

NATIONAL AND KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE
DEPARTMENT OF INFORMATICS AND TELECOMMUNICATION

BSc THESIS

Implementation of the Sine Cosine Algorithm and its variants
for solving the tension compression spring design problem

Aris K. Tsilifonis

Supervisor: Panagiotis Stamatopoulos, Assistant Professor

ATHENS

JUNE 2023

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ
ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση του αλγόριθμου ημιτόνου συνημίτονου και των
παραλλαγών του για την επίλυση του προβλήματος

σχεδιασμού τάσης ελατηρίου

Άρης Κ. Τσιλιφώνης

Επιβλέπων: Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής

ΑΘΗΝΑ

ΙΟΥΝΙΟΣ 2023

BSc THESIS

Implementation of the sine cosine algorithm and its variants for solving the tension
compression spring design problem

Aris K. Tsilifonis

S.N.: 1115201700170

Supervisor: Panagiotis Stamatopoulos, Assistant Professor

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

Υλοποίηση του αλγόριθμου ημιτόνου συνημίτονου και των παραλλαγών του για την
επίλυση του προβλήματος σχεδιασμού τάσης ελατηρίου

Άρης Κ. Τσιλιφώνης

Α.Μ.: 1115201700170

Επιβλέπων : Παναγιώτης Σταματόπουλος, Επίκουρος Καθηγητής

ABSTRACT

The Sine and Cosine Algorithm was created by Seyedali Mirjalili in 2015. It uses sine and
cosine to solve various optimisation problems precisely. It belongs to a category of
metaheuristics, which includes population-based strategies for obtaining the optimal
result by mimicking natural phenomena. This thesis elaborates on a wide variety of its
mutants. Specifically, fuzzy, chaotic, opposite-based-learning, greedy levy flight and
adaptive multi-objective aquila are some of the variants the work focuses on.

This work is based on both theoretical and practical aspects of the algorithm. First, tests
of efficiency were pursued on multiple benchmark functions. The research on the topic
was expanded by the solution of a widely known engineering problem, the
tension/compression spring design. It can be observed that the algorithm has relevance
to various engineering, mathematical and medical issues when other deterministic ways
fail. Many variants of the procedure were introduced to balance its weaknesses. Finally,
diagrams are presented to improve our understanding of the SCA’s accuracy.

SUBJECT AREA: Artificial Intelligence

KEYWORDS: Swarm Intelligence, optimisation, sine cosine, mutation, spring design
problem

ΠΕΡΙΛΗΨΗ

Ο αλγόριθμος ημιτόνου και συνημίτονου εφευρέθηκε από τον Mirjalili το 2016.
Χρησιμοποιεί τις συναρτήσεις ημιτόνου και συνημίτονου για να επιλύσει ένα μεγάλο εύρος
προβλημάτων βελτιστοποίησης. Ανήκει σε μια κατηγορία μεταευρετικών διαδικασιών,
που περιλαμβάνει στρατηγικές βασισμένες σε πληθυσμό, για επίτευξη βέλτιστου
αποτελέσματος μιμούμενο φαινόμενα στη φύση. Έπειτα, έγινε εμβάθυνση σε ένα μεγάλο
εύρος παραλλαγών του αλγορίθμου. Ειδικότερα, ασαφής, χαοτικός, βασισμένος σε
αντίθετη μάθηση, άπληστος levy, προσαρμοστικός και πολλαπλών στόχων aquila είναι
κάποιες από τις μεταλλάξεις του αλγορίθμου που βασίστηκε η εργασία και βελτιώνουν
την απόδοση του σημαντικά.

Η εργασία είναι στηριγμένη τόσο στο θεωρητικό όσο και στο πρακτικό κομμάτι του
αλγορίθμου καθώς επιδιώχθηκε να ελεγχτεί η αποδοτικότητα του με πολλαπλές
συναρτήσεις κριτηρίου. Επεκτείνεται η έρευνα στο αντικείμενο επιλύοντας ένα ευρέως
γνωστό πρόβλημα μηχανικής, του σχεδιασμού τάσης ελατηρίου. Παρατηρείται ότι ο
αλγόριθμος έχει εφαρμογή σε ποικιλία μηχανικών, μαθηματικών και ιατρικών θεμάτων.
Είναι αντιληπτό ότι βρίσκει λύση εκεί που άλλες ντετερμινιστικές διαδικασίες δεν μπορούν
να εφαρμοστούν. Πολλές παραλλαγές του αλγορίθμου ημιτόνου συνημίτονου έχουν
εμφανιστεί για να ισορροπήσουν τις αδυναμίες του. Τέλος, παρουσιάζονται διαγράμματα
για υπάρχει καλύτερη αντίληψη της απόδοσης του SCA.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Τεχνητή νοημοσύνη

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: αλγόριθμος σμήνους, βελτιστοποίηση, παραλλαγές, ημίτονο
συνημίτονο, σχεδιασμός τάσης ελατηρίου

CONTENTS

1. INTRODUCTION .. 13

2. THEORY .. 14

2.1 Sine Cosine Algorithm ..14

2.2 Fuzzy Sine Cosine Algorithm ...19

2.3 Adaptive Chaotic Sine Cosine Algorithm ...21

2.4 Aquila Algorithm ...25

2.5 General SCA real-life applications ..31

3. TENSION COMPRESSION SPRING DESIGN .. 32

3.1 Definition ...32

3.2 Application of SCA ...35

4. METHODOLOGΥ ... 36

5. METRICS ... 38

6. RESULTS AND DISCUSSION .. 44

6.1 Minimum Fitness Diagram (First 2000-6000 iterations)...45

6.2 Parameters ...49

6.3 Basic SCA Results ..51

6.3.1 Dimension=10 ...52

6.3.2 Dimension=100 ...54

6.3.3 Dimension=500 ...57

6.4 Chaotic SCA Tables ..60

6.4.1 Dimension=10 ...60

6.4.2 Dimension=100 ...63

6.4.3 Dimension= 500 ..66

6.5 Modified Aquila Tables ...69

6.5.1 Dimension=10 ...69

6.5.2 Dimension=100 ...72

6.5.3 Dimension= 500 ..75

6.6 Fuzzy SCA Tables ...78

6.6.1 Dimension= 500 ..78

6.7 TCSD Problem Results .. 81

7. CONCLUSIONS AND FUTURE WORK .. 84

TABLE OF TERMINOLOGY ... 85

ABBREVIATIONS ACRONYMS ... 86

ANNEX I: HARDWARE SPECS AND TOOLS ... 87

REFERENCES .. 88

LIST OF FIGURES

Figure 1: Approximation of solution depending on the destination’s radius 15

Figure 2: Decision of radius based on values of Sine and Cosine 16

Figure 3: Decreasing amplitude of the trigonometric functions 16

Figure 4: Bifurcation diagram ... 21

Figure 5: Logistic map (first 100 terms) ... 23

Figure 6: Spring example... 31

Figure 7: Spring example 2.. 34

Figure 8: Schwefels 7 3-dimension graph.. 39

Figure 9: Griewank 3-dimension graph .. 40

Figure 10: Ackley’s 3-dimension graph .. 41

Figure 11: Basic SCA’s Min Fitness/iteration diagram (dimension=100) 45

Figure 12: Chaotic SCA’s Min Fitness/iteration diagram (dimension=100) 45

Figure 13: Aquila’s Min Fitness/iteration diagram (dimension=100) 46

Figure 14: Basic SCA’s Min Fitness/iteration diagram (dimension=500) 46

Figure 15: Chaotic SCA’s Min Fitness/iteration diagram (dimension=500) 47

Figure 16: Aquila’s Min Fitness/iteration diagram (dimension=500) 47

LIST OF TABLES

Table 1: Parameters of experiment ... 49

Table 2: Parameters of experiment 2 .. 50

Table 3: Βasic SCA Results (dimension=10) ... 51

Table 4: Basic SCA Results (dimension=100) ... 54

Table 5: Basic SCA Results (dimension=500) ... 57

Table 6: Chaotic SCA Results (dimension=10) ... 60

Table 7: Chaotic SCA Results (dimension=100) ... 62

Table 8: Chaotic SCA Results (dimension=500) ... 66

Table 9: Modified Aquila Results (dimension=10) ... 69

Table 10: Modified Aquila Results (dimension=100).. 72

Table 11: Modified Aquila Results (dimension=500).. 75

Table 12: Fuzzy Sine Cosine Algorithm (dimension=500) ... 78

Table 13: Tension/Compression spring design Results ... 81

LIST OF IMAGES

Image 1: Basic Sine Cosine Algorithm .. 17

Image 2: Fuzzy Sine Cosine Algorithm .. 20

Image 3: Chaotic Sine Cosine Algorithm ... 24

Image 4: Modified Aquila Optimizer Algorithm ... 27

Image 5: Quasi-opposite based learning Algorithm ... 28

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 13

1. INTRODUCTION

In this thesis, optimisation is at the centre of attention. Maximising or minimising the
output is essential in reaching the desired results. In recent years, datasets have become
quite large and more demanding for computer scientists to manipulate. As a result,
problems are turning more complex for conventional algorithms to solve, and a
generalised approach that could be implemented in almost every situation is invaluable.

Many artificial intelligence procedures cannot provide satisfying results because the
agent is trapped inside a locally optimal solution, ignoring the one that is globally the best.
Furthermore, the agent might be unable to approximate the optimal solution quickly
enough, which can be concerning on many occasions. Modern systems need solutions
to be on the spot and produced rapidly to operate correctly. Real-life challenges propose
constraints which are nonlinear, constituting the computation of the gradient perplexing.
As a result, derivative-free solutions with black box designs have gained a lot of ground.
Also, by treating problems randomly and stochastically, scientists can broaden their
horizons because they can face a larger set of problems than before. However, it is worth
noting that one solution to every problem is impossible (No Free Lunch Theorem) [1].
Different algorithms could be more effective than others, depending on the situation.
There is room for a lot of improvements in this research field.

This thesis focused on both the theoretical and practical aspects of the Sine Cosine
Algorithm, a probabilistic problem-solving approach that capitalised on the trigonometric
functions of sine and cosine to produce a satisfying outcome. However, even though it is
a process that was invented recently, it lacks effectiveness in dealing with problems of
higher dimensions. Because of this fact, a lot of improvements in these algorithms have
attracted the interest of many scientists and will be presented in this thesis [7], [8]. More
specifically, a procedure that mimics the behaviour of eagle species, named Aquila, will
be thoroughly discussed in this research. Chaos, a phenomenon that takes place in real
life numerous times, will be elaborated on in this analysis as it can enhance SCA’s effect
greatly. Other difficulties that can occur in complex problems are when the global optimum
is located on the limits of the search space, when the function has a large number of
global optima or when the optimal solution is located at a very steep point in space [1]. A
thorough research regarding the efficiency of SCA on multiple test functions will verify the
results of the widely known literature. These results will be compared with the ones of the
other variants to have a complete view of the improvements in the basic algorithm. In
addition, the research will be expanded on a mathematical engineering problem, the so-
called tension-compression spring problem [11], [12]. The reader will be able to view how
the constraints that this problem proposes can be applied to SCA as well as observe
SCA’s efficacy on it.

