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ABSTRACT

Pretrained language models have dominated natural language processing, challenging
the use of knowledge representation languages to describe the world. While these lan-
guages are not expressive enough to fully cover natural language, language models have
already shown great results in terms of understanding and information retrieval directly
on natural language data. We explore language models’ performance at the downstream
task of natural language reasoning in the description logic ALC. We generate a dataset
of random ALC knowledge bases, translated in natural language, in order to assess the
language models’ ability to function as question-answering systems over natural language
knowledge bases.

SUBJECT AREA: Deep Learning, Natural Language Reasoning

KEYWORDS: Reasoning, Language Models, ALC, Natural Language, Synthetic data





ΠΕΡΙΛΗΨΗ

Τα προεκπαιδευμένα γλωσσικά μοντέλα έχουν κυριαρχήσει στην επεξεργασία φυσικής
γλώσσας, αποτελώντας πρόκληση για τη χρήση γλωσσών αναπαράστασης γνώσης για
την περιγραφή του κόσμου. Ενώ οι γλώσσες αυτές δεν είναι αρκετά εκφραστικές για να
καλύψουν πλήρως τη φυσική γλώσσα, τα γλωσσικά μοντέλα έχουν ήδη δείξει σπουδαία
αποτελέσματα όσον αφορά την κατανόηση και την ανάκτηση πληροφοριών απευθείας σε
δεδομένα φυσικής γλώσσας. Διερευνούμε τις επιδόσεις των γλωσσικών μοντέλων για
συλλογιστική φυσικής γλώσσας στη περιγραφική λογική ALC. Δημιουργούμε ένα σύνολο
δεδομένων από τυχαίες βάσεις γνώσης ALC, μεταφρασμένες σε φυσική γλώσσα, ώστε
να αξιολογήσουμε την ικανότητα των γλωσσικών μοντέλων να λειτουργούν ως συστήματα
απάντησης ερωτήσεων πάνω σε βάσεις γνώσης φυσικής γλώσσας.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Βαθειά Μάθηση, Συλλογιστική σε Φυσική Γλώσσα

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Συλλογιστική, Γλωσσικά Μοντέλα, ALC, Φυσική Γλώσσα, Συνθετικά
Δεδομένα





To my parents.





The human mind is a ship – the immediate inferences we make from instinct keep us
afloat, but reason is the compass that brings us to the shore of wisdom.

- Ben Prystawski et al. [48]
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Natural Language Reasoning on ALC knowledge bases using Large Language Models

1. INTRODUCTION

The vision to create and useQuestion-Answering (QA)machines has been one of themost
prominent challenges in Computer Science. Already from 1950 with Turing’s Imitation
Game [67] question answering is associated with the concept of machine intelligence and
up to nowadays it still remains an open field of study. In its center one can find the aim to
create software that can receive a question in natural language, analyze it and formulate
an accurate answer as output, again in natural language. With the advent of Artificial
Intelligence, and more recently Deep Learning systems, there is an abundance of tasks
and use-cases in which QA systems are set in the forefront.

Applications such as this nowadays include personal companions and assistants like Ama-
zon’s Alexa or Mycroft, call centers’ automated systems for businesses like banks or travel
agencies and tutoring assistants for educational centers. It includes search engines like
Google, which for example aims to provide information beyond a simple listing of search
results or Microsoft Bing and You.com, which completely redefined Search, by interfacing
it through a chatbot. With the ongoing digitization and automation of fields like construc-
tion, driving, social services andmore, the increase in demand for QA systems is expected
to rapidly increase; both in professional environments and on individual level. With the re-
cent advances by OpenAI, we see a vast number of fields being revolutionized in terms
of productivity and human-machine interaction.

Most original QA systems were heavily relying on repositories of knowledge as references
for answers (open-book QA), and were bound to technologies that focus on information
management and retrieval, such as databases and semantic knowledge bases. While the
benefits of such approaches are still highly regarded by researchers [32, 25, 30], the dom-
inance of these approaches is challenged by the great improvements in the field of Deep
Learning and the advent of neural- and attention-based end-to-end systems. The potential
of deep neural networks has led to remarkable achievements in all fields of data manipu-
lation and information extraction and specific to the field of Natural Language Processing
(NLP), the creation of the Transformer architecture [68] turned out to be the pinnacle for
recent advancements in the field [83].

Recently, in the field of QA, we see Transformer based Large Language Models (LLMs)
that offer outstanding performances that were simply impossible without learning-powered
architectures [51, 7]. The great results have increased the interest in the capabilities of
those systems to empower the task of question-answering beyond the previously achieved
information retrieval phase, by simulating intelligence. Instrumental in this vision are NLP
tasks distinct to QA, like reasoning or inference, that so far also leveraged primarily in-
formation retrieval approaches and more specifically centered around the formal repre-
sentation of knowledge. Systems like these have presented several challenges like lim-
itations when faced with incomplete information, data sparsity and general bottlenecks
with respect to information formulation, sensitivity to errors and inability to utilize fuzzy or
paraphrased information [77].

Additionally, the success of such systems has been restrained by the use of formal lan-
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guages, which are not expressive enough to fully cover the overly complex and ever-
evolving nature of human language. Therefore, utilizing non-formulated but learned ap-
proximations that are offered in the Deep Learning space can pave a new path forward.
There are several works that explore the reasoning potential of LLMs, re-shaping the field
of Natural Language Reasoning (NLR), and this is the direction our work is following. Rea-
soning is defined as the process of utilizing existing information or knowledge to reach
conclusions, and while its narrow definition may vary depending on the context of dis-
course [78], reasoning is not a subset of Question-Answering, but a critical characteristic
that can enable it. Furthermore, it is recently considered by many as one of the emergent
characteristics of LLMs as they scale to hundreds of billions of parameters [64, 71]. At
the same time, research for a thorough evaluation of this finding is still ongoing, as it is
at the same time qualitatively distinct from all other NLP tasks, in the sense that simply
scaling a model does not reap analogous improvements, with the reasoning performance
remaining comparatively low [13].

Figure 1.1: A bird’s-eye view of the evaluated task.

In our work, we aim to assess if a Transformer language model can emulate the algo-
rithmic logic of a formal reasoner, with a specific focus in the expressive capacity of the
ALC description logic. The foundation of our work is the publication of P. Clark et al. [11],
in which they set out to investigate the same question but focused on a simpler subset
of natural language expressions. To perform this soft reasoning, the Transformer needs
input in natural language and for that they are creating a pipeline that formulates randomly
synthesized theories, validates their consistency and then translates them in natural lan-
guage with the use of templates. This is the same approach that is followed in this thesis,
with the key difference being the expressive capacity of the statements that are generated.
In [11] the statements used are limited to (possibly negated) conjunctive expressions, es-
sentially of the form condition[∧condition]∗→conclusion. Extending that, in our work we
are focusing on additionally supporting disjunctive expressions and existential or universal
quantification.

In section 2 we are establishing the necessary background that frames our work, before
presenting related works and publications in section 3. Then, in section 4, we are pre-
senting details and key topics regarding the dataset generation pipeline and in section 5
we are presenting our experiments and findings.

S. Kotzastratis 28
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2. BACKGROUND

2.1 Description Logics and ALC

As described in [1], a Description Logic is a formal method to define and describe objects
conceptually, offering both the representation of domain knowledge based on logic, but
also the ability to perform reasoning on this knowledge structure. This method is defined
by the semantics and syntax of formal expressions, and thus a description logic can be
seen through the lens of a formal language. The logic rules expressed in this language
constitute knowledge bases of descriptions, consist of concept, role and individual names
as primary symbols, and can be further grouped in subsequent subsets of rules: TBox,
ABox and RBox [53]. TBox is the terminological part of a knowledge base, consisting
of general concept definitions and imposed constraints among them. It includes inten-
tional knowledge about the targeted schema. ABox is the assertional part of a knowledge
base complementing the TBox by defining individuals and factual statements that revolve
around associating those individuals with named components of the TBox. It is also known
as extensional knowledge. RBox, when existent, is the relational part that extends the
knowledge base by introducing a set of statements that relate role names with other roles.

Table 2.1: Collection of symbols used in ALC, with examples.

Name Symbol Description Example
(Atomic) Concept - Classes, sets of entities, unary predicates Cat, Lawyer,Woman
(Atomic) Role - Properties, relationships, binary predicates eats, loves, hasChild
Individual - Specific entities, instances JOHN,MARIA,ASH
Conjunction ⊓ Boolean AND Alive ⊓Well
Disjunction ⊔ Boolean OR Dead ⊔ Alive
Negation ¬ Boolean negation ¬Tall
Universal quantifier ∀ Meaning ”for all”. Used on roles. ∀hasChild.Person
Existential quantifier ∃ Meaning ”there exists some”. Used on roles. ∃hasChild.Female
Equivalence ≡ Indicating definition Dead ≡ ¬ Alive
Inclusion ⊑ Indicating subsumption, is_a property Well ⊑ Alive
Top concept ⊤ Concept symbol to represent Everything ⊤ ⊑ Dead ⊔ Alive
Bottom concept ⊥ Concept symbol to represent Nothing Dead ⊓ Alive ⊑ ⊥

Description logics are characterized by their expressive capacity, which in turn is, by con-
vention, roughly hinted at by their name. For example, a description logic with the letter U
in its name allows the use of concept union (e.g. LightbulbState ≡ ON ⊔OFF ), while one
with the letterO allows for the use of nominals (e.g. oneOf(AsianPerson,HumanPerson)).
One of the most popular description logics is ALC. ALC is a language that does not con-
tain an RBox, but is built on top of some ABox and TBox. It is defined as an Attributive
Language (AL) extended by Complements; meaning that it allows atomic and complex
name negation, concept union and intersection, and universal and existential restrictions.
In Table 2.1 we can see a list of common primary symbols and in Table 2.2 the rules that
define a concept in ALC.

While most of the concepts presented are not new, there are important details that need to
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Table 2.2: Rules that define what is considered a concept in ALC.

No. Rule
1 Top and Bottom concepts are concepts.
2 Every concept name is a concept.
3 The complement of a concept is a concept.
4 The conjunction or disjunction of two concepts, is a concept.
5 The universal or existential restriction of a role which satisfies a concept, is a concept.
6 If a name isn’t described in rules 1-5, it is not a concept.

be taken into account when modeling a system based on ALC. Firstly, an atomic concept
is the characterization of a set of entities1, as a name description, but not abstract concepts
in general. For example, while Electricity is a concept semantically, it should better not be
modeled as an atomic concept inALC, as it is abstract, not being able to bematerialized by
individuals. Furthermore, we should also better describe what is a concept definition. An
equivalence of the form A ≡ B states a necessary and sufficient condition for membership
in the concept A: For an individual to be in A, it is necessary that it is also in B (it has
the properties expressed by B). If an individual is in B, this is a sufficient condition for
concluding that it is also in A. Similarly, a concept inclusion of the form A ⊑ B states
a necessary condition: For an individual to be in A, it is necessary that it is also in B (it
has the properties expressed by B), but the opposite may not be true. The left concept
is a subset of the right concept. Concept inclusions are very useful, allowing a variety
of expressions, see for example table 2.3. Another way to achieve complex but concise
expressions is the use of quantifiers. More specifically, using the existential quantifier one
can create expressions like ∃hasChild.Female(John) translating into ”John is somebody
who has some child who is female”, while when using the universal quantifier the same
expression ∀hasChild.Female(John) would translate into ”John is somebody who has
only children who are female”. Finally, an example of statements that could form an ALC
knowledge base can be seen in Table 2.3.

2.2 Reasoning, Ontologies and Explanations

The previously defined description logics are connected to the notion of ontologies, which
are often used interchangeably with the term of knowledge graph, creating some confu-
sion. As described above, aDescription Logic can be seen as a formal language based on
logic through which one can create cohesive statements that can together form a Knowl-
edge Base. A knowledge base’s TBox can be considered synonymous to an Ontology,
which is nothing more than the representation of knowledge of interest in an abstract
but also strict manner [39]. Be it in a graph or rule-set representation, an ontology con-
tains concepts, relations, and attributes of concepts and outlines their interconnections.
A Knowledge Graph is formed when a designed ontology is populated with individuals,

1Pairing concepts with the conjunction and disjunction operators lead to complex concept name descrip-
tions, as shown in Table 2.1
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Table 2.3: ALC statements are presented to illustrate examples of expressive potential, like domain
and range definitions, grounding of concepts or concept inclusion. These statements could be

used in some knowledge base and enable reasoning. Note that the natural language descriptions
purposefully vary to illustrate possible expressive correspondences, they are not the ones used in

our experiments later.

ALC Syntax Natural Language description
Cat ⊑ Animal Every cat is an animal.
Animal ⊑ ⊤ If something is an animal, then it also a Thing.

Herbivore ⊑ Animal Every herbivore is an animal.
Herbivore ⊑ ∃eats.P lant Every herbivore eats at least one plant.
Animal ⊑ ∃has.Sound Every animal has a sound.
Carnivore ⊑ Dog ⊔ Cat Every carnivore is either a dog or a cat.

Mammal ⊑ Animal ⊓ ∃has.Hair Every mammal is an animal and has hair.
∃eats.P lant ⊑ Animal If something eats some plant, then that ”something” is an animal.

∃has.Owner ⊓ Animal ≡ Pet Anything that has an owner and is an animal is equivalent to a pet.
¬Dog(Max) Max is not a dog.

∃eats.P lant(Max) Max eats a plant.

materializing its information, and can therefore be considered a synonym of a complete
knowledge base (TBox + ABox).

The aforementioned information representations are what forms the theoretical founda-
tion of formal reasoning in tools like HermiT [20], enabling formal query answering. As
most commonly used, a reasoner parses the provided knowledge bases to perform query
answering, returning True, False or Unknown label results, depending on the assumed
theoretical boundaries. These assumptions reflect different approaches to dealing with
incomplete information and uncertainty in logical reasoning systems. The two primary
ones are the Open World Assumption (OWA) and the Closed World Assumption (CWA).
The OWA can include all three labels and is commonly applied in scenarios where the
available information is limited or where the reasoner has incomplete knowledge about the
world. In such cases, the reasoner can only assert what is known to be true or false based
on the available evidence, but it does not assume that anything beyond that evidence is
necessarily false. In contrast, theCWA operates on the principle that if a statement cannot
be proven to be true based on the available evidence, it is assumed to be false, hence
ignoring the Unknown label. CWA is often used in situations where the available informa-
tion is assumed to be complete, and the reasoner can make conclusive judgments about
the truth or falsity of statements.

Finally, a product of formal reasoning processes that is central in this work is the explana-
tions of inferred statements. By the term explanation, we are referring to the justification
as defined in [28]: The minimal subset of an ontology that entails some axiom, given that
this axiom is the ontology’s entailment. This is a definition that we follow for the rest of
this dissertation when referring to explanations, and examples can be seen in section A.2
of the Appendix. The use of formal reasoners in this work is centered around the genera-
tion of formal explanations as well as the verification of the generated knowledge bases’
consistency, while the target soft-reasoning is performed by Transformer large language
models [68].
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2.3 Large Language Models and the Transformer architecture

Large language models refer to powerful computational models that are capable of un-
derstanding and generating human-like text, based on extensive training on vast amounts
of textual data. These models have gained significant attention in the field of artificial in-
telligence and natural language processing due to their ability to perform a wide range
of language-related tasks, including tasks like text classification, generation, translation,
summarization, and question answering. They are typically based on neural or attention-
based architectures, which have revolutionized NLP tasks in recent years, as they are
able to capture complex linguistic patterns and dependencies in text.

Their training process involves two main stages: pretraining and fine-tuning. During pre-
training, the models are trained on a massive corpus of text, such as books, articles, or
entire scrapped collections of web pages, to learn the statistical properties and underlying
patterns of natural language. This pretraining enables the models to acquire a broad un-
derstanding of grammar, semantics, and contextual relationships, in order to then apply
this encoded knowledge to the selected tasks. After pretraining, the models can undergo
fine-tuning on further training data to specialize on specific applications. This can involve
training the models on task-specific datasets with labeled examples, such as sentiment
analysis or question answering or, in our case, sequence classification for logical reason-
ing. The fine-tuning process adjusts a model’s parameters to optimize its performance on
the targeted task, leveraging the general language knowledge acquired during pretraining.

The key advantage of the latest large language models is their ability to generate coherent
and contextually relevant text that closely resembles human-authored content, reproduc-
ing various writing styles, terminologies or even languages, making them highly versatile
in a global context. However, concerns regarding ethical, societal, and privacy aspects
are also raised, due to the potential for misleading or biased information, propagation of
misinformation, and general harmful manipulation of these powerful models [73].

The reason specifically Transformer models are heavily researched and considered ade-
quate for most NLP tasks, is both their observed ability to perform well zero-shot [38] and
their ability to form internal context-dependent representations that overcome ambiguity in
high dimensions and capture implicit knowledge which is still difficult to model accurately
in their weights [78].

