36]. This hyperplane is chosen in such a way that it maximizes
the margin between the classes, which is the distance between the hyperplane and the
nearest data points from each class. These nearest data points are called support vectors.
Mathematically, SVM for binary classification can be formalized as follows:

Given a set of training data points xi and their corresponding binary labels yi ∈ {−1, 1},
the goal is to find the optimal hyperplane wTx+ b = 0 that maximizes the margin:

wTx+ b = 0

The margin is defined as the distance between the hyperplane and the support vectors,
which can be calculated as 2

||w|| :

Margin =
2

||w||

Tomaximize themargin, we need to minimize ||w||, subject to the constraint yi(wTxi+b) ≥
1 for all data points i. This can be represented as an optimization problem:

min
w

1

2
||w||2, subject to yi(wTxi + b) ≥ 1 ∀i

SVMs can also be used for non-linear classification problems, where a technique called
the kernel trick is applied. The kernel trick involves the use of feature maps to enable
SVMs to perform non-linear classification, by transforming the input data into a new space
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where they become separable. A feature map is a function that maps a data vector to a
higher-dimensional feature space:

φ : Rn → Rm

A kernel function is a function that corresponds to the dot product of two data points in this
higher-dimensional feature space:

K(xi,xj) = φ(xi)
Tφ(xj)

Some common kernel functions include:

• Linear kernel: K(xi,xj) = xi
Txj

• Polynomial kernel: K(xi,xj) = (xi
Txj + c)d

• Radial basis function (RBF) kernel: K(xi,xj) = e−γ||xi−xj ||2

(a) Non-linearly separable Circes dataset (b) Mapping to a 3-dimensional space

Figure 3.1: Illustration of kernel trick with a separating hyperplane

For the optimization problem, the dot product xi
T · xj between the data points in the

original space is replaced with a kernel function K(xi,xj) that maps them in the higher-
dimensional space. The decision function can then be written as:

f(x) = sign

(
n∑

i=1

αiyiK(xi,x) + b

)
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where αi are the Lagrange multipliers obtained from solving the dual problem. The dual
form can be solved efficiently, as the kernel function is typically more computationally effi-
cient. Thismakes it suitable for handling complex decision boundaries and high-dimensional
spaces, and enables the kernel trick. The mapping is done implicitly through the kernel
function, which computes the dot product between data points in the higher-dimensional
space without explicitly transforming them.

SVMs are employed in this thesis to facilitate a comparison between quantum and classi-
cal counterparts, but also to incorporate quantum feature maps. Quantum feature maps
allow the mapping of classical data into quantum states, exploiting the enhanced repre-
sentation capabilities of quantum systems with the similarity between the quantum states
generated by the feature map and the desired target states.

3.5 Neural Networks

Figure 3.2: An artificial neural network

Neural networks are powerful models used in machine learning for tasks such as classifi-
cation, regression, and pattern recognition. They are composed of interconnected layers
of artificial neuron. The basic building blocks of neural networks are perceptrons, intro-
duced by Frank Rosenblatt in 1957 as a supervised learning model for binary classifiers
[37].

A perceptron is a simple binary classifier used in machine learning. It takes a set of input
features x = (x1, x2, . . . , xn) and assigns weights w = (w1, w2, . . . , wn) to each feature.
The weighted sum of the inputs is then passed through an activation function to produce
the output. Mathematically, the perceptron’s output y can be represented as:
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y =

{
1 if w · x+ b > 0

0 otherwise

where · denotes the dot product of vectors, b is the bias term, and the activation function is
typically a step function. The perceptron learning algorithm is used to adjust the weights
and bias to minimize classification errors. It updates the weights according to the formula:

wi ← wi + η · (y − ŷ) · xi

where η is the learning rate, y is the predicted output, and ŷ is the true output.

A perceptron can be used for linear binary classification tasks, but it has limitations when it
comes to learning complex patterns and handling non-linearly separable data. However,
when combined into multi-layer perceptrons or feed-forward neural networks, they can be
used for more complex tasks and can be trained using powerful algorithms like backprop-
agation. The multilayer perceptron is a universal function approximator, as proven by the
universal approximation theorem.

In a feedforward neural network, information flows from the input layer through one or more
hidden layers to the output layer. Each node in the network applies a linear transformation
to the inputs, followed by a non-linear activation function. Mathematically, the output y of
a node can be represented as:

y = f(w · x+ b)

where · denotes the dot product of vectors, w represents the weights, x is the input, b is
the bias term, and f is the activation function.

Training a neural network involves adjusting the weights and biases to minimize a loss
function that measures the discrepancy between predicted outputs and true targets. This
process is typically performed using optimization algorithms like stochastic gradient de-
scent (SGD) and backpropagation, which iteratively update the weights based on the gra-
dients of the loss function.

Neural networks have the ability to learn complex patterns and relationships from data,
can handle high-dimensional inputs, capture non-linearities, and generalize well to unseen
examples. Through proper design and training, neural networks can achieve impressive
performance across a wide range of applications.

In this thesis, the aim is to explore the applicability of key concepts from classical neural
networks, such as stacked layers, to quantum neural networks. The effectiveness of these
architectures will be investigated specifically within the context of parametrized quantum
circuits (PQCs). The fundamental idea underlying this investigation is that a PQC can
be analogously regarded as a perceptron in the classical sense, thus suggesting that a
Quantum Neural Network (QNN) can be conceptualized as stacked PQC layers.
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3.6 Metrics

Performance metrics play a vital role in the evaluation of a model in machine learning
and data science. While Accuracy is widely employed, the inclusion of Precision, Recall,
and F1-Score provides a more thorough assessment, facilitating a comprehensive under-
standing of a model’s effectiveness. By incorporating these metrics in this thesis, insights
can be gained regarding the particular strengths and weaknesses of the models.

Accuracy is a commonly used performance metric that measures the overall correctness
of a classification model. It calculates the proportion of correctly predicted instances out
of the total number of instances. Accuracy is defined as:

Accuracy =
Number of correct predictions
Total number of predictions

While accuracy provides a general measure of model performance, it may not be suffi-
cient when dealing with imbalanced datasets where the classes have significantly different
sizes.

Precision focuses on the number of correctly predicted positive instances out of the total
predicted positive instances. It quantifies the proportion of true positives out of all positive
predictions. Precision is defined as:

Precision =
True Positives

True Positives+ False Positives

Precision is useful in scenarios where minimizing false positives is important.

Recallmeasures the ability of a model to identify positive instances correctly. It quantifies
the proportion of true positives (correctly predicted positive instances) out of all actual
positive instances (both true positives and false negatives). Recall is defined as:

Recall = True Positives
True Positives+ False Negatives

A high recall indicates a low rate of false negatives.

F1-score is the harmonic mean of precision and recall, providing a single metric that
balances both metrics. It takes into account both false positives and false negatives. The
F1-score is defined as:

F1-score = 2× Precision× Recall
Precision+ Recall

The F1-score combines precision and recall into a single value. It is a useful metric when
both false positives and false negatives need to be minimized, and a balance between
precision and recall is desired [27].
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4. PARAMETERIZED QUANTUM CIRCUITS

Quantummachine learning (QML), a field that combines quantum computing andmachine
learning, explores the use of quantum systems to enhance the performance of machine
learning algorithms. There are four different approaches to QML, depending on whether
the data and algorithms are classical or quantum [41].

Figure 4.1: Quantum Machine Learning Approaches

1. Classical Data, Classical Algorithms: In this approach, both the dataset and the
learning algorithms are classical. The dataset consists of observations from classical
systems such as time series, text, or images, and the machine learning algorithms
used are classical, but are inspired by quantum computing.

2. Quantum Data, Classical Algorithms: Here, the dataset contains observations ob-
tained from natural or artificial quantum systems, while the learning algorithms re-
main classical. Quantum systems produce quantum data, which can be measure-
ments of quantum states and classical machine learning algorithms are applied to
analyze and extract insights from this quantum data.

3. Classical Data, Quantum Algorithms: In this case, the dataset comprises observa-
tions from classical systems, while the learning algorithms employed are quantum.
By applying quantum algorithms to classical data, it is possible to achieve speedups
or uncover patterns that might be challenging for classical algorithms.

4. QuantumData, QuantumAlgorithms: This approach involves both quantum datasets
and quantum algorithms. The dataset consists of observations from quantum sys-
tems, and the learning algorithms used are specifically designed for quantum data
analysis. This approach leverages the unique properties of quantum systems to
process and extract meaningful information from quantum datasets.
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Parameterized quantum circuits (PQC) belong to the category of processing classical data
using quantum algorithms. They exhibit remarkable expressive power and serve as a key
component for data-driven tasks, such as supervised learning, where they can be used for
classification and regression tasks. They have also been used for generative modeling,
allowing the generation of new samples that follow the same statistical patterns as the
training data [42].

Figure 4.2: Parameterized Quantum Circuit

A PQC is simply a quantum circuit that contains adjustable parameters. These parame-
ters can be optimized during the training process to adapt the circuit to specific tasks or
datasets. They have been shown to have remarkable expressive power, allowing them to
represent complex functions and correlations in data.

The training of a PQC involves finding the optimal values for its adjustable parameters.
This is typically done using optimization algorithms, such as gradient-based methods,
to minimize a chosen objective function or loss function. The training process can be
performed using classical computers or on existing quantum hardware.

While PQCs offer significant potential, it is important to note that current hardware lim-
itations pose some challenges to their practical implementation. Algorithms like QPCA,
QSVM, and qClustering utilize qRAM to store and access large amounts of data efficiently,
and offer exponential speedups compared to classical machine learning algorithms. How-
ever, there is no viable solution to realising qram. As a result, much of the focus in QML
has been on developing near-term algorithms that can be executed on existing quantum
devices.

While PQCs offer significant potential, it is important to note that current hardware limita-
tions pose challenges to their practical implementation. Algorithms such asQPCA, QSVM,
and qClustering utilize qRAM to efficiently store and access large amounts of data, provid-
ing exponential speedups compared to classical machine learning algorithms. However,
the lack of a viable solution for realizing qRAM remains an obstacle. Consequently, much
of the focus in QML has been on developing near-term algorithms that can be executed
on existing quantum devices.
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4.1 Quantum Gates

Quantum gates are the fundamental building blocks of quantum computing, playing a
crucial role in the manipulation of qubits or qudits and their quantum states. These gates
are represented as unitary transformations, ensuring that the total probability of finding a
quantum system in any state remains constant.

The versatility of quantum gates lies in their ability to perform intricate operations on the
quantum state of a system, allowing for complex computations and information process-
ing. Unlike classical gates that operate on classical bits, quantum gates exploit the princi-
ples of superposition and entanglement to process information in a quantum parallel and
exponentially scalable manner.

Various types of quantum gates exist, each tailored for specific purposes. Single-qubit
gates act on individual qubits, altering their quantum states by rotating or transforming
their probability amplitudes. Examples of single-qubit gates include the Hadamard gate,
which creates superposition, and the Pauli gates (X, Y, Z), which perform rotations.

Multi-qubit gates, on the other hand, enable interactions between multiple qubits, leading
to entanglement and entwined quantum states. The most well-known multi-qubit gate is
the Controlled-NOT (CNOT) gate, which flips the target qubit if and only if the control qubit
is in a specific state. This gate serves as a fundamental building block for constructing
quantum circuits and executing quantum algorithms [43].

Gate Composition
Quantum gates can be composed to perform complex quantum operations. The compo-
sition of gates is achieved by matrix multiplication. In the context of qudits, where each
qudit has d distinguishable states, the gates are represented by d × d unitary matrices.
By multiplying these matrices, we can combine multiple gates to create new quantum
operations.

Gate Universality
A universal set of gates typically consists of a small number of elementary gates that can
be combined and applied in specific sequences to achieve arbitrary quantum computa-
tions. The most well-known universal set of gates is the set of one-qubit gates and the
CNOT gate. By combining one-qubit gates and the CNOT gate, it is possible to construct
any unitary transformation on the quantum state space.

4.1.1 Qubit Gates

In this subsection, an overview of the fundamental single-qubit gates that serve as the
backbone of quantum computing will be provided. These gates play a pivotal role in ma-
nipulating individual qubits and are essential for performing a diverse range of quantum
operations and computations on current quantum hardware [43].
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• Pauli-X Gate (NOT Gate): The Pauli-X gate is a bit-flip gate that flips the state of a
qubit from |0⟩ to |1⟩ and vice versa. It is represented by the following matrix:

X =

(
0 1
1 0

)
• Pauli-Y Gate: The Pauli-Y gate is a combined bit-flip and phase-flip gate. It rotates
the qubit state around the y-axis of the Bloch sphere.

Y =

(
0 −i
i 0

)
• Pauli-Z Gate: The Pauli-Z gate is a phase-flip gate that changes the sign of the |1⟩
state. The corresponding matrix representation is:

Z =

(
1 0
0 −1

)
• Hadamard Gate: The Hadamard gate creates superposition by transforming the |0⟩
state to an equal superposition of |0⟩ and |1⟩ states.

