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ΠΕΡΙΛΗΨΗ 

Οι μοριακοί υπότυποι μιας ασθένειας συχνά συσχετίζονται με διαφορές ως προς την 

επιβίωση ή πρόοδο της νόσου και άλλοτε ως προς την απόκριση σε συγκεκριμένη 

θεραπεία. Την τελευταία δεκαετία, μελέτες μοριακής ταξινόμησης του ουροθηλιακού 

καρκίνου εστιάζουν κυρίως στον διηθητικό τύπο της ασθένειας (~20% των ασθένων 

στην αρχική διάγνωση) ο οποίος χαρακτηρίζεται από υψηλό κίνδυνο για μετάσταση 

και χαμηλά ποσοστά πενταετούς επιβίωσης. Οι παραπάνω μελέτες επέτρεψαν την 

ταυτοποιήση πολλαπλών γενομικών και μεταγραφικών υποτύπων οι οποίοι διαφέρουν 

ριζικά ως προς το μοριακό τους προφίλ, σχηματίζοντας δύο μεγάλες κατηγορίες: τους 

basal και τους luminal όγκους. Οι πρώτοι φαίνεται να σχετίζονται με πιο επιθετικούς 

καρκίνους εμπερικλείοντας όμως ένα σημαντικό ποσοστό ασθενών που 

ανταποκρίνονται στο βασικό χημειοθεραπευτικό σχήμα. Οι δέυτεροι (luminal) αρχικά 

προσδιορίστηκαν ως λιγότερο επιθετικοί, επόμενες μελέτες όμως αποκάλυψαν την 

σημαντική μοριακή ετερογένεια που τους χαρακτηρίζει και που αντανακλάται σε 

κλινικές παραμέτρους. Σήμερα, πιστέυεται ότι ο διηθητικός καρκίνος της ουροδόχου 

κύστης ταξινομείται σε 6 βασικούς υποτύπους, αλλά τα δεδομένα που υπάρχουν για να 

υποστηρίξουν την ένταξη των υποτύπων στην κλινική πράξη είναι ατελή και δεν 

συμφωνούν μεταξύ τους. Από την άλλη, ο μη διηθητικός τύπος της ασθενεις (~80% 

των περιπτώσεων στην αρχική διάγνωση) χαρακτηρίζεται από υψηλά ποσοστά 

υποτροπής και προόδου σε ανώτερο στάδιο καθώς και από σημαντικό δημόσιο 

οικονομικό κόστος εξαιτίας της αυξημένης συχνότητας παρακολούθησης που απαιτεί. 

Το μοριακό προφίλ του μη-διηθητικού καρκίνου έχει μελετηθεί σημαντικά λιγότερο 

από αυτό του διηθητικού, και μέχρι σήμερα υπάρχουν δύο μελέτες που επιχειρούν την 

ταξινόμησή του σε μοριακούς υποτύπους: η πρώτη στη βάση του μεταγραφώματος, η 

δέυτερη στη βάση της διακύμνασης αριθμού αντιγράφων. Το πρωτεομικό προφίλ 

όμως, τόσο του διηθητικού όσο και του μη-διηθητικού καρκίνου της ουροδόχου 

κύστης, μέχρι και σήμερα έχει μελετηθεί υποτυπωδώς. Σκοπός της παρούσας μελέτης 

είναι η διερεύνηση της ύπαρξης πρωτεομικών υποτύπων του μη διηθητικού 

ουροθηλιακού καρκίνου, ο μοριακός χαρακτηρισμός τους, η σχέση τους με 

προηγούμενα συστήματα ταξινόμησης, καθώς και η ταυτοποίηση απορυθμισμένων 

πρωτεϊνών και μονοπατιών με δυνητική προγνωστική αξία. Για την εξυπηρέτηση του 

παραπάνω σκοπού, 117 δείγματα καρκινικού ιστού από ασθενείς που 

πρωτοδιαγνώσθηκαν με ουροθηλιακό καρκίνο (98 μη-διηθητικό, 19 διηθητικό) 

συλλέχθησαν και το ολικό πρωτέομά τους απομονώθηκε και αρχικά ποσοτικοποιήθηκε 
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με τη μέθοδο Bradford. Κατόπιν διάσπασης με θρυψίνη, τα πεπτίδια διαχωρίστηκαν σε 

χρωματογραφική στήλη συνδεδεμένη με φασματογράφο μάζας τύπου Orbitrap. Οι 

φασματικές πληροφορίες για τα πεπτίδια αναλύθηκαν με το πρόγραμμα Proteome 

Discoverer θέτοντας FDR (False Discovery Rate) <0.01 και αντιστοιχήθηκαν σε 

πρωτεινικές ταυτότητες. Η πρωτεϊνική ποσοτικοποίηση έγινε με τη χρήση των τριών 

πιο άφθονων και μοναδικών πεπτιδίων ανά πρωτεΐνη, ενώ κατόπιν επεξεργασίας τα 

πρωτεομικά δεδομένα υποβλήθηκαν σε μια σειρά από υπολογιστικές αναλύσεις: μη 

επιτηρούμενη k-means συσταδοποίηση, ανάλυση κύριων συνιστωσών, ανάλυση για 

στατιστική σημαντικόντητα πρωτεϊνών, πρωτεϊνικών μονοπατιών, βιολογικών 

λειτουργιών και γονιδιακής έκφρασης καθώς και στην μοντελοιποίηση ενός μοριακού 

ταξινομητή Radnom Forest. Μέγιστη σταθερότητα συσταδοποίησης επιτεύχηκε για κ 

= 3 ομάδες, υποδηλώνοντας την ύπαρξη τριών πρωτεομικών υποτύπων στα δεδομένα. 

Η ομάδα 1 ήταν η μικρότερη σε μέγεθος (17/98), περιείχε κυρίως καρκίνους υψηλού 

σταδίου, αλλοίωσης και ρίσκου και παρουσίασε ένα μοριακό φαινότυπο 

ανοσοδιήθησης με υψηλά επιπέδα των μεταγραφικών παραγόντων STAT1, STAT3 και 

SND1, καθώς και πρωτεϊνων της αντιγονοπαρουσίασης, υποδηλώνοντας ενεργή 

ανταλλαγή πληροφοριών μεταξύ του ανοσοποιητικού και των καρκινικών κυττάρων. 

Παράλληλα, χαρακτηρίζονταν απο υψηλότερες ποσότητες πρωτεϊνών που 

συμμετέχουν στο κυτταρικό κύκλο, και στη μετάδοση στρεσογόνων σημάτων 

(αντίδραση μη αναδιπλωμένης πρωτεϊνης και επιδιόρθωση βλαβών του DNA). Η 

όμαδα 2 συγκέντρωσε ασθενείς με ποικίλα κλινικά χαρακτηριστικά που όμως έφεραν 

κοινώς, αυξημένες ποσότητες εξωκυττάριων πρωτεϊνών (στρώματος), και χαμηλά 

επιθηλιακά σήματα. Οι ασθενείς στην ομάδα 3 παρουσίασαν έναν πιο 

διαφοροποιημένο μοριακό φαινότυπο με υψηλότερα επίπεδα (UPKs και KRT20 κάθως 

και CDH1) που συμβαδίζει με τα κλινικά χαρακτηριστικά τους αφού οι περισσότεροι 

διαγιγνώσθηκαν με καρκίνους χαμηλού σταδίου και κινδύνου. Η ανάλυση για 

ενεργοποιημένα πρωτεϊνικά μονοπάτια έδειξε ότι οι ασθενείς της ομάδας 1 έιχαν 

ενεργή σηματοδότηση για βιοσυνθετικές διεργασίες, για ιντερφερόνη-γ, και αυξημένη 

δραστηριότητα των μεταγραφικών παραγόντων MYC και E2F, που ελέγχουν θετικά 

τον κυτταρικό κύκλο. Από την άλλη οι ασθνενείς της ομάδας 3 σχετίστηκαν με 

ενεργοποίηση μεταβολικών μονοπατιών όπως αυτό της αποτοξίνωσης μεσολαβούμενο 

από γλουταθειόνη καθώς και της γλυκογονόλυσης – γλυκόλυσης, αλλά και της 

απόπτωσης. Συγκρίνοντας το πρωτεομικό προφιλ των ασθένων με μη-διηθητικό 

καρκίνο με ασθενέις που είχαν διηθητικό καρκίνο χρησιμοποιώντας ανάλυση κύριων 
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συνιστωσών, αποκαλύφθηκε κοντινή σχέση της ομάδας 1 με ασθενείς που έφεραν 

διηθητικό ουροθηλιακό καρκίνο και αντίστροφα, μακρινή σχέση της ομάδας 3 με τους 

τελευταίους. Η ομάδα 2 εμφάνισε μεγάλη διασπορά επικαλύπτοντας περιοχές των 

προηγούμενων δύο ομάδων. Για την επικύρωση των πρωτεομικών αποτελεσμάτων, 

δεδομένα από μεταγραφικές έρευνες  (UROMOL και LUND) αναλύθηκαν 

αναδρομικά. Στην UROMOL έρευνα επίσης ταυτοποιήθηκαν 3 υπότυποι ο ένας εκ των 

οποίων συγκέντρωσε τους περισσότερους ασθενείς με πρόδοο σε ανώτερο στάδιο 

(κακής πρόγνωσης υπότυπος). Συγκριτική ανάλυση μεταξύ των τριών πρωτεομικών 

ομάδων και των τριών υποτύπων της UROMOL έρευνας με το στατιστικό εργαλείο 

GSEA, έδειξε στατιστικώς σημαντικές φαινοτυπικές ομοιότητες μεταξύ της 

πρωτεομικής ομάδας 1 και του υποτύπου «κακής» πρόγνωσης της UROMOL καθώς 

και μεταξύ της πρωτεομικής ομάδας 3 και του υποτύπου «καλής πρόγνωσης». 

Χρησιμοποιώντας έναν μη επιτηρούμενο μοριακό ταξινομητή Random Forest, οι 

υψηλού κινδύνου και χαμηλού κινδύνου φαινότυποι των πρωτεομικών ομάδων 1 και 

3, επιβεβαιώθηκαν ύστερα από την ταξινόμηση των ασθενών στους υποτύπους 

«κακής» και «καλής» πρόγνωσης αντίστοιχα, της UROMOL έρευνας. Στατιστικώς 

σημαντικες πρωτεΐνες που ξεχωρίζουν αυτές τις δυο ακραίες πρωτεομικές ομάδες αλλά 

και ταυτόχρονα τον διηθητικό από τον μη διηθητικό καρκίνο βρέθηκαν να διαφέρουν 

σημαντικά και στο επίπεδο του μεταγραφώματος μεταξύ των ομάδων «κακής» και 

«καλής» πρόγνωσης σε δύο ανεξάρτητες έρευνες (UROMOL και LUND). Τα 

παραπάνω μόρια συμμετέχουν σε βιολογικές λειτουργίες-κλειδιά για την ανάπτυξη του 

μη-διηθητικού καρκίνου, όπως στην επαγωγή αποκρίσεων πρωτεϊνικής σταθερότητας, 

στη σηματοδότηση κυτοκινών και ιντερφερονών, στην αντιγονοπαρουσίαση, στην 

επεξεργασία πρώιμων mRNAs, σε μετα-μεταφραστικές  τροποποιήσεις  αλλά και σε 

μονοπάτια κυτταρικής αύξησης. Συνολικά, η παρούσα μελέτη ταυτοποιεί τρεις 

πρωτεομικούς υποτύπους του μη διηθητικού καρκίνου και ακολουθώντας μια 

σύγκριτική ανάλυση με δύο ανεξάρτητες μεταγραφικές έρευνες, παρέχει ομάδες 

μορίων που μπορεί να οδηγούν τη πρόοδο του καρκίνου και που χρειάζονται επιπλέον 

επικύρωση στη κλινική πράξη. 

 

ABSTRACT 

DNA/RNA-based classification of Bladder Cancer (BC) supports the existence of 

multiple molecular subtypes, while investigations at the protein level are scarce. The 
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purpose of this study was to investigate if Non-Muscle Invasive Bladder Cancer 

(NMIBC) can be stratified to biologically meaningful proteomic groups, to establish 

associations between the proteomics subtypes and previous transcriptomics 

classification systems and to characterize the continuum of transcriptomics alterations 

observed in the different stages of the disease. Subsequently, tissue specimens from 117 

patients at primary diagnosis (98 with NMIBC and 19 with MIBC), were processed for 

high resolution LC-MS/MS analysis. Protein quantification was conducted by utilizing 

the mean abundance of the top three most abundant unique peptides per protein. The 

proteomics output was subjected to unsupervised consensus clustering, principal 

component analysis (PCA), and investigation of subtype-specific features, pathways, 

and genesets, as well as for the construction and validation of a Random Forest based 

classifier. NMIBC patients were optimally stratified to 3 proteomic subtypes (classes), 

differing at size, clinico-pathological and molecular backgrounds: Class 1 (mostly high 

stage/grade/risk samples) was the smallest in size (17/98) and expressed an 

immune/inflammatory phenotype, along with features involved in cell proliferation, 

unfolded protein response and DNA damage response, whereas class 2 (mixed 

stage/grade/risk composition) presented with an infiltrated/mesenchymal profile. Class 

3 was rich in luminal/differentiation markers, in line with its pathological composition 

(mostly low stage/grade/risk samples). PCA revealed a close proximity of class 1 and 

conversely, remoteness of class 3 to the proteome of MIBC. Samples from class 2 were 

distributed in a wider fashion at the rotated space. Comparative analysis with GSEA 

between the three proteomic classes and the three UROMOL subtypes indicated 

statistically significant associations between the proteomics class 1 and UROMOL 

subtype 2 (subtype with a bad prognosis) and also between the proteomics class 3 and 

UROMOL subtype 1 (subtype with the best prognosis). Utilizing a Random Forest 

based classifier, the predicted high- and low-risk phenotypes for the proteomic class 1 

and class 3, were further supported by their classification into the “progressed” and 

“non-progressed” subtypes of the UROMOL study, respectively. Statistically 

significant proteins distinguishing these two extreme classes (1 and 3) and also MIBC 

from NMIBC samples were found to consistently differ at the mRNA levels between 

NMIBC “Progressors” and “Non-Progressors” groups of the UROMOL and LUND 

cohorts. Functional assessment of the observed molecular de-regulations suggested 

severe pathway alterations at unfolded protein response, cytokine and inferferone-γ 

signaling, antigen presentation, mRNA processing, post translational modifications and 
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in cell growth/division. Collectively, this study identifies three proteomic NMIBC 

subtypes and following a cross-omics analysis using transcriptomic data from two 

independent cohorts, shortlists molecular features potentially driving non-invasive 

carcinogenesis, meriting further validation in clinical trials. 
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1. BLADDER CANCER 

1.1 Anatomy of the bladder 

The bladder is a hollow organ located in the lower part of the abdomen (Figure 1). The 

anatomy of the bladder resembles a small balloon and bares a muscular wall that allows 

the adaptation of the shape of the organ depending on the volume of the urine produced 

by the kidney. The human body comprises of two kidneys, one on each side of the 

backbone, above the waist and tiny tubules in the kidneys filter the circulating blood. 

The urine passes from each kidney through the ureter into the bladder up until the urine 

passes through the urethra to be eliminated from the body.1 

 

 

Figure 1: Anatomy of the male urinary system (left panel) and female urinary system 

(right panel) showing the kidneys, ureters, bladder, and urethra. (source: National 

Cancer Institute - Visuals Online, Urinary System, Creator: Terese Winslow, 2010.       

https://visualsonline.cancer.gov/details.cfm?imageid=9098 

https://visualsonline.cancer.gov/details.cfm?imageid=9050) 

 

The bladder wall consists of three different tissue types:  epithelium, sub-epithelial 

loose connective tissue (lamina propria), and detrusor or muscularis propria (Figure 2). 

The epithelium of the bladder is stratified (multi-layered) and has evolved to withstand 

https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000046501/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000257523/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000045070/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000270735/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000046638/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000046640/
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mechanical (distention) and chemical insult. This type of epithelium is called 

transitional and is found also in the ureters and in urethra, hence, sometimes called 

urothelium. The layers of the urothelium can be stratified to three morphologically 

different zones: basal, intermediate and superficial. The basal zone, locates at the 

bottom of the epithelium and consists of a single layer of cuboidal cells, adhered to the 

basal (or basement) membrane, with the latter separating epithelium from lamina 

propria. In the normal urothelium, basal cells are CD44+, KRT5/6+ and Ki67+ and are 

considered to be the most undifferentiated, harboring stem cell properties and also being 

susceptible to malignancy (1). Several layers of cells (3-6 based on the distention state) 

appearing with a spherical shape above the basal layer, comprise the intermediate zone. 

The intermediate zone has a high renewal capability since it includes stem cells and 

progenitors of other more differentiated cells. The upper part of the urothelium is the 

superficial zone. Here, the residing cells have a varying morphology that depends on 

the state of distention: when the tissue is relaxed superficial cells appear cuboidal, 

whereas upon expansion they take a squamous morphology (thin, flat plates). 

Superficial cells are well-differentiated, and have an extended golgi apparatus that 

allows for the synthesis of a thick impermeable keratin-based membrane. Their tight 

stratification across the epithelium is achieved via the establishment of tight junctions, 

rich in cadherin-1 (CDH1) and in catenins α-, β-, γ (2).  

 

1.2 Bladder cancer epidemiology 

According to the Global Burden of Disease study (3) there were 3.4 million cases of 

Bladder Cancer (BC) between 2005 and 2015, while in 2018, BC has led to an estimated 

of 17,200 and 200,000 deaths in the United States (4) and worldwide (5), respectively. 

Approximately three out of four BC patients present with non-muscle invasive disease 

(NMIBC), with the majority of them requiring lifelong monitoring and surveillance. 

BC is characterized by high prevalence, multiple recurrences and increased progression 

rates, making it the costliest type of cancer to treat (6). Considering also that 

epidemiological data predict a global increase on the incidence rates of the disease (7), 

there is an imperative need to radically improve the management of BC. Tobacco 

smoking, drinking of arsenic-contaminated water, industrial exposure to chemical 

carcinogens, infestations and irritations of the bladder, as well as familial history of 

concordant cancers have been linked to bladder carcinogenesis (7). Global 
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improvements in health care organizations, diagnostic tools and in therapeutics have 

certainly contributed to the observed decline in the mortality rates (7). However, the 

high molecular heterogeneity of the disease renders available treatment options non-

effective for a number of patients, and the clinicopathologic parameters insufficient for 

predicting outcome. This is reflected at the high numbers of disease recurrence (~80%) 

and progression (~25%) for the NMIBC and also at the relatively low 5-year survival 

rates of the Muscle Invasive Bladder Cancer (MIBC) patients (46~65%) as well as of 

the metastasized cases (~15%) (8).  

 

1.3 Bladder cancer staging 

Transitional cell carcinoma cases were initially called superficial bladder cancer. 

However, malignant urothelial tumors confined to the bladder mucosa (urothelium and 

lamina propria compartments) are accurately termed non-muscle invasive (NMIBC) 

instead of being given the traditional “superficial” label. The traditional term suggested 

that all such tumors shared the relatively benign course of low grade papillary tumors. 

In contrast, patients with highly malignant lesions, including carcinoma in situ (CIS), 

actually have a worse prognosis if not recognized and treated successfully. For this 

reason, the staging system for bladder was updated in 2017 -American Joint Committee 

on Cancer/tumor, nodes, metastases (AJCC/TNM) staging system (9). Tumor spread in 

BC is determined according to the TNM Classification of Malignant Tumors (TNM) 

system (Figure 2). TNM is an acronym with T describing the size and depth of the 

tumor bulk through the bladder wall, N denotes affected nearby lymph nodes and M 

informs for occurrence of metastatic lesions at other parts of body. 

 

Primary Tumor (T) T0 is used when primary tumor is not identified in the initial 

diagnosis in the biopsy or transurethral resection. Ta and Tis represent non-invasive 

papillary urothelial carcinoma and flat urothelial carcinoma in situ (CIS), respectively. 

T1 is used for invasion into the lamina propria and are usually high-grade tumors. 

Several features in the biopsy specimens are helpful for the grade determination of 

stromal invasion such as single cell infiltration, absence of basement membrane, finger-
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like projections and stromal desmoplastic, or inflammatory reaction. Papillary stalk 

invasion of an exophytic lesion is considered lamina propria invasion. 

T2 stage characterizes the invasion into the muscularis propria. T2 is further divided 

based on invasion into superficial (inner half) (T2a) or deep muscularis propria (outer 

half) (T2b). The biopsy and TUR specimen may be problematic in determining the 

depth of the invasion since the samples may not contain muscularis propria. Therefore, 

repeated procedures may be required to evaluate the extend of the invasion. If the 

invasion into the muscularis propria or muscularis mucosae is uncertain, it should be 

clearly stated in the examination of the biopsy.  

T3 grade represents the invasion of the tumor into the perivesical fat. T3 is further 

divided according to microscopic perivesical fat invasion (T3a) or macroscopic 

invasion forming extravesical mass (T3b). Fat tissue can be found at all layers of urinary 

bladder wall, the biopsy specimens cannot distinguish whether the invasion has been 

into the perivesical fat. 

T4 is used when primary tumor invades beyond urinary bladder. T4a characterizes 

primary tumors that exhibit invasion into prostatic stroma, seminal vesicles, uterus, or 

vagina in female patients, whilst T4b is used to define distant metastatic lesions. 



10 

 

 

 

Figure 2: T categories of urothelial carcinoma of urinary bladder. Ta: non-invasive 

papillary urothelial carcinoma, T1: invasive urothelial carcinoma with lamina propria 

invasion, T2: invasive urothelial carcinoma with muscularis propria invasion, T3: 

invasive urothelial carcinoma with perivesical fat invasion. T4: metastatic lesions. Tis 

(or CIS) is a high-grade, flat malignancy confined to the urothelium.(doi: 

10.1594/ranzcr2011/R-0150). 
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1.4 Histological features of bladder cancer 

Based on the depth of invasion inside the bladder wall, non-metastatic BC is classified 

either as Mucle-Ivasive (MIBC; 20-30% of total cases) or Non-Muscle Invasive 

(NMIBC; 70-80% of total cases). MIBC includes tumors diagnosed at stage > T2 while 

NMIBC can be either Ta (spread of cancer cells is limited to the epithelium) or T1 

(cancer cells have invaded lamina propria). Clinicians have long recognized that 

NMIBCs usually present with a papillary morphology extending from the epithelium 

to the bladder cavity, while conversely, MIBCs tend to lack it. 

Bladder cancer can be classified histologically as urothelial (also called 

papillary/transitional cell carcinoma) or non-urothelial. Urothelial cancer has a 

propensity for divergent differentiation including, amongst others, squamous, 

glandular, micropapillary, nested, lymphepithelioma-like, plasmacytoid and 

sarcomatoid variants of urothelial cancer. Non-urothelial tumors are rare, more 

aggressive than urothelial (10, 11) and include the pure forms of squamous, sarcoma, 

adenocarcinoma, carcinosarcoma, paraganglioma, melanoma and lymphoma (12). 

Mostly, the current evidence suggests that urothelial cancer with divergent 

differentiation has a worse prognosis when compared with pure urothelial cancer (13), 

with genetic-based studies indicating that the histologic variants of urothelial cancer 

arise from a common clonal precursor (14, 15). Attempts to quantify the amount of 

divergent differentiation present, such as using the nonconventional differentiation 

number, have been made recently, which is anticipated to improve the ability to 

compare publications from different centres. The vast majority of BCs present with one 

or more of the following three epithelial cancer types:   

Papillary/Transitional cell carcinoma (TCC): It refers to cancers initiating from the 

intermediate zone, acquiring a papillary conformation that grows inside the bladder 

cavity. This is the predominant histological type including even up to 90% of cases in 

Western Europe and the United States. Papillary cases often present with multi-focal 

tumors (~40%) and according to the guidelines of the World Health Organization 

grading system of 2004 (16), cytological findings can stratify TCC into low-grade or 

high-grade subcategories: 

-Low-grade transitional cell carcinoma often recurs after treatment, but rarely 

spreads into the muscle layer of the bladder. 

https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000046629/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000045702/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000046556/
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-High-grade transitional cell carcinoma often recurs after treatment and may 

proceed to the muscle invasive type of bladder cancer. Metastasis to other parts the 

body and to lymph nodes can also occur. High-grade disease is the type responsible 

for the majority of deaths from bladder cancer. However, data comparing the 

prognostic potentiality of the older, three-tiered (Grade 1/2/3) grading system of 

WHO (1973) (17), against the newer, two-tiered (High/Low grade) (16) for NMIBC, 

show debatable results (18, 19), while clinicians and researches are allowed to use 

any of the two classifications. 

Carcinoma in-situ (CIS): Tumors that grow longwise, inside the epithelium as flat 

dysplasia and are generally thought to progress to MIBC more often. Lesions of CIS 

can co-occur near the primary tumor and are usually resistant to neo-adjuvant 

chemotherapy.  

