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ABSTRACT: The authors consider a conjecture by Chebyshev in 1853 on the distribution of odd
primes among those that are one more than a multiple of four and those three more than a multiple of
four—and use technology to explore the cardinality of these subsets. Generalizations are presented for
student exploration along with several sources for more in-depth research.
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Introduction

Prime numbers have intrigued mathematicians for centuries and are essential in studying advanced math-
ematics topics such as abstract algebra and cryptography. Moreover, since primes are crucial building
blocks of arithmetic, number theorists have compiled numerous prime facts over thousands of years (e.g.,
primes are infinite in number, the space between primes is arbitrary). Nonetheless, many properties of
primes remain unknown or unproven, forming a robust area of inquiry and exploration for researchers
and students.

This article explores Chebyshev’s bias—a prime number topic first observed by Pafnuty Chebyshev, a
19th-century Russian mathematician. Specifically, Chebyshev noted that the odd prime numbers could be
partitioned into two distinct subsets—those one more than a multiple of four (e.g., 13 = 4·3+1) and those
three more than a multiple of four (e.g., 23 = 4 · 5+ 3). Moreover, he posited that there are more primes
of the form 4k+3 than of the form 4k+1, up to the same limit. This phenomenon is commonly referred
to as Chebyshev’s Prime Bias Conjecture (Chebyshev, 1853). Over the years, many mathematicians have
examined Chebyshev’s bias from different perspectives; for example, see [ABG, FS, GM, Kim, RS].

In this paper, we discuss using GeoGebra to engage students in exploring Chebyshev’s Prime Bias
Conjecture. GeoGebra’s visualization features and interactive applets enable students to investigate the
distribution of odd primes between two subsets. Specifically, students can explore whether the odd prime
numbers are evenly distributed between these two subsets using visual representations of the data. By
analyzing patterns in the data and testing conjectures, students gain insights into the evenness of prime
number distribution, similar to Chebyshev’s work. The visualization capabilities and interactivity of
GeoGebra applets make exploration more accessible.

We have organized this paper into four sections. Section 1 provides mathematical background, defini-
tions, and notation for the activities demonstrated using GeoGebra. Key terms are provided in boldface.
Readers familiar with set notation, modulo operations, congruence, and partitioning may safely skip this
section. Section 2 provides a detailed overview of the odd primes activity and conjectures along with
GeoGebra commands that could be used to look for patterns and generate conjectures. Section 3 pro-
vides a discussion of other potential explorations of prime number partitions, along with recommended
sources for further research and teaching ideas. Finally, we state some conclusions in Section 4 and list
our references. An appendix contains a list of the first 200 prime numbers.

1 Background

1.1 Partitions

In combinatorics, a partition of a nonempty set S refers to the process of grouping the elements of S
into a finite union of nonempty, disjoint subsets in such a way that each element belongs to exactly one
subset [Sta, p. 55]. For instance, the set 1, 2, 3, 4 can be partitioned as the union of the two subsets 1, 4
and 2, 3, while 1 ∪ 3 ∪ 3, 4 is another possible partition.

Infinite sets can be partitioned too, in fact, in infinitely many ways. For instance, the set of integers
denoted Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } can be partitioned into positives, negatives, and zero. The set
of natural numbers, N = {1, 2, 3, 4, 5, 6, . . . }, is the set of evens, {2, 4, 6, 8, . . . } and odds, {1, 3, 5, 7, . . . }.
Furthermore, the set of odd numbers can be partitioned as:

{1, 3, 5, 7, . . . } = {1, 5, 9, 13, 17, . . . } ∪ {3, 7, 11, 15, . . . }.

1.2 Prime Numbers

A prime number is a positive integer whose only divisors are 1 and itself. Let P denote the set of prime
numbers. It is well-known that P is infinite [Hea]. The first ten prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23,
and 29. A list of the first 200 primes are provided in Table 1 of the Appendix.

All prime numbers except 2 are odd and can be expressed as either one more or three more than a
multiple of four. For example, 5, 13, 17, 29, and 37 are all one more than a multiple of four (i.e., 4k + 1).
In particular, 5 = 4(1) + 1 and 37 = 4(9) + 1.

In contrast, the primes 3, 7, 11, and 19 are three more than a multiple of four, specifically, 3 =
4(0)+3, 7 = 4(1)+3, and 11 = 4(2)+3 and can be expressed as 4k+3 for some k ∈ N∪{0}. In general,
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the odd prime numbers can be partitioned into two classes based on their remainder when divided by
four.

