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Abstract: Despite plethora of research that attends to the convincing power of different types 
of proofs, research related to the convincing power of counterexamples is rather slim. In this 
paper we examine how prospective and practicing secondary school mathematics teachers 
respond to different types of counterexamples. The counterexamples were presented as 
products of students’ arguments, and the participants were asked to evaluate their correctness 
and comment on them. The counterexamples varied according to mathematical topic: algebra 
or geometry, and their explicitness. However, as we analyzed the data, we discovered that these 
distinctions were insufficient to explain why teachers accepted some counterexamples, but 
rejected others, with seemingly similar features. As we analyze the participants’ perceived 
transparency of different counterexamples, we employ various theoretical approaches that can 
advance our understanding of teachers’ conceptions of conviction with respect to 
counterexamples.  
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1 Introduction 
Mathematically, one counterexample is sufficient as a proof that a claim is false. However, do 

different counterexamples have the same convincing power in disproving a conjecture? Our 

short answer is no, and we present a long elaboration to support this answer.  

The question about convincing power of proof has been at the crux of the long-standing 

discussions among mathematicians and mathematics educators. Considering the roles of proof 

in mathematics, Hanna (2000) asserted that mathematicians prefer proofs that explain to proofs 

that “just prove”, and that the main role of proof in mathematical classrooms is explanation, 

which is strongly related to the notion of conviction. Convincing and removing doubt in the 

truthfulness of a statement have been considered by many as important, even primary goals of 

proving (Brown, 2018; Harel & Sowder, 2007). Still others emphasize that achieving 

psychological conviction is not a necessary requirement of proof; there are convincing 

arguments that are not proofs, and valid deductive proofs that bestow little conviction. Some 

approaches suggest distinguishing between types of conviction: psychological feeling of 

certainty vs. logical certainty grounded in deductive reasoning (Harel & Weber, 2020; 
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Mamona-Downs & Downs, 2010). Weber and Mejia-Ramon (2015) pointed out to the 

ambiguity of the word conviction, suggesting the need to differentiate between different types 

of conviction, i.e., absolute and relative conviction. The absolute conviction refers to a person’s 

feeling of complete removal of doubt, while relative conviction conveys that one’s certainty in 

the probability that a statement is true exceeds certain threshold. We will return to this point 

later.   

There is much less conceptualization for conviction in relation to counterexamples. 

Researchers have identified various challenges associated with creating, understanding, and 

using counterexamples, such as difficulty to recognize counterexamples, difficulty to accept 

counterexamples in disproving a general statement, a tendency to treat counterexamples as 

exceptions, or to seek multiple counterexamples (e.g., e.g., Buchbinder & Zaslavsky, 2019; 

Peled & Zaslavsky, 1997; Zazkis & Chernoff, 2008). Building on these ideas, we further 

examine the question of what makes a counterexample convincing. In this theoretical paper, 

we present two cases where prospective and practicing teachers assessed the legitimacy of 

proposed counterexamples and consider teachers’ responses through a variety of theoretical 

lenses. 

 

2 Two Illustrative Cases 
 

Case 1: A quadrilateral with congruent diagonals. 

 

Consider the following statement and a response from a student Dina: 

 

Statement-A: Any quadrilateral with congruent diagonals has at least one pair of 

opposite congruent sides.  

 

Dina’s Response: I can draw two congruent segments (diagonals) that intersect each 

other, such that the resulting four parts are all of different lengths. Then, I connect the 

endpoints of the diagonals with segments, one after another, creating a quadrilateral. The 

resulting quadrilateral disproves the statement. 

 

Statement-A is false. A counterexample to the Statement-A can be represented by a single 

figure (possibly with some measurements showing no additional special properties) or a 
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description how to construct such a quadrilateral, or both. Dina provides a description of how 

to construct a general counterexample without including the figure. That is, following Dina’s 

description, one can construct multiple counterexamples to Statement-A. When two diagonals 

intersect each other two pairs of vertical angles are created; the requirement that “the resulting 

four parts (of the diagonals) are all of different lengths” assures that the resulting pairs of 

triangles do not satisfy side-angle-side congruence condition, and therefore the resulting 

quadrilateral has no congruent opposite sides. In providing a description of how to construct a 

figure, Dina’s counterexample is reminiscent of non-constructive proofs of existence, which 

“indirectly show a mathematical object exists without providing a specific example.” (Courant 

& Robbins, 1996, p. 86).   

