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ABSTRACT 

 

The Sine and Cosine Algorithm was created by Seyedali Mirjalili in 2015. It uses sine and 
cosine to solve various optimisation problems precisely. It belongs to a category of 
metaheuristics, which includes population-based strategies for obtaining the optimal 
result by mimicking natural phenomena. This thesis elaborates on a wide variety of its 
mutants. Specifically, fuzzy, chaotic, opposite-based-learning, greedy levy flight and 
adaptive multi-objective aquila are some of the variants the work focuses on. 

This work is based on both theoretical and practical aspects of the algorithm. First, tests 
of efficiency were pursued on multiple benchmark functions. The research on the topic 
was expanded by the solution of a widely known engineering problem, the 
tension/compression spring design. It can be observed that the algorithm has relevance 
to various engineering, mathematical and medical issues when other deterministic ways 
fail. Many variants of the procedure were introduced to balance its weaknesses. Finally, 
diagrams are presented to improve our understanding of the SCA’s accuracy. 
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ΠΕΡΙΛΗΨΗ 

 

Ο αλγόριθμος ημιτόνου και συνημίτονου εφευρέθηκε από τον Mirjalili το 2016. 
Χρησιμοποιεί τις συναρτήσεις ημιτόνου και συνημίτονου για να επιλύσει ένα μεγάλο εύρος 
προβλημάτων βελτιστοποίησης. Ανήκει σε μια κατηγορία μεταευρετικών διαδικασιών, 
που περιλαμβάνει στρατηγικές βασισμένες σε πληθυσμό, για επίτευξη βέλτιστου 
αποτελέσματος μιμούμενο φαινόμενα στη φύση. Έπειτα,  έγινε εμβάθυνση σε ένα μεγάλο 
εύρος παραλλαγών του αλγορίθμου. Ειδικότερα, ασαφής, χαοτικός, βασισμένος σε 
αντίθετη μάθηση, άπληστος levy, προσαρμοστικός και πολλαπλών στόχων aquila είναι 
κάποιες από τις μεταλλάξεις του αλγορίθμου που βασίστηκε η εργασία και βελτιώνουν 
την απόδοση του σημαντικά.  

Η εργασία είναι στηριγμένη τόσο στο θεωρητικό όσο και στο πρακτικό κομμάτι του 
αλγορίθμου καθώς επιδιώχθηκε να ελεγχτεί η αποδοτικότητα του με πολλαπλές 
συναρτήσεις κριτηρίου. Επεκτείνεται η έρευνα στο αντικείμενο επιλύοντας ένα ευρέως 
γνωστό πρόβλημα μηχανικής, του σχεδιασμού τάσης ελατηρίου. Παρατηρείται ότι ο 
αλγόριθμος έχει εφαρμογή σε ποικιλία μηχανικών, μαθηματικών και ιατρικών θεμάτων. 
Είναι αντιληπτό ότι βρίσκει λύση εκεί που άλλες ντετερμινιστικές διαδικασίες δεν μπορούν 
να εφαρμοστούν. Πολλές παραλλαγές του αλγορίθμου ημιτόνου συνημίτονου έχουν 
εμφανιστεί για να ισορροπήσουν τις αδυναμίες του. Τέλος, παρουσιάζονται διαγράμματα 
για υπάρχει καλύτερη αντίληψη της απόδοσης του SCA. 
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1. INTRODUCTION 

 

In this thesis, optimisation is at the centre of attention. Maximising or minimising the 
output is essential in reaching the desired results. In recent years, datasets have become 
quite large and more demanding for computer scientists to manipulate. As a result, 
problems are turning more complex for conventional algorithms to solve, and a 
generalised approach that could be implemented in almost every situation is invaluable. 

Many artificial intelligence procedures cannot provide satisfying results because the 
agent is trapped inside a locally optimal solution, ignoring the one that is globally the best. 
Furthermore, the agent might be unable to approximate the optimal solution quickly 
enough, which can be concerning on many occasions. Modern systems need solutions 
to be on the spot and produced rapidly to operate correctly. Real-life challenges propose 
constraints which are nonlinear, constituting the computation of the gradient perplexing. 
As a result, derivative-free solutions with black box designs have gained a lot of ground. 
Also, by treating problems randomly and stochastically, scientists can broaden their 
horizons because they can face a larger set of problems than before. However, it is worth 
noting that one solution to every problem is impossible (No Free Lunch Theorem) [1]. 
Different algorithms could be more effective than others, depending on the situation. 
There is room for a lot of improvements in this research field. 

This thesis focused on both the theoretical and practical aspects of the Sine Cosine 
Algorithm, a probabilistic problem-solving approach that capitalised on the trigonometric 
functions of sine and cosine to produce a satisfying outcome. However, even though it is 
a process that was invented recently, it lacks effectiveness in dealing with problems of 
higher dimensions. Because of this fact, a lot of improvements in these algorithms have 
attracted the interest of many scientists and will be presented in this thesis [7], [8]. More 
specifically, a procedure that mimics the behaviour of eagle species, named Aquila, will 
be thoroughly discussed in this research. Chaos, a phenomenon that takes place in real 
life numerous times, will be elaborated on in this analysis as it can enhance SCA’s effect 
greatly. Other difficulties that can occur in complex problems are when the global optimum 
is located on the limits of the search space, when the function has a large number of 
global optima or when the optimal solution is located at a very steep point in space [1]. A 
thorough research regarding the efficiency of SCA on multiple test functions will verify the 
results of the widely known literature. These results will be compared with the ones of the 
other variants to have a complete view of the improvements in the basic algorithm. In 
addition, the research will be expanded on a mathematical engineering problem, the so-
called tension-compression spring problem [11], [12]. The reader will be able to view how 
the constraints that this problem proposes can be applied to SCA as well as observe 
SCA’s efficacy on it.  

SCA is population-based, belonging to the swarm intelligence family of algorithms. This 
can augment its area of effect because more agents can try to approximate the global 
optima, as they can better explore the search space. Although population-based solutions 
need more function evaluations [1], this results in a higher chance of reaching the optimal 
solution. Regarding the test functions, both multimodal (multi-peaks) and unimodal (single 
peak) were taken into consideration as well as fixed dimension ones (CEC). 
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2. THEORY 
 

2.1 Sine cosine Algorithm 

The SCA population-based algorithm commonly attains results by setting values 
randomly to solutions in the initial stage. Then, by proper update rule, the algorithm will 
obtain the best value out of that set. Due to the stochastic approach of SCA, the solution 
is almost impossible to be reached in a single step [1]. Several updates need to occur so 
that SCA can converge on the best solution.  

Probabilistic processes, which form the population of solutions, usually share some 
common characteristics. Their optimisation process is divided into two stages: exploration 
and exploitation. In the former stage, the solutions are changing substantially to explore 
a wider area of possible global optima [6]. In the latter one, SCA fluctuates around the 
found peak that could potentially lead to the desired value.  

Below, the equations that the procedure is based on are illustrated: 

 

𝑥𝑖
𝑡+1 = {

𝑥𝑖
𝑡  + 𝑟1 ∗ sin(𝑟2) ∗ |𝑟3𝑃𝑖

𝑡 − 𝑥𝑖
𝑡|, 𝑟4 < 0,5

𝑥𝑖
𝑡  + 𝑟1 ∗ cos(𝑟2) ∗ |𝑟3𝑃𝑖

𝑡 − 𝑥𝑖
𝑡|, 𝑟4 ≥ 0,5

    (1) 

𝑟1 = 𝑎 − 𝛼
𝑡

𝑇
, 

Variable t equals the current number of iterations, while threshold T is the maximum 

number of iterations. The value of 𝑎 is a constant (a=2 in this implementation). 𝑃𝑖
𝑡
, in the 

t-th iteration and i-th dimension, represents the optimal individual of the current 
population. r1, r2, r3 and r4 are random values defined by the inventor of SCA (Mirjali et 

al.). 𝑥𝑖
𝑡
 shows the current element of the population in the t-th iteration and the i-th 

dimension. The individual solution in the t+1-th iteration is the result of the mathematical 
equation. 
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Figure 1: Approximation of solution depending on the destination radius. 

 

The reader can picture the problem in a parametric circle. The solution is placed at a 
specific radius far from the optimal destination. By using the aforementioned update rule, 
the solution can either be placed towards the orange area (closer to the destination) or 
the blue area (outside the scope of the optimal solution).  

By observing equation (1), someone can understand that sine and cosine play a major 
role in the final outcome. It should be made clear that when the ranges of trigonometric 
functions 2*sin(x) and 2*cos(x) are in the interval of [1, 2] or [-1, -2], the solution avoids 
the destination by moving away from it (blue area). These functions are based on the 
hypothesis that r1=2. On the other hand, when the trigonometric functions are limited in 
the range (-1, 1), then the swarm(population) will move towards the destination (orange 
area). 
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Figure 2: Decision of radius based on values of Sine and Cosine 

SCA is fundamentally based on randomness. As a result, r1, r2, r3 and r4 play a critical 
role in the behaviour of the whole procedure. These random properties have different 
targets. Value r4 defines which equation the program will use (the upper or the lower 
bracket). It is distributed in the range [0, 1]. The role of r1 is to define the amplitude of 
sine and cosine. 

