

Department of Physics
MSc on Control and Computing

Diploma Thesis

Title: User Mobility Analysis in Mobile
Communication Systems

By

Antonios Skarlatos

Supervised by Prof. Markos Anastasopoulos

Athens, February 2023

2

3

Table of Contents

1 Introduction…………………...….….…………………………...…………………..5

1.1 Purpose of Thesis…………….…………………………………..……………….5

1.2 Theoretical Framework…………….……………….…………...………………...6

1.2.1 Big Data…………………………………………………………….…………...6

1.2.2 Anaconda Framework……………………………………………...……………6

1.2.3 Project Jupyter……………………………………………..……………………6

1.2.4 MySQL……………………………………………….…...……………………..7

1.2.5 GeoJSON…………………………….……………...….……………………….7

1.2.6 Gaussian Process……………………………………….……..…………………7

1.2.7 Correlation Matrix………………………………………....……………………8

1.3 Python Libraries….…………………………….…………...……………………9

1.3.1 NumPy…………………………………………………………………...……..9

1.3.2 Mysql.connector………………………………………………...…………….…9

1.3.3 Shapely.geometry………………………………………….………………….…9

1.3.4 Matplotlib…………………………………………...…………………….…….9

1.3.5 Requests………………………………………...….……………………….….10

1.3.6 Folium……………………………………………….………………….……..10

1.3.7 Pandas………………………………………………..……………………..…10

1.3.8 Seaborn…………………………………………………..…………………….10

1.3.9 Sklearn…………………………………………………..……………..………11

1.3.10 Ipywidgets……………………………………………………………………..11

2 Analyzing and Presenting the Telecommunication Activity on User-Input Routes

in Milan Province…………………….…………..………………………………..12

2.1 Introduction…………………………………………………….…..………....12

2.2 Presenting the Data………………..……………………………..…………....13

2.3 Preprocessing and Saving to Databases…………..……………..……………..17

2.4 Data Analysis Procedures………………..……………………...……..………23

2.5 Results and Conclusions………………..……………………….….…………41

3 Car Traffic – Telecommunication Activity Correlation…………………..…..….50

3.1 Introduction……………………………………………..………..……..…….50

3.2 Presenting the Data………………………………………………...……..…...51

3.3 Preprocessing and Saving to Databases………………………….….……..….53

3.4 Data Analysis Procedures………………………….………..………...…….…56

3.5 Results and Conclusions……………………....……….……….………..…..…65

4

4 Conclusion…………………………………………………………………….71

References…………………………………………………………………….72

5

1. Introduction

1.1. Purpose of Thesis

The main focus of this thesis is on using data analytics to extract information from

telecommunication data, specifically using data from the Telecom Italia Big Data Challenge. Time

and spatial analysis is applied to the data to gain a better understanding of user patterns of network

usage. In addition to that, this thesis also employs Gaussian processes and correlation matrices as

data analytics tools. These methods are used to predict network usage needs and the thesis includes a

thorough examination of these tools and their application on the data. The thesis also includes an

analysis of GPS data of vehicle traffic in the same areas in order to compare telecommunication and

car traffic and investigate any correlations between them. The findings from this research can be

useful in determining network handover needs in specific areas and optimizing network coverage.

Sequences of scripts are developed for each part of the analysis, with multiple examples provided and

with the aim of drawing conclusions about the performance of these methods. The overall goal is to

use data analytics to extract actionable insights and improve network performance in

telecommunication systems.

The thesis uses Python for data analytics and the development of scripts, and the data is stored in

MySQL tables. SQL is used for managing the data and making it accessible for the analysis. The

choice of Python and SQL as the primary tools for the analysis and management of the data, allows

the development of efficient and easily-replicable scripts, while being able to handle big amount of

data using MySQL. It also provides the capability of easy integration with other tools and making the

results of the analysis more accessible and meaningful.

6

1.2. Theoretical Framework

1.2.1. Big Data

‘Big Data’ refers to a field that constructs ways to analyze and systemically extract information from

datasets too big or too complicated to deal with, using traditional data processing software. Data with

many fields (rows) offer greater statistic power, while data with higher complexity

(columns/attributes) may lead to higher false rate. ‘Big Data Analytics’ includes tasks like harvesting

data, data storage, data analysis, search, sharing, transferring, visualizing, updating and more. Current

usage of the term tends to refer to the use of predictive analytics or certain other advanced data

analytics methods that extract value from big datasets. The need of data analytics methods has grown

rapidly hand by hand with the data availability itself. The size and number of available datasets has

skyrocketed with the massive spread of data capturing devices. With it came the development of data

analytics, since big datasets hold valuable information to extract from. What qualifies as ‘big data’

varied depending on the capabilities of those analyzing it and their tools. In this project we will try to

deal with big datasets [1].

1.2.2. Anaconda Framework

Anaconda is a distribution of the Python programming language for scientific computing purposes

(data science, machine learning, large-scale data processing, predictive analytics, etc.). It aims to

simplify the package management and data handling, while it offers data-science packages for

multiple environments (in this project it will be used in Windows environment). The package

management system is called ‘conda’, and through it we can import the libraries we need. Anaconda

Navigator is a desktop graphical user interface (GUI) included in Anaconda distribution that allows

users to launch all of Anaconda’s applications without using command-line commands.

There are more than 7,000 available open-source packages for Anaconda distribution. They can be

installed using either PyPI as well as the conda package. Furthermore, there is a virtual environment

manager that gives the ability to create different environments with different packages installed

(depending on the data processing challenges you are facing). We will use this feature later on.

1.2.3. Project Jupyter

Jupyter Notebook (also known as IPython Notebook) is a web-based interactive computational

environment for creating notebook documents. A Jupyter Notebook document is a browser-based

language shell containing an ordered list of input/output cells which can contain code, text, plots or

mathematics. A Jupyter Notebook is a JSON document, usually ending with the ‘.ipynb’ extension.

What makes Jupyter Notebook really useful is the local server-like attributes. Multiple code blocks

can be compiled in any order, with data saving (remain saved while Jupyter Notebook is active) [2].

7

JupyterLab is a newer user interface for Jupyter Notebook, offering a flexible user interface and more

features than the classic notebook UI [3].

1.2.4. MySQL

MySQL is a free open-source relational database management system. MySQL has stand-alone

clients that allow users to interact directly with a MySQL database using SQL, but more often,

MySQL is used with other programs to implement applications that need the relational database

capability. We will use it to store our data through Jupyter using a suitable library [4].

MySQL Workbench is a visual database design tool that integrates SQL development, administration,

database design, creation and maintenance into a single integrated development environment for the

MySQL database system.

1.2.5. GeoJSON

GeoJSON is an open standard format designed for representing simple geographical features, along

with their non-spatial attributes [5]. It is based on the JSON format. It is a format for encoding a

variety of geographical data structures. The feature may include points (addresses), line strings or

even polygons. It can also be used to describe a whole route or even the entire service coverage for

navigation apps. GeoJSON is widely supported across a range of geographical information systems

(GIS) and web mapping tools, making it a popular and interoperable format for exchanging and

visualizing geospatial data.

