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Borke, Erik, M.S., Summer 2023 Computer Science

Assessing the Impact of Parallel Burnout Fires on Flank Rate of Spread

Chairperson: Douglas Brinkerhoff

The effects of flank-parallel suppression fires on the local rate of spread
(ROS) of freely burning headfires through fully cured homogeneous grass fuels
are assessed. Data sets include: one thermal image stack of a prescribed burn
recorded by drone, and a suite of simulation experiments carried out in Wildland
Urban Interface Fire Dynamics Simulator (WFDS). A new approach to com-
puting ROS, curvature proxy driven normals to convex polylines, was developed
to carry out this analysis. ROS time series depicting flank acceleration of the
prescribed burn and simulation experiments, observable under coarse and fine
directional classification schemes respectively, are the primary results. Pixelwise
ROS magnitude and direction sensitivites to combined temperature threshold
and curvature proxy localization parameter selection are also included.
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1 Introduction

The costs of a wildland fire can be measured in terms of the burned acreage,
destroyed infrastructure, quantity of released CO2, lives lost, and the monetary
cost of controlling its spread [1]. In recent years the western United States has
been experiencing longer fire seasons with both more and larger wildland fires [2,
3]. Given this, it is more important than ever that we understand wildland fire
behavior, and thus can make accurate predictions about fire growth, intensity,
and the effects of fire suppression tactics.

Since the 1990s there has been a proliferation of computational models of
varying complexity. These have been categorized as physical (modeling fire di-
rectly through chemical and physical processes), empirical (modeling fire spread
via statistical inference from lab and field based observations), and simulation
(typically modeling fire spread through a GIS described landscape with spread
driven by physical, empirical, or general mathematical model) [4, 5, 6]. While
none of these models can perfectly capture fire behavior, an understanding of
both the behaviors that they do capture — and those that are missed — is nec-
essary for their refinement, and before they are broadly applied by fire managers
[7].

A common fire suppression tactic employed by fire managers is that of back-
firing or burnout firing — fighting fire with fire. Prior to the initiation of a
suppression fire, control lines — boundaries set away from the wildfire where
some combination of fuels removal and natural terrain barriers are believed to
be sufficent for preventing its spread beyond them — are established. Subse-
quently, suppression fires are lit inside the control lines to consume fuels ahead of
the wildfire, effectively improving the control line. In addition, suppression fires
may dynamically interact with the wildfire influencing its behavior — changing
its direction, rate of spread (ROS), or reducing its intensity [8].

The dynamic interaction of freely spreading wildfires and suppression fires is
an active area of fire science research. Backing fires, suppression fires intended
to spread towards the wind or down slope, have been studied extensively [9, 10,
11, 12]. Firelines meeting at an oblique angle, sometimes called a “jump fire”
or “junction fire,” have also been studied both numerically and experimentally
[13, 14, 15, 16]. However, the dynamic interaction of parallel firelines spreading
perpendicular to the wind have only recently been experimentally studied [17].
Furthermore, at the time that this work began, the interaction between the flank
of a head fire and a parallel backing fire did not seem to have been studied.

A 2017 experimental grass fire conducted at the Sycan Marsh in Oregon
demonstrated the dynamic interaction between the flanks of a wind driven head-
fire and suppression fires lit parallel to its flanks. This fire was one of the twelve
prescribed burns recorded with a nadir facing infrared (IR) camera mounted to
a drone by Moran et al, but not one of the four for which they reported results
[18].

We hypothesize first, that the visually apparent flank accelerations observed
by animating the Sycan prescribed burn image stack can be captured numer-
ically (e.g. observe an increase in flank ROS through time), and second that
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fully physics-based fire simulation will also show a measurable flank acceler-
ation in the presence of a flank parallel suppression fire. To test these hy-
potheses, we developed a new method for obtaining ROS data from thermal
imagery, and conducted an experimental suite of full physics simulations in
Wildland Urban Interface Fire Dynamics Simulator (WFDS).

Thermal imagery is fast becoming an invaluable tool for the study of fire
behavior driven by the increasing quality and affordability of IR cameras [19].
Once recorded, analyzing the thermal imagery is a two-step process, each of
which must be carefully considered and conducted. Prior to extracting metrics of
fire behavior, the raw imagery must be preprocessed to account for the camera’s
location, orientation, and movement. The second step is to employ suitable
methods of extracting the relevant fire behavior metrics. In the present work,
we are particularly concerned with obtaining a robust ROS dataset.

Caution in obtaining ROS data is warranted, as ROS computations are quite
sensitive to algorithm choice, burning temperature thresholds, and the incorpo-
ration of direction of spread [20]. When evaluating previous work done to obtain
ROS data from IR imagery, we assessed the scale at which the method was de-
veloped, (lab, medium, field, landscape), the fuels complex being consumed, the
research goals directing its development, and the specifics of determining the
direction of spread [18, 21, 22, 23, 24, 25, 26]. Given the data we were working
with and our research goals, we developed a new approach to measuring ROS
tailored to our needs.

In this work we treat ROS as a local (i.e. pointwise) vector quantity de-
scribing the evolution of a fire front (a planar curve) through time, and con-
ceptually adopt the definition of Richards [27]: “. . . rate of spread at a point
on a general two-dimensional fire perimeter is the rate of expansion in a direc-
tion normal to the perimeter instantaneously occurring at the point and time
in question.” However, given our thermal imagery’s spatial (≈ 0.25m/px) and
temporal (0.5− 1Hz) resolutions, we felt a naive application of this conceptual
model (identifying ROS vectors as pointwise normals to a given fire perime-
ter terminating on the successive perimeter) would mischaracterize the fire’s
behavior. The issue at hand is a mismatch between the spatial and temporal
resolutions of our data: the spatial resolution is fine enough to capture some
of the inherently noisy local structure of the fire perimeters, but the temporal
resolution is too coarse for naively normal vectors to accurately represent the
fire behavior.

Our solution to the resolution mismatch is to generate spread vectors which
are locally normal to the fire perimeter’s global shape regardless of any local
noise. We conceptualize the global shape of fire perimeters from our data as
smooth convex planar curves, and take each perimeter’s convex hull boundary as
an initial estimate of this conceptual ideal. These initial estimates are adjusted
near the image frame’s edge when several heuristic criteria indicate that they
deviate from the fire’s global shape as it extends beyond the image frame due to
localized spread variability. Direction of spread is then computed to be normal
to the adjusted convex hull boundary at its endpoints, and continuously varied
from the start direction to the end direction according to a polyline curvature
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proxy. We address parameter sensitivities, both burning temperature threshold
and curvature driven normal localization, by specifying a reasonable range of
values for each and producing spread vector collections for every combination
and reporting outlier-resistant statistics for the aggregate collection.

Sections 2.1 and 2.2 provide detailed information on our data sources, the
Sycan prescribed burn and suite of WFDS simulation experiments respectively.
Section 2.4 addresses our new approach to computing ROS including its fun-
damental assumptions, the production of ROS vectors from curvature proxy
driven normals and the scope of the our parameter sensitivity study. Our re-
sults and their discussion are presented in Section 3 followed by our conclusions,
including a discussion of this study’s limitations and directions for future work,
in Section 4.
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2 Methods

Our thermal imagery came from two sources — the Sycan prescribed burn
(Section 2.1) and a suite of WFDS simulation experiments (Section 2.2). A
sequence of pixelwise fire perimeters described by polylines was extracted from
every thermal image stack (Section 2.3), and ROS data was generated from each
sequence of perimeters using curvature proxy driven normals (Section 2.4) to
determine direction of spread.