Squamous cell carcinoma (SCC): Cancer that begins in squamous cells (thin, flat cells 

lining the inside of the bladder). Squamous cells can be distinguished by their 

hexagonal shape, by the typical inter-cellular bridges they form and also their positive 

staining for KRT14 and KRT5. SCC is more frequent in places with high prevalence of 

Schistosoma haematobium infection, as in East Africa and the Middle East (20).  

 

1.5 Bladder cancer diagnosis  

The diagnosis of bladder cancer is based on several procedures that facilitate the 

detection of malignant morphology in the tissue. Currently, the gold standard for the 

diagnosis of BC is cystoscopy which allows optical evaluation of the bladder structure. 

During the cystoscopy procedure, it is also feasible to obtain bladder biopsies for 

histological evaluation. This method is also called transurethral resection of bladder 

tumor (TURBT) and can be used for excising a tumor with papillary morphology 

(described below). Cystoscopy can be combined with urine cytology in which urine 

samples are examined under the microscope, and the clinician is seeking to identify 

atypical or malignant cells and the degree of their morphological alteration. The role of 

imaging in the diagnosis of cancer is undisputable. Therefore, in the bladder cancer 

setting several imaging test can be applied for the diagnosis of the disease such as 

computerized tomography (CT) (21), urogram or retrograde pyelogram (22), CT 

urogram allows a thorough evaluation of the urinary tract in order to detect any areas 

https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000045762/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000046595/
https://www.ncbi.nlm.nih.gov/books/n/pdqcis/glossary/def-item/glossary_CDR0000046056/
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that may be affected by the disease. In contrast, the retrograde pyelogram is use for the 

examination of the upper urinary tract. 

 

1.6 Altered molecular pathways in bladder cancer 

Studies between NMIBC and MIBC have revealed hallmark differences in their 

genomic backgrounds, establishing the dual track concept of bladder carcinogenesis 

(papillary and non-papillary; Figure 3). In the papillary route (characterizes NMIBC 

patients) tumor initiation is believed to take place in the intermediate zone. The most 

profound alterations in these cancers involve activating mutations in the FGFR3/HRAS 

pathway (~80%) which are considered to transform an early urothelial hyperplasia into 

a non-invasive papillary tumor (23, 24). The superficial zone of these tumors is 

typically rich in KRT20, UPK3 and CDH1, whereas KRT7/17, KRT8/18, p63 appear 

at highest levels in the intermediate zone (25). Intermediate cells may or may not be 

KRT5+ and CD44+(25). Progression of low- to high-grade malignancy is often 

accompanied by further alterations in the Akt/PIK3CA/mTOR pathway (Figure 4) 

which signals for cell growth, often by deletion of TSC1 (negative regulator of mTOR) 

and loss of function of the tumor suppressors STAG2 and CDKN2A (26, 27). On the 

other hand, the non-papillary route (characterizes MIBC patients), is thought to initiate 

from the basal layer and involves alterations mainly in the TP53/RB1 pathway that 

controls cell-cycle checkpoint, as well as deletion of PTEN which is an inhibitor of the 

Akt/PIK3CA/mTOR pathway (27). Up to 20% of MIBCs present with mutations in 

FGFR3, and CDKN2A (27), possibly suggesting origins from a low-grade hyperplasia 

that evolved to invasive disease. Clonal expansion in the non-papillary route spreads 

towards the muscle layer, and tumors are usually N-Cad+, KRT5/6+, KRT14+, CD44+, 

lack expression of KRT20 and CDH1 (25), while uniform staining patterns of KRT5 

through the tumor parenchyma might accompany squamous differentiation (28). In 

general, both MIBC and NMIBC typically experience loss of multiple genetic loci at 

9q, mutated TERT promoter and aberrant patterns of chromatin remodeling (29, 30). 

However, MIBC has higher mutational burden, more frequent copy number variations 

(CNVs), chromosomal translocations and heavier genomic instability (29).   
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Figure 3: The dual track concept of bladder carcinogenesis. The two distinct 

pathways of pathogenesis of papillary (leading to NMIBC) and solid (leading to MIBC) 

are shown. Low-grade papillary tumors can arise via simple hyperplasia and minimal 

dysplasia, and are characterized at the molecular level by loss of heterozygosity (LOH) 

of chromosome 9 and activating mutations of genes encoding fibroblast growth factor 

receptor 3 (FGFR3), telomerase reverse transcriptase (TERT), phosphatidylinositol 

4,5-bisphosphate 3-kinase catalytic subunit alpha isoform (PIK3CA) and inactivating 

mutations of STAG2 (which encodes cohesin subunit SA-2). The aforementioned genes 

participate in biological processes such as cell proliferation, division and growth. 

MIBC is considered to arise via flat dysplasia and carcinoma in situ (CIS), which 

commonly harbors TP53 mutations in addition to LOH at chromosome 9, but fewer 

FGFR3 mutations. Low-grade papillary NMIBCs might progress to MIBCs as a result 

of CDKN2A (which encodes p16 and p14ARF) loss. Numerous potential differences in 

the molecular pathways to the major tumour types and their subtypes are known. Solid 

arrows indicate pathways for which there is histopathological and/or molecular 

evidence; uncertainty is indicated by dashed arrows.(source: ref (23)) 
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Figure 4: The Akt/PI3K/mTOR pathway in bladder cancer. Growth factor-mediated 

signaling or mutational activation of both PI3K and MAPK pathways is common in 

bladder cancer. Receptor tyrosine kinases (RTKs), epidermal growth factor receptor 

(EGFR), ERBB2, ERBB3, fibroblast growth factor receptor 1 (FGFR1) and FGFR3 

may be activated by ligand, overexpression and/or mutation in bladder cancer. 

Through adaptor proteins, these RTKs activate RAS. Signalling via the RAS–RAF–

MEK–ERK cascade leads to phosphorylation of many substrates that can have multiple 

cellular effects depending on the intensity and duration of signalling. In many situations 

proliferation is induced. Activated RTKs bind to p85 (the regulatory subunit of PI3K) 

and recruit the enzyme to the membrane, where it phosphorylates 

phosphatidyinositol-4,5-bisphosphate (PIP2) to generate PIP3. Activated RAS can also 

directly activate PI3K. PIP3 recruits 3-phosphoinositide-dependent protein kinase 1 

(PDK1; also known as PDPK1) and AKT, resulting in activation of AKT by 

phosphorylation, which leads to both positive and negative regulation of a wide range 

of target proteins (not all shown). Cyclin D1 (CCND1) and MDM2 are upregulated 

directly or indirectly, resulting in a positive stimulus via the RB or p53 pathways, 

respectively. AKT also phosphorylates and inactivates tuberous sclerosis 2 (TSC2), 

leading to activation of mTOR complex 1 (mTORC1), which controls protein synthesis. 

TSC1 forms an active complex with TSC2, and loss of function of either protein leads 
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to dysregulated mTOR signalling. AKT phosphorylates and inactivates glycogen 

synthase kinase 3β (GSK3β), relieving its suppression of β-catenin, which is freed to 

enter the nucleus and activate gene expression. MYC expression is induced as a 

consequence of both ERK and AKT signalling. Key genes that are activated in bladder 

cancer are shown in dark red and those that are inactivated in green. BAD, 

BCL-2-associated agonist of cell death; FOXO, forkhead box O; RHEB, Ras 

homologue enriched in brain.(source: ref (27)) 

 

2. TRANSCRIPTOMICS AND PROTEOMICS 

Over the last two decades, significant technological advancements in the molecular 

biology have enabled the study of molecules in large scales. With the advent of next 

generation sequencing and mass spectrometry analyzers, we can now quantify the 

abundances of thousands of cellular products, such as RNA, proteins, metabolites. 

Analysis of big data requires the usage of several advanced statistical and mathematical 

principles, along with computative tools and dedicated algorithms designed solely for 

this purpose. The subfield of molecular biology that leverages the above to investigate 

large scale molecular alterations, is called systems biology, or alternatively omics, and 

and depending on the cellular product at study, is referred to as genomics, methylomics, 

transcriptomics, proteomics, metabolomics, interactomics etc. Transciptomics, 

proteomics and metabolomics are the three quantitative omics, in a sense that not only 

they identify a particular molecule, but they also quantify its expression or abundance 

levels. The number of identified features per omic usually depends on the starting 

sample material, but generally in transcriptomics, it is at the scale of tens of thousands, 

in proteomics at single digit thousands, while for metabolomics is currently at tens or 

hundreds. 

2.1 Transcriptomics 

2.1.1 Microarrays     

The technology of microarrays is based on the design of multiple DNA probes that are 

bound on a solid surface such as a glass slide. Microarray technologies have been 

widely used in research for measuring gene expression changes and elucidating the 
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relationship between genotypes and phenotypes. They are quite cost‐effective for 

profiling gene expression when it comes to model organisms. Microarrays have also 

been used in clinical diagnostics. Some examples are the detection of copy number 

variants using SNP arrays such as the Cytogenetics Whole‐Genome Array from 

Affymetrix or the HumanOmni1‐Quad BeadChip and HumanCytoSNP‐12 56 

Integration of Omics Approaches and Systems Biology for Clinical Applications DNA 

Analysis BeadChip from Illumina. In general, microarrays can be used for general 

screenings, gene expression profiling, genotyping, and many other applications. 

However, like in PCR‐based applications, the use of predefined oligonucleotides 

(probes) is based on previous knowledge availability. Thus, microarrays are used for 

quantification of known sequences and not for the discovery of new variants, 

transcripts, or other unexpected transcriptomics features (31). In order to fully illustrate 

the limitations of microarray technology, we should briefly present some basic 

concepts. Microarray detection is based on hybridization of sample DNA to nucleic 

acid probes, bound to the surface of a slide. The probes are oligonucleotides with a 

usual length of 25–120 nucleotides. To further measure the quantity of hybridization to 

each specific probe, the target sequence (DNA or cDNA) is labeled with fluorescent 

dyes. Then, after an image is taken and processed, signal intensities can be read and 

converted to normalized values in order to initiate the data analysis. Due to the nature 

of microarray probe design, the capabilities of this method are apparently restricted to 

known sequences and therefore do not allow detection of target sequences beyond the 

current knowledge. This factor can be a disadvantage for non‐model organisms, but 

diagnostics of well‐characterized organisms, such as humans, is feasible, although it 

relies on the quality of the available bioinformatics data at the moment the microarray 

was designed. Microarrays can be used for diagnostic transcriptome analysis. If 

properly designed, they will not only provide information on gene expression and 

expressed SNPs but also detect exon junctions and fusion genes (32). Normalization 

and processing of microarray data can involve quite complex bioinformatics 

methodologies and statistics. This is a consequence of the nature of the data produced 

by this technology that may become a limitation for someone not acquainted in the area. 

However, significant efforts were put into developing standardized procedures for 

microarray analysis. Some of these procedures as well as suggestions, guidelines, 

metrics, and thresholds, among other information, are publicly available under the 

MicroArray Quality Control (MAQC) website, together with the publications that 
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helped to reach consensus on these procedures. Refer to the MAQC project for further 

details [49]. 

2.1.2 Sequencing  

The advances in DNA sequencing, and in particular the advances of NGS, have 

significantly improved the quantity and quality of genomic information that can be 

obtained from clinical samples. The reduced cost of NGS as well as the increase in 

throughput made whole‐ genome sequencing (WGS), as well as other NGS applications 

such as whole‐exome sequencing (WES) or RNA‐Seq, a possible and reliable approach 

for clinical diagnosis. However, there are still some challenges such as data storage, 

management, analysis, and interpretation that have to be considered for the proper use 

of this technology in clinical applications (33). Following the objectives of this chapter, 

the tools, applications, approaches, and examples presented here will mainly focus on 

the use of NGS for the analysis of the transcriptome in clinical applications. Many 

different platforms for massive parallel sequencing were developed. The first example, 

although currently obsolete, is the 454 Genome Sequencer from Roche Applied 

Sciences. Also outdated is the SOLiD platform from Life Technologies. The current 

and most widely used technology is the Solexa “Sequencing‐by‐Synthesis” technology 

that was acquired by Illumina in 2007. The strength of these technologies relies on a 

very high throughput at the expense of read accuracy and much shorter read length 

when compared with the well‐known Sanger sequencing. However, the possibilities of 

use and applications of this technology led to significant scientific discoveries and 

diagnostic applications (33). Fortunately, some of the trade‐offs are being reduced 

through continuous platform improvements and developments, which resulted in more 

advanced sequencer versions such as the Ion Torrent and Ion Proton from Life 

Technologies and the MiSeq and HiSeq from Illumina. In particular the HiSeq versions 

have greatly improved in accuracy and read length as well as in significantly higher 

throughput. Meanwhile, the run time has been decreasing, making it suitable for 

diagnostic use. Advances and ongoing efforts to improve these platforms even further 

have made the HiSeq platforms from Illumina the most widely used NGS sequencers. 

Depending on the sequencing platform of preference, many options are available for 

library preparations. The library preparation steps include all transformations the 

nucleic acids of interest may require prior to being completely ready for sequencing on 

the platform of choice. In general, NGS library preparations for transcriptomics consist 
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of cDNA synthesis and extension of the cDNA with specific ligated adapters for 

sequencing. Furthermore, it is quite common that a minimum quantity of RNA is 

required to ensure a minimal quality. For body fluids and tissues, approximately 10ng 

of RNA is often sufficient, while for samples containing degraded RNA, such as FFPE, 

a minimum of 100 ng is strongly recommended (34). In addition, many adaptations to 

library preparation protocols are reported in order to cover different aspects of the 

complexity of RNA processes and regulations such as posttranscriptional 

modifications, gene expression, isoforms, regulation, splicing, and degradation (35-38). 

For a better overview of published protocols, please refer to available collections of 

preparation methods such as the sequencing methods review published from Illumina 

Technology (39). The overwhelming quantity of data produced per sample requires 

advanced bioinformatics analysis to address the wide variety of possible questions. 

There are many tools and software packages available that can analyze these massive 

datasets, make inferences from the data, and offer biological interpretations. Despite 

their differences, there are some data analysis steps that are usually shared among the 

different approaches. Common steps include quality check of the sequencing data, 

sequence alignment to a reference genome or de novo assembly in some other cases, 

and the assessment of the specific experimental results in order to finally provide useful 

diagnostic information (33, 40). It is accepted as good practice to perform several 

quality checks at the different steps in the process of analyzing clinical samples. Several 

authors reviewed different quality measures and how to use them during the 

downstream analysis. A recent review by Li et al. exposed many sequencing quality 

checks specific for RNA‐Seq experiments including checks assessing raw sequence 

quality, nucleotide composition, presence of rRNA or tRNA, and the presence of other 

contaminant nucleic acids (41). Another important step is the alignment of the 

sequenced reads to the reference genome, or transcriptome. The human genome is 

nowadays quite complete with the latest version 38 released on June 29, 2014, by the 

Genome Reference Consortium, patch 4 (GRCh38.p4) (www.ncbi.nlm. 

nih.gov/projects/genome/assembly/grc/human). In the alignment, the human genome is 

used as matching reference for the sequenced reads. RNA‐Seq data alignments differ 

substantially from the DNA‐Seq alignments. The nature of read sequences in RNA‐Seq 

provides extra levels of complexity due to the fact that RNA molecules are the product 

of transcription and posttranscriptional processes such as splicing and RNA editing. 

The splicing removes part of the transcribed sequences (the introns) leaving the exons 
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present in the sequence. After the library preparation and its fragmentation step, which 

is an optional step and commonly performed by sonication, some of the shorter reads 

obtained may come from the region where two exons were joined. In this particular 

situation, the RNA‐Seq aligners have to be flexible enough to be able to map part of 

the reads to one exon 58 Integration of Omics Approaches and Systems Biology 

for Clinical Applications and the other part to another exon, spanning an exon junction 

(42). There are many aligners available that can deal with RNA‐Seq data, such as 

Bowtie2, GSNAP, STAR, and SpliceMap, among many others. Work has been done to 

review and report available alignment tools to help users through the, sometimes 

difficult, decision of selecting the best tools for applications in clinical diagnostics (34, 

43). In general, all aligners offer the possibility to modify key parameters in order to 

adapt their algorithms according to the quality of available data and the question of 

relevance. Once a decent quality alignment is produced, the proper diagnosis is usually 

within reach. A common approach is to retrieve transcript abundance, as gene counts, 

for gene expression profiles or differential expression. However, prior to comparing 

two RNA‐Seq datasets, the raw counts should be normalized to account for some 

differences introduced by handling during the library preparation steps. Due to this 

inherent variability, normalization of raw counts is required since these are not directly 

comparable between or within samples (44). There are many normalization methods, 

some correcting for gene length, GC content, and library size, as well as other bias 

adjustments. For better understanding of the available normalization procedures, Dillies 

et al. compared several normalization methods in order to clearly present their 

application in the context of RNA‐Seq data. In summary, the available DESeq and 

TMM normalization methods showed to be able to maintain the power to detect 

differentially expressed genes while properly controlling the false positive rate (44). 

Another way of normalization to deal with extra biases found in cross‐platform or 

interlaboratory comparisons relies on the inclusion of synthetic spike‐in materials. In 

some cases these external RNA controls developed by the External RNA Controls 

Consortium (ERCC) became available for the evaluation of cross‐platform 

performance according to GC content, transcript length, and sequencing accuracy (45). 

Extended information on RNA‐Seq practices as well as some additional 

recommendations, benchmarking technology comparisons, reproducibility 

assessments, and evaluations of RNA‐Seq for clinical applications was also published 

by the Sequencing Experiment Quality Control (SEQC) consortium. The SEQC project 
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is the third phase of the MAQC, and it involves 12 countries, 78 organizations, and 180 

researchers (http://www.fda. gov/ScienceResearch/BioinformaticsTools). The wide 

range of available bioinformatics tools offers the possibility to answer various 

biological and diagnostic questions. However, bioinformatics analysis may not be able 

to overcome some limitations that we can still face with NGS data such as highly 

repetitive sequences, 3′ biases, and biased GC content. In general, the small loss of 

information due to these limitations is of low impact compared with the significant 

insights that NGS provides. Repetitive sequences in the human genome are well 

characterized, making it easier to handle problems related to polymorphic copy number 

variation in these regions. During the alignment steps, reads that map to many locations 

of the genome (not uniquely mapped) with equal quality are usually filtered. The 

enrichment of 3′ end sequences of genes, also known as 3′ bias, is a side effect of the 

fast degradation of mRNAs from the 5′ end of the transcript, which may be even more 

prominent when using poly‐A enrichment methods during the library preparation. This 

effect can be widely avoided by using higher‐quality RNA, which should be possible 

in a properly designed diagnostic setting. Additionally, 3′ biases may not affect the 

outcome of some analysis, such as gene expression measurement, since it is considered 

that all transcripts exhibit similar degradation and the same library preparation was 

performed within a particular well‐controlled experiment. The last limitation, regarding 

some difficulties of sequencing high GC regions, is a problem that usually results from 

several causes. First, it is known that some polymerases may have increased difficulties 

to transcribe high GC content sequences. This, coupled with the inherent high repetitive 

nature of GC or AT enriched regions, makes these regions somehow tricky to analyze 

with higher levels of confidence. However, not all high GC are affected at the same 

level due to differences in GC percentages and other nucleic acid composition (41). 

Hansen et al. worked on an alternative normalization method to acquaint for the GC 

content as well as gene length of a particular gene using a conditional quartile 

normalization (46). However, their method did not outperform other less sophisticated 

normalization methods (44). Cancer is commonly regarded as an accumulation of 

genetic alterations such as single nucleotide variants (SNVs), altered DNA methylation 

patterns, and chromosomal abnormalities. As a consequence of DNA modifications, 

there may be dysfunctional genes leading to over‐ or underactivity and chimeric 

transcripts or gene fusions. These alterations may disrupt the proper function of the 

gene, which may become an oncogene, a malfunctioning tumor suppressor, or an 
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incorrect DNA repair gene. The occurrence of one or more of these genetic alterations 

may affect cellular growth and lead to tumor development. Since the landscape of 

cancer transcriptome is complex, RNA‐Seq can be very useful for clinical diagnostic 

applications, offering a wider range of screening possibilities to check for the whole 

diversity of cancer‐related alterations in a single run (40). Many studies have been 

carried out that contributed in the understanding of molecular determinants of tumor 

cell types. Cancer characterization is remarkably one of the research fields that has 

dedicated considerable efforts to The Use of Transcriptomics in Clinical Applications 

59 adopt RNA‐Seq for research purposes and to assess its potential in clinical 

applications (33, 46, 47). Since the accumulation of genetic alterations may be either 

inherited or somatically acquired, RNA‐Seq becomes a strong complementary 

approach in screening and diagnostic applications. 

2.2 Proteomics 

One significant advantage of proteomics analysis is the capability to assess protein 

abundance. Since tissue is a site of disease initiation and progression, comparative 

analysis of the protein abundance between different physiological states provides a 

global “snapshot” on disease‐associated changes. A main distinction in proteomics is 

the relative vs absolute quantification. In the relative quantification, thousands of 

proteins are identified and quantified across samples belonging to at least two 

experimental conditions, a set-up that enables a relativistic comparison of the protein 

levels. In the absolute quantification, the mass spectrometer is initially calibrated with 

a peptide of known concentration, allowing for an absolute quantification of the same 

peptide in other experimental samples. Absolute quiantification offers an accurate 

estimate of a peptide’s or a protein’s concentration levels but it suffers from low scaling 

capabilities, as the analysis is limited to 1 peptide/protein at a time. Instead, relative 

quantification, although not being able to accurately measure the real concentation, it 

offers information on the direction and the intensity of alterations happening at the 

abundance levels of thousands of proteins, between conditions. In this, the traditional 

quantification strategy included a separation of peptides using 2DE and application of 

dyes or fluorophores. Nowadays, peptide separation (prior to quantification) is 

conducted with liquid chromatography, while two main quantification strategies have 

been distinguished including label‐based and label‐free approaches (48). The former 
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method relies on introduction of isotope labels. Depending on the strategy of 

incorporation of the labels, several type of label‐based quantification approaches were 

developed such as metabolic labeling (stable isotope labeling with amino acids in cell 

culture (SILAC), 15N), chemical labeling [isobaric tag for relative and absolute 

quantitation (iTRAQ), isotope‐coded protein labeling (ICPL), isotope‐coded affinity 

tag (iCAT), tandem mass tags (TMT)], or proteolytic labeling (18O) (49). Both 

chemical and proteolytic labeling have been utilized to quantify tissue proteomes, with 

the former being most commonly applicable. Even though metabolic labeling is 

typically limited to the analysis of cell line models, due to recent developments, SILAC 

can be also applied for the analysis of tumor tissue proteomes (called super‐SILAC). 

Super‐SILAC uses as a reference/ internal standard a mixture of different cancer cell 

lines labeled with SILAC reagent, which is added to tissue extracts in a fixed ratio (50). 

Additionally, a protocol combining super‐SILAC with FACS sorting or LCM was 

developed for quantification of protein changes in cancer cell subpopulations derived 

from liquid and solid tumors, respectively. This method allows for identification of up 

to 8000 proteins from patient‐derived samples using hybrid quadrupole‐Orbitrap MS 

(51). An overview on recent developments and application of super‐SILAC is provided 

by Shenoy et al. (52). On the contrary, label‐free approach is easier to use, as it does 

not require additional labeling steps. Additionally, in the label‐free approach there is no 

limitation with regard to the number of analyzed samples in comparison with label‐

based methods. However, each sample has to be analyzed individually, which may 

increase MS instrument use and variability. The accuracy and linearity of the label‐free 

quantification can be affected particularly by the presence of other compounds in the 

samples, causing suppression effect. Irreproducibility in sample preparation is also a 

major concern. This might be remediated to some extent using labeled internal 

standards (53). Two quantification methods in label‐free proteomics are spectral 

counting and intensity‐based quantification (53). The first method relies on counting 

the number of MS/MS spectra for a specific protein. Therefore, more abundant proteins 

generate more abundant peptides, increasing the probability of ion selection for MS/MS 

analysis. However, differences in the physicochemical properties of peptides might 

affect detection of peptides by MS and thus may have an impact on quantification using 

spectral counting. These include peptide length, mass, amino acid sequence, solubility, 

net charge, and others. Therefore, to address this issue Lu et al. developed a novel 

method called absolute protein expression (APEX) measurements (54). In this method, 
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considering the physicochemical properties of individual peptides, probability of their 

detection is assessed by a supervised classification algorithm. In the intensity‐ based 

approach, the quantitation is performed at the MS1 level based on the area under the 

curve (AUC) from the extracted‐ion chromatogram. Independent of the quantification 

strategies used, in an effort to accurately compare the quantification results between 

different samples, data normalization is required. By normalizing the data, an effect 

associated with differences in protein loading, ionization efficiency, carryover effect, 

and others can be taken into account. Up to now several normalization methods have 

been developed and are well described in the context of several manuscripts (55-57). 