H =
1√
2

(
1 1
1 −1

)
Multi-Qubit Gates:
Multi-qubit gates act on multiple qubits simultaneously. They are represented by unitary
matrices that operate on the joint state of the qubits. Some commonly used multi-qubit
gates include:

• CNOT Gate (Controlled-X Gate): The CNOT gate applies an X gate (bit-flip) oper-
ation on the target qubit if the control qubit is in the |1⟩ state.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


• Toffoli Gate (Controlled-Controlled-X Gate): The Toffoli gate is a three-qubit gate
that performs an X gate operation on the target qubit if both control qubits are in the
|1⟩ state. Otherwise, it leaves the target qubit unchanged.

Toffoli =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


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4.1.2 Qutrit Gates

The quantum logic gates operating on single qutrits are typically represented by 3× 3 uni-
tary matrices. While the development of physical hardware for qutrits is an area of ongoing
research, the mathematical formalization of qutrit gates plays a vital role in advancing our
understanding and laying the groundwork for future qutrit-based quantum technologies.

• Rotation Gates: The rotation operator gates for SU(3) are given by the formula:

Rot(Θ1,Θ2, . . . ,Θ8) = exp

(
−i

8∑
a=1

Θa
λa

2

)
(4.1)

where λa represents the ath Gell-Mann matrix, defined in the quantum information
chapter. TheΘa is a real value, with period 4π. These rotation operator gates enable
arbitrary unitary transformations on qutrits [25].

• Global Phase Shift Gate: The global phase shift gate for qutrits is represented by
the matrix:

Ph(δ) =

eiδ 0 0
0 eiδ 0
0 0 eiδ

 = exp(iδI) = eiδI (4.2)

This gate introduces a global phase factor eiδ, performing the mapping |Ψ〉 7→ eiδ|Ψ〉.
The global phase shift gate, together with the rotation operator gates, allows the
expression of any single-qutrit gate in U(3).

• X Gate (Shift Gate): The qutrit X gate is defined as:

X =

0 1 0
0 0 1
1 0 0

 (4.3)

It performs a cyclic permutation of the qutrit states |0⟩, |1⟩, and |2⟩.

• Generalized Hadamard Gate (QFT Gate): The generalized Hadamard gate, also
known as the quantum Fourier transform (QFT) gate, produces the superposition of
basis states. It is an extension of the Hadamard gate to higher-dimensional quantum
systems. The general form for a qudit is given by the matrix:

QFTd =
1√
d


1 1 1 . . . 1
1 ω ω2 . . . ωd−1

1 ω2 ω4 . . . ω2(d−1)

... ... ... . . . ...
1 ωd−1 ω2(d−1) . . . ω(d−1)(d−1)

 (4.4)

where ω = e(2πi/d). For a qutrit, the Hadamard gate is given by:

H =
1√
3

1 1 1
1 ω ω2

1 ω2 ω

 (4.5)
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• LZ Gate: The LZ operator is defined as λ3 +
√
3λ8, where λ3 and λ8 represent the

third and eighth Gell-Mann matrices, respectively:

LZ = λ3 +
√
3λ8 =

1 0 0
0 −1 0
0 0 0

+
√
3

1√
3

1 0 0
0 1 0
0 0 −2

 =

2 0 0
0 0 0
0 0 −2

 (4.6)

This operator is particularly useful for measurement, because it is diagonal in the
computational basis and possesses a uniform spectrum of eigenvalues −2, 0, 2.

These qutrit gates serve as the fundamental building blocks for manipulating qutrits and
performing quantum operations in the encoding scheme, as well as the variational circuits
presented in the subsequent chapter.

4.2 Data Encoding

Data encoding on a qudit involves representing classical information in the quantum state
of a systemwith more than two levels, but it similar to qubits. The process of data encoding
is fundamental to QML algorithms, as the choice of encoding scheme can significantly im-
pact the performance and efficiency of the model. In this thesis, angle encoding is utilized,
but a brief overview of commonly used encoding techniques, such as basis encoding and
amplitude encoding, will be provided as well.

4.2.1 Basis Encoding

Basis encoding in quantum systems is a method used to represent classical information in
the form of quantum states, specifically computational basis states. In this encoding tech-
nique, binary data is directly mapped to the corresponding quantum states. For example,
a 4-bit binary string 1001 is represented by the 4-qubit quantum state |1001〉 [47].

This means that one bit of classical information is represented by one quantum subsys-
tem. In basis encoding, the quantum state representing a dataset can be expressed as a
superposition of computational basis states:

|D〉 = 1√
M

M∑
m=1

|x(m)〉.

WhereM is the number of samples in the dataset, and x(m) represents the m-th sample.

For example, for a classical dataset containing x(1) = 01 and x(2) = 11, the corresponding
basis encoding utilizes two qubits to represent |x(1)⟩ = |01⟩ and |x(2)⟩ = |11⟩, resulting
in the state:

T. Valtinos 58



Quantum Neural Networks with Qutrits

|D⟩ = 1√
2
|01⟩+ 1√

2
|11⟩.

In this encoding scheme, the classical dataset is mapped onto the quantum state |D⟩,
which is a superposition of the basis states |01⟩ and |11⟩ with equal amplitudes. It is
important to note that forN bits, there are 2N possible basis states. Given that the dataset
containsM samples whereM � 2N , the basis encoding will be sparse [48].

An example of basis encoding can be found in Quantum Key Distribution (QKD), where
Alice sends a qubit in state |0⟩ for a classical bit in state 0 and a qubit in state |1⟩ for a
classical bit in state 1.

4.2.2 Amplitude Encoding

In the amplitude encoding technique, data is encoded into the amplitudes of a quantum
state. A normalized classical N -dimensional datapoint x is represented by the amplitudes
of an n-qubit quantum state |ψx⟩ as

|ψx⟩ =
N∑
i=1

xi|i⟩,

where N = 2n, xi is the i-th element of x, and |i⟩ is the i-th computational basis state.
In this case, the elements xi can have different numeric data types, such as integers or
floating-point numbers [47].

For example, let’s consider the four-dimensional floating-point array x = (1.0, 0.0,−5.5, 0.0)
that wewant to encode. The first step is to normalize it, i.e., xnorm = 1√

31.25
(1.0, 0.0,−5.5, 0.0).

The corresponding amplitude encoding uses two qubits to represent xnorm as

|ψxnorm⟩ =
1√
31.25

(|00⟩− 5.5|10⟩) .

The number of amplitudes to be encoded is N ×M forM N -dimensional data points. As
a system of n qubits provides 2n amplitudes, the encoding requires n ≥ log2(NM) qubits.

4.2.3 Angle Encoding

Angle encoding utilizes rotation gates to encode classical information x. The classical
information determines the angles of rotation gates:

|x⟩ =
⊗
i

R(xi)|0⟩n,
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whereR in the case of qubits can be one ofRx,Ry, orRz, with x, y, and z being the axis
of rotation in the Bloch sphere. Typically, the number of qubits used for encoding is equal
to the dimension of the vector [47].

Unlike the previous techniques, angle encoding encodes one data point at a time instead
of the entire dataset. However, it offers the advantage of requiring N qubits or less, for
encoding a N -dimensional data point, and a constant-depth quantum circuit, making it
well-suited for current quantum hardware.

For the purpose of this thesis, in the case of qutrits, the Gell-Mann matrices are utilized
as rotation operator gates for SU(3) in a similar manner. This encoding technique maps
a single value x ∈ R into a quantum state using the expression

x 7→ Rota(x)|0⟩ = e−ixλa
2 |0⟩,

where λa is the ath Gell-Mann matrix. Further details on this encoding technique will be
provided in the next chapter.

4.2.4 Quantum Feature Maps

In the machine learning chapter, an overview was provided on the feature maps in the
classical sense, where data are transformed into a new space where it may be easier
to classify. Similarly, in the context of quantum computing, quantum feature maps are
employed to encode classical data into quantum states. These maps operate in a Hilbert
space, with the feature vectors being quantum states.

A quantum feature map ϕ : X → F transforms classical data x⃗ ∈ X into a quantum state
|ϕ(x⃗)⟩ ∈ F by way of a unitary transformation U(ϕ(x⃗)). The unitary transformation is
typically a variational circuit whose parameters depend on the input data. The goal of the
quantum feature map is to transform the classical data into a quantum state that can be
used as input to a quantum or classical algorithm for classification or regression.

There is ongoing reasearch on the automatic design of quantum feature maps. Notably,
in the recent paper ”Automatic design of quantum feature maps” the authors propose a
technique for the automatic generation of optimal ad-hoc ansätze for classification using
quantum support vector machines (QSVM). The technique is based on NSGA-II multiob-
jective genetic algorithms, which allow for the maximization of accuracy and minimization
of the ansatz size. The paper demonstrates the validity of the technique with a practical
example on a non-linear dataset and shows other application fields of the technique that
reinforce the validity of the method [49].

In this thesis, the feature map is employed in the quantum kernel method to encode the
features onto the qutrits. Furthermore, the featuremap is used as the encoding layer within
the architecture of the quantum neural network (QNN). Positioned prior to the variational
layer, the encoding of classical data into quantum states is facilitated by the feature map,
resulting in a quantum-inspired representation of the input.
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4.3 Variational Quantum Classifier

Figure 4.3: Variational Quantum Classifier

In the paper ”AQuantumApproximate Optimization Algorithm” Edward Farhi, Jeffrey Gold-
stone, and Sam Gutmann introduced a quantum algorithm that produces approximate
solutions for combinatorial optimization problems, known as the Quantum Approximate
Optimization Algorithm (QAOA) [38]. The algorithm consists of a series of quantum gates
applied to a set of qubits, with the aim of finding the optimal solution that minimizes the
cost function.

At the same time, the paper ”A variational eigenvalue solver on a quantum processor” by
Alberto Peruzzo et al. explored a new approach to solving eigenvalue problems using
a hybrid quantum-classical algorithm called the Variational Quantum Eigensolver (VQE)
[39]. Τhe authors used a photonic quantum processor to approximate the ground state of
molecular hydrogen. The experiment was performed on a two-qubit system using linear-
optical quantum gates, single-photon sources, and single-photon detectors, showcasing
the potential of VQE for practical applications in quantum chemistry and optimization prob-
lems.

These two Variational Quantum Algorithms (VQAs) paved the way for variational training.
The key idea is to parameterize a quantum circuit and optimize its parameters to minimize
a cost function that measures the classification error. The input data is typically encoded
into the quantum circuit using a feature map, which maps the classical data to a quan-
tum state. Then the variational layer, is constructed using gates and operations that can
be applied to qubits, and naturally extend to qudits. The measurement outcomes of the
quantum circuit are then used to determine the class assignment.

A Variational Quantum Classifier (VQC) is a hybrid quantum-classical optimization algo-
rithm in which an objective function is evaluated, and the parameters of this function are
updated using classical optimization methods [40].

The VQC consists of three main components:

1. Quantum Feature Map: A quantum feature map can be represented as a unitary
transformationU(ϕ(x⃗)) that maps the classical input data to a quantum state, where
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ϕ(x⃗) is the feature map function.

2. Variational Circuit: The variational circuit can be represented as a unitary transfor-
mation V (θ⃗) that depends on a set of trainable parameters θ⃗. The output state of the
variational layer can be then represented as: |ψout⟩ = V (θ⃗)U(ϕ(x⃗))|ψin⟩, where
|ψin⟩ is the initial state of the quantum system.

3. Measurement: The measured expectation value using an operator is interpreted
as the output of a classifier. The measurement process can be represented as a
function of the output state: label(x⃗) = 〈ψout|O|ψout〉, where O is an observable
that represents the measurement operator.

In the training phase, the objective is to determine the optimal values for θ⃗ that yield the
most accurate predictions. To achieve this, the classifier employs classical optimization
algorithms. It compares the predicted labels ŷ with the actual labels y provided in the
training data and computes the loss using a cost function. The classifier then iteratively
adjusts the parameters of the variational circuit based on the computed loss. This iterative
process continues until the cost function reaches a stable state [40].

4.3.1 Quantum Neural Networks

Figure 4.4: Quantum Neural Network

If a PQC can be thought of as a perceptron in the classical sense, then a Quantum Neu-
ral Network (QNN) can be viewed as a stack of two or more PQC layers. This analogy
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allows for the creation of a modular framework that can be adjusted and easily modified
based on the specific problem and its underlying geometry. While there are various ar-
chitectures and variations of QNNs that have been investigated, this thesis will adopt the
straightforward approach of using a stack of PQC layers.

The concept has gained significant attention, particularly with the paper ”Data re-uploading
for a universal quantum classifier” by Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-
Fuster, and José I. Latorre. Their work showcases the construction of powerful quantum
classifiers using multiple re-uploading layers, even with a single qubit [44].

The proposed approach organizes a quantum circuit as a sequence of data re-uploading
and single-qubit processing units. This design enables the quantum classifier to handle
complex data by accommodating multiple input dimensions and output categories. Addi-
tionally, the strategy’s efficiency is enhanced when extended to multiple qubits, leveraging
entanglement to expand the involved superpositions during the classification process.