2.1 Sycan Prescribed Burn

The Sycan prescribed burn was performed on 10/18/2017 between roughly 23:55
and 23:59 GMT. The plot (Figure 2.1) was situated in a flat grass field bounded
closely by an east-west roadway to the south and a northeast-southwest roadway
to the west. Nearby weather stations and anemometers indicate the weather was
a cloudy 65◦F with winds out of the southwest and west southwest averaging
between 4.5m/s and 6.7m/s and gusting up to 8.9m/s. Direct fuel measurements
were not taken, but the grasses were reported to be fully cured, in the highest
25% cover class, averaging 0.70m and ranging to 1m tall featuring vertically
varied bulk density, while total bulk density and fuel moisture content were
estimated to be 0.8kg/m2and 6-8% respectively. Figure 2.2 shows grass similar
to that present at the burn location. A hovering drone centered over the burn
plot carrying a gimbaled FLIR XT thermal camera fitted with a custom neutral
density filter recorded the burn from a height of 120m with a nadir facing
camera. The camera (with neutral density filter) was calibrated to measure
temperatures from 100-1100◦C, and at a height of 120m its (640×512)px images
have a nominal spatial resolution of 0.227m/px [18]. The temporal resolution of
the recording was variable, averaging 0.64Hz. Metadata from the original images
included precise time stamps, which were used to compute the time steps used
in ROS computations. Figure 2.3 contains a selection of the stabilized images.
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Figure 2.1: Precise location of the Sycan prescribed burn (Grass Plot E, Sycan
Marsh, Oregon). A frame from the IR image stack overlays a digital terrain
model of the surrounding marshland.

Figure 2.2: Similar Grass to that present in Plot E
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Figure 2.3: A selection of frames from the Sycan IR image stack. Frames
are labeled by elapsed time (s). The head fire crosses the image frame and
suppression fires can be seen in the top-right and bottom-left corners.

2.2 Simulations

2.2.1 The WFDS Model

WFDS employs a Large Eddy Simulation (LES) Computational Fluid Dynamics
model for fluid flow which accounts for sub-grid-scale (SGS) objects modeled by
Lagrangian particles, the mixing and combustion of lumped chemical species,
the effects of convective and radiant heat transfer, and the pyrolysis of solid and
vegetative fuels [28, 29]. The model is based on a simplification of the Navier-
Stokes equations for fluid flow developed by Rehm and Bahm [30], which is
appropriate for low mach number flows. Grid cell (voxel) values in LES simula-
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tions can be thought of as representing the mean value for each cell, and these
are evolved according to the numerical solution (computed from a predictor
corrector scheme) to the equations developed by Rehm and Bahm including the
modeling of SGS turbulence by gradient diffusion. Mass and thermal diffusiv-
ity are modeled by constant Schmidt and Pradtl numbers, whose values were
derived from smoke plume simulation experiments, while the Deardorff model
is used for turbulent viscosity.

Combustion is modeled by tracking the advection, diffusion, and mixing
of lumped quantities (air, fuel, products) of specific chemical species in fixed
(mass fraction) proportions. Chemical reactions are assumed to occur infinitely
fast by default, though finite rate chemistry governed by an Arrhenius equation
may be specified. Every lumped quantity extant in a cell is assumed to exist
unmixed with the others at the beginning of each timestep, and SGS mixing and
combustion across the time step is modeled. The mixed quantity of the limiting
reactant determines the total amount of combustion which occured — and the
lumped species, heat released, and radiant energy are updated accordingly.

Vegetation is modeled by a single Lagrangian particle in each grid cell where
it is specified to exist, as a thermally thin solid fuel element. The parametriza-
tion of this Lagrangian particle includes its physical characteristics as an ob-
struction to flow, and the necessary specifications for the the thermal degrada-
tion model. Thermal degradation is modeled in three Arrhenius rate controlled
steps: endothermic drying, endothermic pyrolysis, and exothermic char oxida-
tion.

2.2.2 WFDS Simulation Experiments

Simulation experiments were designed to test the effect of a suppression fire lit
parallel to the flank of a wind driven grass fire. Control simulations consisted
of a freely burning grass fire, and treatment simulations were identical to the
control except for the inclusion of a suppression fire. Temperature values were
extracted every second throughout the fuel bed at heights of 0, 0.25, 0.5, and
1m. The pixel values in our final image stack were assigned the maximum of
these four values to best mimic an IR camera’s view of the simulation because
we expect the highest temperature would dominate given the T 4 term in the
Stefan-Boltzman Law [31].

The total simulation domain was (150m × 200m × 58m) described by x ∈
[−25, 125]m, y ∈ [−75, 125]m, and z ∈ [0, 58]m. Situated inside the domain was
a 100m × 100m section of grass fuels, which was given a 25m berth from the
domain edge on three sides and a 75m berth on the windward side. To allow for
parallel computation, the domain was broken into 31 meshes each containing
roughly the same number of voxels.

The simulation domain size and mesh resolutions were chosen to minimize
the errors attributable to each given our available computational resources and
time constraints. A sufficently large domain minimizes the effect of errors intro-
duced to the wind flow through the non-physical boundaries, and furthermore
provides space for the development of any fire-generated wind flows which could
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influence the observed fire behavior. On the other hand, a fine grid size is
necessary where combustion occurs to produce realistic fire behavior [29, 32].
However, a large domain with a uniformly fine grid is very computationally ex-
pensive. Thus, in order to produce optimal simulation results given our time
and computational constraints, we found it necessary to vary the grid resolution
according to the mesh location. Table 2.1 contains the meshing scheme details
and Figures 2.4-2.5 provide a visual summary from a top-down ((x,y)-plane)
and side-on ((y,z)-plane) perpsective.

Fuel Area

# Meshes x-domain y-domain z-domain voxel size

16 [0, 100] [0, 100] [0, 4] 0.25m

4 [−25, 125] [−25, 125] [4, 8] 0.5m

1 [−25, 125] [−25, 125] [8, 18] 1m

1 [−25, 125] [−25, 125] [18, 58] 2m

25m buffer

# Meshes x× y-domain z-domain voxel size

5 ([−25, 125]× [−25, 125]) \ ([0, 100]× [0, 100]) [0, 4] 0.5m

Wind Development Area

# Meshes x-domain y-domain z-domain voxel size

2 [−25, 125] [−75,−25] [0, 6] 0.5m

1 [−25, 125] [−75,−25] [6, 18] 1m

1 [−25, 125] [−75,−25] [18, 58] 2m

Table 2.1: Simulation Domain Mesh Locations and Grid Resolutions
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Figure 2.4: Top-down depiction of the mesh placements(z ∈ [0, 4]), and the
burner locations (z = 0)
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Figure 2.5: Side-on depiction of mesh grid resolutions (x = 50)

The grass was parameterized to nearly match the 2007 Australian grass fire
simulation work of Mell et al [32] — with adjustments to both more closely
match the reported Sycan Marsh conditions, and to ensure flank fire existence
and spread. Specifically, the grass was uniformly 1m tall, with a vertically varied
bulk density. The bottom 0.5m of grass was assigned a bulk density of 0.9kg/m2,
and the top 0.5m was assigned a bulk density of 0.7kg/m2 resulting in a total
bulk density of 0.8kg/m2. In addition, fuel moisture content was reduced to
5%, and heat of combustion was increased to 17700kJ/kg [33, 34].