Based on the aforementioned, numerous techniques are currently being applied to 

quantify the tissue proteome. It has been shown that both quantification methods were 

successfully applied either for the analysis of total tissue proteomes (58) or tissues 

subjected to LCM. Moreover, quantitative proteomics was used to analyze fresh‐frozen 

as well as FFPE tissues. Comparative analysis of label‐free and label‐based methods 

has been broadly described in in vitro cultured cells (59, 60). It has been shown that 

both methods, enable achievement of high proteome coverage and apparently valid 

predictions in terms of protein differential expression (58). However, higher sequence 

coverage and higher number of differentially expressed proteins were demonstrated in 

the case of label‐free approach. However, due to the limited number of analyzed 

samples, the risk for receiving false associations exists, indicating the need for the 

analysis of higher sample numbers and/or application of adjustment for multiple testing 

(58). 

 

3. MOLECULAR SUBTYPING 

3.1 Molecular subtyping in the era of -omics integration 

Advancements in high throughput -omics technologies along with the implementation 

and improvisation of the available bioinformatics solutions, have together allowed the 

comprehensive analysis of large sample cohorts. Making use of the massive data, the 

emerging field of cancer subtyping aims to stratify the disease into homogeneous 

groups, so as, to enable the identification of novel molecular mechanisms, targets or 

biomarkers for response/outcome. As examples, some of the largest analyses (in terms 

of sample size) aiming to identify pan-cancer modules, have been conducted using over 
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10,000 tumor samples from The Cancer Genome Atlas (TCGA) (61-66). In these 

studies, the main objective is the application of machine learning in order to integrate 

and analyze data from different -omic sources. Such approaches offer the possibility to 

utilize information from different molecular levels (mutations, CNVs, promoter 

interactions, gene expression, protein abundance, post translational modifications). 

Although the last ten years were very productive in the establishment of new algorithms 

able to deal with the challenges that come with the big data, it appears that there is 

neither consensus agreement, nor a systematic comparison of the accuracy of the 

aforementioned tools. This is somewhat expected, since we are at the very onset of the 

-omics integration era.  

In this section, some of the most used algorithms together with a brief description of 

their mathematical basis is provided. Such models are utilized for assessing the 

structure of the data (i.e. anomaly and batch effects detection), for extracting a feature 

subspace (i.e. feature selection), for allocating correlation patterns among datasets, for 

detecting variables with homogeneous characteristics (i.e. clustering) and for predicting 

continued or discrete values of new observations (i.e. regression, classification). 

Stratifying the available tools into categories according to the task or the mathematics 

they use is not a trivial task (67, 68). This is due to the fact that algorithms often use 

mixed methodologies and also, the established methodologies are constantly being 

improvised to deal with different biological questions. In a more general way, 

algorithms can be divided into unsupervised and supervised categories. The former seek 

to identify homogeneous data structures while the latter utilize the identified structures 

to predict labels (in classification) or values (in regression) for new variables. However, 

because this distinction overlooks common mathematical aspects among the different 

approaches, based on their overall algorithmic rational, here algorithms are stratified 

into the following six categories: Non-Negative Matrix Factorization, Non-Parametric 

Mixture models, Pathway based, Network based, Kernel function and Multi-step 

models. 

 

2.1.1 Non-Negative Matrix Factorization 

Non-Negative Matrix Factorization (NMF) comprises a group of dimensionality 

reduction algorithms that are used to deliver a subset of highly correlated variables 
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among different datasets. They exploit the property of matrix multiplication: any non-

negative matrix M can be the product of two significantly smaller non-negative factor 

matrices W and A  

 

𝑀 = 𝑊𝐴  (1) 

 

With M being the input dataset of dimensions m x p, W a latent subspace m x n and A 

the component matrix n x p, the reconstruction of M is based on finding the subset of 

features that their linear combinations in W weighted by the components in A could best 

approximate M. This is in fact controlled by minimizing the error function F: 

 

minW,A = ‖‖M-WA‖‖F,     W ≥ 0,   A ≥ 0   (2) 

 

Following the implementation of matrix factorization in -omics data integration (69, 

70), NMF algorithms are now widely used in cancer subtyping and biomarker discovery 

(71-74) and also several other variants of NMF have been proposed. Yang and 

Michailidis introduced iNMF (75) were a penalty is applied at the latent matrix W to 

control for variance across the different datasets, while Lock and colleagues developed 

the Joint and Individual Variation Explained (JIVE) method (76, 77). In the latter, each 

-omics data-type M (M1, M2, … Mx) is decomposed into three portions: a low-rank 

pair of factor matrices WS and AS representing the approximation of the shared (joint) 

subspace among -omics datasets, a low-rank pair of factor matrices WI and AI 

representing the approximation of the individual variation, and residual noise E (3). The 

identification of a subset of well correlated joint variables is conducted in a permutative 

framework, inducing L1-sparsity while examining the output joint structure. This 

algorithm enables the integration of any type of expression data. 

 

M = WS AS + WI AI + E  (3) 

 

Inspired by the splitting of the integrated data into shared and individual 

approximations, other solutions to the error minimization problem (3) adopt a similar 

rationale (78-80).  
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In order to infer cluster structure, Non-Negative Matrix Factorization can be combined 

with probabilistic models, such as the parametric Bayesian approach to the mixture 

models. Mixture models are utilized to describe the frequency/density of realizations 

(samples forming sub-populations) out of an overall population. They do not require 

learning of class labels but instead they assume that the data follow a statistical 

distribution with known properties. When combined to factorial models (1)(3), they 

draw a prior probability form a Bayesian distribution and calculate the posterior 

probability of a sample participating in a given class, loosely for the joint and individual 

variances across different data types (3). The Joint Bayes Factor model (81) instead of 

distinguishing between shared (AS) and individual (AI) component factors, utilizes a 

common component matrix A for all data-types which is further subjected to 

regularization using a beta-Bernoulli process (82, 83). The joint Bayes Factor algorithm 

has been used in correlating CNVs to gene expression, and together with all the 

aforementioned NMF models, they assume similar variable distributions (74) across the 

different data-types. In addition, NMF models require normalized data, non-negative 

values and exclusion of extreme observations. Unlike the aforementioned algorithm, 

iCluster and its update iClusterplus follow a joint matrix factorization based clustering 

approach that allows for negative values (84). The algorithm was designed for 

simultaneous clustering of various data-types including somatic mutations, CNVs and 

gene expression. iCluster builds a Gaussian model using sets of correlated latent joint-

variables across data types and then performs k-means clustering on the factor scores. 

To ensure non-compromised selection of latent variables among the different data-

types, a data-type specific L1-penalty is performed at the component matrix.  

 

2.1.2 Non-Parametric Mixture models 

Other more flexible clustering algorithms use the Dirichlet multinomial distribution to 

identify discrete hierarchical structure between randomly assigned data points 

(realizations). They exploit a non-parametric approach to mixture models (Dirichlet 

process), that induces a prior distribution (H) over partitions of the data, a distribution 

that is readily combined with a concentration parameter (α), controlling for local 

density around realizations. It does not require knowledge on the number of mixture 

components, and can be applied without factorial models. The Dirichlet process 

(Figure 5) assumes dependencies among different data-types, in a way that clustering 
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of a given -omics dataset have an impact on the cluster structure of the other(s). Τhis 

category includes the algorithms Mulitple Dataset Integration (MDI) (85), Patient 

Specific Data Fusion (PSDF) (86), Transcriptional Modules Discovery (TMD) (87), 

and Clusternomics (88). MDI can take as input multiple types and numbers of omics 

datasets (even ChIP and protein-protein interactions dataset in a binary form), TMD 

takes as input two datasets, a ChIP and a gene expression dataset to discover 

transcriptional modules, PSDF also takes two datasets (ChIP or CNV and a gene 

expression dataset) to infer cancer subtypes, while Clusternomics can handle multiple 

types of datasets, including DNA methylation, gene expression and proteomics. 

 

Figure 5: The Dirichlet process. The four rows use different concentration parameter 

α (top to bottom: 1, 10, 100, 1000) with each row illustrating 3 repetitions of the same 

experiment. For lower α, draws from the Dirichlet distribution (realizations) tend to be 

concentrated at a single value, while for higher α they become continuous. Clustered 
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structure can be identified for intermediate values of α. For a given value of α, each 

realization is characterized by a posterior probability of participating in a cluster 

(source:https://en.wikipedia.org/wiki/Dirichlet_process#/media/File:Dirichlet_proces

s_draws.svg) 

 

2.1.3 Pathway based 

Pathway based algorithms make use of libraries or databases with molecular pathways 

or Gene Ontology terms and assess cluster structure as a function of pathway-similarity 

between samples (89). Among the most popular is the PAthway Representation and 

Analysis by DIrect Reference on Graphical Models (PARADIGM) algorithm (89), 

which uses interactions between pathway entities from the National Cancer Institute 

(NCI) Pathway Interaction Database (PID) (90) to infer patient specific pathway 

activations in a probabilistic framework. For each patient and for a given pathway, 

based on CNV and gene expression datasets it calculates probability distribution over 

subsets of entities aiming to define a joint probability distribution of the pathway-factor 

graph. PARADIGM uses expectation-maximization (EM) to learn the parameters of the 

observation factors for each pathway and after averaging them, it calculates the 

posterior probability of pathway activation for each sample, individually. The results 

are summarized in the inferred pathway activation (IPA) matrix with values ranging 

from -1 (deactivated) to 1 (activated) which can be further submitted for clustering to 

derive groups of patients with homogeneous pathway activations. However, 

PARADIGM does not account for overlapping genes between pathways as it calculates 

pathway indexes individually. Integrative Genomics Robust iDentification of cancer 

subgroups (InGRiD) is a pathway based algorithm that was designed to deal with the 

issue of overlapping genes among pathways (91). It works in a semi-supervised manner, 

as it requires patient outcome data, and features two approaches for dealing with the 

overlapping issue. The algorithm uses Cox regression models at each step to assess the 

importance of each gene within each pathway and outputs pathway risk scores, which 

are further subjected to clustering yielding patient subgroups. A major limitation is that 

it currently works only with gene expression data, but the authors are planning to extend 

it in order to include multiple data-types 
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2.1.4 Network based 

Several algorithms have been designed to integrate and cluster multiple omics datasets 

by exploiting graph and network properties. The Similarity Network Fusion (SNF) is a 

non-bayesian network-based tool used for integrative clustering (92). For each -omics 

data-type, SNF calculates correlation between samples and constructs a network of 

patients, with connections denoting the strenght of correlation. The algorithm fuses all 

data-type specific networks using k-nearest neighbour and graph diffusion, in an 

iterative process. The result is a global fused similarity matrix adjusted for local data-

type effects, presenting sample class membership. SNF can take any type of omics 

dataset and it is among the most popular solutions. Similar to SNF, Affinity Network 

Fusion (ANF) constructs networks of patients but it uses a non-linear transformation of 

k-nearest neighbor graph together with a Gaussian kernel based network to infer 

similarity matrices (93). The latter are fused into an affinity matrix which is subjected 

to spectral clustering, while clustering performance as well as the optimal number of 

clusters is determined with an eigengap heuristic approach. The algorithm provides a 

semi-supervised classifier for predicting outcome by constructing a neural network 

model that can be fitted with the ANF output in a training/test set fashion. It can deal 

with gene expression (coding and miRNA data) and methylation datasets, but due to its 

increased complexity the training of the classifier may require case-specific 

optimization. COpy Number and EXpression In Cancer (CONEXIC) is a bayesian 

variation that aims to identify modules of concordantly deregulated CNVs and gene 

expression data (94). It uses net graph clustering approach to define clustering centroids 

and offers functional characterization of the clusters.  

A different approach in data integration is conducted with Analysis Tool for Heritable 

and Environmental Network Associations (ATHENA) (95). It is a neural network that 

combines several omics data-types, but unlike the aforementioned network approaches 

it works in a predictive/supervised fashion. ATHENA combines selection of features 

associated with outcome with grammatical evolution neural networks (GENN) (96) to 

train individual classifiers from different data-types. The results are then summed up to 

an integrative model capable of predicting disease prognosis for the samples. Apart 

from its prognosticating features, the algorithm provides insights on the correlations 

between different data-types at a whole genomic scale, but a limitation is that it does 

not assume dependancies between data types. In the same context of supervised 

network learning, Mutual Information-based integrative Network Analysis (MINA) 
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integrates CNV, methylation and gene expression data to construct a network of gene-

gene interactions and test the effect of each possible gene pair interaction on the 

outcome (97). It is an exploratory non-parametric approach aiming to discover gene 

regulation modules that could significantly affect outcome. MINA discretizes 

continuous values to infer a probabilistic model of interactions, where permutation at 

the outcome status of the patients is employed to distinguish between random and non-

random gene-gene effects.  

 

 

2.1.5 Kernel function 

Data integration tasks can be conducted by implementing the powerful kernel function 

as well. These methods calculate the inner product of two data vectors into a higher 

dimensional space. Assuming two data vectors x and y that are located at some feature 

space ℝm and can be mapped to another feature space ℝn through φ (4), the kernel 

function k calculates the dot product of the vectors (x, y) in the projected feature space 

ℝn (5).  

𝜑 ∶ ℝ𝑚 → ℝ𝑛  (4) 

𝑘(𝑥, 𝑦) = 𝜑(𝑥)𝜑(𝑦)  (5) 

The output of the kernel function can be seen as a similarity metric between pairs of 

samples. As such, in the data integration framework, they are utilized for selection of 

features that could optimally drive clustering and subtype identification either in a 

supervised or unsupervised way. Multiple Kernel Learning – Locality Preserving 

Projection (MKL-LPP) is an unsupervised method of feature selection where samples 

from different data-types are integrated in a concatenated feature subspace (98). In this, 

data-type specific multiple kernels are imputed and adjusted for optimal weights 

iteratively, using a regularization penalty to constrain overfitting. An optimal kernel is 

inferred for each data-type and all kernels are then fused into an integrative model. 

During feature selection, to maintain distances between samples defined with k-nearest 

neighbors, the algorithm uses the Locality Preserving Projection (LPP) method (99) 

and clustering of the integrated reduced subspace is conducted with k-means. MKL-

LPP can integrate gene expression and methylation data. Multiple Kernel Density 

Clustering algorithm for Incomplete datasets (MKDCI) is a similar unsupervised 

method, developed to deal with the integrative clustering of incomplete datasets (100). 
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It incorporates the optimally trained kernel function into the t-Distributed Stochastic 

Neighbour Embedding (t-SNE), which is a method for creating a two-dimensional map 

of samples allowing thousands of features (101). MKDCI then, models the optimal 

sample locations in the feature space and clustering centroids are determined after 

implementing correction for outliers using Isolation Forests (102). The final output is 

characterized by a cluster number/clustering quality trade-off. MKDCI offers the 

possibility of integrating multiple categorical with multiple continuous data. In contrast 

to the above, Feature Selection Multiple Kernel Learning (FSMKL) is a supervised 

multiple kernel method for data integration (103). Feature selection is performed per 

data-type either with respect to a statistical criterion related with outcome of class 

labels, or based on pathway participation status. Taking into account CNV, gene 

expression, subsets of genes participating in a given pathway and various clinical data 

(such as subtype membership) the algorithm trains multiple classifiers and assess a 

confidence score for each sample. The classifier with the optimal decision function is 

then employed to predict survival outcome only for the high confidence samples, 

maximizing its accuracy efficiency.    

 

2.1.6 Multi-step models 

Finally, there are algorithms that do not fall into any of the aforementioned three 

categories. Those are typically characterized by multi-step statistical procedures. A 

recently developed algorithm, Similarity Regression Fusion (SRF) makes use of 

correlations between pairs of samples (104). For each data-type, SRF generates a data-

type specific similarity matrix of Pearson correlation scores and subjects them to Fisher 

transformation (105). For each data-type specific similarity matrix the algorithm then 

calculates the corrected similarity scores, based on all the other data-types by training 

a generalized linear regression model in which parameters are learned with the 

maximum likelihood estimation (MLE) method. The regression model integrates the 

corrected similarity matrices and subtype membership is inferred by spectral clustering. 

SRF integrates gene expression with DNA methylation data and claims to provide 

comparable results to iCluster, SNF and ANF. CNAmet is another multi-step algorithm 

that integrates methylation, CNV and gene expression data to identify co-regulated 

modules (106). For a given gene, by assuming that hypomethylation and copy number 

gains result in over- and underexpression respectively, the algorithm conducts 
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integration in three steps: it first calculates the signal-to-noise ratio for the CNV and 

methylation scores relativistic to the corresponding gene expression, then, assigns 

weights to each gene according to the overall degree of its aberration and at the end 

infers statistical significance by permuting the weighted scores. Its flexibility and ease 

of use have made it a popular solution in the identification of co-regulated patterns 

among CNV, methylation and gene expression. Other multi-step algorithms in -omics 

integration include the In-Trans Process Associated and Cis-Correlated (iPAC) (107), 

the Multiple Concerted Disruption (MCD) (108), and the Anduril (109). 

 

2.2 Molecular subtypes of bladder cancer 

Efforts to subtype and stratify disease heterogeneity according to molecular profiles 

have resulted in the establishment of multiple classification themes and also at the 

realization that BC constitutes a wide family of cancers with highly flexible molecular 

backgrounds. Five classification schemes have been described (including mostly MIBC 

patients), based mainly on DNA/RNA analysis of respective patient cohorts (110-114). 

At the highest level, MIBC subtypes may be of luminal or basal phenotype, with the 

former enjoying better prognosis than the latter. However, due to the significant 

intrinsic heterogeneity, further divisions of the two general phenotypes have proven to 

reflect differences in molecular backgrounds and outcomes. For example, in the 

updated BC TCGA cohort (114), by using a Bayesian Non-Negative Matrix 

Factorization for the CNV and mutation datasets and also the Cluster Of Cluster 

Assignment (COCA) method (115, 116) for gene expression datasets (mRNA, miRNA 

and lncRNA), investigators identified three luminal, a basal and a rare neuronal 

subtype, with the latter two suffering worse prognosis. By combining gene expression 

data of all available classification systems, a recent BC meta-subtyping study suggests 

the existence of six major molecular phenotypes (BOLD subtypes; Figure 6) (117).  

Molecular subtypes of the NMIBC are less studied. Classification of NMIBC based on 

RNA-sequencing (118) supports the existence of three subclasses, including a 

luminal/differentiated, a basal-like, and a luminal/CIS-like subtype, the latter associated 

with worse outcome in comparison to the two former (UROMOL study). The 

progressed subtype overexpressed mRNAs of the late cell-cycle, transcriptional 

activators of the epithelial-to-mesenchymal-transition (EMT), cancer stem cell markers 

and was enriched in the Gene Ontology biological process of immune infiltration and 
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vasculature development. Based on their mutation status, 52% of samples in this 

subtype had alterations in the DNA damage response (DDR), 35% in the MAPK/ERK, 

and 20% in the ERBB pathways. A second study by Hurst et al. (119) involved the 

analysis of low stage (Ta) and grade (1-2) tumors for Copy Number Variations (CNVs), 

predicting two subclasses differing in mTORC1 signaling, DDR, glycolysis, unfolded 

protein response (UPR) and cholesterol biosynthesis. Even though some common 

elements have been identified across previous studies (112-114, 117, 118, 120-123), 

e.g. associations of basal, luminal and neuroendocrine features to MIBC outcome, the 

diversity of published classification schemes reflects the disease complexity and 

indicates gaps in our understanding of disease biology. 

With proteins being directly linked to phenotypes, protein-based molecular subtyping 

holds a promise to provide critical information on translating genome signals to cell 

function. Apart from a small set of 208 proteins analyzed by reverse phase-protein 

arrays (113, 114) and a proteomic analysis of a relative small set of MIBC (124), a 

comprehensive proteomics profiling of BC is largely missing.  

 

Figure 6: Molecular subtypes of Bladder Cancer based on re-clustering analysis of 

all the published classification systems. The scheme depicts the inter-relationship 

between the BOLD (metasubtypes) and published molecular subtypes. Color code: 

Purple = NEURAL; dark blue = LUM; green = PAP; orange = HER2L; red = SCC; 

light blue = MES. Ba/SCC = basal/squamous-cell carcinoma-like; Ba-Sq = basal-

squamous; BOLD = bladder carcinoma subtypes of large meta-cohort database; CL,= 

claudinlow; diff. = differentiation; ECM = extracellular matrix; GU = genomic 

unstable; HER2L, HER2-like; LICAP = Leeds Institute of Cancer and Pathology; 

Lpapillary = luminal-papillary; Lum = luminal; LUM = luminal-like; Lum-inf = 

luminal infiltrated; LUND = Lund University; MDA = MD Anderson Cancer Center; 

Mes, mesenchymal; MES = mesenchymal-like; MIBC = muscle-invasive bladder 
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carcinoma; Neu = neuronal; NEURAL = neural-like; NMIBC = nonmuscle-invasive 

bladder cancer; PAP = papillary-like; SC/NE = small cell/neuroendocrine; TCGA = 

The Cancer Genome Atlas Network; UBC = University of British Columbia, UNC = 

University of North Carolina; Uro = urobasal.(source: ref (117)) 

 

 

3. AIM OF THE STUDY 
The aim of the thesis is to investigate if patients with Bladder Cancer can be stratified 

to biologically meaningful molecular subtypes based on a proteomics and 

transcriptomics analysis. These subtypes could offer novel diagnostic and therapeutic 

tools for improving patient management. 
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4. Chapter I: Proteomics 
We previously had compiled a cohort of 117 primary Bladder Cancer patients in order 

to investigate the existence of proteomic subtypes in the Non-Muscle Invasive disease. 

The aim of this  

4.1 Materials and methods 

4.1.1 Patient samples 

Fresh frozen bladder tissue specimens were collected from patients during transurethral 

resection of bladder tumor (TURBT), prior to any kind of treatment (chemotherapy, 

BCG, radiation) at the medical center Gennimatas General Hospital, in Athens 

(Greece). The study complied with the principles outlined in the Declaration of Helsinki 

and was approved by the respective local ethics committee (Gennimatas General 

Hospital, protocol number 4354 (18-2-2015)). All individuals gave written informed 

consent. Sections of cancer tissue corresponding to at least 95% tumor area, from a total 

of 121 BC patients were excised and prepared for the analysis. Four samples were 

excluded due to low protein concentration. Of the remaining 117 samples, 98 were 

NMIBC (Ta: n = 58, T1: n = 40; Table 1) and 19 were MIBC, all fully analyzed with 

proteomics (flowchart in Figure 7). Tumor stage was determined based on the TNM 

classification (125) and grading according to the World Health Organization (WHO) 

Grading System 1973 (17). Following harvesting, bladder tissue specimens were stored 

at -80°C until preparation for the proteomic analysis. 

 

4.1.2 LC-MS sample preparation 

Approximately 30-50 mg of BC tissue was homogenized in FASP lysis buffer using 

the bullet blender homogenizer (Next Advance, NY, USA). One scoop of stainless steel 

beads (0.9-2 mm diameter) was added to each sample and then samples were inserted 

into the homogenizer. The following homogenization settings were utilized: speed: 12; 

time: 5 min. One more homogenization step was performed reducing the speed to 10 

and the time to 3 min. Samples were centrifuged at 16,000g for 10 min at room 

temperature and the supernatants were kept in clean tubes. Protein concentration was 

determined by Bradford assay. Protease inhibitors (Roche, Basel, Switzerland) were 

added at a final concentration of 3.6%. Protein extracts (200μg/sample) were processed 

using filter aided sample preparation (FASP) as described previously (126), with some 

minor modifications (127). Briefly, buffer exchange was performed in Amicon Ultra 
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Centrifugal filter devices (0.5 mL, 30 kDa MWCO; Merck) at 16,000 rcf for 15 min at 

room temperature. The protein extract was mixed with urea buffer (8M urea in 0.1M 

Tris-HCl pH 8.5) and centrifuged. The concentrate was diluted with urea buffer and 

centrifugation was repeated. Alkylation of proteins was performed with 0.05M 

iodoacetamide in urea buffer for 20 min in the dark followed by a centrifugation at 

16,000 rcf for 10 min at room temperature. Additional series of washes were conducted 

with urea buffer (2 times) and ammonium bicarbonate buffer (50 mM NH4HCO3 pH 

8.5, 2 times). Tryptic digestion was performed overnight at room temperature in the 

dark, using a trypsin to protein ratio of 1:100. Peptides were eluted by centrifugation, 

lyophilized, and stored at –80°C until further use. 

 

4.1.3 LC-MS/MS quantification  

Samples were injected into a Dionex Ultimate 3000 RSLS nano flow system (Dionex, 

Camberly, UK) configured with a Dionex 0.1 × 20 mm 5 μm C18 nano trap column. 