SCA is population-based, belonging to the swarm intelligence family of algorithms. This
can augment its area of effect because more agents can try to approximate the global
optima, as they can better explore the search space. Although population-based solutions
need more function evaluations [1], this results in a higher chance of reaching the optimal
solution. Regarding the test functions, both multimodal (multi-peaks) and unimodal (single
peak) were taken into consideration as well as fixed dimension ones (CEC).

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 14

2. THEORY

2.1 Sine cosine Algorithm

The SCA population-based algorithm commonly attains results by setting values
randomly to solutions in the initial stage. Then, by proper update rule, the algorithm will
obtain the best value out of that set. Due to the stochastic approach of SCA, the solution
is almost impossible to be reached in a single step [1]. Several updates need to occur so
that SCA can converge on the best solution.

Probabilistic processes, which form the population of solutions, usually share some
common characteristics. Their optimisation process is divided into two stages: exploration
and exploitation. In the former stage, the solutions are changing substantially to explore
a wider area of possible global optima [6]. In the latter one, SCA fluctuates around the
found peak that could potentially lead to the desired value.

Below, the equations that the procedure is based on are illustrated:

𝑥𝑖
𝑡+1 = {

𝑥𝑖
𝑡 + 𝑟1 ∗ sin(𝑟2) ∗ |𝑟3𝑃𝑖

𝑡 − 𝑥𝑖
𝑡|, 𝑟4 < 0,5

𝑥𝑖
𝑡 + 𝑟1 ∗ cos(𝑟2) ∗ |𝑟3𝑃𝑖

𝑡 − 𝑥𝑖
𝑡|, 𝑟4 ≥ 0,5

 (1)

𝑟1 = 𝑎 − 𝛼
𝑡

𝑇
,

Variable t equals the current number of iterations, while threshold T is the maximum

number of iterations. The value of 𝑎 is a constant (a=2 in this implementation). 𝑃𝑖
𝑡
, in the

t-th iteration and i-th dimension, represents the optimal individual of the current
population. r1, r2, r3 and r4 are random values defined by the inventor of SCA (Mirjali et

al.). 𝑥𝑖
𝑡
 shows the current element of the population in the t-th iteration and the i-th

dimension. The individual solution in the t+1-th iteration is the result of the mathematical
equation.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 15

Figure 1: Approximation of solution depending on the destination radius.

The reader can picture the problem in a parametric circle. The solution is placed at a
specific radius far from the optimal destination. By using the aforementioned update rule,
the solution can either be placed towards the orange area (closer to the destination) or
the blue area (outside the scope of the optimal solution).

By observing equation (1), someone can understand that sine and cosine play a major
role in the final outcome. It should be made clear that when the ranges of trigonometric
functions 2*sin(x) and 2*cos(x) are in the interval of [1, 2] or [-1, -2], the solution avoids
the destination by moving away from it (blue area). These functions are based on the
hypothesis that r1=2. On the other hand, when the trigonometric functions are limited in
the range (-1, 1), then the swarm(population) will move towards the destination (orange
area).

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 16

Figure 2: Decision of radius based on values of Sine and Cosine

SCA is fundamentally based on randomness. As a result, r1, r2, r3 and r4 play a critical
role in the behaviour of the whole procedure. These random properties have different
targets. Value r4 defines which equation the program will use (the upper or the lower
bracket). It is distributed in the range [0, 1]. The role of r1 is to define the amplitude of
sine and cosine.

Figure 3: Decreasing amplitude of the trigonometric functions

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 17

As it is shown in equation (1), r1 is decreasing. Therefore, the range of sine and cosine
will be reducing steadily (Figure (3)), which results in approaching closer to the
destination. T defines the maximum number of iterations, and t is the iteration that

happens currently. By decreasing r1, in the way it is presented in equation (1), the agent

is able to shift smoothly rather than abruptly from exploration to the exploitation stage. In
contradiction to that, the amplification of it can lead to an expanded distance between the
solution and the destination. In addition, r2 affects the period of sine and cosine. It ranges
between [0, 2π] and depending on the waveform, it can have either greater or lower

values. For instance, sin (0) =0, cos (0) =1. r3, which belongs in the range [0, 2], defines

how much the optimal solution will affect the outcome of the equation. r3>1 increases
importance, and r3<1 lowers it. Even though the scenario that was depicted in Figure (2)
considers two dimensions, it can be extended to further dimensions if the problem
requires it. Figure (1) concerns the exploitation stage of the algorithm.

Pseudocode sums up all the theory that was mentioned previously. A set of agents are
initialized randomly at the start, and the fitness of each element as well as the optimal
individual is computed. On top of that, an evaluation of the objective function will happen
afterwards. The agents are shifted from exploration to the exploitation stage at some
point, which will result in better convergence to global optima.

Image 1: Basic Sine Cosine Algorithm

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 18

Regarding the complexity of SCA, it can be computed easily if it is divided into stages.
One way to accomplish that is by considering as initial stage the first loop. Then, the
second stage is the objective function computation, the while and the two following loops.
The third stage is the calculation of the optimal individual. O(SCA) = 3*O(N) + T * O (N *
D) + T* 2O (N) = (3 + 2T) *O(N) + T*O(N*D) where N is the size of the population and D
is the dimension each solution.

In conclusion, the SCA forms solutions around optimal values. This creates a better
chance of reaching a global optimal. By treating problems as black boxes (no adjustments
on the algorithm according to the input), it can have numerous applications in different
fields. Based on the original algorithm, many interesting variations have arisen from it.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 19

2.2 Fuzzy Sine Cosine Algorithm

This modification was created to improve the design of PID controllers responsible for
thermal heating [10]. Fuzziness is a mathematical concept where several elements in the
set are assigned two different values of more instead of one. It is quite similar to SCA,
but it differs from it after the computation of the objective’s function value.

(

𝑥1,1 ⋯ 𝑥1,𝐷
⋮ ⋱ ⋮

𝑥𝑁𝑃,1 ⋯ 𝑥𝑁𝑃,𝐷
)

Suppose that there is a population of size N, and its element of it has dimension D. This
matrix illustrates the updated solutions after SCA’s computation as well. A certain
mutation stage will be applied to the original SCA. More specifically, the program
produces N number of random values, which represent the index of the dimension that
will be altered for each solution.

𝑟𝑚𝑢𝑡 = [𝑟𝑚𝑢𝑡,1 𝑟𝑚𝑢𝑡,2⋯𝑟𝑚𝑢𝑡,𝑁𝑃−1 𝑟𝑚𝑢𝑡,𝑁𝑃] (2)

Every 𝑟𝑚𝑢𝑡 is an integer in the range of [1, D]. For instance, consider a scenario that

𝑟𝑚𝑢𝑡,1 = 2. This means that the program will change the second dimension’s value from

the first element of the population randomly inside the domain space. The process will
continue in the same way until the following vector is produced.

𝑥𝑚𝑢𝑡 = [𝑥𝑚𝑢𝑡,1 𝑥𝑚𝑢𝑡,2⋯𝑥𝑚𝑢𝑡,𝑁𝑃−1 𝑥𝑚𝑢𝑡,𝑁𝑃] (3)

Afterwards, there will be two vectors, each one representing the same element of the
population (fuzziness). Two different fitness values need to be calculated. One for the old
vector of the element and the other for the new one.

𝑓𝑛1 = [𝑓𝑛1,1 𝑓𝑛1,2⋯𝑓𝑛1,𝑁𝑃−1 𝑓𝑛1,𝑁𝑃] 𝑓𝑜𝑟 𝑥𝑜𝑙𝑑 (4)

𝑓𝑛2 = [𝑓𝑛2,1 𝑓𝑛2,2⋯𝑓𝑛2,𝑁𝑃−1 𝑓𝑛2,𝑁𝑃] 𝑓𝑜𝑟 𝑥𝑛𝑒𝑤 (5)

The program holds the element of the population that has the better fitness out of the two.

After the calculation of the objective function, which is essentially the same as SCA’s, the
computations x’s and r’s follow. The program copies the old population to a new one to
manipulate it properly. Subsequently, the program updates the population as described
above and then proceeds by computing the optimal solution based on the fitness of the
resulting population. It is a greedy and simple approach that improves the SCA on many
occasions. The complexity of fuzzy SCA has the same order of magnitude as basic SCA’s
but is quite larger. O(Fuzzy-SCA) = (3 + 2T) *O(N) + T*O(N*D) + T*(O(N*D) + 2*O(N)) =
(3 + 4T) *O(N) +2*T*O(N*D).

The operation that was described could be applied only to the optimal global individual
instead of the whole population but affecting every element was thought to have a greater
influence on the outcome of the algorithm. The following pseudocode shows the steps
that the algorithm consists of:

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 20

Image 2: Fuzzy Sine Cosine Algorithm

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 21

2.3 Adaptive Chaotic Sine Cosine Algorithm

Figure 4: Bifurcation diagram

Chaos refers to situations which are primarily predictable. Chaotic systems are
predictable at initial stages, and they turn random after a while. A classic example is the
butterfly effect. Just a small change in a deterministic nonlinear system can result in
significant change at a later stage. The bifurcation diagram pictures the resulting
population after many iterations of the logistic map in equation 8 as the value of a is rising.
When a is higher, the population increases. When a surpasses 3, the population splits
into two parts. The population in this situation oscillates instead of stabilizing. As the a is
becoming larger, the period is doubling. This means that the population oscillates among
four values instead of two when a was 3. After a is increasing further, around 3.5, the
period increases in an unpredictable manner. This phenomenon happens in the grey zone
of the diagram above (after a>3.5). However, not all values between 3.5 and 4 lead to
chaos. There are some white areas across that domain, meaning that chaos and order
are swapping places. That is, by definition, chaos [14].

It is worth mentioning that the bifurcation diagram is part of an over fractal, which are very
complicated geometric shapes and is impossible to describe with Euclidean geometry.
The ratio, when those bifurcations occur, approaches a constant value and is commonly
known as the Feigenbaum constant. It is a number close to 4.669. This constant is
ubiquitous as it has been found in many equations which are attempting to simulate
events in nature. Simple equations can have very complex behaviours. Also, scientists
experimented with fibrillation disease and found that by applying an electrical shot to the

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 22

heart at times based on chaos theory, the heart can pump blood in a periodic way again
[20].