1.2.6. Gaussian Process

Gaussian Processes (GP) are a generic supervised learning method designed to solve regression and

probabilistic classification problems. GP are useful in statistical modelling, benefiting from properties

inherited from the normal distribution. While exact models scale poorly as the amount of data

increases, multiple approximation methods have been developed which often retain good accuracy

while drastically reducing computation time. Some Gaussian processes advantages include:

 The prediction interpolates the observations (at least for regular kernels).

 The prediction is probabilistic (Gaussian) so that one can compute empirical confidence

intervals and decide based on those if one should refit the prediction in some region.

 Versatile: different kernels can be specified. Common kernels are provided, but it is also

possible to specify custom kernels.

The most common application for the multi-output prediction problem is the Gaussian process

regression. It is a non-parametric, Bayesian approach designed to solve regression and classification

problems. We will the Python ‘sklearn’ package to implement it [6].

8

1.2.7. Correlation Matrix

When data are about aligned, we claim that the variables have linear relationship. In most cases

though, data deviate significantly from following a linear tendency. A whole-round measure to

describe the potential of linear relationship is correlation. Correlation sums up the strength and

direction of the linear relationship between two quantitative variables. Correlation values range

between -1 and 1, with the positive sign representing a positive correlation, while the opposite a

negative one. The closer the correlation is to 1, the more of a linear relationship the data have (the

data points fall closer to having linear variables correlating them). Accordingly, the closer the

correlation is to 0, the weaker linear relationship is.

A correlation matrix is a matrix that gives the correlation coefficients between different variables we

want to investigate. Every cell in the matrix represents the correlation between the variables crossing

axis x and y [7].

There are 3 broad reasons to calculate a correlation matrix.

 To sum up big data, when the goal is to identify a pattern

 Introduction to new analysis

 Diagnostic measure to double check different data analysis procedures

In this project we will use ready-to-use libraries to calculate and plot correlation matrices.

9

1.3. Python Libraries

1.3.1. NumPy

‘Numpy' is a library for the Python programming language. It is the fundamental package for

scientific computing in Python, providing support for large, multi-dimensional arrays and matrices,

along with a large collection of high-level mathematical functions to operate these arrays. At the core

of the NumPy package, is the ndarray object. This encapsulates n-dimensional arrays of

homogeneous data types, with many operations being performed in compiled code for performance.

NumPy arrays have some limitations, since their size is fixes at creation (unlike Python lists which

can grow dynamically), and the array elements are required to be of the same data type. But despite

these, they offer a strong, fast tool for advanced mathematical operations [8].

1.3.2. Mysql.connector

MySQL provides standards-based drivers for multiple languages enabling developers to build

database applications in their language of choice. For our case, there is a Python Driver for MySQL

(developed and maintained by the MySQL community) named ‘mysql.connector’. It is a Python

library for connecting to and interacting with MySQL databases. It provides a low-level API for

sending and receiving data from a MySQL database, as well as tools for working with transactions,

handling errors, and more. It also provides the ability to execute multiple statements with a single

call, using batch execution. The above make it an essential tool for developers and data scientists

working with large datasets and databases on MySQL [9].

1.3.3. Shapely.geometry

‘Shapely’ is a BSD-licensed Python package for manipulation and analysis of planar geometric

objects. It is based on the widely deployed GEOS and JTS libraries. Shapely is not concerned with

data formats or coordinate systems, but can be readily integrated with packages that are. Shapely

geometry classes, such as shapely.Point, are the central data types in Shapely. Each geometry class

extends the shapely.Geometry base class, which is a container of the underlying GEOS geometry

object, to provide geometry type-specific attributes and behavior.

1.3.4. Matplotlib

‘Matplotlib’ is a plotting library for the Python programming language and its numerical mathematics

extension NumPy. It provides an object-oriented API for embedding plots into applications using

general-purpose GUI toolkits. It is designed to closely resemble the MATLAB interface of plotting.

Since its release, it has been actively developed by the community and it is widely used in data

analysis, scientific computing, and many other fields [10].

1.3.5. Requests

‘Requests’ is a popular Python library for making HTTP requests, including GET, POST, PUT,

DELETE, and more. It abstracts the complexities of making requests behind a simple API, allowing

10

developers to send HTTP/1.1 requests. It provides automatic decompression of gzip and deflates

encoded responses. It is an essential tool for web scraping, interacting with APIs, and working with

web services, which is needed for this thesis.

1.3.6. Folium

‘Folium’ is a Python library for creating interactive maps for web browsers using the Leaflet

JavaScript library. It is a particularly useful for visualizing geospatial data and creating interactive

maps for data exploration and analysis. It has easy-to-use API for creating maps with markers, circles,

polylines and other features, which we will use later on.

1.3.7. Pandas

‘Pandas’ is a widely-used, open-source data analysis and data manipulation library for Python. It

provides data strictures for efficiently storing large datasets and tools for working with them. It is

particularly useful for data analysis, cleaning, and preparation [11]. Some of the key features of ‘pandas’

include:

 A ‘Dataframe’ object for representing and manipulating tabular data, similar to a spreadsheet

or SQL table.

 Methods for reading and writing data from a variety of sources, including CSV, Excel, SQL

and more.

 Tools for cleaning and transforming data, including handling missing values, merging and

joining datasets, and pivoting data.

 Efficient handling of large datasets with support for handling missing data and dealing with

duplicate data.

 Built-in plotting and visualization capabilities using ‘matplotlib’.

1.3.8. Seaborn

‘Seaborn’ is a Python data visualization library based on ‘matplotlib’. It provides a high-level interface

for creating attractive and informative statistical graphics. It is particularly well suited for exploring

complex datasets and for visualizing relationships between multiple variables. Some of its key

features include a simple and intuitive API, support for multiple plot types, including heatmaps

(which we will use for the correlation visualization), violin plots, box plots, and built-in themes for

making plots look polished and professional. Additionally, ‘seaborn’ has integrated support for

working with ‘pandas’ dataframes, making it a popular choice among data scientists for data

exploration and analysis. Overall, ‘seaborn’ is a powerful library for creating visualization of complex

datasets and for exploring relationships between multiple variables in an intuitive and aesthetically

pleasing way [10].

1.3.9. Sklearn

‘Scikit-learn’ (often abbreviated as ‘sklearn’) is a Python library for machine learning. It provides a

wide range of algorithms for tasks such as classification, regression, clustering, and dimensionality

reduction, as well as tools for model evaluation and selection. The library has a consistent API and a

11

focus on practical, real-world applications. It is well-documented and has a large and active

community, making it a popular choice for building machine learning models in Python [12]. Some of

the key features of ‘sklearn’ include:

 A variety of algorithms for supervised and unsupervised learning

 Easy-to-use APIs for training and evaluating models

 Built-in tools for preprocessing data and feature extraction

 Methods for model selection and evaluation, including cross-validation

1.3.10. Ipywidgets

‘Ipywidgets’ is a Python library for creating interactive, web-based widgets in Jupyter notebooks.