In the ongoing research of the first author, the statement and the response were presented to 

different groups of practicing and prospective teachers. These teachers participated in a 

professional development or undergraduate course intended to refresh their knowledge of 

mathematical proof and connect it to proving in secondary geometry and algebra classrooms. 

All participants had an undergraduate degree in secondary mathematics education, or 

equivalent, and had completed at least two proof-based courses at the undergraduate level.  

When presented with Statement-A and Dina’s argument, only about a quarter of participants 

accepted Dina’s solution as valid, by drawing a quadrilateral based on her description. One 

participant, who rated Dina’s work highly explained:  

“It shows the general counterexample of the above statement which is as clear as the 

single example given.”   

However, the overwhelming majority of the participants were critical of Dina’s mathematical 

work. Some participants felt that without an accompanying sketch, the verbal explanation is 

insufficient.  

 

“[If you say] You can, so just do it. You can make a picture instead of long describing. A 

drawing is more than words in this case.”  

 

“A drawing would provide support to the counterexample.” 
 

The fact that Dina did not construct a specific counterexample, but only described how to 

produce one elicited critique from participants, who wished to see a specific example 
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supporting the argument. Several participants even questioned the validity of a counterexample 

that is not specific. One participant, who constructed a sketch based on Dina’s description 

wrote:   
 

“The instructions can be followed, and the quadrilateral produced has no pair of opposite 

congruent sides. Is it a counterexample if it is not specific?”  

 

Others wrote similar comments, like: “This counterexample is not specific enough.” 

These responses and many similar ones, suggest that the participants had a preference towards 

a specific counterexample as opposed to a general one. This appears in discord with Peled & 

Zaslavsky’s (1997) assertion that general counterexamples have greater explanatory power 

than specific ones, since they describe a class of counterexamples and, as such, shed light on 

why a claim is false. Similar to research on proof (e.g., Hanna, 2000) one can expect that being 

“explanatory” implies being convincing (although not the other way around). Yet most 

participants did not find Dina’s description of how to construct a general counterexample 

convincing.   

In light of these responses, we wondered whether there was a common tendency to prefer 

specific counterexamples over general counterexamples. We thus examined another task that 

juxtaposed specific and general counterexamples.  

 

Case 2: Generating primes. 

 

Consider the following statement and responses from two students: 

Statement-B: If n is a natural number, then 𝑛𝑛2 + 𝑛𝑛 + 17   is prime.  

 

Response from Yana’s group: We substituted 𝑛𝑛 = 16 into 𝑛𝑛2 + 𝑛𝑛 + 17  and got 289, 

which is no prime since 17 × 17 = 289.  So the statement is false.  

 

Response from Olga’s group: We used algebra to see what happens if n is a multiple of 

17.  We substituted 𝑛𝑛 = 17𝑘𝑘 in 𝑛𝑛2 + 𝑛𝑛 + 17  and we got (17𝑘𝑘)2 + 17𝑘𝑘 + 17 =

17(17𝑘𝑘2 + 1).  This is a composite number, so the statement is false.     
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Statement-B is false. It can be disproved by a particular counterexample as suggested by Yana, 

or by a general counterexample which is a multiple of 17, as Olga suggested.  However, there 

are also numerous counterexamples which are not multiples of 17, such as 16, 20 or 25.  

Sometimes, general counterexamples may provide an insight for why a certain statement is 

false. This may allow for modifying the statements’ domain and formulating a true statement 

on the reduced domain. However, modifying Statement-B by adding a condition that 𝑛𝑛 ≠

17𝑘𝑘 for 𝑘𝑘 ∈  ℕ does not result in a correct statement. Moreover, there seems to be no immediate 

way to modify the statement’s domain to obtain a true statement. 