In a QNN, each PQC layer performs a transformation on the input quantum state, resulting
in a new state that serves as the input to the subsequent PQC layer. The parameters of the
PQCs are trained to optimize a given objective function, typically through gradient-based
optimization methods.

The depth of a QNN refers to the number of stacked PQC layers. As observed in practical
implementations, more complex problems often require an increase in the depth of the
QNN to capture intricate features and relationships within the data. Increasing the depth
allows for a more expressive representation of the problem, enabling the QNN to learn
and classify complex patterns.

The choice of QNN depth is a trade-off between computational resources and perfor-
mance. While deeper QNNs may provide better representation power, they also require
more qubits, longer gate sequences, and increased optimization complexity. Therefore,
the depth of a QNN should be carefully considered based on the available quantum hard-
ware and the problem’s requirements.

By exploiting the modular nature of QNNs and adjusting the depth of the network, the
architectures are flexible and can adapt to various problem domains, which is the reason
this approach is employed in this thesis. While there are similarities between the quantum
and classical neural networks in terms of representation, training, and universal approxi-
mation, it’s important to note that they operate on fundamentally different principles, with
the former leveraging quantum mechanics for computation.

4.3.2 Optimization

In the paper ”Quantum Circuit Learning” Kosuke Mitarai, Makoto Negoro, Masahiro Kita-
gawa, and Keisuke Fujii proposed a hybrid approach that combined classical optimization
techniques with quantum circuits, allowing the circuits to learn and improve their perfor-
mance on specific tasks [45].
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The authors showcased a quantum circuit with adjustable parameters designed to rep-
resent a trainable model. The parameters of the circuit were optimized using classical
optimization algorithms to minimize a given cost function and demonstrated the effective-
ness of their approach on various tasks, including image classification and generative
modeling.

The paper also introduced the concept of parameter-shift rule, which enables efficient
computation of the gradient of a quantum circuit’s output with respect to its parameters.
This gradient information is crucial for the optimization process and allows for the appli-
cation of gradient-based optimization algorithms to train the quantum circuit.

At the same time the paper titled ”Evaluating Analytic Gradients on Quantum Hardware”
by Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran ad-
dressed the challenge of efficiently computing analytic gradients for quantum circuits on
quantum hardware. They introduced a method for evaluating analytic gradients on quan-
tum hardware, which involves measuring a set of expectation values associated with dif-
ferent shift parameters [46].

These expectation values can be used to calculate the gradient of a quantum circuit’s
output with respect to its parameters. The authors also discussed practical challenges,
such as noise and limited circuit depth, and propose strategies to mitigate these issues.
The paper includes experimental results demonstrating the feasibility and effectiveness of
computing analytic gradients on quantum hardware.

The findings of these papers had significant implications for QML and optimization algo-
rithms. The ability to efficiently compute gradients on quantum hardware opened up new
possibilities for training quantum models and optimizing their performance.

4.3.3 Parameter Shift Rule

Gradient-based methods aim to identify an optimal solution by finding a point where the
gradient is equal to zero. The parameter shift rule is a technique used in QML to estimate
gradients and allows for gradient calculations without the need for complex differentiation
of quantum circuits.

Let f(θ) be a quantum circuit with parameterized gates θ. To estimate the gradient of an
expectation value E(θ), the parameter shift rule is given by:

∂E

∂θ
=
f(θ + π

2
)− f(θ − π

2
)

2

where θ represents the parameter being differentiated, and π
2
is a shift applied to the pa-

rameter. This rule provides an approximation of the gradient using two evaluations of the
circuit with shifted parameters.
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4.4 Vanishing Gradients

The problem of vanishing gradients arises when gradients become extremely small or
even zero during training of deep neural networks. This hinders the ability of gradient-
based optimization methods to learn and make progress towards the optimal solution. As
a result, the gradient tends to either explode or vanish in earlier layers, making it difficult
to optimize the network.

The vanishing gradient problem is also present in QML, where it can make optimization of
parameterized quantum circuits difficult. The instability of the gradient in QML is a result of
the composition of unitary operators and the repeated multiplication of parameters in the
optimization algorithm. This can lead to the gradient becoming extremely small or even
zero, making it difficult to optimize the circuit and make progress towards the optimal
solution.

The problem of barren plateaus is related to the idea of gradient concentration, where
the gradient of a PQC with respect to its parameters concentrates around zero for certain
circuits. Gradient concentration has been observed in circuits with a large number of qubits
and/or layers, and with certain types of randomly generated parameterizations. The three
phenomena, gradient concentration, exponential concentration of cost around the mean,
and exponential narrowness of minima, occur together, meaning that if one is present, the
other two are also present.

In the paper ”Barren plateaus in quantum neural network training” [50] the authors dis-
covered and proved that for a wide class of reasonable parameterized quantum circuits,
the probability that the gradient along any reasonable direction is non-zero to some fixed
precision is exponentially small as a function of the number of qubits.

Analytically and numerically, it has been observed that for many random quantum circuits,
observable expected values converge to their averages over Hilbert space and gradients
converge to zero. This insight sheds light on the geometry of quantum circuits and their
relevance to hybrid quantum-classical algorithms. It also suggests that randomly initialized
circuits of sufficient depth may have limited utility in these algorithms.

There are several approaches tomitigating gradient concentration. One approach is to use
a different parameterization for the circuit, such as a hardware-efficient ansatz or a circuit
with more structure that does not suffer from gradient concentration. Another approach is
to use a modified optimization algorithm that takes into account the structure of the cost
landscape, such as the quantum natural gradient optimizer [51].

In this thesis quasi-Newtonmethods, like the Limited-memory Broyden–Fletcher–Goldfarb–
Shanno (L-BFGS) [32], are also trialed to combat such landscapes in the qubit circuits.
Finally, when dealing with larger systems, strategies that can also be effective are the
utilization of structured initial guesses [52], the adoption of layerwise learning [53] and the
use of local instead of global observables [54].
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4.4.1 Local Observables

In the paper titled ”Cost function dependent barren plateaus in shallow parameterized
quantum circuits” by Cerezo et al. [54], the authors explore the relationship between
locality, trainability, and the performance of VQAs. The concepts are illustrated through
large-scale simulations of a quantum autoencoder implementation.

The authors consider a PQC, which is constructed using an alternating layered ansatz
composed of blocks that form local 2-designs. A 2-design represents a set of quantum
states that approximates the uniform distribution over the entire Hilbert space to the sec-
ond order. A ”local 2-design” refers to a set of states that approximates the uniform distri-
bution over a smaller, local Hilbert space.

Two theorems related to gradient scaling in VQAs are presented in this paper:

Theorem 1. Let C be a cost function defined in terms of global observables, and let V (θ)
be a shallow PQC. Then, for a fixed depth of V (θ), the expected gradient of C with respect
to any of its parameters θi will vanish exponentially with the number of qubits n, i.e.,

|∂C/∂θi| ≤ exp(−n/κ),

where κ is a constant depending on the depth of V (θ).

Theorem 2. Let C be a cost function defined in terms of local observables, and let V (θ)
be a parameterized quantum circuit of depth O(logn) composed of blocks forming local
2-designs. Then, for any fixed depth of V (θ), the expected gradient of C with respect to
any of its parameters θi will vanish at worst polynomially with the number of qubits n, i.e.,

|∂C/∂θi| ≤ poly(n),

where the polynomial bound depends on the depth of V (θ).

The main takeaway from this research is that the choice of cost function significantly im-
pacts the trainability and performance of VQAs. When the cost function is defined using
global observables involving all qubits, barren plateaus may arise, impeding the optimiza-
tion process. In contrast, employing local observables that focus on a subset of qubits
can help avoid barren plateaus and enhance the trainability of the algorithm.

4.4.2 Layerwise Learning

Layerwise learning is a training strategy for QNNs that aims to address the problem of
vanishing gradients and make better use of the resources provided by NISQ devices. This
strategy was proposed in the paper ”Layerwise Learning for Quantum Neural Networks”
and the main idea is to incrementally grow the circuit depth during optimization and update
only subsets of parameters at each training step [53].
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The paper demonstrates the effectiveness of the layerwise learning approach through an
image-classification task on handwritten digits. The results show that layerwise learn-
ing attains an 8% lower generalization error on average compared to standard learning
schemes for training quantum circuits of the same size. Moreover, the percentage of runs
that reach lower test errors is up to 40% larger compared to training the full circuit, which
is susceptible to creeping onto a plateau during training.

The structure of the layers to be stacked is defined first, with the same layout for all layers.
One layer consists of random gates on each qubit initialized with zero, and two-qubit gates
connect qubits to enable generation of entanglement. The number of start layers, the
number of epochs to train each set of layers, the number of new layers added in each step,
and the maximum number of layers trained at once are specified as hyperparameters.

The training process consists of two main phases. In the first phase, the circuit is succes-
sively grown by adding new layers and training subsets of layers for a specified number
of epochs. This step avoids initializing on a plateau and provides a good starting point in
the optimization landscape. In the second phase, the circuit is split into partitions, and the
parameters of each partition are trained alternately while the parameters of the inactive
partitions are frozen. This phase is repeated until the loss converges.

The authors argue that the properties of their algorithm, such as the ability to handle low-
depth circuits, limited parameter updates per step, and the larger magnitude of gradients
compared to training the full circuit, contribute to its efficacy on NISQ devices. By consid-
ering the impact of sampling noise and utilizing this training strategy, the algorithm aims
to provide more reliable results in the presence of quantum hardware limitations.

4.4.3 Initialisation

In the paper ”An initialization strategy for addressing barren plateaus in parameterized
quantum circuits” by Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Mar-
cello Benedetti, the authors propose an initialization strategy that involves randomly se-
lecting some initial parameter values and then choosing the remaining values so that the
circuit is a sequence of shallow unitary blocks, each evaluating to the identity. This ap-
proach limits the effective depth of the circuits used to calculate the first parameter update,
preventing them from being stuck in a barren plateau at the start of training [52].

Empirical evidence is provided in the paper to demonstrate the effectiveness of this initial-
ization strategy in training variational quantum eigensolvers (VQE) and quantum neural
networks (QNN). The authors show that the gradient variance does not decrease expo-
nentially during training, and the model does not get stuck in a barren plateau.

However, the authors also note that more work is needed to assess the impact of input
states and data encoding methods on the initialization strategy. They mention that there
is a problem-dependent trade-off to be analyzed, and other potential strategies for avoid-
ing barren plateaus, such as layer-wise training, regularization, and imposing structural
constraints on the ansatz.
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It is important to note that the paper also mentions certain limitations of their initialization
strategy. For instance, the full exploration of the impact of input states and data encoding
methods on the strategy is not addressed. Moreover, the trade-off between circuit depth
and the ability to avoid barren plateaus is dependent on the specific problem at hand.
Other potential strategies, such as layer-wise training, regularization, and the imposition
of structural constraints on the ansatz, may be more suitable for certain datasets.

In this thesis, a modified approach of this strategy was employed. The optimization pro-
cess began with multiple iterations to select an initial favorable point, thereby preventing
the model from getting trapped in a barren plateau during the initial stages of training.
This technique, combined with the strategies of local observables and layerwise learning
outlined before, ensured the avoidance of plateau initialization and facilitated a promising
starting point within the optimization landscape. These methods proved sufficient for the
classification tasks investigated within the scope of this thesis.

4.5 Information Capacity

Understanding the limits and capabilities of a model is a key aspect in the field of machine
learning. In classical models, the capacity is often quantified by considering factors such
as the number of parameters or employing concepts like VC dimension, defined as the
maximum number of points that the hypothesis class can shatter. Thesemeasures provide
insights into the model’s capacity, to ensure its suitability for a given learning task and gain
a deeper understanding of its potential limitations.

Computational learning theory, a subfield of artificial intelligence, focuses on elucidating
the efficacy of learning various functions. It seeks to ascertain theminimum amount of data
necessary to facilitate effective learning, and explores the balance between the complexity
of a learned model and its capacity to generalize accurately to previously unseen data.
Additionally, the field delves into devising mechanisms to guarantee the convergence of
learning algorithms towards the desired solution.

A measure of a model’s ability to fit data is the PAC-Bayes framework, which combines
the concepts of Probably Approximately Correct (PAC) learning and Bayesian learning.
A model endowed with higher capacity can fit a wider range of functions, but it may also
overfit the data. The PAC-Bayes bound offers a way to strike a balance between the
model’s fit to the training data and its inherent complexity.

In the paper titled ”A PAC-Bayesian Approach to Spectrally-Normalized Margin Bounds
for Neural Networks,” the authors extend the PAC-Bayesian framework to neural networks
with the incorporation of a spectrally-normalized margin-based bound. This bound quan-
tifies the margin between accurately classified examples and the decision boundary es-
tablished by the neural network [56].

The VC dimension serves as another measure of capacity for a neural network, repre-
senting the capacity of a hypothesis class, which encompasses all possible functions that
a learning algorithm can choose from. Formally, if there exists a set of points that can
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be perfectly labeled by all possible binary assignments using the functions or classifiers
in the hypothesis class, this maximum number of points is the VC dimension. Vapnik
and Chervonenkis introduced the VC dimension in their seminal work ”On the Uniform
Convergence of Relative Frequencies of Events to Their Probabilities” [57].

