
NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCES
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

BSc THESIS

The large language model GreekLegalRoBERTa

Vasileios Ε. Saketos

Supervisors: Manolis Koubarakis, Professor
Despina - Athanasia Pantazi, PhD Candidate

ATHENS

February 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Το μεγάλο γλωσσικό μοντέλο GreekLegalRoBERTa

Βασίλειος Ε. Σακέτος

Επιβλέποντες: Μανώλης Κουμπαράκης, Καθηγητής
Δέσποινα – Αθανασία Πανταζή, Υποψήφια Διδάκτωρ

ΑΘΗΝΑ

Φεβρουάριος 2023

BSc THESIS

The large language model GreekLegalRoBERTa

Vasileios Ε. Saketos
S.N.: 1115201800168

SUPERVISORS: Manolis Koubarakis, Professor
Despina - Athanasia Pantazi, PhD Candidate

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Το μεγάλο γλωσσικό μοντέλο GreekLegalRoBERTa

Βασίλειος Ε. Σακέτος
Α.Μ.: 1115201800168

ΕΠΙΒΛΕΠΟΝΤΕΣ: Μανώλης Κουμπαράκης, Καθηγητής
Δέσποινα – Αθανασία Πανταζή, Υποψήφια Διδάκτωρ

ABSTRACT

We develop GreekLegalRoBERTa, a large language model trained on Greek legislation.
We show that ourmodel surpasses the performance of bothGreekLegalBERT andGreekBERT
in two tasks involving Greek legal documents: named entity recognition and multi-class
legal topic classification. We view our work as a contribution to the study of domain-
specific NLP tasks in low-resource languages, like Greek, using modern NLP techniques
and methodologies.

SUBJECT AREA: Artificial Intelligence

KEYWORDS: RoBERTa, BERT, Neural Networks, Natural Language Processing,
legal documents

ΠΕΡΙΛΗΨΗ

Σε αυτή την πτυχιακή αναπτύσσουμε το μοντέλο GreekLegalRoBERTa πάνω σε κείμενα
Ελληνικής νομοθεσίας. Έπειτα αξιολογούμε την απόδοση του μοντέλου μας σε 2 προκλή-
σεις νομικού περιεχομένου οι οποίες είναι η αναγνώριση ονοματισμένων οντοτήτων και ο
διαχωρισμός νομικών κειμένων σε κατηγορίες. Στο τέλος αποδεικνύουμε ότι η απόδοση
του μοντέλου μας ξεπερνάει την απόδοση των μοντέλωνGreekLegalBERT και GreekBERT.
Η πτυχιακή αυτή αποτελεί μία συνεισφορά στο πεδίο της επεξεργασίας φυσικής γλώσ-
σας συγκεκριμένου περιεχομένου. Η συνεισφορά αυτή είναι ιδιαίτερα σημαντική για μια
γλώσσα περιορισμένου περιεχομένου όσον αφορά την επεξεργασίας φυσικής γλώσσας
όπως τα ελληνικά.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Θεματική Περιοχή

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: RoBERTa, BERT, Νευρωνικά Δίκτυα, Επεξεργασία Φυσικής Γλώσσας,
νομικά έγγραφα

This thesis is dedicated to my family. I am so grateful for your love, support and
encouragement. Thank you for being next to me and supporting me in every goal I set.

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Manolis Koubarakis for his guidance in my Ai
journey first as a professor and then as a supervisor. Thank you for inspiring to explore
NLP.

I would also like to thank my research supervisor Despina-Athanasia Pantazi for helping
me to overcome every obstacle in this research and for her guidance through constructive
suggestions.

CONTENTS

1. INTRODUCTION 13

2. BACKGROUND AND RELATED WORK 14

2.1 Artificial Neural Networks (ANNs) . 14

2.2 Feed Forward ANNs . 14

2.3 Recurrent Neural Networks (RNNs) . 15

2.4 Bidirectional RNNs . 15

2.5 Long Short Term Memory (LSTMs) . 16

2.6 Attention mechanism . 17

2.7 Encoder Decoder models . 17
2.7.1 Encoder models . 18
2.7.2 Decoder models . 18

2.8 Masked Language Modeling (MLM) . 19

2.9 Bidirectional Encoder Representations for Transformers (BERT) 19

2.10 RoBERTa . 20

3. Pretraining 21

3.1 Pretraining dataset . 21

3.2 Inserting the data in a Hugging Face Dataset form 21

3.3 Text preprocessing . 21

3.4 Byte Pair Encoder or BPE . 24

3.5 The training procedure of the Tokenizer . 25

3.6 Creating inputs for the training procedure . 26

3.7 The original RoBERTa experiments . 27

3.8 Model configuration . 28

3.9 Training parameters . 29

3.10 Training process . 30

3.11 Model Testing . 30

4. Experiments 33

4.1 The models we experiment with . 33

4.2 Greek Legal NER . 33

4.3 Greek Legal Code . 37

5. Conclusion and Future work 39

ABBREVIATIONS - ACRONYMS 40

REFERENCES 43

LIST OF FIGURES

2.1 Feed Forward Neural Networks . 14
2.2 Recurrent Neural Networks (RNNs) . 15
2.3 Bidirectional RNNs . 16
2.4 Long Short Term Memory (LSTMs) . 16
2.5 Attention mechanism . 17
2.6 Encoder Decoder architecture . 18
2.7 Masked Language Modeling . 19
2.8 BERT . 20

3.1 Building the Tokenizer . 23
3.2 Train the Tokenizer . 25
3.3 Tokenization example . 26
3.4 Create inputs for the training example . 26
3.5 Original RoBERTa experiments as they appear in [27] 27
3.6 Model configuration . 28
3.7 Training arguments . 30
3.8 Model testing on masked language modeling 31
3.9 Model questioning . 32

4.1 NER presentation . 34
4.2 GLC Dataset Hugging-Face as presented in Hugging-Face website 37

PREFACE

Eight months ago I attended an NLP workshop hosted by the Hellenic Artificial Intelligence
Society and Manolis Koumparakis. The speaker was Omar Sanseviero. In this workshop, I
got inspired by the development opportunities trough the Hugging Face framework. Soon
after that, I started to explore different NLP models and learning more about the NLP
domain. In this research, I came across the outstanding paper of Meta called RoBERTa.
This paper demonstrate that simplicity is the key to better results. As Mr. Koumparakis
always highlighted in his lessons "The power is in simplicity". So After reading this paper
my goal was to learn every detail of RoBERTa and the best way to do that was to implement
it. Then, I realized that producing a newRoBERTamodel is an ideal project for my Bachelor's
thesis. Furthermore,I also dot inspired by the related work of my Professor team on Legal
NLP tasks. Consequently, I decided to utilize my Professor team background and built
a RoBERTa model on legal tasks. When I reached out to Mr. Koumparakis he said "Go
ahead" and that's what I did!