In the ongoing research on the use of examples in proving, participants were asked first to 

determine if the statement is true or false, and then to determine the correctness of students’ 

responses, to indicate their preference and to consider questions they would ask each student 

to support their mathematical thinking. We wondered whether the participants would show a 

clear preference towards a specific counterexample, similar to the case of Dina. Interestingly, 

the data did not support this conjecture. The participants’ accepted both specific and general 

counterexamples, but their comments pointed to preference towards the latter.  

The participants accepted Yana’s specific counterexample as correct and legitimate disproof 

of the statement. At the same time, many comments expressed some sense of mistrust in Yana’s 

understanding of the concept of a counterexample and sought supporting explanations. The 

participants also wanted to know how Yana came up with 𝑛𝑛 = 16 being a counterexample, and 

whether additional counterexamples exist. Some representative comments are:  

 

“I would tell the students that they have found a good counterexample and suggest that 

they explain why this is a counterexample. What about 𝑛𝑛 = 16 makes the statement 

invalid? What other counterexamples can you find? Are there any relationships between 

the counterexamples?” 

 
“I would ask if the student found any numbers that did hold this statement true. I would 

also ask if they were able to find a way to show that this expression is not always true 

without just getting lucky by plugging in 16.” 

 

In addition, participants indicated responding to Yana with a request to modify the statement 

“to make it true”, as the following comment shows:  
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“I agree [with your argument] but are there some instances where this works?  If so, can 

we make a general rule that satisfies those values of N?”  

 
 “Why does your counterexample prove that the statement in general is false?  Is there a 

way you could change the statement to make it true?” 
 

The approval of Yana’s counterexample indicates that the participants were aware that a single 

counterexample is sufficient for disproving a general statement. This is contrary to the 

prevalent result in the literature showing that individuals tend to reject specific 

counterexamples as exceptions that do not disprove a general claim (e.g., Buchbinder & 

Zaslavsky, 2019). However, we also note that the participants seem unsatisfied with a single 

specific counterexample, wondering how the students came up with it, requesting more 

counterexamples, and expressing a wish for a more general counterexample.  

Olga’s argument appeared to satisfy these wishes. The participants’ comments mainly focused 

on the algebraic work of Olga, as the following response shows:  

 

“Using a counterexample is enough to prove something is false, but the student was able 

to actually use algebra to prove that the statement is false. They were able to generalize 

the fact that this statement is false.” 

 

Several participants were impressed with Olga’s work, specifically pointing to the generality 

of the counterexample: 

 

“The student found a valid, general counterexample and then supported it with correct 

algebra.” 

 

“Excellent counterexample, there is a general rule and not just a specific 

counterexample.” 

  

Reflecting on the two cases, we note that the generality of a counterexample was not accepted 

in Case 1 but praised in Case 2. Moreover, Yana’s specific counterexample, while not disputed, 

was not fully embraced either. So, the overall preference towards either general or the particular 

counterexample cannot be clearly established. Hence, we wonder, what features of 
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counterexample account for the participants’ preferences? In what follows we address this 

question referring to a variety of theoretical constructs. We start with the apparent distinction 

between two cases: algebra vs. geometry, followed by the notion of example spaces that reflects 

the nature of school instruction. Then, we re-examine the general vs. particular connection, 

consider the notions of transparency and epistemic aims. 

 

3 On Algebra vs. Geometry 
The apparent difference between the two cases is that the statements are taken from different 

mathematical topics: geometry and algebra (number theory). Geometric objects are figural 

concepts (Fischbein, 1993) – they possess specific properties while intending to represent ideal 

conceptual properties. Chazan and Herbst (2011) emphasize that geometric figures, either 

sketched or rigorously constructed, are necessarily particular objects, characterized by certain 

dimensions, angle measures, side lengths and areas. Although geometric figures intend to 

convey generality and represent a whole class of geometric objects, each particular diagram 

contains superfluous visible features. Hence, geometrical objects presented as diagrams need 

to be unpacked, in order to be understood and used within the justification process. Learning 

to see the generality inherent in geometric figures is a complex process. For example, students 

have been observed to interpret diagrams accompanying proofs as specific objects and the 

theorems proven with the aid of such diagrams as applied only to those diagrams (Chazan, 

1993). While the intended generality of geometric figures is assumed by mathematicians and 

mathematics teachers, students need to be enculturated into this view, in order to gain “the 

affordances of the particular to discuss the general, while minimizing the limitations that the 

particular has for discussing the general (Chazan and Herbst’s, 2011; p. 10). 