 

Figure 3: Decreasing amplitude of the trigonometric functions 
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As it is shown in equation (1), r1 is decreasing. Therefore, the range of sine and cosine 
will be reducing steadily (Figure (3)), which results in approaching closer to the 
destination. T defines the maximum number of iterations, and t is the iteration that 

happens currently. By decreasing r1, in the way it is presented in equation (1), the agent 

is able to shift smoothly rather than abruptly from exploration to the exploitation stage. In 
contradiction to that, the amplification of it can lead to an expanded distance between the 
solution and the destination. In addition, r2 affects the period of sine and cosine. It ranges 
between [0, 2π] and depending on the waveform, it can have either greater or lower 

values. For instance, sin (0) =0, cos (0) =1. r3, which belongs in the range [0, 2], defines 

how much the optimal solution will affect the outcome of the equation. r3>1 increases 
importance, and r3<1 lowers it. Even though the scenario that was depicted in Figure (2) 
considers two dimensions, it can be extended to further dimensions if the problem 
requires it. Figure (1) concerns the exploitation stage of the algorithm.  

Pseudocode sums up all the theory that was mentioned previously. A set of agents are 
initialized randomly at the start, and the fitness of each element as well as the optimal 
individual is computed. On top of that, an evaluation of the objective function will happen 
afterwards. The agents are shifted from exploration to the exploitation stage at some 
point, which will result in better convergence to global optima. 

 

Image 1: Basic Sine Cosine Algorithm 
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Regarding the complexity of SCA, it can be computed easily if it is divided into stages. 
One way to accomplish that is by considering as initial stage the first loop. Then, the 
second stage is the objective function computation, the while and the two following loops. 
The third stage is the calculation of the optimal individual. O(SCA) = 3*O(N) + T * O (N * 
D) + T* 2O (N) = (3 + 2T) *O(N) + T*O(N*D) where N is the size of the population and D 
is the dimension each solution. 

In conclusion, the SCA forms solutions around optimal values. This creates a better 
chance of reaching a global optimal. By treating problems as black boxes (no adjustments 
on the algorithm according to the input), it can have numerous applications in different 
fields. Based on the original algorithm, many interesting variations have arisen from it.  
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2.2 Fuzzy Sine Cosine Algorithm 

 

This modification was created to improve the design of PID controllers responsible for 
thermal heating [10]. Fuzziness is a mathematical concept where several elements in the 
set are assigned two different values of more instead of one. It is quite similar to SCA, 
but it differs from it after the computation of the objective’s function value. 

 

(

𝑥1,1 ⋯ 𝑥1,𝐷
⋮ ⋱ ⋮

𝑥𝑁𝑃,1 ⋯ 𝑥𝑁𝑃,𝐷
) 

 

Suppose that there is a population of size N, and its element of it has dimension D. This 
matrix illustrates the updated solutions after SCA’s computation as well. A certain 
mutation stage will be applied to the original SCA. More specifically, the program 
produces N number of random values, which represent the index of the dimension that 
will be altered for each solution. 

𝑟𝑚𝑢𝑡 = [𝑟𝑚𝑢𝑡,1 𝑟𝑚𝑢𝑡,2⋯𝑟𝑚𝑢𝑡,𝑁𝑃−1 𝑟𝑚𝑢𝑡,𝑁𝑃] (2) 

Every 𝑟𝑚𝑢𝑡 is an integer in the range of [1, D]. For instance, consider a scenario that 

𝑟𝑚𝑢𝑡,1 = 2. This means that the program will change the second dimension’s value from 

the first element of the population randomly inside the domain space. The process will 
continue in the same way until the following vector is produced.  

𝑥𝑚𝑢𝑡 = [𝑥𝑚𝑢𝑡,1 𝑥𝑚𝑢𝑡,2⋯𝑥𝑚𝑢𝑡,𝑁𝑃−1 𝑥𝑚𝑢𝑡,𝑁𝑃] (3) 

Afterwards, there will be two vectors, each one representing the same element of the 
population (fuzziness). Two different fitness values need to be calculated. One for the old 
vector of the element and the other for the new one.  

𝑓𝑛1 = [𝑓𝑛1,1 𝑓𝑛1,2⋯𝑓𝑛1,𝑁𝑃−1 𝑓𝑛1,𝑁𝑃] 𝑓𝑜𝑟 𝑥𝑜𝑙𝑑 (4) 

𝑓𝑛2 = [𝑓𝑛2,1 𝑓𝑛2,2⋯𝑓𝑛2,𝑁𝑃−1 𝑓𝑛2,𝑁𝑃] 𝑓𝑜𝑟 𝑥𝑛𝑒𝑤 (5) 

The program holds the element of the population that has the better fitness out of the two. 

After the calculation of the objective function, which is essentially the same as SCA’s, the 
computations x’s and r’s follow. The program copies the old population to a new one to 
manipulate it properly. Subsequently, the program updates the population as described 
above and then proceeds by computing the optimal solution based on the fitness of the 
resulting population. It is a greedy and simple approach that improves the SCA on many 
occasions. The complexity of fuzzy SCA has the same order of magnitude as basic SCA’s 
but is quite larger. O(Fuzzy-SCA) = (3 + 2T) *O(N) + T*O(N*D) + T*(O(N*D) + 2*O(N)) = 
(3 + 4T) *O(N) +2*T*O(N*D).  

The operation that was described could be applied only to the optimal global individual 
instead of the whole population but affecting every element was thought to have a greater 
influence on the outcome of the algorithm. The following pseudocode shows the steps 
that the algorithm consists of: 
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Image 2: Fuzzy Sine Cosine Algorithm 
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2.3 Adaptive Chaotic Sine Cosine Algorithm 

 

Figure 4: Bifurcation diagram 

Chaos refers to situations which are primarily predictable. Chaotic systems are 
predictable at initial stages, and they turn random after a while. A classic example is the 
butterfly effect. Just a small change in a deterministic nonlinear system can result in 
significant change at a later stage. The bifurcation diagram pictures the resulting 
population after many iterations of the logistic map in equation 8 as the value of a is rising. 
When a is higher, the population increases. When a surpasses 3, the population splits 
into two parts. The population in this situation oscillates instead of stabilizing. As the a is 
becoming larger, the period is doubling. This means that the population oscillates among 
four values instead of two when a was 3. After a is increasing further, around 3.5, the 
period increases in an unpredictable manner. This phenomenon happens in the grey zone 
of the diagram above (after a>3.5). However, not all values between 3.5 and 4 lead to 
chaos. There are some white areas across that domain, meaning that chaos and order 
are swapping places. That is, by definition, chaos [14]. 

It is worth mentioning that the bifurcation diagram is part of an over fractal, which are very 
complicated geometric shapes and is impossible to describe with Euclidean geometry. 
The ratio, when those bifurcations occur, approaches a constant value and is commonly 
known as the Feigenbaum constant. It is a number close to 4.669. This constant is 
ubiquitous as it has been found in many equations which are attempting to simulate 
events in nature. Simple equations can have very complex behaviours. Also, scientists 
experimented with fibrillation disease and found that by applying an electrical shot to the 
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heart at times based on chaos theory, the heart can pump blood in a periodic way again 
[20]. 

Since SCA is entirely random, chaos can promote its global search ability by traversing 
the whole area of search space more effectively. Sine Cosine Algorithm experience a 
drop of diversity at the later stages, something that leads to slow convergence and locally 
oriented optimization when dealing with complex problems. To prevent this, Chaotic Sine 
Cosine uses adaptation and Chaotic exploitation. Firstly, an adaptive transformation 
parameter boosts the algorithm by allowing the switch between the exploration and 
exploitation stage to be more balanced [6].  

𝑟1 = 4 ∗ (1 −
𝑡

𝑇
) ∗ (1 − 2

(
𝑡

𝑇
−1)
)  (6) 

In the original SCA algorithm, r1 was declining in a linear way. In the proposed equation 
(6), r1 is decreasing in a smoother way compared to SCA’s case, allowing the switch from 
exploration to the exploitation stage to happen in an accurate time [6]. T is the total 
number of iterations. The current t and the constant T will be utilized in the calculation of 
r1. On SCA’s occasion, r1 implementation risked premature convergence. Therefore, a 
more significant peak could be missed, constituting the algorithm's inefficiency.  

 The Lambda constant, which is used below, can be computed in the following way: 

𝜆 =   
𝑇−𝑡+1

𝑇
   (7) 

The Chaotic algorithm augments the search for the solution localities.  