The Transformer architecture was first introduced in [68] in 2017, as a Machine Translation
model. The key innovation of the Transformer model lies in its self-attention mechanism,
which enables it to capture the dependencies and relationships between words in a sen-
tence. Unlike previous architectures that process sequential data linearly, the Transformer
model processes all words in parallel, making it highly efficient for parallel computation.

The self-attentionmechanism allows the Transformer model to assign different weights to
each word in a sentence, depending on its relevance to other words, indicating their rela-
tive importance. For example, given a sentence ”John is smart, he is a good scientist”, the
word ”he” should be considered highly relevant to words ”John” and ”scientist”, and not as
much with words ”is” or ”good”, regardless of the positions of the words in the text. This
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Figure 2.1: Schematic illustration of the transformer model, taken from [68]. The top-left module
depicts the encoder, while the top-right the decoder.
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enables the model to focus on the most important contextual information during both the
encoding and decoding stages, which are described next. By attending to different parts
of the input sequence, the model can capture long-range dependencies and efficiently
model context, while previous models were struggling due to their architectural character-
istics. The attention weights are used to compute a weighted sum of the encoded word
representations, generating a contextually enriched representation for each word. This
process is performed iteratively across multiple self-attention layers, allowing the model
to refine its understanding of the input text. On a high level, self-attention at each layer
is modelled as a normalized transformation of the input words, which are represented by
three embeddings each, with learnable weight matrices of the model. It is also impor-
tant to point out that the self-attention calculation is performed multiple times in parallel,
using different embedding transformations, which allows taking into account more input
information and token interdependencies; a function described as multi-head attention.

The Transformer model consists of an encoder and a decoder. The encoder takes text
input and encodes it into a sequence of contextualized representations, while the de-
coder generates output text based on those encoded representations. Each encoder
and decoder layer in the Transformer model contains multiple self-attention sub-layers,
feed-forward neural networks, normalization steps and residual connections, that allow
the model to capture complex patterns and relationships in the data.

The encoder input is the text transformed as input embeddings, which lack context but
are augmented with positional information through supplementary vectors. By passing
through a stack of encoder layers they undergo repeated transformations centered around
the previously described self-attention, that progressively refine the representations in the
projected dimensional spaces, enabling the encoder to capture increasingly integrated
contextual information and encode it into the embeddings iteratively. Ultimately, this stack-
ing of encoder layers empowers the encoder to effectively model dependencies and gen-
erate more comprehensive and contextually grounded representations of the input text
than a single encoder layer would.

The encoder’s output is passed as input to all decoder layers, each consisting of similar
attention, neural and normalization modules. There are two key differences that differen-
tiate them from the encoder layers. The first is that for the decoder layers, self-attention
is only applied to the tokens preceding a certain token (masked multi-head attention), as
this is the only way to enable generation of the upcoming words instead of attending to
the respective input word and copying it. The second difference is that the previously
generated output of each layer is reused as input to it, essentially to be combined with
the encoder’s outputs and form the three-embedding input for the attention module of the
decoder, which is architecturally similar to the encoder’s.

The decoder output is subsequently projected with a linear layer to a high dimensional
space that corresponds to the model vocabulary size, and a softmax which binds it to the
most probable output word. Having said that, the presence of an encoder or a decoder
depends on the specific task the model is designed to perform. For example, in classifi-
cation tasks, the Transformer model can have only an encoder module, that encodes the
input, and the final pooled representation is fed into a classification layer, to predict the
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class label; models like these are BERT [16] and RoBERTa [43]. A decoder only model
would be suited for tasks like language generation, where the model generates a text word
by word, based on the encoded representations already available from the training phase;
an example would be GPT3 [7].
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3. RELATED WORK

Aligned with our vision, the authors of [77] are introducing the term of Logical Reasoning
over Natural Language (LRNL) with the motivation of identifying and defining the subfield
which focuses in transitioning from the paradigm of formal knowledge representation and
formal reasoners, towards one where knowledge representation is free natural language
itself and language models take the role of reasoner modules. Among the primary argu-
ments the authors raise in favor of this new paradigm, they note the ability of language
models to encode pre-existing knowledge to their internal weights, allowing less depen-
dence on knowledge and information availability during prompting. They also mention the
increased robustness to errors in the input compared to formal methods, the much wider
range of compatible inputs that are generally available and also the potential for more
well-rounded systems through iterative improvements using paraphrasing, symbols and
semantic variations of any available information. On the other hand, the authors identify
present challenges compared to formal reasoners. They include the computational over-
head that is constant even for simple logical queries, the frailty against adversarial attacks
as well as the existing reliability concerns for produced outputs, due to the current limita-
tions in the interpretability of most neural methods and the difficulty to evaluate concretely
due to the high reliance on synthetic datasets, given also the high cost of expert-authored
ones.

The task at hand is, as stated in [11], the one of soft reasoning over language with explicitly
provided rules, that need to be combined in order to provide correct boolean conclusions.
Given our focus in utilizing ALC description logic, we are also limiting our scope to deduc-
tive reasoning using forward-chaining; deducing inference steps from pre-existing knowl-
edge towards an ultimate and infallible conclusion, in our case a theorem proof. Having
said that, our models were evaluated in an end-to-end set-up, without interpreting inter-
mediate reasoning steps. Based on the carried out review, only the work presented in [23]
seems to cover the expressive capacity ofALC description logic, but their dataset is vastly
smaller. Additionally, here we are focusing only on binary label prediction, something that
the research community seems to have shifted away from, but the datasets we are provid-
ing contain the explanation statements allowing for further evaluation on additional tasks.

Pioneering in the NLR field is the work in [11], the methodology of which we closely fol-
low to generate a dataset and evaluate the results. While in [11] the authors are creating
datalog theories [9], here the focus is on creating description logic knowledge bases, in a
broader expressive landscape. They illustrate the ability for theorem proving in a single
step over synthetically generated rulesets, and the potential to transfer the ability to out-
of-distribution data. Their work in [11] is generally considered to have illustrated the ability
of models to transfer deductive reasoning potential from explicitly provided statements to
different domains [78], but as we later describe, there are several works that challenge the
extent that reasoning is truly performed as opposed to overfitting. Aiming for more faith-
ful predictions, their work is succeeded by the same authors in [65], where they extend
their dataset from the CWA to the OWA and present a generative approach that is able
to accompany the reasoning result with its corresponding proof, offering greater observ-
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ability in the model’s decisions. They investigated two different proof generation pipelines,
namely a single-step approach which works as a black box for proof generation, and a sec-
ond iterative approach where each inference step is distinctly generated and reused until
no other is available. It was shown that the iterative approach was superior for harder
examples and more robust over-all, albeit inefficient. They seem to improve the output
performance over their previous work, but also use a different Transformer model, which
makes a comparative assessment harder.

The work presented in [54] is another follow-up to [11] which aims to improve on zero-shot
performance by bringing the proof generation to the foreground as well, and preceded [65].
The authors attempt to solve explicit inference rules and multiple reasoning steps in an
end-to-end manner without intermediate logical representations. The approach is concep-
tually similar to work on neural theorem proving, albeit that it works with free-form natural
language input to generate proofs similar to formal reasoners. A proof is defined as a
directed graph with nodes representing facts, rules, or Negation-As-Failure (NAF), and
edges indicating consumption of a fact by a rule, or consumption of the output of a rule by
another rule. Their results indicate performance improvements in most evaluated scenar-
ios, but also seem to struggle when deeper proofs are required. Additionally, in [65] this
approach was presented to not be superior to the one presented there, both in terms of
accuracy performance and given that intermediate conclusions are not made available.

In [23] the authors focused on First-Order-Logic (FOL) and curated a hand-authored dataset
to evaluate reasoning potential of generative models. Compared to other works like [11]
their dataset is non-synthetic, more complex and fluent, contains deeper proofs, but it is
also vastly smaller due to its high cost. Due to this last point, the greatest percentage
of their data is still reliant on a set of natural language templates, since curating the en-
tire dataset from scratch imputes a huge cost. The templates form generic syllogisms,
which, working as guides, are later factually populated with nouns and clauses by expert
annotators to reflect real-life scenarios. Additionally, it’s important to point out that the
dataset created in this work is the one closest to ours regarding its expressive potential,
as it contains universal and existential quantifiers, and the disjunction operator, on top of
conjunctions and negations. Their experimental results show that the used LLMs are only
slightly better than a random performance, indicating that their dataset can work as an
interesting benchmark in NLR.

In [35] the authors explore the capacity of BERT-based models to capture factual knowl-
edge as symbolic reasoners. In this work as opposed to others they are interfering with
the models’ pretraining, to provide synthetic corpora composed of fact triples. In their find-
ings, they show that BERT [16] can partially achieve good results on reasoning rules, being
particularly weaker on multistep rules, and explicitly requiring some memorization as well
for knowledge acquisition. Finally, in their results, they clearly identify that symbolic data
understanding is achievable but the natural language data one still remains uncertain.

Another work that presented a data generation pipeline of interest is [6]. The datasets
created by the authors are rich both semantically and lexically, since their idea is founded
in scraping common natural language formations from big corpora like Wikipedia, regard-
less of their subject or vocabulary. Following up their pattern matching retrieval, they add a
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string manipulation step which reorders and recombines the detected semantic parts into
new statements which fit specific templates of model reasoning processes, like substitu-
tion or contraposition. The final step includes automatic paraphrasing with a language
model fine-tuned for the task, finally shaping datasets with high fluency. An additional
advantage of their model-based paraphrasing is the reduction of template regularities or
statistical features which can reduce overfitting of the target models; an issue which as we
describe later is maybe the biggest roadblock in this field of research. In their conclusions,
they illustrate that the generative models fine-tuned with their datasets over different ones
(including the ones from [65]) achieve observably superior performance.

In a publication from DeepMind [12] the authors present an iterative four-model generative
pipeline that is capable of outputting forward-chaining reasoning steps as justification for
its predictions, improving the faithfulness of the reasoning output. Each of the models has
a different task in focus, and is trained in isolation. The first model is trained to accurately
identify and select statements that are explicit parts of the input context, without using any
information from its internal biases (hallucinating), and combine them into sentences. The
output is passed to the second model, which is trained to produce an inference without
having access to the initial query question, to avoid using it in a backward step to find
a matching inference. The produced inference is returned to the context to be reused
as input in the first model. The third model is trained to evaluate the produced inference
against the initial query question, and if it decides that it can be answered, to appropriately
format the output, halting the iterations. Finally, the fourth model is trained on properly
assigning a value to a potential reasoning step, to work as a guide of a beam search over
all the possible reasoning paths that unfolded by the previous models. The pipeline is
evaluated in datasets from [65] and is presented to be superior to all baselines, especially
in harder problems, while ensuring the faithfulness of the answer when the baseline does
not. They additionally show that when the context reliability is negatively transformed with
respect to the questions, the model is in most cases able to predict that the reasoning
process is indeed inconclusive. In another modular approach with a focus on faithfulness,
the authors of [56] also split the selection of statements from knowledge composition.
They are using two models for rule and fact selection, and one for composition of the
selections. Their results on ProofWriter [65] data show increased robustness compared
to the baseline model in paraphrased language.

In a parallel direction of research, it has been shown that Chain-of-Thought (CoT) prompt-
ing has the ability to elicit forward reasoning potential to LLMs, at inference time [72]. It
has been shown that generating a critical path of inference steps has the potential to im-
prove reasoning performance, and has triggered a lot of research in this direction [78].
It is interesting how off-the-shelf models can improve their reasoning potential when pre-
sented, at inference time, with step-by-step answer examples that model the inferencing
steps that should be followed. Beyond these results, it is shown in another work [38] that
even simply adding a ”Let’s think step by step” phrase to the prompt is enough to ”unlock”
models’ reasoning potential, even without further fine-tuning.

In [57] the authors are creating a dataset of similar format to our own, but with a focus in
narrower expressions, following the paradigm set by [65] and [23], and evaluate the per-

39 S. Kotzastratis



Natural Language Reasoning on ALC knowledge bases using Large Language Models

formance of generative models that utilize CoT in proof generation instead of focusing on
the label itself. They show that CoT-prompted generative LLMs are relatively trustworthy
in outputting inference steps but are still weak in planning a proof, which includes using
the correct proof step from the available ones or forming valid proofs instead of incomplete
ones. Their main conclusion was rooted in observing that true but misleading statements
can be used in the proof, but ultimately lead to a wrong answer. To evaluate the proofs
generated by the models, they use the same tooling used for generating training data to
parse predictions into symbolic representations that can be algorithmically evaluated.

Reasons why systems like the one presented in [12], or chain-of-thought prompting, work
better than available alternatives, were to some extent described in the work presented
in [48]. In their experiments, they emulated artificial locality structures through sampling
of random Bayes networks and focused on the ability of a generative model to estimate
conditional probabilities given these structures, with or without intermediate steps. The
authors showed that the reason chains-of-thoughts are actually working as well as they
do, is because models are inadvertently relying on strong local structural dependencies
among the queried concepts that were available during training; if those are missing then
associating the ”previously seen” local dependencies incrementally until the query can be
fulfilled becomes the only faithful option.

Finally, it is important to underline the line of conclusions from multiple researchers which
indicate that exposing language models to the task of reasoning is highly susceptible to
misleading results due to overfitting on underlying dataset artifacts. In the work presented
in [84], where logical templates were also transferred to natural language, but in this in-
stance with a human-in-the-loop translation, it was shown that in a commonsense setup
RoBERTa cannot cope adequately to linguistic variations, showing a clear bias towards
phrasing structures instead of logical interconnections, underperforming in theorem prov-
ing. A similar conclusion was also drawn in previously mentioned [23] work, that when
it comes to more diverse natural language the performance degrades severely, and that
LLM with few-shot prompting only performs slightly better than random results.

In another work in [31] the authors also identify that their models, focused on the Multi-hop
QA task, also tend to overfit on dataset shortcuts instead of emulating proper reasoning.
To prove these limitations, the authors introduced adversarial contexts in their data, which
managed to confuse the model mostly when the identified shortcuts were used. The ad-
ditional contexts, that contained a fake answer, satisfied the reasoning shortcut but didn’t
contradict the real answer.

The work in [81] is a paramount publication in this direction, where the authors note that
the reasoning task in general contains a plethora of statistical features that end up work-
ing as inherent biases, and do not enable true solvers of the tasks as opposed to other
NLP tasks, while also their removal from the data is in itself a challenging task. In their
experiments with BERT [16], creating propositional logic datapoints without meaningful se-
mantics (just like [11]), they show that BERT models trained and then tested on datasets
formed with different sampling algorithms respectively, are failing to generalize. In their
case, they showed that not only natural language templates play the role of a possible
overfitting cause, but also the knowledge base size and forming method themselves, giv-
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ing rise to unexpected statistical features like for example the number of rules or number
of predicates in the rules, as indirect ”indicators” of label values. Their conclusions seem
to be that true reasoning emulation by language models based on big corpora may be an
ill-defined problem with inherent roadblocks, thus difficult to be provably achieved.

In another work in [59] they also examine if there is a reasoning potential in digesting
fragments of natural language. Interestingly in this work it is clearly stated that semantics
in such datasets, that focus in formal reasoning, are not and should not be affected by
vocabulary semantics, given that the skill that needs to be cultivated of the model is that
of logical inferencing with no extent towards commonsense knowledge or understanding.
Having said that, an evaluation of this insight is not provided, and given the previously
cited frailty of the task, it is rendered questionable. In their experiments, expanding the
expressiveness of language used for their data compared to previous works, they also fea-
ture existential and universal operators other than negation in the task of soft satisfiability
proving. But note that disjunction is not used, as the modeling of the fragments is founded
in a more basic level of natural language grammar rather than specific propositional logic.
In the case of conjunction, the logical principles behind it are still covered through alter-
natively phrased sentences that doesn’t directly use the word ”and”. In their experiments
that included RoBERTa [43], their results do not match with near-perfect scores achieved
in-distributions in other works, but it is also noted that there was space for more elaborate
training. Even so, there is a clear trend illustrated, that models fail to generalize their sup-
posedly learned reasoning skills, when the test set is generated by a different algorithm
than the train set. A finding that is very prominent even when training on harder reasoning
problems and testing on easier ones, and ultimately leads to their main conclusion being
that reasoning potential of LLMs is not fulfilled or proven yet.