The nature of algebraic objects is quite different. The use of symbols in algebra allows one to 

represent an unknown number, or a whole class of numbers with a single letter, which in itself 

does not carry any characteristic features of that class of numbers. Further, the mathematical 

symbols themselves do not embody the particularity of the represented numbers in the way 

geometric figures do. In Chazan and Herbst’s (2011) terms, “the affordance of literals (x's and 

y's), as opposed to numbers or geometrical diagrams, is that they aid in seeing generality 

without having to ignore some particularity” (p. 11). Therefore, the participants preference 

towards the algebraic counterexample of Olga may be attributed to the nature of algebraic 

symbols which carry greater generality. However, the generality of Dina’s counterexample 

may be obscured not by the specific features of a particular figure, but by the absence of the 
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figure itself. This may explain participants’ request for a sketch, which would visualize both 

the property of congruent diagonals and the absence of additional special properties.  

 

4 On Example Spaces   
The notion of example space (Watson & Mason, 2005) – that is, a collection of examples that 

fulfil a particular function – may provide an additional explanation for the differences in 

participants’ responses to counterexamples. Zazkis and Chernoff (2008) described several 

situations in which some counterexamples are more likely than others to be accepted by 

students. According to Mason (2006), “exemplariness resides not in the example, but in how 

the example is perceived” (p. 62). Echoing Mason’s notion of “exemplary example” Zazkis 

and Chernoff discussed “what makes a counterexample exemplary”. While any 

counterexample refutes a statement, only some are accepted by students with ease, while others 

are questioned or rejected as “exceptions”. The authors introduced a notion of “pivotal 

(counter)example – an example that invites students to re-examine their prior claims, 

convictions, or initial intuitive inclinations.  

Among their examples, Zazkis and Chernoff discussed the case of Selina, who initially 

considered 437, which is a product of 19 and 23, to be a prime number because it was  a product 

of primes. When asked to examine her approach by considering numbers 6 or 15, both of which 

are also products of two primes, Selina did not change her opinion. However, the number 77, 

as a product of 7 and 11, served for Selina as a pivotal example that, “changed everything”, 

that is, resulted in refuting the initial claim regarding 437 being prime. 

Zazkis and Chernoff suggested that in order to serve a pedagogical purpose of rejecting a 

statement, a counterexample should fit within or be sufficiently close to the learner's personal 

example space – a construct describing an individual’s repertoire of accessible examples and 

their construction (Watson & Mason, 2005). A counterexample that does not fit within a 

student’s personal example space is likely to be questioned or rejected as an “exception.”   

In examining the expression 𝑛𝑛2 + 𝑛𝑛 + 17 , the initial tendency for some participants was to 

check for primality of the result by substituting small numbers and observing that the 

expression generates prime numbers. The expression indeed generates prime numbers for the 

first 15 values of n. For some participants, this may result in an initial conviction that the 

statement is true. Both 16 and 17𝑘𝑘 are clearly within the participants’ example spaces and 

either can be considered as a pivotal counterexample: 16 being a small enough number to test 

easily for generating a composite number, and 17𝑘𝑘 being simple enough algebraic expression 
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to observe it generating a factorable expression. Thus, it is not surprising that both 16 and 17𝑘𝑘 

were accepted by the participants as counterexamples and there was no apparent preference for 

either counterexample.  