To be more specific, a Chaotic logistic map:  

𝑦𝑘+1 = 𝑎 ∗ 𝑦𝑘(1 − 𝑦𝑘) (8) 

is proposed by a research paper to render the population more accurate. New individuals 

are created randomly according to the Chaotic sequence that is shown above. When 𝑎 =
4, 𝑦1 ∉ {0.25,0.5,0.75,1} this equation is a Chaotic system. A plot of the equation is 

depicted below. You will observe that there is no pattern in that graph. Every peak is 
different, which helps generate chaos and unpredictability for SCA. 
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Figure 5: Logistic map (first 100 terms) 

Each term of this sequence will be used by another equation to form the new population.  

The new population is computed by: 
𝑉 = (1 − 𝜆 ) ∗ 𝑋𝑏𝑒𝑠𝑡 + 𝜆 ∗ ( 𝑙𝑏 + 𝑦𝑘 ∗ (𝑢𝑏 − 𝑙𝑏)) (9) 

Ub and lb represent the upper and lower bound, respectively. 𝑋𝑏𝑒𝑠𝑡 shows the optimal 

solution for this specific iteration, t.   

Chaotic Sine Cosine is distinguished from the basic SCA due to two reasons. Firstly, as 
shown on the eighth line of the following image, r1 is updated in a new way (equation (6)). 
Secondly, as illustrated in lines 22 to 28, a new Chaotic population is created (based on 
equation (9) ). From that population, the program chooses the element with the best 
fitness and compares it with the optimal individual from SCA’s algorithm. If the new 
individual has a better score than the previous one, it is assigned as the new global 
optimal. Otherwise, nothing is done. Lambda and y sequence play a critical role in the 
resulting V population. Regarding the complexity, it is equivalent to SCA’s apart from the 
step that was mentioned. 

O (Chaotic SCA) = 3*O(N) + T * O (N * D) + T*2 O (N) +T*O(N*D) +2T(O*N) = 
(3+4T)*O(N) +2*TO(N*D). The algorithm has a complexity of the same order of magnitude 
as SCA but a larger one. 

 

 

 

 

 

 

 

 

 

 

 

 



Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem 

 

A. Tsilifonis 24 
 

 

Image 3: Chaotic Sine Cosine Algorithm 
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2.4 Modified Aquila Optimizer 

Since the thesis elaborated thoroughly on Sine Cosine Algorithm, a question was raised 
on how this process can be improved further. Aquila optimizer gave a definite answer to 
this problem [2]. To understand it thoroughly, the reader should have knowledge of some 
of its properties. Firstly, levy distribution plays a critical role in the whole procedure. 

Levy number is the quotient of two real numbers, u and v. They both belong in Normal 
distributions. The first parameter μ is the mean value of the distribution, and the other σ 
indicates the variance. These numbers equal: 

𝑙𝑒𝑣𝑦 =
𝑢

|𝑣|
1
𝛽

 

𝑢 ∼ 𝛮(0, 𝜎𝑢
2) 

𝑣 ∼ 𝛮(0, 𝜎𝑣
2) 

𝜎𝑢 = 1 𝑎𝑛𝑑 𝛽 =
3

2
𝑎𝑛𝑑 𝜎𝑣 𝑐𝑎𝑛 𝑏𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛: 

𝜎𝑢 =
𝛤(1 + 𝛽) ∗ 𝑠𝑖𝑛 (

𝜋𝛽
2 )

𝛤 (
1 + 𝛽
2 ) ∗ 𝛽 ∗ 2

(𝛽−1)
2

 

Levy flights are random orbits which have been proven very effective in spotting the areas 
in the search space which are candidates for optimal global values.  

Another vital aspect that the reader should be familiar with is opposite-based learning. 
Before introducing the aquila algorithm, the math behind this topic will be presented. 
Consider that there is a population of size n and the range of the domain space having 
an upper bound u and a lower bound l [3]. 

𝑥 = [ 𝑥1, 𝑥2, … , 𝑥𝑛] ∈ ℝ
𝑁 ,   𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ 

The opposite of the original number for the specific range [ u, l ] can be calculated with 
the following equation. 

�̅� = 𝑢 + 𝑙 − 𝑥 

It should be noted that this thought process can be extended for multiple dimensions 
where each of them has a specified domain space, as shown below: 

𝑥𝑗 ∈ [ 𝑙𝑗, 𝑢𝑗]   �̅� = [�̅�1, �̅�2, … , �̅�𝑛]  

�̅�𝑗 = 𝑢𝑗 + 𝑙𝑗 − 𝑥, j = 1, 2, …, n 

Opposite numbers have illustrated great effectiveness in improving algorithms because 
initial numbers may have led the processes to a solution that could not yield desired 
results. By computing the opposite of the number, the outcome of the procedure could be 
entirely different as the opposite direction plays a critical role in obtaining optimal global 
values. However, the research was not limited only to opposite numbers. The paper that 
was found [2] has sparked great interest among scientists and has provided a radical idea 
on how these opposite numbers can be utilized.  

The procedure that enhances a lot the aforementioned idea is the quasi-OBL (opposite-
based learning). It states that for each element of the population and for every dimension 



Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem 

 

A. Tsilifonis 26 
 

of it, the program initially computes the opposite number in that range. The innovation is 
expressed by the next step. A threshold named D determines the two ways that quasi-
OBL products can be assigned. It has to be made clear that this threshold can be used 
for multiple dimensions since D can be affected by the ub and lb parameters. lb and ub 
pair can be different for each dimension, but the same pair is used for each one of them 
in this implementation. This step was integrated into Aquila optimizers since it proved 
effective in finding better candidates for globally best values or elements with improved 
fitness values compared to the original OBL. The two mentioned topics put the foundation 
for simulating the behaviour of aquila eagles in computers. Also, quasi-OBL was applied 
not only to the initialization step of the population but after each of the update rules in the 
primary process. 
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Image 4: Modified Aquila Optimizer Algorithm 

It must be noted that after every update of 10, 11, 12, 13 equations as well as the quasi-
OBL rule, the program attempts to limit the solution to the domain space defined by the 
user. 
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Image 5: Quasi-Opposite based learning Algorithm 

  

Quasi-opposites can form a better baseline than the other algorithms because the starting 
point has a better fitness value than before. This means that there is a higher chance of 
the optimal solution being found by the program since the starting point is probably closer 
to that point than before. The same applies after each update step (equations 10-13) 
because these opposite solutions could potentially be used in later iterations, producing 
a better outcome at the end. By inserting the randomization step after the opposition rule 
(line 4 algorithm 3), a greater efficiency was attained, as will be presented in the results 
section. 

The complexity of the algorithm involves three stages:  

Initialization, population update and computation of global optima. The initialization stage 
is almost the same as the previous algorithm except for the quasi-opposites’ computation. 
O(quasi-OBL) = O(N*D). 

So, O(initialization) = 3*O(N) + O(N*D) 

O(update) = T*(O (N* D * N * N * D), O (global optima computation) = T*O(N). Program 
needs to loop through all values of the population to compute the fitness of every element 
and find the minimum one. 

The update rule has greater complexity than the previous algorithms. Computation of 
mean value for its dimension requires O(N) time (in some of the equations 10,11,12,13). 
The other N*D product is the time to compute the fitness of one element of the population 
and to assign it to the individual solution if required (D iteration times). The total 
complexity of the program is: 3*O(N) + O(N*D) + T*(O (N*N*N*D * D)) + T*O(N).  

The Aquila algorithm attempts to imitate the behaviour of a kind of eagle named Aquila. 
After the initialization stage and quasi-opposite computation, the update stage follows. 
This simulates four different tactics of the hunting bird to catch its prey. Which hunting 
type will be involved in the process is determined by a random real number inside [0, 1]. 
If it exceeds a certain number equal to two-thirds of the threshold of iterations, one 
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specific branch will be chosen by the program. Otherwise, another one. Inside the if then 
else in line 11 of them algorithm (4), there is another if then else where the Aquila’s update 
is implemented. 

 The first hunting type is simulated by the equation: 

𝑥1
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

𝑡 ∗ (1 −
𝑡

𝑇
) + (𝑥𝑀

𝑡 − 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑏𝑒𝑠𝑡
𝑡 )  (10) 

 

The Aquila is trying to find the best location to hunt and spot potential food resources. It 
could be interpreted as a broad exploration of the search space. 

𝑥𝑏𝑒𝑠𝑡
𝑡 , in the t-th iteration, is the best solution in iteration t, which is the current number of 

iterations. T is the total number of iterations. Rand is a random real value larger or equal 

to zero and less or equal to 1. Finally, 𝑥𝑀
𝑡 , in the t-th iteration, is the mean value of all the 

elements of the population (N elements) for every dimension. For example, if j=1, then 
the program computes the sum of all elements in the population for dimension=1. 

Then it divides the sum by the size of the population to compute the mean value. This is 
the explanation for the equation:  

𝑥𝑀
𝑡 =

1

𝑁
∑𝑥𝑖(𝑡)

𝑁

𝑖=1

, ∀ 𝑗 = 1, 2,… , 𝐷  

This series is computed inside the double for loop, precisely in line 13 of the previous 
picture (algorithm (4)). The term (1 - t \ T) influences the level of exploration. A low t value 
provokes broader exploration, whilst a considerable value promotes a less significant 
one. Consequently, in the earlier stage, the algorithm will explore a larger area. Later, it 
will investigate a narrower one. 