The large language model GreekLegalRoBERTa

1. INTRODUCTION

Nowadays NLP [5] applications are becoming part of our life. Text Autocomplete, Ma-
chine Translation and now Text To Image conversion are tools we use every day. Within
the past few years, a great number of remarkable models exhibiting significant language
performance have been introduced. However, a major concern that emerges with these
models is that they are mainly trained in English, rendering them unavailable in other
languages. Furthermore, despite achieving superhuman performance in various natural
language tasks they tend to under perform in specific tasks such as Legal and Biological.
Consequently, the responsibility of training and launching a new language model falls
upon the users of that language.

In this thesis, we develop a model specifically designed to solve legal tasks. To achieve
our goal we are going to use RoBERTa approach [27]. RoBERTa is a sophisticated version
of BERT [13]. In the original paper the RoBERTa team discovered that BERT was signi-
ficantly undertrained and proposed an improved recipe for training BERT. This approach
is based on simplicity and shows that a simpler training method can lead to significant
growth in performance. To train our model, we utilize a legal dataset obtained from the
Nomothesi@ platform [7]. Nomothesi@ is a linked data platform that makes Greek legis-
lation easily accessible to the public, law professionals, and application developers. This
thesis is divided into three chapters:

• In chapter 2, we provide the historical background of our research. We provide
information, structure, and applications of the postRoBERTa methods.

• In chapter 3, we analyze the pretraining process of RoBERTa and the modifications
we made step by step to adapt it to our problem.

• In chapter 4, we present our conclusions and future experiments.

V. Saketos 13

The large language model GreekLegalRoBERTa

2. BACKGROUND AND RELATED WORK

In this chapter we analyse the related work the background and the models that lead to
the development of the RoBERTa.

2.1 Artificial Neural Networks (ANNs)

The goal of an ANN [1] is to solve problems that are hard even for humans to solve.
Artificial Neural Networks or ANNs is a construction inspired by human brain. The human
brain consists of nodes called neurons connected to each other by connections called
synapses or edges. The output of each neuron is computed by a non linear function of
the sum of its inputs. Neurons and edges typically have a weight. During training, ANN
adjusts these weights to perform better in a specific task. The training follows a procedure
called backpropagation.

2.2 Feed Forward ANNs

Feed Forward ANNs [11] is the first and the simplest form of an ANN. In this network, the
information moves in only one direction forward from the input nodes, through the hidden
nodes (if any), and to the output nodes as shown in figure 2.1. There are no cycles or loops
in the network. Perceptron [6] was an example of an FFANN. Perceptron was created by
ABM as software to be able to walk, talk, see, write, reproduce itself and be conscious of
its existence. Even though it seemed promising in the beginning it was quickly proved that
Perceptrons could not be trained to recognize many classes of patterns. This caused the
field of neural network research to stagnate for many years before it was recognized that a
Feed Forward Neural Network with two or more layers (also called multilayer Perceptron)
had greater processing power than Perceptron with one layer. Single layered Perceptrons
are capable of learning linear patterns but multilayer Perceptron is even capable of solving
non linear problems.

Figure 2.1: Feed Forward Neural Networks

V. Saketos 14

The large language model GreekLegalRoBERTa

2.3 Recurrent Neural Networks (RNNs)

RNNs [12] is a generalization of traditional FFANN and is among the most promising al-
gorithms in use because it is the only one with internal memory. Because of their internal
memory, RNNs can remember important things about the input they received. That al-
lows them to be very precise in predicting future input. This is why they’re the preferred
for sequential data like time series, speech, text, financial data, audio, video, weather and
much more. Recurrent Neural Networks can form a much deeper understanding of a se-
quence and its context compared to other algorithms. Due to their efficient construction
that figure 2.2 depicts. RNNs can handle sequences of variable length while keeping the
model structure stable.

Figure 2.2: Recurrent Neural Networks (RNNs)

Despite the advantages of RNNs 3 major problems appeared :

1. Loops and input-output interaction in RNNs caused problems in the way the chain
rule and backpropagation function. Backward Propagation Through Time, a gradient-
based technique for training an unrolled RNN, resolved those issues. Basically, a
RNN is viewed as a sequence of neural networks trained one after the other with
backpropagation.

2. Exploding gradients, is the case that the algorithm assigns very high value to some
of the weights. This issue can be easily solved by gradient clipping. Gradient clip-
ping involves forcing the gradient values (element-wise) to a specific minimum or
maximum value if the gradient exceeded an expected range.

3. Vanishing gradients, happens when the gradients shrinks causing the model unable
to propagate relevant information across distant time steps. In contrast to exploding
gradients, vanishing gradients was a harder problem to be solved and lead to the
appearance of more powerful models.

2.4 Bidirectional RNNs

RNNs are designed to keep track of past information. But what if the current state inform-
ation is future dependent? In this case, we add another layer to our model that transmits
the information backward as shown in figure 2.3.

V. Saketos 15

The large language model GreekLegalRoBERTa

Figure 2.3: Bidirectional RNNs

2.5 Long Short Term Memory (LSTMs)

LSTMs [12] were developed to deal with the vanishing gradient problem that can be en-
countered when training traditional RNNs.

Figure 2.4: Long Short Term Memory (LSTMs)

A common LSTM unit is shown in figure 2.4 and it is composed of an input gate, an output
gate and a forget gate.

1. Forget Gate: Decides howmuch of the past information themodel should remember.

2. Input Gate: It is responsible for determining how much of the incoming information
should be stored in the memory cell and how much should be discarded.

3. Output Gate: Decides which parts of the current cell are contributing to the output.

V. Saketos 16

The large language model GreekLegalRoBERTa

In theory, LSTMs can keep track of arbitrary long term dependencies in the input se-
quences. In practice, this number is limited to 10.