Specific to the current discussion, the odd prime numbers can be partitioned into two sets:

P \ {2} = P1,4 ∪ P3,4 (1.1)

where P1,4 = {5, 13, 17, 29, 37, . . . } and P3,4 = {3, 7, 11, 31, . . . }.

1.3 Congruence Modulo n

Let x and y be integers, and m a positive integer. We say that x is congruent to y modulo m, and
write

x ≡ y (mod m) (1.2)

whenever x− y is divisible by m [Big]. For example, if m = 4, then 17 ≡ 1 (mod 4) because 17− 1 = 16,
which is divisible by 4. Similarly, 23 ≡ 3 (mod 4). Using the notation in (1.1), we have

P1,4 = {p ∈ P | p ≡ 1 (mod 4)}

and

P3,4 = {p ∈ P | p ≡ 3 (mod 4)}.

1.4 GeoGebra

GeoGebra is a mathematical software that combines geometry and algebra in one platform. It allows
users to create, manipulate and visualize mathematical objects such as points, lines, curves, and surfaces.
GeoGebra is available on multiple platforms, including desktop, mobile, and web-based applications,
making it accessible to users on various devices.

GeoGebra is a freely downloadable software. Its user-friendly interface makes it a good choice when
working with students in entry-level courses. As a dynamic geometry software, GeoGebra enables users
to explore relationships among mathematical objects in real time as they change variables, drag sliders,
or other objects on the screen. This functionality promotes problem-posing and conjecturing among
students. The software is versatile. Students can use it to create geometric structures, plot functions
and data, resolve equations, and investigate mathematical ideas using simulations and animations. The
GeoGebra user and developer community shares content and activities in multiple languages on their
Resources page at https://www.geogebra.org/materials. We proceed to investigate the distribution
of odd primes using a GeoGebra sketch that we’ve uploaded to the site.

1.5 Statement of the Problem

Are the odd prime numbers uniformly distributed among the partitions P1,4 and P3,4? In other words,
for a given positive integer n, do the two partitions contain an equal number of odd primes? We will
investigate this question with the aid of GeoGebra.

2 Methods

First, we define N1(n) as the number of odd primes ≤ n in the set P1,4. Similarly, we define N3(n) as
the number of odd primes ≤ n in set P3,4. Lastly, we define the difference between these two values,
D(n) = N3(n) − N1(n). For example, P1,4 contains only one element less than or equal to 11 (i.e., 5);
P3,4 contains three elements less than or equal to 11 (i.e., 3, 7, and 11) making the difference of the types
D(11) = 3− 1 = 2.
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2.1 Construction Protocols for Dynamic Sketch in GeoGebra

The steps used to construct the GeoGebra sketch we’ll use for this exploration are as follows:

1. Hide all viewing windows except for Algebra view and Graphics view. Drag the Graphics view
below the Algebra view and make the Input Bar visible.

2. Create a slider (number), n, ranging from 1 to 1000.

3. Define a sequence of prime numbers by entering the following command into GeoGebra’s Input Bar:

Primes=RemoveUndefined[Sequence[If[IsPrime[k],k],k,3,n]]

4. Determine the length of the list of primes by entering the following command:
P_{ALL}=Length[Primes]

5. Next, generate a list of primes of Type 1 by entering the following command:
P_1=RemoveUndefined[Sequence[If[Mod[Element[Primes,k],4]==1,

Element[Primes, k]],k,1,n]]

6. Similarly, enter the following command to generate a list of primes of Type 3:
P_3=RemoveUndefined[Sequence[If[Mod[Element[Primes,k],4]==3,

Element[Primes, k]],k,1,n]]

7. Define the length of each of the sequences. N_1=Length[T1] and N_3=Length[T3]

Readers can create a sketch from scratch by implementing the above steps. Alternatively, a completed
sketch is available at https://tinyurl.com/primebiasorig.

Figure 1 illustrates a finished sketch with slider, n, set to 76. In the sketch, P1 and P3 are two
partitions with order N1 and N3, respectively. Note that the value of n may be changed by dragging
directly on the slider or typing a value directly into the text box immediately to the right.

Figure 1: Prime bias GeoGebra sketch (available at https://tinyurl.com/primebiasorig).

2.2 A Curious Observation

With a dynamic sketch such as that provided in Figure 1, it is natural to explore various instances of N1

and N3, varying n by dragging on the slider as suggested in Figure 2. In Figure 3, we share an alternate
sketch we created to provide a more visual depiction of the same data. Students enter n in the upper left
corner. The numbers of elements in P1 and P3 are depicted as separate bars and as lists of values.

Note that for each instance of n provided in Figures 1–3 (i.e., 76, 91, 145), P3 > P1. It is natural to
wonder if this is always so, and—moreover—why this appears to be the case.
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Figure 2: Exploring P1 and P3 with n = 91.