If the random number is more prominent than 0.5, equation (11) will be applied. It 
proposes an alternative way for the bird to fly, to surround prey. The circling way of flying 
is simulated by the levy number for the dimension proposed by the problem. 

 

𝑥2
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

𝑡 ∗ 𝑙𝑒𝑣𝑦(𝐷) + 𝑥𝑅
𝑡 + ( 𝑦 − 𝑥 ) ∗ 𝑟𝑎𝑛𝑑 (11) 

 

𝑥𝑅
𝑡  in the t-th iteration names a random solution from the whole population. Rand's 

number is the same as in equation (10). 𝑙𝑒𝑣𝑦(𝐷) is the number from the distribution 

mentioned previously. This number must be multiplied by 0.01 to be scaled and remain 
accurate to the algorithm.  

The circular flights of these creatures are transformed into code by the trigonometric 
equations of sine and cosine: 

 

𝑦 = 𝑟1 + 𝑈 𝐷1𝑐𝑜𝑠  (−𝜔 𝐷1 +
3𝜋

2
)  

𝑥 = 𝑟1 + 𝑈 𝐷1𝑠𝑖𝑛 (−𝜔 𝐷1 +
3𝜋

2
)   
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The Aquila process has adopted a practice from the original SCA, as the previous 
mathematical types verify it. U, ω values are pre-determined. The value of the former is 
0.00565, and of the latter, 0.005. Remember that 3π/2 concerns the third quarter of the 
trigonometric circle and could be viewed as 270 degrees angle. D1 is a random integer 
having values from 1 to D (D is the maximum dimension). Finally, r1 is inside the [1, 20] 
domain.  

 Although expansion is a primary part of the process, exploitation is also crucial. This 
process unfolds in this way:  
 

𝑥3
𝑡+1 = 

( 𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑀

𝑡 ) ∗ 𝑎 −  𝑟𝑎𝑛𝑑 + (( 𝑢𝑏 − 𝑙𝑏 ) ∗ 𝑟𝑎𝑛𝑑 + 𝑙𝑏) ∗ 𝛿  (12) 

 

After Aquila has spotted its prey during the exploration stage, it flies lower and slower to 
be able to catch it. The value in the next iteration is indicated by (t+1). α and δ are 
calibration parameters. Upper and lower bound ub, lb were defined before, as well as 
rand.  

Genuine exploitation happens in equation (13). On this occasion, Aquilas are attempting 
to grab the prey by actions based on randomness. Narrow exploitation happens because 
the program is focusing on the solution entirely. The formal definition of this situation is 
presented: 

 

𝑥4
𝑡+1 = 

𝑄𝐹 + 𝑥𝑏𝑒𝑠𝑡
𝑡 − (𝐺1 ∗ 𝑟𝑎𝑛𝑑 ∗ 𝑥𝑖,𝑗

𝑡 ) −  𝐺2 ∗ 𝑙𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 ∗ 𝐺1 (13) 

 

In order to produce the updated solution t+1, several terms need to participate.  𝑥𝑏𝑒𝑠𝑡
𝑡  in 

the t-th iteration provides the best solution so far. About 𝑥𝑖,𝑗
𝑡

, in t-th iteration, equals the 

current solution in iteration t of the i-th element of the population in the j-th dimension. G1 
and G2 are responsible for describing in which way the Aquila acts. They are specified 
as such: 

 

𝑄𝐹(𝑡) = 𝑡
2∗𝑟𝑎𝑛𝑑()−1
(1−𝑇)2  

𝐺1 = 2 ∗ 𝑟𝑎𝑛𝑑() − 1 

𝐺2 = 2 ∗ (1 −
𝑡

𝑇
) 

 
A smooth switch from the exploration to the exploitation stage is succeeded by the 
illustrated quality function QF. The exponent of t is based on randomness, and the 
number of maximum iterations T. t is the current number of iterations. The motion pattern 
of the birds, as they move from the source to the destination and capture the prey, is 
adjusted to code by those mathematical formulas. Aquilas are tracking their food and 
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committing their attack. In a similar fashion, the program tracks the solution and extracts 
it in a relatively quick and effective manner, as the Aquila. 

 

2.5 General real-life applications of SCA 

 

Sine Cosine Algorithm has many exciting applications which have a significant impact. 
Scientists have been recorded using SCA to improve their chances of finding new planets 
in the universe. Moreover, they detected cancer in samples by clustering techniques with 
a variant of SCA. SCA classified samples better than before. It affected the engineering 
field too [21]. SCA can solve a lot of mathematical problems. This thesis is one of those 
examples. By optimizing materials that are utilized by engineers, such as spring, a 
breakthrough in machine performance can happen.  

Another example is electronic and thermal controls (SCA Fuzzy) [10]. Photovoltaic power 
was improved using SCA because it optimized PID factors used in that system. SCA 
contributed to the optimal placement of cameras [22], and its efficiency was validated by 
comparing it to other genetic algorithms, such as PSO. The radical aspect of SCA 
expanded to feature selection. SCA achieved high classification success in many 
datasets and minimized the feature’s size. In addition, it was applied to image processing. 
It achieved the image binarization of an Arabic document [23]. Its results were better than 
some other algorithms existing in the field. SCA was combined with Q-Learning to 
produce a new algorithm in the field of reinforcement learning [6]. The outcome of this 
mix involved spotting the best practices searching bottom up at runtime. Computer 
systems need to consider many parameters, like environments and variables, which 
render it difficult to test those systems. SCA plays a role in combinatorial testing by 
providing sets of parameters than can cover all the possible sets of them [24]. Finally, 
SCA contributed a lot to the optimization of medical diagnosis. Being able to recognize 
diseases, discover new potential drugs that can save lives, improving our understanding 
of the relationship between drugs and diseases are only some of the impacts of SCA on 
this field [25]. 
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3. TENSION COMPRESSION SPRING DESIGN 

3.1 Definition  

 

Figure 6:Spring example 

min𝑓(𝑥) = (𝑥3 + 2) ∗ 𝑥2 ∗ 𝑥1
2  

(14) 

Subject to: 

𝑞1(𝑥) = 1 −
𝑥2
3 ∗ 𝑥3

71785 ∗ 𝑥1
4 ≤ 0 

𝑞2(𝑥) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0 

𝑞3(𝑥) = 1 −
140.45 ∗ 𝑥1

𝑥2
2 ∗ 𝑥3

≤ 0 

 

𝑞4(𝑥) =
(𝑥2 + 𝑥1)

1.5
− 1 ≤ 0 

The number of active coils is 𝑥1 (the coils that are not closed), 𝑥2 is the diameter of the 

spiral, and 𝑥3 is the diameter of the wire. The domain space of those variables is: 

2 ≤ 𝑥1 ≤ 15 , 

 0.25 ≤ 𝑥2 ≤ 1.3 , 

  0.05 ≤ 𝑥3 ≤ 2 
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For example, on the illustrated image (figure (6)) suppose that the first and last coil is 
closed, and the other is active. That means that there are five active coils in the spring 
and two closed ones. The problem is to minimize the volume\weight of the spring, 
according to equation (14), with respect to the constraints that follow. The spring must 
carry weight without the material getting destroyed.  

 The constraints are integrated into the objective function by adding their value to f(x). As 
a result, f(x) will carry penalty terms which will affect the final output of the function. On 
those penalties, regularization terms will be applied to scale them properly and have the 
proper impact on f(x). A larger value of this type will affect the output of the objective f(x) 
more, while the lower one, less. It needs some experimentation to find the best term for 
that purpose, and it is dependent on the specific problem. In this work, the regularization 
term was 10.000. Lower values could be applied as well, around 1000. On another 
occasion, someone might opt to reduce even more the impact of constraints. However, if 
the penalty term is insignificant to the magnitude of f(x), the minimization will result in an 
infeasible solution. If the penalty is balanced, it will lead to a proper solution. To convert 
the constraints into penalties their value is multiplied by the regularization term and each 
one is added to the objective value f(x). 

The quadratic loss was applied to make the penalty even more strict for the objective 
function. For example, suppose that there is a constraint: 

𝑥 − 5 ≤ 0 

The value of the penalty is 0 if the constraint is satisfied (x<=5), and it is positive if x-5 >0. 
This is translated as: 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) = max (0, 𝑥 − 5) 

There is no reason to apply a penalty if the constraint is not broken. 

The quadratic loss function refers to the square of this equation. 

𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐_𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) = max(0, 𝑥 − 5)2 

This allows the penalty to have more impact since the square of a number (outside the 
(0,1) range) is always greater than the number itself.  

The results proved that the quadratic penalty works better than the basic penalty [5]. 
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Figure 7: Spring example 2 
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3.2 Application of SCA on TCSD problem 

 

In SCA’s implementation, each element of the population has three variables (x1, x2 and 
x3, as defined by the problem). Equation (14) calculates the fitness for each element. To 
adjust SCA for the compression spring problem, the constraints needed to be integrated 
into the program. Remember that SCA operates as a black box, so the main algorithm 
remains the same. The only thing that changes is that solutions must stay in range as 
defined by the problem. 