The winds were imposed as a boundary condition from the YMIN boundary
and held constant in each simulation at values of 4, 6, 8, 10, and 12m/s. Ad-
ditionaly, the winds were given an atmospheric profile varying the wind speed
with height according to u = u0(z/z0)0.143 where the reference wind height,
z0, was set to 2m [29]. All other non-ground boundaries were open, meaning
ambient pressure and temperature conditions are assumed to exist beyond the
boundary with flows through the boundary governed by the pressure gradient
[28, 29].

In all simulations the grass was ignited by a burner encompassing a 6m×6m
square block situated slightly off center from the windward edge of the grass field
covering [64, 70]×[0, 6]. This configuration was chosen because it quickly formed
a clear wind driven head fire with well-defined flanks. The burner was set to
ignite at time T = 1, and to be fully turned off at T = 7, with a 1 second ramp to
and from full power in order to avoid numerical instabilities in the simulations.
Treatment simulations included a second burner which initiated a suppression
fire lit parallel to the flanks of the head fire. Each treatment burner ran at full
power for 3 seconds with the same 1 second ramps, while their locations and
ignition times, which varied with wind speed, are summarized in Table 2.2.
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Wind Speed Location Ignition Time

4m/s [39, 40]× [5, 40] 45

6m/s [39, 40]× [5, 40] 35

8m/s [39, 40]× [5, 50] 30

10m/s [39, 40]× [5, 50] 30

12m/s [39, 40]× [5, 100] 25

Table 2.2: Suppression Burner Ignition Times and Locations

2.3 Fire Perimeter Identification

Figure 2.6: Sycan burn image and its associated perimeter

The original image stacks are lightly processed, illustrated in Figure 2.7, in
order to identify a pixelwise fire perimeter according to a burning temperature
threshold. First, max filtering is performed pixelwise through time. Letting
T (x, y, t) represent the temperature assigned to the pixel at location (x, y) and
time step t, we represent our max filter by

Tmax(x, y, t∗) = max
t≤t∗

T (x, y, t).

The max filter ensures that burnt pixels, which cool after the fire front passes
over them, remain above the temperature threshold. Next the max filtered
images are blurred with a Gaussian filter, σ = 3, to ensure continuity of the fire
perimeter [35]. The final image processing step is to assign pixels with a value
greater than the burning temperature threshold a value of 1 and those below
a value of 0. The resulting binary images define the pixelwise fire perimeters,
which we convert to a polyline representation (contour) for further analysis
[36, 37]. Contouring can produce a collection of polylines for a given image
frame. Initial processing selects the longest perimeter from each collection by
default, and further processing is performed by filtering the shorter polylines
with a selection polygon covering the area of interest.
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Figure 2.7: Perimeter identification image processing steps

As ROS algorithms are sensitive to threshold choice [20], we generated re-
sults across a visually identified range of thresholds — T ∈ [300, 500] and
T ∈ [200, 300] every 20◦C for the simulation and Sycan data respectively.

2.4 ROS Computations

Our ROS computations are designed to determine local, or point-wise, ROS
such that the direction of spread is approximately normal to its global shape,
conceptualized as a smooth convex planar curve, while preserving local spread
variability. We begin this section by establishing a common understanding of
the geometric space, objects, and concepts underpinning our methods of spread
vector generation in Section 2.4.1; cover the approximation of the fire’s global
shape with a convex polyline in Section 2.4.3; and finally present the generation
of spread vectors by curvature proxy driven normals in Section 2.4.4, which
effectively smooths the polyline approximation.

2.4.1 Preliminary Geometric Notions

The geometric space we operate within is a consequence of the source of our
fire perimeters — R2 equipped with the standard Euclidean metric, and scaled
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such that coordinates and distances are measured in pixels. Points will be
identified by lower case letters and specified in coordinates as p = (x, y), vectors
by bold lower case letters and specified in coordinates as p = 〈x, y〉, lines by
←→
� where the object(s) � define a line, polylines and polygons by capital letters
and specified by sequences of points. The convex hull of a collection of points is
the smallest convex polygon containing the collection, and the interior angles of
convex polygons all measure less than 180◦ or π radians. We note here that we
assume all object and function definitions given below are well defined, given
the scope of this work, and dispense with any consideration of edge cases or
degenerate results.

Distances may be computed between points, denoted d(p, q), between sets
of points, defined by d(X,Y ) = minx∈X,y∈Y d(x, y), and along a polyline which
we denote by dP (q), and dP (p, q).

Given a pair of points, p, q ∈ R2, we will write pq for the line segment
between p and q, ←→pq for the line containing p and q, and −→pq when specifying a
vector by its initial point p and terminal point q. We note here that while −→pq ∈
R2
p, the tangent space at p, we implicitly apply the vector space isomorphism

Lp : R2
p → R2 defined by −→pq 7→ q − p as necessary, e.g. we may write −→pq · −→rs,

without explicitly applying Lp and Lr [38].
All angle measurements are derived from Equation 2.1, where u,v are vec-

tors, and θ ∈ R/2πZ is the angle between them. We implicitly map every θ to
its representative in the specified intervals.

cos(θ) =
u · v
‖u‖ ‖v‖

. (2.1)

For convenience we define several useful “θ” functions here. θ̇ : R2×R2 → [0, π]
computes the absolute value of θ for θ ∈ (−π, π].

θ̇(u,v) = arccos

(
u · v
‖u‖ ‖v‖

)
. (2.2)

θ̂ : R2×R2 → [0, π], which we conceptually think of as measuring the sharpness
of the angle between two vectors.

θ̂(u,v) = π − θ̇(u,v). (2.3)

We also make use of signed angles with θ : R2 → (−π, π] defined by

θ(〈x, y〉) = sgn(y)θ̇(〈x, y〉, e1) (2.4)

and the signed angle relative to v, θv : R2 → (−π, π], is simply

θv(u) = θ(u)− θ(v) (2.5)

A polyline, P = P (v1, . . . , vn), is specified by a sequence of vertices (points),

includes all points of ∪n−1i=1 vivi+1, and has a length, ‖P‖ =
∑n−1
i=1 d(vi, vi+1). We

call v1 its start (vertex), and vn its end (vertex). When forming vectors from
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the sequence of vertices {vi}, we will write v+
i = −−−→vivi+1 and v−i = −−−→vivi−1. Given

a point q ∈ vkvk+1, we write dP (q) for the distance along P to q and define it by
dP (q) = ‖P (v1, . . . , vk, q)‖. The distance between two points, p, q ∈ P , along P
is dP (p, q) = |dP (p)−dP (q)|. We write P (dP (q)) = q for the inverse operation of
obtaining a point at a given distance along P . Normalized versions are written

with a tilde, for example d̃P (q) = dP (q)
‖P‖ and P̃ (d̃P (q)) = q.