2.6 Attention mechanism

Attention [2] is a technique that enhances some parts of the input data while diminishing
other parts. The main idea is that the network should focus more on the small, but im-
portant, parts of the data. Learning which part of the data is more important than another
depends on the context, and this is trained by gradient descent. The general idea is de-
picted in figure 2.5. Given a sequence of tokens, a neural network computes a soft weight
wi for each token i with the property that wi is non negative and

∑
i wi = 1.

Figure 2.5: Attention mechanism

2.7 Encoder Decoder models

The following architecture is depicted in figure 2.6 was introduced in the paper Attention
Is All You Need [24] and inspired the generation of significant models for various machine
learning task. A present a small sample of them on the table 2.1. The model consists of
two blocks:

• Encoder (left): The Encoder receives an input and builds a representation of it’s
features. The goal o the model is to acquire an understanding of the input.

• Decoder (right): The Decoder uses the Encoder’s representation (features) along
with encoder’s inputs to generate a target sequence. The goal of the decoder is to
generate and output for a given input.

Encoder Decoder models (also called sequence to sequence models) use both parts of
the Transformer architecture. This architecture was originally designed for translation but
it can be also used for summarization as well as language generation. During training, the
Encoder receives inputs (sentences) in a certain language, while the Decoder receives the
same sentences in the desired target language. In the Encoder, the attention layers can
keep track of all the words in a sentence. This is crucial for the models performance since

V. Saketos 17

The large language model GreekLegalRoBERTa

Figure 2.6: Encoder Decoder architecture

a word in a sentence can be both past and future dependent. The Decoder, however,
works sequentially and it gets as an input only the already translated words. For example,
when we have predicted the first three words of the translated target, we give them to the
Decoder which then uses all the inputs of the Encoder to try to predict the fourth word.

2.7.1 Encoder models

Encoder models use only the Encoder of a Transformer model.The pretraining of these
models usually involves techniques like masked language modeling and causal language
modeling that we will analyze further in this thesis.

2.7.2 Decoder models

Decoder models use only the Decoder of a Transformer model. At each stage, the model
has access to the already predicted words in the sentence. These models are often called
auto regressive models. The pretraining of Decoder models usually includes predicting
the next word in the sentence.

V. Saketos 18

The large language model GreekLegalRoBERTa

Table 2.1: NLP architectures table

Model Examples Tasks
Encoder ALBERT,BERT,DistilBERT, Sentence classification,

ELECTRA,RoBERTa named entity recognition,
extractive question answering

Decoder CTRL,GPT, Text Generation
GPT-2, Transformer XL

Encoder-Decoder ΒΑΡΤ,Τ5,Marion,mBart Summarization,
generative question answering

2.8 Masked Language Modeling (MLM)

As shown in figure 2.7 the process uniformly selects a percentage of the input tokens for
possible replacement. 80% of the selected tokens are replaced with [MASK], 10% are left
unchanged, and 10% is replaced by a randomly selected vocabulary token. In BERT’s
implementation, random masking and replacement are performed once in the prepos-
sessing, and utilized for the whole the training, The data are duplicated so the mask is not
the same for every training epoch. This technique is called static masking. Experiments in
the RoBERTa paper reveal that this technique is inferior to dynamic masking. In dynamic
masking, we apply masking in every batch. Dynamic masking not only uses less memory
but leads to better performance.

Figure 2.7: Masked Language Modeling

2.9 Bidirectional Encoder Representations for Transformers (BERT)

A Transformer based machine learning technique for Natural Language Processing (NLP)
pretraining developed in 2018. The original BERT paper [18] introduced two models:

(1) BERTBASE : 12 Encoders with 12 bidirectional self-attention heads. The total number
of parameters sums up to 110 million

V. Saketos 19

The large language model GreekLegalRoBERTa

(2) BERTLARGE : 24 Encoders with 16 bidirectional self-attention heads and 24 million.
The total number of parameters sums up 340 to million.

Both models are pretrained from unlabeled data extracted from the BooksCorpus with
800M words and English Wikipedia with 2 500M words. BERT uses WordPiece embed-
dings with a 30 500 token vocabulary. BERT’s significant performance is based on a tech-
nique called transfer learning. During transfer learning, the knowledge gained and rapid
progress made from a source task is used to improve the learning and development of a
new target task. This technique proved to be significantly useful in natural language tasks.
There are two steps in transfer learning process as depicted in figure 2.8: pretraining and
finetuning. During pretraining, the goal is that the model develops an understanding of
the human language. The perspective of finetuning is to utilize the obtained knowledge in
order to optimize the performance in a specific task.

Figure 2.8: BERT

2.10 RoBERTa

RoBERTa[27] was introduced in 2019. In the original paper they demonstrated that BERT
was significantly undertrained and proposed an improved recipe for training BERTmodels,
which is called RoBERTa. More specifically this recipe includes:

• Amplify the vocabulary size to 50 264 tokens.

• Using GPT2 [21] Byte-Pair Encoding (BPE) [23] instead of word-piece.

• Removing the next sentence prediction objective [3].

• Training with batch size 8k instead of 256.

• Use x10 more Data.

• Dynamically changing the masking pattern applied to the training data.

• Training on sequences of length 512 instead of 128.

• Using FP16 mixed precision arithmetic.

Thismethod led to significant performance gains and state of the art performance in GLUE,
RACE, and SQuAD. In the following chapter we present the steps we made to pretrain our
own RoBERTa model in Greek language.

V. Saketos 20

The large language model GreekLegalRoBERTa

3. PRETRAINING

The pretraining of models has yielded significant performance gains in the realm of Ma-
chine Learning. Especially state of the art models such as BERT [18], RoBERTa [27],
XLNet [26], ALBERT [17], and T5 [22], among many others, have emerged due to pre-
training. These methods, though they differ in design, share the same idea of leveraging
a large amount of unlabeled text to build a general model of language understanding.

3.1 Pretraining dataset

We utilize the complete dataset accessible through the Nomothesi@ platform [7]. It con-
sists of a huge amount of laws, announcements, and resolutions in the Greek language.
The dataset spans a chronological range from 1990 to 2017, encompassing a substantial
amount of information.

3.2 Inserting the data in a Hugging Face Dataset form

In order to preprocess our datasets more efficiently we need to insert them into a Hugging
Face Dataset [4]. Hugging Face Datasets is a library for easily accessing and sharing
datasets for Audio, Computer Vision, and Natural Language Processing (NLP) tasks.