The notion of example space may also explain why Dina’s construction protocol for a general 

quadrilateral with congruent diagonals was not embraced by the majority of participants: it 

may be outside the participants’ personal example spaces. Special quadrilaterals (e.g., 

parallelograms, kites) represent a subset of all quadrilaterals, who may have no special 

properties or names. However, textbooks and curricula materials pay most attention to special 

quadrilaterals, while general quadrilaterals are seldom mentioned or discussed. Thus, in the 

context of school geometry, general quadrilaterals are outside the instructional example space 

which is “a set of collections of examples used by teachers and students as they work on a 

particular notion in an instructional context.” (Biza, 2011, p. 130).  

Beyond that, Dina’s description does not fit the example space of how quadrilaterals are usually 

constructed. A common procedure for constructing quadrilaterals is to draw a quadrilateral first 

and then construct its diagonals. This is also a preferred mode of defining geometric objects, 

as individuals tend to favor definitions that rely on the salient features of geometrical objects, 

such as sides and angles, rather than features that require additional construction, such as 

diagonals, altitudes, or axes of symmetry (Zaslavsky & Shir, 2005). Dina’s descriptive 

counterexample may fall outside the participants’ instructional and personal example space for 

(a) being a general quadrilateral and (b) being defined procedurally based on the properties of 

diagonals.   

 

5 On a General in the Particular and Vice Versa 

In their seminal article, Mason and Pimm (1984) coined the notion of “seeing a general in the 

particular” with which they intended to “bring out some of the inherent difficulties in 

mathematical expressions of generality and their relation to the particular” (p. 287). Mason and 

Pimm discussed the example of the function f(x) = |x| as a counterexample to the claim that 

continuous functions are differentiable. They noted that a lecturer presenting this example was 

seeing it as a generic example – a particular case which illuminates the general properties of 

the example to illustrate a general idea or a claim. However, students may have focused on a 

particular function without attending to its generality. Students and teachers’ difficulty of 

seeing the generality embedded in a particular mathematical object has been noted in the 
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literature (e.g., Yopp & Ely, 2016), leading some researchers to suggest that generic examples 

often have “opaque nature” (Rø & Arnesen, 2020),  

Complementary to Mason and Pimm, we highlight the idea of imagining a particular in the 

general. The two counterexamples –  Dina’s construction and Olga’s example of 𝑛𝑛 = 17𝑘𝑘 are 

general counterexamples because they provide a way to generate infinitely many specific 

counterexamples. The two general counterexamples require one to imagine or deduce how a 

particular case can be generated from a general description to come up with a specific 

counterexample. However, in some cases, the generality of these counterexamples appeared 

unconvincing just for the reason of not being particular. Thus, when seeking a counterexample, 

and being aware that “one is enough”, we demonstrated cases where teachers were unable (or 

unwilling) to see the particular in the general. 

 

6 On Transparency 
Zazkis and Gadowsky (2001) used the notion of “transparency” in considering properties of 

numbers given as numerical expressions. They suggested that a representation can be 

transparent with respect to particular number properties, but opaque with respect to other 

properties. For example, the representation 𝑎𝑎 = (17 × 20) + 3 suggests that 𝑎𝑎 leaves a 

remainder of 3 in division by 17, while 𝑏𝑏 = 73  suggests that 𝑏𝑏 is a cube. Yet, both 

representations are for the same number, 𝑎𝑎 = 𝑏𝑏 =  343. So, each representation is transparent 

with respect to some property but opaque with respect to another. It is also possible for an 

object to have no transparent representation to its properties. For example, while the 

representation 2𝑘𝑘 (for a natural number k) explicitly points to the evenness of the number, 

prime numbers do not have a representation that is transparent to their primality. This 

opaqueness was noted to present a difficulty for teachers (Zazkis & Liljedahl, 2004). In a 

similar vein, Arcavi (2003) reflected on the relative opaqueness of algebraic symbols, that 

while “sophisticated mathematicians may claim to ‘see’ through symbolic forms, regardless of 

their complexity”, this is not the case for learners, who need to develop an ability of “reading 

of and through symbolic expressions.” (p. 43). 