The authors demonstrated that when the VC dimension of a hypothesis class is finite, the
empirical risk converges uniformly to the true risk. The VC dimension provides a crucial
foundation for understanding the trade-off between the complexity of a hypothesis class
and its ability to generalize. A higher VC dimension implies a greater capacity to fit the
training data, but it also raises the risk of overfitting and poor generalization.

These classical machine learning measures to assess a model’s capacity may not directly
apply to quantum models. There is significant interest in exploring whether quantum com-
puters can offer an advantage, but quantifying the information capacity of a QML model
is not as straightforward. The unique properties of quantum systems require distinct ap-
proaches for evaluating their capacity.

In the paper ”Expressibility and entangling capability of parameterized quantum circuits
for hybrid quantum-classical algorithms” Sukin Sim, Peter D. Johnson, and Alan Aspuru-
Guzik introduce the concepts of expressibility and entangling capability as metrics to dis-
cern between different parameterized quantum circuits. Expressibility refers to the extent
to which the circuit’s hypothesis space covers the Hilbert space, while entangling capability
pertains to its capacity to produce entangled states [58].

A general unitary operation can access the entire Hilbert space, but it does not guaran-
tee high information capacity. Variational circuits with high expressibility, can have flat
optimization landscapes, making it challenging to identify the correct search directions for
minimizing the loss function. Consequently, training such models becomes more intricate
and prone to overfitting.

Finally, in the papers ”The Power of Quantum Neural Networks” [59] and ”Effective Di-
mension of Machine Learning Models” [60] Amira Abbas et al. introduce the concept of
effective dimension as a capacity measure for QML models. They argue that traditional
capacity measures are insufficient in explaining crucial observed characteristics in prac-
tice. The effective dimension captures both the model’s ability to fit different functions and
provides bounds on generalization error.

The effective dimension measures the proportion of parameters actively used in a neural
network. The authors demonstrate that certain QNNs exhibit faster training compared to
classical models due to their optimization landscapes, which have a more evenly spread
Fisher information spectrum. This property contributes to improved resilience and effi-
ciency during training.

These findings underscore the potential advantages of QML, particularly in the context
of QNNs. However, there are still open questions regarding the reasons behind the high
effective dimensions of QNNs and whether these results extend to more general classes
of quantum models.
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5. IMPLEMENTATION AND BENCHMARKS

5.1 Datasets

In order to gain insights into the fitting process of the model, initially, binary classification
problems in two dimensions, were chosen, namely Circles, XOR, andMoons. By choosing
these specific datasets, it becomes possible to visually evaluate the model’s performance
and its ability to separate classes effectively. This assessment is facilitated by plotting the
decision boundaries, enabling a clear visualization of the model’s separation capacity.

Subsequently, the evaluation expanded to include multiclass classification problems with
high-dimensional data, aiming to assess the model’s capabilities in handling complex clas-
sification tasks. In the case of qutrits, multiclass classification becomes particularly rele-
vant as each distinguishable state of the qutrit can be assigned to a separate class. For
this purpose datasets with three labels were selected, namely Wine Cultivars, Iris, Seed,
and Glass.

• The Wine Cultivars Dataset contains chemical analysis results of wines from three
different cultivars in Italy.

• The Iris Dataset comprises measurements of sepal length, sepal width, petal length,
and petal width for three species of iris flowers.

• The Seed Dataset provides geometric measurements of kernels belonging to three
varieties of wheat.

• The Glass Dataset includes chemical attributes about three types of glass.

These datasets provide diverse and challenging scenarios for evaluating the performance
of the models in multiclass classification tasks. Detailed information and links to their UCI
repositories can be found in the appendix C.

By incorporating real-world datasets with varying numbers of features, the effectiveness
and generalizability of the models can be comprehensively assessed. Additionally, the
differences in feature sets among them offers an opportunity to test the adaptability of the
models’ feature maps.

5.2 Gell-Mann Feature Map

In the case of qubits, several feature maps can be used to encode classical data into
quantum states. The choice of feature map depends on the specific problem at hand and
the desired representation of the data. The Pauli Feature Map, for instance, uses the Pauli
matrices (I, X, Y, Z) and is primarily employed in quantum kernel methods.
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With the goal of enhancing encoding capabilities, the Gell-Mann feature map is intro-
duced, which draws upon the mathematical framework provided by the special unitary
group SU(3). The utilization of the proposed Gell-Mann feature map enables the encod-
ing of information within an 8-dimensional space. This empowers the quantum system to
capture and process significantly larger amounts of data even within a single qutrit.

The Gell-Mann feature map, as well as the variational layer of the QNN, use the rotation
operator gates for SU(3):

Rot(w1, w2, . . . , w8) = exp

(
−i

8∑
a=1

wa
λa

2

)
(5.1)

Where, λa is the ath Gell-Mann matrix, and wa is a real value, with period 4π.

It is important to clarify that in the context of this study, the Gell-Mann feature map does
not pertain to a specific arrangement of gates, but rather to the utilization of Gell-Mann
rotation operators, for the encoding process.

5.3 Encoding and Variational Layers

Empirical findings have identified a configuration that outperforms others for the encoding
and variational layers of the PQCs investigated in this thesis. However, to optimize perfor-
mance for certain problems, adjustments such as incorporating extra gates or increasing
the number of qutrits were required. These modifications will be discussed in detail for
each architecture, while the underlying core structure of the layers is presented below:

• Encoding Layer: This layer employs the first four Gell-Mann matrices to encode
the input vector x⃗ into a quantum state:

|ψx⃗⟩ = exp

[
i

4∑
j=1

xj · λj

]
|0⟩ (5.2)

The exponential term with the Gell-Mann matrices acts as a rotation operator, where
xj represents the components of the input vector x⃗.

• Variational Layer: The last four Gell-Mann matrices are utilized in this layer to in-
troduce variational parameters w⃗ into the quantum state. The variational layer is
defined as follows:

|ψx⃗,w⃗⟩ = exp

[
i

8∑
j=5

wj−4 · λj

]
|ψx⃗⟩ (5.3)

The variational weights w⃗ = (w0, w1, w2, w3) are the parameters to be optimized.
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5.4 Quantum Kernel

5.4.1 Overview

In this method, a quantum device is employed to encode the features of two specific data
points through the application of the Gell-Mann feature map. Subsequently, the estimation
of their inner product and the kernel is used as input for a classical support vector machine.
Kernel-based training bypasses the processing parts of common variational circuits and
only depends on the data encoding.

This approach presents significant interest in situations where the evaluation of kernels
using classical methods proves to be computationally infeasible due to exponential growth
in runtime as a function of the input dimension. The introduction of this approach can be
attributed toMaria Schuld et al., as outlined in their paper titledQuantumMachine Learning
in Feature Hilbert Spaces [61].

They expressed the quantum feature map ϕ(x) as simply the process that encodes clas-
sical data x into a quantum state. If ϕ(x) is a feature map for data x, |0〉 is the initial state
of the system, and U(x) a unitary operation dependent on the data, then the quantum
state after encoding is given by:

|ϕ(x)⟩ = U(x)|0⟩ (5.4)

The quantum kernel function K(x, x′) then measures the similarity between two quantum
states corresponding to data x and x′ and defined as their inner product:

K(x, x′) = |⟨ϕ(x)|ϕ(x′)⟩|2 (5.5)

This approach offers the capability to replace many near-term quantum variational models
with a support vector machine. This kernel-based approach guarantees finding solutions
that are equally good or even better in some cases than those trained using variational
circuits [62].

5.4.2 Architecture

Within the context of this thesis, different combinations of rotation gates and encodings
were explored. While some datasets required alternative gate arrangements, for the ma-
jority of datasets, the following two kernel architectures proved the most effective. The
first and simplest kernel involved using a single qutrit.
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|0〉 H Rλ1(x1) Rλ2(x2) Rλ3(x3) Rλ4(x4) U(x′)†

Figure 5.1: A Single Qutrit Kernel

To encode the features onto one qutrit, the qutrit is initially placed in a superposition state
by applying the Hadamard operator, allowing it to exist as a combination of its potential
states. Subsequently, the features are encoded onto the qutrit using the first four Gell-
Mann matrices.

The second data point is encoded using the conjugate transpose of these gates, symbol-
ized with U(x′)† on this and subsequent circuits. The resulting states are then used to
compute the quantum kernel by taking the inner product between them. This quantum
kernel can then be passed to a classical SVM classifier.

|0〉 H Rλ1(x1) Rλ2(x2) Rλ3(x3) Rλ4(x4)

LZZ U(x′)†
|0〉 H Rλ5(x1) Rλ6(x2) Rλ7(x3) Rλ8(x4)

Figure 5.2: A Two Qutrit Kernel

The second kernel discovered during experimentation is particularly intriguing, as it in-
volves the utilization of two qutrits placed in a superposition state using the Hadamard
operator. The features are then encoded on the first qutrit using the first four Gell-Mann
matrices, and on the second qutrit using the last four Gell-Mann matrices. Subsequently,
an entangling operation is performed between them by applying the LZZ gate, defined
as follows:

LZZ = exp [−iLZ ⊗LZ] (5.6)

Where, the matrix LZ is defined as LZ = λ3 +
√
3λ8, as previously discussed.

The two diagrams provided above illustrate the encoding process for four features of the
Iris dataset. When datasets contained more than four features, stacked layers were em-
ployed in a similar arrangement of rotation gates to accommodate the additional features.
For a more comprehensive understanding of the implementation, refer to the detailed
Python code provided in Appendix B.1.

T. Valtinos 74



Quantum Neural Networks with Qutrits

5.4.3 Results

A quantum kernel alone cannot be used to make predictions on a dataset, but only serves
as a tool to measure the overlap between two data points. For the SVM, sci-kit learn’s
Support Vector Classifier (SVC) was employed, which requires a kernel function that takes
two sets of data points. To validate each kernel, a check was performed to ensure that
evaluating the kernel of a data point with itself returned 1, since the simulation is noiseless.

Different architectures were trialed, but in the majority of cases, utilizing two qutrits with
the kernel method mentioned in the previous section yielded the best results, effectively
capturing the complexity of the data. To evaluate the performance of the classifier, the
percentage of correctly classified data points in the dataset was measured.

5.4.3.1 Binary Classification

For the binary classification task, problems in two dimensions were selected, specifically
Circles, XOR, and Moons, for visualisation of its separation capacity. However, since the
feature map described above requires at least four dimensions, the two features were
uploaded once more in the subsequent Gell-Mann rotations.

Separation capacity is the ability of a model to distinguish between the different classes
in a dataset. It can be seen as the complexity of decision boundaries that the model can
learn. A model with a high separation capacity can learn complex decision boundaries
that can effectively separate classes that are non-linearly separable, while a model with a
low separation capacity might only be able to learn linear decision boundaries.

Figure 5.3: Circles Decision Boundaries

A decision boundary is a hypersurface that
partitions the underlying vector space into
one set for each class. To gain insight
into the model’s fitting process, the decision
boundaries were plotted using the data visu-
alization functions from Tim von Hahn’s blog
[63].

In addition to illustrating the decision bound-
aries between classes, these plots provide
a visual representation of the probability as-
signed to a data point belonging to a spe-
cific class. This is achieved by adjusting the
size of the dots, with larger dots indicating
a higher likelihood of the data point being
classified into that particular class.

This can be observed in Figure 5.3, where
the quantum kernel combined with the SVM
achieves an accuracy of 100% on the Cir-
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cles dataset, showcasing its ability to accurately classify all instances in this dataset.

This probability of a prediction is often referred to as confidence, and it is distinct from
accuracy. Confidence reflects the model’s certainty in its prediction, while accuracy mea-
sures the overall correctness of the model’s predictions across a dataset.

In classifiers like logistic regression, the confidence can be directly interpreted as a prob-
ability. For classifiers like SVM, the confidence might be derived from the distance of a
data point to the decision boundary. It is important to note that a model can have low
confidence in correct predictions and still maintain high accuracy.

(a) XOR Accuracy: 99.17% (b) MOONS Accuracy: 96.67%

Figure 5.4: SVM Decision Boundaries

The benchmark results, presented in Figure 5.4, demonstrate for the XOR dataset, the
model achieves a high accuracy of 99.17%, and an accuracy of 96.67% on the Moons
dataset. It is important to note that the accuracy was evaluated on the test set, while the
decision boundaries were on the entire dataset.

The decision boundaries of all three binary problems indicate that the outer points in the
datasets can be accurately classified. The majority of the data instances fall within the
correct class for circles, and for the other two slightly more complex datasets, the perfor-
mance remains nearly perfect. Furthermore, no strong artifacts that would raise concerns
about the model’s reliability are observed.

5.4.3.2 Multiclass Classification

For the multiclass classification tasks, the datasets consisted of three classes and four or
more dimensions. A single layer of the feature map utilized four rotations for a qutrit, as
illustrated in Figures 5.1 and 5.2. For datasets with higher than four dimensions, stacked
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layers were utilized. This approach involved breaking down the datasets and using multi-
ple layers of encoding for each set of features.