Hugging Face Datasets allows us to load a dataset in a single line of code and use powerful
data processing methods in order to quickly get a dataset ready for training for a deep
learning model. Backed by the Apache Arrow format, our framework processes large
datasets with zero copy, and reads without any memory constraints for optimal speed
and efficiency. Hugging Face Datasets also features a deep integration with the Hugging
Face Hub, allowing you to easily load and share a dataset with the wider machine learning
community.

3.3 Text preprocessing

To preprocess and encode our text we are going to useHugging Face Tokenizers. Hugging
Face Tokenizers provide an implementation of today’s most used tokenizers. Tokenizers
are responsible the preprocessing of dataset. We also use them to decode ids that our
model produces back into text. The tokenizers are separated into “slow” and “fast”. Slow
tokenizers are those written in python inside the Hugging Face Transformers library, while
the fast versions are the ones provided by Hugging Face Tokenizers, which are written in
Rust. The key in the fast tokenizers is parallelism.

In contrast to the original RoBERTa Paper [27], due to the distinctive attributes of our data-
sets, we need to apply preprocessing. Hugging Face provides the flexibility to customize
the tokenizer according to individual requirements. So we built the tokenizer to support
the following characteristics:

1. NFKD Normalization: Unicode normalization is the decomposition and composition
of characters. Some unicode characters have the same appearance but multiple
representations. For example, ”â” can be represented as one code point (U+00E2),

V. Saketos 21

The large language model GreekLegalRoBERTa

and two decomposed code points (U+0061) and (U+0302). We need to express
all equal unicode characters in a single representation. In the beginning, we used
NFD normalization as in GreekLegalBERT, but then we realized that NFD produced
2 different versions of the letter ‘μ’.This could harm our model’s performance given
the fact that can be more instances like ‘μ’ that we don’t know of. The solution was
to use NFKD because K normalizations are more effective in removing formatting
distinctions.

2. Remove accents: We remove accents due to the possibility of words in Greek having
the same letters but differing in their accents. For instance, the term “νομοθεσία” is
produced by the term law “νόμος”. By eliminating the accents, we ensure that the
text is standardized and accent variations do not hinder the accurate understanding
and processing of the content.

3. Insert a space if it doesn’t exist before every word: Because our encoder takes into
consideration spaces to define if the token is the beginning or the end of a word we
add a space at the beginning of every word before we proceed to the encoding and
the training.

4. Detach punctuation: we separate text from punctuation by utilizing space.

In figure 3.1 we include the code we used to build our tokenizer.

V. Saketos 22

The large language model GreekLegalRoBERTa

Figure 3.1: Building the Tokenizer

V. Saketos 23

The large language model GreekLegalRoBERTa

3.4 Byte Pair Encoder or BPE

In contrast to WordPiece [25] used by BERT, BPE [23] is an open-source algorithm. Byte-
Pair Encoding (BPE) was initially developed as an algorithm to compress text, and then
used for Tokenization when pre-training the GPT [8] model. It is used by a lot of Trans-
former models, including GPT, GPT-2, RoBERTa and BART. For non-ASCII characters, it
gets completely unreadable, but it works nonetheless!

Early experiments revealed only slight differences between these encodings, with BPE
achieving slightly worse end-task performance on some tasks.

Byte Pair Encoding (BPE) is a practical middle ground between character and word-level
language modeling which effectively interpolates between word-level inputs for frequent
symbol sequences and character level inputs for infrequent symbol sequences.

The algorithm can be described using the following two steps:

1. Start with an initial vocabulary that contains all the characters.

2. Find the most common combination of the current vocabulary and insert it in the
vocabulary. Continue that step until you reach the vocabulary size.

In figure 3.2 we include the code we used to train our tokenizer.

V. Saketos 24

The large language model GreekLegalRoBERTa

3.5 The training procedure of the Tokenizer

Figure 3.2: Train the Tokenizer

During the training, themodel creates a vocabulary of size 50 264. To reduce noise we add
characters to our vocabulary that appear more than once because if a character appears
only once on a 5GB dataset it is very likely to be corrupted. After 20minutes our vocabulary
is complete, and we are ready to proceed.

Our vocabulary consists of:

1. Whole words starting with space.

2. Punctuation.

3. Subwords occurring at the front of a word starting with space.

4. Subwords occurring at the end of a word or in isolation.

5. Individual characters.

6. Special tokens (<s>: beginning of sequence, </s>: end of sequence, <unk>: un-
known token, <pad> Q: padding token, <mask> : masking token).

V. Saketos 25

The large language model GreekLegalRoBERTa

In figure 3.3 we use our tokenizer to convert our text to a sequence of numbers. At the fol-
lowing example, we see that some words with related meaning have close representation,
but there is no guarantee that related word will be closer than non related ones.

Figure 3.3: Tokenization example

3.6 Creating inputs for the training procedure

We separate each sequence into subsequences of 512 lengths. The last subsequence
is less than 512 so we pad this subsequence in length 512. Padding is being applied
dynamically during pretraining.

Figure 3.4: Create inputs for the training example

V. Saketos 26

The large language model GreekLegalRoBERTa

3.7 The original RoBERTa experiments

Even though RoBERTa [27] has a credible pretraining procedure, it is an expensive one.
According to the BERT paper [13], longer sequences are disproportionately expensive
because attention is quadratic to the sequence length. To speed up pretraining in their
experiments, they pretrained the model with sequence length of 128 for 90% of the steps.
Then, they train the rest 10% of the steps of sequence of 512 to learn the positional em-
beddings.

RoBERTa uses sequence length of 512 during the whole training procedure, which makes
pretraining computationally expensive. As a result, due to the less powerful resources we
have, it is unattainable to conduct RoBERTa experiments presented in figure 3.5. More
specifically, training for 100k steps and batch size 8k would last approximately 240 days
on our server.

Fortunately, we can still adjust our training to the relatively small dataset of 5GB we have
and train our model for 100k steps as mentioned in RoBERTa paper and reduce our batch
size to 1 024 . This process lasted 30 days on our server.

Figure 3.5: Original RoBERTa experiments as they appear in [27]

Our server specifications are the following:

• An 8-core Intel® Core™ i7-9 700k, with 3.60GHz CPU frequency and 12.88Kb L3
cache.

• A Cannon Lake PCH Shared SRAM with a total of 32GB .

• An Nvidia GeForce® P0 with 11 016MB memory.

• Linux Ubuntu 18.04.6 LTS x86 64 OS.