These widgets allow users to interact with and manipulate data within Jupyter notebooks in real-time,

making the process of data analysis more interactive and user-friendly. It includes a wide range of

widgets, such as sliders, buttons, and text boxes, as well as more specialized widgets for displaying

data such as graphs and tables. The library is easy to use and enables data scientists to create

interactive visualizations and dashboards within Jupyter notebooks, making it a valuable tool for data

exploration and analysis [13].

12

2. Analyzing and Presenting the Telecommunication Activity on

user-input Routes in Milan province

2.1. Introduction

In this part of the thesis we will analyze and process telecommunication activity data about some

public network usage. We will apply many different data analysis techniques, with the goal being to

draw conclusions about the general network activity and its characteristics. The purpose is for the

user to choose a desired route in the Milan province and the tool, which we are going to create, will

calculate and analyze the telecommunication activity in that route. The (also) user chosen output

options, will give useful information about the specific area’s activity and its characteristics. We then

could use these results to find ways to improve the network itself (e.g. an optimization problem) or

we could apply them to help us in a different analysis project (which will happen in the second part

of the thesis). The long term purpose of a tool like this is the overall improvement of the network

and the optimization towards 5th generation networks.

In order to be able to perform such an analysis, we would need a big data collection from a public

network. Data like this are difficult to acquire since they are confidential and there are legal

difficulties. Companies and institutes that own such datasets only share them with a selected few

research teams, which usually sign non-disclosure agreements (NDAs). This lack of data limits the

volume of public research from the wide scientific community.

In this context, the supply of such datasets to a large number of research teams is a structural

problem in the backbone of technological advancements in this field. An original example was given

by Telecom Italia in cooperation with other Italian institutions (EIT ICT Labs, SpazioDati, MIT

Media Lab, Northeastern University, Polytechnic University of Milan, Fondazione Bruno Kessler and

University of Trent), organizing the ‘Telecom Italia Big Data Challenge’ [14]. With this initiative many

anonymous datasets were made public. These datasets are unique in their kind, as they provide an,

open source, rich accumulation of data from many sources of many kinds (such as

telecommunication, weather, electricity data and others). These datasets have measurements over

long periods of time in the Milan and Trento provinces. We will only deal with the Milan data

because they are larger in size and so easier to analyze (and apply data analytics techniques). The only

datasets we will need for this project are the ones about the geographical grid and the

telecommunication activity. In the chapters to follow we will present and analyze them thoroughly.

13

2.2. Presenting the Data

The first dataset we will need for the analysis is the one containing the geographical grid of the areas

we will work on. These are the areas for which we have the telecommunication data. The

measurements are provided from different companies and institutions which use different systems to

record the spatial activity of their users. The variance of the geographical distribution from all the

different companies is taken into account and an accumulative grid of square cells is created. We

have the total telecommunication activity throughout this square-cell grid in Milan for a long period

of time. This adjustment provides us the ability to easily compare the telecommunication activity of

different Milan areas.

We end up with a grid of 10,000 square cells around the Milan province (every cell covers an area of

about 235m2). The link reference of the geographical grid data

(http://dx.doi.org/10.7910/dvn/QJWLFU) leads us to a ‘geojson’ file for the Milan province. We

can upload it to see the province distribution into square cells (Image 1).

Image #1: Milan Grid

Every one of the small squares composes a cell. Every cell is numbered and is characterized by a

unique Cell-ID (Image 2). Additional information is stored in the ‘geojson’ file, like the exact

http://dx.doi.org/10.7910/dvn/QJWLFU

14

coordinates of the 4 corners of the square cell. This information is necessary and will be further

analyzed later on.

Image #2: Cell ID

The second dataset needed, is the one describing the telecommunication activity. The purpose of this

dataset is to represent all kinds of telecommunication traffic that took place on the grid above over a

long period of time. So, information, about all the ways users interacted with the network, is

provided. The link reference of the telecommunication dataset

(http://dx.doi.org/10.7910/dvn/EGZHFV), leads us to a list of ‘text’ files containing all the

necessary information. 62 of these files are provided for the Milan province over the period from

1/11/2013 to 1/1/2014; 1 file for each day. That means that every file contains the

telecommunication activity for the whole province over the course of 24 hours. The content of these

files, opened in an excel table, can be seen in Image 3.

The shape of the information provided is simple and easily comprehensible. We will explain shortly

what each one of the elements represents, and how we can translate them into useful information.

In the first column we have the Cell ID which was introduced above. It is a unique key that

constitutes the identity of a specific cell. Using the geographical grid that was described above, we

can identify the exact spatial area in which the telecommunication data (in the rest of the dataset)

refer to.

http://dx.doi.org/10.7910/dvn/EGZHFV

15

Image #3: Dataset in a 2D table

The second column contains the period of time in which the telecommunication data refer to. It is a

natural number that represents milliseconds, and the time step is 600,000 milliseconds or 10 minutes.

The telecommunication data describe the network usage from the users in the specific geographical

area in the specific 10 minutes time (which starts in the moment the second column mentions). To

calculate the ending moment of the measurements, all we have to do is add 600,000 milliseconds to

that interval. It is obvious that, since every text file contains the entire daily data for the entire

province, it will have 144 time measurements (144 10-minute periods in 24 hours). This means that

the time column (milliseconds) will advance by 86,400,000 each day (or each file). So, every file

contains the telecommunication data for all the 144 time periods in the day and for the entire

province (all the square cells).

The column that contains the telecommunication data that interests us is the last one. To describe

this column we will introduce the concept of Call Detail Records (CDR). It is a measurement unit to

record the telecommunication traffic that increases in size every time a corresponding action takes

place in the specific 10 minute period in the specific area. The number in the last column is the CDR

measurement of the Internet usage activity. CDR increases every time a user is connected to the

wireless network in the given area and time. Also, CDR increases when a specific connection (user-

network) lasts more than 15 minutes or the user consumes more than 5MB of Internet data.

Columns 4 to 7 describe the CDR of the incoming and outgoing phone calls and messages. We can

see that there are many black spaces in these columns. Since the data are broken down to very small

areas and time periods, there is a possible scenario that no such activity takes place in the specific

area and time (especially if the area has low population density and the time period is of less traffic).

That is the reason we will focus only on the Internet usage data. This kind of activity is the most

common service users rely on (compared to phone calls and SMSs). So, Internet usage CDR records

16

are significantly higher in size than the rest (which are often blank) and that will make the data

analytics procedures easier to implement. We ignore the rest of the telecommunication data, and we

will remove them later on.

The thirds column is just the phone code of the country to which the data are addressed to. We only

care about the rows in which the phone code is 39 (Italy phone code). To boil it down, this column is

only useful if we want to find out how many calls/SMSs where addressed abroad. There is no such

separation for the Internet data. The rows that contain the Internet usage CDR are the ones where

phone code is 39.