The results below were obtained using the two-qutrit kernel presented in the architecture
section, except for the Wine dataset, where Hadamard gates were not utilized. Since the
SVMmethod relies on scikit-learn’s SVC, the decision boundaries and support vectors are
determined by the input data. Therefore, conducting multiple benchmarks is unnecessary,
since running it with identical inputs consistently yields the same outcomes.

Table 5.1: Metrics of the Quantum Kernel’s performance on multiclass datasets

IRIS WINE GLASS SEED
Recall 90.00% 83.97% 90.48% 88.10%
Precision 92.31% 83.51% 90.43% 89.56%
Accuracy 90.00% 83.33% 90.24% 88.10%
F1-score 89.77% 83.42% 90.21% 87.93%

Themodel achieved high recall scores across all datasets, ranging from 83.97% to 90.48%.
This indicates that the model successfully identifies a significant portion of true positive
instances within each class. The precision scores vary, with values between 83.51% and
92.31%, which shows that the model’s ability to accurately classify instances within each
predicted positive class varies across the multiclass datasets.

The accuracy scores range from 83.33% to 90.24%, achieving an overall good level of
correctness in its predictions across the majority of datasets. The F1-scores, which pro-
vides a balanced evaluation of the model’s performance, range from 83.42% to 89.77%
and reflect its ability to balance precision and recall for each class.

The obtained metrics demonstrate that the quantum kernel effectively maps the features
in the qutrits, enabling the SVM to accurately predict the target class. These results hold
promise for introducing a variational layer in place of the classical approach within the
QNN framework. This transition would simply shift the focus towards optimization and the
search for optimal parameters as the primary challenge.

5.5 Quantum Neural Network

5.5.1 Overview

For the quantum kernel a hybrid quantum-classical method was employed with the help
of NumPy and scikit-learn, but in the case of the neural network, with the introduction of
the variational layer and the increase in the number of operations involved, PyTorch was
chosen. PyTorch facilitates the explicit definition of the model’s architecture and is efficient
in handling complex operations.

The QNN class is implemented as a module that encapsulates the functionality of the
model and inherits from PyTorch’s Module class. This design choice allows for smooth
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integration with PyTorch’s optimization algorithms and cost functions. After evaluating
various optimizers, RMSprop was chosen for training. Additionally, considering that the
datasets are multiclass, the cross-entropy loss function was selected, making the model
well-equipped to handle binary and multiclass problems effectively.

To address the challenge of barren plateaus, a combination of strategies was employed,
as described in the previous chapter. Primarily, local observables were use to combat
vanishing gradients and improve the trainability of the algorithm, as discussed in the paper
”Cost function dependent barren plateaus in shallow parameterized quantum circuits” [54].

Additionally, leveraging the concepts presented in the paper titled ”An initialization strategy
for addressing barren plateaus in parameterized quantum circuits” [52], if the accuracy of
an initial guess fell below a specific threshold, an alternative point in the parameter space
was selected. Incorporating this technique, provided a favorable starting point within the
optimization landscape and made training feasible.

5.5.2 Architecture

In the QNN, each layer applies a transformation to the quantum state, generating a new
state as input for the subsequent layer. The parameters of each layer are optimized
through training. This approach based on the paper ”Data re-uploading for a universal
quantum classifier” [44], allows the quantum classifier to handle complex data with multi-
ple input dimensions and output categories.

The QNN class, implemented as a PyTorch module, allows for the specification of the
number of layers and features during initialization. This design choice enables a modular
framework that can be readily adjusted andmodified during hyperparameter tuning to align
with the underlying geometry of the problem.

Selecting the depth of the QNN involves a trade-off between computational resources
and performance. Deeper QNNs may provide enhanced representation power, but they
also introduce increased optimization complexity due to the requirement of either more
qutrits or longer gate sequences. An increase in depth carries, also, the potential risk of
overfitting, necessitating a delicate balance to be struck in model design.

|ψx⃗〉 |ψx⃗,w⃗〉|0〉 U(x⃗) U(w⃗)

Figure 5.5: A Single QNN Layer composed of Encoding and Variational Layers

As shown in Figure 5.5, a single layer of the QNN comprises an encoding layer and a
variational layer. The encoding layer, denoted as U(x⃗), follows a feature map similar to
the kernel.
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|ψx⃗〉|ψ〉 H Rλ1(x1) Rλ2(x2) Rλ3(x3) Rλ4(x4)

Figure 5.6: Encoding Layer

As illustrated in Figure 5.6, the initial step involves preparing the qutrit in a superposition
state by applying the Hadamard operator. Subsequently, the features are encoded onto
the qutrit using the first four Gell-Mann matrices. In the following variational layer, as
depicted in Figure 5.7, the remaining four Gell-Mann matrices are utilized, and the weights
of the QNN’s parameters are optimized.

|ψx⃗,w⃗〉|ψx⃗〉 Rλ5(w1) Rλ6(w2) Rλ7(w3) Rλ8(w4)

Figure 5.7: Variational Layer

Figure 5.5 represents a single layer of the QNN. Additional layers are stacked at the end,
similar to how perceptrons are added in classical machine learning neural networks, as
depicted in the circuit shown in Figure 5.8.

|0〉 U(x⃗) U(w⃗) U(x⃗) U(w⃗)

Figure 5.8: Two Stacked QNN Layers

The effectiveness of increasing the number of qutrits varied across datasets. In some
cases, utilizing multiple qutrits led to improved performance, while in others, a single qutrit
was sufficient. Furthermore, the impact of entangling operations depended on the under-
lying structure of the dataset, emphasizing its data-specific nature. However, it is impor-
tant to note that using more than two qutrits was unnecessary, as this capacity effectively
captured the information present in most datasets.
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LZ

I

|0〉 H Rλ1(x1) Rλ2(x2) Rλ3(w1) Rλ4(w2)

Rλ1⊗λ8

|0〉 H Rλ5(x3) Rλ6(x4) Rλ7(w3) Rλ8(w4)

Figure 5.9: Two Qutrits With Encoding and Variational Layers

The architecture presented in Figure 5.9, resembling the feature map for two qutrits in the
quantum kernel section, employs the Gell-Mann matrices in a similar manner. However,
a notable difference arises in the application of an entangling operator:

Rλ1⊗λ8 = exp[iλ1 ⊗ λ8] (5.7)

Here, the tensor product of the first and eighth Gell-Mann matrices is utilized. Additionally,
for the QNN a local measurement approach is used, employing the LZ operator.

For the sake of simplicity in the training process, the probabilities of the quantum state are
utilized instead of running the circuit multiple times and obtaining the expectation values.
This is made possible by accessing the quantum state directly through the Python simu-
lation. For each architecture that was tested, a distinct class was implemented, and the
corresponding code can be found in the GitHub repository. For reference, the implemen-
tation of the single qutrit QNN architecture is provided in Appendix B.2.

5.5.3 Results

During the training process, a thorough search was conducted to explore various com-
binations of learning rates, weight decay, and momentum factors in the optimizers that
supported this. The objective was to fine-tune the model’s hyperparameters and discover
the optimal configuration that maximized convergence speed.

In the preliminary experiments, the parameter shift rule was employed, but it was later
replaced with the RMSProp optimizer, which demonstrated superior performance. RMSProp
was used to update the parameters of the QNN, with an initial learning rate set to 0.001,
a decay factor gamma of 0.9, and an epsilon value of 1e-8 for numerical stability.

The input features were appropriately scaled, using scikit-learn’s StandardScaler prepro-
cessing class, which transforms the data by removing the mean and scaling to unit vari-
ance. The standard score of a sample x is calculated as: z = x−u

s
, where u is the mean

of the training sample, and s is the standard deviation of the training samples. Standard-
ization is a necessary requirement for neural networks, as they might behave poorly if the
individual features do not resemble standard normally distributed data.
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The Dataset and DataLoader classeswere utilized, enabling efficient preprocessing, seam-
less integration of data loading with the model training process, and leveraging the capa-
bilities of the broader PyTorch ecosystem. Various batch sizes were tested to strike the
optimal balance between training efficiency and model performance. Due to the small
size of the datasets, a small batch size of 4 was chosen, since increasing the batch size
beyond this point proved to be impractical.

PyTorch’s cross entropy loss function was utilized to compute the loss between the input
logits and target, as it operates on the probabilities of the quantum state. The computed
loss is then used to perform the backward pass, and update the model’s parameters.

5.5.3.1 Binary Classification

(a) 1 Layer Accuracy: 85.3% (b) 2 Layers Accuracy: 91.25%

(c) 3 Layers Accuracy: 100%

Figure 5.10: QNN Decision Boundaries XOR Dataset
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In the initial evaluation of the QNN’s performance and to compare with the quantum ker-
nel’s separation capacity, the XOR and Moons datasets were employed. Notably, there
exists a distinction between neural networks and support vector machines in terms of their
approach to learning decision boundaries.

When considering artificial neural networks or perceptrons, the separation capacity is de-
termined by the number of hidden layers present in the network. Specifically, the absence
of hidden layers restricts the network to learning only linear problems. However, the in-
clusion of one hidden layer enables the network to learn any continuous function, thus
facilitating the adoption of arbitrary decision boundaries.

This behavior was also detected in the case of the QNN, where an increase in depth
resulted in the emergence of increasingly complex and intricate decision boundaries. This
can be clearly observed in Figure 5.10, which demonstrates the progression from 1 to 3
layers. Additionally, as the QNN learns to effectively separate the classes in the XOR
dataset, the accuracy naturally improves, progressing from 85.3% to a perfect 100%.

(a) 1 Layer Accuracy: 85.3% (b) 2 Layers Accuracy: 91.25%

(c) 3 Layers Accuracy: 92.5% (d) 4 Layers Accuracy: 100%

Figure 5.11: QNN Decision Boundaries Moons Dataset
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The same phenomenon is even more evident in Figure 5.11, where the presence of one
layer results in a simple linear separation, followed by increasing intricacy as additional
layers are introduced. In this case, the decision boundaries progressively improve to better
align with the interleaving shapes present in the Moons dataset.

The accuracy of the QNN on the Moons dataset exhibits a steady improvement, starting
from 85.3% with one layer and reaching 100% with four layers. Similar to the quantum
kernel’s measurement in the previous section, the accuracy presented below the plots is
determined using the test set, while the decision boundaries are plotted over the entire
dataset, providing a comprehensive visualization.

For both the XOR and Moons datasets, the QNN employed a single qutrit architecture as
described in the previous section and in the code of Appendix B.2. These binary clas-
sification problems demonstrated that using more than one qutrit was unnecessary for
effective learning. However, since each layer requires a minimum of four dimensions, the
two-dimensional features were ”re-uploaded” in the subsequent Gell-Mann rotations.

5.5.3.2 Multiclass Classification

For the multiclass classification tasks, learning curves are plotted to visually represent
the model’s performance and learning progress over time. These curves reveal important
trends such as convergence and potential overfitting or underfitting.

The Iris dataset consists of four features, while the remaining datasets have higher di-
mensions. To enhance computational efficiency while maintaining consistent encoding,
PCA was employed to reduce the dimensions to four in all datasets, except for the Glass
dataset. In the Glass dataset, the original dimensions were retained and encoded in the
subsequent layer, since this yielded better accuracy.

The following results were obtained using the single qutrit architecture. Although the quan-
tum kernel achieved better accuracy with two qutrits compared to the single qutrit in mul-
ticlass problems, the QNN achieved similar performance with both architectures. Consid-
ering the longer training time required by the two qutrit architecture, which is expected due
to the increased number of operations, the decision was made to utilize the single qutrit
architecture for all tasks.

(a) QNN of 3 Layers (b) QNN of 4 Layers (c) QNN of 5 Layers

Figure 5.12: IRIS Dataset Learning Curves
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In the Iris dataset, the model achieved its optimal performance with four layers, as demon-
strated by the learning curves presented in Figure 5.12, having a 91.11% accuracy on the
test set. The increased depth of the QNN allowed the model to effectively capture the
intricate features and complex patterns within the data.

However, it is worth noting that beyond the point of four layers, the model encountered
overfitting to the training set, indicated by the black line, and a divergence for the accuracy
of the test set, indicated by the green line.

(a) QNN of 1 Layer (b) QNN of 3 Layers

Figure 5.13: SEED Dataset Learning Curves

For the Seed dataset, the QNN required fewer epochs to train effectively. As illustrated in
Figure 5.13, the model achieved its peak performance with three layers, attaining an ac-
curacy of 88.89%, a macro average F1-Score of 88.96%, and similar performance across
Recall and Precision metrics.

Additionally, the learning curves indicate a healthier training process compared to the one-
layer model, as there was no divergence between the training and test sets, suggesting it
can generalize to unseen data.

(a) QNN of 1 Layer (b) QNN of 2 Layers

Figure 5.14: GLASS Dataset Learning Curves
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As mentioned earlier, the Glass dataset utilized all available features, necessitating an
increase in the number of layers and parameters for the variational layer. Consequently,
more epochs were required to achieve a good initial starting point and optimize the model.
This prolonged convergence is particularly noticeable in the case of the two-layer archi-
tecture, where it took 70 epochs to find a favorable state.