Mobile phase was 2% ACN: 0.1% FA with a flow rate of 5 µL / min. The analytical 

column was an Acclaim PepMap C18 nano column 75 μm × 50 cm, 2 μm 100 Å at a 

flow rate of 300 nL / min. The trap and nano-flow column were mainitained at 35°C. 

Samples were eluted with a gradient starting at 1% B for 5 min rising to 5% B at 10 

min then to 25% B at 360 min and 65% B at 480 min. Mobile phase A constituted of 

0.1% formic acid while mobile phase B of 80% CAN and 0.1% formic acid. The 

column was washed and re-equilibrated prior to each sample injection. The eluent was 

ionized using a Proxeon nano spray ESI source operating in positive ion mode. For 

mass spectrometry analysis, an Orbitrap LTQ Velos (Thermo Finnigan, Bremen, 

Germany) was operated in MS/MS mode, scanning from 380 to 2,000 m/z. Ionization 

voltage was 2.6 kV and the capillary temperature was 275 °C. The resolution of ions in 

MS1 was 60,000 and 7500 for higher-energy collisional dissociation (HCD) MS2. The 

top 20 multiply charged ions were selected from each scan for MS/MS analysis using 

HCD at 35% collision energy. Dynamic exclusion was enabled with a repeat count of 

1, exclusion duration of 30 s. 
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4.1.4 Data processing and clustering analysis 

Raw files were analyzed with Proteome Discoverer 1.4 software package (Thermo 

Finnigan), utilizing the Sequest search engine and the Uniprot human (Homo sapiens) 

reviewed database, downloaded on May 30, 2016. The search was performed using 

carbamidomethylation of cysteine as static and oxidation of methionine as dynamic 

modifications. Two missed cleavage sites, a precursor mass tolerance of 10 ppm and 

fragment mass tolerance of 0.05 Da were allowed. False discovery rate (FDR) was set 

to 0.01. The retrieved protein area files for each sample were merged by an in-house 

script in the R environment for statistical computing and graphs (version 3.4.4), 

according to their invasion status in the NMIBC and MIBC datasets, consisting of 1,309 

and 1,515 protein entries, respectively. To investigate tissue intrinsic subtypes, 

abundant plasma proteins (n = 177) were excluded from the analysis. The two datasets 

were submitted for column (sample) normalization according to (6) yielding the 

processed protein matrices. 

    𝑋′ =
𝛸

𝑠𝑢𝑚(𝑋𝑖)
∗ 106       (6) 

 

Consensus clustering of the processed NMIBC dataset was performed as described in 

Wilkerson et al. (128). To control for over-filtering while maintaining a maximum 

number of features, multiple subsets of the NMIBC dataset, differing at their frequency 

threshold (no threshold (0%), minimum frequency of 10%, 20%, 35%, 50%, 60%), 

were subjected to k-means clustering, forcing 95% random sample resampling across 

1000 iterations. In every run, the curated protein intensities were median scaled and 

submitted for agglomerative hierarchical clustering. K-means clustering was performed 

using Pearson correlation as the distance metric, whereas neither weights nor other 

feature selection steps were applied prior to clustering. Outputs were inspected and 

compared against each other for the reproducibility of the classification across the 

different frequency thresholds. For k = 2, 3 and 4 cluster solutions, comparative analysis 

of the class assignments between the different frequency thresholds yielded a total of 

1, 2 and 10 class switches respectively, all of which being allocated between 0%-10% 

and 10%-20% frequency thresholds, with 100% reproducibility of class assignments 

between the 20%, 35%, 50%, and 60% frequency threshold runs. Therefore, to 

maximize the proteome coverage, a 20% protein frequency threshold was selected for 
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the analysis and applied both to the NMIBC and MIBC datasets. Evaluation of the best 

k- clustering solution was conducted based on cluster size, on examinations of the 

Cumulative Distribution Function (CDF), delta Area Under Curve (AUC) 

(Supplementary Figure 1), and tracking plots as described in Wilkerson et al (128). 

 

4.1.5 Molecular themes, features and signatures 

Proteins investigated in this study (Figure 8) included basal and cancer stem cell 

markers (CD44, CD47, ALDH1A1, MSN, MUC1, RPSA, COL18A1, TGM2, BAX) (112, 

114, 118, 129), previously investigated cell adhesion molecules (FN1, VTN, LAMC1, 

LAMB2, LAMA4, LAMB1, CDH1, ITGA6, ITGB4, CTNNA1, CTNNB1, JUP, CTNND1) 

(112, 129), cytokeratins (KRT14, KRT6A, KRT16, KRT5, KRT7, KRT17, KRT8, KRT18, 

KRT20) (112, 114, 118), markers of differentiation (UPK2, UPK3BL1, UPK1B, GPX2, 

PDCD4, SRC, ADIRF, FBP1, FABP4) (114, 118, 129, 130), a set of proteins potentially 

involved in EMT as curated from the Molecular Signatures Database 

(http://software.broadinstitute.org) (VIM, COL1A1, COL1A2, TGFBI, CAV1, NID1, 

POSTN, FLNA), proteins of the stromal compartment (ACTC1, CNN1, MFAP4, 

ACTA2, DES, MYH11, MYL9, TAGLN, COL6A3, COL14A1) (114, 131, 132), 

proteoglycans of the extracellular matrix (HSPG2,DCN, LUM, BGN, OGN, VCAN, 

PRELP, SDC1), cell-cycle progression molecules (NASP, RCC2, CDC37, YWHAG, 

PAICS, NME2, GART, CDC42, BUB3), markers of inflammation with functions 

varying from transcriptional activators to cytokine signal transduction and angiogenesis 

(STAT1, STAT3, SND1, DHX9, HMGB1, HMGB2, HMGB3, PTGES3, RNF213, 

TYMP), an antigen presentation signature (HLA-A, SEC24C, CD74, TAP1, TAPBP, 

PSMB9) (112), features of the DNA damage response (RUVBL2, PCNA, PRKDC, 

PARP1, TOP2B, APEX1) (114) and the unfolded protein response (HSP90B1, HYOU1, 

SEC61A1, SRPRB, SSR1, HSP90AA1, TLN1), enzymes of the 

glucolysis/glucogenolysis (PYGL, PYGB, GALE, GNPDA1, PGAM1, IDH1, TPI1, 

PGK1, TXN, FBP2, GMPPA, TSTA3, GOT1) as well as features from two CIS vs 

papillary gene signatures (upregulated in CIS: S100A8, LYZ, CLIC4, RARRES1, 

AKR1B10, DPYSL2, TUBB; downregulated in CIS: TRIM29, IVL, ANXA10, BCAM, 

CTSE, LAD1) (114, 133). 
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4.1.6 Statistical analysis of the subtypes 

The non-parametric Mann-Whitney and Kruskal-Wallis tests were utilized for defining 

statistical significance for continuous variables. Fisher’s exact and χ2-tests were 

conducted for calculating significance of the categorical variables, while the likelihood 

ratio test was used for assessing changes in grade distribution between pairwise subtype 

comparisons. Visualizations of the protein and transcript abundances were constructed 

with the package ComplexHeatmap (v1.2) in R, and expression values shown are z-

normalized (7), with μ being the mean and σ the standard deviation of each row. 

Principal component analysis was summoned in SPSS (version 23) and the input data 

included the log2 transformed intensities of the statistically significant proteins between 

the three classes (in Figure 9a, n = 626 proteins), and between MIBC and NMIBC 

subtypes (in Figure 9b, n = 618 proteins). 

𝛸′ =
𝛸−𝜇

𝜎
 (7) 

Gene ontology and Reactome pathway analysis were conducted in the Cytoscape plug-

in, ClueGO (134). Libraries were updated at May 19, 2018 and significance was defined 

by a two sided-hypergeometric test corrected with Benjamini – Hochberg p < 0.05. 

Enrichments for the Hallmark genesets (135) were predicted with the weighted 

Kolmogorov – Smirnov approach of the Gene Set Enrichment Analysis (GSEA) 

software (136). Signal2Noise was set as the ranking metric, and random enrichments 

were discarded by permuting for class labels (n = 1000 iterations). Significance was 

defined by FDR < 0.25 and nominal p-value < 0.05. Only proteins that reached 

statistical significance were used as input to GSEA.  

 

4.1.7 Analysis for class specific pathways 

For each class comparison, the statistically significant proteins were submitted to 

ClueGO in the form of two lists involving the up- and down-regulated proteins, 

respectively. The analysis predicted a total of 633 significantly deregulated Reactome 

pathways (BH p < 0.05) across the three class comparisons, which upon fusion based 

on presence of same parental node resulted in a final list of 186 pathways. “Class 

specific” pathways discriminating each class from all the rest, had to fulfill the 

following criteria: a) be enriched in the specific class in all pair-wise comparisons 

involving this class, and b) be not significant or absent in pair-wise comparisons not 
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involving this class. Following application of the aforementioned criteria, 68 pathways 

were shortlisted, while upon further omission of redundancies (e.g. combination of 

pathways of same involved molecules) a final list of 20 class specific pathways was 

generated [6 for class 1, 4 for class 2 and 10 for class 3 (Table 2)]. 

 

4.1.8 Validation of the proteomics classification  

The validity of the proteomics classification was assessed in terms of its relation to the 

RNA-seq classification system of the UROMOL cohort (n = 476 samples). The three 

UROMOL’s subtypes are cited in italics (e.g. class 1/ Luminal; class 2/CIS-like; class 

3/Basal-like), and are annotated as Progressed (P for class 2) or Non-Progressed (NP 

for classes 1 and 3). 

Particularly, the Supplementary TableS3 of the UROMOL study that contains average 

FPKM intensities per class, statistical tests and regulation of transcripts across the three 

UROMOL classes was downloaded for the preparation of class-specific genesets, 

containing overexpressed transcripts per class and subsequent analysis with GSEA 

(Figure 10).  

For the classification of the proteomics samples into the previously established 

UROMOL’s classification system, the processed gene expression data of the 476 early 

stage UROMOL tumors (E-MTAB-4321) was download from 

https://www.ebi.ac.uk/arrayexpress/. First, a merged dataset (MD) containing the 

intersection of features and also the union of the samples between the proteomics 

NMIBC processed dataset at 20% threshold and UROMOL’s processed data (E-

MTAB-4321), was created (n = 1,275 features). Removal of batch effects between the 

two different -omics sources was conducted with the ComBat function of the R 

package, sva (137) (v3.20.2), and the concatenated feature space was inspected with 

PCA. Classifier was built in R, with the package randomForest. Training set: 476 early 

stage tumors from the UROMOL cohort, stratified to three class-labels. Test set: 98 

early stage tumors of this cohort with protein quantifications. Out of bag error (=2.1) 

was minimized at ntry = 800 (number of trees) with an optimal of 70 and 37 features 

per tree for the training and test sets, respectively. Feature selection was conducted with 

the permutation and the Gini impurity tests, for the top 100, 200 and 300 most 

informative features and results (subtype assignments) were averaged (Table 3).  
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4.1.9 Post-machine learning analysis for features of prognostic potential 

To evaluate the relevance of the proteomic output, previously published LC-MS/MS 

proteomic bladder cancer datasets (138) were screened for overlaps with the presented 

data. To investigate features potentially involved in tumor aggressiveness, 

transcriptomic data of two previous cohorts, LUND (112) and UROMOL (118) were 

employed (Figure 11). From the LUND taxonomy (112), the processed data, as 

deposited in https://www.ebi.ac.uk/arrayexpress/ (E-GEOD-32894), were downloaded. 

After selecting the NMIBC subset (n = 213 samples), these samples were further 

grouped based on disease progression status (Progressors vs Non-Progressors). For the 

Non-Progressors group, a follow-up history of at least 12 months was set as a 

requirement to confirm lack of progression. This resulted in a final set of 161 patients 

corresponding to Progressors (n = 17) and Non-Progressors (n = 144), and differentially 

expressed mRNAs were identified (n = 1,817; Mann-Whitney p < 0.05). From the 

UROMOL study (118) the Supplementary TableS3 was downloaded, which contains 

the statistically significant transcripts (q-adjusted < 0.05) and their regulation across the 

three UROMOL class comparisons (mean FPKM values and fold changes). The 

UROMOL’s subtypes are cited in italics (e.g. class 1, class 2, class 3) with class 2 

having significantly worse progression free survival rates when compared to the other 

two (118). Pair-wise comparisons of the Progressed (P) class 2 versus the Non-

Progressed (NP) classes (1 and 3) were performed. For the visualization of the mean 

FPKM values of the UROMOL (P) and (NP) subtypes (Figure 12b), data were 

expressed as row percentages according to (8). 

𝑋𝑖′ =
𝑋𝑖

𝑠𝑢𝑚 (𝑋)
            (8) 

 

4.2 Proteomic subtyping results 

4.2.1 Proteomics data collection and evaluation 

Tissue specimens from 121 BC patients (samples received during TURBT, prior to any 

other treatment, as described in Methods) were processed for proteomics analysis by 

high resolution LC-MS/MS (Figure 7). Four samples were excluded due to low protein 
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concentration, resulting in 117 analyzed cases of which 98 presented with NMIBC (Ta: 

n=58, T1: n=40; Table 1) and 19 with MIBC. To increase reliability of the proteomic 

output, only high-confident peptides (FDR < 0.01) and proteins present in ≥ 20% of 

samples were considered. To facilitate the detection of intrinsic tumor characteristics, 

abundant plasma proteins were excluded from further analysis. Using these criteria, the 

NMIBC and MIBC datasets consisted of 1,309 and 1,515 proteins respectively (at 20% 

threshold). Among the most abundant features were cytokeratins (KRT7, KRT8, 

KRT19), actin isoforms (ACTA2, ACTB, ACTC1) and nucleosome components 

(HIST2H2AB, HIST1H2AH, HIST1H4A, H2AFZ), in line with previous BC 

proteomics datasets (138). Gene Ontology (GO) analysis of the detected proteins 

supported their involvement into biological processes highly relevant to BC, such as 

stem cell differentiation, viral infection, DNA damage response and p53 checkpoint, 

protein synthesis, chromatin remodeling, regulation of cell cycle, and detoxification 

(BH p < 0.05; Supplementary Table 1). These results collectively supported the 

biological relevance of the proteomics output, prompting further investigations.  

 

4.2.2 Identification of three NMIBC molecular subtypes of distinct pathological 

phenotypes 

To determine whether discrete molecular subtypes exist in the tissue proteome of 

NMIBC, consensus clustering (128) was performed at the respective proteomic dataset 

(n = 98 NMIBC patients). For a range of 2-10 possible k-solutions, highest clustering 

stability (as described in methods) at k = three clusters was detected (Supplementary 

Figure 1). Of note, these NMIBC classes remained largely stable when different protein 

frequency thresholds were tested (35%, 50%, 60%, data not shown). The three classes 

differed in size, with class 1 being the smallest of all (Table 1). Statistically significant 

differences were observed in stage, grade, and EORTC risk composition, with class 1 

harboring mostly T1-grade 3, high risk tumors, class 3 conversely, mostly Ta-grade 1-

low risk tumors and class 2 representing a more heterogeneous group (Table 1). 

Patients with squamous differentiation (n=21) tended to be classified either as class 1 

(4/17) or class 2 (13/42), while out of the 39 patients classified as class 3, only 4 

presented with squamous histology (Table 1).  
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Overall 

N 

Class 1 

n (%) 

Class 2 

n (%) 

Class 3 

n (%) 

Class 1 vs 

Class 2 

p-value 

Class 1 vs 

Class 3 

p-value 

Class 2 vs 

Class 3 

p-value 

Class 

1vs2vs3 

p-value 

Age, mean 

± SD 

70.0± 

12.1 

71.8 ± 

10.9 

71.6 ± 

10.5 

67.4 ± 

14.0 

0.953a 0.256 a 0.128 a 0.309 a 

Gender, n 

(%) 

    0.662 b 0.250 b 0.292 c 0.347b 

Male 84 16 (19.0) 37 (44.0) 31 (36.9)     

Female 14 1 (7.1) 5 (35.7) 8 (57.1)     

Smoking 

history 

    0.704b 0.626b 0.891b 0.853b 

Current 45 6 (13.3) 21 (46.7) 18 (40.0)     

Former 14 3 (21.4) 7 (50.0) 4 (28.6)     

Never 24 5 (20.8) 10 (41.7) 9 (37.5)     

Missing 15 3 (20.0) 4 (26.7) 8 (53.3)     

Tumor 

stage 

    0.043 b <0.001 c 0.018 c 0.003 b 

Ta 58 4 (6.9) 23 (39.7) 31 (53.4)     

T1 40 13 (32.5) 19 (47.5) 8 (20.0)     

Tumor 

grade 

(WHO 

1973) 

    0.030 d <0.001 d 0.002 d <0.001 b 

Grade 1 43 2 (4.6) 14 (32.6) 27 (62.8)     

Grade 2 24 3 (12.5) 12 (50.0) 9 (37.5)     

Grade 3 31 12 (38.7) 16 (51.6) 3 (9.7)     

CIS     0.733 b NC 0.550 b 0.999 b 

No  71 12 (16.9) 32 (45.1) 27 (38.0)     

Yes 1 0 (0.0) 1 (100.0) 0 (0.0)     

Missing 26 5 (19.2) 9 (34.6) 12 (46.2)     

Tumor 

size 

    0.095 c 0.109 c 0.994 c 0.263b 

<3cm 56 7 (12.5) 27 (48.2) 22 (39.3)     

≥ 3cm 29 8 (27.6) 12 (41.4) 9 (31.0)     

Missing 13 2 (15.4) 3 (23.1) 8 (61.5)     

Tumor 

multiplici

ty 

    0.601 c 

 

0.872 c 

 

0.639 c 

 

0.844b 

 

No 65 12 (18.5) 26 (40.0) 27 (41.5)     

Yes 32 5 (15.6) 15 (46.9) 12 (37.5)     

Missing 1 0 (0.0) 1 (100) (0.0)     

Squamou

s cell 

differenti

ation 

    0.753b 

 

0.228b 

 

0.029b 

 

0.070b 

 

No 77 13 (16.9) 29 (37.6) 35 (45.5)     

Yes 21 4 (19.0) 13 (61.9) 4 (19.0)     

EORTC 

risk for 

NMIBC 

    0.403 b 0.001 b 0.002 b <0.001 b 

High 30 9 (30.0) 17 (56.7) 4 (13.3)     

Low 68 8 (11.8) 25 (36.8) 35 (51.4)     

Table 1. Distribution of the clinical and histopathological features across the three 

NMIBC proteomic subtypes. Statistical tests were conducted for all the possible 

comparisons. All percentages are expressed as row proportions. NC = Non-calculable, 

aKruskal – Wallis H-test; bFisher’s exact test; cχ2-test; dLikelihood ratio.  
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Figure 7: Flowchart for the classification analysis of the NMIBC patients. The 

proteomic MIBC dataset (n = 19) was utilized as a reference group to aid with the 

molecular characterization of the three NMIBC subtypes. 

 

4.2.3 Proteomics profiling of the NMIBC subtypes 

To comprehensively delineate the proteomic phenotypes of the three classes, pairwise 

comparisons were initially performed. Among the differentially expressed proteins in 

each case (ranging from 370-520 proteins), multiple previously described BC subtype 

markers were found (described in details in the Methods section). As shown in Figure 

8, some basal and cancer stem cell markers, including MSN, COL18A1, RPSA, 

ALDH1A1, TGM2, and BAX were of higher abundance in classes 1-2, with the basal-

layer antigen CD47 being over represented in class 1. Molecules that guide cell 

adhesion during wound healing (FN1, VTN) and several lamina propria laminins, were 

found up-regulated in classes 1 and 2. In contrast, the hemidesmosomal complex 

ITGA6/ITGB4, which facilitates cell anchorage to the basal membrane as well as 

proteins mediating stratified epithelial cell-cell attachment and communication (E-

cadherin, CTNNA, CTNNB, JUP, and CTNND) were at increased abundance in class 

3. This class also showed increased abundance of several luminal proteins such as 

KRT20 and epithelial cytokeratins expressed by semi- or terminally differentiated cells 

(KRT8/KRT18, KRT7/KRT19) (112), uroplakins (UPK2, UPK1B, and UPK3BL1), 
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and other luminal proteins (GPX2, SRC, ADIRF), earlier reported to be at increased 

abundance in low risk tumors (114, 117, 121). 

Tumors with high levels of proteins potentially involved in Epithelial-to-Mesenchymal 

Transition (EMT) (VIM, COL1A, COL1A2, TGFBI, CAV1), as well as markers of 

stromal infiltration (ACTA2, DES, TAGLN, COL6A3), and structural components of 

the extracellular matrix, like proteoglycans (LUM, DCN, BGN, PRELP) co-clustered 

in class 2, suggesting that this cluster may be driven by stromal elements. Features of 

inflammation (S100A8, S100A9, SND1, RNF213), cytokine signal transduction 

(STAT1, STAT3, DHX9), and angiogenesis (HMGB1, HMGB2, TYMP) were all at 

highest levels in class 1. Moreover, class 1 encompassed tumors positive for the antigen 

presentation signature (HLA-A, SEC24C, CD74, TAP1, TAPBP, PSMB9) (112), 

molecular chaperones that positively regulate proliferation (NASP, CDC37), cell cycle 

proteins (RCC2, YWHAG, PAICS, NME2, GART) as well as proteins related to 

chromosomal rearrangements and telomere maintenance (RUVBL2, PCNA, PRKDC), 

features of DNA repair (PARP1, TOP2B, APEX1) and UPR (HSP90B1, HYOU1, 

SEC61A1, SRPRB, SSR1, HSP90AA1, TLN1). Several enzymes involved in the 

glucolytic/glucogenolytic pathway were at higher levels in the low grade-differentiated 

class 3, which also was selectively positive for the downregulated CIS gene signature 

(114), reflecting the papillary origin of these tumors. 

Pathway analysis predicted selectively for class 1 up-regulation of transcription (tRNA-

aminoacylation, transcriptional regulation of pluripotent stem cells), anabolism, and 

heat shock response (Table 2). Pathways enriched selectively in class 2 involved 

alterations of the ECM and signaling through G-protein coupled receptors and RHO 

GTPases (Table 2). Consistent with a more differentiated phenotype, class 3 presented 

with increased enrichments for tight and adherens junctions, xenobiotic metabolism and 

apoptosis (Table 2). Gene set enrichment analysis between classes 1 and 3 predicted, 

among others, enrichments in IFN type-I signaling, in MYC, and in E2F transcriptional 

targets for class 1 (Supplementary Table 2). 
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Class Reactome pathway P - value Proteins 

Class 1 

Cytosolic tRNA 

aminoacylation 
2.11E-07 

[AARS, AIMP2, EPRS, GARS, IARS2, MARS, 

QARS, RARS, TARS, WARS, YARS] 

Transcriptional 
regulation of pluripotent 

stem cells 

6.57E-06 

[ACTL6A, HNRNPA1, HNRNPF, HNRNPM, 

HSP90AA1, PARP1, PCNA, PRPF8, PTBP1, 
RAD23B, RAN, RUVBL1, SF3B1, SF3B2, SF3B4, 

SNRPB, SNRPD1, SNRPD3, SNU13, SRSF1, 

SRSF7,STAT3, SUMO2, TIA1, TIAL1, USP7] 

Pentose phosphate 

pathway (hexose 

monophosphate shunt) 

4.27E-04 [G6PD, PGD, TALDO1, TKT] 

Regulation of HSF1-

mediated heat shock 
response 

2.93E-03 

[CCAR2, FKBP4, H2AFZ, HIST1H2BJ, HIST1H2BK, 
HIST1H3A, HIST1H4A, HSP90AA1, HSP90AB1, 

HSPA9, KPNB1, PTGES3, RAB2A, RAN, SET, 

SLC25A5, SLC25A6, USO1, YWHAE] 

DEx/H-box helicases 

activate type I IFN and 

inflammatory cytokines 
production 

7.91E-03 [DDOST, DHX9, HMGB1, PRKCSH] 

Mitochondrial protein 

import 
2.34E-02 

[CHCHD3, HSPA9, HSPD1, SLC25A6, TOMM22, 

TOMM70] 

    

Class 2 

RHO GTPases activate 

CIT 
6.07E-04 [MYH11, MYH9, MYL9,MYL12A, MYL6] 

Scavenging by Class A 
Receptors 

5.48E-03 [COL1A1, COL1A2, FLNA] 

Cell-extracellular matrix 

interactions 
1.16E-02 [ACTB, ACTN1, FLNA] 

Keratan sulfate 
degradation 

1.24E-02 [LUM, OGN, PRELP] 

    

Class 3 

Tight junction 
interactions 

4.82E-05 

[CDH1, CTNNA1, CTNND1, F11R, ITGA6, ITGB4, 

JUP, KRT5, PLEC, VASP] 

Caspase-mediated 

cleavage of cytoskeletal 

proteins 

9.90E-05 
[ADD1, CDH1, DBNL, DSG2, PLEC, SPTAN1, TJP2] 

Formation of annular gap 

junctions 
1.11E-04 [CLTA, CLTB, DNM2, MYO6] 

Glucose metabolism 3.12E-04 

[CALM1, FBP1, FBP2, GBE1, GNPDA1, GOT1, 

GOT2, HK1, PFKL, PGAM1, PGK1, PGM2, PYGL, 
PYGB, TPI1] 

Type I hemidesmosome 

assembly 
1.04E-03 [ITGA6, ITGB4, KRT5, PLEC] 

Glutathione synthesis and 
recycling 

3.27E-03 
[CNDP2, GSTO1, GSTP1, MGST1, MGST2, MGST3] 

Adherens junctions 

interactions 
4.17E-03 [CDH1, CTNNA1, CTNND1, JUP] 

Phase II conjugation 1.73E-02 
[ABHD14B, BPNT1, CNDP2, COMT, GSTO1, 
GSTP1, MGST1, MGST2, MGST3, UGT1A6] 

Aryl hydrocarbon 

receptor signalling 
2.01E-02 

[ABHD14B, ACY1, BPNT1, CNDP2, COMT, GSTO1, 

GSTP1, MGST1, MGST2, MGST3] 

Clathrin-mediated 

endocytosis 
2.34E-02 

[ACTR2, ACTR3, ARF6, ARPC1A, ARPC2,ARPC4, 

CLTB, CLTA, CLTB, CTTN, DNM2, HSPA8, 

VAMP3] 

Table 2. Class-specific pathway enrichments of the three proteomic subtypes. The 

analysis was conducted in the Cytoscape plug-in, ClueGO, with a two-sided 

hypergeometric test. P - value corresponds to the Benjamini - Hochberg correction. 
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Collectively, the results, based on both pathology and molecular characteristics, 

indicate an aggressive profile for class 1, a heterogeneous-mesenchymal phenotype for 

class 2 and a luminal, more differentiated, and less aggressive phenotype for class 3. 