In the work presented in [18] the authors present a generative framework of creating ad-
versarial attacks for logical reasoning models, and further illustrate the extent to which
these models are not robust reasoning emulators. In their work, they specifically focus
on RuleTaker [11] data. They are preserving logical semantics of inputs instead of lexical
ones, and include transformations like statement negation, statement elimination or sub-
stitution of equivalence rules with subsumption ones, with proper retaining or altering of
the label. Detected examples include that the target model is often fooled if the query literal
appears within the body of a rule, or the prediction is unchanged if the attacker eliminates
a leaf fact on samples containing deeper proofs, which should change the label. Usage
of quantified rules, like changing words like ”someone”, ”they” or individual names, also
indicate points of struggle for the model, specifically in binding variables on either side of
an implication. Finally, it is shown that the harder the example at hand is, the easier it is
for the attack to successfully affect the target model.

In [55] a benchmark focused on logical reasoning is presented, applying transformations
like contrastive changes that flip example labels or logical paraphrases that should not
affect model predictions. In their results, they show that all evaluated models fail to pass
the benchmark while at the same time achieving near-perfect results in in-distribution tests,
and that larger models’ performance increase is limited. It is important to point out that
the authors did take into account the existence of statistical features presented in [81] in
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order to minimize the information leakage in their evaluations, by properly adjusting their
data sampling method for some example statistical features.

Additionally, to the aforementioned works, there is a line of research towards questioning
the understanding of meaning and factual knowledge on a more fundamental level; see for
example [36]. In this work, the possibility that models are focusing on statistical artifacts is
brought to the forefront. In a broader recitation of identified limits for the transformer archi-
tecture, the authors of [26] mention that these models have been found to be potentially
susceptible to conceptual negation, adversarial context (like in [31]) that take a big enough
part of the input (also referred to as mispriming), pattern heuristics like lexical overlap or
simple word matching, or simple word shuffling, if such cases are not properly represented
during training or fine-tuning. As a possible instrumental limitation of the models is noted
the lack of any architectural characteristic to target symbolic handling, which is often con-
sidered essential for reasoning. They clearly state that underlying pattern identification
in datasets is a primary factor utilized by the model and when such patterns are missing
or adversarial examples are introduced, performance is consistently subpar. Finally, they
are referring to further studies which show that there are theoretical limitations grounded
in linguistics with acute effects in reasoning. In general, insight into the brittle capacity for
deep language understanding can also be seen in the light of works like [72] or [38]. They
illustrate that reasoning experience to some extent seemingly encoded in the models, can
be used only if ”accessed” by specific prompt techniques, and not automatically triggered
from more general inputs; of which a more precise understanding, would immediately
identify them as queries that require reasoning.

Overall, the issue of models overfitting on dataset characteristics rather than learning the
reasoning task at hand is repeatedly observed in current research [78], with the best avail-
able approach detected to overcome the observed pitfalls, being the introduction of mech-
anisms that utilize explanations and reasoning steps. Having the potential to anchor the
predictions of the models to a step-by-step process leads to more faithful results. In gen-
eral, taking into account all the presented publications and more specifically the work
of [81], and combining it with the insights of [48], seems to lead a path of discovery. As
mentioned in [48], frequent co-occurence of information, be it human experience or model
training data, is adequate to estimate the effect of their interleaving by simple statistical
models. This in itself admits that statistical features can play a central role in the use of
language. The extent to which this claim can be verified would be of paramount impor-
tance to the modeling of the NLR task in the context of Deep Learning, on a fundamental
level. If local structures are innate characteristics used by models to generally learn NLP
tasks or humans to associate information and beliefs [15], a crucial skill that is used in
reasoning, then the question is raised how could researchers best represent training data
that target reasoning, organize the training process and evaluate the prediction result;
also, to what extent should statistical interdependencies be identified, how could the NLR
task modeling be dissociated from them, and to what extent they should be excluded or
utilized.
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4. GENERATION OF THE QA DATASET

4.1 Dataset Generation Pipeline

The generation pipeline for our synthetic data was heavily influenced by the pipeline used
in [11] and its design, as their code1 was the basis for our work. In this implementation2,
each datapoint of the dataset (often mentioned simply as example) contains three main
parts: a knowledge base (context), a query statement (question) and a label (answer),
indicating whether the query statement is entailed by the knowledge base itself.

The implemented code outputs other fields for each example as well, but they are unim-
portant for the specific experiments we are focusing on. They are provided as secondary
information, to enable additional conclusions or experiments if one so chooses. Although,
the one additional field that is utilized for the formation of datasets is the explanation depth
for each generated example. As we describe in the Experiments, the datapoints were clus-
tered in different datasets according to their explanation depth, in order to perform in- and
out-of-distribution tests.

Figure 4.1: A high-level illustration of the pipeline for the generation of the dataset. Green boxes
illustrate static files, Blue boxes the Python part of the implementation and Yellow boxes the Java

part of it.

The definition of the explanation depth relies on the definition of explanations from sec-
tion 2. The explanation depth is the size of the explanation subtracted by 1, to model
reasoning steps; an example with a query that exists in the knowledge base itself, or
needs only one knowledge base statement to support it, would have explanation depth 0,
an example with a query that needs two unique knowledge base statements to be derived
would have explanation depth 1 etc. Specific examples are presented in tables A.1 - A.5
in Appendix A.2. This is an important distinction between our datasets and the datasets
presented in [11], where the depths are specifically defined based on SDD tree proofs [14].

1https://github.com/allenai/ruletaker
2Can be found in: https://github.com/Chuhtra/ALCRuler-DSIT
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This difference should be kept in mind in the following sections, as a mapping between
the two explanation methods was not investigated.

4.2 Generation of Formal Knowledge Bases

4.2.1 Grammar

In the core of the generation script is the definition of a formal Grammar as one of the
inputs to the pipeline, following the design decision in [11]. It is through this grammar
(presented in figure 4.2) that we can ensure that the pipeline generates statements that
are consistent with the syntax of the ALC description logic, or even fragments of it. To
enable a more direct comparison with [11], only the terminal symbols used in the authors’
grammar already are utilized, effectively keeping the knowledge base vocabulary the same
with the one used in RuleTaker.

Our formed grammar has two key characteristics. The first one, that could be considered
as limitation, is the enforcement of the recursion of each statement regarding the level of
ALC concept descriptions, to only one level. This is empirically chosen with the purpose of
generating ALC statements that are not too complicated and are therefore as realistic as
possible to mimic how humans express themselves. If this restriction is not in place, then
statements like this are possible: ’only chases (only needs (only needs not (dog)) or T)
(GIANNIS)’, which would be translated to ”Giannis is someone that only chases somebody
that is a Thing or that only needs a person that only needs one that is not a dog.”, which
of course does not constitute an example of commonly used natural language despite
its semantics. While these are within the limits of ALC, they are not practical, human-like
data, which is our goal. To generate examples ofALC statements with minimum recursion
depth, a Concept can be generated only as an atomic one by using AtomicConcept. By
using the rule for the non-terminal symbol ConceptDescription_1 we can add one step in
the concept recursion of the ALC statements.

The second characteristic is the fact that this grammar is using probabilities to ground non-
terminal symbols, like in [11], which are predefined and tunable, but as a static parametriza-
tion have an effect on the final corpus.

4.2.2 From PCFG recipe to consistent OWL Knowledge Bases

We can now describe the pipeline that generates a datapoint, which starts with the use
of the grammar to generate a random knowledge base. A base is formed by selecting
a random number of TBox and ABox statements (within a configured range, in our case
[4, 18] and [1, 16] respectively), and generating each statement at random, taking also into
account biasing factors described later in section 4.4. The generation is driven by the prob-
abilities that are present in the defined PCFG, which is explored recursively. Examples of
this process can be seen in section A.1 of the Appendix.

With a set of randomly generated statements forming a knowledge base, the next step is
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Statement -> AboxRule | TboxRule
TboxRule -> Concept Axiom Concept
AboxRule -> Role ’(’ Individual Individual ’)’ | Concept ’(’ Individual ’)’
Concept -> AtomicConcept [0.4] | ConceptDescription_1 [0.6]
ConceptDescription_1 -> ’(’ AtomicConcept Junction AtomicConcept ’)’

| ’(’ Role Restriction AtomicConcept ’)’
AtomicConcept -> ’(’ Polarity ’Thing’ ’)’ [0.05] | ’(’ Polarity Concept_N ’)’ [0.95]
Role -> Role_N
Individual -> Individual_N
Concept_N -> ”cat” | ”dog” | ”bald eagle” | ”rabbit” | ”mouse” | ”tiger” | ”lion” |

”bear” | ”squirrel” | ”cow” | ”red” | ”blue” | ”green” | ”kind” | ”nice” |
”big” | ”cold” | ”young” | ”round” | ”rough” | ”white” | ”smart” |
”quiet” | ”furry”

Role_N -> ’likes’ | ’chases’ | ’eats’ | ’sees’ | ’visits’ | ’needs’
Individual_N -> ’ANNE’ | ’BOB’ | ’CHARLIE’ | ’DAVE’ | ’ERIN’ |

’FIONA’ | ’GARY’ | ’HARRY’
Polarity -> Positive [0.5] | Negative [0.5]
Positive -> ’+’
Negative -> ’-’
Junction -> Disjunction [0.3] | Conjunction [0.7]
Disjunction -> ’or’
Conjunction -> ’and’
Axiom -> Definition [0.5] | Subsumption [0.5]
Definition -> ’=’
Subsumption -> ’_<’
Restriction -> Universal [0.5] | Existential [0.5]
Universal -> ’only’
Existential -> ’some’

Figure 4.2: The PCFG that was used for the dataset generation. Referring to the Experiments
section 5.1.2, the entire grammar creates the main ALCRuler datasets (MRD1 in our experiments).

With blue color, we denote the part that if removed we can use the grammar to generate the
ALCRuler version of the datasets that omit the universal quantifier (denoted as

ALCRuler-Fragment2 in our experiments). By additionally removing the orange part, we omit the
existential quantifier as well (forming the ALCRuler-Fragment1 version). If on top of these changes
we remove the green part, we can omit the OR operator (forming the ALCRuler-Fragment0version).

Finally, by removing the purple part, we can omit all complex concepts (which forms the
ALCRuler_MRD0 of our experiments).
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to provide this set to a Java process that utilizes the OWL API [27] to parse the statements
into an OWL ontology; a necessary step in order to perform reasoning3 later. This transi-
tion from a PCFG-derived syntax to OWL syntax is facilitated by parsing each part of the in-
put statement into a binary tree data structure, with each node aiming to hold a label or also
an OWL object. The generated tree is immediately parsed in a Depth-first manner (DFS),
in order for each part of the statement to be matched with the proper OWL expression
initialization, and ultimately build-up OWL axioms, by combining the OWL expressions if
needed. At the final stage, all statements are translated to OWL syntax (see example in
figure 4.3) and added to an OWL ontology. This formed ontology, other than the axioms
themselves, only contains the declaration axioms which define the names of the OWL ob-
jects (classes, object properties and named individuals), as well as a forced disjointedness
among all available named individuals, following the unique name assumption. This way
we increase clarity by applying meaningful distinctions and reducing ambiguous and ineffi-
cient interpretations, while also allowing free concept associations through terminological
axioms.

With a fully formed OWL ontology loaded, we continue by verifying whether the ontology is
consistent. While this is automatically done through the OWL API, it should be noted that
there is a special handling in the case of inconsistent ontologies. In such cases, the first
step is to extract the explanation of the inconsistency itself by providing the inconsistent
axiom Thing subclassOf Nothing as query to the owlexplanation package [29]. The sec-
ond step, is to iteratively remove each axiom present in the inconsistency’s explanation
until a consistent ontology is present. The size of our knowledge bases is small enough
that removing more than one such axiom isn’t necessary. Having retrieved a consistent
ontology, we continue on, while the retrieved explanation can be utilized to support the
removed axiom as a negatively interpreted query for the remaining knowledge base.

4.2.3 Entailment retrieval

Having generated a knowledge base that will serve as the context for our Transformer
model, we subsequently need to generate some assertion that will work as the query. After
ensuring that the knowledge base itself is passing a consistency check, we are generating
the inferred closure of our knowledge base. The above steps are done using the HermiT
reasoner [20].

In this implementation despite working under the Open-World Assumption, as we are fo-
cusing on a description logic, the query generation in its core relies on Inference Closure,
and thus the query label is never unknown. The axiom generators of the OWL API that
are used include subclass axioms, class assertions, disjoint class axioms and equivalence
axioms. Having said that, we exclude from later utilization some entailments like subclass
tautologies, assertion-as or subclass-of Thing, and also having Nothing as a subclass or

3Initially, we tried using the class-oriented Owlready2 [41] package, but it had limitations that made it
unfeasible. Despite being the most feature-rich compared to alternatives, able to create TBox and ABox
statements, check consistency, and derive entailments, it couldn’t handle non-atomic LHS concepts, retrieve
explanations or access axioms directly. As a result, we had to switch from a Python-only approach.
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Figure 4.3: A (simplified) example of transitioning from PCFG notation to OWL syntax, for a TBox
axiom.
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disjoint class. The primary reasons being that statements like these would either flood
our data pipeline with similar and trivial statements (i.e. most classes are subclasses of
Thing), or lead to runtime errors.

After the entailments provided by the reasoner are retrieved, their utilization of the inferred
axioms consists of two different approaches. In the first and simplest approach, the entail-
ments themselves are used directly as queries, with the matching explanations being de-
rived by the owlexplanation package [29]. In the second approach, a series of algorithmic
combinations of entailments and knowledge base axioms is providing additional queries.
The primary reason the second approach is necessary is the fact that the entailments, re-
trieved with the reasoner alone, are exclusively covering non-negated and non-negative
statements. This is the case as the reasoner is purposefully limiting its search scope (e.g.
to named classes), since the entailments can be in fact infinite [3] without such precau-
tions in place. As an example, given that A ⊑ ¬B and A(John), the reasoner would not
infer that ¬B(John), without being configured with a specific implementation to do so.
While there could be a limiting criterion, specific to class complements, to include a finite
subset of class expressions in the search space of the reasoner, one is not provided by
the available reasoners and such an implementation was not chosen over post-inference
algorithmic axiom combinations. In the following part of this section, we will describe the
processes that shape the aforementioned approaches of entailment retrieval.

Central role in the materialization of an entailment, or a combination of them, as a query
statement, play a set of per-query attributes that in the context of our implementation are
collectively referred to as the query’s interpretation. The main attributes that form the in-
terpretation are the label, which is nothing more than the label that each datapoint will
have and indicates whether the query holds true against the context, and the tone, which
enables the variability of expressions in both false and true labels, through the use of neg-
ative language. See table 4.1 for a short example that makes the relation of these two
attributes clear. These two attributes are in principle randomly set with a value per query
statement, in order to ensure a balanced representation, but subsequent reassignments
may happen in order to always ensure truthful interpretations with respect to the knowl-
edge base at hand. For the reasoner’s entailments, a non-truthful interpretation consists
of a base tone with a false label or a negative tone with a true label. In other cases,
interpretation’s truthfulness depends on the context-query content.

Table 4.1: Short example to clarify the relation between query tone and label in the dataset
generation process. Whether the interpretation holds or not, is a direct consequence of our

contextual knowledge. In this example, that of the physical world.

statement tone label interpretation holds?

The Earth is flat. positive (base) true ❌
false ✔

The Earth is not flat. negative false ❌
true ✔
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4.2.3.1 Entailments retrieved from Reasoner

The handling of entailments that belong to the inferred closure, is different depending on
the type of axiom. For equivalence or subclass axioms, the entailment and explanations
are immediately used as-is when the randomly set interpretation is truthful. Otherwise,
we attempt a statement transformation, by negating the RHS for the query and adding
an artificial assertion statement to the explanation set. This assertion contains the LHS
and an available named individual, in order to ground the LHS and ensure that it is not
equivalent to Nothing. By transforming a true statement, into an untrue one, the non-
truthful interpretation becomes valid. For example, given an axiom A ⊑ B, we can create
another axiom A(John), so that A ⊑ ¬B can never hold. By then properly manipulating
its interpretation, we create a query by utilizing the explanation that justified the initial
subclass axiom. If such an artificial assertion is not attainable, then the interpretation is
randomly flipped to become truthful.

For disjointness axioms, a simple positive interpretation (base, true) is selected as no
transformation can be done in this stage. For assertion axioms, first we attempt to utilize
some disjointness axiom, by matching its classes with the assertion axiom’s class. This
way, the inferred assertion axiom can be flipped by replacing the participating class, allow-
ing us to form a query that contains negation. For example, given A disjointWith B and
A(John), we can use B(John) using a proper interpretation. When this fails, the assertion
axiom is used as is with a randomly selected truthful interpretation.

The two transformations described above already share a common detail that constitutes
a crucial and repeating element for the entire implementation. Due to the aforementioned
limitation of the reasoner, being unable to provide negated or negative statements, our
data generation is immediately set up with an imbalanced representation of labels and
tones. And for this reason, even for the entailments retrieved from the reasoner, a clear
bias is purposefully implemented to first explore the capacity to acquire a transformed
interpretation which contains negation.