V. Saketos 27

The large language model GreekLegalRoBERTa

3.8 Model configuration

RoBERTa [27] configuration follows BERT [13] configuration with a minor change in the
embeddings. BERT consists of 110M parameters while RoBERTa consists of 125M para-
meters. The first and the last embedding of the model are randomly initialized. We also
align our model’s vocabulary size to tokenizer’s vocabulary size. This adds approximately
15M additional parameters to our model because:

embedding_matrix = vocab_size∗embedding_space = 50 264∗768−30 500∗768 = 15 178 752

As a result our model consists of 125M parameters in total.

Figure 3.6: Model configuration

V. Saketos 28

The large language model GreekLegalRoBERTa

3.9 Training parameters

In this section, we will analyse the parameters utilized to train RoBERTa and the changes
we made. We present the model parameters in figure 3.7. To train our model we use
Hugging Face Trainers [10].

• tqdm: The progress bar that shows the percentage of training that the model has
done.

• output_dir: The directory in which our trainer will save checkpoints.

• batch_size: The number of sequences that we are going to insert together to the
model as an input. In our case this number is 8 because it is the threshold of our
GPU capacity.

• gradient_accumulation_steps: The number of batches we insert into the model
before we perform backpropagation. By increasing batch_size, the amount of GPU
memory needed is increased exponentially. So, the gradient_accumulation_steps
parameter function is to increase the batch_size while keeping the need for GPU
memory stable. In our case gradient_accumulation_steps parameter is 128.

total_batch_size = batch_size ∗ gradient_acumulationsteps = 1024

• fp16: Mixed floating point precision used to train the original model. This technique
reduces the training memory while speeding up the training process.

• learning_rate: Due to the fact that we train for less time, we increase the peak
learning rate from 6e-4 to 8e-4. At the beginning of our training process, learning
rate is 1e-5. it is slowly increasing until the value of warmup steps when reaches
8e-4 then it decreases until the end of the training process.

• adam_epsilon: Epsilon remains 10−6 as in BERT and RoBERTa.

• weight_decay: Weight decay remains 0.01 as in BERT and RoBERTa.

• adam_beta: in RoBERTa beta1 remains the same as BERT. In contrast to beta2, it
was found extremely sensitive to large batch sizes.

• warmup_steps: 6% of the total training steps.

• hub_strategy: The strategy we use to save the model and the tokenizer to the
Hugging Face hub.

• hub_token: The token we use to push the model to the Hugging Face hub.

V. Saketos 29

The large language model GreekLegalRoBERTa

Figure 3.7: Training arguments

3.10 Training process

At this stage, we are fully prepared to pretrain our model. Pretraining involves a process
known as masked language modeling. In this process a certain percentage of our input
is randomly masked and our model learns to predict the unknown words within this con-
text. Through this procedure, the model develops a deep comprehension of the human
language. Masking involves the following steps:

1. Pads the sequences to the maximum length, wich in our case is 512.

2. Randomly selects 15%of the input. Let’s assume that the ith token has been chosen.
There are three possible actions for this token: it will be replaced with <mask> with
a probability of 80%, it will be substituted with a random token with a probability of
10%, or it will remain unchanged with a probability of 10%.

3. Creates labels: The labels are initialized with value -100 for non-masked tokens
and the original token’s value for the masked ones. Labels are -100 for non-masked
tokens because we don’t want them to contribute to the cross-entropy loss.

3.11 Model Testing

After completing the training, it is time to test if the model can stand up to the task that
it was trained for, namely masked language modeling. So we provide our model with 5
rather challenging examples of text and we replace the words that the model will have to
predict with <mask>. We present the 5 answers with the highest score.

According to our experiments which are presented in figure 3.8, it is evident that our model
consistently generates reasonable answers. Additionally, our model produces the correct
answer in 4 out of 5 times in the top 5 answers. Moreover, it produces also the version

V. Saketos 30

The large language model GreekLegalRoBERTa

Figure 3.8: Model testing on masked language modeling

V. Saketos 31

The large language model GreekLegalRoBERTa

of the correct answer with the first letter capitalized, indicating its understanding of the
equivalent meanings between the two variations. The above fact is crucial to our model
performance. This is due to the fact that a lot of words in Greek such as names, geopolitical
entities, titles of honor, and much more are written with the first letter capitalized. But
why the model did not produce the second answer ”Εγκληματολογικων” which means
Forensics in the answer demonstrated in figure 3.9? This can be attributed to the fact that
the word is being split into two tokens during the encoding process. We try overcome this
obstacle by applying 2 masks.

Figure 3.9: Model questioning

As observed in figure 3.9, the second subtoken of this word ”Εγκληματολογικων” obtains
a score of 0.77. Unfortunately, predicting words splitted in more than one token during
tokenization is not supported in the Transformers pipeline. For future research it would
be interesting to research how we can train a model and utilize it in order to predict whole
words within the sentence, independent of how many tokens the word is being split into.
A process like this can be used also in pretraining, and contribute to the model’s intuition
of the human language.

After validating our pretraining process it is time to evaluate it. More specifically, we are
going to evaluate out model’s performance on two downstream tacks which are Named
Entity Recognition and Multiclass classification, in order to see if our pretraining method
leads to a better performance.

V. Saketos 32

The large language model GreekLegalRoBERTa

4. EXPERIMENTS

We provide a comparative evaluation focusing on the assessment of our model in com-
parison to existing state of the art Greek models GreekBERT [16] and GreekLegalBERT
[15]. In tables 4.3 and 4.5, we present our results. We observe that GreekLegalRoBERTa
provides improvement over the originally reported GreekBERT and GreekLegalBERT.

4.1 The models we experiment with

In this chapter we present all the necessary details of the models we experiment with.

GreekBERT [16]: Amonolingual version of BERT, trained solely onmodernGreek, achiev-
ing state of the art results in most of the Greek NLP tasks. GreekBERT was pretrained
on 29GB of text from a corpus consisting of the Greek part of Wikipedia, the Greek part
of the European Parliament Proceedings Parallel Corpus [14] and OSCAR [19].

GreekLegalBERT [15]: A monolingual legal version of BERT. GreekLegalBERT and our
model were pretrained on the same dataset 3.1. Despite the smaller dataset, this model
managed to exceed the performance of GreekBERT in several legal tasks.