(a) QNN of 2 Layers (b) QNN of 3 Layers

Figure 5.15: WINE Dataset Learning Curves

Lastly, for the Wine dataset, the model necessitates an extended number of epochs to
identify an optimal initial starting point. Interestingly, the model demonstrates comparable
accuracy with both two and three layers. Specifically, the accuracy achieved with two
layers is recorded at 85.19%, and exhibiting similar performance across all metrics.

The observed initial instability in the learning curves can be attributed to the initialization
method, whereby the model randomly selects a point in the hyperparameter space. While
this approach has demonstrated usefulness, it is worth considering alternative strategies
such as employing a quantum natural gradient or leveraging Fisher information. These
methods have the potential to enhance the training landscape, mitigating the need for ad
hoc measures, and provide more robust gradient techniques.

Table 5.2: Metrics of the QNN’s performance on multiclass datasets

IRIS WINE GLASS SEED
Layers 4 2 2 3
Recall 91.11% 84.23% 82.54% 88.89%
Precision 91.23% 84.61% 82.96% 89.10%
Accuracy 91.11% 85.19% 82.54% 88.89%
F1-score 91.10% 84.37% 82.35% 88.96%

Table 5.2 presents an overview of the QNN’s performance, showcasing the obtained met-
rics along with the corresponding number of layers for each dataset. Multiple benchmarks
were conducted, resulting in comparable outcomes.

85 T. Valtinos



Quantum Neural Networks with Qutrits

5.6 Comparative Analysis

5.6.1 Quantum Kernel vs. Quantum Neural Network

The visual representation of decision boundaries through plotting proved to be insightful in
understanding the geometric structure of binary classification problems when working with
two-dimensional data. It shed light on the model’s capacity and the discernible patterns
present in the data, highlighting notable distinctions between the fitting processes of the
quantum kernel and quantum neural network.

(a) Quantum Kernel SVM (b) Quantum Neural Network with 3 Layers

Figure 5.16: XOR Decision Boundaries Comparison

(a) Quantum Kernel SVM (b) Quantum Neural Network with 4 Layers

Figure 5.17: Moons Decision Boundaries Comparison

The decision boundaries derived from SVM exhibit a distinct and easily interpretable geo-
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metric separation in both the Moons and XOR datasets. In contrast, the decision bound-
aries produced by the QNN are characterized by intricate and nuanced patterns that ap-
pear to closely align with the data points, particularly evident in the case of the Moons
dataset. This behavior aligns with the inherent capability of neural networks to capture
intricate and non-linear relationships, enabling them to model complex patterns within the
data more effectively.

This distinguishing characteristic positions quantum neural networks as promising tools for
addressing real-world problems where datasets lack explicit geometric structures. Their
potential lies in their ability to capture and exploit the inherent complexity and non-linearity
embedded within the data.

Table 5.3: Comparison of Metrics for Quantum Kernel and QNN on Multiclass Datasets

IRIS WINE GLASS SEED
Recall (Kernel) 90.00% 83.97% 90.48% 88.10%
Precision (Kernel) 92.31% 83.51% 90.43% 89.56%
Accuracy (Kernel) 90.00% 83.33% 90.24% 88.10%
F1-score (Kernel) 89.77% 83.42% 90.21% 87.93%
Recall (QNN) 91.11% 84.23% 82.54% 88.89%
Precision (QNN) 91.23% 84.61% 82.96% 89.10%
Accuracy (QNN) 91.11% 85.19% 82.54% 88.89%
F1-score (QNN) 91.10% 84.37% 82.35% 88.96%

The multiclass results provided further evidence of the QNN’s prowess in uncovering and
leveraging intricate patterns within real-world datasets. In all evaluated datasets, the QNN
consistently outperformed the quantum kernel across all metrics, except for the Glass
dataset. This outcome underscores the QNN’s superior performance and its ability to
effectively model complex relationships and patterns present in the data.

It is important to note that, in the case of quantum kernels, utilizing the original features of
the dataset led to superior outcomes compared to applying PCA and using the reduced
features obtained from it. However, interestingly, the opposite trend was observed in the
context of the QNN.

This difference in performance can be attributed to several factors, which require further
investigation and analysis. The quantum kernels might be more effective when the data
distribution aligns well with the quantum feature space. Naturally, it might be the case that
the increased depth of the network and number of parameters simply required a different
optimization approach.

The size of the dataset can also play a role in the observed results. If the dataset is
relatively small, which is the case with these datasets, the quantum kernels might be
more resilient to overfitting and better able to capture the underlying patterns in the raw
features, whereas the QNN could struggle due to the increased model complexity.
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5.6.2 Qutrit Circuit vs. Qubit Circuit vs. Classical SVM

In order to evaluate the performance of the qutrit QNN, a comparison will be conducted
using a qubit circuit and a classical SVM. To implement the qubit circuit, Qiskit’s VQC will
be utilized, which constructs a parameterized quantum circuit for data classification.

Scikit-learn’s SVC was selected as a representative classical machine learning method
due to its versatility and suitability as a baseline classifier for model evaluation. By con-
ducting a comparative analysis of the performance between quantum algorithms and
scikit-learn’s SVC, the strengths and weaknesses of quantum approaches in tackling mul-
ticlass classification problems can be assessed.

The VQC in Qiskit offers support for various loss functions and optimizers, allowing flexi-
bility in the training process. It also provides the option for warm start, which means that
weights from a previous fit can be used to initialize the next fit. Furthermore, the VQC can
be executed using either a QuantumInstance or a Backend to run the quantum circuits.

The VQC takes as parameters the number of qubits, feature map, ansatz, loss function,
and optimizer. For this study, it was decided to use four qubits, matching the number
of features in the Iris dataset. In the other datasets, PCA was employed to reduce the
number of features to four. From optimizers the L_BFGS_B and COBYLA were used.

The ZZFeatureMap was selected as the feature map, a commonly used data encoding
method. For the ansatz, the RealAmplitudes circuit was employed, which consists of
alternating layers of rotations and entanglements.

Both the feature map and the ansatz can be repeated a certain number of times, which is
adjustable and serves as an argument in the circuit’s construction. This provides flexibility
in designing the architecture of the circuit. Additional details and the implementation can
be found in Appendix B.3.

Table 5.4: Comparison of the QNN’s performance to Qubit VQC and SVM

IRIS WINE GLASS SEED
Classical SVM Accuracy 100% 91.7% 100% 90.48%
Qutrit Kernel Accuracy 90.00% 83.33% 90.24% 88.10%
Qutrit QNN Accuracy 91.11% 85.19% 82.54% 88.89%
Qubit VQC Accuracy 86.67% 80.78% 68.98% 73.81%
Qutrit QNN Layers 4 2 2 3
Qutrit QNN Parameters 16 8 8 12
Qubit VQC ZZ Repetitions 1 1 2 2
Qubit VQC Parameters 12 16 20 24

The classical SVM achieves perfect accuracy on the IRIS and GLASS datasets, while
for the WINE and SEED datasets, 91.7% and 90.48% respectively. This showcases the
strong performance in multiclass classification tasks. The qutrit QNN achieves a compet-
itive accuracy, demonstrating its potential in multiclass classification tasks, but it is still
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lower comparable to the classical SVM. It is worth noting that quantum methods, although
promising, is expected to have lower outright accuracy compared to classical methods.

In comparison, the quantum kernel with SVM achieves slightly lower accuracy across all
datasets and the qubit VQC’s performance falls behind all of them. The circuit employing
four qubits achieves 86.67% accuracy on the IRIS dataset, 80.78% on the WINE dataset,
68.98% on the GLASS dataset, and 73.81% on the SEED dataset. This suggests the
need for further improvement, such as increasing the number of qubits or parameters, in
order to enhance the performance.

In terms of model complexity, the qutrit QNN has 16 parameters for the IRIS dataset, 8
parameters for the WINE and GLASS datasets, and 12 parameters for the SEED dataset.
On the other hand, the qubit VQC uses 1 repetition for the ZZ feature map on the IRIS
and WINE datasets, and 2 repetitions on the GLASS and SEED datasets. The number of
parameters in the ansatz of the VQC is 12 for the IRIS dataset, 16 for the WINE dataset,
20 for the GLASS dataset, and 24 for the SEED dataset.

These results highlight that even with fewer parameters, the single qutrit circuit outper-
forms the qubit VQC and can capture more information through its rotations. Additionally,
the qubit circuit employs 4 qubits compared to the 1 qutrit of the QNN. Although increasing
the number of qubits or parameters would likely improve the VQC to achieve compara-
ble results, it would also increase the cost. The objective here was to demonstrate the
performance of the VQC with a similar number of parameters.

Figure 5.18: Qubit VQC utilizing the ZZ Feature Map and Real Amplitudes Ansatz

A clear observation of the complexity and number of gates required for the qubit VQC can
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be seen in Figure 5.18, specifically in the case of the Glass dataset which presented the
most challenging scenario. This circuit yielded the highest accuracy for the dataset by
utilizing 2 repetitions of the ZZ feature map and 4 repetitions of the ansatz, resulting in a
total of 20 trainable parameters. This circuit also took longer to train, and underperformed
even with different optimization algorithms.

It is worth noting that potential improvements to the qubit VQC involve increasing the
repetitions of the ZZ feature map and the number of rotations or entangling operations.
However, such modifications would introduce an unfair comparison to the shallow depth
of the single qutrit QNN, which could also achieve higher accuracy by increasing its depth.

The key point remains that despite having fewer parameters, the expanded computational
space of the qutrit and the utilization of the Gell-Mann feature map are capable of capturing
information that surpasses the capabilities of a circuit with four qubits.

These insights significantly contribute to advancing our understanding of the capabilities
and limitations of quantum methods in the context of multiclass classification problems.
Among the evaluated quantum approaches, the single qutrit QNN demonstrated competi-
tive accuracy, indicating its potential effectiveness in tackling complex classification tasks.
The quantum kernel approach showcased comparable performance to the qutrit QNN, but
utilized two qutrits, which may provide an avenue for exploring higher-dimensional quan-
tum feature spaces.

On the other hand, the qubit VQC fell behind, unable to achieve the same level of accuracy
as its quantum counterparts. The classical SVM consistently outperformed all quantum
methods, affirming the superiority of classical machine learning models in this particular
scenario. These findings, although expected to some extent, underscore the necessity for
continued efforts to challenge classical machine learning models.
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6. CONCLUSIONS AND FUTURE WORK

Several key observations emerge from the evaluation of the Gell-Mann encoding em-
ployed as a quantum kernel for the SVM and as a feature map for the QNN. The obtained
results demonstrate remarkable promise, showcasing the feasibility of training by incorpo-
rating this encoding. It effectively expands the capacity and potential of quantum circuits
that utilize qutrits.

However, it is essential to interpret these results with caution as they are based on sim-
ulations rather than physical hardware implementation, where noise significantly affects
performance. Additionally, although the feasibility of training is demonstrated using the
Gell-Mann feature map, classical methods continue to outperform their quantum counter-
parts. This outcome is expected, though, in the early stages of QML, and cases where
the opposite holds true should be approached with skepticism.

Furthermore, the effectiveness of the proposed methods heavily relies on the problem
space and the underlying structure of the dataset. As heuristic methods, the selection of
a different feature map or variations in the weights and layers of the variational model can
entirely reshape the loss landscape.

Now, when comparing the QNN, a parameterized circuit with multiple layers, to the quan-
tum kernel method, a notable observation emerged. It became evident that unless the
variational circuit has a parameter count lower than the dimensions of the training data,
kernel methods were more efficient. While the QNN exhibited slightly better accuracy in
the examined problems, the improvement was marginal in most cases. Consequently,
careful consideration should be given to this aspect.

Another intriguing distinction observed in the quantum kernel method was that encoding
the complete features of the dataset into the feature map using stacked layers yielded
superior results compared to utilizing PCA and encoding the resulting principal compo-
nents. Interestingly, the opposite trend was observed for the QNN. Several factors may
contribute to this phenomenon.

This discrepancy can potentially be attributed to the increase in complexity and operations.
As observed in the multiclass classification examples, surpassing a certain threshold of
network layers rendered the model excessively challenging to train effectively. A similar
observation holds true when increasing the depth of the encoding layer in the quantum
kernel method.

Furthermore, an important observation from the experimental findings was that utilizing
a single layer in most cases posed a significant obstacle during the training process for
the QNN. The model encountered difficulty in surpassing the 50% accuracy threshold,
underscoring the inherent impracticability of capturing the requisite complexity of the data
with just a single encoding and variational layer.

On the other hand, increasing the number of layers not only prolonged the training time for
each epoch, but also extended the overall duration until the model converged. This out-
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come is expected, as introducing additional layers entails a higher number of parameters,
requiring increased computational resources and optimization time.

However, despite the increased training time, the inclusion of more layers in the QNN
architecture presented an opportunity to capture richer and more intricate representa-
tions of the data, leading to improved model performance. This trade-off between training
time and enhanced expressiveness necessitates careful consideration when designing
the QNN architecture.