This happens two different times in the program. Firstly, when the whole population is 
initialized randomly, these values must be limited to the ranges presented. The second 
time is when SCA’s equation (1) is applied. The coordinates that are assigned to each 
dimension from this equation must stay inside the required scope. For the Chaotic SCA, 
ranges were used in the same manner.  

The individual produced by Chaotic equation (9) will have each of its dimensions in the 
required range. Careful design of both fitness functions and SCA’s took place to produce 
good results. 
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4. METHODOLOGY 

 

A robust methodology was used to achieve the objectives. The thesis follows a 
quantitative methodological approach since quantifiable data, real numbers, were used 
to measure the performance of the swarm intelligence algorithms. The analysis consists 
of detailed statistical data to conclude how algorithms behave.  

This testing approach enables scientists to ensure that the algorithms can be extended 
to real-life problems and impact the world. This kind of analysis was wider than the 
theoretical aspects of the algorithms. Choosing quantitative methodology was easy as 
most papers about that subject follow this procedure [1], [2], [6]. It is an effective way of 
testing and perfectly suits the nature of the algorithm, which is manipulating arithmetical 
data. The reader has reviewed a lot of mathematical equations until this point, something 
that provides a reason for following this idea. The metrics that are presented in this thesis 
are in the same spirit. They involve the computation of series to find the function's 
minimum value. This allows the researchers to compare the results quantitatively and not 
qualitatively. The results section will verify this thought process.  

The quantitative method reviews arithmetical and statistical data to compare the 
algorithm's effectiveness. This raises the question of why this method is important. The 
speed and good performance of this approach explain why many scientists adopt this 
procedure to present their results. When it is adequately undergone, it enables a 
researcher to expand the implementation to a broader range of problems and with more 
demanding datasets. Moreover, it is comprehensive and structured since the goals are 
determined from the beginning, and the purpose of the research is to verify those results 
or, even better, to improve them. When this method is combined with careful work, it can 
provide relatable outcomes because its purpose is to test existing hypotheses and provide 
evidence of why the algorithm behaves in a specific way by proving theories. Remember 
that all methods have a weak side. It is up to the scientist to have the proper skill to cope 
with the difficulties that may arise and thoroughly explain the findings. Those outcomes 
can be generalised in certain situations, which is another positive aspect of it. 

Although the quantitative method has many advantages, one should consider its 
limitations. If the input data is not representative or there are limited sources of them, it 
can constitute a research complex. Since the input data on this implementation is entirely 
random real numbers, the thesis overcomes this obstacle. Furthermore, quantitative 
analysis can be expensive and time-consuming. Considering that this thesis deals with 
software, all that was needed was computational power which was already existent. 

On the other hand, due to extensive analysis, it took much time to produce a detailed 
report. Thankfully, the results and the acquired knowledge compensated for the efforts. 
Quantitative analysis requires being familiar with statistics and probabilities. Since a 
computer scientist wrote this report, much background existed in those areas. 
Additionally, the presentation of those quantities in diagrams that are descriptive and 
readable requires expertise. The university provided projects with similar demands, so 
the prospective graduate was ready to fulfil the tasks. 

The dataset that was used in this thesis was based on randomness, the so-called 
Mersenne Twister. It is an efficient pseudorandom number generator invented by Takuji 
Nishimura and Makoto Matsumoto in 1997. Its name originates from the Mersenne prime, 
which is assigned as the period length of this generator. It has passed a lot of statistical 
tests, which verified its performance. Also, it is cryptographically secure, but that aspect 
does not concern this thesis directly. Instead of random data, someone may provide their 
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own solutions, as population individuals with some modifications, and attempt to improve 
them with SCA and its variants.  

The algorithms were implemented with code to improve our understanding of the research 
field further and build the foundation for even more complex solutions in the future. It is 
worth noting that C++ language was used in this project because it made it easier to 
simulate the functionalities of the algorithms and have better segmentation of files with 
classes. Python language was utilized for the creation of all the images that you will see 
in this thesis because it offered a friendly environment for that purpose. Latex contributed 
to the presentation of the results in a formal way, keeping up with the standards of this 
project.  

This work elaborated on the practical side of SCA. Statistics from all the algorithms that 
were explained previously were obtained. Specifically, mean value, standard deviation, 
range, median value, and execution time are only some of them. This made it possible to 
compare quantities and form conclusions that are accurate and relatable to the problem. 
The quantitative research manner was adopted in the metrics section. The objective 
function value that is computed by the equations, in theory, is evaluated by universally 
used test functions. Their behaviour will be explained below, but they use arithmetical 
data to compute an optimal value. 

Some qualitative analysis is also present in this thesis. Someone should pay attention to 
the diagrams in the theory section. The colours that are shown in the diagrams (blue and 
orange) show a quality rather than quantity characteristic. They help the reader 
understand in which direction the solution will direct, according to the results of the 
mathematical equations. The diagrams that you will see in the results section show some 
quality too. The thesis reviews the pattern of a given fitness function. Is it linear or not? 
Do fitness and time increase together, or does one increase as the other decreases? Is 
the function increasing or decreasing at a constant rate or not? The answers will be shown 
afterwards. Finally, the bar charts in the metrics section are qualitative attributes because 
they provide valuable information to the reader about which regions have lower or higher 
fitness scores. 

Finally, this thesis was considered a three-month workload. The student claimed a topic 
from the assistant professor, Dr Stamatopoulos, in the middle of November 2022. The 
following month, the student searched through research papers that are shown in the 
reference section about potential SCA variants that should be presented in this thesis, as 
well as engineering problems, to verify its performance. After the research was 
completed, code implementation took place. With cooperation with Dr Stamatopoulos, 
the code was completed successfully. It should be noted that there was a one and half 
month pause period due to undergraduate examinations. When the code was completed, 
the writing of this report began. The work is expected to be finished at the end of April 
2023. 
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5. METRICS 

 

Metrics are a crucial part of assessing algorithms. In this thesis, single objective test 
functions were used to measure performance. It can definitely be implemented for solving 
multi-objective optimization too. Both unimodal and multimodal functions were utilized. 
Remember that unimodal functions concern a single peak, while multimodal functions 
have multiple peaks. Someone can picture these test functions as simulated landscapes 
which can enable scientists to learn many essential features of the algorithms, such as 
precision, convergence rate and any flaws that may be committed during its operation. 
Some plots are provided to the reader in order to have a better understanding of their 
behaviour. The metrics section is a stepping stone, as it provides the required information 
to grasp the results section effectively. Below, each test function that was used in this 
thesis will be presented, as well as some characteristics about them.  

Firstly, Schwefel's 7 test functions: 

𝑓1(𝑥) = 418.9829𝐷 − ∑𝑥𝑖 ∗ sin (√|𝑥𝑖|) 

𝐷

𝑖=1

 

It is a multimodal continuous nonconvex function defined in the hypercube:  

[-500,500] for i =1, 2, …, D. It can be defined in n dimension space and has a negative 
global minimum value [19].  

The searching algorithms are susceptible to missing the optimum global value due to the 
abrupt surface of the function. There are many local minimum values which can deceive 
the algorithm into going in the wrong direction. Moreover, the global optimum is quite 
distant from the second-best value, rendering it difficult for the algorithm to spot it.  

The second function is De Jong's1: 

𝑓2(𝑥) =  ∑𝑥𝑖 
2

𝐷

𝑖=1

 

It is a continuous unimodal function. It is a convex function, meaning that the curved 
surface is pointing outwards. Its domain space is:  

[-100,100] for i = 1, 2, …, D. It is commonly known as the sphere model. As can be seen 
in the bar chart, green and blue values have a medium range of fitness. Pink and purple 
are high-value ones and should be avoided by the process. The desired territory is the 
yellow and especially the red one since minimum fitness value exists there. Its global 
minimum is 0. 
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Figure 8: Schwefel’s seven 3-dimension graph 

 

 

The third function is the Rastrigin: 

𝑓3(𝑥) =  ∑(𝑥𝑖 
2 − 10 ∗ cos( 2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

 

It has a similar behaviour as Schwefel’s seven but is defined inside [-5.12, 5.12] for i =1, 
2, …, D. Its global minimum value is zero. It is continuous, nonconvex, and multimodal, 
as shown in the graph below. Several local minimum values are allocated around the 
global minimum, zero. Higher fitness values are found in the corners of the two-
dimensional plot. 
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Figure 9: Griewank’s 3-dimension graph 

The fourth function is named Griewank: 

𝑓4(𝑥) =
1

4000
∑𝑥𝑖

2

𝐷

𝑖=1

−∏cos (
𝑥𝑖

√𝑖
)

𝐷

𝑖=1

+ 1  

It has a vast number of local minimums distributed frequently around the surface. The 
domain space is the hypercube [-600, 600] for i =1, 2, …, D. The global minimum value 
of the function is zero. On this occasion, highs and lows are all over the landscape, not 
only on corners. It is a multimodal function composed of a convex quadratic and a 
fluctuating(waving) nonconvex one. It differs from the other test functions because it is 
more difficult to optimize in the initial stages, but then it becomes easier.  