Returning to the example of Selina (above), knowing that the number 437 is a product of 19 

and 23 makes it transparent to a knowledgeable individual that it is a composite number without 

any testing. However, this feature was opaque to Selina, at least initially. Clearly, the notion of 

transparency and opaqueness is “in the eye of the beholder.” A related mathematical knowledge 

is needed to recognize certain properties.  
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Consideration of transparency may explain why some counterexamples are easier accepted by 

teachers. A general counterexample of 17𝑘𝑘 is more transparent than that of 16. It shows why 

the expression 𝑛𝑛2 + 𝑛𝑛 + 17 is factorable, since substituting 17𝑘𝑘 in the expression, even 

mentally, immediately results in a multiple of 17, rejecting the possibility of the result being 

prime. Moreover, 17𝑘𝑘 shows a way to generate a whole class of (specific) counterexamples. A 

specific counterexample 𝑛𝑛 = 16 is opaque since the fact that 162 + 16 + 17  produces a 

composite number requires computation and then checking the result for primality. In addition, 

the counterexample of  𝑛𝑛 = 16 does not point to possible existence of additional 

counterexamples.  

Further, a construction of a general quadrilateral suggested by Dina is opaque to the type of 

resulting quadrilateral and its properties or the lack of thereof. Hence, even participating 

teachers who accepted the correctness of Dina’s construction expressed a preference towards 

a sketch. These examples show that transparency of a counterexample can be related to 

generality as well as to particularity. That is, either general counterexample or a particular 

counterexample can be transparent (or opaque) to a beholder.    

 

 

 

7 On Conviction and Epistemic Aims 

Considering participants’ individual epistemologies may provide an additional explanation of 

participants’ different treatment of counterexamples. According to Chinn et al. (2011) 

individuals’ epistemic cognitions are systems of beliefs about the nature of knowledge and 

processes of knowing. In psychology, knowledge is defined as “justified, true beliefs,” that is 

“beliefs that accurately represent particular aspects of the world (at least approximately) and 

that are supported by adequate reasons” (p. 147). Knowledge, understanding and justification 

are central epistemic aims pursued by learners. Understanding involves grasping explanatory 

connections between elements of knowledge and information; justification relates to ways of 

using evidence to justify beliefs, and it is strongly tied to certainty. Rather than viewing 

certainty as a characteristic of knowledge itself, Chinn et al. (2011) define certainty as a “stance 

taken by an individual toward knowledge claims that are viewed as extremely well justified” 

(p. 156).  

Importantly, Chinn and colleagues emphasize that while seeking certainty is one of the central 

epistemic aims, especially in mathematics and sciences, people may pursue other aims, such 
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as avoiding false beliefs by withholding judgment altogether, judging claims as partially true, 

or adopting beliefs with a high ratio of truth to falsity. Consequently, individuals may seek 

justifications and explanations that adhere to their epistemic aims. These may include 

“explanations that explain the greatest range of data (even if there are some anomalous pieces 

of evidence that cannot be accounted for) or, instead, explanations that explain a narrower 

range of evidence but do so with few or no anomalies left unaccounted for” (Chinn et al., p. 

155).  

Returning to the participants’ responses to the two statements and the proposed 

counterexamples, we note that although the statements dealt with school- level mathematical 

content, they were designed to be both unfamiliar and not immediately evident as true or false 

to the participants. We aimed at invoking uncertainty with respect to the truth-value of the 

statements, and to foster authentic evaluation of counterexamples.  

Both counterexamples 𝑛𝑛 = 17𝑘𝑘 and 𝑛𝑛 = 16 may provide an absolute conviction in the 

falsehood of the statement, but they address different epistemic aims. The counterexample 𝑛𝑛 =

16 explains an extremely narrow range of evidence. While it may satisfy a modest epistemic 

goal of avoiding false beliefs, as evidenced in almost all participants accepting 𝑛𝑛 = 16 as a 

legitimate counterexample, it does not allow for pursuing loftier epistemic aims, such as 

explanation or justification why the statement is false. This may explain the expressions of 

dissatisfaction with the specific counterexample by our participants.    