Since SCA is entirely random, chaos can promote its global search ability by traversing
the whole area of search space more effectively. Sine Cosine Algorithm experience a
drop of diversity at the later stages, something that leads to slow convergence and locally
oriented optimization when dealing with complex problems. To prevent this, Chaotic Sine
Cosine uses adaptation and Chaotic exploitation. Firstly, an adaptive transformation
parameter boosts the algorithm by allowing the switch between the exploration and
exploitation stage to be more balanced [6].

𝑟1 = 4 ∗ (1 −
𝑡

𝑇
) ∗ (1 − 2

(
𝑡

𝑇
−1)
) (6)

In the original SCA algorithm, r1 was declining in a linear way. In the proposed equation
(6), r1 is decreasing in a smoother way compared to SCA’s case, allowing the switch from
exploration to the exploitation stage to happen in an accurate time [6]. T is the total
number of iterations. The current t and the constant T will be utilized in the calculation of
r1. On SCA’s occasion, r1 implementation risked premature convergence. Therefore, a
more significant peak could be missed, constituting the algorithm's inefficiency.

 The Lambda constant, which is used below, can be computed in the following way:

𝜆 =
𝑇−𝑡+1

𝑇
 (7)

The Chaotic algorithm augments the search for the solution localities.

To be more specific, a Chaotic logistic map:

𝑦𝑘+1 = 𝑎 ∗ 𝑦𝑘(1 − 𝑦𝑘) (8)

is proposed by a research paper to render the population more accurate. New individuals

are created randomly according to the Chaotic sequence that is shown above. When 𝑎 =
4, 𝑦1 ∉ {0.25,0.5,0.75,1} this equation is a Chaotic system. A plot of the equation is

depicted below. You will observe that there is no pattern in that graph. Every peak is
different, which helps generate chaos and unpredictability for SCA.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 23

Figure 5: Logistic map (first 100 terms)

Each term of this sequence will be used by another equation to form the new population.

The new population is computed by:
𝑉 = (1 − 𝜆) ∗ 𝑋𝑏𝑒𝑠𝑡 + 𝜆 ∗ (𝑙𝑏 + 𝑦𝑘 ∗ (𝑢𝑏 − 𝑙𝑏)) (9)

Ub and lb represent the upper and lower bound, respectively. 𝑋𝑏𝑒𝑠𝑡 shows the optimal

solution for this specific iteration, t.

Chaotic Sine Cosine is distinguished from the basic SCA due to two reasons. Firstly, as
shown on the eighth line of the following image, r1 is updated in a new way (equation (6)).
Secondly, as illustrated in lines 22 to 28, a new Chaotic population is created (based on
equation (9)). From that population, the program chooses the element with the best
fitness and compares it with the optimal individual from SCA’s algorithm. If the new
individual has a better score than the previous one, it is assigned as the new global
optimal. Otherwise, nothing is done. Lambda and y sequence play a critical role in the
resulting V population. Regarding the complexity, it is equivalent to SCA’s apart from the
step that was mentioned.

O (Chaotic SCA) = 3*O(N) + T * O (N * D) + T*2 O (N) +T*O(N*D) +2T(O*N) =
(3+4T)*O(N) +2*TO(N*D). The algorithm has a complexity of the same order of magnitude
as SCA but a larger one.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 24

Image 3: Chaotic Sine Cosine Algorithm

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 25

2.4 Modified Aquila Optimizer

Since the thesis elaborated thoroughly on Sine Cosine Algorithm, a question was raised
on how this process can be improved further. Aquila optimizer gave a definite answer to
this problem [2]. To understand it thoroughly, the reader should have knowledge of some
of its properties. Firstly, levy distribution plays a critical role in the whole procedure.

Levy number is the quotient of two real numbers, u and v. They both belong in Normal
distributions. The first parameter μ is the mean value of the distribution, and the other σ
indicates the variance. These numbers equal:

𝑙𝑒𝑣𝑦 =
𝑢

|𝑣|
1
𝛽

𝑢 ∼ 𝛮(0, 𝜎𝑢
2)

𝑣 ∼ 𝛮(0, 𝜎𝑣
2)

𝜎𝑢 = 1 𝑎𝑛𝑑 𝛽 =
3

2
𝑎𝑛𝑑 𝜎𝑣 𝑐𝑎𝑛 𝑏𝑒 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛:

𝜎𝑢 =
𝛤(1 + 𝛽) ∗ 𝑠𝑖𝑛 (

𝜋𝛽
2)

𝛤 (
1 + 𝛽
2) ∗ 𝛽 ∗ 2

(𝛽−1)
2

Levy flights are random orbits which have been proven very effective in spotting the areas
in the search space which are candidates for optimal global values.

Another vital aspect that the reader should be familiar with is opposite-based learning.
Before introducing the aquila algorithm, the math behind this topic will be presented.
Consider that there is a population of size n and the range of the domain space having
an upper bound u and a lower bound l [3].

𝑥 = [𝑥1, 𝑥2, … , 𝑥𝑛] ∈ ℝ
𝑁 , 𝑥1, 𝑥2, … , 𝑥𝑛 ∈ ℝ

The opposite of the original number for the specific range [u, l] can be calculated with
the following equation.

�̅� = 𝑢 + 𝑙 − 𝑥

It should be noted that this thought process can be extended for multiple dimensions
where each of them has a specified domain space, as shown below:

𝑥𝑗 ∈ [𝑙𝑗, 𝑢𝑗] �̅� = [�̅�1, �̅�2, … , �̅�𝑛]

�̅�𝑗 = 𝑢𝑗 + 𝑙𝑗 − 𝑥, j = 1, 2, …, n

Opposite numbers have illustrated great effectiveness in improving algorithms because
initial numbers may have led the processes to a solution that could not yield desired
results. By computing the opposite of the number, the outcome of the procedure could be
entirely different as the opposite direction plays a critical role in obtaining optimal global
values. However, the research was not limited only to opposite numbers. The paper that
was found [2] has sparked great interest among scientists and has provided a radical idea
on how these opposite numbers can be utilized.

The procedure that enhances a lot the aforementioned idea is the quasi-OBL (opposite-
based learning). It states that for each element of the population and for every dimension

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 26

of it, the program initially computes the opposite number in that range. The innovation is
expressed by the next step. A threshold named D determines the two ways that quasi-
OBL products can be assigned. It has to be made clear that this threshold can be used
for multiple dimensions since D can be affected by the ub and lb parameters. lb and ub
pair can be different for each dimension, but the same pair is used for each one of them
in this implementation. This step was integrated into Aquila optimizers since it proved
effective in finding better candidates for globally best values or elements with improved
fitness values compared to the original OBL. The two mentioned topics put the foundation
for simulating the behaviour of aquila eagles in computers. Also, quasi-OBL was applied
not only to the initialization step of the population but after each of the update rules in the
primary process.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 27

Image 4: Modified Aquila Optimizer Algorithm

It must be noted that after every update of 10, 11, 12, 13 equations as well as the quasi-
OBL rule, the program attempts to limit the solution to the domain space defined by the
user.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 28

Image 5: Quasi-Opposite based learning Algorithm

Quasi-opposites can form a better baseline than the other algorithms because the starting
point has a better fitness value than before. This means that there is a higher chance of
the optimal solution being found by the program since the starting point is probably closer
to that point than before. The same applies after each update step (equations 10-13)
because these opposite solutions could potentially be used in later iterations, producing
a better outcome at the end. By inserting the randomization step after the opposition rule
(line 4 algorithm 3), a greater efficiency was attained, as will be presented in the results
section.

The complexity of the algorithm involves three stages:

Initialization, population update and computation of global optima. The initialization stage
is almost the same as the previous algorithm except for the quasi-opposites’ computation.
O(quasi-OBL) = O(N*D).

So, O(initialization) = 3*O(N) + O(N*D)

O(update) = T*(O (N* D * N * N * D), O (global optima computation) = T*O(N). Program
needs to loop through all values of the population to compute the fitness of every element
and find the minimum one.

The update rule has greater complexity than the previous algorithms. Computation of
mean value for its dimension requires O(N) time (in some of the equations 10,11,12,13).
The other N*D product is the time to compute the fitness of one element of the population
and to assign it to the individual solution if required (D iteration times). The total
complexity of the program is: 3*O(N) + O(N*D) + T*(O (N*N*N*D * D)) + T*O(N).

The Aquila algorithm attempts to imitate the behaviour of a kind of eagle named Aquila.
After the initialization stage and quasi-opposite computation, the update stage follows.
This simulates four different tactics of the hunting bird to catch its prey. Which hunting
type will be involved in the process is determined by a random real number inside [0, 1].
If it exceeds a certain number equal to two-thirds of the threshold of iterations, one

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 29

specific branch will be chosen by the program. Otherwise, another one. Inside the if then
else in line 11 of them algorithm (4), there is another if then else where the Aquila’s update
is implemented.

 The first hunting type is simulated by the equation:

𝑥1
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

𝑡 ∗ (1 −
𝑡

𝑇
) + (𝑥𝑀

𝑡 − 𝑟𝑎𝑛𝑑 ∗ 𝑋𝑏𝑒𝑠𝑡
𝑡) (10)

The Aquila is trying to find the best location to hunt and spot potential food resources. It
could be interpreted as a broad exploration of the search space.

𝑥𝑏𝑒𝑠𝑡
𝑡 , in the t-th iteration, is the best solution in iteration t, which is the current number of

iterations. T is the total number of iterations. Rand is a random real value larger or equal

to zero and less or equal to 1. Finally, 𝑥𝑀
𝑡 , in the t-th iteration, is the mean value of all the

elements of the population (N elements) for every dimension. For example, if j=1, then
the program computes the sum of all elements in the population for dimension=1.

Then it divides the sum by the size of the population to compute the mean value. This is
the explanation for the equation:

𝑥𝑀
𝑡 =

1

𝑁
∑𝑥𝑖(𝑡)

𝑁

𝑖=1

, ∀ 𝑗 = 1, 2,… , 𝐷

This series is computed inside the double for loop, precisely in line 13 of the previous
picture (algorithm (4)). The term (1 - t \ T) influences the level of exploration. A low t value
provokes broader exploration, whilst a considerable value promotes a less significant
one. Consequently, in the earlier stage, the algorithm will explore a larger area. Later, it
will investigate a narrower one.

If the random number is more prominent than 0.5, equation (11) will be applied. It
proposes an alternative way for the bird to fly, to surround prey. The circling way of flying
is simulated by the levy number for the dimension proposed by the problem.