To further evaluate the validity of this observation, comparison of the proteomics 

profile of the three NMIBC classes to that of the 19 MIBCs was performed. As shown 

in Figure 8, MIBC exhibited protein expression patterns highly similar to class 1. This 

was also verified with Principal Component Analysis (Figures 9a and 9b), where 

MIBC appeared more proximal to class 1 tumors and conversely, more distant to class 

3 tumors (Figure 9b).  

 

Figure 8: Heatmap showing the expression pattern of proteins across the three 

identified NMIBC subtypes and MIBC samples (columns). Proteins (rows) are 

organized in molecular themes related to previous bladder cancer subtyping studies. 

EMT = Epithelial-Mesenchymal Transition, ECM = Extracellular Matrix. CIS = 

Carcinoma in-situ.  
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Figure 9. Scatter plot visualizations of the Principal Component Analysis (PCA) 

output. Plots illustrate the distribution of the 117 analyzed BC samples in the rotated 

space, as a function of their segregation to subtypes. Distance between the plotted 

samples reflects their phenotypic relationships. (a) PCA applied only at the 98 NMIBC 

dataset, using as input the 626 significantly different proteins among the three classes 

(variance explained by the first three components = 62.5%). (b) PCA applied 

simultaneously at the 98 NMIBC and the 19 MIBC patients. Tumors from class 1 (green 

crosses) exhibit close proximity to the MIBC group (red triangles), whereas the inverse 

is observed for class 3 samples (blue pentagons). Patients from class 2 (light blue x 

marks) are allocated more heterogeneously (input = 618 significant proteins between 

MIBC and the three NMIBC classes; variance explained by the first three components 

= 65.4%). 

 

4.2.4 Validation of the proteomics classification  

The validity of the proteomics classification was assessed in terms of its relation to the 

RNA-seq classification system of the UROMOL cohort (n = 476 samples). The 

UROMOL subtypes are cited in italics (e.g. class 1, class 2, class 3) with class 2 

suffering significantly worse progression free survival rates when compared to the other 

two (118). To assess the relationships between gene expression and protein abundance 

among the two studies, genesets overexpressed in each UROMOL subtype were 

generated (n = 3 genesets, namely, Luminal for class 1, CIS-like for class 2 and Basal-
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like for class 3). The three genesets were screened against the three proteomic class 

comparisons, and statistically significant enrichments were calculated with GSEA. 

Significant enrichments were identified for the Luminal and the CIS-like genesets only 

in the proteomics comparison class 1 vs class 3, with the Luminal geneset being 

expectedly overrepresented in the proteomics class 3 and the CIS-like geneset in the 

proteomics class 1 (Figure 10).  

 

Figure 10: GSEA analysis of the proteomics subtypes against the three UROMOL 

derived genesets. Three genesets (Luminal, CIS-like, Basal-like) containing unique 

overexpressions for each UROMOL subtype (class 1, class 2, class 3, respectively) were 

prepared and analyzed against the three proteomics comparisons, with GSEA. 

Statistically significant results were obtained only for the proteomics comparison class 

1 vs class 3, in which the CIS-like geneset was associated with the proteomics class 1 

while the Luminal with class 3 tumors. 

 

Given the phenotypic associations between luminal and aggressive subtypes of the 

UROMOL and the proteomics classifications, we then investigated if the proteomics 
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samples could be meaningfully classified into the three UROMOL RNA-seq subtypes. 

Consequently, we chose to train a classifier on the UROMOL data and test it on our 

proteomics samples. A Random Forest algorithm was selected for this purpose, due to 

their i) powerful accuracy as they offer a double assessment of the important features 

(permutation and Gini impurity tests), ii) built-in cross-validation system that performs 

bootstrapping and out of bag (OOB) error estimation independently for each tree iii) 

simplicity in tuning the parameters of the classifier (139). The results showed that 

87.5% of the proteomics class 1 samples were classified as UROMOL’s class 2 

(Progressed subtype), whereas 91.7% of the proteomics class 3 were classified into the 

Non-Progressed subtypes of the UROMOL (25% as class 1 and 66.7% as class 3). 

Interestingly, the intrinsic molecular heterogeneity of the proteomics class 2 was also 

reflected at the results, as 35.5% of the samples joined the progressed class 2 and the 

remaining were stratified into the non-progressed UROMOL subtypes class 1 and class 

3 (Table 3). The results validate the high risk/ low risk states of the proteomics classes 

1 and 3, respectively.   

Proteomic 
subtypes UROMOL subtypes 

 Luminal class 1 CIS-like class 2 Basal-like class 3 

Class 1 12.5% 87.5% 6.3% 

Class 2 5.8% 35.3% 58.8% 

Class 3 25% 8.3% 66.7% 

Table 3: Results from the Random Forest classifier, trained on UROMOL’s subtypes. 

The table depicts class assignments of the proteomics samples (as percentages) into the 

UROMOL’s RNA-seq subtypes, averaged between the two feature selection approaches 

(permutation and Gini impurity).     

 

4.2.5 Post –machine shortlisting of potential prognosticators for NMIBC 

aggressiveness 

Given the stratification of NMIBC patients to groups of cancers that exhibit apparent 

high-risk (class 1) and low-risk (class 3) molecular and pathological features, the 

proteomics data were then investigated for molecules potentially reflecting disease 

aggressiveness. Towards that end, proteins overexpressed uniquely in class 1 or class 3 

and also exhibiting concordant regulation at the comparison “MIBC vs NMIBC” were 

investigated (workflow shown in Figure 11, respective results in Figure 12). 
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Specifically, 73 proteins were at high abundance solely in class 1 (compared to the other 

two) and in the MIBC dataset compared to NMIBC. Interestingly, these were 

implicated in highly relevant GO Biological Processes e.g. negative regulation of cell 

cycle arrest, response to type I interferon and ERBB2 signaling pathway 

(Supplementary Table 3). Along the same lines, 82 proteins were at higher 

abundances in class 3 in comparison to all other classes and in NMIBC compared to 

MIBC. These 82 proteins were found to be involved in metabolic pathways, such as 

hexose catabolic process, cellular oxidant detoxification, and glycerolipid catabolic 

process (Supplementary Table 4).  

The validity of these 155 proteins (73 overexpressed uniquely in class 1 and in MIBC; 

82 uniquely overexpressed in class 3 and in NMIBC), as potentially differing between 

NMIBC patients with higher/lower risk for progression was investigated at the mRNA 

level in UROMOL (118) and LUND (112) datasets (Figure 11). This approach was 

chosen since follow-up data are not available for the samples investigated in this study.  

 

Figure 11: Workflow for the cross-omics analysis for the identification of molecular 

features potentially marking disease progression. In brief, 155 proteins distinguishing 

the two extreme proteomic classes 1 and 3, were found to consistently differ between 
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MIBC and NMIBC patients and were further screened for overlaps against the 

progressed vs non-progressed subtypes of the UROMOL and against the progressors 

vs non-progressor comparison of the LUND study. DEPs = Differentially Expressed 

Proteins, DEGs = Differentially Expressed Genes, NP = Non-Progressed subtype, P = 

Progressed subtype 

 

Overlaps between the 155 shortlisted proteins and statistically significant transcripts 

differing in UROMOL class 2 (Progressed subtype) versus classes 1 and 3 (Non-

Progressed) were defined (as described in Methods). These corresponded to 96 

overlapping features with consistent regulation at mRNA and protein levels (Figure 

12). Of these, using interaction analysis (string-db.org), features overexpressed in high 

risk groups (nfeatures = 54) were found to be part of a network (p = 2.5E-14), that harbored 

four signaling hubs each consisting of at least four nodes. The four signaling hubs 

represented the processes of unfolded protein response (HSP90AB1, HSP90B1, 

HYOU1, HSPD1, PDIA4, TXNDC5), pre-mRNA splicing (EIF4A3, EIF4G1, SF3B2, 

SNRPA, RALY), antigen presentation (HLA-A, HLA-DRA, TAP1, RAB7A), and 

post-translational modifications associated with the Oligosaccharyltransferase (OST) 

complex (RPN1, RPN2, SSR1, DDOST), potentially marking the significance of the 

above mechanisms and molecules in NMIBC progression. In the case of the LUND 

cohort, comparative analysis between Progressors (n = 144) and Non-Progressors (n = 

17) NMIBC cases, highlighted 28 mRNAs overlapping with the 155 shortlisted proteins 

(Figure 12). Among them, features overexpressed in the Progressors group were 

similarly, associated with RNA processing (RALY, SNRPA, EIF4A3, SF3B2, YARS), 

inflammation (S100A8, S100A9, HMGB2), but also tumor growth (USP7, NASP, 

PDIA4, SND1). Features found at high levels in the Non-Progressors group were 

involved in detoxification (CYB5R1, MGST2, PRDX5), in protection from cell-

senescence (ASAH1, PYGL), and in actin dynamics and tissue morphogenesis 

(PDLIM1, ARF6, ACTR3, CAST, KRT13). In addition, Non-Progressors exhibited 

high levels of the H2AFY, which is a histone variant localized at regions of 

heterochromatin, thought to play a positive role in the suppression of cell 

proliferation.(140, 141) Considering all three studies, the overall intersecting area was 

18 features, of which 12 were at high levels in high risk tumors and were implicated 

mostly in RNA processing, inflammation, and growth signaling (Figure 12, Table 4). 
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Figure 12: Heatmaps showing protein and transcript abundances of features 

concordantly deregulated between our study, UROMOL, and LUND cohorts. (a) 

Abundance of proteins uniquely overexpressed in the proteomic classes 1 and 3, filtered 

for significance and same regulation at the comparison MIBC vs NMIBC. (b)  Mean 

abundances of the respective mRNAs in the Progressors (P) and Non-Progressors (NP) 
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groups from the UROMOL and LUND cohorts. In the former, the mean abundance of 

the Progressors (P) and Non-Progressors (NP) groups corresponds to UROMOL 

subtypes class 2 and class 3, respectively. Asterisk (*) marks those features that reached 

statistical significance at the UROMOL comparison class 2 vs class 1 and hence, for 

these transcripts, the depicted mean abundance of the NP group corresponds to 

UROMOL class 1. 

 

   Proteomics Proteomics 
UROMOL 

2016 
LUND 2012 

 
Gene 

name 
Protein name 

Log2 FC 

MIBC / 

NMIBC 

Log2 FC  

class1 / 

class3 

Log2 FC 

class2 / 

class3 

FC 

Progressors – 

NonProgressor

s 

1. S100A8 
Protein S100-A8, Calprotectin L1L 

subunit 
2.42 4.87 1.81 1.75 

2. S100A9 
Protein S100-A9, Calprotectin L1H 

subunit 
1.94 4.40 1.40 1.31 

3. HMGB2 High mobility group protein B2 1.13 1.14 1.65 0.40 

4. NASP Nuclear autoantigenic sperm protein 1.54 
Only in 
class1 

0.84 0.27 

5. USP7 
Ubiquitin carboxyl-terminal 

hydrolase 7 
1.27 2.93 0.45 0.45 

6. PDIA4 Protein disulfide-isomerase A4 0.58 0.76 0.84 0.32 

7. RALY RNA-binding protein Raly 0.63 1.02 0.58 0.31 

8. SNRPA 
U1 small nuclear ribonucleoprotein 

A 
0.87 1.38 0.47 0.24 

9. SND1 
Staphylococcal nuclease domain-

containing protein 1 
0.85 0.59 0.48 0.21 

10. EIF4A3 Eukaryotic initiation factor 4A-III 0.51 1.14 0.58 0.21 

11. SF3B2 Splicing factor 3B subunit 2 0.78 0.98 0.44 0.20 

12. YARS Tyrosine--tRNA ligase, cytoplasmic 1.54 2.53 0.78 0.18 

13. KRT13 Keratin, type I cytoskeletal 13 -1.19 -2.58 -1.13 -1.58 

14. CYB5R1 NADH-cytochrome b5 reductase 1 -1.21 -2.18 -0.39 -0.71 

15. PYGL Glycogen phosphorylase, liver form -1.11 -2.34 -0.77 -0.69 

16. CAST Calpastatin -1.40 -1.82 -0.59 -0.45 

17. MGST2 
Microsomal glutathione S-

transferase 2 
-0.80 -0.74 -1.01* -0.40 

18. PDLIM1 PDZ and LIM domain protein 1 -0.69 -0.51 -0.88* -0.36 

Table 4. Eighteen features intersecting between our study, UROMOL, and LUND 

cohorts. The depicted 18 features could significantly discriminate between the 

“extreme” proteomic classes 1 and 3 as well as between the proteomic MIBC and 

NMIBC datasets, and were also identified as consistently deregulated at the mRNA 

levels when comparing Progressors versus Non-Progressors in both UROMOL and 

LUND studies. Red color indicates up-regulation and blue down-regulation. The fold 

changes of these features at the protein level when comparing MIBC vs NMIBC is also 

provided. Data from the UROMOL study are depicted as found in the Supplementary 
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TableS3 of the UROMOL published article(118). Asterisk (*) marks features that 

reached statistical significance at the UROMOL comparison class 2 vs class 1, and 

thus the regulation shown corresponds to the latter comparison. 

5. Chapter II: Transcriptomics 
We compiled a discovery meta-cohort of 1,135 Bladder Cancer (BLCA) microarray 

transcriptomes along with two RNA-seq validation sets, and addressed the disease as a 

molecular continuum of alterations. Using the stage as a checkpoint variable that 

reflects the cumulative processes of tumor progression, we investigated how molecular 

processes and gene expression levels change, starting from non-malignant adjacent 

urothelium (NAU) and continuing through the disease stages Ta, T1, T2, T3, and T4. 

The analysis aimed to shed light on previously unknown aspects of the molecular 

pathophysiology of BLCA, highlighting pathways whose activation progressively 

increases or diminishes with cancer growth, while also reporting for the first time on 

the gene co-expression profiles of the disease stages. Based on the analysis for the 

monotonal traits, and towards better patient monitoring, we propose an 8-gene signature 

capable of prognosing 5-year survival for patients with BLCA.  

5.1 Materials and Methods 

 

5.1.1 Dataset search strategy 

To perform a comprehensive investigation of available molecular data, we searched for 

Bladder Cancer (BLCA) omics studies in public repositories. All genomic urothelial 

cancer data from cBioportal (including The Cancer Genome Atlas) were downloaded. 

Gene Expression Omnibus (GEO) was queried for transcriptomics, additional genomics 

or protein array datasets using the search terms “bladder cancer” and “urothelial 

carcinoma”. We also queried ArrayExpress using the special filter “Array express data 

only” to obtain any additional datasets missing from GEO. All cohort data published or 

updated between 2010 and 2020, annotated as Homo sapiens, coming from tissue 

samples with sample size >10, were retrieved. All used datasets were published and 

downloaded anonymized. This resulted in the collection of 105 datasets comprising 

more than 8,000 individuals, encompassing genomics, methylomics, transcriptomics 

and proteomics data, derived from a variety of technologies used in the field.  
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5.1.2 Inclusion and exclusion criteria 

We analyzed tumor transcriptomes and selected studies having at least clinical or 

pathological stage information per subject. Samples or datasets collected after 

administration of (neo)adjuvant chemotherapy, as well as secondary or recurrent 

bladder cancers were excluded, in order to minimize drug-induced variation in gene 

expression. To compile a microarray discovery set while preserving as high integrity as 

possible, we chose microarray data quantified by the most frequently used single-color 

channel vendors (Affymetrix and Illumina). The overall workflow is summarized in 

Figure 13. This resulted in a final dataset of 1,135 patients coming from 12 different 

studies (Table A1). We used the TCGA-BLCA-2017 and the IMvigor210 studies for 

the validation purposes, and particularly analyzed primary BLCA samples collected 

prior to administration of (neo)adjuvant chemotherapy (n samples: TCGA = 188, 

IMvigor = 132).  

5.1.3 Description of the discovery meta-cohort 

The discovery cohort included the following microarray datasets: GSE121711, 

GSE93527, E-MTAB-1940, GSE31684, GSE104922, GSE128959, GSE83586, 

GSE48276, GSE52219, GSE69795, GSE13507, GSE48075. These data (summarized 

in Table 1), comprised of 1,054 primary bladder cancer tumor transcriptomes of 

treatment-naïve patients without any prior cancer history, along with profiles from 81 

non-malignant urothelium tissue adjacent to the tumor site (NAU); correspond to a total 

of 1,135 gene expression profiles. Stage distribution among the utilized datasets is 

shown in Table A1. Table 1 shows sample allocation to clinical variables both for the 

discovery and validation sets. In the discovery set, the ratio of men : women was 3.5 : 

1, with equal distribution among NMI and MI disease (p = 0.99) and similar mean age 

at baseline diagnosis (68 years, p = 0.81). Percentages of NAU, NMI, and MI in the 

dataset were 7.1%, 43.5%, and 49.4%, respectively, with the grade distribution being 

as follows: 16.5% low grade, 48.8% high grade disease, with the remaining samples 

lacking available grade information. Detailed histological records were missing for 

71.5% of the cohort, with the most frequently reported histology among the available 

records being urothelial/papillary (23.3%), and squamous differentiation being the most 

frequent variant (1.3%). 
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5.1.4 Assessing the right method for batch effect removal 

Gene expression distribution is tighly linked with the experimental conditions in which 

it is being tested. As a consequence, expression distributions between samples being 

processed in different batches, dates, or in different labs, differs significantly (142). 

This phenomenon in molecular biology has been documented as batch effects, and is 

defined as the change in the data distribution caused by non-biological factors affecting 

the experiment (142). Various tools have been developed to correct for batch effects. 

The first ones [surrogate variable analysis (SVA) and limma] estimate a set of inferred 

variables (eigenvectors), which are then used to apply a linear correction (factor 

analysis, singular value decomposition, or regression) to the data prior to statistical 

testing (143, 144). ComBat (145), is a Bayesian method in which every gene undergoes 

an independent scale adjustment based on location parameters calculated either 

parametrically or non-parametrically. It is the most widely used tool, while recently an 

extension (ComBat_seq) has been developed for RNA-seq data (146). Other batch 

correction methods have been designed for situtations when the number of batch 

variables is not known, but rather, is in question. CONFETI (147) adjusts distributions 

in expression quantitative trait loci analysis, by inititally identifying and removing out 

genetic effects, utilizing principal component analysis. RUV-2 assesses batch variation 

with respect to a set of (user determined) negative control genes, which are defined as 

those genes whose regulation is known to be stable across the tested experimental 

conditions (148). An extension (RUV_seq) for count RNA-seq data has been also 

available (149). 

Here we test batch correction in the discovery meta-cohort using three 

methodologically different approaches, namely the limma (function 

removeBatchEffects), ComBat, and RUVnormalize, with the aim of selecting the most 

optimal one. We define the 4 following criteria based on which we evaluate quality of 

the adjusted (batch-free) data: 

i) Distribution of gene expression among samples should exhibit a limited 

variance in the Relative Epxression Plots 

ii) Sample allocation in the Principal Component Anaysis 2D plots should not 

associate with dataset of origin 

iii) Housekeeping genes are usually expressed in higher levels and their 

expression levels show decreased variability compared to other genes (150, 
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151). Variation-to-mean expression plots should thus, illustrate the degree 

of preservation of these properties for the three batch correction methods. 

iv) There are genes whose expression is known across non-malignant adjacent 

urothelium (NAU), NMI and MI bladder cancer, or across NAU, low-grade 

and high-grade disease. We use 12 known genes as positive control 

reference set and contrast their expected differential expression against the 

three batch correction methods.  

Three batch corrected datasets were produced using the functions removeBatchEffect 

(limma package), ComBat (sva package), and naiveRandRUV (package 

RUVnormalize). For the removeBatchEffect and ComBat methods, adjustments were 

parametric and no covariate matrix was supplied. In the ComBat function, batch effect 

was scaled after adjusting for mean (parameter: mean.only = FALSE). In the 

naiveRandRUV correction, a set of negative control genes whose regulation remains 

unchanged across conditions had to be initially defined. This is a property intrinsic to 

the housekeeping genes, so we used a set found in Eisenberg and Levanon (151), which 

derives 3,804 genes expressed uniformly across a panel of tissues. Out of these 3,804 

genes, in order to provide only the most stably expressed subset in the adjustment, we 

firstly calculated their median absolute deviation (of gene expression) individually in 

each of the 12 datasets and extracted the top 700 least variably expressed genes per 

dataset. The 12 lists, each one containg 700 gene names, were then parsed into a Cross-

Entropy Monte-Carlo rank estimation algorithm (152), which returns a unified 

aggregated rank ordered list of the most important ones. The algorithm provides the 

option of defining an arbital number of most important genes, and we set this number 

at 300, as this has been shown to work efficiently in a previous naiveRandRUV 

microarray correction (153). The other parameters of the rank aggregation method 

were: weights=NULL, method="CE", distance="Spearman", seed=42, maxIter = 1000, 

convIn=7, rho=0.01, weight=.25, v1=NULL, N = 1000, standardizeWeights = TRUE. 

Runing this, a ranked list of 300 genes was optimally determined in the 120th iteration 

at a value of 63,282. We then performed the naiveRandRUV adjustment with a 

regularization coefficient of 0.01 (parameter nu.coeff), and arranged the desired rank 

of the estimated unwanted variation factors k to 12, reflecting the number of datasets to 

be adjusted. 
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5.1.5 Monotonicity in pathway activation and de-activation across BLCA stages 

To identify genes that form a continuum of changes across BLCA stages, each of the 5 

disease stages was initially compared against non-malignant adjacent urothelium 

(NAU). A total of 3,018 genes differed significantly (Mann-Whitney p < 0.05) while 

having the same orientation of change in all comparisons. We refer to this set of genes 

(n=3,108) as Concordantly Differentially Expressed Genes (CDEGs). CDEGs were 

utilized to infer pathway activation scores and to create stage co-expression networks. 

Pathway activation scores per sample were calculated with the ssGSEA-GSVA method 

[21], using the Molecular Signature Database libraries of Hallmark, Canonical 

Pathways (Reactome subset), C3 (GO biological processes subset) and C5 (GTRD 

subset of transcription factor targets). Dorothea (https://github.com/saezlab/dorothea) 

[22] was utilized to assess regulon activity. To further identify the subset of pathways 

whose activation had a monotonal trait across non-malignant adjacent urothelium 

(NAU) and disease stages, each pathway’s activation scores across stages were 

compared to NAU with Mann-Whitney tests, and direction of change was defined based 

on fold change (= Mean of stage – Mean of NAU). Monotonicity for a pathway was 

defined as being significantly different in all stage comparisons to NAU, and also 

having a continuously larger/smaller fold change with increasing stage. Stromal 

infiltration scores were imputed with the ESTIMATE algorithm [23]. 

5.1.6 Construction and analysis of stage specific coexpression networks  

Gene-pair co-expression weights among the 3,108 CEDEGs were approximated with 

ensemble learning, using GENIE3 [24], while direction of co-expression 

(positive/negative) was determined by the Spearman’s coefficient. Out of the 

3,108x3,108 = 9,659,664 gene-pair weights calculated individually per condition (i.e. 