Regarding the size of the data, each of the daily files has a size of about 80MB, and contains more

than 2 million rows of raw data. So, we are facing a small scale ‘Big Data’ problem.

This was all the data we are going to need for analyzing and presenting the telecommunication traffic

in the Milan province, according to user input.

17

2.3. Preprocessing and Saving to Databases

Having presented the shape of the data, we can now move on to the next step. Before starting up

with the analytics procedures on the data, we have to transform them in a way that fits the needs of

the analysis. That means, recognizing which of the data in our disposal are needed for the results we

seek to get, and which we have to get rid of. The goal of this chapter is to strip the data of everything

unnecessary and fit them in volume efficient database tables. That way, the data analytics to follow

will be fast and efficient. The procedure of obtaining data from the databases will easily be

automated.

We work with big data for this project. The databases will be large and sometimes difficult to handle

with. That is why in every such problem, it is of outmost importance to make the databases as light

as they can get.

At this point we have to point out that Python (and some SQL for the database handling) is used for

the entire programming taking place. We will use the Anaconda framework (mostly Jupyter

Notebook), which provides helpful tools for data analysis such as easy library imports and clever

documentation. More details will be provided.

For the storage and management of the databases we will use MySQL Workbench, and for creating,

accessing and altering the databases in any way desirable, we will use ‘mysql.connector’ library

through Jupyter Notebook. ‘Numpy’ library is also used to manipulate and transform the raw data.

18

 Database for Milan’s Cells

In this database we will register everything we need to know about the given cells that form the

surrounding area of Milan. For the (square in shape) cells, all we could ever need for further

analyzing are the coordinates of the four squares, which give us the exact spatial distribution of the

cell grid. If we add the unique Cell ID each one is characterized by, we have the complete set of

information. This information can be found in the ‘geojson’ file described in the chapter before. The

contents of this file can be seen in Code Sample 1.

Code Sample #1

All we have to do now is isolate the necessary information and save them in a dedicated database. In

the database table, we can fit this cell information in 9 columns, 8 of which will be assigned for

longitude and latitude of the 4 square-cell corners. The last one will save the unique Cell ID of the

corresponding cell.

Having this information saved, we can find where a random geographical point (longitude & latitude)

lies in the Milan grid using simple geometry. That means finding through its coordinates the exact

square cell in which it belongs. To perform this act in python we will use the ‘shapely.geometry’

library (more to follow).

The code for inserting the data above in the corresponding table can be seen in Code Sample 2.

19

Code Sample #2

No further change will be needed on this data at any point of the analysis. We have all the cell

information needed, stored in the database named ‘celliddb’. A sample of the database can be seen in

Database Sample 1.

Database Sample #1

20

 Database for the Telecommunication Data

First step is the shapeshifting of the files from ‘.txt’ to ‘.csv’ format. We need the files to be in ‘csv’

format because then, through a simple SQL command, we can directly import them in a dedicated

MySQL database. The code which performs the procedure above can be seen in Code Sample 3.

Code Sample #3

The logic behind the above is quite simple. Iterating over all the files using exploiting some string

concatenation while using ‘genfromtxt’ and ‘savetxt’ commands to read and write the files in the

desired format.

Then, using the same iterating logic, we will use the ‘LOAD DATA INFILE’ SQL command to

import the ‘csv’ files directly into the dedicated database (Code Sample 4). The way to do this is

creating a unique database table for each of the 62 days’ worth of data (counting them from 1 to 62).

In the next step, we remove from these tables the unnecessary rows (the ones with phone code

different than 39) and after that, the unnecessary columns (phone code, and all the ones skipped in

the previous chapter). Code Sample 5 contains the above.

21

Code Sample #4

Code Sample #5

We now have isolated the desired telecommunication data in our database. The database is named

‘testdb’ and 62 daily tables have been created inside it. They contain only the essential data, which is

the Internet usage in every Milan cell, for every 10 minutes throughout the day, for 62 days straight

(different tables). No further changes are needed on these tables. When we need some of the data,

we will fetch them and process them accordingly. A sample of the first table (first day of data) is

provided in Database Sample 2.

22

Database Sample #2

We now have gathered and stored all the data we need in MySQL tables. The process of analyzing

them and presenting them according to user input follows.

23

2.4. Data Analysis Procedures

We are ready to continue with the development of an automated procedure that analyses and

presents the telecommunication data of the user-chosen route. The purpose of this part of the

project is as follows. The user inputs a desired start and end point in the Milan province, the route

that connects these points is tracked, and the telecommunication activity along that route is

calculated and analyzed according to user’s desire. We can later use this information for further

investigation of the network itself or combined with a different process altogether for a more

complex analysis. We will divide the work in logical steps and proceed linearly.

The first step is to determine the exact route on which we will apply the data analytics. That is,

finding the exact square cells from which the route traverses, and take advantage of the

telecommunication data we have stored. User inputs the coordinates (longitude and latitude) of the

pick-up and drop-off location. For the example procedure that will be presented along, we have set a

random set of coordinates for starting and finishing. The user can set these values to anything he

wants (inside the Milan province). We use an online tool called ‘Project-OSRM’, with the help of the

‘requests’ library (by requesting online using the correct URL). It is a navigation system, which gives

the fastest route connecting two points (sets of coordinates, starting and finishing) anywhere in the

world. By doing that, we get a set of spatial points that connect the starting and finishing points

(including these two). We then have the route we need as a set of coordinates (Code Sample 6). A

mapping plot of the route is included to help understanding it, using the ‘folium’ library (Code

Sample 7).

We input the route points (sets of coordinates) in a suitable database table (Code Sample 8). The next

step would be to convert the set of coordinate points, to a set of the corresponding Milan cells in

which they belong. But there is the risk, that the distance between two consecutive spatial points is

greater than the size of the square cells. That means, that an intermediate route cell could be skipped

and we need to prevent that from happening. That is why the next step is to call an SQL Procedure

(‘fullroute’ in MySQL) which will insert additional points in the space between consecutive

geographical points, until the distance between all the neighbor points is less than the length of the

square cell side (Code Sample 9). That is the only way to guarantee that no cells will be missed from

the route. The reason we can do the above is the following. ‘Project-OSRM’ adds a point to the

calculated route of points each time there is a change of direction. So there can be a large distance

between consecutive points, if the road is straight. Therefore, simply adding points in between causes

no error, since they will fall on that same straight piece of road. We add a point between two

neighboring ones if and only if, their distance is bigger than a square cell side (otherwise, obviously

no cell can be skipped).