4.2.3.2 Transitive Closures

Following up the reasoner-retrieved entailment handling, the second part of algorithmic
entailment generation is implemented, which starts with the generation of transitive clo-
sures. The reason to set this as the first step is the role subclass axioms can play for the
further creation of disjointness axioms, which in turn play a primary role in the combination
of all kinds of axioms into new ones, with manipulated interpretations.

Firstly, as the reasoner does not output transitive closures, they are created by recursively
combining subclass axioms of the asserted ontology and its inferred closure. In these
cases, the chain of subclass axioms, and alternatively the explanations that justify the
axiom in case of using inferred ones, form the unified explanation of the derived transitive
closure query. The transformation initially described in section 4.2.3.1 is also attempted
here.

49 S. Kotzastratis



Natural Language Reasoning on ALC knowledge bases using Large Language Models

Subsequently, the generated transitive closures are utilized in an effort to get additional
untrue axiom queries. We are initially matching the RHS of a (transitive) subclass axiom,
with the available disjointness axioms to derive previously unseen disjointness axioms.
Then these are used to form more class assertion axioms and subclass axioms. In the
first case, given an assertion axiom with the LHS of the transitive subclass axiom as a
participating class, a new class assertion is created using the aforementioned RHS. Sim-
ilarly, for the second case, we create a new subclass axiom with the LHS of the transitive
subclass axiom and the aforementioned RHS’s disjoint counterpart. In some cases, this
axiom will have been already generated, so we just enhance its collection of explanations
instead. As an example, see table 4.2.

Table 4.2: Example presenting a subset of entailments that can be generated by combining a
Disjointness axiom and a Transitive Closure.

Given

D disjointWith C (1)
A ⊑ B (2)
B ⊑ C (3)
A(John) (4)

Inferred

A ⊑ C (2,3)
A disjointWith D (1,2,3)
C(John) (2,3,4)
¬D(John) (1,2,3,4)

4.2.3.3 Additional methods

Having the reasoner-retrieved entailments and their explanations, we implement some ad-
ditional combination methods. For equivalence or subclass entailments, we create untrue
disjointness axioms by simply changing the axiom type of truthful entailments. While this
creates an abundance of untrue disjointness axioms, greatly affecting the output balance
of a raw dataset generation run, it is in fact necessary as it is the main point of gener-
ating any such type of query. The opposite is also implemented, when the entailment is
a disjointness axiom, we can use it to generate untrue equivalence or subclass axioms
by replacing the axiom type of truthful entailments. We can additionally generate class
assertions, by matching the participating class of all already available class assertions of
the asserted ontologies and its inferred closures with the class expressions of the entailed
disjointness axioms; effectively replacing the participating class and flipping the interpre-
tation, similarly to the previous sections.

Furthermore, two additional query forming methods have been implemented, that utilize
unsatisfiable classes and single entailments respectively. For the first, all unsatisfiable
classes of the ontology are collected through the OWL API and for each one the expla-
nation of the axiom UnsatisfiableClass subclassOf Nothing is retrieved. An artificial class
assertion is then created with an available named individual, which is used as an untrue
query that is supported by the retrieved explanation. The second case is implemented in
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an effort to include in the generated datasets the simple-lookup case. A random set of ax-
ioms of the asserted ontology is selected, with the selected axioms being used themselves
as queries and also explanations.

4.3 Transition to Natural Language

To acquire the Natural Language (NL) translations, a second program is used, again im-
plemented in Java. It is used for each knowledge base statement that is generated (i.e.
before the pipeline moves to the steps described in section 4.2.2 and onwards), and for
each entailment that is found by the reasoner with its explanations(i.e. it is integrated in
the entailment retrieval). The statement in PCFG syntax is provided to the Java process
that is parsing it into OWL API syntax, similarly to the way the knowledge base statements
are during the inference closure phase, and then the OWL axiom is recursively parsed into
natural language using predefined templates (see also table 4.3).

Additionally, another point with respect to the use of NL templates is the handling of ar-
ticles (a/an) for nouns and their absence for adjectives. The simplest and most reliable
solution formed into not providing the names directly in the grammar (like shown in fig-
ure 4.2), but have a placeholder and retrieve them from a secondary file, in which the two
types of names are distinctly stored. This is equivalent to having a grammar rule, like Con-
cept_N -> Adjective | Noun, which albeit cleaner, it was avoided due to the simplification
of other implementation details, as these lists are used outside the context of the PCFG
as well. Finally, some other details regarding natural language translations can be found
in section 4.4.

An alternative overall translation approach would be to use the NaturalOWL package [34]
but through some trial experiments it was found to not be ideal for ourALC statements with
complex descriptions in both sides, as its translations revolved around specific entities.
Having said that, the use of NaturalOWL’s ”Syntax files” might resolve this issue, but it
was not explored at this time.

Table 4.3: Illustration of natural language phrases that are matched with OWL notions; used in
dataset generation. The asterisk (*) indicates some variability in the template, see section 4.4.

OWL notion NL template
SubclassOf is (not) also

EquivalentClasses equivalently is (not)
DisjointClasses can/cannot also be

ObjectIntersection and
ObjectUnion or

OWLObjectAllValuesFrom only somebody who* is (not)
OWLObjectSomeValuesFrom somebody who* is (not)

ClassAssertion is (not)
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4.4 Generation heuristics to ensure quality and performance

To finalize the data generation pipeline, we return to themain Python process which cleans
the generated data, stores any artificial axiom that was created, removes any necessary
statement in the context of resolving found inconsistencies and finally, selects one expla-
nation among the possibly multiple per datapoint as the prime explanation, or discards
entire datapoints if necessary. The details and motivation regarding most of these pro-
cesses as well as details with respect to the prior steps of the pipeline are described in
the following sections.

Grammar biasing

To ensure that the statements within a single knowledge base will be relevant to each
other, the authors in [11] are selecting a random subset of vocabulary names per knowl-
edge base. As an alternative to this approach, in our implementation a grammar biasing
mechanism is introduced. Instead of selecting a predefined random subset of vocabulary
names each time, this approach is biasing the predefined probabilities of the (vocabulary)
terminal symbols of the PCFG with each selection by a small factor. For example, for a
PCFG rule Concept_N → ”cat” | ”dog”, which states that ”cat” is equally probable (50-
50%) to be selected with ”dog”, if the first statement of a knowledge base is using the
name ”dog”, then for the following statement generation the grammar rule will be altered
to be Concept_N → ”cat” [0.4] | ”dog” [0.6] etc. In this example, the biasing factor was
10%. A benefit of this approach over getting repeated samples, is both that it introduces
a parameter that allows dynamic control, and that due to its probabilistic nature its effect
can be variable.

Having said that, experimental runs showed that the majority of the generated datapoints
required little to no grammar biasing, which questions the need for such relevance-focused
measures altogether. Distribution sets that were formed from the initial phases of the script
development had shown most datapoints (94%) don’t ”need” a biasing factor of above 0.3,
with 75% of the points having used a factor of just 0.19. In our final implementation, the
updating bias for the grammar is selected at random for each knowledge base in an interval
that can be defined in a configuration file, and was set to be [0.001, 0.2]. These values were
observed to be adequate for all explanation depths (i.e. the entire range of our dataset).
Additionally, to avoid numerical instabilities the minimum probability allowed through this
biasing was set to 0.01, a parameter that is also configurable.

Moreover, in an effort to avoid sentences like (((likes only(+ Cow)) and ((- Cow) and (+
Cow))) ’DAVID’) a mechanism similar to the grammar biasing is introduced, targeting intra-
statement concept repetition. In this case, when a vocabulary name is used at some point
of a statement, then the probability in the PCFG for this specific name and for this specific
statement expression is brought directly to zero.
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Explanation ranking

Several methods of explanation ranking were implemented in efforts to reduce the need
for repeated runs of the script in order to acquire balanced data, with the most promising
among them being selecting the maximum depth explanation for each example, as the
deeper explanations are also the more rare ones. Having said that, we ended up using
the one with the least time-savings due to concerns of the model (or our results) being
”confused” when non-obvious explanation paths are used, especially given that for our
experiments the models don’t have access to the explanations themselves.

For example, if a query can be explained with both a single statement and a set of 3
statements, handling it as a d-2 example in our dataset formation methodology instead of
a d-0, could only mean that our d-2 dataset would be of lower quality. Since the model
is not directly provided with what the explanation depth means, had it achieved a good
understanding of handling d-0 examples, then our d-2 example would be handled as a d-0
too. This effectively means that a dataset that in our perspective is balanced with X number
of examples per depth, in the perspective of the model can be considered imbalanced with
disproportionately large number of d-0 examples. For this reason, the explanation with the
minimum depth is ranked first in our datasets, but it remains an interesting path for future
work if the deeper explanations can be of use to the model, given that it has access to
them during training.

TBox statement chaining

Another effort to improve the efficiency of using the dataset generation script, for dataset
output balance with respect to the explanation depths, is chaining. Through chaining, the
direct reuse of vocabulary names between knowledge base statements is purposefully
added to the script. In practice, this means that a name or expression that was randomly
chosen for a statement n, will be stored and reused also for the generation of a statement
n + 1, in an effort to produce chains of reasoning connections that will lead to deeper
explanations more easily. The nature of this idea relies on the chaining of statements,
so it can primarily be used for binary axioms which are part of the TBox. While it could
also be used for ABox statements, this was not included, as it was considered a better
approach to let the accumulated grammar biasing, that is still active underneath, bring the
ABox assertions closer to the chained TBox axioms.

There are two primary methods implemented for chaining. Firstly, full-side chaining, in
which the entire RHS is copied and used as the next TBox axiom’s LHS, was initially
used due to its ability to bring tangible improvements to the generation runtime and result.
Having said that, it was later replaced due to fears that it would lead to a very monotonic
pattern in the data that could be easily detectable by the models. As a replacement, we
ended up using atomic chaining, in which the LHS of the current TBox statement uses
atomic concepts taken from the pool of concepts that is formed from the previous state-
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ment’s RHS’s atomic concepts. But not all atomic concepts are chained, to allow some
entropy. This ended up being used as a middle ground that can bring observable benefits
to the script performance while also allowing adequately dynamic data formation.

Transformer tokenization limit

Each knowledge base that is generated is ensuring that statement-by-statement, post-
translation, the tokenization limit of our target Transformer model (set to 512) isn’t reached.
This way, we are sure that no datapoint will require pruning to be used as input for the
final model. This way the dataset balance is preserved and natural limits to the amount of
knowledge base statements per datapoint are set.

Handling of natural language translation templates

As already discussed, a major aspect in the creation of the dataset was the aim to mimic
naturally sounding statements. A clear obstacle in this aim comes from the use of pre-
defined templates (table 4.3) for translation to natural language. For a human reader,
the statements were immediately recognizable as artificial due to the repetitive use of the
phrase ”somebody who”, used to connect a main and a subordinate clause.

As a first move towards mitigating this, a paraphrasing step was added in the natural
language template utilization. With this, each such phrase is not always ”somebody who”
but it’s pseudorandomly chosen as a combination of these two sets:

• (”someone”, ”somebody”, ”a person”, ”one”).

• (”who”, ”that”)

A second step towards this direction was the introduction of a metric, generally referred
to as ”somebodies’ metric” (SbM ). For a single statement, it is calculated as:

SbM = (1− x

y
)− (

y − k

y
) =

k − x

y
(4.1)

In equation 4.1, y is the number of words from set A that are present in the statement,
where A = {someone, somebody, a person, one}. x is the maximum number of duplicates,
for some word among the y, (the first occurrence of the word doesn’t count). k is a pre-
defined limit of words from A, that can exist in a ”natural” sentence (default k = 3). In
the context of our generation script, SbM is calculated for each statement in a knowledge
base+query pair, and the minimum value represents the SbM value of the pair, indicating
whether a statement will be part of the pair, and if a pair will be used for a datapoint overall.
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A minimum of SbM = 0.6 is allowed as, empirically, statements with lower values tend to
appear not-realistic enough. Examples of that can be seen in the Appendix in table A.6.

The formulation of this metric rests on themotivation to quantify two specific characteristics
for a statement. One, targeted by the first term, repetitions of one word from set A (e.g.
repetitions of ”somebody”) should be punished. Two, targeted by the second term, use
of too many words from set A in general should be punished. The first term represents
the ratio of the most observed repetitions (of 1 word) over the number of such words,
and we are subtracting from 1 as we want this to be a maximization metric. The second
term represents the number of ”extra” words from A that have been used through the
subtracting, while the division by y is a normalization factor. The second term is subtracted,
as the bigger the second term, the smaller the metric’s score should be. Finally, regarding
the first term, the first occurrence isn’t counted for x because this way 1

1
(a good situation)

makes this term the same with 5
5
(a bad situation). The second term somewhat remedies

that, but as the behavior isn’t otherwise affected, the first occurrence is chosen to remain
uncounted. In table 4.4 two examples are shown. We see how a single word can reduce
the SbM value of the statement.

Table 4.4: First example of calculating ”somebodies metric”.

Somebody who loves somebody that needs someone that finds a person that runs, is blind.
y = 4, x = 1, k = 3, SbM = (3− 1)/4 = 0.5

Somebody who loves somebody that needs somebody that finds a person that runs, is blind.
y = 4, x = 2, k = 3, SbM = (3− 2)/4 = 0.25
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5. EXPERIMENTS

5.1 Fine-tuning configuration

5.1.1 The models

For fine-tuning, Lambda Labs1 machines were used with single A100 (40 GB SXM4)
GPUs. The language model used for all runs is RoBERTa-large [43], for binary (true/false)
classification. We are using the RobertaForSequenceClassification package of hugging-
face [75], which provides a classification head with 2 linear layers, prepended with dropout
layers (prob = 0.1) and separated by a tanh activation function. Cross-Entropy loss is used
during training and the chosen performance metric is accuracy.

In all cases, a linear learning-rate scheduler was used, as a variable learning rate is
shown to improve loss-based training [60, 62], and the Adam optimizer [37] (b1 = 0.9, b2 =
0.98, e = 1e − 6), with a learning rate of 1e − 5. Also, weight decay was set to 0.1. Other
training hyperparameters, that varied for all models, are presented in table 5.1. Altering
the number of training epochs and the learning rate warm-up ratio was the main way to
experiment with different training formulas, due to their direct effect on the progression
of learning rate scheduler. Early-stopping was also used to avoid potential overfitting,
while gradient accumulation was used in an effort to speed-up training. Gradient accu-
mulation is tightly connected with the training batch size, since it effectively virtually in-
creases it. Consequently, these values were chosen with the focus of best utilizing the
available GPU memory. The overall selection of the ALCRuler models’ hyperparame-
ters was mainly driven by what the best performances were in the matching RuleTaker
models, taking into account some complimentary experimentation (see table B.1 of the
appendix). In figures 5.1, 5.2 and 5.3, the detailed progression of the training can be
seen for each ALCRuler dataset, while matching plots can be found in Appendix B.2 for
RuleTaker datasets.

1https://lambdalabs.com/

Table 5.1: Training Hyperparameters that were used for each (final) model fine-tuning.

finetuning_dataset train
epochs

eval
batch size

train
batch size

learning rate
warmup ratio

gradient
accum. steps Runtime

ALCRuler/depth-0 5 24 24 0.06 12 1h 53m
ALCRuler/depth-1 6 18 18 0.2 12 3h 23m
ALCRuler/depth-2 15 24 24 0.3 12 3h 57m
ALCRuler/depth-3 15 24 24 0.5 12 4h 14m
ALCRuler/depth-5 8 18 18 0.5 8 4h 13m
RuleTaker/depth-0 4 32 64 0.06 16 27m
RuleTaker/depth-1 4 16 16 0.06 16 48m
RuleTaker/depth-2 12 24 24 0.2 12 2h 9m
RuleTaker/depth-3 15 24 24 0.5 12 2h 56m
RuleTaker/depth-5 15 24 24 0.4 8 2h 50m
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5.1.2 The Data

Regarding the datasets used, these were created with the methodology described in sec-
tion 4, following the data arrangement of [11]. Our main dataset collection, named AL-
CRuler_MRD1 (ALCRuler w/ complex concepts), consists of 5 different datasets, each
one split in a 70/10/20 train/dev/test split, and containing 100k examples. Each of the 5
is named as d <= X where X can be in the range [0, 1, 2, 3, 5] and denotes the maximum
available explanation depth. All datasets are balanced with respect to the labels and to
the explanation depths.

Additionally, to our main datasets, we created a few more datasets for secondary ex-
periments. The first of those is ALCRuler_MRD0, which follows the same principle as
ALCRuler_MRD1 but does not contain any complex concept (see more in figure 4.2). For
this dataset, we only created test sets, as it was aimed for zero-shot tests only. Also,
for both ALCRuler_MRD0 and ALCRuler_MRD1, we include in our test results another
dataset (referred to as d >= 0∗) which is close to the d <= 5 but has additionally exam-
ples with explanation depths higher than 5, which were created but not discarded during
data generation.