𝑥2
𝑡+1 = 𝑥𝑏𝑒𝑠𝑡

𝑡 ∗ 𝑙𝑒𝑣𝑦(𝐷) + 𝑥𝑅
𝑡 + (𝑦 − 𝑥) ∗ 𝑟𝑎𝑛𝑑 (11)

𝑥𝑅
𝑡 in the t-th iteration names a random solution from the whole population. Rand's

number is the same as in equation (10). 𝑙𝑒𝑣𝑦(𝐷) is the number from the distribution

mentioned previously. This number must be multiplied by 0.01 to be scaled and remain
accurate to the algorithm.

The circular flights of these creatures are transformed into code by the trigonometric
equations of sine and cosine:

𝑦 = 𝑟1 + 𝑈 𝐷1𝑐𝑜𝑠 (−𝜔 𝐷1 +
3𝜋

2
)

𝑥 = 𝑟1 + 𝑈 𝐷1𝑠𝑖𝑛 (−𝜔 𝐷1 +
3𝜋

2
)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 30

The Aquila process has adopted a practice from the original SCA, as the previous
mathematical types verify it. U, ω values are pre-determined. The value of the former is
0.00565, and of the latter, 0.005. Remember that 3π/2 concerns the third quarter of the
trigonometric circle and could be viewed as 270 degrees angle. D1 is a random integer
having values from 1 to D (D is the maximum dimension). Finally, r1 is inside the [1, 20]
domain.

 Although expansion is a primary part of the process, exploitation is also crucial. This
process unfolds in this way:

𝑥3
𝑡+1 =

(𝑥𝑏𝑒𝑠𝑡
𝑡 − 𝑥𝑀

𝑡) ∗ 𝑎 − 𝑟𝑎𝑛𝑑 + ((𝑢𝑏 − 𝑙𝑏) ∗ 𝑟𝑎𝑛𝑑 + 𝑙𝑏) ∗ 𝛿 (12)

After Aquila has spotted its prey during the exploration stage, it flies lower and slower to
be able to catch it. The value in the next iteration is indicated by (t+1). α and δ are
calibration parameters. Upper and lower bound ub, lb were defined before, as well as
rand.

Genuine exploitation happens in equation (13). On this occasion, Aquilas are attempting
to grab the prey by actions based on randomness. Narrow exploitation happens because
the program is focusing on the solution entirely. The formal definition of this situation is
presented:

𝑥4
𝑡+1 =

𝑄𝐹 + 𝑥𝑏𝑒𝑠𝑡
𝑡 − (𝐺1 ∗ 𝑟𝑎𝑛𝑑 ∗ 𝑥𝑖,𝑗

𝑡) − 𝐺2 ∗ 𝑙𝑒𝑣𝑦(𝐷) + 𝑟𝑎𝑛𝑑 ∗ 𝐺1 (13)

In order to produce the updated solution t+1, several terms need to participate. 𝑥𝑏𝑒𝑠𝑡
𝑡 in

the t-th iteration provides the best solution so far. About 𝑥𝑖,𝑗
𝑡

, in t-th iteration, equals the

current solution in iteration t of the i-th element of the population in the j-th dimension. G1
and G2 are responsible for describing in which way the Aquila acts. They are specified
as such:

𝑄𝐹(𝑡) = 𝑡
2∗𝑟𝑎𝑛𝑑()−1
(1−𝑇)2

𝐺1 = 2 ∗ 𝑟𝑎𝑛𝑑() − 1

𝐺2 = 2 ∗ (1 −
𝑡

𝑇
)

A smooth switch from the exploration to the exploitation stage is succeeded by the
illustrated quality function QF. The exponent of t is based on randomness, and the
number of maximum iterations T. t is the current number of iterations. The motion pattern
of the birds, as they move from the source to the destination and capture the prey, is
adjusted to code by those mathematical formulas. Aquilas are tracking their food and

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 31

committing their attack. In a similar fashion, the program tracks the solution and extracts
it in a relatively quick and effective manner, as the Aquila.

2.5 General real-life applications of SCA

Sine Cosine Algorithm has many exciting applications which have a significant impact.
Scientists have been recorded using SCA to improve their chances of finding new planets
in the universe. Moreover, they detected cancer in samples by clustering techniques with
a variant of SCA. SCA classified samples better than before. It affected the engineering
field too [21]. SCA can solve a lot of mathematical problems. This thesis is one of those
examples. By optimizing materials that are utilized by engineers, such as spring, a
breakthrough in machine performance can happen.

Another example is electronic and thermal controls (SCA Fuzzy) [10]. Photovoltaic power
was improved using SCA because it optimized PID factors used in that system. SCA
contributed to the optimal placement of cameras [22], and its efficiency was validated by
comparing it to other genetic algorithms, such as PSO. The radical aspect of SCA
expanded to feature selection. SCA achieved high classification success in many
datasets and minimized the feature’s size. In addition, it was applied to image processing.
It achieved the image binarization of an Arabic document [23]. Its results were better than
some other algorithms existing in the field. SCA was combined with Q-Learning to
produce a new algorithm in the field of reinforcement learning [6]. The outcome of this
mix involved spotting the best practices searching bottom up at runtime. Computer
systems need to consider many parameters, like environments and variables, which
render it difficult to test those systems. SCA plays a role in combinatorial testing by
providing sets of parameters than can cover all the possible sets of them [24]. Finally,
SCA contributed a lot to the optimization of medical diagnosis. Being able to recognize
diseases, discover new potential drugs that can save lives, improving our understanding
of the relationship between drugs and diseases are only some of the impacts of SCA on
this field [25].

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 32

3. TENSION COMPRESSION SPRING DESIGN

3.1 Definition

Figure 6:Spring example

min𝑓(𝑥) = (𝑥3 + 2) ∗ 𝑥2 ∗ 𝑥1
2

(14)

Subject to:

𝑞1(𝑥) = 1 −
𝑥2
3 ∗ 𝑥3

71785 ∗ 𝑥1
4 ≤ 0

𝑞2(𝑥) =
4𝑥2

2 − 𝑥1𝑥2

12566(𝑥2𝑥1
3 − 𝑥1

4)
+

1

5108𝑥1
2 − 1 ≤ 0

𝑞3(𝑥) = 1 −
140.45 ∗ 𝑥1

𝑥2
2 ∗ 𝑥3

≤ 0

𝑞4(𝑥) =
(𝑥2 + 𝑥1)

1.5
− 1 ≤ 0

The number of active coils is 𝑥1 (the coils that are not closed), 𝑥2 is the diameter of the

spiral, and 𝑥3 is the diameter of the wire. The domain space of those variables is:

2 ≤ 𝑥1 ≤ 15 ,

 0.25 ≤ 𝑥2 ≤ 1.3 ,

 0.05 ≤ 𝑥3 ≤ 2

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 33

For example, on the illustrated image (figure (6)) suppose that the first and last coil is
closed, and the other is active. That means that there are five active coils in the spring
and two closed ones. The problem is to minimize the volume\weight of the spring,
according to equation (14), with respect to the constraints that follow. The spring must
carry weight without the material getting destroyed.

 The constraints are integrated into the objective function by adding their value to f(x). As
a result, f(x) will carry penalty terms which will affect the final output of the function. On
those penalties, regularization terms will be applied to scale them properly and have the
proper impact on f(x). A larger value of this type will affect the output of the objective f(x)
more, while the lower one, less. It needs some experimentation to find the best term for
that purpose, and it is dependent on the specific problem. In this work, the regularization
term was 10.000. Lower values could be applied as well, around 1000. On another
occasion, someone might opt to reduce even more the impact of constraints. However, if
the penalty term is insignificant to the magnitude of f(x), the minimization will result in an
infeasible solution. If the penalty is balanced, it will lead to a proper solution. To convert
the constraints into penalties their value is multiplied by the regularization term and each
one is added to the objective value f(x).

The quadratic loss was applied to make the penalty even more strict for the objective
function. For example, suppose that there is a constraint:

𝑥 − 5 ≤ 0

The value of the penalty is 0 if the constraint is satisfied (x<=5), and it is positive if x-5 >0.
This is translated as:

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) = max (0, 𝑥 − 5)

There is no reason to apply a penalty if the constraint is not broken.

The quadratic loss function refers to the square of this equation.

𝑞𝑢𝑎𝑑𝑟𝑎𝑡𝑖𝑐_𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥) = max(0, 𝑥 − 5)2

This allows the penalty to have more impact since the square of a number (outside the
(0,1) range) is always greater than the number itself.

The results proved that the quadratic penalty works better than the basic penalty [5].

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 34

Figure 7: Spring example 2

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 35

3.2 Application of SCA on TCSD problem

In SCA’s implementation, each element of the population has three variables (x1, x2 and
x3, as defined by the problem). Equation (14) calculates the fitness for each element. To
adjust SCA for the compression spring problem, the constraints needed to be integrated
into the program. Remember that SCA operates as a black box, so the main algorithm
remains the same. The only thing that changes is that solutions must stay in range as
defined by the problem.

This happens two different times in the program. Firstly, when the whole population is
initialized randomly, these values must be limited to the ranges presented. The second
time is when SCA’s equation (1) is applied. The coordinates that are assigned to each
dimension from this equation must stay inside the required scope. For the Chaotic SCA,
ranges were used in the same manner.

The individual produced by Chaotic equation (9) will have each of its dimensions in the
required range. Careful design of both fitness functions and SCA’s took place to produce
good results.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 36

4. METHODOLOGY

A robust methodology was used to achieve the objectives. The thesis follows a
quantitative methodological approach since quantifiable data, real numbers, were used
to measure the performance of the swarm intelligence algorithms. The analysis consists
of detailed statistical data to conclude how algorithms behave.

This testing approach enables scientists to ensure that the algorithms can be extended
to real-life problems and impact the world. This kind of analysis was wider than the
theoretical aspects of the algorithms. Choosing quantitative methodology was easy as
most papers about that subject follow this procedure [1], [2], [6]. It is an effective way of
testing and perfectly suits the nature of the algorithm, which is manipulating arithmetical
data. The reader has reviewed a lot of mathematical equations until this point, something
that provides a reason for following this idea. The metrics that are presented in this thesis
are in the same spirit. They involve the computation of series to find the function's
minimum value. This allows the researchers to compare the results quantitatively and not
qualitatively. The results section will verify this thought process.

The quantitative method reviews arithmetical and statistical data to compare the
algorithm's effectiveness. This raises the question of why this method is important. The
speed and good performance of this approach explain why many scientists adopt this
procedure to present their results. When it is adequately undergone, it enables a
researcher to expand the implementation to a broader range of problems and with more
demanding datasets. Moreover, it is comprehensive and structured since the goals are
determined from the beginning, and the purpose of the research is to verify those results
or, even better, to improve them. When this method is combined with careful work, it can
provide relatable outcomes because its purpose is to test existing hypotheses and provide
evidence of why the algorithm behaves in a specific way by proving theories. Remember
that all methods have a weak side. It is up to the scientist to have the proper skill to cope
with the difficulties that may arise and thoroughly explain the findings. Those outcomes
can be generalised in certain situations, which is another positive aspect of it.