Now we have come to acquire the full route with dense points from start to finish. The next step is

to iterate over all the route points and find the square cell they belong to (the way this is

implemented is by iterating over every square cell and checking if the point falls inside). We have the

coordinates of the point we want to investigate, and the coordinates of the corners of all the square

cells stored in the database (we fetch the cell data from the database table they are saved into). The

‘shapely.geometry’ library is used (taking advantage of the classes ‘Polygon’ & ‘Point’) to check if the

point belongs in the square cell. When we find the cell we are looking for, we add it to an array (if it

24

is already in the array, we skip it to avoid duplicates). At the end of this procedure we come to know

all the cells from which the route passes through, saving them in a database table created for this

purpose. The above are executed in Code Sample 10.

Code Sample #6

25

Code Sample #7

26

Code Sample #8

27

Code Sample #9

28

Code Sample #10

At this point, we have saved in the database the cells from which the user-selected route traverses

through. Next step is to isolate the telecommunication data of these cells, since we only need those

to describe the network demand around the road we analyze. To carry this task out, we need the daily

telecommunication traffic data we have already saved. Using a repeating loop, we will iterate over

every daily traffic table, and forward the data we need (which are the ones of the route cells) to

dedicated temporary daily database tables. That way, we will have 62 new temporary tables (one for

each day) for the daily telecommunication traffic of the cells we are interested on (route cells). Each

time this algorithm is rerun, the temporary tables will be truncated, and refilled with the new useful

data we want to analyze (Code Sample 11).

We take an extra step, to calculate the average daily telecommunication traffic (the time step is 10-

minutes as explained before) from the 62 days of data for the route cells. We also calculate the

standard deviation for every value and accordingly the coefficient of variation. We concatenate these

values in a single ‘average daily values’ table (Code Sample 12). We will use these data for plotting

and further processing.

29

Code Sample #11

30

Code Sample #12

We have now configured the data in a handy way to process them and plot the results. The route-

specific daily tables and the corresponding average daily traffic table have all the information we need

to continue with the analysis of the specific route. One last procedure takes place before moving on.

We want the data in the average daily traffic table to be sorted by the cell sequence in the route (data

of the first route cell go first, etc.). So we sort the average daily traffic table using the cell sequence

and re-store the data in the same table. The algorithm for that is in Code Sample 13.

31

Code Sample #13

We are ready for the next part of the analysis. The first step for visualizing the information we have

isolated, is a time dependent plot. We will plot the average daily traffic of the route cells for the 24-

hour duration starting at 12 am (the day is divided in 10-minutes, so we have 144 traffic values in the

day for each cell). The code that performs this can be seen in Code Sample 14.

Another plot that can give us information about the uncertainty of the telecommunication traffic on

the road is a time dependent telecommunication traffic plot of a single cell (so it can be easier

understood) with its standard deviation as well as the coefficient of variation against time plot. These

values have already been calculated and stored in the average daily traffic database, so we just fetch

the data and plot them in Code Samples 15 & 16.

One last time dependent plot we will try is a bar plot of specific cells of the route in order to easier

identify a pattern of telecommunication traffic moving from one cell to another throughout the day

(Code Sample 17).

Code Sample #14

32

Code Sample #15

Code Sample #16

Code Sample #17

33

The next plot attempt will aim to find space dependency patterns. But first, we need to calculate the

average spatial telecommunication traffic. The way to do it is, take the telecommunication data of a

cell for an average day and calculate the average telecommunication traffic of that cell throughout the

day (or a specific time window). Since there is a large deviation of the traffic throughout the day

(network usage peaks around rush hours, and is greatly reduced during the night), it is better to

choose time windows that minimize the deviation as much as possible, so that the results are reliable.

The spatial distribution of the telecommunication traffic will be plotted with two different

approaches. Firstly, we calculate the average telecommunication traffic of each cell of the route

during a period we define as network rush hour. That period is approximately 10am-6pm. The

standard deviation is significantly lower when talking about that time period alone. We calculate the

average telecom traffic for each cell during that time window as well as the standard deviation and

the coefficient of variation and save the results in a dedicated table. The above are performed in

Code Sample 18.

A different approach based on the same idea is, choosing multiple shorter time periods through the

day to calculate the average cell traffic. That way, the precision of the results is increased since we the

variation is further decreased with smaller time windows. Another advantage is that we can plot all

the different time windows together and detect patterns of traffic movement from cell to cell for

different time periods. The code for calculating the average spatial traffic for short time periods is

identical with the last application. We will display one more example for the time period 11:30am-

2pm (only the time limits change) in Code Sample 19, and the code for more time windows is easily

derived from the previous ones (by only changing the time limits).

Code Samples 20 and 21 are the ones for the plot themselves. On Code Sample 20, we plot the

average spatial telecom traffic for the route during network rush hours together with the standard

deviation, as calculated before. On Code Sample 21, we do an identical plot for the average spatial

telecom traffic of 3 different time periods in the day, for which we did the calculations during the

previous steps.

34

Code Sample #18

35

Code Sample #19

Code Sample #20

36

Code Sample #21

One more data analysis approach we will try is with Gaussian Processes. In the Code Sample 22, we

will plot the average daily telecom traffic for a random cell in the route as dots so we can have a

broader image of its form. Afterwards, in Code Sample 23, we apply Gaussian Process Regressors, to

fit the discrete data we have with a (predicted) continuous function, which will satisfactorily describe

the shape of the telecommunication traffic through the day.

Code Sample #22

37

Code Sample #23

Lastly, we will try and create a Correlation Matrix for the telecommunication traffic of all the

different cells in the route. This way, we can find a connection for the network usage between

different cells and draw conclusions about correlations. To begin with, we have to convert the data in

a form applicable for the correlation function. The data have to be in a table with the first row

containing the Cell IDs (identity of the data below), and below each ID, the list of its 144

telecommunication traffic values. We save the result in a dedicated ‘csv’ file (we need to, in order to

read it later using Pandas Dataframe). The above can be seen in Code Sample 24.

Code Sample 25 focuses on plotting the Correlation Matrix. The data (in the correct form) are

fetched from the csv file using the Pandas library. This is because, Pandas gives the capability of

using the ‘.corr()’ function. This function automatically calculates the values of the correlation matrix,

leaving us with only the plotting. The linear correlation matrix (in route cells sequence) is easily

displayed using the ‘heatmap’ function of Seaborn library. One more option is added, called

‘clustermap’. This display, organizes the data categories (cells) in correlation order, and groups them

accordingly.

38

Code Sample #24

Code Sample #25

An additional interesting task we can develop is a type of user interface for the user so that they can

input the needed coordinates and choose which of the outputs they want to be displayed. For this

task, we will use the Ipywidgets library, create a list of checkboxes (the desired outputs for the user)

and add a ‘Continue’ button which will start the analysis procedure and calculations according to the

user’s choice. To perform this, we will use a different Jupyter Notebook, and run the notebooks we

have already developed remotely, depending on if the user has checked the according checkbox. The

code that performs the above is the following (Code Sample 26).

39

Code Sample #26

The UI resulting from the code above can be seen below (User Interface). We have already inserted

pick-up and drop-off longitude and latitude and then the checkboxes appear. User then picks the

desired ones and presses ‘Continue’. Then the program runs the first two codes we developed,

required for the initial pre-processing and cleansing of the data associated with the user-chosen route.