Finally, a third family of datasets was created; the ALCRuler_Fragment[0,1,2]. These
three datasets only have a d <= 5 version with the same train/dev/test splits and checked
data balance as before, but are based on fragments of the original ALC grammar that was
used for ALCRuler_MRD1. The grammar used for each one is described in figure 4.2 as
well.

Lastly, it is important to clarify that since the queries are derived from the reasoner entail-
ments or their combinations, there may be multiple ones that are using the same knowl-
edge base as context. This was the case for the implementation of [11] as well. Like in
this work, the context-query pairs are selected so that all datapoints which share a unique
context are part of the same dataset, without any spillage from the train set to the devel-
opment or test set. Datapoints are only repeated between different sets of the same type.
For example, a d-0 datapoint can be part of the d <= 0 dataset, but also of the d <= 1,
the d <= 2 etc. This reduced greatly the time required for the data generation, while not
presenting any issue, since each dataset is used to fine-tune a different language model.

5.2 Exploration of Inference Depth

In tables 5.3 - 5.6 we can see the Accuracy performances of 10 language models fine-
tuned on reasoning datasets. Tables 5.3 and 5.4 cover the performance of models fine-
tuned on the RuleTaker datasets [11], while the tables 5.5 and 5.6 that of models fine-
tuned on ALCRuler datasets. Each column identifies with the range of inference depths
that were available in the test set (e.g. for d = 0 proof/explanation depths are all 0, for
d <= 1 proof/explanation depths can be either 0 or 1 etc.). For the ALCRuler test sets,
the rightmost column (d >= 0∗) is provided as supplementary, as all inference depths that
were available from the data generation were used, without discarding any in contrast
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Figure 5.1: Training/Validation Loss progression per training epoch for ALCRuler datasets.

Figure 5.2: Validation Accuracy progression per training epoch for ALCRuler datasets.
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Figure 5.3: Learning Rate progression per training epoch for ALCRuler datasets.

to the previous columns. The green-background areas indicate test results on datasets
including inference depths that were all represented in the fine-tune sets (In-Distribution
tests), while the no-background areas show the results of tests that included higher in-
ference depths which were not seen by the models during fine-tuning (Out-of-Distribution
tests). The expectation for the in-distribution tests is that models exposed to high infer-
ence depths during fine-tuning will reach perfect accuracy for all test sets, while models
exposed to only low inference depths will reach perfect accuracy only for low inference
depth test sets.

5.2.1 Fine-tuning on RuleTaker

We observe that the results presented in [11], with respect to RuleTaker models’ perfor-
mance on their synthetic data, are reproducible. RoBERTa is able to achieve perfect or
near perfect results in all In-Distribution tests, while having considerable gains in out-of-
distribution tests as it is gradually exposed to higher inference depths during fine-tuning,
already from the middle lines of table 5.3. Presented differences regarding higher out-
of-distribution values compared to the results reported by the original authors, can be
attributed to possible deviations in the training formulas between the original and the pre-
sented experiments or possible pipeline differences (e.g. use of 2 linear layers in the
classification head instead of 1).

When the RuleTaker models are tasked to perform on the ALCRuler test sets (table 5.4),
we see that high accuracies cannot be achieved. The performance is consistently higher
when the ALCRuler sets don’t include complex concepts (avg. difference of 7.2 ± 1, 9%,
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over all measurements), and there is no indication that exposure to higher inference depths
during fine-tuning or testing affects those results. Additionally, the average distance from
the random 50%boundary, over all measurements, is 12.17±2.3% in the case of ALCRuler
not containing any complex concept, but only 4.90± 2.3% when these are included. This
hints to us that, despite the vastly lower performance, there are some underlying simi-
larities between the two synthetic datasets that are detectable by the language model,
and are also considerably more pronounced the closer the datasets get, by removing
complex concepts, which RuleTaker datasets lack. Having said that, the performance of
the RuleTaker-finetuned models was expected to be considerably higher in the ALCRuler
datasets that do not include complex concepts, as the expressive complexity of these ex-
amples remains a subset of the one that the models were exposed to during fine-tuning.

5.2.2 Fine-tuning on ALCRuler

Moving on to models fine-tuned with ALCRuler, RoBERTa seems to not only being able
to achieve high performance results, but also do that faster than with RuleTaker datasets.
In these cases, results of over 90% are already achievable from the first exposure to a
single reasoning step, for in- or out-of-distribution tests. On top of that, we can see that
already for the model fine-tuned with data of zero inference depth (table 5.5, first row) the
out-of-distribution performances are comparatively higher than the matching values of the
RuleTaker fine-tuning (table 5.3, first row). While it is not clear why this is the case, a pos-
sible theory is that even though all fine-tuning datapoints originate from single-statement
explanations (where depth=0), not all datapoints are strictly simple look-ups in the knowl-
edge base (see for example table 5.2). Due to this aspect of the dataset, it’s possible that
innate characteristics of ALC that directly correlate with reasoning, are already exposed
to the models, but evade our sense of reasoning difficulty gradation, which is based on the
previously defined explanation depth. When comparing the performance of the ALCRuler-
finetuned models on the ALCRuler test sets with or without complex concepts, we see as
expected comparable performances with slight deviations of 0.9 ± 1.05% over all mea-
surements. This small difference seems to be of low statistical significance and probably
attributed to datapoint representation differences on a set-by-set case, but it seems inter-
esting that when complex concepts are removed the performance is consistently slightly
inferior, despite the opposite would be expected.

Table 5.2: Small set of datapoints where inference depth is 0, but explanation complexity is not a
simple look-up.

query explanation label
One who is a lion, is not also a rabbit. A person that is not a rabbit, is also a dog and not a lion. false
DAVE is not a cow. Somebody who is nothing, equivalently is a cow or not round. true
A person who is smart, cannot also be a dog. A person who is a thing, equivalently is not a dog. true
One that is a lion, cannot also be round. Somebody who is not a lion, equivalently is not round. false
A person who is a lion, is also a bald eagle. A person that is a lion and not a bald eagle, equivalently is kind and nothing. true

Finally, for the performance of ALCRuler-finetuned models on RuleTaker test sets, the pic-
ture we see is shifting negatively, as the complexity of the fine-tuning set is increasing. In
table 5.6 we see that when RoBERTa is fine-tuned on an explanation depth=0 set, it can
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achieve a relatively high accuracy of 87.4% on the proof depth=0 RuleTaker set. Moving to
higher depths on the RuleTaker test sets, the performance does seem to diminish, but is
still in high levels compared to the matching zero-shot results of the RuleTaker-finetuned
model. This hints to us that the ALCRuler datapoints of low inference depths bear de-
tectable similarities to the RuleTaker counterparts, and also that the ALCRuler-finetuned
models exhibit higher adaptability to the unknown dataset (compared to the RuleTaker
zero-shot results). Having said that, we also see that as the RoBERTa models’ fine-tuning
includes higher and higher inference depths the performance in the RuleTaker test sets
is quickly dropping, to the point (in the final row) of barely overcoming the random 50%
boundary. The reason behind this progression seems to be that the increase in complexity
is such that, acting as noise, does not allow the model to focus on the simpler patterns
included in the zero depths only, the way it could do before.

There is an additional indication that the models (in the context of the used training for-
mula), were not able to completely absorb the escalating dataset complexities in their
weights, without losses. Despite achieving test accuracy results that match those of the
validation phase in all cases, the results themselves don’t meet up to the perfect or near-
perfect in-distribution results of the RuleTaker models. On the contrary, only the simplest
ALCRuler-finetuned model managed to achieve a near-perfect result in the same context,
with the follow-up models reaching an accuracy maximum that was consistently dimin-
ished, down to 94%. An alternative viewpoint of these results would suggest that the
perfect or near-perfect results, observed in [11] and our initial runs, are not in fact indica-
tors of high reasoning potential but instead artifacts of overfitting. Such a viewpoint would
also be consistent with the diminishing of the test accuracy, as training data complexity
increases, that was described in the previous paragraph.

Table 5.3: Reproduction of main results from [11], testing in and out of distribution in RuleTaker
datasets, the RuleTaker fine-tuned models. The green area shows the In-Distribution tests. p_d

indicates the proof depths that are present in each set.

Accuracy per RuleTaker test set
p_d=0 p_d<=1 p_d<=2 p_d<=3 p_d<=5
100.0 75.5 65.5 60.3 54.0
99.1 98.8 84.7 75.1 64.9
99.4 99.4 99.4 94.4 83.7
99.4 99.4 99.5 99.3 99.1
99.2 99.1 99.1 99.0 99.2

5.3 Exploration of expressive potential

In table 5.7 we explore the effect of exposing RoBERTa with ALC fragments [2] instead
of the original ALCRuler dataset.

In these results, we see that neither the RuleTaker-finetuned model can achieve good
results on any of the ALC fragments, nor the fragment-finetuned models can perform well
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Table 5.4: Zero-shot performance of RuleTaker fine-tuned models in all ALCRuler test sets. The
italicized numbers in parentheses show the respective results in a secondary collection of test

sets without complex concepts. p_d indicates the proof depths that are present in each fine-tuning
set, while e_d indicates the explanation depths that are present in each test set.

Accuracy per ALCRuler test set
RuleTaker
finetune set e_d=0 e_d<=1 e_d<=2 e_d<=3 e_d<=5 e_d>=0*

p_d=0 58.2 (67.7) 53.8 (60.7) 52.8 (58.7) 53.4 (60.7) 55.5 (62.5) 57.4 (64.5)
p_d<=1 60.1 (68.5) 55.3 (62.5) 53.9 (60.6) 54.7 (62.1) 56.0 (63.5) 57.7 (65.2)
p_d<=2 51.3 (63.6) 51.6 (60.1) 51.8 (59.8) 52.6 (60.4) 54.1 (61.2) 55.6 (62.1)
p_d<=3 58.5 (63.9) 56.3 (60.2) 55.3 (59.5) 55.0 (59.7) 56.5 (61.2) 58.1 (61.9)
p_d<=5 53.3 (65.1) 52.8 (61.7) 52.4 (60.7) 52.9 (61.1) 54.3 (62.7) 55.9 (63.1)

Table 5.5: Main accuracy results for the ALCRuler fine-tuned models, testing in and out of
distribution. The italicized numbers in parentheses show the respective results in a secondary
collection of test sets without complex concepts. The green area shows the In-Distribution tests.

{e_d} indicates the explanation depths that are present in each set.

Accuracy per ALCRuler test set
e_d=0 e_d<=1 e_d<=2 e_d<=3 e_d<=5 e_d>=0*

99.6 (99.3) 84.7 (84.2) 80.0 (78.3) 78.3 (77.9) 78.4 (79.7) 78.9 (80.9)
99.3 (98.9) 97.1 (96.2) 94.4 (92.5) 92.5 (91.0) 91.4 (90.5) 90.7 (90.2)
98.9 (98.8) 96.9 (95.5) 95.5 (93.2) 93.8 (92.7) 93.2 (92.2) 92.7 (92.2)
98.8 (98.6) 96.9 (95.4) 95.7 (93.5) 95.0 (93.4) 94.9 (93.8) 94.6 (93.8)
98.5 (98.7) 96.1 (94.1) 95.0 (92.1) 94.5 (92.1) 94.4 (92.7) 94.4 (92.9)

Table 5.6: Zero-shot performance of ALCRuler fine-tuned models in all RuleTaker test sets. p_d
indicates the proof depths that are present in each fine-tuning set, while e_d indicates the

explanation depths that are present in each test set.

Accuracy per RuleTaker test set
ALCRuler
finetune set p_d=0 p_d<=1 p_d<=2 p_d<=3 p_d<=5

e_d=0 87.4 74.0 68.3 63.8 56.8
e_d<=1 73.5 68.4 66.3 63.5 59.8
e_d<=2 73.2 67.9 66.6 64.3 59.9
e_d<=3 65.9 60.7 58.4 55.9 48.6
e_d<=5 57.9 56.3 54.6 52.3 46.7
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on theRuleTaker test set. Both of these results constitute strong indicators of overfitting, as
RuleTaker’s expressive capacity is directly comparable to that of the only-AND fragment of
ALCRuler. Higher accuracy than the observed, seemingly equal to random performance,
was expected. On the contrary, we see that the RuleTaker model is effectively unable
to differentiate the ALCRuler fragments in its performance, and the ALCRuler-Fragment
finetuned models showcase a progressive reduction of 3.4% in their results as complexity
increases, in similar fashion to the observations of the previous section 5.2.2.

Table 5.7: Accuracy of models fine-tuned in data with the highest inference depth available
(p_d<=5 for RuleTaker, e_d<=5 for ALCRuler), when tested on full expressivity datasets or

fragments of ALC. The blue area indicates measurements where the expressive complexity of all
test datapoints was available during fine-tuning.

Accuracy per test set

Fine-tune set RuleTaker (⊓) ALCRuler
Frag.0 (⊓)

ALCRuler
Frag.1 (⊓,⊔)

ALCRuler
Frag.2 (⊓,⊔, ∃)

ALCRuler
(⊓,⊔, ∃, ∀)

RuleTaker (⊓) 99.2 53.2 52.4 53.5 54.3
ALCRuler
Frag.0 (⊓) 50.1 94.8 92.7 90.2 90.2

ALCRuler
Frag.1 (⊓,⊔) 49.9 94.4 95.0 92.1 92.2

ALCRuler
Frag.2 (⊓,⊔, ∃) 45.4 94.6 94.9 94.8 94.3

ALCRuler
(⊓,⊔, ∃, ∀) 46.7 94.1 94.6 94.5 94.4

Beyond these results, we see an accuracy of 90% or more for all ALCRuler-related test
sets2. The ALCRuler-finetuned model can achieve high accuracy for all fragments, which
is expected given that these levels of expressive complexity were already available during
its fine-tuning. Among the fragment-finetuned models, we see that all in-distribution runs
had high accuracy results, while out-of-distribution ones saw a decrease of 2−4%. Finally,
it seems interesting that the model that was fine-tuned on ALC minus the for-all operator
managed to achieve almost no decrease in performance. The reason behind this mea-
surement could be either that the presence of the for-all operator in the ALCRuler dataset
is anyway relatively low, or that the existential operator is conceptually close enough to
the universal quantifier, so the model can use the experience from being exposed to the
former one, to handle the latter.

5.4 Evaluation on hand-authored data

In tables 5.8 and 5.9 we are testing, zero-shot, the RuleTaker- and ALCRuler-finetuned
models of section 5.2 to the hand-authored sets presented in [11].

2All ALCRuler-related models reached a validation accuracy of around 94% during fine-tuning.
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The performance of the RuleTaker-finetuned model in Birds and Electricity datasets (ta-
ble 5.8, top) is comparable to the one presented by the authors in [11], achieving high
results across the board which indicate the ability of these models to perform well in differ-
ent data. Moving to the NatLang dataset (table 5.9, top), which paraphrases the synthetic
RuleTaker data [11], we see a very similar performance profile to the one presented in
section 5.2.1. While higher-depth datapoints are more difficult to be accurately labeled by
the initial models, as models are exposed to higher-depth data they manage to completely
label all datapoints, reaching perfect results. It’s important to note here that this is not in
agreement to the observations of the original authors, which indicated relatively low or
only partial ability to perform well on these datasets. This potentially suggests that the
generation methodology templates followed for the datasets’ generation may be a more
important factor than was originally considered by the authors, or that their observations
do not translate robustly to variations in model architecture or training formulas (see sec-
tion 5.2).

For the ALCRuler-finetuned models, we again see a different picture. For the Birds and
Electricity datasets (table 5.8, bottom) we see that only the initial models can achieve
relatively good results for Birds, while the performance for Electricity is severely decreased
across the board. In NatLang’s case (table 5.9, bottom) we see again that initial models
can achieve medium results while the final model falls short in its predictions. Having
said that, we see an increase in all values in comparison to matching performances of
the same models in table 5.6, potentially suggesting that the paraphrasings that formed
the NatLang dataset bring the data closer to the data generation templates used in the
ALCRuler datasets.

Table 5.8: Zero-shot test performances on birds-electricity dataset presented in [11], of all models
fine-tuned on the respective depths. p_d indicates the proof depths that are present in each

fine-tuning set, while e_d indicates the explanation depths that are present in each test set. Note:
Numbers of the test sets are following the notation of [11] and do not correlate with depth.