Figure 3: Exploring P1 and P3 with n = 145 (available at https://tinyurl.com/primebiasvisual).

2.3 Recording Data to a Spreadsheet

We revised our original GeoGebra sketch to explore such questions. Whenever the user clicks the “Record
to Spreadsheet” button, values of n, P1, and P3 are recorded to a built-in GeoGebra spreadsheet. Then,
users can drag the slider or type the desired n into the text box to explore specific cases. For instance,
in Figure 4, we see 12 primes in partition P1 and 13 primes in partition P3 when n is set to 101.
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Figure 4: A revised GeoGebra sketch with values of n, (see https://tinyurl.com/primebiasrevised).

3 Discussion and Further Investigations

Chebyshev’s Prime Bias Conjecture provides numerous opportunities for investigation by students (and
researchers). For instance, how often is “more often than not?” For which values of n does the Prime
Bias Conjecture not hold? How common are these instances?

Several lines of inquiry are accessible to entry-level students. For example, the same question can be
asked with another modulus, e.g., modulo 6 instead of modulo 4. Here are several other questions that
we have explored with our students.

1. Is there an n for which n(P1,4) = n(P3,4); for which n(P1,4) > n(P3,4)?

2. Is there an n with a gap distance of 7 (or 6, 15, 22, . . . )?

3. What is the distribution of gap distance as a function of n?

4. Is there an upper bound on the gap distance? Are there arbitrary gap distances, or are there never
any primes modulo 4 of one type more than a given distance, say x, away?

5. What are the results modulo 6? Note: odd primes must be either 1, 3 or 5 (mod 6).

6. Does the modulus have to be even, such as 4 or 6? Could it be odd, like 7 or 9?

An interesting question to consider relates to the prime factorization of numbers. We can designate
numbers as either an “odd type” or “even type” based on the number of factors (including multiplicities).
For instance, 12 = 2 × 2 × 3, is “odd” since it has 3 non-distinct factors, whereas 24 = 2 × 2 × 2 × 3 is
“even” since it has 4 non-distinct factors. Using this alternative definition of “odd” and “even,” we can
ask many of the same questions. For instance, is there an even distribution of “even/odd” types, or is
there a bias toward one or the other type? Can you find a run of even types? Will it eventually go odd?
Where does this occur? Can there be arbitrary length odd and even runs?

GeoGebra’s PrimeFactors and Dimension commands are helpful when exploring our new designa-
tions. PrimeFactors(n) returns the list of primes whose product is equal to n. Dimension(<list>)

returns the number of elements in a list. Combining the two commands, Dimension(PrimeFactors(n)),
returns the number of factors of n (including multiplicities). Figure 5 illustrates the command in action
for our earlier examples (i.e., 12 and 24).

Figure 5: Dimension and PrimeFactors commands in GeoGebra.



TME, vol. 21, no. 1 & 2, p. 333

4 Conclusion

Undergraduate research is a high-impact educational practice that promotes student achievement, ad-
vances intellectual growth, enhances problem-solving and communication skills, and increases retention
rates among underrepresented groups [OK, PTS]. This is particularly relevant for mathematics, where
open problems such as the prime bias conjecture provide opportunities for students to explore and engage
in mathematical research. The prime bias conjecture is also an excellent topic for an entry-level com-
puter science class project incorporating loops, conditional statements, arrays, and the modulo function
to partition prime numbers and count their cardinality. The goal of such a project is not to produce a
solution but to provide an impetus for further questioning, problem-posing, and conjecturing. Addition-
ally, dynamic mathematics technologies like GeoGebra make mathematical research accessible to novice
mathematicians, enabling them to explore authentic tasks [BOR].

Acknowledgment. The authors want to acknowledge Keith Conrad from the University of Connecticut
for informing us of this topic.
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2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 347 349
353 359 367 373 379 383 389 397 401 409
419 421 431 422 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
547 557 563 569 571 577 587 593 599 601
607 613 617 619 631 641 643 647 653 659
661 673 677 683 691 701 709 719 727 733
739 743 751 757 761 769 773 787 797 809
811 821 823 827 829 839 853 857 859 863
877 881 883 887 907 911 919 929 937 941
947 953 967 971 977 983 991 997 1009 1013
1019 1021 1031 1033 1039 1049 1051 1061 1063 1069
1087 1091 1093 1097 1103 1109 1117 1123 1129 1151
1153 1163 1171 1181 1187 1193 1201 1213 1217 1223

Table 1: First 200 prime numbers listed left to right, top to bottom.

Appendix - List of first 200 Prime Numbers
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