40

After that, all the notebooks according to the user’s choices are executed and the results are displayed

on the result pane, below the notebook. This is also handier, because we get all the results

concentrated and it is easier to study them.

User Interface

This concludes the full data analysis procedure. We have all the data needed saved in dedicated

databases, and every time, according to users input, the same automated sequence of codes is

executed, printing all the results we need.

41

2.5. Results and Conclusions

The plot results, that will be included as an example of the procedure, belong to the route that we

randomly chose at the start (user inputs the coordinates). All the detailed plots of specific parts of the

route/data are also randomly chosen and can be altered easily because of the generalization of the

codes (when a specific part is plotted, the variables that describe that part, are visibly separated at the

top of the code). The results will be displayed and commented on.

Time Dependency Results 1-4 (corresponding to Code Samples 23-26):

Time Dependency Result #1

42

Time Dependency Result #2

Time Dependency Result #3

43

Time Dependency Result #4

The results are as expected. Traffic heats the lowest early in the morning and peak network traffic

falls together with regular traffic. The pattern is the same for every cell, but the value of the traffic

deviates depending on the density of the geographical area. Standard deviation is insignificant in the

early morning hours, meaning that every day the network needs during these hours decrease. On the

other hand, during rush hours, the standard deviation is quite significant compared to the total

telecommunication traffic. This means that network usage during the day is highly dependent on the

day itself. For example, weekday traffic is quite larger than weekends or holidays. Coefficient of

variation also gives us the same information. On the bar plot, we can recognize different traffic

growth patterns during a part of the day. That means, network usage is spatially dependent and

moves geographically during the day in our route cells. Multiple conclusions like these can be drawn,

depending our needs and desires.

44

Space Dependency Results 1-2 (corresponding to Code Samples 29-30):

Space Dependency Result #1

Space Dependency Result #2

45

Different telecommunication traffic values depending on the geographical area which is expected.

Low standard deviation shows that spatial deviation is almost time constant and dependent to the

population density or even business/recreational areas. The plot with the 3 different time periods on

the other hand, shows that the route telecom traffic (which we considered time constant on spatial

dependency) geographically moves on different times of the day. Telecommunication traffic is time

dependent and it can move from cell to cell depending on the local human activity during the day.

Gaussian Processes Results 1-2 (corresponding to Code Samples 31-32):

Gaussian Processes Result #1

46

Gaussian Processes Result #2

A continuous function to approximately represent the average daily traffic is successfully calculated.

An application like that (assuming constant day to day telecom traffic) can give us an approximation

for the desired value (telecommunication traffic) in any cell of the route anytime in the day. The

result is aligned with what we have seen already and confirms the difference in network usage

through the day.

47

Correlation Matrices Results 1-2 (corresponding to Code Sample 34):

Correlation Matrices Result #1

The correlation matrix above portrays the exact relationship between all the different cells of the

route. We can see that neighboring cells (the closer we are to the main diagonal) have the highest

values for the correlation, which is expected (we expect small deviation between neighboring cells).

48

Correlation Matrices Result #2

One more display that can provide useful information is the clustering correlation matrix. In this type

of plotting, as we can see, the cells are organized in a way to group cells with high correlation. That

means that the cell sequence is sorted in a correlation way, to find patterns about the geographical

dependency of the telecommunication traffic.

49

These were the results the code sequence produced for the example route. Users choose the exact

coordinates they want, as well as the specific variables when the route is split to smaller parts.

The entire procedure lasts about 2-3 minutes on average (depending on the route length), which is

significantly faster compared to using numpy arrays instead of database tables for the data storage.

Considering the amount of data the tool has to process and calculate to get the results, we can

consider it efficient.

The results this project produces can give useful information about the general network usage. They

can also give indications on the needs of the network, and ways to improve and develop it. Apart

from that, the results and the codes in general can be used as a stepping stone in different projects,

so that, combined with additional analysis, they can offer necessary insights for the network

betterment.

An example like that will be given in the second part of the thesis. For that project we will use the

work done here, and combined with additional data and processes we will take it a step further.

50

3. Car Traffic – Telecommunication Activity Correlation

3.1. Introduction

In this part of the thesis we will deal with calculating the correlation of telecommunication activity

and car traffic in the Milan province. We will use published data about car traffic on the roads of

Milan as well as the data used in the previous project. They will be handled and processed according

to the current’s job needs. It is one more task that requires database handling and big data analytics.

The previous task (calculating the telecommunication traffic on any Milan route) will be taken

advantage of. Combined with the new data analysis procedure, it will produce entirely different

conclusions for an entirely different project.

The ultimate goal is to create an automated procedure which, given the data of the road we want to

study, will give a result about the car traffic – telecom activity correlation of that specific road. In

other words, by what factor is the network usage determined by mobile users. This information can

give us an insight about the network resource needs for servicing mobile users. This category of users

is special, because their ongoing call or data session needs to be transferred to the next base station

of the cellular network. This is a process known as handover, and its application needs extra network

functionality in comparison to servicing spatially stable users. Knowing beforehand, which parts of

the Milan province have greater handover handling needs, can be an important beneficial factor

towards strengthening and optimizing the network itself (could be work for a different project).

We will present the data, create fitting database tables and import them, and create an automated

sequence of codes which will fetch the specific data we need all the way to calculating the desired

correlation. After that, we will validate the tool’s results, comparing them to what we would expect

for specific roads according to their attributes.

51

3.2. Presenting the Data

The extra dataset we are going to need for this work is about car traffic on Milan roads. It has been

provided by the mapping and location technology company ‘TomTom’. The format the data were

published was in excel tables. One table for every hour of the day (12:00-01:00, etc.), every one of

which presents the number of cars passing from every road of the Milan province during that

specific hour. The data we have in our disposal are the average cars passing from each road during

that specific hour for the duration of a month. These data are more recent compared to the

telecommunication activity ones, but, given the fact that both the datasets are extended on long

periods of time, we make the assumption that they both describe the general patterns of network and

road usage, regardless of the day.

We mentioned the Milan province roads. There is one more table dedicated on the specific

information of these roads. This table we have available is describing more than 150.000 different

road parts throughout the Milan region, for which we have the starting and finishing coordinates, the

road name etc. Furthermore, every road chunk is characterized by a unique key (BS_Id). This key is

used in the 24 tables representing the automobile traffic of the roads for every hour of the day. A

sample of the car traffic data and the road attributes can be seen in Image 4 and Image 5 respectively.

In Image 4 (car traffic data during 00:00-01:00) we can notice that there are data missing for some

road parts. The roads that have no traffic (0 ‘BS_Hits’) during the specific time window are skipped

completely from the report. We will need to fix the missing data issue later on.

These data combined with the ones used before will be used for this new analysis project.