Accuracy per test set
finetune set birds1 birds2 electricity1 electricity2 electricity3 electricity4

ruletaker (p_d-0) 80.0 80.0 77.8 70.0 80.1 91.3
ruletaker (p_d-1) 97.5 100.0 97.5 92.8 94.1 92.1
ruletaker (p_d-2) 100.0 100.0 100.0 100.0 92.9 90.0
ruletaker (p_d-3) 100.0 100.0 100.0 100.0 92.6 71.4
ruletaker (p_d-5) 100.0 100.0 98.8 96.7 91.2 77.9
ALCRuler (e_d-0) 80.0 80.0 46.3 50.0 41.7 42.0
ALCRuler (e_d-1) 87.5 82.5 59.3 57.2 46.3 40.6
ALCRuler (e_d-2) 87.5 87.5 48.8 53.3 40.7 33.9
ALCRuler (e_d-3) 60.0 60.0 42.6 45.0 37.2 34.3
ALCRuler (e_d-5) 55.0 55.0 45.7 50.0 51.9 37.2
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Table 5.9: Zero-shot test performances on the NatLang dataset presented in [11], of all models
fine-tuned on the respective depths. p_d indicates the proof depths that are present in each
fine-tuning set, while e_d indicates the explanation depths that are present in each test set.

Accuracy per test set
finetune set d=0 d<=1 d<=2 d<=3 dMax

ruletaker (p_d-0) 100.0 81.3 70.8 62.1 61.0
ruletaker (p_d-1) 100.0 100.0 85.6 75.1 73.7
ruletaker (p_d-2) 100.0 100.0 100.0 93.2 91.8
ruletaker (p_d-3) 100.0 99.9 99.9 99.9 99.9
ruletaker (p_d-5) 100.0 100.0 99.9 99.9 99.9
ALCRuler (e_d-0) 95.5 79.1 69.1 60.8 59.7
ALCRuler (e_d-1) 85.2 64.2 65.1 70.4 77.9
ALCRuler (e_d-2) 89.1 80.3 74.3 70.8 70.3
ALCRuler (e_d-3) 75.4 68.6 61.0 53.8 52.9
ALCRuler (e_d-5) 65.2 62.7 56.3 49.6 48.7
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6. CONCLUSIONS AND FUTURE WORK

The primary goal of this work was to investigate whether the stellar results presented in [11]
for datalog based natural language, can be transferred to more expressive language that
is founded on ALC Description Logic. In the related work section, we saw how the current
models that are used for the LRNL task are not considered robust due to overfitting or sta-
tistical feature shortcuts, while the best available approaches seem to explicitly include the
reasoning steps as part of the training or predictions. Our experiments seem to challenge
the claims in [11] with respect to robustness in paraphrasing and generalization.

We outline that overfitting appears to play the primary role in the behavior of our mod-
els, which did not meet our initial expectations, thus making a concrete evaluation on the
task of NLR, and our specific result, difficult to interpret. Our observations are in sync
with prior work that LLMs may tend to overfit to underlying linguistic correlations that can
work against successful theorem proving [78, 84, 81, 59]. The direction of the research
community of focusing on including intermediary and final proofs, or alternatively the pre-
cautionary adoption of specific fine-tuning methods and prompting, like Chain-of-Thought
prompting [78, 49], seems to be valid. Furthermore, there are already published works
with the aim of guaranteeing that dataset shortcuts are avoided (e.g. [56, 55]), towards
”faithful” reasoning.

As mentioned in [12], it’s essentially impossible to determine with acceptable certainty that
a model is actually emulating some form of reasoning without having transparency on its
reasoning steps. It is unclear how impactful are internal biases or representations on its
output, and thus we believe that including a justification in this output should be consid-
ered a requirement going forward. Furthermore, it would be interesting to investigate how
limitations in the form of statistical features affect models that focus on faithful proofs, like
in [12]. Having said that, in order to include the justifications as an integral part of the
predictions, fundamental architectural model changes are required. Instead, there is a set
of future tasks that could shed more light on the observed results that we presented here:

• Explore the effect of choosing random and synthetic data over hand-authored
ones. It should be investigated to what extent LRNL can be trained or evaluated on
data with rich lexical semantics. A big advantage of using a pretrained model is the
ability to distill world-knowledge in a broad range of topics and then use this knowl-
edge inductively to influence its performance on the downstream task; a powerful
property of the models for tasks like natural language inference or commonsense
reasoning. But it remains unclear how logical reasoning is affected. On the one
hand, as we saw in section 3, works like [59] hint that inductive biases based on
vocabulary would hinder the downstream task or also that their presence should not
theoretically constitute a complication. At the same time, in [11] the authors claim
that using non-synthetic, lexically meaningful datasets for the task of emulating for-
mal reasoners would not be ideal. The reason being that non-synthetic data by
design offer a variability and flexibility of expression that may require from the model
to also perform accurate reading comprehension other than the target reasoning
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task alone. On the other hand, we see works like [6, 23] where a richer language
and vocabulary in the dataset is considered an advantage over other approaches.

• Can deeper insights be drawn to the extent overfitting on templates play? This
could include a detail dataset description analysis over different publications and fo-
cused comparisons with other datasets like the ones in [23, 6] and others, with a
focus on specific phrasings and the retaining of a certain vocabulary. On a simi-
lar note, also entailed is identifying what statistical features can be detected in our
presented datasets (see also [81]) and to what extent their removal improves the
outcomes or is even possible. In [81] it was indicated both that such a removal is
beneficial and that it probably can never be complete or is computationally infeasible.

• What is currently the most promising and robust way to generate datasets
for NLR? Based on the relevant conclusions from the aforementioned items, a po-
tential outcome could be the incorporation of other data generation modules and
approaches, like for example [6]. Additionally, an interesting future path forward, in
an aim to produce a dataset of even higher quality, would be to utilize large genera-
tive language models to create the data (see also appendix A.4). This might take the
form of starting a new dataset from scratch, or augmenting a small highly controlled
and rigorously verified pre-existing dataset (see for example the works in [46, 10]).

• What is actually the proper way of evaluating NLR generalization? It becomes
evident that simple accuracy reports are not enough to fully describe the success on
the task. A more robust analysis with extended metrics, cross-evaluation to multiple
datasets and statistically rich descriptions of used datasets seem to be imperative
in order to promote reproducible and promising milestones of further research; rel-
evant work can be followed in [21, 52, 79, 55]. The issue of ignoring or spoiling the
task at hand in favor of identification of dataset statistics, artifacts or heuristics is a
fundamental problem that seems to affect the usability and interpretability of LLMs.
It is prevalent in both our experiments and related works, and has been identified
even before those, in fields related to natural language inference [45, 22]. We be-
lieve that a deeper exploration of this weakness of the LLMs should be considered
as integral for future works. It seems that knowledge and understanding on how to
overcome such issues in a systematic and well-defined manner is still unclear, but
would immensely improve the quality of the results and proposals being published.

Additional to the above future prospects, and after their potential resolution, there are also
some open questions that could be further followed up as a direct extension to this work.
For example:

• Investigate if statements that exceed the expressivity ofALC can be answered,
given that ALC itself is learned robustly.

• Extending the idea of using a multiple models, it might be worth evaluating how a
model that has ultimately learned a reasoning task, can be used as the foun-
dation for further domain specific fine-tuning. Considering, that fine-tuning on
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specific Knowledge Graphs could lead to models that function as ”domain experts”
for entities that utilize such data storage methods. The type of further fine-tuning
that is required may or may not be reasoning-related in order to apply the previously
acquired reasoning skills on specific domains.

• Investigate to what extent training on the full expressivity ofALC is required to
achieve a high enough performance on ALC or other Description Logic tasks.
A preliminary experimentation with fragments of ALC was presented, hinting that,
for example, the universal and existential quantifiers may be closer conceptually
than initially thought of. This example hypothesis should be validated with further
analysis, on frequency statistics related to the expressivity of our presented datasets,
as well as an extension that can support or refute this and similar hypotheses.

• Investigate to what extent training on unlimited ALC (or fragments of it) can
affect general NLU, or soft reasoning. In our datasets, we have limited the data
generation with our grammar, which impedes certain directions of research. On the
one hand, human language may contain few to many levels of subcontext or paren-
thetical speech, while on the other hand, formal languages and reasoners operate
on unlimited nesting levels. It would be interesting to explore how training on differ-
ent recursion levels provided and modeled by our grammar would affect NLU tasks
and additionally soft reasoning performances, given that such trained LLMs could be
used alongside formal reasoners for optimization. Relevant insight for the handling
of nesting in human speech and LLMs can be found in [40].
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ABBREVIATIONS - ACRONYMS

AI Artificial Intelligence
ALC Attributive Language with Complements
API Application Programming Interface
CoT Chain-of-Thought
CWA Closed World Assumption
DFS Depth First Search
FOL First-Order Logic
KB Knowledge Base
LHS Left-hand Side
LLM Large Language Model
LRNL Logical Reasoning over Natural Language
NAF Negation as Failure
NL Natural Language
NLP Natural Language Processing
NLR Natural Language Reasoning
NLU Natural Language Understanding
OWA Open World Assumption
OWL Web Ontology Language
PCFG Probabilistic Context-free Grammar
QA Question-Answering
RHS Right-hand Side
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APPENDIX A. DATA GENERATION SUPPLEMENTARY

A.1 PCFG examples for statement generation

Figure A.1: A tree expansion of an ABox axiom using ALCRuler grammar.
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Figure A.2: A tree expansion of a TBox axiom using ALCRuler grammar.
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A.2 Example Datapoints from each dataset

Table A.1: Example in which all ALCRuler fine-tuned models managed to give an accurate
prediction, but only half the RuleTaker ones. Here we see how the ”bear” concept is indirectly

internally equalized to the Thing concept.

example_id ALCRuler_MRD0_d5_test_example_17888_k3682_q6
proof_depth 4

label true

context

ERIN is white.
Anne is not white.
Somebody that is not a bear, equivalently is a dog.
One that is nothing, equivalently is a dog.
One who is not young, equivalently is not a bear.
Someone who is white, equivalently is not a tiger.
One that is not red, is also white.
Someone who is not white, is also not red.
One who is a squirrel, is also not young.

query Someone who is a bear, equivalently is white.

explanation

Someone who is not red, is also white.
Someone that is not a bear, equivalently is a dog.
A person that is a dog, equivalently is nothing.
One that is not white, is also not red.
ERIN is a bear.

75 S. Kotzastratis



Natural Language Reasoning on ALC knowledge bases using Large Language Models

Table A.2: Example in which all fine-tuned models failed to give an accurate prediction.

example_id ALCRuler_MRD1_d5_test_example_19505_k4775_q11
proof_depth 2
label false

context

BOB is a cat or quiet.
BOB is rough and not young.
BOB is a cat and not quiet.
FIONA eats FIONA.
CHARLIE eats CHARLIE.
FIONA is someone who visits only somebody who is young.
FIONA needs CHARLIE.
CHARLIE is green and not young.
GARY is a person who visits someone who is not a cat.
GARY visits DAVE.
Erin is young.
Somebody who is quiet and not young, equivalently is somebody that likes a person that is a thing.
One who is a tiger or not a cat, is also not a bald eagle.
One that is one that visits only one who is quiet, is also green or not young.
One who is young and not green, equivalently is somebody who likes somebody who is a cat.
A person that is not a cat, equivalently is not green.

query One that is young, cannot also be a cat.

explanation
One who is not green, equivalently is not a cat.
One who is somebody that likes one who is a thing, equivalently is quiet and not young.
Someone who is young and not green, equivalently is a person that likes somebody that is a cat.
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Table A.3: Example in which all fine-tuned models failed to give an accurate prediction.

example_id ALCRuler_MRD1_Fragment0_d5_test_example_17339_k3017_q17
proof_depth 1
label false

context

FIONA is not nice.
FIONA is not round and not a squirrel.
GARY eats HARRY.
FIONA likes GARY.
GARY chases HARRY.
GARY visits FIONA.
GARY visits GARY.
HARRY visits HARRY.
HARRY is blue.
DAVE is big and not round.
HARRY chases GARY.
GARY visits HARRY.
Anne is a bald eagle and round.
Fiona is a squirrel.
Someone who is a squirrel and not big, is also nice and not a cat.
A person that is a squirrel, equivalently is big and not nice.
Somebody that is a bald eagle and round, is also not big.
One who is not a cat, equivalently is not big.
One who is round, equivalently is big and a squirrel.

query Someone who is round, cannot also be a squirrel.

explanation A person that is round, equivalently is big and a squirrel.
Somebody that is a squirrel, equivalently is big and not nice.
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Table A.4: Example in which all fine-tuned models failed to give an accurate prediction.

example_id ALCRuler_MRD1_Fragment2_d5_test_example_7285_k1503_q27
proof_depth 2
label true

context

FIONA needs BOB.
FIONA is one that sees somebody that is quiet.
HARRY visits ERIN.
ERIN is kind.
CHARLIE is somebody who visits one who is a squirrel.
ERIN needs BOB.
FIONA is white and young.
ANNE is someone who likes somebody who is a tiger.
Gary is a tiger.
Gary is a bear.
Anne is red.
Bob is red.
Someone who is rough and not a mouse, equivalently is a tiger.
One that is not a bear and not red, equivalently is quiet or not a cat.
A person that is someone that chases a person who is not a lion, equivalently is not a dog.
Someone that is big, is also young.
Somebody who is red, equivalently is a bear and not a tiger.
A person who is not green, equivalently is a dog.
A person who is young, equivalently is somebody that likes one that is a lion.
One who is not green, is also quiet.
A person that is rough, equivalently is big.
A person that is a rabbit and a tiger, equivalently is someone who sees somebody that is nothing.

query Someone who is red, is not also a dog.

explanation
A person who is a bear, is also green.
One who is red, is also a bear.
Someone who is not green, equivalently is a dog.
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Table A.5: Example in which all fine-tuned models managed to give an accurate prediction.

example_id ALCRuler_MRD1_d5_test_example_18524_k4535_q59
proof_depth 3
label false

context

BOB needs ERIN.
CHARLIE eats GARY.
GARY is a lion and white.
CHARLIE eats CHARLIE.
GARY chases DAVE.
GARY eats HARRY.
GARY eats ERIN.
ANNE needs CHARLIE.
CHARLIE is a dog or smart.
GARY likes BOB.
GARY visits GARY.
CHARLIE is one that eats only somebody who is a bear.
BOB eats FIONA.
ERIN is someone that eats someone who is a tiger.
GARY visits CHARLIE.
CHARLIE is not a tiger.
Harry is big.
Somebody who is someone that visits somebody that is rough, is also not blue and not young.
One that is not a dog, equivalently is not a bear.
One that is blue and young, equivalently is white.
Someone that is someone that eats only somebody who is not a bear, equivalently is nice and not blue.
One who is not nice, equivalently is not big.
Somebody who is somebody who likes a person that is not a bear, equivalently is blue and rough.
Someone who is a person that chases only somebody who is nice, is also somebody who eats one that is a bear.
Someone who is somebody that visits only one that is a lion, equivalently is someone that eats one that is not a bear.
A person that is a thing, is also not nice.

query GARY is nice.

explanation

One that is not a dog, equivalently is not a bear.
CHARLIE eats GARY.
CHARLIE is somebody who eats only somebody who is a bear.
Someone who is a thing, is also not nice.

79 S. Kotzastratis



Natural Language Reasoning on ALC knowledge bases using Large Language Models

A.3 Example scorings of Somebodies’ metric

Table A.6: Examples of natural language statements next to their somebodies’ metric score.

statement score
Somebody who is somebody who eats somebody that is not
nice, equivalently is somebody that likes somebody that is
kind and red.

-0.2

Someone that is someone who sees a person that is kind,
equivalently is a person who visits someone who is someone
that chases someone that is young.

-0.14

One who is somebody who chases only one that is one who
sees only one who is rough, is also a thing. 0.0

Somebody who is one that eats only someone who is a person
that needs someone that is cold, equivalently is a person that
needs only a person that is not quiet.

0.14

A person that is cold and not nice and a dog and not furry,
equivalently is somebody that chases someone that is not
bald eagle and somebody who eats only somebody that is rough.

0.2

Somebody who loves somebody that needs somebody that
finds a person that runs, is blind. 0.25

A person who is a person who eats one who is one that
eats only someone that is not kind, is also somebody
that likes someone that is blue and a thing.