The expression 𝑛𝑛 = 17𝑘𝑘 represents a family of counterexamples and a way to generate them, 

even though it does not account for all possible counterexamples. This general counterexample 

advances a stronger epistemic aim than merely avoiding false beliefs: it supports achieving 

stronger conviction in the falsity of the statement and it provides a strategy for addressing 

similar problems. Although mathematically, both 17𝑘𝑘 and 16 achieve the same aim of 

disproving the statement, these counterexamples satisfy different epistemic aims for the 

participants.   

In fact, similarly to the case of 17𝑘𝑘, Dina’s description does not account for all 

counterexamples.  There is no necessity to require that all four segments resulting from 

intersection of the two congruent diagonals are of different length. Two of the four segments 

composing the diagonals can be of the same length, as long as they are parts of the same 

diagonal – such quadrilateral would disprove Statement-A. Requesting that all four segments 

on the diagonals are of different lengths, like Dina did, aims to invoke a mental image of a non-

symmetrical, general figure, bestowing greater conviction in the existence of a counterexample.  
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What kind of epistemic aims can be associated with Dina’s counterexample to Statement-A? 

Our data show that Dina’s description of how to construct a general counterexample did not 

allow most of the participants to achieve the epistemic aim of forming justified true belief about 

the truth value of the statement. In other words, for most of the participants Dina’s 

counterexample lacked the justificatory, explanatory power for conviction.  

Among the sources of conviction described in philosophical literature are perception, which is 

grounded in the sensory experiences, and introspection, which is grounded in one’s internal 

experiences; memory, reasoning, and testimony of others (Steup, 2005). Without an 

accompanying sketch, Dina’s counterexample excludes perception as a source of conviction. 

Similarly, the participants could not rely on their memory as s source of knowledge about 

properties of quadrilaterals, since Dina’s counterexample was a general quadrilateral without 

any specific properties, that would be readily evident to the participating teachers. To evaluate 

Dina’s argument, the participants had to rely on introspection and reasoning. However, 

reasoning with figural, geometric objects may be quite difficult to perform introspectively. It 

is worth noting, that participants who sketched a quadrilateral according to Dina’s description, 

were more likely to accept her counterexample as legitimate.  

 

8 Conclusions 
Recent studies have brought forward nuanced accounts of students’ and teachers’ conceptions 

of proof and counterexamples. For example, students who rely on empirical evidence for 

proving general statements are often aware of limitations of this approach (e.g., Bieda & Lepak, 

2014); prospective teachers are aware that a proof and a counterexample cannot coexist 

(Stylianides & Al-Murani, 2010); and teachers’ judgment of correctness of students’ examples 

and counterexamples reflects pedagogical  as well as mathematical considerations 

(Buchbinder, 2018).  

Similarly, we sought to explain variance in teachers’ treatment of counterexamples – openness 

towards some counterexamples and doubtfulness toward others – by examining various sources 

of conviction (or lack of it) with respect to counterexamples. Our initial assumption, which was 

based on the work of Peled and Zaslavsky (1997), that general counterexamples would be more 

welcomed, was not confirmed: we did not observe strong preference toward either general or 

specific counterexamples. To understand this phenomenon, we applied several theoretical 

lenses, each of which illuminated some aspect of the phenomenon, but neither provided a single 

satisfactory explanation. A transparency of a certain counterexample as convincing evidence 
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disproving a false claim, seems to be “in the eye of the beholder.” What makes some 

counterexamples transparent and convincing could not be easily established by using a single 

framework. Collectively, these theoretical lenses allowed attaining a more refined 

understanding of participants’ conceptions of counterexamples and of their convincing power. 

Deepening understanding of the underlying reasons for what makes counterexamples 

convincing, or not convincing, through application of a variety of theoretical tools (Simon, 

2009) is a valuable asset for researchers and educators alike. This paper, therefore, highlights 

the need for the field for developing more comprehensive theoretical tools that can explain a 

broad range of phenomena, and encompass a wide range of aspects related to the convincing 

power of counterexamples.  
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