A polygon is also specified by a sequence of vertices G = (v1, . . . , vn), and
includes all points of its interior and boundary, ∂G, which is the polyline ∂G =
(v1, . . . , vn, v1). When P = (v1, . . . , vn) is a polyline, and G = (v1, . . . , vn) is its
convex hull, we say that P is convex.

2.4.2 Assumptions

Our approach to computing ROS was not developed for general use, but instead
to best approximate direction of spread for the data sets it can be applied to.
Thus, we present here a basic set of assumptions about the fire spread being
studied, which we feel should be met prior to an application of these methods1.

List 2.1: Basic Assumptions

1. The convex hull of the fire perimeter is a good approximation to its global
shape.

2. The general trend of fire spread appears to be in a direction normal to the
global fire shape.

3. The time step between successive perimeters is small enough to justify
approximation of local fire spread paths by straight lines.

4. The fire perimeter polylines begin and end on the frame of the image.

5. The start and end points of the first perimeter of the entire sequence
correspond to flank sections of the fire perimeter.

2.4.3 Global Shape Approximation

On its face, approximating a fire’s global shape by the boundary of its convex
hull should be simple, however the fire’s interaction with the image frame com-
plicates this process. The fire’s interaction with the corners of the image frame
need to be handled first, which will allow us to then extract an initial convex
polyline estimate. In most cases, the initial estimate will then serve as our fi-
nal polyline approximation to the fire’s global shape, but each of these must
be assessed for significant changes in direction near the image frame. When it
appears that these changes reflect near frame spread variability, and the initial

1After minimal preprocessing - our simulation perimiters were cropped by ≈ 15px on the
windward edge to conform with all assumptions.
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estimate thus misrepresents the fire’s global shape, slight adjustments are made
to improve the initial convex polyline estimate.

As a fire expands, the start or end vertex of a fire perimeter may move
from one frame edge to an adjacent one across a time step. We describe this
interaction between the fire and the image frame as corner consumption. We
make one assumption about how a fire will consume image frame corners —
that any single time step will consume at most one corner. Edge cases which
violate this assumption must be known in advance, as they are handled not by
internal logic, but with additional command line arguments.

A corner c consumed at time step t by Pt will be appended to the vertex list
of Pk for k ≥ t prior to forming the convex hull Hk. The boundary of Hk will
then trace the image frame between the start and end of Pk when the corners
have been appended in the proper order. Consumed corners are tracked with
global variables and kept in a sequence which ensures that P (c1, . . . , cn) traces
along the image frame’s edges. Thus, we need only check which image edge the
end vertex lies on to decide between appending c1, . . . , cn, or cn, . . . , c1. The
boundary of the resulting convex hull decomposes into two contiguous sections,
one which traces the boundary of the image frame, and the other representing
the fire boundary’s global shape.

At this point our initial polyline approximation is

∂H − ∂F, (2.6)

where H is the adjusted convex polygon formed from the fire’s perimeter ac-
counting for corner consumption, and F is a rectangular polygon representing
the image frame. In practice making this computation directly is unreliable. It
is, however, easily worked around. The work around consists of buffering ∂F by
0.01px to form a clipping polygon, clipping ∂H (reliably removing the section
which traces ∂F ), and replacing the resulting start and end vertices with their
original values.

Spread variability near the frame’s edge may significantly alter direction of
spread near the image frame’s edge to reflect this variability, rather than the
fire’s true global shape as it extends beyond the image. The goal here is to
recognize when this occurs and correct the start or end of the initial convex
polyline to more accurately capture the fire’s global shape. In practice, these
adjustments are made infrequently because several (tuneable) heuristic criteria
must be met to trigger their application. The four tuneable variables and their
default values are: the frame offset percentage (δ = 0.05 = 5%), the frame
tolerance angle (θF = π

36 = 5◦), the flank tolerance angle (θf = π
12 = 15◦), and

the strict flank tolerance angle (θf = π
36 = 5◦).

The most basic criteria, that the convex polyline should not rapidly change
direction near the frame edge, is assessed last. The adjustment addresses this
directly, but only after verifying the critical implicit assumption that the section
under consideration is part of the fire’s flank. We verify this with the following
edge labeling scheme, whose heuristic tests adjust according to a categorization
of the fire perimeter’s current frame interactions.
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The core concept underpinning the edge labeling scheme is that for each time
step every image frame edge exists in one of three (ordered) states: an unknown
or vertex free state (U), a head fire state (H), when the headfire intersects
with the edge, and a flank state (F), when one or both flanks intersect with
the edge2. These states arise naturally from Basic Assumptions 1, 2, 4, and
5. Assumptions 4 and 5 force the initial start and end vertices to lie on the
fire’s flanks. Accurate edge label initialization is therefore guaranteed, which
the heuristic tests depend on. Assumptions 1 and 2 state that the fire’s growth
pattern is normal to its global convex shape, ensuring that the edge states
respect the practical3 ordering U ≺ H ≺ F . In other words, edges labeled U
can transition to H or F , edges labeled H can transition to F , and edges labeled
F are fixed.

The perimeter’s frame interaction status is similarly categorized by three
successive states (full ≺ mixed ≺ single flank), and we assume here that all
three states exist in the data4. A full status indicates the presence of both
flanks, and transitions to mixed when a corner is consumed and the new edge
fails to earn an F label. We interpret this to mean that the head fire has passed
beyond the image edge, and the current fire perimeter traces one flank and
a portion of the head fire. Once the entirety of the head fire section passes
beyond the frame, when an H- or U-labeled edge earns (i.e. passes a θf test)
an F label, the perimeter status transitions to single flank. We note here that
the heuristic tests require a consistent orientation of the fire perimeters, which
is accomplished in pre-processing.

The edge labeling scheme is carried out by forming representative test vectors
near the image frame’s edges. Given a polyline P = (v1, . . . , vn) and frame offset
percentage δ, the start and end test vectors (vα,vω respectively) are defined in
Equation 2.7 where δx is defined as δα = δ or δω = 1− δ

vx = v+
k : P̃ (δx) ∈ vkvk+1. (2.7)

The test vectors are offset from the frame by δ, to minimize the likelihood
that their direction is influenced by near frame spread variability, while still
being near the edge to maximize the likelihood that they are representative of
the appropriate edge label. Enforcing a consistent perimeter orientation and
having vα point away from the start edge while vω points toward the end edge
ensures that the values θ̇(vx,ux) are meaningful for each test called for by the
current perimeter status and trigger. The edge labeling scheme is summarized
in Table 2.3 for consecutive perimeters P = (v1, . . . , vn) and Q = (u1, . . . , un)
assuming end vertices lie onH-labeled edges when the perimeter status is mixed.

2The component perimeters of a single fireline broken by extending beyond the image frame
are processed independently.

3We say this is a practical ordering because F-edges can technicially transition to a vertex
free (irrelevant) state.

4Nearly guaranteed when no time step consumes more than one corner.
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Perimeter Status Trigger Test True False

Full u1 ∈ EU θ̇(vα,uα) < θf EF and Full -

Full um ∈ EU θ̇(vω,uω) < θf EF and Full EH and Mixed

Mixed Mixed Status θ̇(vα,uω) < θf Total Flank Mixed

Table 2.3: Edge Labeling Scheme

Perimeter starts and ends identified as existing on a flank section are assessed
for excessive near frame noise, and adjusted as necessary. This is accomplished
by removing vertices from the relevant end until the near frame change in di-
rection relative to that end’s test vector is less than the frame tolerance angle
(θF ). The inital or final line segment is then extended back to the frame edge.