Although the quantitative method has many advantages, one should consider its
limitations. If the input data is not representative or there are limited sources of them, it
can constitute a research complex. Since the input data on this implementation is entirely
random real numbers, the thesis overcomes this obstacle. Furthermore, quantitative
analysis can be expensive and time-consuming. Considering that this thesis deals with
software, all that was needed was computational power which was already existent.

On the other hand, due to extensive analysis, it took much time to produce a detailed
report. Thankfully, the results and the acquired knowledge compensated for the efforts.
Quantitative analysis requires being familiar with statistics and probabilities. Since a
computer scientist wrote this report, much background existed in those areas.
Additionally, the presentation of those quantities in diagrams that are descriptive and
readable requires expertise. The university provided projects with similar demands, so
the prospective graduate was ready to fulfil the tasks.

The dataset that was used in this thesis was based on randomness, the so-called
Mersenne Twister. It is an efficient pseudorandom number generator invented by Takuji
Nishimura and Makoto Matsumoto in 1997. Its name originates from the Mersenne prime,
which is assigned as the period length of this generator. It has passed a lot of statistical
tests, which verified its performance. Also, it is cryptographically secure, but that aspect
does not concern this thesis directly. Instead of random data, someone may provide their

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 37

own solutions, as population individuals with some modifications, and attempt to improve
them with SCA and its variants.

The algorithms were implemented with code to improve our understanding of the research
field further and build the foundation for even more complex solutions in the future. It is
worth noting that C++ language was used in this project because it made it easier to
simulate the functionalities of the algorithms and have better segmentation of files with
classes. Python language was utilized for the creation of all the images that you will see
in this thesis because it offered a friendly environment for that purpose. Latex contributed
to the presentation of the results in a formal way, keeping up with the standards of this
project.

This work elaborated on the practical side of SCA. Statistics from all the algorithms that
were explained previously were obtained. Specifically, mean value, standard deviation,
range, median value, and execution time are only some of them. This made it possible to
compare quantities and form conclusions that are accurate and relatable to the problem.
The quantitative research manner was adopted in the metrics section. The objective
function value that is computed by the equations, in theory, is evaluated by universally
used test functions. Their behaviour will be explained below, but they use arithmetical
data to compute an optimal value.

Some qualitative analysis is also present in this thesis. Someone should pay attention to
the diagrams in the theory section. The colours that are shown in the diagrams (blue and
orange) show a quality rather than quantity characteristic. They help the reader
understand in which direction the solution will direct, according to the results of the
mathematical equations. The diagrams that you will see in the results section show some
quality too. The thesis reviews the pattern of a given fitness function. Is it linear or not?
Do fitness and time increase together, or does one increase as the other decreases? Is
the function increasing or decreasing at a constant rate or not? The answers will be shown
afterwards. Finally, the bar charts in the metrics section are qualitative attributes because
they provide valuable information to the reader about which regions have lower or higher
fitness scores.

Finally, this thesis was considered a three-month workload. The student claimed a topic
from the assistant professor, Dr Stamatopoulos, in the middle of November 2022. The
following month, the student searched through research papers that are shown in the
reference section about potential SCA variants that should be presented in this thesis, as
well as engineering problems, to verify its performance. After the research was
completed, code implementation took place. With cooperation with Dr Stamatopoulos,
the code was completed successfully. It should be noted that there was a one and half
month pause period due to undergraduate examinations. When the code was completed,
the writing of this report began. The work is expected to be finished at the end of April
2023.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 38

5. METRICS

Metrics are a crucial part of assessing algorithms. In this thesis, single objective test
functions were used to measure performance. It can definitely be implemented for solving
multi-objective optimization too. Both unimodal and multimodal functions were utilized.
Remember that unimodal functions concern a single peak, while multimodal functions
have multiple peaks. Someone can picture these test functions as simulated landscapes
which can enable scientists to learn many essential features of the algorithms, such as
precision, convergence rate and any flaws that may be committed during its operation.
Some plots are provided to the reader in order to have a better understanding of their
behaviour. The metrics section is a stepping stone, as it provides the required information
to grasp the results section effectively. Below, each test function that was used in this
thesis will be presented, as well as some characteristics about them.

Firstly, Schwefel's 7 test functions:

𝑓1(𝑥) = 418.9829𝐷 − ∑𝑥𝑖 ∗ sin (√|𝑥𝑖|)

𝐷

𝑖=1

It is a multimodal continuous nonconvex function defined in the hypercube:

[-500,500] for i =1, 2, …, D. It can be defined in n dimension space and has a negative
global minimum value [19].

The searching algorithms are susceptible to missing the optimum global value due to the
abrupt surface of the function. There are many local minimum values which can deceive
the algorithm into going in the wrong direction. Moreover, the global optimum is quite
distant from the second-best value, rendering it difficult for the algorithm to spot it.

The second function is De Jong's1:

𝑓2(𝑥) = ∑𝑥𝑖
2

𝐷

𝑖=1

It is a continuous unimodal function. It is a convex function, meaning that the curved
surface is pointing outwards. Its domain space is:

[-100,100] for i = 1, 2, …, D. It is commonly known as the sphere model. As can be seen
in the bar chart, green and blue values have a medium range of fitness. Pink and purple
are high-value ones and should be avoided by the process. The desired territory is the
yellow and especially the red one since minimum fitness value exists there. Its global
minimum is 0.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 39

Figure 8: Schwefel’s seven 3-dimension graph

The third function is the Rastrigin:

𝑓3(𝑥) = ∑(𝑥𝑖
2 − 10 ∗ cos(2𝜋𝑥𝑖) + 10)

𝐷

𝑖=1

It has a similar behaviour as Schwefel’s seven but is defined inside [-5.12, 5.12] for i =1,
2, …, D. Its global minimum value is zero. It is continuous, nonconvex, and multimodal,
as shown in the graph below. Several local minimum values are allocated around the
global minimum, zero. Higher fitness values are found in the corners of the two-
dimensional plot.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 40

Figure 9: Griewank’s 3-dimension graph

The fourth function is named Griewank:

𝑓4(𝑥) =
1

4000
∑𝑥𝑖

2

𝐷

𝑖=1

−∏cos (
𝑥𝑖

√𝑖
)

𝐷

𝑖=1

+ 1

It has a vast number of local minimums distributed frequently around the surface. The
domain space is the hypercube [-600, 600] for i =1, 2, …, D. The global minimum value
of the function is zero. On this occasion, highs and lows are all over the landscape, not
only on corners. It is a multimodal function composed of a convex quadratic and a
fluctuating(waving) nonconvex one. It differs from the other test functions because it is
more difficult to optimize in the initial stages, but then it becomes easier.

Next is the well-known Ackley function:

𝑓5(𝑥) = −20exp

(

 −0.2 √
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1

)

− exp (
1

𝐷
 ∑cos (2𝜋 𝑥𝑖

𝐷

𝑖=1

)) + 20 + 𝑒

David Ackley proposed it in his PhD dissertation in 1987 [26]. The continuous multimodal
nonconvex function is evaluated in hypercube [-32, 32] i =1, 2, …, D. It can indeed be
limited to smaller spaces. The global minimum value is zero.

The algorithm proposes a challenge for algorithms such as SCA because there are many
instances when it gets trapped in a local minimum location. Specifically, Ackley’s graph
consists of a flat region with a hole at the centre of it. In the former territory, numerous
local optima exist, while in the latter, the minimum fitness value is located. The steepness

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 41

of the valley where the minimum value resides can be proved difficult for many algorithms
to locate.

Figure 10:Ackley 3-dimension graph

The following function is called f6-step:

𝑓6(𝑥) = ∑(⌊𝑥𝑖 + 0.5⌋)
2

𝐷

𝑖=1

It is the typical step function, but since the steps are multiplied by a square, no negative
terms exist in the sum. Due to the floor operation that exists at the base of the power, the
series will converge to zero. As a result, the optimum global value in this situation is zero.
The nonconvex, not continuous, quadratic function is evaluated in hypercube:

[-100,100] i =1, 2, …, D. It is a unimodal function since it has only one peak.

Proceeding to function 7, which is the Goldstein-Price.

𝑓7(𝑥, 𝑦) = [1 + (𝑥 + 𝑦 + 1)
2(19 − 14𝑥 + 3𝑥2 − 14𝑦 + 6𝑥𝑦 + 3𝑦2)] ∗ [30

+ (2𝑥 − 3𝑦)2(28 − 32𝑥 + 12𝑥2 + 48𝑦 − 36𝑥𝑦 + 27𝑦2)]

The domain space is fixed: [-2, 2] for i = 2. It has optimal global value 3. It has a very high
peak around the point (-2,2), which can be deceiving for many algorithms. Across the
surface, there are several valleys which can constitute optimization difficult. The algorithm
may fall into a sub-optimal instead of a global optima area, something that should be
avoided.

It is a fixed dimensional continuous multimodal and non-convex test function, and the
global minimum point is in (0, -1).

The eighth function is the Six-hump camel function:

𝑓8(𝑥, 𝑦) = 4𝑥
2 − 2.1𝑥4 +

𝑥6

3
+ 𝑥𝑦 − 4𝑦2 − 4𝑦4

The scope of this function is the [-5, 5] for i = 2 (two-dimensional). It can be visualized, as
the name says, with six humps. It is a landscape that contains valleys and hills. Some
valleys are lower than others, especially around the two global minimum points.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 42

It is a continuous multimodal nonconvex function. The global minimum has a value of -
1.0316, found at points (0.0898, -0.7126) and (0.0898, 0.7126).

The ninth function is the Rosenbrock.

𝑓9(𝑥) = ∑[100(𝑥𝑖
2 − 𝑥𝑖+1) + (𝑥𝑖 − 1)

2]

𝐷−1

𝑖=1

The scope is [-30, 30] for i = 1, 2, …, D and the global minimum value is zero. The function
is continuous, nonconvex, and unimodal, and the minimum is in a parabolic valley. Even
though it is easy to locate the valley, the convergence to that specific point is complicated.
It is a well-known test problem and sometimes is called the valley function.

The tenth function is the Quartic:

𝑓10(𝑥) = ∑(𝑖 ∗ 𝑥𝑖
4)

𝐷

𝑖=1

+ 𝑟𝑎𝑛𝑑(0,1)

The scope is [-1.28, 1.28] for i = 1, 2, …, D and the global minimum value is zero. It is a
continuous, unimodal test function. It is similar to the DeJong function but with noise.

The eleventh function is the Schwefels2.21.