0.29

Someone who is a cow and not rough, equivalently is
someone who visits someone who is not a cow. 0.33

Somebody who loves somebody that needs someone that
finds a person that runs, is blind. 0.5

FIONA is somebody who eats somebody that is kind and
one who needs a person that is white. 0.5

Someone who is a mouse, is also somebody who eats only
somebody that is not a bear or not a dog. 0.67

Someone who is a dog and not rough, is also someone that
chases somebody who is green. 0.67

One who is someone that likes one who is a bear and not
blue, is also not quiet. 0.67

A person that is white and not young, equivalently is kind
or quiet and somebody who sees only a person that is not nice. 0.67

One who is furry, equivalently is not a bear and not a lion
or a person who visits only someone who is a thing. 1.0

CHARLIE is one that eats only someone who is not quiet. 1.5
Somebody who is young, is also not young. 3
FIONA likes CHARLIE. 4
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A.4 Data Generation with Generative LLMs

An alternative approach to the process presented in 4 would be to directly use a Genera-
tive Large Language Model [50] to synthesize the random examples, as such an approach
would bring several advantages. Firstly, it would be vastly simpler in terms of implemen-
tation complexity, which would allow the generation of the datasets in much shorter time
with a quite simpler pipeline. Another positive side effect from using a LLM for data gen-
eration would be the fact that the knowledge that is distilled in it would inadvertently be
utilized in the creation of random data. It was for example shown in [74] that in an auto-
mated data generation scenario, the end-model can be provided with quality data with the
pitfalls that characterize the starting-model filtered out, ultimately surpassing it. This way
the generated knowledge bases can be meaningful while also remaining random (a task
achieved in works like [23, 6]). Additionally, as investigated in [19], such models have the
potential not only of producing datasets of higher quality when compared to algorithmi-
cally synthetic ones, but surprisingly be competitive against human annotators, and at a
fraction of a cost.

On the other hand, this method wouldn’t come without its own set of challenges. Firstly,
using the output of Generative LLMs that are currently available can be heavily impacted
by potential issues with regard to the quality of results [63, 82, 5], a reality that became
very apparent with the publication and immediate recalling of Meta’s Galactica project [66].
As extraordinary as these models may be, the results may often contain mistakes, inaccu-
racies, noise or simply be incomplete. This would affect both the trustworthiness of such
generation and also their meaningfulness, which was previously mentioned as an advan-
tage. And of course another equally important consideration would be that of embodied
biases in those models [24, 15], that could very easily be passed on in the generated
dataset and by extension be further baked in future models. Additionally, their use would
make by definition the dataset generation pipeline less controllable and predictable, in the
way a manual method is, rending the actual efficiency of their use not a given. The afore-
mentioned concerns would therefore either block the use of such a pipeline, or at least ne-
cessitate the implementation of a rigorous evaluation and verification step in that pipeline,
which could borrow many of the characteristic of the currently implemented one, further
reducing its preparation-related time advantage. Not to mention that the required verifica-
tion step can itself be non-complete, as it is targeting a fully natural language output, that
is not anchored in any given generation structure or logic, making it only approximately
effective.

The trustworthiness of such a pipeline would certainly be a big investigation topic, and it
seems that an amount of trust is unavoidable. But nonetheless, this approach is an exam-
ple of a big paradigm change in the dataset and general content generation [8, 76, 17]. To
show how big is the potential of such an approach, below we are including three unedited
example ”conversations” with OpenAI’s ChatGPT1, using less than 10 minutes of manual
prompting without prior experience with their Free Open Research demo2. As discussed

1Created with the version available on 1 Dec 2022.
2The demo can be found at https://chat.openai.com/chat.
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in [42] and vividly illustrated in the field of image-generating diffusion models [80], accurate
prompting for Large Generative Models is as important as any other part of their training.
Therefore, codifying a set of specific prompt generating techniques has a great potential
is dataset generation pipelines.

As a final remark, looking into the following examples, we see that the model can not only
generate the random data, but it can also re-format them based on provided feedback.
And most importantly, not only that, but it can also in itself use the generated data and
provide answers that simulate the very thing this work set out to explore: If LLMs can
emulate reasoning. In the below examples we see hints of such a behavior, by a ”general
purpose” generative model, that hasn’t even been specifically fine-tuned to that task. Be it
in the form of answering reasoning questions or in directly providing entailments of a given
knowledge base themselves. Whether these examples constitute indicators of reasoning
potential or are simply artifacts of the models’ fuzzy next-word prediction routine, remains
open research, adjacent to NLR and NLU [61, 58, 33, 4, 64, 47, 71, 44, 70].

A.4.1 Example 1

Human: Create a random ALC knowledge base with 3 A-box rules and 2 T-box
rules.

ChatGPT: A-box rules:

• All cats are mammals.

• All dogs are mammals.

• All birds are vertebrates.

T-box rules:

• A mammal is a type of animal.

• A vertebrate is a type of animal.
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A.4.2 Example 2

Human: Create a random ALC ontologies with 3 A-box rules and 2 T-box rules.
ChatGPT: A-box rules:

• John is a human.

• Mary is a human.

• All humans have two legs.

T-box rules:

• A human is a type of mammal.

• A mammal is a type of vertebrate.

Human: The third A-box rule you created is not an assertion.
ChatGPT: You are correct, the third A-box rule is not an assertion. It is a gener-

alization stating that all members of a particular class (humans) possess
a certain characteristic (having two legs). In an ALC ontology, asser-
tions are statements about specific individuals, whereas generalizations
are statements about the characteristics or relationships of classes or con-
cepts.

Human: Then shouldn’t you create a different rule to add in the Abox?
ChatGPT: Yes, in order to have a complete and valid ALC ontology, we would need

to replace the third A-box rule with a valid assertion about a specific
individual. For example: ”John has two legs.”
Alternatively, we could keep the third A-box rule as a generalization and
add additional assertions about specific individuals to complete the A-
box. For example: ”Mary has two legs.” ”George is a mammal.” ”Saman-
tha is a vertebrate.”
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Human: Please re-write the ontology correcting your mistake.
ChatGPT: Here is a revised version of the ALC ontology with the third A-box rule

replaced with a valid assertion:
A-box rules:

• John is a human.

• Mary is a human.

• John has two legs.

T-box rules:

• A human is a type of mammal.

• A mammal is a type of vertebrate.

Human: Based on the above ontology is John a mammal?
ChatGPT: Yes, based on the A-box rule that states ”John is a human” and the T-

box rule that states ”A human is a type of mammal,” we can infer that
John is a mammal. This is an example of how ALC ontologies can be
used to make inferences based on the relationships between classes and
individuals in the knowledge base.

Human: How many statements of the ontology did you use to answer?
ChatGPT: In order to answer the question of whether John is a mammal, I used

two statements from the ontology: the A-box rule that states ”John is a
human” and the T-box rule that states ”A human is a type of mammal.”
By combining these two statements and using the rules of ALC logic, we
can infer that John is a mammal.
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Human: Can you negate the first Abox rule?
ChatGPT: Yes, we can negate the first A-box rule to create a new statement that

states ”John is not a human.” This revised ontology would have the fol-
lowing A-box and T-box rules:
A-box rules:

• John is not a human.

• Mary is a human.

• John has two legs.

T-box rules:

• A human is a type of mammal.

• A mammal is a type of vertebrate.

However, this revised ontology is not necessarily a valid representation
of reality, as it contradicts the third A-box rule, which states that John
has two legs. In the real world, it is not possible for someone to have
two legs but not be a human. It is important to carefully consider the
implications of the statements included in an ALC ontology and ensure
that they are consistent with our understanding of the real world.

Human: Based on the above ontology is John a mammal?
ChatGPT: It is not possible to determine whether John is a mammal based on the

revised ontology, as the first A-box rule contradicts the third A-box rule.
In order to make inferences about John’s characteristics or relationships,
we would need to remove or revise the conflicting statements in the on-
tology. For example, we could change the first A-box rule to state ”John
is a human” in order to be consistent with the third A-box rule and allow
us to make inferences based on the T-box rules.
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A.4.3 Example 3

Human: Can you create an ALC ontology using the binary predicates (likes, needs,
visits), the unary predicates (lion, cow, smart, furry) and the individuals
(Gary, Anne, Fiona)?

ChatGPT: Sure, I can create an ALC ontology using the binary predicates (likes,
needs, visits) and the unary predicates (lion, cow, smart, furry) and the
individuals (Gary, Anne, Fiona). Here’s an example:
Ontology: Animals
Binary predicates:

• likes(x, y): x likes y

• needs(x, y): x needs y

• visits(x, y): x visits y

Unary predicates:

• lion(x): x is a lion

• cow(x): x is a cow

• smart(x): x is smart

• furry(x): x is furry

Individuals:

• Gary

• Anne

• Fiona
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(cont.): Assertions:

• lion(Gary)

• cow(Anne)

• smart(Fiona)

• furry(Gary)

• likes(Gary, Anne)

• needs(Anne, grass)

• visits(Fiona, library)

Human: Can you add 4 T-box statements?
ChatGPT: Sure, here are four T-box statements that I can add to the ontology:

1. All lions are furry. This statement can be represented in the on-
tology as: furry(x) ⊑ lion(x)

2. All cows need grass. This statement can be represented in the
ontology as: needs(x, grass) ⊑ cow(x)

3. Smart individuals visit libraries. This statement can be represented
in the ontology as: visits(x, library) ⊑ smart(x)

4. Individuals who like cows are smart. This statement can be repre-
sented in the ontology as: smart(x) ⊑ likes(x, cow)

Note that these statements are written in first-order logic using the sym-
bols ⊑ (subset or subset-equal) to denote the ”is-a” relationship between
concepts. In this case, the statements are saying that the concepts on
the left-hand side are subsets of the concepts on the right-hand side. For
example, the first statement is saying that all lions are furry, so the con-
cept of ”furry” is a subset of the concept of ”lion”.
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Human: Combine this with the ontology into formal ALC representation.
ChatGPT: Sure, here is the ontology with the four T-box statements included in a

formal ALC representation:
Ontology: Animals
Binary predicates:

• likes(x, y): x likes y

• needs(x, y): x needs y

• visits(x, y): x visits y

Unary predicates:

• lion(x): x is a lion

• cow(x): x is a cow

• smart(x): x is smart

• furry(x): x is furry

Individuals:

• Gary

• Anne

• Fiona

Assertions:

• lion(Gary)

• cow(Anne)

• smart(Fiona)

• furry(Gary)

• likes(Gary, Anne)

• needs(Anne, grass)

• visits(Fiona, library)
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(cont.): T-box axioms:

• furry(x) ⊑ lion(x)

• needs(x, grass) ⊑ cow(x)

• visits(x, library) ⊑ smart(x)

• smart(x) ⊑ likes(x, cow)

The T-box axioms are written in the ALC (Aquatic Logics for the Web)
description logic, which is a subset of first-order logic that is commonly
used for representing ontologies. The ALC representation allows us to
formally specify the concept hierarchy and the relationships between con-
cepts in the ontology.
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Human: I didn’t define library or grass though.
ChatGPT: Ah, you’re right, I apologize for the mistake. In the previous example,

I included the individuals ”library” and ”grass” in the assertions, but
you did not define them earlier. I can remove these individuals from
the ontology and update the assertions accordingly. Here is the updated
ontology:
Ontology: Animals
Binary predicates:

• likes(x, y): x likes y

• needs(x, y): x needs y

• visits(x, y): x visits y

Unary predicates:

• lion(x): x is a lion

• cow(x): x is a cow

• smart(x): x is smart

• furry(x): x is furry

Individuals:

• Gary

• Anne

• Fiona

Assertions:

• lion(Gary)

• cow(Anne)

• smart(Fiona)

• furry(Gary)

• likes(Gary, Anne)
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(cont.): In this updated ontology, the individuals ”library” and ”grass” have been
removed, and the assertion ”needs(Anne, grass)” has been removed be-
cause it references the individual ”grass”. Additionally, the assertion
”visits(Fiona, library)” has been removed because it references the in-
dividual ”library”. This updated ontology only includes the individuals
that you defined earlier.

Human: Why did you remove the T-box statements?
ChatGPT: I apologize for the mistake, I did not mean to remove the T-box state-

ments from the ontology. In my previous response, I focused on removing
the individuals ”library” and ”grass” from the ontology, and I acciden-
tally removed the T-box statements as well. Here is the updated ontology
with the T-box statements included:
Ontology: Animals
Binary predicates:

• likes(x, y): x likes y

• needs(x, y): x needs y

• visits(x, y): x visits y

Unary predicates:

• lion(x): x is a lion

• cow(x): x is a cow

• smart(x): x is smart

• furry(x): x is furry

91 S. Kotzastratis



Natural Language Reasoning on ALC knowledge bases using Large Language Models

(cont.): Individuals:

• Gary

• Anne

• Fiona

Assertions:

• lion(Gary)

• cow(Anne)

• smart(Fiona)

• furry(Gary)

• likes(Gary, Anne)

T-box axioms:

• furry(x) ⊑ lion(x)

• needs(x, grass) ⊑ cow(x)

• visits(x, library) ⊑ smart(x)

• smart(x) ⊑ likes(x, cow)

In this updated ontology, the T-box axioms have been included to specify
the concept hierarchy and the relationships between concepts in the on-
tology. The individuals ”library” and ”grass” have been removed, and the
assertions ”needs(Anne, grass)” and ”visits(Fiona, library)” have been re-
moved because they reference these individuals. This updated ontology
only includes the classes and individuals that you defined earlier.
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Human: What are the entailments of this ontology?
ChatGPT: Entailments are statements that can be logically inferred from the ax-

ioms in an ontology. In this case, the entailments of the ontology would
be statements that can be logically inferred from the binary predicates,
unary predicates, individuals, and T-box axioms that are defined in the
ontology.
Here are some possible entailments of the ontology:

• Gary is a lion. This entailment can be inferred from the assertion
”lion(Gary)”.

• Anne is a cow. This entailment can be inferred from the assertion
”cow(Anne)”.

• Fiona is smart. This entailment can be inferred from the assertion
”smart(Fiona)”.

• Gary is furry. This entailment can be inferred from the assertion
”furry(Gary)”.

• Gary likes Anne. This entailment can be inferred from the assertion
”likes(Gary, Anne)”.

• Anne needs something. This entailment can be inferred from
the T-box axiom ”needs(x, grass) ⊑ cow(x)” and the assertion
”cow(Anne)”.

• Fiona visits something. This entailment can be inferred from
the T-box axiom ”visits(x, library) ⊑ smart(x)” and the assertion
”smart(Fiona)”.

These are just some possible entailments of the ontology. There may be
other entailments that can be inferred from the axioms in the ontology.
The actual entailments of the ontology would depend on the specific
axioms that are defined in the ontology and how they relate to each
other.
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Human: Can you list all the other entailments?
ChatGPT: It is not possible for me to list all of the entailments of the ontology

because the number of possible entailments is infinite. The actual en-
tailments of the ontology would depend on the specific axioms that are
defined in the ontology and how they relate to each other.
In general, the process of determining all of the entailments of an ontology
is known as reasoning, and it involves using logical rules to infer new
statements from the axioms in the ontology. However, this can be a
complex process, and it is not possible for me to provide a complete list
of all of the entailments of the ontology.
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Human: Ok, provide 10 more entailments.
ChatGPT: Sure, here are ten additional possible entailments of the ontology:

1. Anne is a cow and needs something. This entailment can be in-
ferred from the T-box axiom ”needs(x, grass) ⊑ cow(x)” and the
assertions ”cow(Anne)” and ”needs(Anne, grass)”.

2. Fiona is smart and visits something. This entailment can be in-
ferred from the T-box axiom ”visits(x, library) ⊑ smart(x)” and
the assertions ”smart(Fiona)” and ”visits(Fiona, library)”.

3. All lions are furry. This entailment can be inferred from the T-box
axiom ”furry(x) ⊑ lion(x)”.

4. All cows need something. This entailment can be inferred from the
T-box axiom ”needs(x, grass) ⊑ cow(x)”.

5. Smart individuals visit something. This entailment can be inferred
from the T-box axiom ”visits(x, library) ⊑ smart(x)”.

6. Individuals who like cows are smart. This entailment can be in-
ferred from the T-box axiom ”smart(x) ⊑ likes(x, cow)” and the
assertion ”likes(Gary, Anne)”.

7. Anne is a cow and needs grass. This entailment can be inferred from
the T-box axioms ”needs(x, grass) ⊑ cow(x)” and ”cow(Anne)” and
the assertion ”needs(Anne, grass)”.

8. Fiona is smart and visits a library. This entailment can be in-
ferred from the T-box axioms ”visits(x, library) ⊑ smart(x)” and
”smart(Fiona)” and the assertion ”visits(Fiona, library)”.

9. Gary is a lion and likes Anne. This entailment can be inferred
from the assertions ”lion(Gary)”, ”cow(Anne)”, and ”likes(Gary,
Anne)”.

10. Fiona is smart and likes cows. This entailment can be inferred
from the T-box axioms ”smart(x) ⊑ likes(x, cow)” and ”likes(Gary,
Anne)” and the assertion ”smart(Fiona)”.

These are just some additional possible entailments of the ontology.
There may be many other entailments that can be inferred from the
axioms in the ontology. The actual entailments of the ontology would
depend on the specific axioms that are defined in the ontology and how
they relate to each other.

95 S. Kotzastratis



Natural Language Reasoning on ALC knowledge bases using Large Language Models

Human: Provide to me 10 entailments that use 3 or more axioms from the ontol-
ogy.