NAU and 5 BLCA stages), gene-pairs with the highest GENIE3 weights, being also 

positively correlated based on the Spearman’s coefficient, were used to construct 

networks. The cut-off for this selection was determined based on the gene-size of the 

resulting networks: to avoid network saturation we opted to keep their gene sizes close 

to half the number of CDEGS (= 1,554 genes), which resulted in setting the cut-off to 

the top 5,600 gene-pairs. Networks were constructed with igraph and were analysed 

with Louvain clustering [25] to identify local modules of co-expression relationships 

(communities) per condition. The top five in size (= number of genes) communities of 

co-expressed genes per condition were analysed for Gene Ontology Biological 

Processes with clusterProfiler [26]. Potential drug targets in the co-expression networks 
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were defined based on the betweenness centrality metric [27] using default cut-offs 

(computed with igraph). 

5.1.7 Monotonicity in individual gene expression and development of a prognostic 

signature 

We utilized CDEGs to extract genes whose expression levels was monotonically 

increasing or decreasing with higher stage. Monotonicity for a gene was defined as 

being a CDEG and additionally having a continuously larger/smaller fold change with 

increasing stage (fold change, as defined in each disease stage versus NAU). Functional 

annotation and enrichment were performed using PubMed and the online tool 

GeneCards (https://ga.genecards.org/), respectively. Out of the monotonal subset, 43 

genes were found of prognostic value (Cox univariate association to 5-year outcome). 

Eight of these genes, validated in the TCGA-BLCA dataset, were further utilized to 

construct a sample-wise scoring system, the 8-gene prognostic signature, by summing 

the expression values of upregulated genes (n = 4) while subtracting the downregulated 

genes (n = 4). Before calculations, each of the gene expression values per sample were 

divided by the gene’s variation across the dataset, in order to minimize the effect of 

individual gene variability on the final signature score:  

  

Si = Ai/VarA + Bi/VarB + Ci/VarC + Di/VarD - Ei/VarE - Fi/VarF - Gi/VarG - 

Hi/VarH (9) 

 

Where Si denotes the sample-wise derived signature score, Ai, Bi, Ci, Di, and Ei, Fi, 

Gi, Hi, denote the sample-wise gene expression of the 4 upregulated and 4 

downregulated genes, respectively, while Var denotes the gene expression variance 

across the entire set of samples. The 8-gene signature along with the disease stage were 

further used as input in a multivariate Cox regression model, to identify if there is 

independent prognostic value. This procedure was applied both on the discovery meta-

cohort and on the TCGA validation data. 

Since our procedure for the detection of monotonal traits in genes and pathway 

activities involved multiple filtering criteria, to avoid over-elimination due to Type-II 

error, significance was defined at unadjusted Mann-Whitney p < 0.05. In contrast, 
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significance for pathway over-representation (clusterProfiler output) was determined 

by FDR correction at p < 0.05. Categorical variables were investigated for significance 

with the Pearson’s chi-squared test and were adjusted for multiple hypotheses (package 

RVAideMemoire). All reported correlation scores correspond to the Spearman’s Rank 

coefficient. Cox proportional hazards regression was performed with the packages 

survminer and survival, and statistical significance was determined with the log-rank 

method. CIBERSORT analysis was conducted in the web platform 

https://cibersort.stanford.edu/, and only samples with successful deconvolution (p < 

0.05, n = 350 samples) were further used for the statistical comparisons of relative 

immune populations among stages. Read counts from the IMvigor data were acquired 

from the IMvigor210CoreBiologies and were normalized with the variance 

stabilization transformation [28]. Unless stated otherwise, all processing, analyses and 

visualizations were conducted in the R statistical environment (version 4.0.2). 

 



63 

 

 

 

Figure 13. Study design and workflow for the analysis of the selected primary BLCA 

transcriptomes. 
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5.2 Results 

5.2.1 Assessment of batch correction methods 

We tested the effect of batch correction of three methods and assessed their effriciency 

with a number of criteria (described in Methods). All three methods produced efficient 

relative log expression and principal component plots, with the naiveRandRUV 

showing a larger inter-sample variation and standard deviation compared to the other 

two. Housekeeping genes wh   

 

5.2.1 Increasing activation levels of the Wnt, mTORC1, and MYC pathways 

associate with Bladder Cancer development and growth 

For initial assessment of the gene expression relations between non-malignant adjacent 

urothelium (referred to as NAU) and cancerous samples, we performed differential 

expression analysis of NAU versus NMI and NAU versus MI samples. To investigate 

transcriptional changes associated with increasing malignancy, we compiled genes 

being differentially expressed in all stage comparisons to NAU, showing also a 

persistent change, either up or down, and we further denoted them as Concordantly 

Differentially Expressed Genes (defined in Methods; CDEGs, n = 3,108). Due to their 

consistent regulation compared to NAU, CDEGs likely reflect fundamental alterations 

occurring during bladder carcinogenesis, and thus we focused the analysis on this 

particular set of genes. We initially performed a GSVA-ssGSEA analysis using 

CDEGs, aiming to identify pathways and biological processes whose activation is 

continually enhanced or diminished through disease stages. Towards increasing disease 

stage, results indicated gradually stronger activations of several mitotic processes, 

positive regulation of the canonical Wnt pathway, mTORC1 signaling, expression of 

MYC targets, degradation of anaphase inhibitors, metabolism of nucleotides, mobility 

of formins, and the TNFR2/non-canonical NF-kB pathway (Figure 14). Conversely, 

diminished activity was recorded for the lipid and fatty acid catabolic processes, for the 

metabolism of heme, and interestingly for the circadian clock process (Figure 14). 

Regulon activity per sample was additionally estimated and respective scores between 

disease stages and normal tissue were compared. This analysis highlighted GATA3 and 

GLI2 regulons whose activity was significantly diminished with increasing malignancy 

(Figure 14). 
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Figure 14. Excerpt of the pathways showing a monotonal increase or decline in their 

activation scores with higher stage. Pathway activation scores have been z-scaled 

across samples for visualization. Pathways are colored based on their database of 

origin. The top side of the heatmap presents dataset and clinical information. Samples 

(columns) have been ordered based on the stage variable; from left to right: non-

malignant adjacent urothelium (NAU), Ta, T1, T2, T3, and T4. Red lines indicate 

boundaries between adjacent stages. 

 

5.2.2 Stage specific coexpression reveals variable and stable subnetworks with 

BLCA development and growth 

To further investigate co-expression alterations occurring in the disease stages, an in-

tegrated network-pathway analysis was performed. Stage specific networks were con-

structed and clustered to identify communities (sub-networks) of co-expressed genes 

(described in methods). We analyzed the five largest communities (based on number of 

genes) per disease stage and NAU, and used the Gene Ontology – Biological Process 

(GO-BP) library to identify affected molecular processes (Figure 15). The analysis 

revealed large differences in gene co-expression between NAU and disease stages with 

four out of the five largest communities associating clearly with specific biological 

processes. 
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Three out of the top five communities were consistently detected in all BLCA stage 

networks. Based on examination of their enriched processes, these were labeled as 1) 

the cell-cycle community, 2) the ECM and developmental community 3) the metabolic 

and translational community (Figure 15A, 15B). 

The cell cycle communities of the different tumor stages involved a total of 288 genes, 

178 of which had a proliferation related GO-BP annotation. Hypergeometric tests for 

each of the stage networks indicated highly similar cell cycle BPs being over-

represented across stage. An excerpt of the statistically most significant ones along with 

the number of implicated genes is presented in Figure 15B. Out of the 178 cell-cycle 

genes, 80 were co-expressed consistently in all stage networks. These were also 

upregulated in tumor compared to NAU, possibly forming the backbone of cell 

proliferation in BLCA (Supplementary Table 5). The gene size of this community 

increased towards higher disease stage (Ta n = 118, T1 n = 148 and MIBC n = 168-170 

genes). The communities also included genes lacking cell-cycle GO annotation (11.9% 

for Ta, 17.6% for T1, 21.9% for T2, 24.9% for T3, and 29.8% for T4). An over-

representation test of the 110 genes lacking GO-BP annotation across the stages 

revealed that 20 of them participate in the metabolism of nucleotides (unadjusted p = 

0.03), likely suggesting a rewiring component controlling both the regulation of 

proliferation and the processing of nucleotides. To detect the most relevant potential 

drug targets within the cell cycle communities, we determined their betweenness 

centrality scores. The most prominent ones included CDC5, KIF2C, FOXM1, AURKB, 

CDT1, SMC4, CCNB1, RRM2, and KIF14 (Figure 15C). 

The community of ECM and developmental processes encompassed a total of 291 

genes and was enriched in cell-cell communication and cell-matrix interaction 

processes, in responses to microenvironmental stress, as well as in differentiation 

programs of epithelial, mesenchymal and stem cells (Figure 15B). This GO-BP 

composition suggests that these co-expression signals originate either from tumoral or 

non-tumoral cells, or might be the product of their interaction. For example, the process 

of extracellular matrix organization included co-expressions of 15-36 genes (depending 

on the stage network) of which COL13A1, FGFR4, FOXF2 and SCUBE1 were co-

expressed only in the NAU samples compared to disease stages. Contrarily, 26 genes, 

including mediators of epithelial to mesenchymal transition (COL6A1/A2, COL16A1, 

MFAP5, MMP11) were co-expressed in tumor tissue but not in NAU. In line with 
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recent observations [30], we noticed that NAU presented with an active ECM 

remodeling profile. Sixteen of the ECM associated genes were co-expressed both in 

NAU and in the NMIBC stages, including genes promoting basolateral tumor cell 

migration (MMP2, CTSK, PDPN), fibrotic collagens (COL1A2, COL6A3, COL14A1, 

COL15A1), and pro-angiogenic factors (PDGFRA, RECK), suggesting a pro-

tumorigenic potential in the NAU. However, expression in the NAU was predicted to 

be driven by ALDH1A2 and MFAP4 (Figure 15C), genes which are both notoriously 

down-regulated in other genitourinary malignancies compared to normal samples [31, 

32], likely suggesting tumor suppressive roles. In contrast, co-expression in the Ta stage 

(confined to the internal lining of the bladder), was predicted to be regulated by the hub 

genes COL16A1 and CLIP3. CLIP3 interacts with both AKT1 and AKT2 [33], and 

may therefore have an important role in the early AKT/PI3K/mTOR axis of 

hyperplastic carcinogenesis. 

The community of metabolism and translation encompassed mitochondrial, 

translational and multiple metabolic processes being activated during carcinogenesis, 

and was more profound in the T1 and more advanced tumors. Cellular respiration, 

translational initiation, mRNA catabolic process, nonsense mediated decay and protein 

targeting to ER were consistently enriched in most BLCA stages. The results 

highlighted a set of 12 genes commonly co-expressed across stages for these processes, 

including COX7B, DLD, NDUFS4, UQCRFS1, PAIP2, RPL15, RPL30, RPL7, 

RPS23, RPS27, RPS27A, RPS4X.  

Besides the abovementioned consistently detected communities in BLCA, a community 

enriched in processes of immune cell differentiation, cytokine secretion, and GPCR 

activity was identified in the NAU and the MIBC stages and involved both innate and 

adaptive responses, as well as processes of immune cell adhesion and migration. This 

immune associated community presented low variation in the composition of genes 

participating in the co-expression networks between NAU and MIBC stages. Out of the 

17 genes of the process of T-cell activation that were commonly co-expressed at the 

MIBC stages, 15 were also co-expressed in the NAU samples. To further investigate 

these observations, the transcriptome data per sample were deconvoluted into relative 

abundances of immune cell populations using CIBERSORT, and cell fractions between 

disease stages were compared. Significant results were obtained for the following 

populations: CD8+, activated CD4+, activated NK, Monocytes, Macrophages M2 and 
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activated Dendritic cells (Figure S6). Results indicated differential commitment of 

immune cells to NAU and BLCA stages. NAU samples (n = 37) were significantly 

more infiltrated with CD8+ (p = 0.046) and monocytes (p = 4.6E-4) than tumor samples 

(n = 313), consistent with an over-representation of the excluded over the inflamed 

phenotype, previously seen in the IMvigor210 trial data [34]. However, compared to 

tumor, NAU samples had significantly less abundance of activated CD4+ cells (p = 

5.28E-3), of macrophages (p = 16.8E-5), of activated dendritic cells (p = 0.0002) and 

of activated NK cells (p = 0.015). Generally, NMIBC had lower immune infiltration 

than MIBC. Activated dendritic cells were significantly increased in Ta tumors (n = 34) 

compared to other BLCA stages (p = 0.024). Abundance of CD8+, of activated NK 

cells, and of M2 macrophages increased linearly with higher malignancy. Interestingly, 

AIF1 a gene that promotes macrophage survival and M2 polarization [35], was 

predicted to be a driver of immune co-expression in the T4 tumors. Along with the 

Cibersort results which indicate a higher abundance of M2 macrophages in the T4 

samples, we hypothesize that AIF1 is actively involved in the immune suppression, and 

thus, its expression levels might indicate putative candidates for immune checkpoint 

inhibition. 
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Figure 15. Biological process analysis of the largest in size co-expressed communities 

identified in each BLCA stage network. (A) Coherent communities identified and 

characterized across non-malignant adjacent urothelium (NAU) and disease stages. 

Presence of a community is indicated by the + symbol. Numbers in parentheses show 

the fraction of genes with Biological Process annotation relevant to the community, 

with respect to the total number of genes found to be co-expressed in the community. 

(B) Barplots of the most significantly enriched biological processes per community 

depicting number of co-expressed genes for each. (C) Hub genes identified across the 

studied conditions based on the betweenness centrality scores (y axis). 

  

3.2. Monotonicity in individual genes, prognostic signature and validation 

Using the 3,108 CDEGs, we extracted genes having a monotonal (i.e. continuously 

increasing or decreasing) change in expression in the spectrum NAU-Ta-T1-T2-T3-T4. 

A total of 157 genes were identified having the trait of monotonicity, of which 118 were 

up- and 39 were downregulated with increasing stage (Figure 16, Supplementary 
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Table 6). Functional analysis revealed that for 46 of these genes, experimental evidence 

on mediating cell cycle progression exists. Upregulated cell-cycle associated genes (n 

= 44) were not phase specific and included cyclins, DNA polymerases, regulators of 

the cohesin complex and kinetochore components. The list also included 23 genes 

involved in signal transduction, 6 of which (ARHGAP11A, AURKA, CDKN3, PBK, 

PLK1, RRM2), promote cell-cycle progression and were all upregulated with increased 

stage. The data also indicated an overactivation of the Wnt pathway with increasing 

disease stage, with its upstream inhibitor APCDD1 being downregulated and its 

activating ligand WNT2 upregulated. Fourteen of the 157 genes were transcriptional or 

translational regulators, including genes with known upregulation in bladder cancer 

(transcription factors E2F1, DEPDC1 [36, 37]). Based on the monotonal changes with 

higher stage, increased androgen receptor activity may be predicted, as both its 

translational enhancer BUD31 [38] and its downstream transcription factor ELK1 [39] 

were upregulated. Four of the 157 genes (HTR2C, LRP8, NENF, NMU) are involved 

in neurotransmission or neuronal development, all upregulated. Among the 157 genes, 

21 were of not well described or unknown function, including the oncogenic factor 

TRIM65 [40] found upregulated with increasing bladder cancer stage. Further 

functional enrichment using GeneCards for the 157 genes verified their involvement in 

cell-cycle pathways, with top hits being related to the regulation of the Anaphase 

promoting (APC) complex (score = 31.53), to PLK1 (score = 24.47) and Aurora B 

(score = 20. 95) signaling, as well as to TP53 (score = 19.06) and RB1 (score = 17.85) 

cell cycle checkpoint control (Figure 16C). Univariate cox regression analysis 

indicated 48 genes with potentially prognostic impact at p < 0.01. 
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Figure 16. Differential expression analysis between non-malignant adjacent 

urothelium (NAU) and BLCA stages. (A) Volcano plots of the five stage comparisons 

to NAU, with red color indicating the 157 genes showing a monotonal trend of 

expression across stages. (B) Heatmap of the absolute fold changes of the 157 

monotonal genes, being either continuously up- (yellow color) or downregu-lated (blue 

color), in the comparisons between disease stages and NAU. (C) Top 15 pathways of 

the 157 monotonal genes, sorted by the GeneCards enrichment score. 

 

In lack of an RNA-seq dataset comprising all the disease stage spectrum of BLCA 

incidents, the observed stage alterations in the discovery set were investigated for their 

reproducibility in the TCGA-BLCA RNA seq data [42]. To align the validation samples 

to the discovery set, patients with unknown history of prior treatment for non-muscle 

invasive bladder cancer, as well as patients with history of other malignancies were 

excluded. Differential expression analysis among the available stage comparisons (T3 

vs T2 and T4 vs T3) in the TCGA data validated 43 of the 157 monotonal genes. Cox 

regression analysis in the TCGA data validated 8 out of the 48 monotonal genes that 

were found to be of prognostic value in the discovery set (Supplementary Table 7), 

including MED19, ENO1, ANLN, GTPBP4, higher levels of which associating with 
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worse survival and CBX7, ZFP2, AKAP7, CDC14B higher levels of which associating 

with better survival probability (Figure 17A). We utilized these 8 genes to construct a 

combined score that characterizes each individual sample (see methods). Along with 

the disease stage, the 8-gene signature had independent prognostic value, both in the 

discovery and in the validation set (Figure 17B). Specifically, we constructed a survival 

model to compare 5-year survival rates between those with high and low 8-gene 

signature scores (defined by a median cut-off). Patients with a high 8-gene signature 

score had a worse 5-year survival probability in the discovery set and this find-ing was 

validated in the TCGA data (Figure 17C). The 8-gene signature did not differ 

significantly between males and females (p = 0.36), and was weakly associated with 

age and stage (Figure S7), suggesting its independent value with respect to other clinical 

variables. In an attempt to verify the co-expression analysis findings, stage specific co-

expression networks were also created using the TCGA data, and were clustered with 

the Louvain algorithm. GO-Biological process analysis of the communities validated 

the differential segregation of the cell-cycle, extracellular matrix and immune 

activation processes to distinct communities (Figure S8). In order to validate the value 

of the AIF1 as a candidate biomarker for response to immunotherapy, we analyzed 

RNAseq data from the IMvigor210 study, a trial investigating response to atezolizumab 

immunotherapy in patients with metastatic BLCA. High AIF1 expression in the 

IMvigor data associated with a complete response to atezolizumab (Figure 17D). 
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Figure 17. Validation of key findings in the TCGA-2017 and the IMvigor210 cohorts. 

(A) Forest plots showing hazard ratios (HR) for the 8 monotonal genes having 

univariate prognostic value both in the discovery and the TCGA validation datasets. 

(B) Multivariate analysis of stage and the 8-gene signature score in the discovery and 
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the TCGA validation sets. (C) 5-year survival analysis between patients with high and 

low 8-gene signature score, in the discovery and the TCGA data. (D) Data from the 

IMvigor210 trial illustrating AIF1 expression across response to atezolizumab 

immunotherapy groups. 

6. DISCUSSION 
This study reports on the first proteomics classification of NMIBC based on an unbiased 

comprehensive LC-MS/MS approach. Three proteomic subtypes were identified and 

their molecular profiles were characterized based on existing subtype-specific features. 

Classes 1 and 2 shared some basal features, whereas class 3 tumors presented with a 

more differentiated/luminal phenotype. This is in contradiction to the UROMOL study 

where most of the NMIBC samples were characterized as luminal; this difference may 

be attributed to sample and study design differences but also to divergence of gene 

expression and tumor cell phenotype, originally reported in MIBC subtyping (122). 

Molecular subtypes of MIBC have been shown to transcend pathological staging, but 

this has not been confirmed for NMIBC. Instead, NMIBC subtypes appear to not follow 

(118) the aforementioned observation, something that is also reproduced in this study. 

Class 1, contained mostly (13/17) T1 and Grade 3 (12/17) samples, was rich in some 

basal markers (CD47, TGM2, BAX, COL18A1, MSN), in lamina propria components, 

and presented with low levels of proteins that facilitate cell-basal membrane and cell-

cell attachment, possibly indicating increased cell motility. Additionally, these tumors 

expressed at high levels proteins of the cell cycle progression, MYC and E2F 

transcriptional targets, all being features of aggressive BC (122, 123), also reflected at 

their higher proximity to the MIBC proteome (Figure 8). Considering also its size as 

captured in our cohort (17/98), these findings are in line with observations from a recent 

transcriptomics meta-subtyping of BC, supporting that approximately 20% of NMIBC 

resemble MIBC at the molecular level (117). The high risk nature of these tumors is 

also supported by their classification predominantly to the progressed UROMOL 

subtype class 2 (Table 3). Moreover, the proteomics class 1 expressed the CIS-like 

UROMOL geneset (Figure 10), features of antigen presentation, inflammation, and 

was also enriched in IFN-γ response pathway, in concordance with RNA-based 

observations that high grade, aggressive basal subtypes both in MIBC and in NMIBC 

are presenting with an immune-infiltrated phenotype (154, 155). Proteins involved in 
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the DDR and the UPR were also solely overexpressed in class 1. Consequently, we 

suspect that class 1 tumors may likely respond to immune checkpoint, PARP or HSP 

inhibitors. 

Class 2 patients shared similar basal and cell adhesion protein expression patterns with 

class 1 but lacked expression of the basal surface antigen CD47. While being 

heterogeneous both at clinicopathological (Table 1) and molecular level (Figure 9), 

tumors from class 2 were commonly dominated by the overexpression of several 

ECM/mesenchymal proteins (Figure 8). The latter may have impeded the detection of 

(epithelial) tumor cell signals, however, high presence of stromal elements around the 

tumor cells might be a sign of “reactive” responses against tumor spread 5. Intriguingly, 

a subset of class 2 tumors (mainly of Ta stage) expressed at high levels both basal and 

luminal features (Figure 8). The intrinsic molecular heterogeneity of class 2 was also 

reflected at the results from the classifier (Table 3). The results here collectively 

suggest potentially increased variability with regards to outcome for class 2 and also, 

the need for larger sample sizes for the identification of its biologically relevant 

subgroups. Since pathway predictions indicate activation of Rho-GTPases, responders 

to inhibitors of these proteins or their downstream effectors are likely to segregate in 

this class.  

Class 3 tumors were characterized by increased abundance of KRT20, CDH1, and 

UPKs denoting high levels of differentiation, and were also KRT5+, ITGA6/ITGB4+, 

resembling UrobasalA tumors from the LUND taxonomy (112) and classes 1 and 3 

from UROMOL (118). The low risk nature of these tumors was validated in the 

UROMOL cohort were the majority of class 3 patients (91,7%) were classified at the 

non-progressed UROMOL subtypes (classes 1 and 3; Table 3). Therefore, patients in 

this class may not need tight surveillance. Analysis for class specific pathways indicated 

that class 3 was selectively enriched in detoxification activity by glutathione, which is 

considered to inactivate cisplatin, offering chemo-resistant properties to tumor cells 

(156). This could partially explain why luminal variants of MIBC appear to be 

insensitive to standard chemotherapy or chemo-radiation (111, 157, 158).  

Shortlisting of proteins concordantly overexpressed in the proteomics class 1 and in 

MIBC (n = 73) as well as in the proteomics class 3 and in NMIBC (n = 82) followed 

by subsequent investigations for their regulation in the mRNA data between 
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“Progressors” and “Non-Progressors” groups from the UROMOL (118) and LUND 

(112) cohorts, indicated a set of 96 and 28 consistently deregulated features, 

respectively (Figure 12). Approximately, half of these molecules were overexpressed 

in the “Progressors” groups (i.e. UROMOL’s class 2 or LUND’s Progressors) and 

based on their molecular function, were found to represent four main processes 

(described below).  

i) Unfolded protein response (UPS): differences at the mRNA levels of features 

involved in UPS have been previously reported among low grade and stage NMIBC 

subtypes (119). Accordingly, in our analysis, aggressive subtypes (proteomics class 1 

and UROMOL class 2) also overexpressed features of the UPS (HSP90AB1, 

HSP90B1, HYOU1, HSPD1, PDIA4, TXNDC5), suggesting an association between 

protein stability and the development of NMIBC.  

ii) Inflammation and immune recognition: proteins belonging to damage associated 

molecular patterns (such as S100A8/A9 and HMGB2), reported to increase with BC 

stage (159, 160), were found at high abundance in the proteomics class 1 and in the 

Progressors groups from the UROMOL and LUND cohorts. At the same time, high 

levels of STAT1, EIF4A3, and EIF4G1 in the proteomics class 1 as well as in the 

UROMOL class 2, which are potentially controlling PD-L1 regulation based on 

evidence from melanoma (161), were detected. Moreover, four molecules (HLA-DRA, 

HLA-A, TAP1, and RAB7A) involved in antigen presentation were identified as 

overexpressed in the proteomics class 1 and in UROMOL progressed class 2. 