Next is the well-known Ackley function: 

𝑓5(𝑥) =  −20exp 

(

 −0.2 √
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1

  

)

  

− exp (
1

𝐷
 ∑cos ( 2𝜋 𝑥𝑖

𝐷

𝑖=1

 )    ) + 20 + 𝑒    

David Ackley proposed it in his PhD dissertation in 1987 [26]. The continuous multimodal 
nonconvex function is evaluated in hypercube [-32, 32] i =1, 2, …, D. It can indeed be 
limited to smaller spaces. The global minimum value is zero. 

The algorithm proposes a challenge for algorithms such as SCA because there are many 
instances when it gets trapped in a local minimum location. Specifically, Ackley’s graph 
consists of a flat region with a hole at the centre of it. In the former territory, numerous 
local optima exist, while in the latter, the minimum fitness value is located. The steepness 
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of the valley where the minimum value resides can be proved difficult for many algorithms 
to locate. 

 

Figure 10:Ackley 3-dimension graph 

The following function is called f6-step: 

𝑓6(𝑥) =  ∑(⌊𝑥𝑖 + 0.5⌋)
2

𝐷

𝑖=1

 

It is the typical step function, but since the steps are multiplied by a square, no negative 
terms exist in the sum. Due to the floor operation that exists at the base of the power, the 
series will converge to zero. As a result, the optimum global value in this situation is zero. 
The nonconvex, not continuous, quadratic function is evaluated in hypercube: 

[-100,100] i =1, 2, …, D. It is a unimodal function since it has only one peak.  

Proceeding to function 7, which is the Goldstein-Price. 

𝑓7(𝑥, 𝑦) = [ 1 + ( 𝑥 + 𝑦 + 1)
2(19 − 14𝑥 + 3𝑥2 − 14𝑦 + 6𝑥𝑦 + 3𝑦2)] ∗ [30

+ (2𝑥 − 3𝑦)2(28 − 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦 + 27𝑦2)] 

The domain space is fixed: [-2, 2] for i = 2. It has optimal global value 3. It has a very high 
peak around the point (-2,2), which can be deceiving for many algorithms. Across the 
surface, there are several valleys which can constitute optimization difficult. The algorithm 
may fall into a sub-optimal instead of a global optima area, something that should be 
avoided.  

It is a fixed dimensional continuous multimodal and non-convex test function, and the 
global minimum point is in (0, -1). 

The eighth function is the Six-hump camel function: 

𝑓8(𝑥, 𝑦) = 4𝑥
2 − 2.1𝑥4 +

𝑥6

3
+ 𝑥𝑦 − 4𝑦2 − 4𝑦4 

The scope of this function is the [-5, 5] for i = 2 (two-dimensional). It can be visualized, as 
the name says, with six humps. It is a landscape that contains valleys and hills. Some 
valleys are lower than others, especially around the two global minimum points.  
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It is a continuous multimodal nonconvex function. The global minimum has a value of -
1.0316, found at points (0.0898, -0.7126) and (0.0898, 0.7126). 

The ninth function is the Rosenbrock.  

𝑓9(𝑥) =  ∑[100(𝑥𝑖
2 − 𝑥𝑖+1) + (𝑥𝑖 − 1)

2]

𝐷−1

𝑖=1

 

 

The scope is [-30, 30] for i = 1, 2, …, D and the global minimum value is zero. The function 
is continuous, nonconvex, and unimodal, and the minimum is in a parabolic valley. Even 
though it is easy to locate the valley, the convergence to that specific point is complicated. 
It is a well-known test problem and sometimes is called the valley function.  

The tenth function is the Quartic:  

𝑓10(𝑥) =  ∑(𝑖 ∗ 𝑥𝑖
4)

𝐷

𝑖=1

+ 𝑟𝑎𝑛𝑑(0,1) 

The scope is [-1.28, 1.28] for i = 1, 2, …, D and the global minimum value is zero. It is a 
continuous, unimodal test function. It is similar to the DeJong function but with noise.  

The eleventh function is the Schwefels2.21. 

𝑓11(𝑥) = max { |𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝐷 } 

The range is [-100, 100] for i = 1, 2, …, D and the global minimum value is zero. It has 
the shape of a reverse pyramid. It is continuous, unimodal, and convex. It gradually 
descends to the lowest point ((0,0) in two dimensions). 

Subsequently, the twelfth function is the Schwefels2.22, defined in the hypercube [-10, 
10] for i = 1, 2, …, D and the global minimum value is zero. It is continuous, unimodal, 
and convex. The mathematical equation of it is as follows: 

𝑓12(𝑥) =∑|𝑥𝑖| +

𝐷

𝑖=1

∏|𝑥𝑖|

𝐷

𝑖=1

 

It looks like a paper folded in four parts due to the absolute values, with the minimum 
point at the centre. It provides a new challenge for the algorithms since it has different 
patterns and levels of smoothness.  

The thirteenth function is the Schwefels2.12. It is defined in the scope [-100, 100] for i = 
1, 2, …, D and global minimum value is zero. It is continuous, unimodal, and convex. 

𝑓13(𝑥) =∑(∑𝑥𝑖

𝑖

𝑗=1

)

𝐷

𝑖=1

2

 

It is commonly known as a double-sum or rotated hyper-ellipsoid test function. It contains 
a lot of local optima values, proposing a hard task for the algorithms to solve. Along the 
surface, there is a lot of solution with similar fitness values.  

The fourteenth function is the Generalized penalty function two. It is defined in the scope 
[-50,50] for i = 1, 2, …, D and the global minimum value is zero. Its equation is: 



Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem 

 

A. Tsilifonis 43 
 

𝑓14(𝑥) =  0.1 ∗ { 10 sin
2(𝜋𝑥𝑖) + ∑ (𝑥𝑖 − 1)

2𝐷−1
𝑖=1 [1 + 10sin2(3𝜋𝑥𝑖)] + (𝑥𝑛 −

1)2 } +∑ 𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚)
𝐷
𝑖=1  

The u function is specified as follows:  

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚, 𝑖𝑓 𝑥𝑖 > 𝑎
0, 𝑖𝑓 −𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚, 𝑖𝑓 𝑥𝑖 < −𝑎.

 

𝑎 = 5, 𝑘 = 100,𝑚 = 4 

 

Finally, the fifteenth function is the Generalized penalty function 1. It is defined in the 
scope [-50, 50] for i = 1, 2, …, D and the global minimum value is zero. Its equation is: 

𝑓15(𝑥) =
𝜋

𝑛
∗ { 10 sin2(𝜋𝑦𝑖) + ∑ (𝑦𝑖 − 1)

2𝐷−1
𝑖=1 [1 + 10sin2(3𝜋𝑦𝑖)] +

(𝑦𝑛 − 1)
2 } +∑ 𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚)

𝐷
𝑖=1  

𝑎 = 10, 𝑘 = 100,𝑚 = 4 

𝑦𝑖 = 1 +
1

4
∗ (𝑥𝑖 + 1) 

They are both unconstrained functions with a global minimum value of zero. They are 
continuous, non-convex multimodal test functions. These are the most complex ones in 
this thesis. Their unique characteristic is that the number of local optima rises 
exponentially depending on the dimensionality of the solutions. Their graph effectively 
resembles a penalized spline. Imagine it like multiple waves with lower and higher 
amplitude [4]. 

All the above test functions manipulate the corresponding solution from the theory 
section. Each algorithm is assigned the task of providing the best possible solutions to 
minimize those functions. The wide variety of behaviours that they present allowed a 
better understanding of the algorithms’ efficiency. 

Note: Although the test functions exist in the literature, their order in this thesis is not in 
the same order as the one typically followed. If you try to compare them, look at which 
corresponds to the correct number. 
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6. RESULTS AND DISCUSSION 

 

All the previous sections prepared the reader for a comprehensive understanding of this 
section. This is the most important part because it verifies that the statements in this 
thesis are accurate. It will be divided into three particular parts. Firstly, the development 
of the minimum fitness throughout the execution of each run will be presented. 
Afterwards, tables will provide information about a variety of experiments regarding the 
best score that was achieved. An overview of the results will complete this part.  

The next three diagrams below illustrate how the minimum fitness changes for each 
algorithm in test four (Griewank) over the course of the first 2000 iterations and 100 
dataset dimensions. As it can be seen, until the first 500 iterations, the minimum fitness 
stabilizes at a quite high value, about 2500. In contrast, the Aquila algorithm converges 
to the global minimum of the test function almost instantly (it was recorded at the fifth 
iteration). Aquila provides a massive improvement compared to the other two algorithms 
when the dimension of the population is 100. The Chaotic and basic SCA line diagram 
looks almost similar on this occasion. Even though there is a sizeable difference in the 
convergence speed to the global minimum among the three algorithms, all of them 
manage to approach closely to the global minimum. The level of accuracy will be 
investigated later. For dimension size 100, the clear winner is the Aquila since it spots 
faster as the globally best value in the Griewank test function (4).    