Moreover, to overcome the challenges encountered when increasing the number of lay-
ers, exploring alternative network architectures could yield fruitful results. Another av-
enue worth exploring is the utilization of transfer learning techniques to enhance the initial
stages of training, by initializing the model’s weights with values derived from a pre-trained
model. Considering that the weights often resided within similar ranges throughout the ex-
periments, this approach can be particularly valuable when working with limited data, as
it allows the model to leverage the data used in pre-training.

Finally, addressing challenges such as barren plateaus necessitated exploring strategies
like structured initial guesses, local cost functions, and integrating correlations between
layers. These strategies demonstrated effectiveness in the examined cases, but their
heuristic nature requires further investigation. One promising avenue for optimization,
that wasn’t explored, is the utilization of a QNG that leverages the Fubini-Study metric
tensor to construct a quantum analog of natural gradient descent.

Looking ahead, future research in this area should prioritize the establishment of rigorous
proofs, theoretical frameworks, and mathematical conditions for trainability. The demon-
strated feasibility of qutrit quantummodels using the Gell-Mann encoding underscores the
promise of these methods. By developing a robust foundation that guides the optimization
of these algorithms, we can fully harness the power of quantum computing to effectively
address complex classification problems. Ultimately, this advancement will contribute to
bridging the gap between classical and QML approaches.
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ABBREVIATIONS - ACRONYMS

PQC Parameterized Quantum Circuit

NISQ Noisy Intermediate-Scale Quantum

QRAM Quantum Random Access Memory

QML Quantum Machine Learning

QNN Quantum Neural Network

QFT Quantum Fourier Transform

VQC Variational Quantum Classifier

VQA Variational Quantum Algorithm

SVM Support Vector Machine

RBF Radial Basis Function

CNN Convolutional Neural Network

QFI Quantum Fisher Information

QNG Quantum Natural Gradient

QKD Quantum Key Distribution

QSVM Quantum Support Vector Machine

QAOA Quantum Approximate Optimization Algorithm

PCA Principal Component Analysis

QPCA Quantum Principal Component Analysis

CNOT Controlled-NOT
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APPENDIX A. QUANTUM HARDWARE

A.1 NISQ

The Noisy Intermediate-Scale Quantum (NISQ) era represents the current state of quan-
tum computing, featuring quantum processors with up to 1000 qubits. These processors
are not yet advanced enough to achieve fault tolerance or reach quantum supremacy.
Being sensitive to their environment, they are referred to as ”noisy” and are susceptible to
quantum decoherence. Continuous quantum error correction remains beyond their cur-
rent capabilities. The term NISQ was coined in 2018 by John Preskill [64].

NISQ algorithms are specifically designed for the processors of this era, such as the VQE
and the QAOA. While these algorithms utilize NISQ devices, certain computations are of-
floaded to classical processors. They have demonstrated success in quantum chemistry
and show potential for applications in physics, material science, data science, cryptog-
raphy, biology, and finance. However, the inherent noise in NISQ devices introduces
errors into quantum computations, which can quickly render results invalid for complex
calculations. Thus, error mitigation techniques are often necessary to ensure accurate
outcomes.

The ultimate goal of the field of quantum computing is to construct large-scale, error-
corrected quantum computers. However, the path to achieving this goal lies in the devel-
opment and improvement of NISQ devices. Researchers are actively working on enhanc-
ing the quality of qubits, extending coherence times, and devising error correction codes
and techniques.

While NISQ devices are not yet suitable for fault-tolerant operations or capable of achiev-
ing quantum supremacy, they still serve as valuable tools for exploring phenomena in
many-body quantum physics and other potential applications. The NISQ era should be
recognized as a significant step towards more powerful quantum technologies in the fu-
ture.

Quantum technologists continue to strive for more accurate quantum gates and, even-
tually, fully fault-tolerant quantum computing. The realization of beyond-NISQ devices
would enable the implementation of algorithms like Shor’s algorithm for breaking RSA
encryption on very large numbers.

A.2 Near-term Machines

The current state of quantum hardware is limited, making even the simplest textbook
quantum algorithms impractical. Achieving large-scale quantum computations requires
fault-tolerant quantum computers with a significantly higher number of qubits and gates.

Recent advancements in quantum hardware focus on error mitigation, noise control, and
the development of modular quantum computers. IBM’s ”Eagle” Quantum Processing
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Unit (QPU) incorporates error mitigation strategies like Zero Noise Extrapolation (ZNE) to
control noise and improve qubit performance. IBM’s Heron processor represents a move
towards modular quantum computers, enabling direct connectivity between processors.

The chips will be connected with conventional electronics, which will not be able to main-
tain the ”quantumness” of information as it moves from processor to processor. The aim
is to link these chips with quantum-friendly fiber-optic or microwave connections, which
will open the path towards distributed, large-scale quantum computers with as many as a
million connected qubits.

Besides IBM, companies like Baidu and Alibaba are also making strides in quantum com-
puting. Baidu offers access to a 10-qubit processor and has designed a 36-qubit super-
conducting quantum chip. Fujitsu is working with Riken to provide access to Japan’s first
quantum computer with 64 superconducting qubits, while in 2020, the Indian government
pledged to spend $1.12 billion on quantum technologies, and for innovative “qudit” pho-
tonics computing.

Xanadu, a Canadian quantum technology company, is developing fault-tolerant quantum
computers using silicon photonics. They offer cloud access to their gate-based photonic
quantum computers, with plans to expand their processor capabilities. Xanadu is also
leading the development of PennyLane, an open-source software framework for quantum
machine learning, chemistry, and computing.

Google’s Quantum AI team aims to build a fully error-corrected quantum computer with
millions of qubits. They focus on building an error-corrected quantum bit (qubit) prototype
and have invested in the development of their quantum hardware. Google’s quantum cam-
pus in Santa Barbara, California, serves as a dedicated facility for quantum data centers
and quantum processor manufacturing.

These efforts promise significant improvements in quantum computing capabilities, over-
coming the limitations imposed by noise and paving the way for practical quantum compu-
tations. Quantum computing has made significant progress in recent years and the focus
is shifting from increasing the number of quantum bits or ”qubits” to developing practical
hardware.

A.3 Qudit Hardware

Qudits offer a promising avenue for achieving significant improvements in quantum circuit
decomposition and cost reductions for essential quantum algorithms, paving the way for
scalable quantum computation. Notably, optical quantum states based on entangled pho-
tons lie at the core of quantum information science, serving as pivotal building blocks for
solving questions in fundamental physics and are at the heart of quantum information sci-
ence. Integrated photonics has become a leading platform for the compact, cost-efficient,
and stable generation and processing of non-classical optical states.

The paper ”On-chip Generation of High-Dimensional Entangled QuantumStates and Their
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Coherent Control” by Michael Kues et al explores the generation, manipulation, and con-
trol of high-dimensional entangled quantum states on a chip [1]. The authors highlight
the advantages of using high-dimensional quantum systems, known as qudits, over con-
ventional qubit-based systems in terms of increased information capacity and improved
resilience against noise and errors.

The paper describes the experimental implementation of high-dimensional quantum states
using integrated photonics. The authors discuss the use of integrated waveguide circuits
on a chip to generate and manipulate entangled photon pairs with high-dimensional quan-
tum states. They also delve into the coherent control of high-dimensional entangled states
on the chip, through the utilization of reconfigurable waveguide circuits for precise manip-
ulation of photon states.

Additionally, the paper addresses the characterization andmeasurement of high-dimensional
entangled states. The implementation of state tomography techniques is discussed, en-
abling accurate determination of the quantum states produced on the chip. The mea-
surement results validate the successful generation of high-dimensional entanglement
and demonstrate the functionality of the on-chip platform to perform deterministic high-
dimensional gate operations.

Another notable approach is the paper ”Asymptotic Improvements to Quantum Circuits via
Qutrits” where the authors focus on the Generalized Toffoli gate, an important primitive in
quantum algorithms. They present a construction that uses qutrits and doesn’t require an-
cilla bits, which are extra bits used to implement irreversible logical operations in quantum
computing. Instead, the qutrit’s third state is used to store temporary information [2].

The Generalized Toffoli gate, has been studied before, but previous circuit constructions
for this gate, such as the Gidney, He, and Barenco designs, rely on qubits and have dif-
ferent tradeoffs in terms of circuit depth and ancilla usage. In their paper the qutrit-based
construction, eliminates the need for ancilla bits by directly storing temporary information
in the qutrit controls. This eliminates the requirement for ancilla bits and improves the ef-
ficiency of the circuit. This new construction results in significant improvements in circuit
depth and gate count for important quantum algorithms like Grover’s search and Shor’s
factoring algorithm. It also offers a more favorable tradeoff between information compres-
sion and higher per-qudit errors, justifying the use of qutrits in quantum computing.

Quantum computing company Rigetti is exploring experimental new hardware configura-
tions that could improve the performance of its quantum processors, by introducing a third
energy state to its qubits, thus turning them into qutrits. Their superconducting quantum
processors are based on the transmon design [3] that can address multiple energy states,
enabling increased information encoding and decreased readout errors [4]. This is in part
due to the much larger state space accessible using qutrits — single qutrit operations
live in SU(3), while two-qutrit operations live in SU(9) — a more than twofold increase in
dimensionality over the two-qubit case.

Quantum computing company Rigetti is exploring experimental new hardware configura-
tions that could improve the performance of its quantum processors by introducing a third
energy state to its qubits, thus turning them into qutrits. Their superconducting quantum
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processors are based on the transmon design [3], which allows them to accessmultiple en-
ergy states and offers the advantages of increased information encoding and decreased
readout errors [4]. One key factor contributing to these advantages is the significantly
larger state space accessible using qutrits compared to qubits. Single qutrit operations
reside in SU(3), while two-qutrit operations exist in SU(9), resulting in a more than twofold
increase in dimensionality compared to the two-qubit case.

In the paper ”Quantum Information Scrambling on a Superconducting Qutrit Processor,”
the authors explore the dynamics of quantum information in strongly interacting systems
using qutrits (three-level quantum systems) instead of the conventional two-level qubits
[5]. This work demonstrates the potential of higher-dimensional quantum systems like
qutrits in achieving resource-efficient encoding of complex quantum circuits, serving as a
proof of principle for using qutrit-based quantum processors and paves the way for building
more advanced quantum information processors.

Finally, another notable paper ”Quantum Information Scrambling on a Superconducting
Qutrit Processor” explores the dynamics of quantum information in strongly interacting
systems, known as quantum information scrambling. This phenomenon has recently be-
come a common thread in understanding black holes, transport in exotic non-Fermi liquids,
and many-body analogs of quantum chaos. Previously, verified experimental implemen-
tations of scrambling focused on systems composed of two-level qubits. However, higher-
dimensional quantum systems, such as qutrits (three-level quantum systems), may exhibit
different scrambling modalities and are predicted to saturate conjectured speed limits on
the rate of quantum information scrambling.

The authors take the first steps toward accessing such phenomena by realizing a quan-
tum processor based on superconducting qutrits. They demonstrate the implementation
of universal two-qutrit scrambling operations and embed them in a five-qutrit quantum tele-
portation protocol link.aps.org. The measured teleportation fidelities (Favg=0.568±0.001)
confirm the presence of scrambling even in the presence of experimental imperfections
and decoherence [5].

The teleportation protocol connects to recent proposals for studying traversable worm-
holes in the laboratory and demonstrates how quantum technology that encodes informa-
tion in higher-dimensional systems can exploit a larger and more connected state space
to achieve resource-efficient encoding of complex quantum circuits.

The development of a superconducting five-qutrit processor that runs a quantum tele-
portation algorithm serves as a proof of principle. The authors engineer two new ways
of entangling superconducting qutrits, placing them in a nonclassical state required for
quantum computing. While it is still too early for these studies to teach us something new
about quantum information propagation, similar algorithms run on future quantum proces-
sors might shed light on such fundamental questions.
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APPENDIX B. CODE IMPLEMENTATION

B.1 Qutrit Quantum Kernel

In this section the code presented was used to perform the quantum kernel-based classifi-
cation using qutrits. The first step was defining the qutrit states as column vectors (q0, q1,
q2) and the Gell-Mann matrices (gm1 to gm8), the Hadamard operator for qutrits, as well as
the LZ matrix constructed using the Gell-Mann matrices gm3 and gm8 and the LZZ matrix
calculated as the Kronecker product of LZ with itself.