Interestingly, this is also in line with the Lund taxonomy where high mRNA levels of 

antigen presentation molecules characterized the most aggressive BC subtypes (112). 

iii) RNA processing and post translational modifications: Previously, in silico 

comparisons between the tissue proteome of MIBC and NMIBC by our team (138), 

suggested a significant up-regulation of proteins involved in the transcriptional-

translational machinery of the former (MIBC). Here, a group of features involved in 

two types of RNA processing, pre-mRNA splicing (SNRPA, SF3B2, RALY, EIF4A3) 

and tRNA-aminoacylation (AARS, GARS, TARS, WARS, YARS), was detected as 

overexpressed in the proteomics class 1 and in UROMOL progressed class 2, while a 

subset of them (SNRPA, SF3B2, RALY, EIF4A3, YARS) was also significantly 

overexpressed in Progressors from the LUND cohort. This may be reflective of the 
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increased biosynthetic, translation, and turnover rates required to maintain fast 

proliferation (162, 163). In addition, as a novel finding, up-regulation of the 

components of the Oligosaccharyltransferase (OST) complex (RPN1, RPN2, DDOST, 

SSR1) was detected in the proteomics class 1 and UROMOL progressed class 2. The 

OST complex catalyzes glycosylation of nascent peptides at asparagine residues, a 

modification which has been found to be critical for surface localization of epidermal 

growth factor and whose inhibition induces senescence in receptor-tyrosine-kinase-

dependent tumors (164).  

iv) Oncogene signaling: Among the overlaps between the proteomics data and 

UROMOL or LUND cohorts overexpressed in the aggressive-progressive groups, were 

features of attributed oncogenic nature, such as USP7, NASP, SND1, GRB2, and 

PCNA. As examples, USP7 (shortlisted from all 3 cohorts) is a hydrolase containing a 

Ubiquitin-like domain and functions as a de-ubiquitinylation enzyme targeting 

regulators of cell-cycle, eventually protecting them from ubiquitinylation and 

proteasomal degradation. In vivo knockout studies has demonstrated that depletion of 

USP7 results in destabilization of MDM2 and inhibition of proliferation (165). In the 

same context, NASP (deregulated in all 3 cohorts) is chaperone facilitating 

transportation of histones into the nucleus (166); its inactivation by microRNA-29c 

resulted in cell-cycle arrest in gastric cancer (167). Similar anti-tumor effects upon 

microRNA-29c overexpression, have been also observed in BC (168). SND1 

(deregulated in all cohorts) has attributed pleiotropic functions, in breast cancer being 

involved in the TGF-β1 pathway, where it acts as an essential transcription activator of 

the Smad proteins (169), but also, found to interact with members of the STAT family, 

serving as co-activator of downstream genes (170). GRB2 links activated surface 

receptors with intracellular signal transducers and has been shown to be critical for cell-

cycle progression and actin reorganization, contributing to tumor metastasis (171). In 

BC cell lines, GRB2 was found to be overexpressed in the lack of EGFR overexpression 

or H-Ras mutations (172). PCNA is associated with genomic stability, as it is involved 

in processes such as DNA repair, cell-cycle progression and chromatin remodeling 

(173), and in the case of BC for its increase in immunostaining levels with increasing 

cancer stage and grade (174).  

Integration of BLCA molecular data has been previously performed in the context of 

characterizing molecular subtypes [43], or validating results of either (single cell) 
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scRNA-seq [44] or RNA-seq re-analysis [45]. In this study, we performed an 

integration meta-analysis of datasets from non-tumor-bearing adjacent urothelium and 

BLCA stages, aiming to identify continuous, as well as concerted gene expression 

alterations with increasing malignancy. To our knowledge, this is the first attempt to 

associate molecular alterations with clinical classification based on the analysis of more 

than one thousand well-characterized, primary tumor datasets. Instead of focusing on 

molecular subtypes, we increased power and addressed the disease as a continuum 

under the assumption that individual samples reflect different snapshots of the whole 

process. Our novel design based on the hypothesis of continuous evolution through 

stages has been successfully applied here and resulted in novel findings on gene 

regulation associated with cancer pro-gression.  

Starting from a normalized expression dataset comprising 12 microarray cohorts, we 

identified genes being differentially expressed between disease stages and NAU 

(CDEGs), and further analyzed them for pathways/processes being progressively 

altered with higher stage, for changes in the co-expression profiles of stages, as well as 

for genes showing a monotonal change in expression with higher stage. Our analysis 

highlighted expected landmark pathways, such as mTORC1 pathway [46] and MYC 

targets [47] which were upregulated, but also novel downregulated pathways such us 

the circadian clock and the metabolism of heme. These results associate for the first 

time BLCA progression with the disruption of the circadian homeostasis and to iron 

metabolism deficiencies, events that are thought to be tumorigenic [48, 49], but their 

exact mechanism of action is not well understood. In addition to the GATA3 regulon, 

a known driver of luminal biology, we found a novel progressive downregulation of the 

GLI2 regulon. GLI proteins are transcription factors of the Sonic hedgehog (Shh) 

pathway and although GLI2 expression levels positively correlate with more invasive 

BLCA cell lines, Shh genes do not behave accordingly [50]. Our results validate these 

observations, as the entire regulon of the GLI2 TF was inactivated with increasing 

BLCA malignancy, suggesting no potential therapeutic effect in its inhibition. 

Tumor initiation in the bladder is thought to occur within the basal layers of the 

urothelium, when the accumulated burden of mutations dysregulates cell’s homeostatic 

mechanisms, favoring uncontrolled proliferation over apoptosis [18]. The process of 

initi-ation is lengthy in time, and affects the entire neighborhood of the adjacent cells, 

which are continuously exposed to a pro-tumorigenic environment. Here we find that 
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most of the alterations in the non-tumor-bearing adjacent cells involve genes operating 

during embryogenesis or during ECM remodeling (Community 3, Table S2). These are 

likely among the first to acquire an organized pattern of co-expression. Interestingly, 

co-expression in NAU was driven mostly by ALDH1A2 (and partly by MFAP4), which 

catalyzes the for-mation of retinoic acid (RA). In the progenitor cells, during embryonic 

development, receptors of the RA form complexes with chromatin modifiers, leading 

to the activation of self-renewal and differentiation programs [51]. These data give rise 

to the hypothesis that the cells in the NAU may be expressing and maintaining parts of 

a stem cell-like RA related program. Indeed, the biological process of response to RA 

appears enriched in the ECM communities of NAU (p = 4.57e-05), and T2 (p = 1.12e-

02) stage. T2 tumors are far more dedifferentiated in comparison to both NAU and 

NMBIC, and can host multiple differentiation genetic components [42].  

The immune activation community was present in both the NAU and MIBC samples. 

Results of the CIBERSORT analysis showed that inside the bladder tumor and with in-

creasing stage, most monocytes preferentially differentiate into macrophages with M2 

polarization. This is in line with the findings from Chen et al. [44] in which authors 

analyzed scRNA-seq data of BLCA patients and observed a similar pattern of 

differentiation for monocytes. In our data, T4 samples had the highest proportion of 

M2-macrophages, which could partially explain their immunosuppressive state. A 

novel finding here is the observation that AIF1 appears to drive co-expression in the 

immune cells of T4 tumors. Interestingly, high AIF1 expression associated with 

complete response to atezolizumab (Figure 17D), a finding which might have 

implications on patient selection for immunotherapy. Together with the observation 

that AIF1 is highly expressed in macrophages responding to a M2 stimulation [52], the 

data suggest that AIF1 expression in the M2-macrophages could potentially trigger a 

PD-L1 signature in the tumor and the surrounding immune cells, leading to immune 

suppression [53], but further work is required to validate these preliminary 

observations.  

We specifically searched for genes showing a monotonal trend in their expression level 

with increasing disease stage, as this property may mark those genes whose quanti-

fication could offer additive prognostic value. Out of the 157 identified monotonal 

genes, almost half of them were components of the cell cycle machinery, or kinases 

signaling positively for it, or transcription factors responsible for the expression of cell 
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cycle genes. Eight out of the 48 monotonal genes with prognostic value in the discovery 

cohort were validated in independent RNA-seq data, and were utilized to develop a 

sample-wise gene signature. Of these, only ENO1, (higher levels of which had been 

previously linked with worse BLCA outcome [54]) and CBX7, (downregulation of 

which was associated with worse survival [55]) were described previously all the 

remaining 6 associations to survival are novel. MED19, a component of the mediator 

complex that regulates the transcription of RNA-polymerases, was found 

overexpressed by IHC in human BLCA compared to normal tissues, and its knockdown 

in the T24 and 5637 bladder cell lines resulted in cell-cycle arrest at the G0/G1 

checkpoint and attenuation of cell growth [56]. The involvement of GTPBP4 in BLCA 

development has not been characterized, but oncogenic properties have been attributed 

to this gene in hepatocellular carcinoma [57]. ANLN, AKAP7, and CDC14B are 

thought to regulate bladder cell growth and apoptosis in a TP53 independent manner 

[58]. ICA1L is naturally expressed in sperm cells. Its role in BLCA has not been 

described yet. The CDC14B gene is located on the 9q chromosome, a region that is 

often deleted in BLCA. This might also explain its overall downregulation in 

malignancy in comparison to NAU, with additional mechanisms (such as the increasing 

number of tumor cells), resulting in the observed further downregulation with 

increasing stage, as observed in the discovery set. CDC14B is believed to 

dephosphorylate TP53 [59], but the functional consequence on the mitotic or DNA 

damage repair pathways is not well clarified yet [60]. CBX7 is a component of the 

chromatin modifier PRC1-complex and is required for the propagation of the 

transcriptionally repressive state of multiple genes through cell-division, during 

embryonic development [61], including Hox genes [62]. Expectedly, while CBX7 

levels were monotonically decreasing, we noticed that HOXC6 and HOXC9 were both 

monotonically upregulated with increasing malignancy (Table S1). ZFP2 is a probable 

transcription factor and evidence suggest an epigenetic role as well [63]. High load of 

mutations in ZFP36, another member of the ZFP family, were associated with upper 

tract urothelial carcinoma [64].  

Our study has its limitations, including the retrospective nature of the analysis, and 

restrictions in the validation set imposed by lack of samples from all disease stages, 

which did not allow validating the observations particularly at the NMIBC. Clinical 

stage assignment is known to have varying rates of error. However, the high number of 
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samples used in each of the stage categories is expected to balance out to some extent 

error while increasing power of the received results. It should also be noted that our 

scope was to identify, if existent, common ‘core’ molecular themes during BLCA 

evolution with high statistical power. This does not rule out the existence of intra-

tumoral heterogeneity which still has to be considered (together with the observed 

molecular changes, as defined in our study) when predicting therapeutic response. 

 

7. CONCLUSIONS 
Bladder Cancer subtyping studies at the protein level are scarce and are needed to 

enhance present findings and fill existing gaps. This study reports on the first 

proteomics classification of Non-Muscle Invasive Bladder Cancer (NMIBC) based on 

an unbiased comprehensive LC-MS/MS approach, investigating how existing 

pathological and molecular subtypes are reproduced in the tissue proteome. Two of the 

three identified and characterized proteomic subtypes appear to share concordant 

molecular profiles with the UROMOL study, despite differences in clinicopathologic 

parameters. The added value of the observed molecular changes to the EORTC risk 

predictions, remain to be further investigated as, even though classes 1 and 3 segregated 

in their majority EORTC high and low risk tumors respectively, still in both classes, a 

number of samples deviated from this general pattern. Cross-omics analysis for features 

potentially involved in aggressiveness highlighted molecular processes that could likely 

drive NMIBC subtypes. The derived subtype-specific signatures remain to be validated 

in the clinical setting. Our study has its limitations. These include the lack of follow-up 

information and the lack of a side by side analysis at the mRNA level, with the latter 

having been attempted, but with the mRNA quality found inadequate for a 

comprehensive study. These shortcomings, collectively, do not allow reaching 

conclusive statements with respect to the association of the observed protein changes 

with disease progression; nevertheless, the consistency between the protein and mRNA 

level changes at two independent cohorts, strongly point in this direction, forming the 

basis for further validation in prospective cohorts. 

 

  



82 

 

8. SUPPLEMENTARY MATERIAL 

 
Supplementary Table 1: Statistically significant Biological Processes of the most 

abundant proteins (top 200 proteins). 

GO ID GO Term 

Benjamini

-Hochberg 

p-value 

% 

Associated 

genes 

Associated Genes Found 

GO:005

1261 

protein 

depolymerization 
0,01 4,95 

[CAPG, CFL1, GSN, HSPA8, 

WDR1] 

GO:006

1572 

actin filament bundle 

organization 
0,00 5,56 

[ACTN1, ACTN4, EZR, 

HSP90B1, MARCKS, PFN1, 

PFN2, TPM1] 

GO:000

0184 

nuclear-transcribed 

mRNA catabolic 

process, nonsense-

mediated decay 

0,00 5,43 
[RPL13, RPL19, RPL22, 

RPL29, RPS14, RPS3, RPSA] 

GO:003

2205 

negative regulation of 

telomere maintenance 
0,01 7,69 

[HNRNPA1, HNRNPC, 

HNRNPU] 

GO:005

1261 

protein 

depolymerization 
0,01 4,95 

[CAPG, CFL1, GSN, HSPA8, 

WDR1] 

GO:000

2274 

myeloid leukocyte 

activation 
0,00 5,29 

[ALDOA, ALDOC, ANXA2, 

CAP1, CAPN1, CSTB, CTSD, 

DHRS2, EEF1A1, EEF2, GPI, 

GSN, GSTP1, HMGB1, HP, 

HSP90AA1, HSP90AB1, 

HSPA1A, HSPA8, HSPD1, 

IDH1, NME2, PGAM1, PKM, 

PPIA, PRDX5, PRDX6, 

RAB10, RAB14, RPSA, 

S100A11, S100P, TUBB, 

TUBB4B, VCL, VCP] 

GO:005

1410 

detoxification of 

nitrogen compound 
0,00 60,00 [GSTM1, GSTM2, GSTM3] 

GO:003

4614 

cellular response to 

reactive oxygen species 
0,00 5,39 

[AKR1C3, ANXA1, 

HNRNPD, PRDX1, PRDX2, 

PRDX5, RPS3, TRAP1, TXN] 

GO:190

3749 

positive regulation of 

establishment of protein 

localization to 

mitochondrion 

0,00 5,60 

[SFN, YWHAB, YWHAE, 

YWHAG, YWHAH, 

YWHAQ, YWHAZ] 

GO:001

0523 

negative regulation of 

calcium ion transport 

into cytosol 

0,00 13,64 [CALM1, GSTM2, SRI] 

GO:005

1290 

protein 

heterotetramerization 
0,00 11,54 

[ANXA2, HIST1H3A, 

HIST1H4A] 

GO:003

0968 

endoplasmic reticulum 

unfolded protein 

response 

0,00 6,72 

[AGR2, CALR, CASP12, 

HSP90B1, HSPA1A, HSPA5, 

LMNA, PDIA6, VCP] 

GO:000

6984 

ER-nucleus signaling 

pathway 
0,00 10,64 

[AGR2, CALR, HSP90B1, 

HSPA5, LMNA] 

GO:003

5966 

response to 

topologically incorrect 

protein 

0,00 7,58 

[AGR2, CALR, CASP12, 

HSP90AA1, HSP90AB1, 

HSP90B1, HSPA1A, HSPA5, 

HSPA8, HSPB1, HSPD1, 

HSPE1, LMNA, PDIA6, VCP] 



83 

 

GO:003

2204 

regulation of telomere 

maintenance 
0,00 6,98 

[HNRNPA1, HNRNPA2B1, 

HNRNPC, HNRNPD, 

HNRNPU, LMNA] 

GO:003

1424 
keratinization 0,00 5,98 

[CAPN1, KRT10, KRT13, 

KRT17, KRT18, KRT19, 

KRT20, KRT5, KRT6A, 

KRT7, KRT75, KRT79, 

KRT8, SFN] 

GO:006

1077 

chaperone-mediated 

protein folding 
0,00 10,14 

[CALR, HSPA8, HSPB1, 

HSPD1, HSPE1, PPIB, 

TRAP1] 

GO:000

6413 
translational initiation 0,00 4,41 

[HSPB1, NPM1, RPL13, 

RPL19, RPL22, RPL29, 

RPS14, RPS3, RPSA] 

GO:006

0048 

cardiac muscle 

contraction 
0,01 4,41 

[ACTC1, CALM1, FLNA, 

GSTM2, SRI, TPM1] 

GO:003

2781 

positive regulation of 

ATPase activity 
0,00 7,41 

[HNRNPU, PFN1, PFN2, 

TPM1] 

GO:000

0380 

alternative mRNA 

splicing, via 

spliceosome 

0,03 5,45 
[HNRNPA1, HNRNPL, 

HNRNPU] 

GO:005

1290 

protein 

heterotetramerization 
0,00 11,54 

[ANXA2, HIST1H3A, 

HIST1H4A] 

GO:000

1895 
retina homeostasis 0,00 6,41 

[ACTB, HSPB1, POTEE, 

POTEF, PRDX1] 

GO:003

4109 

homotypic cell-cell 

adhesion 
0,00 11,39 

[ACTB, CD9, CLIC1, FLNA, 

HSPB1, MYH9, MYL12A, 

POTEF, VCL] 

GO:000

6735 
NADH regeneration 0,00 25,00 

[ALDOA, ALDOC, ENO1, 

GAPDH, GPI, PGAM1, 

PGK1, PKM, TPI1] 

GO:000

7584 
response to nutrient 0,00 5,13 

[AKR1C3, COL1A1, EEF2, 

GNAI2, GSN, GSTP1, 

HNRNPC, LDHA, PKM, 

VDAC2] 

GO:000

9168 

purine ribonucleoside 

monophosphate 

biosynthetic process 

0,00 7,89 
[ALDOA, ATP5A1, ATP5B, 

ENO1, PKM, VCP] 

GO:000

5996 

monosaccharide 

metabolic process 
0,00 5,47 

[ALDOA, ALDOC, CYB5A, 

ENO1, GAPDH, GOT2, GPI, 

HMGB1, KRT17, MDH1, 

MDH2, PGAM1, PGK1, 

PKM, TALDO1, TKT, TPI1] 

GO:003

1532 

actin cytoskeleton 

reorganization 
0,00 6,32 

[ANXA1, ARHGDIA, EZR, 

FLNA, GSN, MYH9] 

GO:001

0954 

positive regulation of 

protein processing 
0,00 13,04 [ENO1, GSN, MYH9] 

GO:003

1532 

actin cytoskeleton 

reorganization 
0,00 6,32 

[ANXA1, ARHGDIA, EZR, 

FLNA, GSN, MYH9] 

GO:004

5104 

intermediate filament 

cytoskeleton 

organization 

0,00 13,33 
[DES, KRT17, KRT18, 

KRT20, KRT6A, VIM] 

GO:000

8637 

apoptotic mitochondrial 

changes 
0,00 8,21 

[HSPA1A, HSPD1, LMNA, 

SFN, SLC25A5, YWHAB, 

YWHAE, YWHAG, 

YWHAH, YWHAQ, 

YWHAZ] 

GO:003

2612 
interleukin-1 production 0,02 4,55 

[ANXA1, GSTP1, HMGB1, 

HSPB1] 
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GO:007

1103 

DNA conformation 

change 
0,00 4,74 

[ANXA1, H2AFY, H3F3A, 

HIST1H1B, HIST1H1C, 

HIST1H2BJ, HIST1H2BK, 

HIST1H3A, HIST1H4A, 

HMGB1, HNRNPA2B1, 

NPM1, UBC] 

GO:006

0048 

cardiac muscle 

contraction 
0,01 4,41 

[ACTC1, CALM1, FLNA, 

GSTM2, SRI, TPM1] 

GO:006

1077 

chaperone-mediated 

protein folding 
0,00 10,14 

[CALR, HSPA8, HSPB1, 

HSPD1, HSPE1, PPIB, 

TRAP1] 

GO:000

6103 

2-oxoglutarate 

metabolic process 
0,00 13,64 [GOT2, IDH1, IDH2] 

GO:007

2593 

reactive oxygen species 

metabolic process 
0,00 4,35 

[AKR1C3, GSTP1, HP, 

HSP90AA1, HSP90AB1, 

PRDX1, PRDX2, PRDX5, 

PRDX6, TRAP1, VDAC1, 

VDAC2] 

GO:009

0307 
mitotic spindle assembly 0,04 4,76 [FLNA, HNRNPU, HSPA1A] 

GO:003

2612 
interleukin-1 production 0,02 4,55 

[ANXA1, GSTP1, HMGB1, 

HSPB1] 

GO:001

0927 

cellular component 

assembly involved in 

morphogenesis 

0,00 6,86 

[ACTC1, CD9, KRT19, 

KRT8, MYH11, TPM1, 

WDR1] 

GO:000

1649 
osteoblast differentiation 0,00 4,67 

[ATP5B, CLIC1, CLTC, 

COL1A1, COL6A1, H3F3A, 

HNRNPC, HNRNPU, HSPE1, 

TPM4] 

GO:003

2637 
interleukin-8 production 0,00 6,10 

[ANXA1, ANXA4, HSPA1A, 

RAB1A, RPSA] 

GO:005

1764 
actin crosslink formation 0,00 23,08 [ACTN1, FLNA, MARCKS] 

GO:003

6500 

ATF6-mediated 

unfolded protein 

response 

0,00 27,27 [CALR, HSP90B1, HSPA5] 

GO:190

2749 

regulation of cell cycle 

G2/M phase transition 
0,00 4,69 

[H2AFY, HSP90AA1, NPM1, 

PSMA1, TUBA4A, TUBB, 

TUBB4B, UBC, YWHAE, 

YWHAG] 

GO:003

6344 
platelet morphogenesis 0,00 15,00 [ACTN1, MYH9, WDR1] 

GO:000

6479 
protein methylation 0,00 4,30 

[CALM1, EEF1A1, EEF2, 

H2AFY, HIST1H1B, 

HIST1H1C, HSPA8, VCP] 

GO:004

5471 
response to ethanol 0,00 4,67 

[ACTC1, EEF2, GOT2, GSN, 

GSTP1, HPGD, TUFM] 

GO:000

0060 

protein import into 

nucleus, translocation 
0,00 8,00 

[AKR1C3, HSP90AB1, RAN, 

TXN] 

GO:003

2612 
interleukin-1 production 0,02 4,55 

[ANXA1, GSTP1, HMGB1, 

HSPB1] 

GO:001

0803 

regulation of tumor 

necrosis factor-mediated 

signaling pathway 

0,01 6,35 
[GSTP1, HIST1H2BJ, 

HSPA1A, UBC] 

GO:000

1738 

morphogenesis of a 

polarized epithelium 
0,01 4,11 

[CLTC, PFN1, PSMA1, 

RAB10, UBC, WDR1] 

GO:003

0865 

cortical cytoskeleton 

organization 
0,01 8,82 [CALR, EZR, WDR1] 
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GO:004

3277 
apoptotic cell clearance 0,01 8,11 [HMGB1, HNRNPC, PDIA6] 

GO:007

0670 
response to interleukin-4 0,01 8,11 

[HSP90AB1, HSPA5, 

TUBA1B] 

GO:190

1264 

carbohydrate derivative 

transport 
0,01 5,41 

[AGR2, RPSA, SLC25A5, 

SLC25A6] 

GO:190

4019 

epithelial cell apoptotic 

process 
0,03 4,12 

[AKR1C3, GSN, KRT18, 

KRT8] 

GO:003

4381 

plasma lipoprotein 

particle clearance 
0,03 5,26 [ANXA2, CLTC, HNRNPK] 

GO:006

0306 

regulation of membrane 

repolarization 
0,01 9,68 [FLNA, WDR1, YWHAE] 

GO:007

0849 

response to epidermal 

growth factor 
0,02 6,38 [COL1A1, EEF1A1, GSTP1] 

GO:000

7566 
embryo implantation 0,03 5,66 [CALR, H3F3A, RPL29] 

GO:003

3574 
response to testosterone 0,03 5,45 [CALR, GPI, NME1] 

GO:003

4394 

protein localization to 

cell surface 
0,03 5,08 [FLNA, HSP90AB1, VCL] 

GO:005

0819 

negative regulation of 

coagulation 
0,03 5,00 [ANXA2, ANXA5, CD9] 

GO:200

0378 

negative regulation of 

reactive oxygen species 

metabolic process 

0,03 5,00 [HP, TRAP1, VDAC1] 

GO:190

2305 

regulation of sodium ion 

transmembrane transport 
0,04 4,69 [ACTN4, FXYD3, YWHAH] 

GO:000

6892 

post-Golgi vesicle-

mediated transport 
0,03 4,08 

[KRT18, LYPLA1, RAB10, 

RAB14] 

GO:190

1616 

organic hydroxy 

compound catabolic 

process 

0,04 4,48 [AKR1C3, MAOA, TPI1] 

GO:004

5606 

positive regulation of 

epidermal cell 

differentiation 

0,00 12,00 [H2AFY, NME2, SFN] 

GO:190

2402 

DNA damage response, 

signal transduction by 

p53 class mediator 

resulting in cell cycle 

arrest 

0,05 4,41 [NPM1, SFN, UBC] 

Supplementary Table 1: Statistically significant Biological Processes of the most 

abundant proteins (top 200 proteins). 