ChatGPT: Sure, here are ten possible entailments of the ontology that use three or
more axioms:

1. Anne is a cow, needs something, and likes Gary. This entailment
can be inferred from the T-box axioms ”needs(x, grass) ⊑ cow(x)”
and ”likes(x, y) ⊑ smart(x)” and the assertions ”cow(Anne)”,
”needs(Anne, grass)”, and ”likes(Gary, Anne)”.

2. Fiona is smart, visits something, and likes cows. This entail-
ment can be inferred from the T-box axioms ”visits(x, library)
⊑ smart(x)” and ”smart(x) ⊑ likes(x, cow)” and the assertions
”smart(Fiona)”, ”visits(Fiona, library)”, and ”likes(Gary, Anne)”.

3. Gary is a lion, is furry, and likes Anne. This entailment can be
inferred from the T-box axioms ”furry(x) ⊑ lion(x)” and ”likes(x,
y) ⊑ smart(x)” and the assertions ”lion(Gary)”, ”furry(Gary)”, and
”likes(Gary, Anne)”.

4. Fiona is smart, visits a library, and likes cows. This entailment can
be inferred from the T-box axioms ”visits(x, library) ⊑ smart(x)”
and ”smart(x) ⊑ likes(x, cow)” and the assertions ”smart(Fiona)”,
”visits(Fiona, library)”, and ”likes(Gary, Anne)”.

5. Anne is a cow, needs grass, and likes Gary. This entailment can
be inferred from the T-box axioms ”needs(x, grass) ⊑ cow(x)”
and ”likes(x, y) ⊑ smart(x)” and the assertions ”cow(Anne)”,
”needs(Anne, grass)”, and ”likes(Gary, Anne)”.

6. Gary is a lion, is furry, and needs something. This entail-
ment can be inferred from the T-box axioms ”furry(x) ⊑ lion(x)”
and ”needs(x, y) ⊑ smart(x)” and the assertions ”lion(Gary)”,
”furry(Gary)”, and ”needs(Anne, grass)”.

7. Fiona is smart, visits a library, and needs something. This entail-
ment can be inferred from the T-box axioms ”visits(x, library)
⊑ smart(x)” and ”needs(x, y) ⊑ smart(x)” and the assertions
”smart(Fiona)”, ”visits(Fiona, library)”, and ”needs(Anne, grass)”.

8. Anne is a cow, needs grass, and visits something. This entailment
can be inferred from the T-box axioms ”needs(x, grass) ⊑ cow(x)”
and ”visits(x, y) ⊑ smart(x)” and the assertions ”cow(Anne)”,
”needs(Anne, grass)”, and ”visits(Fiona,
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Human: These are 8 entailments not 10.
ChatGPT: You’re right, I apologize for the mistake. In my previous response, I

listed eight possible entailments of the ontology that use three or more
axioms, but I did not provide two additional entailments as requested.
Here are two additional possible entailments of the ontology that use
three or more axioms:

10. Gary is a lion, is furry, and visits something. This entailment can be
inferred from the T-box axioms ”furry(x) ⊑ lion(x)” and ”visits(x,
y) ⊑ smart(x)” and the assertions ”lion(Gary)”, ”furry(Gary)”, and
”visits(Fiona, library)”.

11. Anne is a cow, needs grass, and is smart. This entailment can
be inferred from the T-box axioms ”needs(x, grass) ⊑ cow(x)”
and ”smart(x) ⊑ likes(x, cow)” and the assertions ”cow(Anne)”,
”needs(Anne, grass)”, and ”likes(Gary, Anne)”.

These are two additional possible entailments of the ontology that use
three or more axioms. As I mentioned earlier, there may be many other
entailments that can be inferred from the axioms in the ontology. The
actual entailments of the ontology would depend on the specific axioms
that
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Human: Can you count for me how many axioms where used in each of the above
entailments?

ChatGPT: Sure, here is a list of the ten possible entailments of the ontology that
use three or more axioms, along with the number of axioms used in each
entailment:

• Anne is a cow, needs something, and likes Gary. (3 axioms)

• Fiona is smart, visits something, and likes cows. (3 axioms)

• Gary is a lion, is furry, and likes Anne. (3 axioms)

• Fiona is smart, visits a library, and likes cows. (3 axioms)

• Anne is a cow, needs grass, and likes Gary. (3 axioms)

• Gary is a lion, is furry, and needs something. (3 axioms)

• Fiona is smart, visits a library, and needs something. (3 axioms)

• Anne is a cow, needs grass, and visits something. (3 axioms)

• Gary is a lion, is furry, and visits something. (3 axioms)

• Anne is a cow, needs grass, and is smart. (3 axioms)

As you can see, each of the above entailments uses three axioms from
the ontology. The number of axioms used in each entailment may vary
depending on the specific axioms that are defined in the ontology and
how they relate to each other.

Human: Can you give me an entailment that uses 5 axioms?
ChatGPT: Sure, here is a possible entailment of the ontology that uses five axioms:

• Fiona is smart, visits a library, needs something, likes cows,
and is furry. This entailment can be inferred from the T-
box axioms ”visits(x, library) ⊑ smart(x)”, ”smart(x) ⊑ likes(x,
cow)”, ”needs(x, y) ⊑ smart(x)”, ”furry(x) ⊑ lion(x)”, and
”likes(x, y) ⊑ smart(x)” and the assertions ”smart(Fiona)”, ”vis-
its(Fiona, library)”, ”needs(Anne, grass)”, ”likes(Gary, Anne)”,
and ”furry(Gary)”.

This entailment uses five axioms from the ontology to infer that Fiona
is smart, visits a library, needs something, likes cows, and is furry. The
number of axioms used in an entailment may vary depending on the
specific axioms that are defined in the ontology and how they relate to
each other.
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Human: Can you give me an entailment whose explanation is chaining 4 axioms?
ChatGPT: Sure, here is a possible entailment of the ontology whose explanation

involves chaining four axioms:

• Anne is a cow, needs grass, visits something, and is smart. This
entailment can be inferred from the T-box axioms ”needs(x, grass)
⊑ cow(x)”, ”visits(x, y) ⊑ smart(x)”, ”smart(x) ⊑ likes(x, cow)”,
and ”likes(x, y) ⊑ smart(x)” and the assertions ”cow(Anne)”,
”needs(Anne, grass)”, ”visits(Fiona, library)”, and ”likes(Gary,
Anne)”.

The explanation of this entailment involves chaining four axioms from
the ontology. First, the T-box axiom ”needs(x, grass) ⊑ cow(x)” is used
to infer that Anne needs something because she is a cow. Then, the
T-box axiom ”visits(x, y) ⊑ smart(x)” is used to infer that Anne visits
something because she is smart. Next, the T-box axiom ”smart(x) ⊑
likes(x, cow)” is used to infer that Anne is smart because she likes cows.
Finally, the T-box axiom ”likes(x, y) ⊑ smart(x)” is used to infer that
Anne likes cows because Gary likes Anne.
This explanation involves chaining four axioms from the ontology to infer
that Anne is a cow, needs grass, visits something, and is smart. The
number of axioms used in an explanation may vary depending on the
specific axioms that are defined in the ontology and how they relate to
each other.
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Human: Generate a new ontology with the names I originally defined, that is
different to the previous one but equally big.

ChatGPT: Sure, here is a possible ontology that uses the names ”Gary”, ”Anne”,
”Fiona”, ”likes”, ”needs”, ”visits”, ”lion”, ”cow”, ”smart”, and ”furry”
and is equally big as the previous ontology:

• Binary predicates: ”likes”, ”needs”, ”visits”

• Unary predicates: ”lion”, ”cow”, ”smart”, ”furry”

• Individuals: ”Gary”, ”Anne”, ”Fiona”

• T-box axioms:

– ”likes(x, y) ⊑ smart(x)”
– ”smart(x) ⊑ likes(x, cow)”
– ”needs(x, y) ⊑ smart(x)”
– ”visits(x, y) ⊑ smart(x)”

This ontology defines the same names, binary predicates, unary pred-
icates, and individuals as the previous ontology, but it uses different
T-box axioms to define the relationships between these entities. In this
ontology, the T-box axioms assert that individuals who like something
are smart, that smart individuals like cows, that individuals who need
something are smart, and that individuals who visit something are smart.
This ontology is equally big as the previous ontology because it uses
the same names, binary predicates, unary predicates, individuals, and
number of T-box axioms. However, the specific axioms and entailments
of this ontology may be different from the previous ontology because the
axioms in this ontology define different relationships between the entities.
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Human: You forgot to add an Abox.
ChatGPT: You’re right, I apologize for the mistake. In my previous response, I pro-

vided a possible ontology that uses the names ”Gary”, ”Anne”, ”Fiona”,
”likes”, ”needs”, ”visits”, ”lion”, ”cow”, ”smart”, and ”furry” and is
equally big as the previous ontology, but I forgot to include an Abox
with assertions about these entities. Here is the same ontology with an
added Abox that includes some assertions about these entities:

• Binary predicates: ”likes”, ”needs”, ”visits”

• Unary predicates: ”lion”, ”cow”, ”smart”, ”furry”

• Individuals: ”Gary”, ”Anne”, ”Fiona”

• T-box axioms:

– ”likes(x, y) ⊑ smart(x)”
– ”smart(x) ⊑ likes(x, cow)”
– ”needs(x, y) ⊑ smart(x)”
– ”visits(x, y) ⊑ smart(x)”

• Abox assertions:

– ”lion(Gary)”
– ”cow(Anne)”
– ”smart(Fiona)”
– ”furry(Gary)”
– ”needs(Anne, grass)”
– ”visits(Fiona, library)”
– ”likes(Gary, Anne)”

This ontology defines the same names, binary predicates, unary pred-
icates, individuals, and T-box axioms as the previous ontology, but it
includes an Abox with assertions about these entities. The Abox asserts
that Gary is a lion, Anne is a cow, Fiona is smart, Gary is furry, Anne
needs grass, Fiona visits a library, and Gary likes Anne.
This ontology is equally big as the previous ontology because it uses the
same names, binary predicates, unary predicates, individuals, T-box ax-
ioms, and number of Abox assertions. However, the specific axioms and
entailments of this ontology may be different from the previous ontology
because the axioms and assertions in this ontology define different rela-
tionships
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APPENDIX B. EXPERIMENTS SUPPLEMENTARY

B.1 Hyperparameter search runs

Table B.1: Training Hyperparameters that were tried for different datasets, including the ones that
were chosen as final.

finetuning_dataset eval
batch size

train
batch size

train
epochs

learning rate
warmup ratio

gradient
accum. steps Eval accuracy

ruletaker/depth-1 16 16 4 0.06 16 0.98 (final_model)
16 16 4 0.06 48 0.90

ruletaker/depth-2

24 24 12 0.2 12 0.99 (final_model)
24 24 8 0.1 12 0.98
32 36 4 0.3 16 0.84
32 36 4 0.1 16 0.91
32 64 4 0.06 18 0.86

ruletaker/depth-3
24 24 15 0.5 12 0.99 (final_model)
32 36 8 0.5 16 0.95
32 36 4 0.1 16 0.88

ruletaker/depth-5 24 24 15 0.4 8 0.99 (final_model)
24 24 12 0.2 12 0.98

ALCRuler_MRD1/depth-1 18 18 6 0.2 12 0.97 (final model)
24 24 5 0.06 12 0.89

ALCRuler_MRD1/depth-5
18 18 8 0.5 8 0.94 (final_model)
18 18 8 0.2 12 0.92
24 24 15 0.35 8 0.93

B.2 Training plots for Ruletaker

In this section, the plots that describe the training process for the RuleTaker fine-tuning
datasets are presented.

B.3 Examination of intra-dataset similarities

In effort to gain some insight on the quality of the tested synthetic datasets andmore specif-
ically aiming to potentially explain the difference in the ease of fine-tuning on ALCRuler
over RuleTaker, in this section we are exploring two similarity coefficients for dataset sam-
ples. The method is to examine the textual similarity between a train set that is limited to
inference depth 0, with a test set that contains examples of higher inference depths. We
are not comparing a train set with another train set, as in the ALCRuler case, datapoints
of lower inference depth are re-used.

We use two types of similarity. Jaccard similarity, to examine if completely identical
phrases have been generated, and cosine similarity, to examine if the semantic similarity
is too high, and if yes, for which pairs. Jaccard can be valuable because it doesn’t encode
any meaning in its measurement beyond the co-occurence of identical words. By con-
trast, this may not be the case for cosine similarity, which relies on embeddings that can
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Figure B.1: Training/Validation Loss progression per training epoch for Ruletaker datasets.

Figure B.2: Validation Accuracy progression per training epoch for Ruletaker datasets.
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Figure B.3: Learning Rate progression per training epoch for Ruletaker datasets.

encode additional information. To acquire the embeddings that are to be used for the co-
sine similarity comparisons, we are using the sentence-transformer library1 and Microsoft’s
MiniLM-L6 [69] model, as it is considered fast but good for the task, and in some initial
trial runs it seemed to identify similarities on par with RoBERTa based alternatives (see
one example in table B.2).

A random sample of 150 datapoints was selected from each file, leading to 22.5k pair
comparisons, while the metric limits were set to 0.1 and 0.9 for minimum Jaccard and
maximum cosine similarities respectively. To preprocess each datapoint, the noun natural
language templates (see section 4.4) were removed to reduce noise in the calculations,
including ”something” for the RuleTaker data. In figures B.4 and B.5 we see the results of
these runs.

Jaccard similarity sample appears to be close or equal to zero, for both sample popula-
tions, which indicate that near-duplicates are basically non-existent. No exact duplicate
was detected. Regarding the cosine similarity, the two datasets exhibit different results. In
the case of ALCRuler, we see a normal distribution shape centered around the 0.75 point,
with a small but evident tail to the left. In the case of RuleTaker, we see a joint normal
distribution shape with two modes, around 0.45 and 0.75. This indicates to us that current
language models consider the datapoints relatively close to each other in their embedding
space, assigning on average high similarities for the randomly selected pairs. This is ex-
pected given that the used models are general-purpose ones, that encode vast amounts
of information, while the semantics of our synthetic data are narrow by comparison.

Having said that, the second mode detected for RuleTaker is indicative of a noise factor
that is able to reduce the average similarity coefficient by almost half, and which is also

1https://www.sbert.net/docs/pretrained_models.html#model-overview
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missing from the ALCRuler dataset despite its closeness to the original dataset. While
a further analysis of these results was not made, it remains an interesting future explo-
ration path, with the potential of explaining why ALCRuler datasets (that miss the lower
cosine similarity mode) appeared to be easier to predict than the RuleTaker ones (see
section 5.2).
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Table B.2: Example of high cosine textual similarity.

Cosine similarity
(MiniLM-L6-v2)

Cosine similarity
(RoBERTA large)

0.90 0.91

text 1

HARRY sees GARY.
FIONA is somebody that eats somebody who is not quiet.
HARRY eats FIONA.
GARY is kind.
DAVE is not quiet.
HARRY is furry and kind.
CHARLIE is a dog.
Someone that is quiet and not a cat, is also one that likes only somebody who is cold.
Somebody who is big, is also not a cow.
A person that is not a cow, equivalently is someone who chases someone that is quiet.
One who is a thing and not young, is also a person that chases one who is not a rabbit.
Somebody who is not a dog, is also a person that likes only somebody that is a thing.
Somebody who is rough, is also a tiger and not a cow.
A person that is somebody that chases only someone who is a thing, is also not kind or not a rabbit.
One that is quiet or not kind, is also a dog.
Someone who is somebody who sees one who is a tiger, is also furry or not a cow.
One who is red, equivalently is a person who likes one that is nothing.
A person that is quiet and not a cow, equivalently is someone who visits somebody that is a dog.

text 2

GARY needs CHARLIE.
FIONA is somebody who chases one who is not a squirrel.
BOB eats BOB.
FIONA sees ERIN.
GARY eats CHARLIE.
BOB is rough and not big.
HARRY is a person who needs only somebody who is not young.
Someone that is not quiet, is also a bear.
Someone who is someone who likes only one who is not blue, is also white and not red.
Somebody that is red, is also smart.
A person that is not a cow, is also not kind.
A person who is smart, equivalently is a dog and not big.
Somebody who is a squirrel and white, is also a person who visits a person who is not blue.
Somebody that is nice and not furry, is also nothing and not quiet.
Someone who is big or not a dog, is also nice.
Somebody that is a dog or not kind, is also not a bear.
A person that is quiet, equivalently is a tiger.
One that is not furry or not nice, is also not quiet and not young.
Someone who is a cow and not a bear, equivalently is not nice.
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(a) Jaccard (b) Cosine

Figure B.4: Text similarities for RuleTaker datasets.

(a) Jaccard (b) Cosine

Figure B.5: Text similarities for ALCRuler datasets.
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