𝑓11(𝑥) = max { |𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝐷 }

The range is [-100, 100] for i = 1, 2, …, D and the global minimum value is zero. It has
the shape of a reverse pyramid. It is continuous, unimodal, and convex. It gradually
descends to the lowest point ((0,0) in two dimensions).

Subsequently, the twelfth function is the Schwefels2.22, defined in the hypercube [-10,
10] for i = 1, 2, …, D and the global minimum value is zero. It is continuous, unimodal,
and convex. The mathematical equation of it is as follows:

𝑓12(𝑥) =∑|𝑥𝑖| +

𝐷

𝑖=1

∏|𝑥𝑖|

𝐷

𝑖=1

It looks like a paper folded in four parts due to the absolute values, with the minimum
point at the centre. It provides a new challenge for the algorithms since it has different
patterns and levels of smoothness.

The thirteenth function is the Schwefels2.12. It is defined in the scope [-100, 100] for i =
1, 2, …, D and global minimum value is zero. It is continuous, unimodal, and convex.

𝑓13(𝑥) =∑(∑𝑥𝑖

𝑖

𝑗=1

)

𝐷

𝑖=1

2

It is commonly known as a double-sum or rotated hyper-ellipsoid test function. It contains
a lot of local optima values, proposing a hard task for the algorithms to solve. Along the
surface, there is a lot of solution with similar fitness values.

The fourteenth function is the Generalized penalty function two. It is defined in the scope
[-50,50] for i = 1, 2, …, D and the global minimum value is zero. Its equation is:

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 43

𝑓14(𝑥) = 0.1 ∗ { 10 sin
2(𝜋𝑥𝑖) + ∑ (𝑥𝑖 − 1)

2𝐷−1
𝑖=1 [1 + 10sin2(3𝜋𝑥𝑖)] + (𝑥𝑛 −

1)2 } +∑ 𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚)
𝐷
𝑖=1

The u function is specified as follows:

𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚) = {

𝑘(𝑥𝑖 − 𝑎)
𝑚, 𝑖𝑓 𝑥𝑖 > 𝑎
0, 𝑖𝑓 −𝑎 ≤ 𝑥𝑖 ≤ 𝑎

𝑘(−𝑥𝑖 − 𝑎)
𝑚, 𝑖𝑓 𝑥𝑖 < −𝑎.

𝑎 = 5, 𝑘 = 100,𝑚 = 4

Finally, the fifteenth function is the Generalized penalty function 1. It is defined in the
scope [-50, 50] for i = 1, 2, …, D and the global minimum value is zero. Its equation is:

𝑓15(𝑥) =
𝜋

𝑛
∗ { 10 sin2(𝜋𝑦𝑖) + ∑ (𝑦𝑖 − 1)

2𝐷−1
𝑖=1 [1 + 10sin2(3𝜋𝑦𝑖)] +

(𝑦𝑛 − 1)
2 } +∑ 𝑢(𝑥𝑖 , 𝑎, 𝑘,𝑚)

𝐷
𝑖=1

𝑎 = 10, 𝑘 = 100,𝑚 = 4

𝑦𝑖 = 1 +
1

4
∗ (𝑥𝑖 + 1)

They are both unconstrained functions with a global minimum value of zero. They are
continuous, non-convex multimodal test functions. These are the most complex ones in
this thesis. Their unique characteristic is that the number of local optima rises
exponentially depending on the dimensionality of the solutions. Their graph effectively
resembles a penalized spline. Imagine it like multiple waves with lower and higher
amplitude [4].

All the above test functions manipulate the corresponding solution from the theory
section. Each algorithm is assigned the task of providing the best possible solutions to
minimize those functions. The wide variety of behaviours that they present allowed a
better understanding of the algorithms’ efficiency.

Note: Although the test functions exist in the literature, their order in this thesis is not in
the same order as the one typically followed. If you try to compare them, look at which
corresponds to the correct number.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 44

6. RESULTS AND DISCUSSION

All the previous sections prepared the reader for a comprehensive understanding of this
section. This is the most important part because it verifies that the statements in this
thesis are accurate. It will be divided into three particular parts. Firstly, the development
of the minimum fitness throughout the execution of each run will be presented.
Afterwards, tables will provide information about a variety of experiments regarding the
best score that was achieved. An overview of the results will complete this part.

The next three diagrams below illustrate how the minimum fitness changes for each
algorithm in test four (Griewank) over the course of the first 2000 iterations and 100
dataset dimensions. As it can be seen, until the first 500 iterations, the minimum fitness
stabilizes at a quite high value, about 2500. In contrast, the Aquila algorithm converges
to the global minimum of the test function almost instantly (it was recorded at the fifth
iteration). Aquila provides a massive improvement compared to the other two algorithms
when the dimension of the population is 100. The Chaotic and basic SCA line diagram
looks almost similar on this occasion. Even though there is a sizeable difference in the
convergence speed to the global minimum among the three algorithms, all of them
manage to approach closely to the global minimum. The level of accuracy will be
investigated later. For dimension size 100, the clear winner is the Aquila since it spots
faster as the globally best value in the Griewank test function (4).

Differentiated results occur when the dimension size increases to 500. SCA’s efficiency
is essentially the same as when the dimension was 100. It converges partially to the
global minimum almost at the same number of iterations. The next 4000 iterations were
printed to observe if the convergence of the algorithm would improve. However, that was
not the case, as the line remained the same. Remember that 2000 iterations are executed
20 times for each algorithmic experiment, so the first three runs out of the total 20 were
recorded. On the other hand, Chaotic SCA improved a lot as the line started from a
relatively lower point and converged to the global minimum faster than before. The next
4000 iterations were recorded to verify if the pattern was consistent. Even though the
convergence speed looks similar, the line begins at a considerably greater point. Because
the algorithms are based on randomness, the initial stages are not always good enough
to spot a good solution, so the graph is logical. What is surprising is that whilst the size of
the dimension is increasing, Aquila’s efficiency does not become affected at all. The
algorithm converges to the global minimum at the fifth iteration again.

The Aquila algorithm has the best convergence speed out of both basic and Chaotic SCA.
Chaotic SCA proposes a reasonable improvement to basic SCA, especially when the
dimension rises significantly to 500. Similar patterns occur in the other test functions too.
The thesis manages to enhance the original SCA greatly.

Minimum fitness \ iteration line diagram (dimension=100,500)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 45

Figure 11: Basic SCA’s Min Fitness/iteration diagram (dimension=100)

Figure 12: Chaotic SCA’s Min Fitness/iteration diagram (dimension=100)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 46

Figure 13: Aquila’s Min Fitness/iteration diagram (dimension=100)

Figure 14: Basic SCA’s Min Fitness/iteration diagram (dimension=500)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 47

Figure 15: Chaotic SCA’s Min Fitness/iteration diagram (dimension=500)

Figure 16: Aquila’s Min Fitness/iteration diagram (dimension=500)

The following tables present the parameters that were used throughout the program as
well as the scope of each test function in the second column. The third column provides
the best fitness value that solutions can produce for the correspondent test function. This,
in short, is called the Optimum. Both limited and wider ranges are provided to test different

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 48

regions of the test functions which contain the Optimum. It is worth noting that all the
algorithms were compared using exactly the same parameters. Population size was
chosen according to the existing literature because it is enough to reach a global optimum
at a reasonable number of iterations. This allows the execution time to be satisfying. The
“a” value (it is not the same as the Chaotic a) usually equals 2 in research papers on that
topic.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 49

Table 1: Parameters of experiment

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 50

Table 2: Parameters of experiment 2

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 51

Table 3: Βasic SCA Results (dimension=10)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 52

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 53

The results for basic SCA are satisfying for most functions. In most instances, it manages
to approach the optimum global value apart from the f9, f14, and f15. It needs to be
emphasized that even though it approximates the global optimum, on most occasions, it
does not reach it totally.

As can be observed from the statistics, SCA needs about 12 seconds to execute 2000
iterations 20 times for each test function. The mean value is very increased for the
fourteenth and fifteen instances. On the other hand, in the seventh function, the algorithm
always manages to find the optimal value. This is explained by the fact that the mean
value is equal to the minimum fitness that the algorithm produces. The range values are
not relatively large apart from functions 14,15 and 1. Significant range values could be
interpreted as difficulty in finding the global optima. The median value enables observers
to determine the centre of the solutions dataset. When it is close to the mean value, that
means that the dataset is distributed in equal amounts from lowest to highest. This is
happening most of the time except for f14 and f15. Median helps eliminate outliers(values
that are not prevalent in the dataset but they affect the mean value). When the mean is
less than the median, the graph is negatively skewed (weighing to the left). On opposite
occasions, it is positively skewed (weighing to the right). Standard deviation refers to
which place the data is more concentrated on. Low values of it mean that the data are
distributed around the mean. In contrast, significant value can be viewed as a sparse
graph, where the data are clustered above the mean. The latter happens in f1, f14, and
f15.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 54

Table 4: Basic SCA Results (dimension=100)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 55

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 56

A new trend can be observed for the basic SCA when the dimension is increased to 100.
All the test function’s fitness value rises greatly. f10, f12, f13, and f14 minimum fitness
increases significantly. Those test functions were placed in that order because it becomes
gradually difficult to find global minimum by increasing order. The value for the fixed
dimension function remains equal to the previous table’s one. The only function that the
fitness improves is the f1. It can be understood that the dimension size plays a significant
role in the complexity of the problem. The higher the dimension means a more
complicated situation and, thus, probably a greater minimum overall fitness value.

The situation is clear in the statistics table too. The table has lost many low values that
were existent in the previous statistics table. This means that the overall range, standard
deviation, mean value and median have increased notably. Something that is on par with
the worsening picture in the minimum fitness table. Programmers want to keep those
values as low as possible to improve their chances of extracting the actual global minima
from the test function. The greatest mean value and median are in f15’s row. The largest
execution time in f10’s. The lowest mean value and range are assigned to f1. The lowest
value for standard deviation and range columns is inside f7’s and f8’s row.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 57

Table 5: Basic SCA Results (dimension=500)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 58

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 59

The tendency in this experiment follows the same pattern as when the dimension was
100. The minimum fitness values are rising even more, missing entirely the desired global
minimum point. This renders SCA ineffective in dealing with these higher-dimension
problems. The greater minimum fitness exists in test function 10, which is 4.2E+11, while
the minimum is zero. The only functions that withstand the complexity at some level are
the f5, f11 and f12. The statistics verify that effect. The mean value and the range are
almost double the minimum fitness on most occasions. High execution times are
observed (around 16 minutes maximum). The median is sometimes lower and other times
higher than the mean. When the standard deviation is close to zero, it means that the
solutions are concentrated on some value. When it is relatively elevated, as in f14, it
shows that the solution varies a lot. The improvement of this algorithm to tackle this
adversity becomes imminent.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 60

Table 6: Chaotic SCA Results (dimension=10)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 61

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 62

Even though dimension size has not escalated a lot, chaos is already very effective. From
the first two tables, it can be observed that Chaotic sine cosine has better performance
than basic SCA in f1, f9, f10, f14 and f15. Test functions f2, f11, f12 and f13 show slightly
better scores for SCA but not by a lot. Test functions f3, f4, f5, f6, f7, and f8 have the
same scores for both algorithms.