 

Supplementary Table 2: Gene Set Enrichment Analysis results for the comparison 

class 1 versus class 3 

GSEA Report for Class 1           

NAME Size ES NES 

Nom 

p-val 

FD

R q-

val 

HALLMARK_E2F_TARGETS 19 0,52 1,20 0,00 0,01 
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HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSIT

ION 24 0,41 1,07 0,10 0,04 

HALLMARK_INTERFERON_GAMMA_RESPONSE 16 0,37 1,03 0,02 0,05 

HALLMARK_MYC_TARGETS_V1 39 0,41 0,96 0,02 0,08 

HALLMARK_G2M_CHECKPOINT 15 0,50 1,02 0,50 0,45 

HALLMARK_COMPLEMENT 18 0,33 0,87 0,50 0,78 

HALLMARK_MTORC1_SIGNALING 34 0,19 0,59 1,00 1,00 

HALLMARK_ADIPOGENESIS 21 0,20 0,56 1,00 1,00 

HALLMARK_FATTY_ACID_METABOLISM 22 0,21 0,52 1,00 1,00 

HALLMARK_HEME_METABOLISM 16 0,21 0,49 1,00 1,00 

HALLMARK_XENOBIOTIC_METABOLISM 28 0,17 0,39 1,00 1,00 

            

GSEA Report for Class 3           

NAME 

SIZ

E ES NES 

NO

M p-

val 

FD

R q-

val 

HALLMARK_GLYCOLYSIS 21 

-

0,35 

-

1,12 0,03 0,11 

HALLMARK_ESTROGEN_RESPONSE_LATE 17 

-

0,33 

-

1,10 0,33 1,00 

HALLMARK_APOPTOSIS 17 

-

0,32 

-

0,92 0,50 1,00 

HALLMARK_P53_PATHWAY 15 

-

0,35 

-

0,87 0,57 1,00 

HALLMARK_APICAL_JUNCTION 16 

-

0,32 

-

0,75 0,67 1,00 

HALLMARK_OXIDATIVE_PHOSPHORYLATION 25 

-

0,32 

-

0,75 1,00 1,00 

HALLMARK_MYOGENESIS 15 

-

0,22 

-

0,63 1,00 0,96 

Supplementary Table 2: Gene Set Enrichment Analysis results for the comparison 

class 1 versus class 3 using a robust collection of cancer genesets, the Hallmark 

Genesets (as found in the MSigDB databse). Significance is defined at nom p <0.05 

and FDR <0.25. ES=Enrichment Score, NES=Normalized Enrichment Score, 

NOM=Nominal, FDR=False Discovery Rate 

 

 

 

Supplementary Table 3: Statistically significant Biological Processes of the 73 

upregulated features from the 155 shortlisted proteins 

GO ID GO Term 

Benjamini

-Hochberg 

p-value 

% 

Associat

ed 

Genes 

Associated Genes Found 

GO:00

02181 
cytoplasmic translation 0,00 4,55 [EEF2, EIF4G1, RPL13A] 
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GO:00

38128 
ERBB2 signaling pathway 0,00 7,50 

[CDC37, GRB2, 

HSP90AA1] 

GO:00

06890 

retrograde vesicle-mediated 

transport, Golgi to ER 
0,00 4,44 

[ARF5, COPA, COPB1, 

COPG1] 

GO:00

42026 
protein refolding 0,00 12,50 

[HSP90AA1, HSPD1, 

SNRNP70] 

GO:00

51131 

chaperone-mediated protein 

complex assembly 
0,00 16,67 

[HSP90AA1, HSP90AB1, 

HSPD1] 

GO:00

06487 

protein N-linked 

glycosylation 
0,00 4,00 [DDOST, RPN1, RPN2] 

GO:00

18196 

peptidyl-asparagine 

modification 
0,00 6,25 [DDOST, RPN1, RPN2] 

GO:00

18279 

protein N-linked 

glycosylation via asparagine 
0,00 6,38 [DDOST, RPN1, RPN2] 

GO:00

43038 
amino acid activation 0,00 9,09 

[AARS, GARS, TARS, 

WARS, YARS] 

GO:00

43039 
tRNA aminoacylation 0,00 9,26 

[AARS, GARS, TARS, 

WARS, YARS] 

GO:00

06418 

tRNA aminoacylation for 

protein translation 
0,00 9,80 

[AARS, GARS, TARS, 

WARS, YARS] 

GO:00

34340 
response to type I interferon 0,00 5,49 

[CDC37, HLA-A, 

HSP90AB1, SHMT2, 

STAT1] 

GO:00

60330 

regulation of response to 

interferon-gamma 
0,00 11,11 

[CDC37, HSP90AB1, 

STAT1] 

GO:00

71357 

cellular response to type I 

interferon 
0,00 4,60 

[CDC37, HLA-A, 

HSP90AB1, STAT1] 

GO:00

60333 

interferon-gamma-mediated 

signaling pathway 
0,00 5,15 

[CDC37, HLA-A, HLA-

DRA, HSP90AB1, STAT1] 

GO:00

60337 

type I interferon signaling 

pathway 
0,00 4,60 

[CDC37, HLA-A, 

HSP90AB1, STAT1] 

GO:00

60334 

regulation of interferon-

gamma-mediated signaling 

pathway 

0,00 11,11 
[CDC37, HSP90AB1, 

STAT1] 

GO:00

60338 

regulation of type I 

interferon-mediated signaling 

pathway 

0,00 6,82 
[CDC37, HSP90AB1, 

STAT1] 

GO:00

02200 

somatic diversification of 

immune receptors 
0,00 4,00 [HMGB2, HSPD1, TFRC] 

GO:00

02833 

positive regulation of 

response to biotic stimulus 
0,00 6,38 

[HSPD1, S100A8, 

S100A9] 

GO:00

02702 

positive regulation of 

production of molecular 

mediator of immune response 

0,00 4,40 
[HLA-A, S100A8, 

S100A9, TFRC] 

GO:00

42116 
macrophage activation 0,00 4,23 

[HSPD1, S100A8, 

S100A9] 

GO:00

50918 
positive chemotaxis 0,00 5,56 

[GPNMB, HMGB2, 

S100A8, S100A9] 

GO:00

43030 

regulation of macrophage 

activation 
0,00 6,67 

[HSPD1, S100A8, 

S100A9] 

GO:00

70671 
response to interleukin-12 0,00 5,97 

[S100A8, S100A9, SOD2, 

STAT1] 

GO:19

01571 
fatty acid derivative transport 0,00 5,45 

[GPNMB, S100A8, 

S100A9] 

GO:00

02720 

positive regulation of 

cytokine production involved 

in immune response 

0,00 6,38 
[HLA-A, S100A8, 

S100A9] 

GO:00

42100 
B cell proliferation 0,00 4,04 

[HSPD1, S100A8, S100A9, 

TFRC] 
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GO:00

35722 

interleukin-12-mediated 

signaling pathway 
0,00 6,06 

[S100A8, S100A9, SOD2, 

STAT1] 

GO:00

71157 

negative regulation of cell 

cycle arrest 
0,00 10,34 

[HSP90AB1, S100A8, 

S100A9] 

GO:00

71349 

cellular response to 

interleukin-12 
0,00 6,06 

[S100A8, S100A9, SOD2, 

STAT1] 

GO:00

02562 

somatic diversification of 

immune receptors via 

germline recombination 

within a single locus 

0,00 4,84 [HMGB2, HSPD1, TFRC] 

GO:00

16444 

somatic cell DNA 

recombination 
0,00 4,84 [HMGB2, HSPD1, TFRC] 

GO:00

30888 

regulation of B cell 

proliferation 
0,00 4,55 [S100A8, S100A9, TFRC] 

GO:00

71715 
icosanoid transport 0,00 5,45 

[GPNMB, S100A8, 

S100A9] 

GO:00

30890 

positive regulation of B cell 

proliferation 
0,00 6,52 [S100A8, S100A9, TFRC] 

GO:00

32309 
icosanoid secretion 0,00 5,77 

[GPNMB, S100A8, 

S100A9] 

GO:00

15909 
long-chain fatty acid transport 0,00 4,35 

[GPNMB, S100A8, 

S100A9] 

GO:19

03963 
arachidonate transport 0,00 8,57 

[GPNMB, S100A8, 

S100A9] 

GO:00

50482 
arachidonic acid secretion 0,00 8,57 

[GPNMB, S100A8, 

S100A9] 

Supplementary Table 3: Statistically significant Biological Processes of the 73 

upregulated features from the 155 shortlisted proteins. The inputted 73 proteins were 

found at increased abundance in class 1 when compared to both classes 2 & 3 and also 

at high levels in the MIBC samples when compared to the NMIBC. 

 

 

 

Supplementary Table 4: Statistically significant Biological Processes of the 

downregulated 82 features from the 155 shortlisted proteins 

GO ID GO Term 

Benjamini-

Hochberg 

p-value 

% 

Associated 

Genes 

Associated Genes 

Found 

GO:0042762 

regulation of sulfur 

metabolic process 0,00 11,11 

[COMT, CTNNB1, 

DLD] 

GO:0046503 

glycerolipid catabolic 

process 0,00 4,84 

[FABP4, FABP5, 

PRDX5] 

GO:0070268 cornification 0,00 7,69 

[CAPN1, CAPNS1, 

IVL, KRT13, KRT17, 

KRT19, KRT7, KRT75, 

KRT8] 

GO:0030239 myofibril assembly 0,00 4,69 

[KRT19, KRT8, 

WDR1] 

GO:0045214 sarcomere organization 0,00 6,82 

[KRT19, KRT8, 

WDR1] 
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GO:0045682 

regulation of epidermis 

development 0,00 4,76 

[CTNNB1, H2AFY, 

H2AFY2, KRT17] 

GO:0045684 

positive regulation of 

epidermis development 0,00 7,89 

[H2AFY, H2AFY2, 

KRT17] 

GO:0030858 

positive regulation of 

epithelial cell 

differentiation 0,00 5,00 

[CTNNB1, H2AFY, 

H2AFY2] 

GO:0097306 

cellular response to 

alcohol 0,00 5,00 

[CDH1, CTNNB1, 

GNAS] 

GO:0035635 

entry of bacterium into 

host cell 0,00 14,29 

[CDH1, CTNNB1, 

CTNND1] 

GO:0045670 

regulation of osteoclast 

differentiation 0,00 4,62 

[CTNNB1, FAM213A, 

GNAS] 

GO:0098754 detoxification 0,00 4,63 

[FAM213A, GPX2, 

GSTP1, MGST2, 

PRDX5] 

GO:1990748 cellular detoxification 0,00 4,81 

[FAM213A, GPX2, 

GSTP1, MGST2, 

PRDX5] 

GO:0097237 

cellular response to 

toxic substance 0,00 4,42 

[FAM213A, GPX2, 

GSTP1, MGST2, 

PRDX5] 

GO:0098869 

cellular oxidant 

detoxification 0,00 5,00 

[FAM213A, GPX2, 

GSTP1, MGST2, 

PRDX5] 

GO:0006749 

glutathione metabolic 

process 0,00 5,00 

[CNDP2, GSTP1, 

MGST2] 

GO:0042398 

cellular modified amino 

acid biosynthetic 

process 0,00 7,50 

[ATIC, CNDP2, 

MGST2] 

GO:0061621 canonical glycolysis 0,00 13,89 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0061620 

glycolytic process 

through glucose-6-

phosphate 0,00 13,51 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0016052 

carbohydrate catabolic 

process 0,00 4,04 

[GALE, GNPDA1, 

HK1, PFKL, PGM2, 

PKM, PYGL, TPI1] 

GO:0044275 

cellular carbohydrate 

catabolic process 0,00 6,25 [PGM2, PYGL, TPI1] 

GO:0046365 

monosaccharide 

catabolic process 0,00 9,59 

[GALE, GNPDA1, 

HK1, PFKL, PGM2, 

PKM, TPI1] 

GO:0051156 

glucose 6-phosphate 

metabolic process 0,00 9,76 

[GNPDA1, HK1, 

PGM2, TPI1] 

GO:0019320 hexose catabolic process 0,00 11,29 

[GALE, GNPDA1, 

HK1, PFKL, PGM2, 

PKM, TPI1] 

GO:0006007 

glucose catabolic 

process 0,00 11,90 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0019362 

pyridine nucleotide 

metabolic process 0,00 4,06 

[DLD, GNPDA1, HK1, 

PFKL, PGM2, PKM, 

PRDX5, TPI1] 

GO:0006090 

pyruvate metabolic 

process 0,00 4,29 

[DLD, GNPDA1, HK1, 

KRT17, PFKL, PKM, 

TPI1] 

GO:0046496 

nicotinamide nucleotide 

metabolic process 0,00 4,06 

[DLD, GNPDA1, HK1, 

PFKL, PGM2, PKM, 

PRDX5, TPI1] 
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GO:0061718 

glucose catabolic 

process to pyruvate 0,00 13,89 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0006757 

ATP generation from 

ADP 0,00 4,31 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0006739 

NADP metabolic 

process 0,00 6,52 [PGM2, PRDX5, TPI1] 

GO:0019674 NAD metabolic process 0,00 6,10 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0046031 ADP metabolic process 0,00 4,13 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0006096 glycolytic process 0,00 4,35 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0006735 NADH regeneration 0,00 13,89 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0006734 

NADH metabolic 

process 0,00 10,42 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

GO:0061615 

glycolytic process 

through fructose-6-

phosphate 0,00 13,51 

[GNPDA1, HK1, 

PFKL, PKM, TPI1] 

Supplementary Table 4: Statistically significant Biological Processes of the 

downregulated 82 features from the 155 shortlisted proteins. The inputted 82 proteins 

were found at increased abundance in class 3 when compared to both classes 1 & 2 

and also at high levels in the NMIBC samples when compared to the MIBC. 

 

 

 

Supplementary Table 5: The 80 genes found in the cell-cycle coexpression networks 

in all BLCA stages. 

Gene scoreTa scoreT1 scoreT2 scoreT3 scoreT4 is monotonal 

ANLN 481 436 714 18041 2 TRUE 

AURKA 5404 6800 13240 8938 605 TRUE 

CCNA2 2909 4486 11632 41245 16543 TRUE 

CCNB1 707 108 942 84561 18737 TRUE 

CDC20 1501 7897 9 17365 25679 TRUE 

CDCA5 44873 11804 49730 6700 13955 TRUE 

CDCA8 8870 12299 3542 18378 11613 TRUE 

CDKN3 24 992 13434 10727 7293 TRUE 

CENPA 2166 1644 930 8645 9702 TRUE 

CENPN 18086 8239 3048 1671 554 TRUE 

CEP55 681 11627 2791 2962 11710 TRUE 

DTL 26 10 13590 42 1957 TRUE 

EXO1 1587 814 1485 3586 9030 TRUE 

FBXO5 0 39 4245 13659 5116 TRUE 

GINS2 83 0 77542 1333 6469 TRUE 

KIF11 698 1216 1523 2433 20747 TRUE 

KIF14 520 1523 2570 14128 158551 TRUE 
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KIF23 64 2203 6453 7830 3980 TRUE 

MCM10 1233 854 11193 13 7153 TRUE 

MELK 3408 2009 25349 10979 8132 TRUE 

MKI67 523 892 415 78 25 TRUE 

MND1 0 1 17 318 994 TRUE 

NDC80 100 92 1499 4424 1087 TRUE 

OIP5 10 477 1 926 19138 TRUE 

PBK 34 1 112 8507 5366 TRUE 

POLE2 4 16 0 2 120 TRUE 

PRC1 1750 12369 38237 5498 1375 TRUE 

PTTG1 2595 716 13893 5097 288 TRUE 

RAD51AP1 32 8881 31700 34174 1528 TRUE 

RRM2 19 93 242 78192 69546 TRUE 

UBE2T 14 0 1777 228 0 TRUE 

UHRF1 1271 2263 33179 1495 975 TRUE 

E2F7 0 0 3192 729 1510 TRUE 

MCM4 0 0 10 5 19167 TRUE 

PLK1 1253 20 943 1059 1501 TRUE 

ASF1B 4864 350 10948 40 1722 FALSE 

ASPM 920 1611 425 13224 2009 FALSE 

AURKB 2035 95451 51815 1602 8950 FALSE 

BIRC5 182 568 625 5479 12397 FALSE 

BLM 14 6 10324 0 3 FALSE 

BRCA1 45 26 3809 867 13252 FALSE 

BUB1 240 9179 7065 4193 8712 FALSE 

BUB1B 40 276 76617 704 3140 FALSE 

CCNB2 1474 2930 8846 2453 21761 FALSE 

CCNE2 95 1950 4682 59 22 FALSE 

CDC25C 3 0 2 1625 10052 FALSE 

CDCA2 21 0 4 1722 3658 FALSE 

CENPE 66 1967 1035 1223 917 FALSE 

CENPF 978 347 47080 12836 50 FALSE 

CENPK 9 9 884 1391 8 FALSE 

CHAF1B 1081 4358 3468 1153 19537 FALSE 

CHEK1 733 1492 29879 73 81 FALSE 

EZH2 11 3630 12341 4918 20668 FALSE 

FANCD2 3558 1118 62875 8 6881 FALSE 

FOXM1 2013 248692 4913 5527 83315 FALSE 

HMMR 7 15 0 11836 3381 FALSE 

KIF15 46 206 6581 13537 19776 FALSE 

KIF20A 12487 8816 300 1145 807 FALSE 

KIF2C 44734 6320 3475 5554 8315 FALSE 

KIF4A 1673 6304 2669 1660 27717 FALSE 

KNTC1 5467 777 35820 0 7 FALSE 
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MCM2 5158 20158 139586 544 51316 FALSE 

NCAPG 410 502 29290 27683 24269 FALSE 

NEK2 132 870 0 6945 4161 FALSE 

NUF2 17 151 34939 3446 19288 FALSE 

NUSAP1 532 3679 5554 14397 5418 FALSE 

PLK4 541 769 867 248 1 FALSE 

POLQ 579 434 0 64 73 FALSE 

RAD54L 1253 2823 5983 7412 14193 FALSE 

STIL 3218 461 4818 3843 25471 FALSE 

TACC3 1406 35712 0 0 4127 FALSE 

TOP2A 1881 1241 27686 2363 3193 FALSE 

TPX2 8357 6812 92143 26014 7312 FALSE 

TRIP13 2505 1366 9669 2698 4488 FALSE 

TTK 4892 455 4258 5663 2694 FALSE 

UBE2C 16280 1191 668 1260 1805 FALSE 

ZWINT 2436 7481 1589 145 5402 FALSE 

CENPL 0 0 16 2812 7136 FALSE 

NCAPD2 0 0 0 0 7160 FALSE 

RACGAP1 941 37 2199 19570 3598 FALSE 

 

Supplementary Table 5: The 80 genes found in the cell-cycle coexpression networks in 

all BLCA stages, along with their stage specific betweenness centrality scores and an 

indication on whether their expression follows a monotonal increase with increasing 

BLCA stage. 

 

 

Supplementary Table 6: The 157 genes whose expression is monotonically increasing 

or decreasing with increasing BLCA stage. 

Gene symbol 

Regulation with 

increasing stage Gene symbol 

Regulation with 

increasing stage 

ADHFE1 Down KIT Down 

AEBP2 Down LMBRD1 Down 

AKAP7 Down LMNB2 Up 

ALDH7A1 Down LONRF1 Down 

ANLN Up LRP8 Up 

APCDD1 Down LYAR Up 

ARF5 Up MCM10 Up 

ARHGAP11A Up MCM4 Up 

ARHGDIA Up MED19 Up 

ARPC5L Up MELK Up 

ASS1 Down MGST1 Down 

AURKA Up MKI67 Up 
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BOP1 Up MLF2 Up 

BTG2 Down MND1 Up 

BUD31 Up MRPL37 Up 

CAD Up MTMR9 Down 

CAT Down MYO10 Up 

CBX7 Down NDC80 Up 

CCDC124 Up NEIL3 Up 

CCNA2 Up NENF Up 

CCNB1 Up NHS Down 

CCT5 Up NIP7 Up 

CDC14B Down NMU Up 

CDC20 Up NNAT Down 

CDCA3 Up NOX4 Up 

CDCA5 Up NTHL1 Up 

CDCA8 Up NUDT1 Up 

CDK2AP2 Up NXT1 Up 

CDKN3 Up OIP5 Up 

CENPA Up PACSIN3 Up 

CENPN Up PAQR4 Up 

CEP55 Up PBK Up 

CEP72 Up PIGR Down 

CHST9 Down PLK1 Up 

CIRBP Down POLD1 Up 

CLPTM1L Up POLE2 Up 

CTSA Up POLR2D Up 

CTSO Down POP7 Up 

CYP4V2 Down PPP1R14C Up 

DAGLA Up PPP1R1B Down 

DAXX Up PRC1 Up 

DEPDC1 Up PSMB3 Up 

DET1 Down PSMC1 Up 

DNAJC9 Up PTCH1 Down 

DTL Up PTTG1 Up 

E2F1 Up RAD51AP1 Up 

E2F7 Up RAE1 Up 

EIF4EBP1 Up RBM28 Up 

ELK1 Up RECQL4 Up 

ENO1 Up RP9 Up 

EXO1 Up RRM2 Up 

FAM50A Up RSL1D1 Down 

FAM91A1 Up RUVBL2 Up 

FBXO5 Up RWDD3 Down 

FBXW2 Up SAC3D1 Up 

FOXA3 Up SBSN Up 
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FYCO1 Down SLC22A15 Up 

GALNT12 Down SLC25A13 Up 

GARNL3 Down SLC25A27 Down 

GBP6 Up SLC26A6 Up 

GINS2 Up SMC4 Up 

GP6 Up SNX8 Up 

GTPBP4 Up SPP1 Up 

HOXC6 Up SRD5A1 Up 

HOXC9 Up SRPRB Up 

HTR2C Up TAPT1 Down 

ICA1L Down TEAD4 Up 

IFNAR1 Down TRAF2 Up 

IGFBP2 Down TRIM65 Up 

IGFL2 Up TUBB Up 

IMPDH1 Up UBE2T Up 

ISG15 Up UHRF1 Up 

ITM2C Down UST Down 

ITPR3 Up WNT2 Up 

KIAA2013 Up XPO5 Up 

KIF11 Up YIF1A Up 

KIF14 Up ZFP2 Down 

KIF23 Up ZNF181 Down 

KIFC1 Up   

 

Supplementary Table 6: The 157 genes whose expression is monotonically increasing 

or decreasing with increasing BLCA stage. 

 

Supplementary Table 7: Genes with prognostic value validated in TCGA data. 

 Discovery TCGA 

Gene HR (95% CI for HR) p.value HR (95% CI for HR) p.value 

CBX7 0.6 (0.42-0.86) 0.0046 0.59 (0.43-0.81) 0.0013 

ZFP2 0.73 (0.61-0.89) 0.0013 0.67 (0.52-0.86) 0.0017 

AKAP7 0.66 (0.49-0.87) 0.0041 0.72 (0.57-0.92) 0.0086 

MED19 2.2 (1.3-3.9) 0.0052 2.4 (1.2-4.6) 0.011 

ENO1 1.9 (1.3-2.9) 0.0019 1.7 (1.1-2.6) 0.016 

ANLN 1.3 (1.1-1.6) 0.0038 1.4 (1-1.8) 0.025 

GTPBP4 1.7 (1.1-2.4) 0.009 1.9 (1.1-3.3) 0.029 

CDC14B 0.59 (0.43-0.81) 0.0013 0.66 (0.43-0.99) 0.044 
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Supplementary Figure 1: Clustering performance of the 20% protein frequency 

NMIBC dataset, for k = 3 clusters. 

(a) Consensus matrix heatmap of the three clusters showing size, boundaries and their 

classification tree. Values range from 0 = no correlation (white), to 1 = perfect 

correlation (blue). 

(b) Delta plot showing the relative change in the area under the CDF curve. More 

pronounced change is observed from k = 3 to 4 classes, indicating the existence of three 

clusters in the proteomics dataset. 

(c) Silhouette plot displaying the within cluster consistency of the output. Silhouette 

width informs for the relatedness of  a sample to its own cluster. Values near 1 indicate 

a well matched case, whereas those near 0 indicate the opposite.   
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(d) Cumulative distribution function (CDF) plot showing the repeatability of item co-

clustering across iterations (consensus index 1.0 = co-clustered in 100% of the 

iterations) for the different k- solutions. Curves with gains near 0 and 1, that also 

deliver greater area under them, exhibit the most stable clustering performance 
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