2.4.4 Curvature Proxy Driven Normals

Curvature proxy driven normals were developed to bridge the gap between the
adjusted convex hull boundary obtained above, and the smooth convex planar
curve we conceptualize as the fire’s global shape. Intuitively curvature (κ) mea-
sures the local rate of change in direction of normal vectors to a curve as it is
traversed and is defined for plane curves in Equation 2.8 where T is the unit
normal tangent vector, and ds is the arclength parametrization of the curve [39]

κ =

∥∥∥∥dTds
∥∥∥∥ . (2.8)

Accordingly, the curvature at every vertex of a polyline is undefined and zero
at all other points. This starkly contrasts the curvature of our conceptual ideal,
which is everywhere defined and strictly positive56. In the remainder of this
section we present the precise definitions of κ̂l and θ(nκ̂(p)), a family of strictly
positive heuristic curvature proxies for convex polylines and the direction of the
curvature proxy driven normal at p respectively, and finish with the details of
our parameter sensitivity study of curvature driven normals.

Given a convex polyline, P = P (v1, . . . , vn), and p ∈ P , we define κ̂l(p) to
be

κ̂l(p) =

n−1∑
i=2

θ̂(v−i ,v
+
i )(1− d̃P (p, vi))

l. (2.9)

The construction of κ̂l was guided by the intuitive meaning of curvature. It dis-
tributes the measurable changes in direction (the θ̂ values of non-boundary ver-

tices) across the entirety of P , and the weight function wl(p, v) = (1− d̃P (p, v))l

localizes this distribution. The parameter l controls the degree of localization,
and will be ommitted from our notation when an arbitrary fixed positive value
may be assumed or its value should be clear from context.

5Strictly positive curvature is technically a stronger condition than smooth and convex.
6Signed curvature may be strictly negative, depending on parametrization.

17



Figure 2.8 illustrates the computation of κ̂(p) for a single point p marked
with an “x” on the convex polylines whose vertices are marked by blue circles.
The size of each circle indicates its weight and its darkness indicates its θ̂ value
in the computation of κ̂. Figure 2.9 displays the same convex polylines, colored
in their entirety according to κ̂.

Figure 2.8: κ̂(p) for a selection of adusted convex Sycan perimeters

Figure 2.9: κ̂(P ) for a selection of adjusted convex Sycan perimeters

Curvature driven normals are normal to P at v1 and vn while their directions
are otherwise shifted from θ(nκ̂(v1)) to θ(nκ̂(vn)) according to the fraction of
total curvature between each given point and v1. More precisely, given a coun-
terclockwise oriented convex polyline P , p = P̃ (t), and θs, (the direction of
the outward facing normal to v1, v2) the direction of a curvature proxy driven
normal to P at p is:

θ(nκ̂(p)) = θs +

(∫ t
0
κ̂(P̃ (s)) ds∫ 1

0
κ̂(P̃ (s)) ds

)(
n−1∑
i=2

θ̂(v−i ,v
+
i )

)
. (2.10)

In practice the integrals in the scaling term are approximated by finite sums
over a collection of evenly-spaced sample points from P .
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Given a sequential pair of fire perimeters (P,Q) and the inner perimeter’s ad-
justed convex hull boundary (HP ), we generate ROS vectors from P toQ accord-
ing to the map given in Equation 2.11, which is defined in Equations 2.12–2.13
and elaborated on in List 2.2. In this work spread vectors are formed approx-
imately every 0.5px distance along HP , and the integrals in Equation 2.10 are
computed from curvature proxy values spaced approximately every 0.05px along
HP .

ROS : HP → TP. a

h 7→ −→pq. (2.11)

P = P ∩
←−−→
nκ̂(h), and Q = Q ∩

←−−→
nκ̂(h) (2.12)

p = argmin
x∈P

d(x, h), and q = argmin
x∈Q

d(x, h). (2.13)

List 2.2: ROS Computational Steps

1. Compute nκ̂(h), the curvature driven normal at h.

2. Compute candidate sets of initial and terminal points (P,Q) by finding
the intersection of the line containing nκ̂(h) with P and Q respectively
(Equation 2.12).

3. Select the nearest point to h from each candidate set to form the spread
vector −→pq (Equation 2.13).

A parameter sensitivity study was conducted to aid in our selection of the
localization parameter l and to compare the accuracy of curvature driven nor-
mals with naive normals (encoded as l = −1). Tables 2.4 and 2.5 summarize
the extent of the study.

Parameter Value Range Value Sequence Relation Units

Resolution 25− 400 an = 2 ∗ an−1 px/U

Simplification Tolerance 0− 2 an = 0.25 ∗ 2n−1 n > 0 px

Start Position 0− 0.5 an = an−1 + 0.05 d̃P (v1, s)

End Position 0− 0.8 an = an−1 + 0.05 d̃P (vn, e)

l −1, 25− 500 an = an−1 + 25 -

Table 2.4: General Sensitivity Study Exploratory Parameters

aTP =
∐

p∈P R2
p i.e. vectors in R2 with initial points in P .
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Parent Function a-Value Range ∆a Domain

a sin(x) 0.5− 5 0.5 [0, π]

e(ax) 0.1− 1 0.1 [−5, 3.5]

ax2 0.2− 2 0.2 [−5, 5]

Table 2.5: Sensitivity Study Functions

Every function in this study was approximated by the convex hull boundary
of a binary pixelwise contour. The pixelwise representations of each function
were generated at a range of resolutions (measured in pixels per unit), and their
convex hull approximations were simplified across a range of tolerances (mea-
sured in pixels). The simplified convex hull approximations were sliced into
fractional parts ranging from 20− 100% of the simplified perimeter by combin-
ing the start and end positions found in Table 2.4. The start and end position
combinations were chosen in an upper triangular fashion to eliminate redun-
dancy due to the symmetry of a sin(x) and ax2 around x = π/2 and x = 0. A
collection of 2001 evenly spaced curvature driven normal directions were gener-
ated for every localization parameter in the study on each slice, and the root
mean squared error (RMSE), mean absolute error, and maximum absolute error
were recorded in addition to the parameters defining the slice and a selection of
its easily computable characterstics (e.g. number of vertices, total length).

We assessd the sensitivity study results by first computing the ratios Ri(l, t)
defined by Equations 2.14 and 2.15 for each error measure (E) where l is the
degree of localization and t is the simplification tolerance, (all other exploratory
parameters fixed i.e. resolution, function, start point, and end point), and ob-
serving their distributions across various subsets of the data set.

Ri(l, t) =
E(l, t)

Di(l, t)
. (2.14)

D1(l, t) = min
l,t

E(l, t), D2(l, t) = min
l
E(l, t),

D3(l, t) = min
t
E(−1, t), D4(l, t) = E(−1, t). (2.15)

Transforming each recorded error measure into the four ratios Ri normalizes
the data to measure relative performance, and we interpret the fixing of t in
R2 and R4 to represent a fixed “quality” of function approximation. R1 and
R2 measure performance relative to optimal and have a lower boundary of 1.0.
The optimal performance normalizer is selected from all 105 l, t combinations
in the case of R1, while R2’s optimal performance normalizer is selected from
all 21 l values after fixing the simplification tolerance t in addition to the other
exploratory parameters. R3 and R4 on the other hand measure performance
relative to naive normals (l = −1) and have a lower boundary of 0.0.