Given the fact that training is equal to the batch size multiplied by the steps, it is evident
that the other models have undergone 2.5 times more training compared to our model.
Moreover, GreekBERT uses 6 times more data than the other models. Nonetheless
GreekLegalBERT and GreekLegalRoBERTa are specifically trained on legal text. As we
can see in the table below given the fact that :

total_training = batch_size ∗ training_steps

we have :
BERT_models = 2.5 ∗ total_training_of_our_model

Moreover, GreekBERT uses x6 more data than the other models but GreekLegalBERT
and GreekLegalRoBERTa are specifically trained in legal text.

Table 4.1: NER Dataset Statistics

Model Size of data Training Steps Batch Size Total Training
GreekBERT 30GB 1Μ 256 256Μ

GreekLegalBERT 5GB 1Μ 256 256Μ
GreekLegalRoBERTa 5GB 100Κ 1024 102.4Μ

4.2 Greek Legal NER

Dataset
The dataset contains 254 daily issues for classes of the Greek Government Gazette over
the period 2000-2017. Every issue contains multiple legal acts. This dataset is focusing
on 7 entity types (legislation references, geopolitical entities, national locations, unknown
locations, public locations, organizations, and facilities). The dataset was available in

V. Saketos 33

The large language model GreekLegalRoBERTa

Inside Outside Beginning (IOB), which is a common tagging format for tagging tokens for
NER. In figure 4.1, we include a part of the dataset as an example. It consists of 35 411
instances and it is divided into 3 main parts: train 67.5%, validation 17.5%, and test 15%.

• Train Set
The sample of data that our model will have to acquire the knowledge from. During
training, the model passed through the data in order to learn their characteristics.
During Hyperparameter tuning we train our model multiple times for different para-
meter combinations.

• Validation Set
The sample of data that we will use to evaluate our model performance during the hy-
perparameter tuning in order to find which hyperparameters are best for our model.
We can not use the training set to tune this hyperparameters because we need to
provide a performance estimation for a dataset that our model hasn’t seen.

• Test Set:
The sample of data we use to provide an unbiased evaluation of our model at the
end of the fintuning. We use this set to avoid a phenomenon called overfitting on
the validation set. When this phenomenon occurs, the models perform great on the
validation set, because we did hyperparameter tuning on the validation set, but this
performance does not generalize. So we use a new dataset to make the perform-
ance of the model generalize on datasets that the model hasn’t seen.

Figure 4.1: NER presentation

Preprocessing for NER
The first step of preprocessing is the encoding. During the encoding, many words are
divided into multiple tokens, but the labels remain stable. To address this issue we have
to align the labels and the encodings. To do this we apply 3 types of transformation.
Consider the example that a word is divided into 3 tokens.

• If the Word label is B-XXX the label will be converted to B-XXX I-XXX I-XXX.

• If the Word label is I-XXX the label will be converted to I-XXX I-XXX I-XXX.

• If the Word label is O the label will be converted to O O O.

V. Saketos 34

The large language model GreekLegalRoBERTa

Hyperparameter tuning
In order to find the optimal hyperparameters for each task we utilize grid search [9]. In
this method, we train our models using different hyperparameter combinations and we
keep the one that achieves the best micro F1 in the validation set. For each model we
experiment with the following hyperparameters:

• epochs (from 1 to 20).

• batch size (8,16).

• learning rate (2e-5, 3e-5, 5e-5).

The table below 4.2 presents the hyperparameter combinations at which themodels achieved
their best results.

Table 4.2: Model performance on finetunig

Model learning rate epochs batch_size
GreekBERT 5e-5 3 8

GreekLegalBERT 3e-5 3 8
GreekLegalRoBERTa 5e-5 6 8

Results
We perform 5 runs of training and model evaluation per model using 5 different seeds.
Finally, we provide the classification report, including the mean and the standard deviation
of the 5 experiments 4.3, for each model’s performance on the test set. In order to perform
a comparative evaluation, we will highlight the best F1 performance evaluation for each
entity.

V. Saketos 35

The large language model GreekLegalRoBERTa

Table 4.3: Model performance on NER (LEGISLATION REFERENCES: LR, LOCATION NATIONAL:
LN, LOCATION UNKNOWN: LU, PUBLIC DOCUMENTS: PD)

GreekBERT Greek Legal BERT Greek Legal RoBERTa
precision recall F1 precision recall F1 precision recall F1

FACILITY 32 (2%) 28 (4%) 29 (3%) 33 (4%) 26 (3%) 29 (3%) 33 (3%) 28 (3%) 30 (2%)
GPE 79 (1%) 72 (1%) 75 (1%) 77 (1%) 71 (1%) 74 (1%) 84 (1%) 80 (0%) 75 (0%)
LR 84 (1%) 81 (1%) 82 (0%) 84 (1%) 81 (0%) 82 (0%) 84 (1%) 80 (1%) 82 (1%)
LN 100 (0%) 80 (13%) 88 (11%) 90 (22%) 29 (12%) 43 (16%) 100 (0%) 40 (20%) 55 (20%)

LU 76 (1%) 70 (2%) 73 (1%) 73 (2%) 68 (3%) 71 (2%) 74 (1%) 68 (1%) 71 (1%)

ORG 78 (1%) 71 (1%) 74 (1%) 80 (1%) 71 (1%) 76 (1%) 82 (1%) 73 (1%) 77 (1%)
PERSON 89 (1%) 81 (1%) 85 (1%) 91 (1%) 83 (2%) 86 (1%) 91 (2%) 83 (1%) 87 (1%)

PD 70 (1%) 66 (2%) 68 (1%) 70 (2%) 67 (1%) 68 (2%) 69 (1%) 66 (2%) 68 (0%)

micro 79 73 76 79 73 76 80 73 77
macro 76 68 72 75 62 66 76 64 68

weighted 79 73 76 79 73 76 80 73 77

Based on our findings shown in figure 4.3, it is evident that our model, despite undergo-
ing significantly less pretraining, outperforms GreekLegalBERT in every entity. Also, our
model emerges with the best score in 6 out of 8 categories while GreekBERT emerges with
the highest score in 5 out of 8. Furthermore, our model demonstrates superior perform-
ance in micro and weighted average, indicating that our model performs better than the
others in the majority of cases. Unfortunately, the model does not outperform GreekBERT
in the macro average. This is due to the fact that even though the model has very compet-
itive accuracy in the location entities, the recall is very low. Consequently, in case there
is a location entity, the model can identify it with high accuracy, but it is also misclassify-
ing entities as locations that are not. Another reason can be that the model has difficulty
discretizing between the different types of locations. This imbalance can be attributed to
the nature of the data GreekBERT was trained on. It seems that the data GreekBERT
was trained on a dataset that contained more instances of locations. For this reason, it
would be crucial to develop a new version of RoBERTa trained in both our dataset and the
dataset utilized for training GreekBERT.