Regarding the statistics, basic SCA runs 2-3 seconds faster per test function in that
dimension. However, Chaotic SCA has a lot better statistics table. For functions f7 and
f8, the scores are equivalent. Only a little less standard deviation is produced by Chaotic
SCA. f3, f5 and f6 columns are the same too. The figures in other test functions follow the
same trend as the minimum fitness tables. The one that scored better minimum fitness
has lower values in the statistics columns. It is impressive that at f14 and f15 Chaotic
SCA has a standard deviation of almost 0 while basic SCA’s are around 3000. That shows
that Chaotic SCA is a lot more accurate and does not diverge a lot from the best solution.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 63

Table 7: Chaotic SCA Results (dimension=100)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 64

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 65

As expected, when the dimensionality of the problem rises, variants of SCA are able to
improve the weaknesses of the original SCA. This time, Chaotic SCA is better on all the
test functions apart from f5, f6 and f12. The figures are represented equally in f7 and f8
since the dimension is fixed. A striking feature of the minimum fitness table is that the
SCA f10 score stands at 7.3E+07, while Chaotic is around 0.005. Also, the value of SCA’s
best fitness on f15 accounts for 2.82E+09, whereas Chaotic is almost 78. Chaotic SCA
is approximately one hundred million times superior to the original SCA.

Chaotic SCA records vastly better statistics than original SCA in all the test functions.
This makes it clear that Chaotic SCA has the potential to provide better results than SCA.
Basic SCA outscored Chaotic SCA on some occasions only by luck since the algorithms
are based on randomness. Chaotic SCA has a better dynamic, and that is verified by the
minimum fitness tables.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 66

Table 8: Chaotic SCA Results (dimension=500)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 67

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 68

It is evident from the table that Chaotic SCA is invariably the most productive out of the
two. On all test functions, Chaotic SCA yields minimum fitness to a great extent.
Undoubtedly, Chaotic SCA is the viable variant when the program has to deal with high
dimensional populations. For instance, in f2, Chaotic manages 4.11E-6 whilst SCA only
47113.7. SCA is unable to provide profound results because it overlooks the global
minimum, which is zero. Chaotic SCA is close to reaching it in almost all situations.

Statistics of SCA in dimension 500 maintain the same numbers approximately as when
the dimension was 100, apart from execution time. That proves that Chaotic SCA is robust
and does not get too affected by dimension surge. However, basic SCA’s statistics are a
lot worse than Chaotic’s, and that renders essential the use of the variants.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 69

Table 9: Modified Aquila Results (dimension=10)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 70

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 71

When the dimension is 10, Aquila outperforms the other algorithms in the majority of the
test functions. In particular, it is the leading procedure in nine out of the fifteen test
functions. It performs worse than Chaotic in f7, f8, f9, f14 and f15. Moreover, it obtains
inferior minimum fitness to basic SCA in f7, f8 and f9.

Regarding the statistics, Aquila SCA is superior to basic SCA in nine out of the fifteen
functions. In detail, it does not surpass it in f1, f7, f8, f9, f14 and f15 since its std, range,
and median is higher than the basic one. In addition, it requires substantially more
execution time per test(around 10-200 sec). In comparison to basic SCA, the outlook is
the same as the original SCA. A lot of emphasis needs to be put on the fact that Aquila
manages to find not only the best fitness value but also the global minimum point of the
test.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 72

Table 10: Modified Aquila Results (dimension=100)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 73

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 74

Further escalation of the dimension leads to a clear difference in performance. On this
occasion, Aquila is a better minimizer than SCA in almost all test functions apart from the
ones whose dimension is fixed(f7, f8). In comparison with Chaotic’s implementation, it is
a lot closer. In detail, Chaotic exhibits greater accuracy in f7, f8, f9, f14 and f15, whereas
Aquila on all the others. However, both are capable of approaching the global minima on
all tests(except Aquila in f14 and f15 when its output is significantly away from the
optimal). In the majority of test cases, Aquila shows better accuracy by finding the optimal
value. It is evident from the table that those variants are enhancing the original algorithm
by a wide margin.

Regarding execution times, Aquila is executed faster than SCA but slightly slower than
Chaotic by a few seconds (1-20 seconds per test function). Aquila’s statistics ensure
better quality than basic SCA apart from f1, f7, f8, f14 and f15. In those tests, Aquila
produces significant standard deviation and range. This maybe expresses a liability of the
Aquila algorithm. In comparison to Chaotic, it represents better effectiveness in the
majority of tests except for f1, f7, f8, f9, f14 and f15. Remember that the desired output in
each column of the statistic table is the minimum one.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 75

Table 11: Modified Aquila Results (dimension=500)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 76

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 77

When the dimension is 500, the most demanding test in this thesis takes place. As
previously, Aquila outperforms basic SCA in all tests apart from f7 and f8. Regarding
chaotic’s implementation, Aquila surpasses it in most tests except for f7, f8, f9, f14 and
f15. The most striking feature of these tables is that Aquila clearly beats SCA, as its scores
are more than a thousand times better. However, a weakness of Aquila is showcased in
f14 and f15, when Chaotic is undoubtedly better by around a million times.

Regarding the statistics, Aquila remains robust. It illustrates greater scores than basic in
all tests except for f1, f7 and f8. It is exceptionally effective since a lot of values are near
zero, even though the dimension has increased significantly. This is the goal of the
statistics experiment.

Execution times are worse than SCA’s and Chaotic’s by 0-4 minutes per test
approximately. Finally, Aquila remains competitive in comparison to Chaotic. Aquila’s
statistics are better than Chaotic in f2-6 and f11-13, which constitute the majority of the
tests.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 78

Table 12: Fuzzy Sine Cosine Algorithm (dimension=500)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 79

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 80

The fuzziness concept improves basic SCA results, but it is not on the same level as
Aquila and Chaotic.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 81

Table 13: Tension/Compression spring design Results

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 82

In this section, the original SCA algorithm and its Chaotic variation are implemented to
solve the compression design problem. A thorough experimentation takes place since
many tests are performed to measure performance. Three different tests involving a
varying number of iterations and populations happen. It is evident that the Chaotic variant
manages to outscore the original SCA in most situations. It also manages the best overall
score throughout the experiment (0.0126896). This thesis attained the optimization of the
SCA algorithm on this specific problem since minimum fitness improved further by
Chaotic variant. The variables that produced the best score are illustrated on the
corresponding tables for each experiment. The fourth experiment is more extensive, with
more iterations and a larger population capacity, in order to further improve performance.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 83

The outcome verifies that by proposing more demanding tests, someone can improve
results even more.

Regarding the statistics, they correspond to the minimum fitness table. The tests, which
produced better scores, usually depict more satisfying values in statistics. For instance,
the last row in the statistics table depicts the fourth test with the Chaotic variant. This
attempt produced the lowest mean value, standard deviation, range and median.
However, it required more execution time in comparison to the other attempts because it
was extensive. It should be noted that this time program utilizes the metrics from the
theory section about the tension spring problem rather than the metrics from the results
sections. Also, it uses only three dimensions since it involves only three variables defined
by the problem. It limits those specific variables in the given domains, as shown in theory.
The results are satisfying since this thesis not only managed to solve the tension spring
design with competitive scores but also achieved to augment SCA scores with the Chaotic
variant. Further iterations and larger population of solutions could have led to even better
scores. The optimal results regarding the problem were approximately 0.01266, as shown
in the literature [11].

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 84

7. CONCLUSIONS AND FUTURE WORK

Overall, this analysis led to several positive outcomes. Sine and Cosine Algorithm was
scrutinized through a wide range of experiments, and the integration of its variants into
the main process proved successful. This thesis achieved almost optimal results even
when the dimensions of the solutions were large, verifying that our approach was
effective. Our results are equivalent to the benchmarks that are displayed in the literature,
constituting this thesis as valid and with great potential for new improvements. Based on
this work, a new variant may arise that can solve even more challenging problems.
Another area of possible research is the field of test functions [17]. More challenging tests
can be proposed to further limit test these very robust algorithms. This research
showcased the magnitude of those procedures since their application can be extended
to many aspects of real life. A well-known engineering problem was solved, which
contributed to familiarising the undergraduate student with the practical sides of those
techniques [16]. It is very fascinating to explore the problem-solving capabilities of swarm
intelligence algorithms, such as SCA, because the program can mimic a lot of behaviours
of the natural world. Everything that can be observed in the environment might be
applicable to code, and that itself is impressive. Finally, an extensive results report
enabled the student to learn how to elaborate further on the topic and have a better
understanding of the behaviour of population-based procedures. SCA proved to be a tool
that can be utilized on the majority of occasions and provide a valuable solution in an
easy way and at a reasonable time.

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 85

TABLE OF TERMINOLOGY

optimisation The act of improving results at the
best possible level.

Population-based algorithms Algorithms that update multiple
solutions instead of a single one to

obtain result.

Test functions Artificial landscapes that are
utilized by computer programmers

to observe the behavior of
optimisation of algorithms.

Global optima A feasible point of a test function
that its objective value is greater

than all other points.

Fitness Evaluates the performance of an
algorithm.

Agent A feasible solution in the search
space.

Feasible solution Solution inside the domain space

Deterministic (process) A process in which no randomness
is involved in the production of

future states

Stochastic (process) A process in which randomness is
involved in the production of future

states

Metaheuristics Heuristics or higher lever
procedures that provide strategies

for developing optimisation
algorithms

Swarm Intelligence Population-based(collective)
intelligence

Exploration stage Explore the whole domain space

Exploitation stage Search around local solution

Objective function A function that produces solutions
which minimise (or maximise)

objective

Black Box No adjustments of the algorithm
according to the input

Mutation stage A different stage added in the
original process

Bifurcation diagram A visual representation of period-
doubling as ‘a‘ increases (Ex.

period=2: two numbers, period=4:
four numbers)

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 86

ABBREVIATIONS ACRONYMS

SCA Sine Cosine Algorithm

OBL Opposite based Learning

TCSD Tension Compression Spring Design

ΕΚΠΑ Εθνικό Καποδιστριακό Πανεπιστήμιο
Αθηνών

CEC IEEE Congress on Evolutionary
Computation

PID Proportional Integral Derivative

PSO Particle Swarm Optimisation

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 87

ANNEX I: HARDWARE SPECS AND TOOLS

Operating System

Windows 10 Home 64-bit

CPU

Intel Core i5 4460 @ 3.20GHz

Haswell 22nm Technology

RAM

16,0GB Dual-Channel DDR3 @ 657MHz (9-9-9-24)

Motherboard

Gigabyte Technology Co. Ltd. Z97X-SLI-CF (SOCKET 0)

Graphics

23MP65 (1920x1080@60Hz)

2047MB NVIDIA GeForce GTX 760 (ASUStek Computer Inc)

Storage

111GB SanDisk SDSSDHII120G (SATA (SSD))

931GB Samsung SSD 860 EVO 1TB (SATA (SSD))

C++ version

g++ (Ubuntu 9.3.0-17ubuntu1~20.04) 9.3.0

Python3 version

 Python 3.8.10

Visual studio version

 code 1.77.3

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 88

REFERENCES

[1] S. Mirjalili, “SCA: A Sine Cosine Algorithm for solving optimization problems,” Knowledge-Based
Systems, vol. 96, pp. 120–133, Mar. 2016, doi: https://doi.org/10.1016/j.knosys.2015.12.022.