R3’s normalizer is the optimal naive normal performance across the five t
values, and R4 normalizes by the naive normal performance when t is fixed.

20



The Ri distributions were evaluated for their performance within (R2, R4)
and across (R1, R3) simplification thresholds. Well-performing distributions
were characterized by peaks near the lower boundary and a more rapid con-
vergence towards zero in comparison with their peers. Poor-performing distri-
butions on the other hand were typically flatter in comparison, and if peaked
would often rise from near zero at the boundary. When evaluating R3 and
R4, we looked for the rapid convergence towards zero of a well-performing dis-
tribution to occur before 1 — indicating that those distributions were rarely
outperformed by naive normals.

We assessed over 500 of these distribution collections and found that naive
normals were rarely optimal. Unfortunately, there was no clear pattern for
selecting an optimal l, t combination. However, at low resolutions and high
simplification tolerances, which we interpret as being most representative of
our data, localization values of 25 and 50 did appear to stand out. We then
repeated a smaller version of the study, varying l values from 5− 50. Based on
those results we produced spread vectors for every multiple of 5 in [25, 50] for
inclusion in our final results.
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3 Results and Discussion

The first goal of this work is to numerically capture the visually apparent flank-
parallel supression fire effects observed during the Sycan prescribed burn. The
second goal is to observe the effect of flank-parallel suppression fires in fully
physics-based fire simulation. In each case, we seek to identify measurable flank
fire acceleration as evidenced by an increase in ROS through time. To achieve
this, we identified the need for a robust ROS data set to accurately characterize
each fire’s local behavior — especially its direction of spread. We developed
curvature proxy driven normals to determine direction of spread according to the
local properties of a pixelwise fire perimeter’s idealized global shape irrespective
of any pixel-level noise.

Our process for measuring ROS produces a collection of vectors in space,
whose coordinates are measured in pixels. Vector magnitudes are scaled to rep-
resent ROS as measured in m/s given the known spatial and temporal resolutions
of each image stack. Vector direction is measured in radians by θ ∈ (−π, π), and
computed relative to forward spread. Throughout this section we use both a
fine and a coarse categorization of vectors according to their direction of spread,
which are both summarized in Table 3.1, and use dashed and solid lines to distin-
guish between treatment and control simulations respectively when they appear
together in the same figure.

Coarse Categorization

Spread Direction θ-range Color

Forward (−π4 ,
π
4 ) Blue

Left Flank (π4 , π) Red

Right Flank (−π4 ,−π) Green

Fine Categorization

Categories θ-ranges (+),(-) Color

±1 ( π18 ,
3π
18 ), (−3π18 ,

−π
18 ) Blue

±2 ( 3π
18 ,

5π
18 ), (−5π18 ,

−3π
18 ) Green

±3 ( 5π
18 ,

7π
18 ), (−7π18 ,

−5π
18 ) Red

±4 ( 7π
18 ,

9π
18 ), (−9π18 ,

−7π
18 ) Purple

Table 3.1: Vector Classification and Color Schemes

The remainder of the section has been organized into three subsections,
which are sequenced to increase (both within and between each subsection) in
complexity and the degree of data processing. In Section 3.1 we examine the
results directly as vectors in space and the relationship between their direction
and magnitude. From this relatively raw unprocessed perspective, we intend to
provide assurance that spread vectors derived from curvature proxy driven nor-
mals accurately capture fire behavior. Section 3.2 contains our primary results:
ROS time series. Here spread vectors are aggregated by direction and time
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step across all localization and temperature threshold parameter combinations
before reporting the quantile statistics of their magnitudes. We proceed from
individual simulations with coarse directional classifications for which only the
median and 95th percentile are presented to the smoothed differences of treat-
ment and control simulations across 20 evenly spaced percentiles from 50th to
97.5th. We conclude by transitioning from temporal to spatial aggregation in
Section 3.3, where we provide pseudocolored images of pixelwise medians and
IQRs for both direction and magnitude and an examination of the distribution
of pixelwise IQRs for every data set.

3.1 Vectors and Scatter Plots

We present the simplest case of manufactured elliptical spread first, as an initial
sanity test and baseline of comparison, before proceeding to the more compli-
cated simulation output and prescribed burn results. Gaussian curves (Equa-
tion 3.1) have been fit to several data sets to emphasize their overall arched
shape. The tables containing curve fit parameters and their RMSEs serve to
summarize the results for the simulations not depicted with figures, and as a
point of comparison between the simulation and prescribed burn results. The
curve fit parameters a (the vertical scaling factor) and b (the axis of symme-
try) are the primary comparison points, while c (the spread factor) is included
for completeness. We note here that temperature threshold and localization
parameters are fixed throughout this subsection at l = 25, Tsim = 400◦C, and
TSycan = 240◦C.

f(x) = a exp

(
− (x− b)2

2c2

)
(3.1)

Figure 3.1 displays the spread vectors generated by the method of curvature
driven normals for a pair of manufactured elliptical spread polylines. The man-
ufactured growth was by 1 unit on the semi-minor axis, and by 2 units on the
semi-major axis. The forward vector magnitudes ranged from 1.44 units to 2.00
units with a mean of 1.75 units, while both sets of flanking vector magnitudes
ranged from 0.99 units to 1.44 units with a mean of 1.13 units.
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Figure 3.1: Manufactured Elliptical Growth: Vectors in Space (left), Direction
vs Magnitude (right)

We remark that the total range of spread values is exactly in agreement
with the amount of manufactured growth, and find the average magnitudes
to be reasonable given the coarse classification bounds from Table 3.1. We
found these results compelling enough to consider the sanity test passed, and
proceed with assessing the more complicated spread patterns generated from
our simulations and the Sycan prescribed burn.

Figure 3.2 contains results for the 13th time step of 12m/s control simulation
output. The overall shape of the data in the scatter plot is similar to that in
Figure 3.1 as emphasized by the Gaussian curve.
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Figure 3.2: Control Simulation: 12m/s winds, t = 13s

In Figure 3.3 spread vectors for the entire 10m/s control simulation are
depicted on the left and their scatter plot, including a Gaussian curve fit, is in
the center. On the right we have Gaussian curves for each simulation (blue) and
Sycan (red). Tables 3.2 and 3.3 summarize the Gaussian curve fitting results for
this section’s fixed temperature threshold and localization parameters in terms
of RMSE, and the curve fit parameters a, b, and c.

Figure 3.3: Control Simulation: 10m/s winds, all time steps and Gaussian curve
fits for all simulations and Sycan at middle thresholds

We observe first that the simulation’s global shape appears to be convex,
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and that the division into forward and flank sections appears to be an adequate
characterization across the 10m/s simulation’s entirety. Turning our attention
to the scatter plot, we see that it is generally arch shaped with a peak near
0, and includes some large outliers in the forward section, corresponding to the
visible “bursts” of spread visible in the spatial plot. Then, we can see that every
Gaussian curve fit to a simulation is centered near 0, that the treatment and
control pairs are nearly identical for the slower wind speeds, and that the peak
of the Sycan curve fit is shifted to the right.