V. Saketos 36

The large language model GreekLegalRoBERTa

4.3 Greek Legal Code

Figure 4.2: GLC Dataset Hugging-Face as presented in Hugging-Face website

Lastly, we will conduct experiments using Greek Legal Code (GLC) [20] which is avail-
able in Hugging Face. Figure 4.2 presents the preview of the dataset as it appears in
the GLC dataset page. This study introduces a new dataset of legal context and proves
that in this dataset GreekLegalBERT outperforms all the previous Greek and multilingual
models. In table 4.5 we show that our model outperforms all the previous ones including
GreekLegalBERT

Dataset
The dataset is a thorough catalog of Greek legislation. It includes Laws, Royal and Presid-
ential Decrees, Regulations, and Decisions, retrieved from the Official Government Gaz-
ette. The catalog is structured into thematic topics making the data ideal for multi-label
classification. It consists of 47 legislative volumes and each volume corresponds to a
main thematic topic. Each volume is divided into thematic subcategories which are called
chapters and subsequently, each chapter breaks down into subjects. The total number
of chapters is 389 while the total number of subjects is 2285. The dataset is divided in 3
parts shown in 4.4 which are train, test and validation.

Results
As previously we perform 5 runs of training and model evaluation on the test set per model
using 5 different seeds. Finally, we present the mean of micro F1, precision, and recall of
the performance evaluation. In our experiments shown in 4.5, it is evident that our model
exhibits superior performance when compared to all other models in volume, chapter, and
subject classification.

V. Saketos 37

The large language model GreekLegalRoBERTa

Table 4.4: GLC Dataset Statistics

Dataset percentage instances
Train 60% 28536
Test 20% 9516

Validation 20% 9511

Table 4.5: GLC Dataset configuration

Volume Chapter Subject
Precision Recall F1 Score Precision Recall F1 Score Precision Recall F1 Score

GreekBERT 89.84 89.84 89.84 84.87 84.87 84.87 80.59 80.59 80.59

GreekLegalBERT 90.51 90.51 90.51 85.45 85.45 85.45 81.43 81.43 81.43

GreekLegalRoBERTa 91.10 91.10 91.10 85.77 85.77 85.77 82.29 82.29 82.29

In the previous sections we demonstrated that our model outperforms GreekLegalBERT
and GreekBERT in GreekLegalNER (figure 4.3) and GreekLegalCode (figure 4.5). Con-
sequently, our results suggest that the dataset and pretrainingmethod we utilize effectively
enhance the model’s performance on legal context. Nevertheless, given the fact that our
model is significantly undertrained, there is a prominent possibility that further pretraining
can lead to an improvement in model performance.

V. Saketos 38

The large language model GreekLegalRoBERTa

5. CONCLUSION AND FUTURE WORK

In this work, we introduced a new language model pretrained solely on legal text. We
pretrained our model on a single GPU, and our findings demonstrate its superior perform-
ance compared to the state of the art Greek NLP models. For future research, we plan to
train our model on a GPU cluster, utilizing a significantly larger batch size for an extended
number of epochs. These enhancements aim to further improve the model’s performance
and achieve even better results.

Additionally, we are going to train our model using both natural language and legal context
to investigate the effectiveness of this approach. This research aims to determine whether
incorporating both domains is a beneficial practice for improving the model’s performance
and overall understanding.

V. Saketos 39

The large language model GreekLegalRoBERTa

ABBREVIATIONS - ACRONYMS

AI Artificial Intelligence

NLP Natural Language Processing

BERT Bidirectional Encoder Representations from Transformers

RoBERTa Robustly optimized BERT pretraining approach

GPT Generative pre-training

BART Bidirectional and Auto-Regressive Transformers

TAPT Task Adaptive pre-training

DAPT Domain Adaptive pre-training

DNN Deep Neural Networks

ANN Artificial Neural Networks

FFANN Feed Forward Artificial Neural Networks

RNNs Recurrent Neural Networks

LSTM Long Short Term Memory

BiLSTM Bidirectional Long Short Term Memory

MLM Masked Language Modeling

BPE Byte-Pair Encoding

IOB Inside Outside Beginning

NER Named Entity Recognition

PoS Part of Speech tagging

GLUE General Language Understanding Evaluation benchmark

RACE Large-scale Reading Comprehension Dataset From Examinations

SQuAD Stanford Question Answering Dataset

FP Floating Point

NFD Normalization Form Canonical Decomposition

NFKD Normalization Form Compatibility Decomposition

V. Saketos 40

The large language model GreekLegalRoBERTa

TPU Tensor Processing Unit

GPU Graphics Processing Unit

GLC Greek Legal Code

CPU Central Processing Unit

RAM Random Access Memory

SSD Solid State Drive

GPE GeoPolitical Entity

LR Legal References

LN Location National

LU Location Unknown

ORG Organization

PD Public Documents

AVG Average

V. Saketos 41

The large language model GreekLegalRoBERTa

BIBLIOGRAPHY

[1] Artificial neural network. https://en.wikipedia.org/wiki/Artificial_neural_network.

[2] Attention (machine learning). https://en.wikipedia.org/wiki/Attention_(machine_learning).

[3] Bert for next sentence prediction. https://towardsdatascience.com/
bert-for-next-sentence-prediction-466b67f8226f#:~:text=N%20ext%20sentence%
20prediction%20%28NSP%29%20is%20one-half%20of,teaches%20BERT%20to%20understand%
20longer-term%20dependencies%20across%20sentences.

[4] Hugging face datasets. https://huggingface.co/docs/datasets/index.

[5] Natural language processing. https://en.wikipedia.org/wiki/Natural_language_processing.

[6] Perceptron. https://en.wikipedia.org/wiki/Perceptron.

[7] Ilias Chalkidis, Charalampos Nikolaou, Panagiotis Soursos, and Manolis Koubarakis. Modeling and
querying greek legislation using semantic web technologies. In Eva Blomqvist, Diana Maynard, Aldo
Gangemi, Rinke Hoekstra, Pascal Hitzler, and Olaf Hartig, editors, The Semantic Web, pages 591–606,
Cham, 2017. Springer International Publishing.