52

 Image #4 Image #5

53

3.3. Preprocessing and Saving to Databases

Having presented the shape of the data, we can now move on to the next step. We will use the

database tables created already in MySQL, together with the ones we will create now. As before, the

databases will be managed through Jupyter Notebook, using the ‘mysql.connector’ library.

In this database, we are going to store all the data related to the Milan automobile traffic. The

necessary information for our job is the unique ID, its name, the coordinates (the starting and ending

longitude and latitude is provided) as well as the car traffic over it for every hour of the day.

The first issue we need to resolve is the missing data problem. Rows with zero traffic are not

included in the traffic tables so we need to add them with value 0. We solve this like following. First

of all, we move all the data in hourly tables in the database in their exact form. This procedure can be

seen in Code Sample 27. We then create a temporary table which contains the key values that have

been given to all the roads (that means an increasing value from 1 to 150924, the number of the

roads), which is displayed in Code Sample 28. Lastly, we create an iteration loop, which resorts to

every hourly traffic table and finds which key values (road IDs) are missing from every table, with the

help of the table that contains all the key values. It then inserts records with the missing keys and

zero value for the car counter. To complete the result we create a new table for every hour of the

day, and re-insert the already existing car traffic data in an increasing ID order while dropping the

unnecessary tables, so that we have the desired data sorted. This iteration loop can be seen in Code

Sample 29.

Code Sample #27

54

Code Sample #28

Code Sample #29

At this point we have created 24 hourly car traffic tables containing the data for all the road parts we

have available.

What we want to do next, in order to have all the data grouped, is unite the hourly traffic tables

together with the road attributes into one table, which will contain columns for the road ID, the

starting and finishing longitude and latitude as well as the 24 columns for the hourly car traffic that

passes through it. These road parts are short and straight, so the edge coordinates provide all the

information we need about their geographical position. We carry this task out using Microsoft Excel.

We concatenate the data of Image 5 (while keeping only the ID and the coordinates) together with

24 Excel tables extracted from the 24 database tables containing the average hourly car traffic . We

now have all the information we need grouped in a single table and store it in a dedicated database

55

table containing all the necessary car traffic information, while deleting the unnecessary tables we

created before. The final procedure that executes the information storing can be seen in Code

Sample 30.

Code Sample #30

The resulting database table has the following shape (Database Sample 2)

Database Sample #2

We create one more database table that looks exactly like the one in Image 5, with the road’s name,

ID and coordinates stored inside. We will need the road name for a procedure later on.

All the necessary road and car traffic information are now stored in MySQL tables, so we are ready

for the next part of the project.

56

3.4. Data Analysis Procedures

At this point we will start creating the automated procedure we explained before. The goal is to

automatically calculate the telecommunication – car traffic correlation of a desired road by inserting

its attributes as starting input. This procedure will also be developed using the jupyter notebook,

creating a sequence of codes running linear.

First of all, to make the tool easier to use, we will create two different ways to input the desired road.

The first one (easier to implement), is for the user to directly input the ‘Road ID’ of the

corresponding road he want to study. In that case, we can directly find from the road database which

road that is, its coordinates and how many cars pass through in average. This method however, is not

ideal for the user because he will need to have the road data available, and then search for the desired

road.

Due to this we add a second choice, in which the user can input the name and the coordinates of the

road he wants. In that case, we need to add an extra step in the procedure. We search in the road

attributes database table for a road that fits the data given and keep the most fitting choice (that

means the Road ID, if there is a fitting choice). If we can find such a road, then we match the user

input to a corresponding Road ID and the rest of the procedure continues normally. If no such road

can be found in the data, an error message is printed and the procedure stops. That extra piece of

code can be seen in Code Sample 31.

57

Code Sample #31

What it does is fetch from the data from the database that correspond the road name user selected. If

there is no such data the procedure is terminated with a suitable output. Otherwise, it goes through

all the data fetched, to spot the piece of road that is closer to the coordinates input. When that piece

of road is spotted an extra check is conducted, in which we find out if the chosen road is close

enough (arbitrary close) to the desired road. If not the procedure terminates with the same message,

since no road was found matching enough. The program stores the Road ID which we ended up

with, in the same variable it would be saved if the user would directly input the desired Road ID.

With the end of this code chunk, we have completed the Road ID search successfully, and we have

the Road ID we needed to continue with. The rest of the procedure goes exactly like we had been

given the Road ID from the start (the 2 methods overlap from now on). We will analyze the rest of

the procedure once, and it is used in both cases.

The next step, having acquired the Road ID, is to calculate the telecommunication traffic on that

piece of road. The car traffic is stored in the corresponding database, ready to be fetched for any

road. For the telecom traffic, on the other hand, it is a bit more complicated, because we have the

telecom traffic data for every Milan cell stored. That means, that the first thing we need to do is

match the specific route (piece of road), with the cells it traverses through. We need to be careful, so

that the exact piece of road for which we have the automobile data, is matched perfectly with a

sequence of cells, so that the results are valid.

But we have already created a code sequence that executes the above, during the previous part of the

thesis. We can use it exactly as it is with a few changes. The first change is about the input. We do

not ask the user for starting and ending latitude and longitude, as we did before. We have the Road

ID, so we just need to fetch the corresponding starting and finishing longitude and latitude from the

database that stores the road attributes. We then use the ‘Project-OSRM’ tool exactly as we have

already done. The second change, is that we test both ways of the route (from start to finish and

from finish to start) to determine which of the two is the shortest path (roads can be single direction,

so a wrong direction can produce entirely wrong routes). We then have come to know the shortest

path from start to finish in coordinate points, which we store in the dedicated database table (about

the path coordinates). We call again the ‘fullroute’ procedure to fill the distance gaps in between the

coordinate points. Finally we match the route coordinates with the corresponding cells, by checking

in which specific cell each one of the points belong, and save the route cells in a dedicated MySQL

database table. The above can be seen in Code Sample 32. We have tested multiple times that the

58

sequence of cells which is produced is matching the desired road perfectly. An example will be

provided.

59

Code Sample #32

At this point, we have stored in the database the cells through which the route traverses. Next step is

to isolate the telecommunication data of these cells, which describe the network demand in the area

of the road we want to study. To perform this, we will need the daily telecommunication traffic data

60

stored in the database. Exactly as we did in the previous part of the thesis, we will create an iterating

loop going through all the daily traffic tables and storing only the specific data we want (cells of the

route) in temporary database tables. That way, we will have 62 temporary tables (one for each day,

truncated before starting the procedure again) with the telecom traffic of the cells that interest us. We

do an extra step, and calculate the average daily telecom traffic from the 62 days. We save that new

average daily traffic in a dedicated database table. The execution of the above can be seen in Code

Sample 33.

61

Code Sample #33

We have now processed and saved all the telecom data needed to describe the user chosen road.

Specifically, we have calculated the average daily telecommunication traffic in the desired cells.

Furthermore, fetching the automobile data from the corresponding database tables is trivial, so we

have come to acquire all the needed data to move forward.