Treatment Control
Wind Speed RMSE a b c RMSE a b c

4m/s 0.14 0.63 −0.06 1.31 0.13 0.61 −0.03 1.31
6m/s 0.20 1.08 −0.04 1.00 0.17 1.02 −0.01 1.00
8m/s 0.34 1.65 −0.04 0.90 0.28 1.61 −0.01 0.88
10m/s 0.31 2.38 −0.04 0.80 0.33 2.19 −0.01 0.82
12m/s 0.33 2.51 −0.03 0.83 0.42 2.69 −0.03 0.81

Table 3.2: Gaussian Curve Fitting: Simulations

Figure 3.4 displays the Sycan spread vectors colored according to their coarse
classification and orange flank-parallel suppression fire vectors (which are not
included in any further analysis). Figure 3.5 displays scatter plots for the
Sycan burn, which subdivide the data into the time frames (0, 40), (40, 65),
and (65, 146) according to a visual assessment of the time series presented in
Figure 3.8.
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Figure 3.4: Sycan Spread Vectors in Space

We note here that fitting smoothed parametric splines[35] to the adjusted
convex hull perimeters was explored as an alternative to curvature proxy driven
normals with the Sycan data set. The spread vectors created normal to the
smoothed parametric splines differed significantly from curvature proxy driven
normals across the head fire sections where they were visually less directionally
coherent through time.
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Figure 3.5: Sycan Scatter Plots (L:t ∈ [0, 40) C:t ∈ (40, 65) R:t ∈ (65, 146))

In comparison to the simulation scatter plots, the general arch shape is not
evident, but we note the relative dearth of points representing forward ROS
less than 0.25m/s during the first time frame, and less than 0.5m/s, during the
second, while the third time frame’s scatter plot is clearly not arch shaped and
is instead responsible for the shifted peak in Figure 3.3.

At first glance, it appears that the classification of Sycan spread vectors in
Figure 3.4 is generally accurate, but ruined by edge effects as the fire burned
past the image frame resulting in a “phantom trail” of blue vectors traveling up
the image’s left edge. However, cross-referencing Figure 3.4 against Figure 2.3
shows that the “phantom trail” appears to clearly reflect reality.

Time Span RMSE a b c
(0, 146) 0.49 0.92 −0.31 1.32
(0, 40) 0.29 0.90 0.00 0.86
(40, 65) 0.40 1.13 0.05 1.08
(65, 146) 0.50 1.24 −0.41 1.08

Table 3.3: Gaussian Curve Fitting: Sycan

3.2 Time Series

Our primary results regarding the production of measurable flank fire acceler-
ations in the presence of flank-parallel suppression firelines are contained here.
Figures 3.8 and 3.9 capture the flank acceleration of the Sycan prescribed burn,
then (aided by the fine categorization defined in Table 3.1) Figures 3.12, 3.13,
and 3.14 capture accelerations towards the suppression fire in the simulation
experiments, with one exception.
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After aggregating spread vectors by direction at each timestep, we found
that the ROS distributions were frequently non-Gaussian (e.g. multi-peaked
and/or skewed). Thus, our time series are constructed from quantile statistics,
specifically the median and 95th percentile. Figures 3.6 – 3.9 each contain two
plots. Plots on the left further aggregate spread vectors across temperature
thresholds and localization values then report the relevant quantile statistics
with a shaded 95% confidence interval computed from 1000 bootstrap samples.
While plots on the right display a distinct time series for each combination of
temperature threshold and localization value. The 95% confidence intervals are
frequently almost imperceptible. Thus, Figures 3.10 and 3.11, which display
the difference in ROS between the treatment and control simulations, were
computed directly. These differenced time series feature a ±1px = ±0.25m/s
window shaded in gray and display time relative to suppression fire ignition.

Figure 3.6: 8 m/s median time series
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Figure 3.7: 8 m/s 95th percentile time series

Features of note in Figure 3.6 include the oscillation of the right flank above
all other flanks from 35s on, and the upward trend in forward ROS over the first
≈ 40s, a feature shared by both the 4 and 6m/s simulations. The most striking
feature is displayed in Figure 3.6, the simultaneous spike in both forward and
right flank ROS around 40s.

Figure 3.8: Sycan median time series
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Figure 3.9: Sycan 95th percentile time series

Turning our attention to the Sycan prescribed burn time series (Figures 3.8
and 3.9), we can see that they captured the right flank accelleration that we
were expecting to find. The first feature of note though, is the burst of ROS
in all directions which occurs from about the 40th to 60th second. After this,
we see the left flank drop off to nearly zero spread, while the right flank, and
forward spread burst forward together, after which the right flank maintains a
relatively high ROS until it merges with the suppression fire, at which point,
the left flank experiences a short burst in the opposite direction towards its
suppression fire.
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Figure 3.10: Treatment ROS - Control ROS, shaded section indicates +/-
1pixel/time step

Figure 3.11: Treatment ROS - Control ROS, shaded section indicates +/-
1pixel/time step

Figures 3.10 and 3.11 make it appear that across all wind speeds the addition
of a suppression fire parallel to the flank had almost no impact on the flank rates
of spread because most differences were contained inside of a ±1px window. The
few places where the flank spread rates differed by more than a pixel at any one
time step were all at the 95th percentile, which may be attributable to flank
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spread vectors at the 95th percentile being quite close to the forward threshold
direction, as evidenced by the arch shaped scatter plots. In contrast, there were
some signficant differences in forward spread rates, especially at the higher wind
speeds, which displayed significant variation prior to ignition of the suppression
fire. However, there is a pattern of increasing flank ROS in the treatment
simulation after, ignition of the suppression fire, and at the 95th percentile both
of the 4 and 6m/s right flank differences exit the 1px window.

At their core, figures 3.12, 3.13, and 3.14 are quantile difference time series.
They were computed in the same fashion as Figures 3.10 and 3.11 prior to
being smoothed. In addition, the data was subdivided according to the fine
categorization of Table 3.1, and results are included for 20 evenly spaced quantile
time series from the interval [0.5, 0.975] (distinguished by darkness) for each
directional category. Smoothing was done with a one-dimensional Gaussian
filter (σ = 3) to highlight the patterns that emerged from the finer categorization
[35]. We note that while smoothing does highlight the overall pattern, it also
reduces the absolute magnitudes. The patterns are clearest at wind speeds of 8
and 10m/s, depicted in 3.12 and 3.14 respectively.

Figure 3.12: Smoothed treatment-control fine categorization 8m/s

The negative θ categories are on the right, or near suppression fire side, and
depicted with dotted curves. The influence of the suppression fire becomes clear
when evaluating how the difference in spread between treatment and control
simulations varies between “equally left and right” sub categories i.e. when
comparing dotted lines to solid lines of the same color. The 8m/s simulation
makes the pattern exceptionally easy to spot because it displays increased spread
across its entire suppression fire side over about the final 5 seconds. We note
that the strongest effect is seen in the near forward categories of ±1, 2 and
the flat character of the first 10 seconds. While there is some variation prior to
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ignition of the suppression fire, the greatest effect comes around 10 seconds after
ignition, and corresponds with the paired forward and flank spike in Figure 3.7.