[8] Leonhard Hennig Christoph Alt, Marc Hübner. Fine-tuning pre-trained transformer language models to
distantly supervised relation extraction. 2018.

[9] Hugging Face. Hyperparameter search with transformers and ray tune. https://huggingface.co/
blog/ray-tune.

[10] Hugging Face. Trainer. https://huggingface.co/docs/transformers/main/en/main_classes/
trainer#transformers.Trainer.

[11] Santiago Fernandez Justin Bayer Daan Wierstra Julian Togelius Faustino Gomez Matteo Gagliolo Fe-
lix Gers, Fred Cummins and Alex Graves. Feedforward neural networks. https://brilliant.org/
wiki/feedforward-neural-networks/.

[12] Santiago Fernandez Justin Bayer Daan Wierstra Julian Togelius Faustino Gomez Matteo Gagliolo
Felix Gers, Fred Cummins and Alex Graves. Understanding lstm networks. http://colah.github.io/
posts/2015-08-Understanding-LSTMs/.

[13] Kenton Lee Kristina Toutanova Jacob Devlin, Ming-Wei Chang. Bert: Pre-training of deep bidirectional
transformers for language understanding. 2018.

[14] Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In Proceedings of Ma-
chine Translation Summit X: Papers, pages 79–86, Phuket, Thailand, September 13-15 2005.

[15] Athinaios Konstaninos. Named entity recognition using a novel linguistic model for greek legal corpora
based on bert model. 2020. Dept. Informatics and Telecommunication, National and Kapodistrian
University of Athens.

[16] John Koutsikakis, Ilias Chalkidis, Prodromos Malakasiotis, and Ion Androutsopoulos. GREEK-BERT:
the greeks visiting sesame street. In Constantine D. Spyropoulos, Iraklis Varlamis, Ion Androutsopoulos,
and Prodromos Malakasiotis, editors, SETN 2020: 11th Hellenic Conference on Artificial Intelligence,
Athens, Greece, September 2-4, 2020, pages 110–117. ACM, 2020.

[17] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut.
ALBERT: A lite BERT for self-supervised learning of language representations. CoRR, abs/1909.11942,
2019.

[18] Naman Goyal Marjan Ghazvininejad Abdelrahman Mohamed Omer Levy Ves Stoyanov
Luke Zettlemoyer Mike Lewis, Yinhan Liu. Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and comprehension. 2019.

[19] Pedro Javier Ortiz Suárez, Laurent Romary, and Benoît Sagot. A monolingual approach to contex-
tualized word embeddings for mid-resource languages. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 1703–1714, Online, July 2020. Association for
Computational Linguistics.

V. Saketos 42

https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Attention_(machine_learning)
https://towardsdatascience.com/bert-for-next-sentence-prediction-466b67f8226f#:~:text=N%20ext%20sentence%20prediction%20%28NSP%29%20is%20one-half%20of,teaches%20BERT%20to%20understand%20longer-term%20dependencies%20across%20sentences
https://towardsdatascience.com/bert-for-next-sentence-prediction-466b67f8226f#:~:text=N%20ext%20sentence%20prediction%20%28NSP%29%20is%20one-half%20of,teaches%20BERT%20to%20understand%20longer-term%20dependencies%20across%20sentences
https://towardsdatascience.com/bert-for-next-sentence-prediction-466b67f8226f#:~:text=N%20ext%20sentence%20prediction%20%28NSP%29%20is%20one-half%20of,teaches%20BERT%20to%20understand%20longer-term%20dependencies%20across%20sentences
https://towardsdatascience.com/bert-for-next-sentence-prediction-466b67f8226f#:~:text=N%20ext%20sentence%20prediction%20%28NSP%29%20is%20one-half%20of,teaches%20BERT%20to%20understand%20longer-term%20dependencies%20across%20sentences
https://huggingface.co/docs/datasets/index
https://en.wikipedia.org/wiki/Natural_language_processing
https://en.wikipedia.org/wiki/Perceptron
https://huggingface.co/blog/ray-tune
https://huggingface.co/blog/ray-tune
https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer
https://huggingface.co/docs/transformers/main/en/main_classes/trainer#transformers.Trainer
https://brilliant.org/wiki/feedforward-neural-networks/
https://brilliant.org/wiki/feedforward-neural-networks/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

The large language model GreekLegalRoBERTa

[20] Christos Papaloukas, Ilias Chalkidis, Konstantinos Athinaios, Despina Pantazi, and Manolis Koubara-
kis. Multi-granular legal topic classification on Greek legislation. In Proceedings of the Natural Legal
Language Processing Workshop 2021, pages 63–75, Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics.

[21] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2018.

[22] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text trans-
former. CoRR, abs/1910.10683, 2019.

[23] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with sub-
word units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Berlin, Germany, August 2016. Association for Computational Linguistics.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. CoRR, abs/1706.03762, 2017.

[25] Yang Song Dave Dopson Denny Zhou Xinying Song, Alex Salcianu. Fast wordpiece tokenization.
2021.

[26] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime G. Carbonell, Ruslan Salakhutdinov, and Quoc V. Le.
Xlnet: Generalized autoregressive pretraining for language understanding. CoRR, abs/1906.08237,
2019.

[27] Naman Goyal Jingfei Du Mandar Joshi Danqi Chen Omer Levy Mike Lewis Luke Zettlemoyer
Veselin Stoyanov Yinhan Liu, Myle Ott. Roberta: A robustly optimized bert pretraining approach. 2019.

V. Saketos 43

	CONTENTS
	INTRODUCTION
	BACKGROUND AND RELATED WORK
	Artificial Neural Networks (ANNs)
	Feed Forward ANNs
	Recurrent Neural Networks (RNNs)
	Bidirectional RNNs
	Long Short Term Memory (LSTMs)
	Attention mechanism
	Encoder Decoder models
	Encoder models
	Decoder models

	Masked Language Modeling (MLM)
	Bidirectional Encoder Representations for Transformers (BERT)
	RoBERTa

	Pretraining
	Pretraining dataset
	Inserting the data in a Hugging Face Dataset form
	Text preprocessing
	Byte Pair Encoder or BPE
	The training procedure of the Tokenizer
	Creating inputs for the training procedure
	The original RoBERTa experiments
	Model configuration
	Training parameters
	Training process
	Model Testing

	Experiments
	The models we experiment with
	 Greek Legal NER
	Greek Legal Code

	 Conclusion and Future work
	ABBREVIATIONS - ACRONYMS
	REFERENCES