Differentiated results occur when the dimension size increases to 500. SCA’s efficiency 
is essentially the same as when the dimension was 100. It converges partially to the 
global minimum almost at the same number of iterations. The next 4000 iterations were 
printed to observe if the convergence of the algorithm would improve. However, that was 
not the case, as the line remained the same. Remember that 2000 iterations are executed 
20 times for each algorithmic experiment, so the first three runs out of the total 20 were 
recorded. On the other hand, Chaotic SCA improved a lot as the line started from a 
relatively lower point and converged to the global minimum faster than before. The next 
4000 iterations were recorded to verify if the pattern was consistent. Even though the 
convergence speed looks similar, the line begins at a considerably greater point. Because 
the algorithms are based on randomness, the initial stages are not always good enough 
to spot a good solution, so the graph is logical. What is surprising is that whilst the size of 
the dimension is increasing, Aquila’s efficiency does not become affected at all. The 
algorithm converges to the global minimum at the fifth iteration again.  

The Aquila algorithm has the best convergence speed out of both basic and Chaotic SCA. 
Chaotic SCA proposes a reasonable improvement to basic SCA, especially when the 
dimension rises significantly to 500. Similar patterns occur in the other test functions too. 
The thesis manages to enhance the original SCA greatly.  

Minimum fitness \ iteration line diagram (dimension=100,500) 
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Figure 11: Basic SCA’s Min Fitness/iteration diagram (dimension=100) 

 

 

Figure 12: Chaotic SCA’s Min Fitness/iteration diagram (dimension=100) 
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Figure 13: Aquila’s Min Fitness/iteration diagram (dimension=100) 

 

Figure 14: Basic SCA’s Min Fitness/iteration diagram (dimension=500) 
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Figure 15: Chaotic SCA’s Min Fitness/iteration diagram (dimension=500) 

 

Figure 16: Aquila’s Min Fitness/iteration diagram (dimension=500) 

 
The following tables present the parameters that were used throughout the program as 
well as the scope of each test function in the second column. The third column provides 
the best fitness value that solutions can produce for the correspondent test function. This, 
in short, is called the Optimum. Both limited and wider ranges are provided to test different 
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regions of the test functions which contain the Optimum. It is worth noting that all the 
algorithms were compared using exactly the same parameters. Population size was 
chosen according to the existing literature because it is enough to reach a global optimum 
at a reasonable number of iterations. This allows the execution time to be satisfying. The 
“a” value (it is not the same as the Chaotic a) usually equals 2 in research papers on that 
topic. 
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Table 1: Parameters of experiment 
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Table 2: Parameters of experiment 2 
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Table 3: Βasic SCA Results (dimension=10) 
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The results for basic SCA are satisfying for most functions. In most instances, it manages 
to approach the optimum global value apart from the f9, f14, and f15. It needs to be 
emphasized that even though it approximates the global optimum, on most occasions, it 
does not reach it totally. 

As can be observed from the statistics, SCA needs about 12 seconds to execute 2000 
iterations 20 times for each test function. The mean value is very increased for the 
fourteenth and fifteen instances. On the other hand, in the seventh function, the algorithm 
always manages to find the optimal value. This is explained by the fact that the mean 
value is equal to the minimum fitness that the algorithm produces. The range values are 
not relatively large apart from functions 14,15 and 1. Significant range values could be 
interpreted as difficulty in finding the global optima. The median value enables observers 
to determine the centre of the solutions dataset. When it is close to the mean value, that 
means that the dataset is distributed in equal amounts from lowest to highest. This is 
happening most of the time except for f14 and f15. Median helps eliminate outliers(values 
that are not prevalent in the dataset but they affect the mean value). When the mean is 
less than the median, the graph is negatively skewed (weighing to the left). On opposite 
occasions, it is positively skewed (weighing to the right). Standard deviation refers to 
which place the data is more concentrated on. Low values of it mean that the data are 
distributed around the mean. In contrast, significant value can be viewed as a sparse 
graph, where the data are clustered above the mean. The latter happens in f1, f14, and 
f15. 
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Table 4: Basic SCA Results (dimension=100) 
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A new trend can be observed for the basic SCA when the dimension is increased to 100. 
All the test function’s fitness value rises greatly. f10, f12, f13, and f14 minimum fitness 
increases significantly. Those test functions were placed in that order because it becomes 
gradually difficult to find global minimum by increasing order. The value for the fixed 
dimension function remains equal to the previous table’s one. The only function that the 
fitness improves is the f1. It can be understood that the dimension size plays a significant 
role in the complexity of the problem. The higher the dimension means a more 
complicated situation and, thus, probably a greater minimum overall fitness value.  

The situation is clear in the statistics table too. The table has lost many low values that 
were existent in the previous statistics table. This means that the overall range, standard 
deviation, mean value and median have increased notably. Something that is on par with 
the worsening picture in the minimum fitness table. Programmers want to keep those 
values as low as possible to improve their chances of extracting the actual global minima 
from the test function. The greatest mean value and median are in f15’s row. The largest 
execution time in f10’s. The lowest mean value and range are assigned to f1. The lowest 
value for standard deviation and range columns is inside f7’s and f8’s row.    
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Table 5: Basic SCA Results (dimension=500) 
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The tendency in this experiment follows the same pattern as when the dimension was 
100. The minimum fitness values are rising even more, missing entirely the desired global 
minimum point. This renders SCA ineffective in dealing with these higher-dimension 
problems. The greater minimum fitness exists in test function 10, which is 4.2E+11, while 
the minimum is zero. The only functions that withstand the complexity at some level are 
the f5, f11 and f12. The statistics verify that effect. The mean value and the range are 
almost double the minimum fitness on most occasions. High execution times are 
observed (around 16 minutes maximum). The median is sometimes lower and other times 
higher than the mean. When the standard deviation is close to zero, it means that the 
solutions are concentrated on some value. When it is relatively elevated, as in f14, it 
shows that the solution varies a lot. The improvement of this algorithm to tackle this 
adversity becomes imminent. 
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Table 6: Chaotic SCA Results (dimension=10) 
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Even though dimension size has not escalated a lot, chaos is already very effective. From 
the first two tables, it can be observed that Chaotic sine cosine has better performance 
than basic SCA in f1, f9, f10, f14 and f15. Test functions f2, f11, f12 and f13 show slightly 
better scores for SCA but not by a lot. Test functions f3, f4, f5, f6, f7, and f8 have the 
same scores for both algorithms.  

Regarding the statistics, basic SCA runs 2-3 seconds faster per test function in that 
dimension. However, Chaotic SCA has a lot better statistics table. For functions f7 and 
f8, the scores are equivalent. Only a little less standard deviation is produced by Chaotic 
SCA. f3, f5 and f6 columns are the same too. The figures in other test functions follow the 
same trend as the minimum fitness tables. The one that scored better minimum fitness 
has lower values in the statistics columns. It is impressive that at f14 and f15 Chaotic 
SCA has a standard deviation of almost 0 while basic SCA’s are around 3000. That shows 
that Chaotic SCA is a lot more accurate and does not diverge a lot from the best solution. 
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Table 7: Chaotic SCA Results (dimension=100) 
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As expected, when the dimensionality of the problem rises, variants of SCA are able to 
improve the weaknesses of the original SCA. This time, Chaotic SCA is better on all the 
test functions apart from f5, f6 and f12. The figures are represented equally in f7 and f8 
since the dimension is fixed. A striking feature of the minimum fitness table is that the 
SCA f10 score stands at 7.3E+07, while Chaotic is around 0.005. Also, the value of SCA’s 
best fitness on f15 accounts for 2.82E+09, whereas Chaotic is almost 78. Chaotic SCA 
is approximately one hundred million times superior to the original SCA. 

Chaotic SCA records vastly better statistics than original SCA in all the test functions. 
This makes it clear that Chaotic SCA has the potential to provide better results than SCA. 
Basic SCA outscored Chaotic SCA on some occasions only by luck since the algorithms 
are based on randomness. Chaotic SCA has a better dynamic, and that is verified by the 
minimum fitness tables. 
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Table 8: Chaotic SCA Results (dimension=500) 
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It is evident from the table that Chaotic SCA is invariably the most productive out of the 
two. On all test functions, Chaotic SCA yields minimum fitness to a great extent. 
Undoubtedly, Chaotic SCA is the viable variant when the program has to deal with high 
dimensional populations. For instance, in f2, Chaotic manages 4.11E-6 whilst SCA only 
47113.7. SCA is unable to provide profound results because it overlooks the global 
minimum, which is zero. Chaotic SCA is close to reaching it in almost all situations.  