Next step is to plot our data. We fetch the average daily telecommunication traffic as well as the cells

the road is comprised from. We do an extra step to make sure that the sequence of the cells saved in

the average daily traffic table is the same with the geographical topology on the road (Code Sample

34).

Code Sample #34

62

We are now ready to plot the data we have calculated and isolated. In the first script (Code Sample

35), we plot the average daily traffic of every cell of the road. That is not enough though, because the

data for the telecommunication traffic are given in 10-minute intervals through the day, while for the

automobile traffic we have average hourly data. So for the next step, we calculate the hourly average

telecom traffic of each cell and proceed to plot it (Code Sample 36). For the next, and last plotting,

we add the hourly average car traffic of the road we study. Furthermore, instead of drawing each

cell’s traffic separately, we combine them to create united average telecommunication traffic for the

road (representative for the whole route). The code that performs that can be seen in Code Sample

37.

Code Sample #35

Code Sample #36

63

Code Sample #37

The scripts above are about visualizing the data we desire. Apart from that, we will need to store

these last data we formed (average hourly telecom and car traffic) in a new temporary database table,

in order to use them for our next step (Code Sample 38). We perform this action in order to

implement the main target of this part of the thesis, which is calculating the correlation between

telecom and car traffic for the user chosen road.

Code Sample #38

64

In order to calculate the correlation and plot it as a correlation matrix we will need to use the

appropriate Python libraries (pandas and seaborn). These libraries provide tools that automatically

calculate the desired correlation from appropriately shaped data. To give that appropriate shape, we

make an extra step to save the table in a ‘csv’ type file, since that is the format accepted by the library

functions. We can see in Code Sample 39 how this procedure is implemented, and the functions used

for the correlation matrix calculation and plotting.

Code Sample #39

The script sequence thoroughly presented and explained in this chapter is the whole procedure that

calculates the telecom – car traffic correlation for the user desired road, starting from the basic data

that have been provided. In the next chapter we will present results for some roads and comment on

them.

65

3.5. Results and Conclusions

In this chapter, we will run the code sequence we developed on some Milan roads. The goal is to

verify the validity of the tool. This will occur in two steps.

Firstly, by inserting the data of the road we want (name & coordinates) we will validate that the script

chooses the correct cells, in which the road belongs to. Essentially, we check if the

telecommunication traffic is chosen correctly from the database. The second validation is a bit more

intuitive. We will choose road parts from big roadways which means, cells in which the

telecommunication traffic is almost entirely dependent to the passing vehicles. In such road parts we

expect much larger telecom-car traffic correlation, since the car traffic will highly affect the network

usage in that area. Respectively, we can pick more secluded roads, next to residences, universities,

recreation areas etc. In such spots we expect significant lower telecom-car traffic correlation, since

the network usage is mostly due to spatially stable users. So, the target is to confirm that the expected

correlation coincides with the tool’s result. We will perform the procedure on roads from both

categories mentioned.

The first road for which we will run the scripts can be seen in Images 6 and 7. In the first one we can

see the cell in which the road belongs to (ID: 4154).

 Image #6 Image #7

It is a main roadway passing through the outskirts of the city center. We expect a high correlation

between the telecommunication and car traffic, since it is a busy roadway comprising most of the cell

it belongs to. We run the code sequence by inserting the road name and coordinates, and the outputs

can be seen in Images 8 and 9.

66

67

Image #8

 Image #9

As we can see, the program has chosen the correct cell (4154), and the correlation result is very high

(0.88) as expected. That means that the result for this road input is successfully validated.

68

We will perform the procedure one more time. We can see the new road in Images 10 and 11.

It is an isolated road passing by park, industrial areas and public spaces. This means that the

telecommunication traffic will be mostly due to the geographically stable users rather than passing

vehicles. In other words, we expect a smaller telecom-car traffic correlation. The results of the code

sequence can be seen in Images 12 and 13.

Image #10 Image #11

69

Image #12

70

 Image #13

The program has chosen the right cell (4253). Furthermore, the result of the correlation is low (0.24)

as expected.

More test runs were implemented, and in accordance with the examples above, the validity of our

tool has been verified. When given a random road part in the Milan province, it calculates the

telecom-car traffic correlation of that specific road (if these data exist) and prints the output. This

information can be helpful in order to better understand the network and its needs. Handover

frequency is necessary information for optimizing the network and making it more robust.

In this part of the thesis, we had the chance to store and manipulate large scale datasets as well as

extracting information from their processing.

71

4. Conclusion

At the center of our focus is the better understanding of the use of the telecommunications network

to benefit society. All the different studies and approaches we have done in this project are aimed to

draw conclusions towards that direction. By arriving at such conclusions, we can inform and improve

the design and function of these networks. This thesis demonstrates the utility of data analytics in

extracting actionable insights from telecommunication data. Through the use of time and spatial

analysis, Gaussian processes, and correlation matrices, the research successfully gains a better

understanding of user patterns of network usage, predicts network usage needs and investigates any

correlations between telecommunication and vehicle traffic.

The use of Python and SQL as primary tools for the analysis and management of data allows for

efficient and easily-replicable scripts, and the ability to handle large amounts of data using MySQL.

The findings from this research have the potential to improve network performance in

telecommunication systems by determining network handover needs in user-chosen areas and

optimizing network coverage. This thesis is an important step in leveraging data analytics to gain a

deeper understanding of telecommunication systems and improve their performance.

72

References

1. Big data: A review, S. Sagiroglu, D. Sinanc, 2013

2. Project Jupyter: A Computer Code that Transformed Science, Linda Vu, 2021.

3. Data Science Notebooks get real: JupyterLab releases to users, Andrew Brust, 2018.

4. “What is MySQL?” MySQL 8.0 Reference Manual, Oracle Corporation, 2020.

5. Geojson, Howard Butler, Martin Daly, Allan Doyle, Sean Gillies, Stefan Hagen, Tim Schaub,

Erik Wilde, 2014.

6. Gaussian Process Regression Analysis for Functional Data, Jian Qing Shi, Taeryon Choi, 2011.

7. A correlation-matrix-based hierarchical clustering method for functional connectivity analysis, Xiao Liu,

Xiao-Hong Zhu, Peihua Qiu, Wei Chen, 2012.

8. A guide to NumPy, Travis E. Oliphant, 2006.

9. MySQL Connector/Python Revealed, JW Krogh, G Krogh, Gennick, 2018.

10. Matplotlib and seaborn, E. Bisong, 2019.

11. Pandas, python data analysis library, W. McKinney, 2015.

12. Scikit-learn: Machine learning in Python, F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,

B. Thirion, 2011.

13. “Jupyter Widgets” documentation, Project Jupyter, 2022.

14. A multi-source dataset of urban life in the city of Milan and the Province of Trentino, Gianni Barlacchi,

Marco De Nadai, Roberto Larcher, Antonio Casella, Cristiana Chitic, Giovanni Torrisi,

Fabrizio Antonelli, Alessandro Vespignani, Alex Pentland & Bruno Lepri, 2015.