Figure 3.13: Smoothed treatment-control fine categorization 4 and 6 m/s

Figure 3.14: Smoothed treatment-control fine categorization 10 and 12 m/s

The general pattern of fire side accelleration persists across all wind speeds
except for the 12m/s simulation. In addition, the categories which display the
clearest difference vary with wind speed such that slower wind speeds experience
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a more pure flank, accelleration, while at higher speeds, categories ±1, 2, display
the clearest pattern.

3.3 Images

While the vector classification scheme of Table 3.1 was used extensively in sec-
tions 3.2 and 3.1, we abandon it here in favor of the more granular pixelwise
aggregation of spread vectors. Figures 3.15 and 3.16 summarize each fire’s
progress through space in two images — one for ROS and another for direction.
In addition to these summary images, we have also included and summarized the
uncertainty introduced by aggregating across a range of temperature thresholds
and localization values. Figure 3.17 displays all of the distribution estimates
for both ROS and direction uncertainties. The tail space of some uncertainty
distribution estimates was cut off in the figure to enhance its legibility — this
information is summarized in Tables 3.4 and 3.5.

Figure 3.15: Pixelwise ROS and Direction: 10m/s Treatment
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Figure 3.16: Pixelwise ROS and Direction: Sycan Prescribed Burn

In Figure 3.15 we can visually observe the magnetic pull of the suppression
fire in a high wind speed situatuation. In this simulation, rather than driving
a significant expansion perpendicular to forward spread, you can see the high
rate of spread section curve to right. In addition we note the minimal amount
of uncertainty introduced through the temperature threshold and localization
parameters. Almost all of the the θ IQRs are less then 0.056 radians, which
is approximately 3.2◦. And while there are some high uncertatinty spots in
terms of ROS, the vast majority are less than 0.5m/s, which is a ±1px window.
The Sycan fire (Figure 3.16) displays even less uncertainty, and we note that
directional uncertainty appears concentrated just to the left and right of forward
spread in both images.
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Figure 3.17: Kernel Density Estimates of pixelwise ROS and Direction IQRs

Percentile
Fire 80 90 95 97.5

Control 4m/s 0.23 0.25 0.26 0.34
Treatment 4m/s 0.24 0.25 0.26 0.31

Control 6m/s 0.25 0.29 0.42 0.51
Treatment 6m/s 0.25 0.30 0.42 0.53

Control 8m/s 0.25 0.41 0.59 0.80
Treatment 8m/s 0.27 0.48 0.75 1.11
Control 10m/s 0.30 0.52 0.82 1.20

Treatment 10m/s 0.33 0.56 0.88 1.28
Control 12m/s 0.41 0.72 1.07 1.47

Treatment 12m/s 0.36 0.59 0.88 1.20
Sycan 0.44 0.70 0.95 1.19

Table 3.4: ROS IQR KDE Tail Space
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Percentile
Fire 80 90 95 97.5

Control 4m/s 0.04 0.05 0.06 0.06
Treatment 4m/s 0.04 0.05 0.06 0.07

Control 6m/s 0.04 0.05 0.06 0.07
Treatment 6m/s 0.04 0.05 0.06 0.07

Control 8m/s 0.06 0.08 0.10 0.12
Treatment 8m/s 0.07 0.09 0.12 0.15
Control 10m/s 0.07 0.09 0.12 0.17

Treatment 10m/s 0.07 0.09 0.12 0.15
Control 12m/s 0.08 0.11 0.14 0.18

Treatment 12m/s 0.07 0.10 0.13 0.16
Sycan 0.04 0.06 0.09 0.11

Table 3.5: Direction IQR KDE Tail Space
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4 Conclusions

In this work we have developed a new approach to computing a fire’s ROS
(curvature proxy driven normals) which we stress tested against manufactured
elliptical fire spread, the drone captured IR image stack from a prescribed grass
fire, and a suite of simulation experiments completed in WFDS. Our results
largely agreed with the theoretical values associated with the manufactured
elliptical fire spread, captured the dynamic fireline interaction present in the
prescribed burn image stack, and determined direction of spread with a level of
consistency that allowed us to tease out the subtle influence of the suppression
fire in our simulation experiments. While these initial results are promising, this
project was limited in time and scope, and the method of curvature proxy driven
normals would benefit from both expanded testing and further refinement.

Expanded testing should include more complicated spread patterns as the
simulation and prescribed burn spread patterns in this study were relatively
simple. We feel it is vitally important (as the scope of this work included only
one live fire) that further testing include live-fire thermal imagery at a variety
of spatial scales traveling through a variety of fuels complexes. More com-
plicated spread patterns could be obtained via simulation as well. We would
suggest exploring (individually or in combination) gusting or turning winds,
non-homogenous fuel beds, and varied ignition patterns (including multiple sup-
pression fires as was the case during the Sycan prescribed burn).

While we were able to detect a subtle influence of the suppression fire on
the head fire’s direction and ROS in our simulation experiments, we feel this
paled in comparison to what we observed in the Sycan data set. We feel this
indicates two needs for future work — experimental prescribed burns including
flank parallel suppression fires to better characterize their expected influence
on a freely burning headfire, and further simulation studies of flank parallel
suppression fires to better understand the degree to which they capture this
interaction.

We suggest two paths for refining the computation of ROS from curvature
proxy driven normals: reducing the limitations imposed by its basic assump-
tions, and development of a method for selection of the localization parameter
based upon easily computable convex polyline characteristics. While the first
three basic assumptions are fundamental to the method (convex global shape,
spread appears normal to the global shape, and sufficiently small time steps),
the fourth and fifth assumptions (starts and ends correspond to flank sections
initially and exist on the image frame) are (potentially) necessary only as the
method is currently implemented. Their removal could reduce or eliminate man-
ual preprocessing and extend the method’s applicable scope. We suggest the
development of an automated flank identifcation method as a starting point.
Expanding the parameter sensitivity study conducted in this work to include a
broader array of convex functions would be a natural starting point for devel-
oping a localization parameter selection algorithm. The expanded parameter
study could then be used to build a naive Bayes classifier from kernel density
estimates of the relative performance error ratios across a selection of features.
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The naive Bayes classifier, might roughly look like the following:

l = argmax
L

∏
F

P (R4(l) < 0.5|f),

where L is a collection of localization values and F is a collection of poly-
line features (resolution, simplification tolerance, and error measurement fixed).
Polyline features which we posit may be useful to such a classifier include to-
tal change in direction and/or the mean and variance in 100 evenly-spaced κ̂2
values.
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ren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew Brett,
Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng,
Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert
Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M.
Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and

43



SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific
Computing in Python. Nature Methods, 17:261–272, 2020.

[36] GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction soft-
ware Library. Open Source Geospatial Foundation, 2023.

[37] Sean Gillies et al. Shapely: manipulation and analysis of geometric objects,
2007–.

[38] J.M. Lee. Introduction to Smooth Manifolds. Graduate Texts in Mathe-
matics. Springer, 2003.

[39] James Stewart and Dan Clegg. Calculus: early transcendentals. 2003.

44


	Assessing the Impact of Parallel Burnout Fires on Flank Rate of Spread
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1692982783.pdf.43NfM