Statistics of SCA in dimension 500 maintain the same numbers approximately as when 
the dimension was 100, apart from execution time. That proves that Chaotic SCA is robust 
and does not get too affected by dimension surge. However, basic SCA’s statistics are a 
lot worse than Chaotic’s, and that renders essential the use of the variants. 
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Table 9: Modified Aquila Results (dimension=10) 
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When the dimension is 10, Aquila outperforms the other algorithms in the majority of the 
test functions. In particular, it is the leading procedure in nine out of the fifteen test 
functions. It performs worse than Chaotic in f7, f8, f9, f14 and f15. Moreover,  it obtains 
inferior minimum fitness to basic SCA in f7, f8 and f9.  

Regarding the statistics, Aquila SCA is superior to basic SCA in nine out of the fifteen 
functions. In detail, it does not surpass it in f1, f7, f8, f9, f14 and f15 since its std, range, 
and median is higher than the basic one. In addition, it requires substantially more 
execution time per test(around 10-200 sec). In comparison to basic SCA, the outlook is 
the same as the original SCA. A lot of emphasis needs to be put on the fact that Aquila 
manages to find not only the best fitness value but also the global minimum point of the 
test. 
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Table 10: Modified Aquila Results (dimension=100) 
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Further escalation of the dimension leads to a clear difference in performance. On this 
occasion, Aquila is a better minimizer than SCA in almost all test functions apart from the 
ones whose dimension is fixed(f7, f8). In comparison with Chaotic’s implementation, it is 
a lot closer. In detail, Chaotic exhibits greater accuracy in f7, f8, f9, f14 and  f15, whereas 
Aquila on all the others. However, both are capable of approaching the global minima on 
all tests(except Aquila in f14 and f15 when its output is significantly away from the 
optimal). In the majority of test cases, Aquila shows better accuracy by finding the optimal 
value. It is evident from the table that those variants are enhancing the original algorithm 
by a wide margin.   

Regarding execution times, Aquila is executed faster than SCA but slightly slower than 
Chaotic by a few seconds (1-20 seconds per test function). Aquila’s statistics ensure 
better quality than basic SCA apart from f1, f7, f8, f14 and f15. In those tests, Aquila 
produces significant standard deviation and range. This maybe expresses a liability of the 
Aquila algorithm. In comparison to Chaotic, it represents better effectiveness in the 
majority of tests except for f1, f7, f8, f9, f14 and f15. Remember that the desired output in 
each column of the statistic table is the minimum one. 
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Table 11: Modified Aquila Results (dimension=500) 
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When the dimension is 500, the most demanding test in this thesis takes place. As 
previously, Aquila outperforms basic SCA in all tests apart from f7 and f8. Regarding 
chaotic’s implementation, Aquila surpasses it in most tests except for f7, f8, f9, f14 and 
f15. The most striking feature of these tables is that Aquila clearly beats SCA, as its scores 
are more than a thousand times better. However, a weakness of Aquila is showcased in 
f14 and f15, when Chaotic is undoubtedly better by around a million times.  

Regarding the statistics, Aquila remains robust. It illustrates greater scores than basic in 
all tests except for f1, f7 and f8. It is exceptionally effective since a lot of values are near 
zero, even though the dimension has increased significantly. This is the goal of the 
statistics experiment. 

Execution times are worse than SCA’s and Chaotic’s by 0-4 minutes per test 
approximately. Finally, Aquila remains competitive in comparison to Chaotic. Aquila’s 
statistics are better than Chaotic in f2-6 and f11-13, which constitute the majority of the 
tests. 
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Table 12: Fuzzy Sine Cosine Algorithm (dimension=500) 
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The fuzziness concept improves basic SCA results, but it is not on the same level as 
Aquila and Chaotic. 
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Table 13: Tension/Compression spring design Results 
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In this section, the original SCA algorithm and its Chaotic variation are implemented to 
solve the compression design problem. A thorough experimentation takes place since 
many tests are performed to measure performance. Three different tests involving a 
varying number of iterations and populations happen. It is evident that the Chaotic variant 
manages to outscore the original SCA in most situations. It also manages the best overall 
score throughout the experiment (0.0126896). This thesis attained the optimization of the 
SCA algorithm on this specific problem since minimum fitness improved further by 
Chaotic variant. The variables that produced the best score are illustrated on the 
corresponding tables for each experiment. The fourth experiment is more extensive, with 
more iterations and a larger population capacity, in order to further improve performance. 
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The outcome verifies that by proposing more demanding tests, someone can improve 
results even more.  

Regarding the statistics, they correspond to the minimum fitness table. The tests, which 
produced better scores, usually depict more satisfying values in statistics. For instance, 
the last row in the statistics table depicts the fourth test with the Chaotic variant. This 
attempt produced the lowest mean value, standard deviation, range and median. 
However, it required more execution time in comparison to the other attempts because it 
was extensive. It should be noted that this time program utilizes the metrics from the 
theory section about the tension spring problem rather than the metrics from the results 
sections. Also, it uses only three dimensions since it involves only three variables defined 
by the problem. It limits those specific variables in the given domains, as shown in theory. 
The results are satisfying since this thesis not only managed to solve the tension spring 
design with competitive scores but also achieved to augment SCA scores with the Chaotic 
variant. Further iterations and larger population of solutions could have led to even better 
scores. The optimal results regarding the problem were approximately 0.01266, as shown 
in the literature [11]. 
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7. CONCLUSIONS AND FUTURE WORK 

 

Overall, this analysis led to several positive outcomes. Sine and Cosine Algorithm was 
scrutinized through a wide range of experiments, and the integration of its variants into 
the main process proved successful. This thesis achieved almost optimal results even 
when the dimensions of the solutions were large, verifying that our approach was 
effective. Our results are equivalent to the benchmarks that are displayed in the literature, 
constituting this thesis as valid and with great potential for new improvements. Based on 
this work, a new variant may arise that can solve even more challenging problems. 
Another area of possible research is the field of test functions [17]. More challenging tests 
can be proposed to further limit test these very robust algorithms. This research 
showcased the magnitude of those procedures since their application can be extended 
to many aspects of real life. A well-known engineering problem was solved, which 
contributed to familiarising the undergraduate student with the practical sides of those 
techniques [16]. It is very fascinating to explore the problem-solving capabilities of swarm 
intelligence algorithms, such as SCA, because the program can mimic a lot of behaviours 
of the natural world. Everything that can be observed in the environment might be 
applicable to code, and that itself is impressive. Finally, an extensive results report 
enabled the student to learn how to elaborate further on the topic and have a better 
understanding of the behaviour of population-based procedures. SCA proved to be a tool 
that can be utilized on the majority of occasions and provide a valuable solution in an 
easy way and at a reasonable time. 
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TABLE OF TERMINOLOGY 

optimisation The act of improving results at the 
best possible level. 

Population-based algorithms Algorithms that update multiple 
solutions instead of a single one to 

obtain result. 

Test functions Artificial landscapes that are 
utilized by computer programmers 

to observe the behavior of 
optimisation of algorithms. 

Global optima A feasible point of a test function 
that its objective value is greater 

than all other points. 

Fitness Evaluates the performance of an 
algorithm. 

Agent A feasible solution in the search 
space. 

Feasible solution Solution inside the domain space 

Deterministic (process) A process in which no randomness 
is involved in the production of 

future states 

Stochastic (process) A process in which randomness is 
involved in the production of future 

states 

Metaheuristics Heuristics or higher lever 
procedures that provide strategies 

for developing optimisation 
algorithms 

Swarm Intelligence Population-based(collective) 
intelligence 

Exploration stage Explore the whole domain space 

Exploitation stage Search around local solution 

Objective function A function that produces solutions 
which minimise (or maximise) 

objective 

Black Box No adjustments of the algorithm 
according to the input 

Mutation stage A different stage added in the 
original process 

Bifurcation diagram A visual representation of period-
doubling as ‘a‘ increases (Ex. 

period=2: two numbers, period=4: 
four numbers) 
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ABBREVIATIONS ACRONYMS 

SCA Sine Cosine Algorithm 

OBL Opposite based Learning 

TCSD Tension Compression Spring Design 

ΕΚΠΑ Εθνικό Καποδιστριακό Πανεπιστήμιο 
Αθηνών 

CEC IEEE Congress on Evolutionary 
Computation 

PID Proportional Integral Derivative 

PSO Particle Swarm Optimisation 
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ANNEX I:  HARDWARE SPECS AND TOOLS 

 

Operating System 

Windows 10 Home 64-bit 

CPU 

Intel Core i5 4460 @ 3.20GHz 

Haswell 22nm Technology 

RAM 

16,0GB Dual-Channel DDR3 @ 657MHz (9-9-9-24) 

Motherboard 

Gigabyte Technology Co. Ltd. Z97X-SLI-CF (SOCKET 0) 

Graphics 

23MP65 (1920x1080@60Hz) 

2047MB NVIDIA GeForce GTX 760 (ASUStek Computer Inc) 

Storage 

111GB SanDisk SDSSDHII120G (SATA (SSD))  

931GB Samsung SSD 860 EVO 1TB (SATA (SSD)) 

 

C++ version  

g++ (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0  

 

Python3 version 

  Python 3.8.10 

 

Visual studio version 

  code 1.77.3 
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