[2] M. H. Ali, A. T. Salawudeen, S. Kamel, H. B. Salau, M. Habil, and M. Shouran, “Single- and Multi-
Objective Modified Aquila Optimizer for Optimal Multiple Renewable Energy Resources in Distribution
Network,” Mathematics, vol. 10, no. 12, p. 2129, Jun. 2022, doi: 10.3390/math10122129. [Online].
Available: http://dx.doi.org/10.3390/math10122129.

[3] M. Abd Elaziz, D. Oliva, and S. Xiong, “An improved Opposition-Based Sine Cosine Algorithm for global
optimization,” Expert Systems with Applications, vol. 90, pp. 484–500, Dec. 2017, doi:
https://doi.org/10.1016/j.eswa.2017.07.043.

[4] “Generalized Penalized Function No.01,” Power Systems and Evolutionary Algorithms. https://al-
roomi.org/benchmarks/unconstrained/n-dimensions/172-generalized-penalized-function-no-1.

[5] “Penalty Functions.” Available: https://web.stanford.edu/group/sisl/k12/optimization/MO-unit5-
pdfs/5.6penaltyfunctions.pdf.

[6] Y. Ji et al., “An Adaptive Chaotic Sine Cosine Algorithm for Constrained and Unconstrained
Optimization,” Complexity, vol. 2020, p. e6084917, Oct. 2020, doi: https://doi.org/10.1155/2020/6084917.

[7] J. Liu, S. Anavatti, M. Garratt, K. C. Tan, and H. A. Abbass, “A survey, taxonomy and progress evaluation
of three decades of swarm optimisation,” Artificial Intelligence Review, vol. 55, no. 5, pp. 3607–3725, Nov.
2021, doi: https://doi.org/10.1007/s10462-021-10095-z.

[8] A. B. Gabis, Y. Meraihi, S. Mirjalili, and A. Ramdane-Cherif, “A comprehensive survey of sine cosine
algorithm: variants and applications,” Artificial Intelligence Review, vol. 54, no. 7, pp. 5469–5540, Jun. 2021,
doi: https://doi.org/10.1007/s10462-021-10026-y.

[9] L. Abualigah and A. Diabat, “Advances in Sine Cosine Algorithm: A comprehensive survey,” Artificial
Intelligence Review, Jan. 2021, doi: https://doi.org/10.1007/s10462-020-09909-3.

[10] N. Nayak, S. Mishra, D. Sharma, and Binod Kumar Sahu, “Application of modified sine cosine algorithm
to optimally design PID/fuzzy‐PID controllers to deal with AGC issues in deregulated power system,” Iet
Generation Transmission & Distribution, vol. 13, no. 12, pp. 2474–2487, Jun. 2019, doi:
https://doi.org/10.1049/iet-gtd.2018.6489.

[11] Y. Celik, “Solving the Tension/Compression Spring Design Problem by an Improved Firefly Algorithm.”
Available: https://ceur-ws.org/Vol-2255/paper2.pdf.

[12] A. Tzanetos and M. Blondin, “A qualitative systematic review of metaheuristics applied to
tension/compression spring design problem: Current situation, recommendations, and research direction,”
Engineering Applications of Artificial Intelligence, vol. 118, p. 105521, Feb. 2023, doi:
https://doi.org/10.1016/j.engappai.2022.105521.

[13] C. Qu, Z. Zeng, J. Dai, Z. Yi, and W. He, “A Modified Sine-Cosine Algorithm Based on Neighborhood
Search and Greedy Levy Mutation,” Computational Intelligence and Neuroscience, vol. 2018, p. e4231647,
Jul. 2018, doi: https://doi.org/10.1155/2018/4231647.

[14] Wikipedia Contributors, “Logistic map,” Wikipedia, Oct. 11, 2019.
https://en.wikipedia.org/wiki/Logistic_map

[15] T. Si and D. Bhattacharya, “Sine Cosine Algorithm with Centroid Opposition-Based Computation,”
Algorithms for intelligent systems, pp. 119–129, Jan. 2021, doi: https://doi.org/10.1007/978-981-33-4604-
8_9.

[16] M. Bin, M. Tasir, and P. Darul, “OPTIMAL DESIGN OF HELICAL COMPRESSION SPRINGS,” 2016.
[Online]. Available:
https://utpedia.utp.edu.my/id/eprint/16909/1/DISSERTATION%2016418%20Muhammad%20Hakim%20B
%20Mat%20Tasir.pdf.

[17] “Progress Rate Analysis of Evolution Strategies on the Rastrigin Function: First Results,”
springerprofessional.de. https://www.springerprofessional.de/en/progress-rate-analysis-of-evolution-
strategies-on-the-rastrigin-/23366296.

https://doi.org/10.1016/j.knosys.2015.12.022
http://dx.doi.org/10.3390/math10122129
https://doi.org/10.1016/j.eswa.2017.07.043
https://al-roomi.org/benchmarks/unconstrained/n-dimensions/172-generalized-penalized-function-no-1
https://al-roomi.org/benchmarks/unconstrained/n-dimensions/172-generalized-penalized-function-no-1
https://web.stanford.edu/group/sisl/k12/optimization/MO-unit5-pdfs/5.6penaltyfunctions.pdf
https://web.stanford.edu/group/sisl/k12/optimization/MO-unit5-pdfs/5.6penaltyfunctions.pdf
https://doi.org/10.1155/2020/6084917
https://doi.org/10.1007/s10462-021-10095-z
https://doi.org/10.1007/s10462-021-10026-y
https://doi.org/10.1007/s10462-020-09909-3
https://doi.org/10.1049/iet-gtd.2018.6489
https://ceur-ws.org/Vol-2255/paper2.pdf
https://doi.org/10.1016/j.engappai.2022.105521
https://doi.org/10.1155/2018/4231647
https://en.wikipedia.org/wiki/Logistic_map
https://doi.org/10.1007/978-981-33-4604-8_9
https://doi.org/10.1007/978-981-33-4604-8_9
https://utpedia.utp.edu.my/id/eprint/16909/1/DISSERTATION%2016418%20Muhammad%20Hakim%20B%20Mat%20Tasir.pdf
https://utpedia.utp.edu.my/id/eprint/16909/1/DISSERTATION%2016418%20Muhammad%20Hakim%20B%20Mat%20Tasir.pdf
https://www.springerprofessional.de/en/progress-rate-analysis-of-evolution-strategies-on-the-rastrigin-/23366296
https://www.springerprofessional.de/en/progress-rate-analysis-of-evolution-strategies-on-the-rastrigin-/23366296

Implementation of the Sine Cosine Algorithm and its variants for solving the tension compression spring design problem

A. Tsilifonis 89

[18] Y. Huang, J. Li, and P. Wang, “Unusual phenomenon of optimizing the Griewank function with the
increase of dimension,” Frontiers of Information Technology & Electronic Engineering, Dec. 2019, doi:
https://doi.org/10.1631/fitee.1900155.

[19] M. Jamil and X. S. Yang, “A literature survey of benchmark functions for global optimisation problems,”
International Journal of Mathematical Modelling and Numerical Optimisation, vol. 4, no. 2, p. 150, 2013,
doi: https://doi.org/10.1504/ijmmno.2013.055204.

[20] “This equation will change how you see the world (the logistic map),” www.youtube.com.
https://www.youtube.com/watch?v=ovJcsL7vyrk&t=617s&ab_channel=Veritasium

[21] C. Qu, Z. Zeng, J. Dai, Z. Yi, and W. He, “A Modified Sine-Cosine Algorithm Based on Neighborhood
Search and Greedy Levy Mutation,” Computational Intelligence and Neuroscience, vol. 2018, p. e4231647,
Jul. 2018, doi: https://doi.org/10.1155/2018/4231647.

[22] A. Fatlawi, A. Vahedian, and N. K. Bachache, “Optimal Camera Placement Using Sine-Cosine
Algorithm,” IEEE Xplore, Oct. 01, 2018. https://ieeexplore.ieee.org/document/8566344

[23] Mohamed Abd Elfattah, Sherihan Abuelenin, Aboul Ella Hassanien, and J.-S. Pan, “Handwritten Arabic
Manuscript Image Binarization Using Sine Cosine Optimization Algorithm,” Advances in intelligent systems
and computing, pp. 273–280, Nov. 2016, doi: https://doi.org/10.1007/978-3-319-48490-7_32.

[24] J. M. Altmemi, R. R. Othman, R. Ahmad, and A. S. Ali, “Implementation of Sine Cosine Algorithm (SCA)
for Combinatorial Testing,” IOP Conference Series: Materials Science and Engineering, vol. 767, p.
012009, Mar. 2020, doi: https://doi.org/10.1088/1757-899x/767/1/012009.

[25] X. Ye, Z. Cai, C. Lu, H. Chen, and Z. Pan, “Boosted Sine Cosine Algorithm with Application to Medical
Diagnosis,” Computational and Mathematical Methods in Medicine, vol. 2022, p. e6215574, Jun. 2022, doi:
https://doi.org/10.1155/2022/6215574.

[26] “Ackley function,” Wikipedia, Oct. 19, 2019. https://en.wikipedia.org/wiki/Ackley_function

https://doi.org/10.1631/fitee.1900155
https://doi.org/10.1504/ijmmno.2013.055204
https://www.youtube.com/watch?v=ovJcsL7vyrk&t=617s&ab_channel=Veritasium
https://doi.org/10.1155/2018/4231647
https://ieeexplore.ieee.org/document/8566344
https://doi.org/10.1007/978-3-319-48490-7_32
https://doi.org/10.1088/1757-899x/767/1/012009
https://doi.org/10.1155/2022/6215574