1 # Define the qutrit states as column vectors
2 q0 = np.array([[1], [0], [0]])
3 q1 = np.array([[0], [1], [0]])
4 q2 = np.array([[0], [0], [1]])
5

6 # Define the Gell-Mann matrices
7 gm1 = np.kron(q0, q1.T) + np.kron(q1, q0.T)
8 gm2 = -1j * (np.kron(q0, q1.T) - np.kron(q1, q0.T))
9 gm3 = np.kron(q0, q0.T) - np.kron(q1, q1.T)
10 gm4 = np.kron(q0, q2.T) + np.kron(q2, q0.T)
11 gm5 = -1j * (np.kron(q0, q2.T) - np.kron(q2, q0.T))
12 gm6 = np.kron(q1, q2.T) + np.kron(q2, q1.T)
13 gm7 = -1j * (np.kron(q1, q2.T) - np.kron(q2, q1.T))
14 gm8 = 1/np.sqrt(3) * (np.kron(q0, q0.T) + np.kron(q1, q1.T) - 2*np.kron(q2, q2

.T))
15

16 # Define the Hadamard operator for qutrits
17 H = (1/np.sqrt(3)) * np.array([[1, 1, 1], [1, np.exp(2j*np.pi/3), np.exp(-2j*

np.pi/3)], [1, np.exp(-2j*np.pi/3), np.exp(2j*np.pi/3)]])
18

19 # Define the LZ and LZZ operator
20 LZ = gm3 + np.sqrt(3) * gm8
21 LZZ = np.kron(LZ2, LZ2)

Listing B.1: Qutrit States and Operators

The encoding function is responsible for encoding four features onto a qutrit. To achieve
this, it utilizes two important mathematical constructs: the Gell-Mann matrices and the
Hadamard operator. The Hadamard operator is utilized to initially put the qutrit into a
superposition state, allowing it to exist in a combination of its possible states. Then the
initial four Gell-Mann matrices are used to encode the features.

1 def encoding(vector):
2 """Encode four features on a qutrit."""
3 generators = [gm1, gm2, gm3, gm4]
4 sum_val = 0
5 for i in range(4):
6 sum_val += (1j * vector[i] * generators[i])
7 return np.dot(expm(sum_val), np.dot(H, q0))

Listing B.2: Encoding Function
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The kernel function computes the quantum kernel between two data points by encoding
them on qutrits, applying an entanglement gate, and computing the inner product between
the resulting states. The kernel_matrix function computes the kernel matrix between two
sets of data points by evaluating the kernel function on pairwise data. Then, this can be
passed to an SVM classifier instantiated with the kernel_matrix as the kernel.

1

2 def kernel(x1, x2):
3 """The quantum kernel."""
4 qutrit_1 = encoding(x1)
5 qutrit_2 = encoding(x2)
6

7 # Entanglement gate
8 entangle_gate = 1j * LZZ2
9

10 # Applying entanglement between the three qutrits
11 qutrit_1x2 = np.kron(qutrit_1 , qutrit_2)
12 kron1 = np.dot(expm(entangle_gate), qutrit_1x2)
13

14 qutrit_1 = encoding(x2)
15 qutrit_2 = encoding(x2)
16

17 # Applying entanglement between the three qutrits
18 qutrit_1x2 = np.kron(qutrit_1 , qutrit_2)
19 kron2 = np.dot(expm(entangle_gate), qutrit_1x2)
20

21 return np.real(np.dot(kron1.conj().T, kron2)**2)[0][0]
22

23 def kernel_matrix(A, B):
24 """Compute the matrix whose entries are the kernel
25 evaluated on pairwise data from sets A and B."""
26 return np.array([[kernel(a, b) for b in B] for a in A])
27

28 svm = SVC(kernel=kernel_matrix).fit(X_train, y_train)

Listing B.3: Kernel Functions

The provided code was utilized for quantum kernel-based classification tasks, where the
data was represented using one or more qutrits, with two qutrits yielding optimal results
for most datasets. The kernel matrix was computed using the specified quantum kernel
function. For instance, in the case of the Iris dataset, the approach achieved an accuracy
of 90%. Similarly, for other problems, variations of the code were employed, such as using
more qutrits or adjusting the number of stacked layers.

B.2 Qutrit Quantum Neural Network

In the case of the neural network, PyTorch is chosen over NumPy due to its robustness
and efficiency in handling complex operations and training custom models. This deci-
sion is influenced by the increase in complexity and the number of operations involved in
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the network. Previously, for the quantum kernel a hybrid quantum-classical method was
employed, but now, with the introduction of the variational layer, PyTorch facilitates the
explicit definition of the model’s architecture and training process.

1 class QNN(nn.Module):
2

3 def __init__(self, num_layers , num_features):
4 super(QNN, self).__init__()
5 self.num_layers = num_layers
6 self.num_features = num_features
7

8 # Define the qutrit states as column vectors
9 self.q0 = torch.tensor([[1], [0], [0]], dtype=torch.cfloat)
10 self.q1 = torch.tensor([[0], [1], [0]], dtype=torch.cfloat)
11 self.q2 = torch.tensor([[0], [0], [1]], dtype=torch.cfloat)
12

13 # Define the Gell-Mann matrices
14 self.gm1 = torch.kron(self.q0, self.q1.T) + torch.kron(self.q1, self.

q0.T)
15 self.gm2 = -1j * (torch.kron(self.q0, self.q1.T) - torch.kron(self.q1,

self.q0.T))
16 self.gm3 = torch.kron(self.q0, self.q0.T) - torch.kron(self.q1, self.

q1.T)
17 self.gm4 = torch.kron(self.q0, self.q2.T) + torch.kron(self.q2, self.

q0.T)
18 self.gm5 = -1j * (torch.kron(self.q0, self.q2.T) - torch.kron(self.q2,

self.q0.T))
19 self.gm6 = torch.kron(self.q1, self.q2.T) + torch.kron(self.q2, self.

q1.T)
20 self.gm7 = -1j * (torch.kron(self.q1, self.q2.T) - torch.kron(self.q2,

self.q1.T))
21 self.gm8 = 1/torch.sqrt(torch.tensor(3., dtype=torch.float)) * (torch.

kron(self.q0, self.q0.T) + torch.kron(self.q1, self.q1.T) - 2*torch.kron(
self.q2, self.q2.T))

22 self.generators = [self.gm1, self.gm2, self.gm3, self.gm4, self.gm5,
self.gm6, self.gm7, self.gm8]

23

24 # Define the LZ and LZZ matrices
25 self.lz = self.gm3 + torch.sqrt(torch.tensor(3., dtype=torch.float)) *

self.gm8
26 self.lz[1][1]=0
27 self.hadamard = (1 / torch.sqrt(torch.tensor(3.0))) * torch.tensor

([[1, 1, 1], [1, torch.exp(torch.tensor(2j) * torch.tensor(3.1416 / 3.0))
, torch.exp(torch.tensor(-2j) * torch.tensor(3.1416 / 3.0))], [1, torch.
exp(torch.tensor(-2j) * torch.tensor(3.1416 / 3.0)), torch.exp(torch.
tensor(2j) * torch.tensor(3.1416 / 3.0))]], dtype=torch.cfloat)

28 self.LZZ2 = torch.kron(self.lz, self.lz)
29

30 # Create the parameters list
31 self.weights = nn.ParameterList()
32 for i in range(self.num_layers*(int(self.num_features/4))):
33

34 # Weights for the Gell-Mann rotations
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35 self.weights.append(nn.Parameter(torch.randn(4, dtype=torch.float)
))

36

37 def forward(self, batch):
38

39 logits = torch.empty(batch.shape[0], 3, dtype=torch.double)
40 for idx, x in enumerate(batch):
41 qutrit_1 = torch.matmul(self.hadamard , self.q0)
42

43 # Apply rotations using Gell-Mann matrices
44 for i in range(self.num_layers*(int(self.num_features/4))):
45

46 # Apply the encoding
47 encoded = torch.zeros([3,3], dtype=torch.cfloat)
48 for index in range(4):
49 encoded += (1j * x[(index+4*i)%self.num_features] * self.

generators[index])
50 qutrit_1 = torch.matmul(torch.matrix_exp(encoded), qutrit_1)
51

52 # The variational layer
53 gm_weights = self.weights[i]
54 encoded = torch.zeros([3,3], dtype=torch.cfloat)
55 for index in range(4):
56 encoded += (1j * gm_weights[index] * self.generators[index

+4])
57

58 qutrit_1 = torch.matmul(torch.matrix_exp(encoded), qutrit_1)
59

60 # Get the probabilities
61 probabilities = torch.abs(qutrit_1.flatten())**2
62 probabilities /= torch.sum(probabilities)
63 logits[idx] = probabilities
64

65 return logits

Listing B.4: Quantum Neural Network class

The QNN class is implemented as a module to encapsulate the functionality of the model
and inherit from PyTorch’s nn.Module. Additionally, this design choice enables seamless
integration with PyTorch’s optimization algorithms, such as the RMSprop optimizer which
is mainly used for training, and commonly used loss functions like cross-entropy loss.
This combination of modular design, efficient computations, and built-in optimization tools
makes PyTorch an ideal framework for developing and training the QNNmodel in a reliable
and robust manner.

The full implementation can be found in the GitHub repository:
https://github.com/Themiscodes/Quantum-Neural-Networks
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B.3 Qubit Variational Quantum Classifier

This code demonstrates the usage of the Qiskit and scikit-learn libraries to define and
utilize the VQC. The specific details of data ingestion and preprocessing are omitted, but
numpy and pandas were employed for data manipulation, and MinMaxScaler for prepro-
cessing.

The ZZFeatureMap is employed to transform the features of the input data into quantum
states, and the RealAmplitudes class is used to construct a variational form for the ansatz.
The dimensions of the feature map and the number of qubits for the ansatz are automati-
cally determined based on the shape of the input data.

To optimize the parameters of the variational form during the training process, the L_BFGS_B
optimizer is selected. However, in some instances the COBYLA optimizer was used instead.

Subsequently, an instance of the VQC is created, which incorporates the previously de-
fined feature map, ansatz, and optimizer. The VQC class is responsible for training the
classifier using a quantum circuit. This is accomplished by invoking the fit method on the
classifier instance.

Lastly, the trained classifier is evaluated using a test dataset by invoking the score method.
This method returns a score that represents the performance of the classifier.

1 from qiskit.circuit.library import ZZFeatureMap , RealAmplitudes
2 from qiskit.algorithms.optimizers import COBYLA, L_BFGS_B
3 from qiskit_machine_learning.algorithms.classifiers import VQC
4 from sklearn.model_selection import train_test_split
5 from qiskit.utils import algorithm_globals
6

7 # Define the feature map and ansatz
8 encoding = ZZFeatureMap(feature_dimension=X.shape[1], reps=1)
9 ansatz = RealAmplitudes(num_qubits=X.shape[1], reps=2)
10

11 # Optimizer
12 optimizer = L_BFGS_B(maxfun=10, maxiter=12)
13

14 # Create a VQC instance
15 classifier = VQC(feature_map=encoding, ansatz=ansatz, optimizer=optimizer ,)
16

17 # Training
18 classifier.fit(train_features , train_labels)
19

20 # Evaluate the VQC on the test dataset
21 test_accuracy = classifier.score(test_features , test_labels)* 100

Listing B.5: Qiskit Variational Quantum Classifier
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APPENDIX C. DATASETS

The datasets chosen for multiclass classification were wine cultivars, iris, seed, and glass
from the UCI Machine Learning Repository. In a classification context, these are well
posed problems with ”well behaved” class structures.

Iris Dataset

• Description: This dataset is perhaps one of the most famous datasets in the field
of machine learning. It contains measurements of sepal length, sepal width, petal
length, and petal width for three different species of iris flowers.

• Number of Instances: 150

• Number of Attributes: 4

• Attribute Information: The attributes include sepal length, sepal width, petal length,
and petal width, all measured in centimeters.

• Dataset Link: https://archive.ics.uci.edu/ml/datasets/iris

Wine Cultivars Dataset

• Description: This dataset contains the results of a chemical analysis of wines from
three different cultivars in Italy. The analysis determined the quantities of various
constituents present in the wines.

• Number of Instances: 178

• Number of Attributes: 13

• Attribute Information: The attributes include measurements of alcohol, malic acid,
ash, alkalinity of ash, magnesium, total phenols, flavanoids, non-flavanoid phenols,
proanthocyanins, color intensity, hue, OD280/OD315 of diluted wines, and proline.

• Dataset Link: https://archive.ics.uci.edu/ml/datasets/wine

Seed Dataset

• Description: This dataset includes measurements of geometric properties of kernels
belonging to three different varieties of wheat. The properties were derived from
digitized images of the kernels.

• Number of Instances: 210

• Number of Attributes: 7
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• Attribute Information: The attributes include measurements such as area, perimeter,
compactness, length of kernel, width of kernel, asymmetry coefficient, and length of
kernel groove.

• Dataset Link: https://archive.ics.uci.edu/ml/datasets/seeds

Glass Dataset

• Description: This dataset contains information about various types of glass. The
data includes features like the refractive index and the percentages of different chem-
ical elements present in the glass, which can be used to predict the type of glass.

• Number of Instances: 214

• Number of Attributes: 10

• Attribute Information: The attributes include features like refractive index, sodium,
magnesium, aluminum, silicon, potassium, calcium, barium, iron, and the type of
glass.

• Dataset Link: https://archive.ics.uci.edu/ml/datasets/glass+identification

These datasets provide diverse and challenging scenarios for assessing the models per-
formance in handling multiclass classification tasks. The inclusion of real-world datasets
further contributes to a comprehensive evaluation of the models’ effectiveness and gen-
eralizability. The difference in the number of features across these datasets also provides
an opportunity to test the adaptability of the feature map.
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