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ABSTRACT: We reconsider the classical equality 0.999 . . . = 1 with the tool of circular words, that
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Introduction

This article is interested in circular words [RV12b] as a tool to investigate the famous equality 0.999 . . . = 1
and, more generally, decimal expansion of rational numbers. We propose some perspectives on this famous
equality integrating mathematics, history of mathematics and mathematics education.

Informally speaking, a circular word is a finite word whose last letter is assumed to be followed by
the first one. (More rigorously, it is a finite word indexed by Z/ℓZ instead of {1, . . . , ℓ}.) Such an object
allows us to remain in Q instead of R when investigating the equality 0.999 . . . = 1, hence enables to
make use of purely algebraic and combinatorial structures, avoiding analysis and topology.

Section 1 recalls the relevant facts about usual numeration system in base b, where b ⩾ 2 is some
integer. For convenience, most examples in the present article are provided in base ten system, that is,
with the alphabet {0, 1, . . . , 9}. (Others examples are given in [V15].)

Sections 2 and 3 introduce two major extra-mathematical aspects of the equality 0.999 . . . = 1,
namely mathematics education and history of mathematics and calculation. A lot of investigations has
been made in mathematical education since the 70’s and the seminal Tall’s work. We focus here on
apos theory (Action-Process-Object-Schema) that proposes different mental structures to understand
the phenomenon. Also, the contribution made by 18th century English teachers and accountants as
regards periodic decimal expansion of rational numbers is mathematically significant. In particular, the
two first mentions of the equality 0.999 . . . = 1 appear to come from two of these authors, namely George
Brown then Samuel Cunn, with two very different viewpoints.

Section 4 is interested in the deeper mathematical structure, setting up modern tools to describe the
objects and algorithms involved, namely circular words. It begins with some definition and properties of
these (in particular a combinatorial proof of Fermat’s Little Theorem), then defines two sets, QWCP and
QDC, both isomorphic to Q as fields but set up in a combinatorial way which is free of any reference to the
standard construction by pairs of integers. These two sets are quite similar. The first one is best suited
for educational purpose, its elements are triples made of a finite word (corresponding to the aperiodic part
of the decimal expansion of a rational number), a circular one (for the periodic part), and an integer (for
the positioning of the comma). The second one, more theoretical, is best suited for proofs. Its elements
are pairs made of a decimal word (i.e., a finite word with a comma, for the aperiodic part) and a circular
word (for the periodic part). Since QWCP and QDC are ultimately proved to be fields isomorphic to Q
(Section 6), their elements are to be regarded as combinatorial representations of rational numbers.

Section 5 deals with the additive structure on QWCP and QDC, which makes them both isomorphic
to Q as additive groups. Such an additive structure enables to free the equality 0.999 . . . = 1 from any
analysis consideration linked to the topology of the real line. (All of this could be extended to the b-adic
case with only small changes, as it is briefly mention in Section 5.5.)

Section 6 presents the field structure of QWCP and QDC (multiplication and division), making them
isomorphic toQ as fields. It details the limitations of such representations of rational numbers for practical
purposes, then investigates some theoretical aspects, culminating in an original proof of the irrationality
of numbers like

√
2,

√
2 +

√
3 and more generally all non-integer roots of a unitary polynomial.

1 General facts about b-adic expansion

Let us recall the following fundamental result:

Theorem 1.1. Let b ∈ N with b > 1. A real number has a ultimately periodic b-expansion iff it is a
rational number.

Assuming here the existence of a b-adic expansion for any real number, this standard theorem provides
a remarkably simple proof of the existence of irrational numbers (consider any non-periodic sequence
of digits), also suggesting that the irrational numbers are “more numerous” than rational ones (i.e.,
uncountable). Somehow, Theorem 1.1 can also be interpreted an “unexpected success” for the b-expansion
numeration systems: the latter, made up for practical arithmetics, “unexpectedly” provides a way for
the abstract question of identifying rational numbers among real numbers. (Unfortunately, this “success”
does not extend to non-rational numbers, since almost nothing is known about the b-expansion of numbers
like

√
2 or π.)

The fact that the b-expansion of u/v (for u and v positive integers) is periodic is convincingly proved
by the application of the classical algorithm of long division: since, at each step, the remainder is an
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integer between 0 and v − 1, the pigeonhole principle implies that, after all the digits of u has been
considered and only 0s are to be added in the remainder in the next steps, the same remainder will
eventually appear twice, hence entering in a periodic loop (possibly reduced to an infinite sequence of
quotients equal to 0).

This proof also shows that the length of the periodic part of the b-expansion of u/v is upper bounded
by v− 1 (the number of possible remainders, excluding 0 and assuming v > 1). Moreover, it provides an
application of the pigeonhole principle, whose first application is generally attributed to Dirichlet, in the
end of the 19th century, whereas the proof of Theorem 1.1 appears in Wallis’ Treatise of Algebra of 1685
[Wallis, chapter LXXXIX], in which Wallis makes the following precision:

I have insisted the more particularly on this, because I do not remember that I have found it
so considered by any other.

As regard the pigeonhole principle, Wallis does not state anything special about it, but the argument
was already known and used at his time, its most ancient known appearence going back at least to Jean
Leurechon in 1622 [Leu, RH].

To prove the converse of Theorem 1.1, a simple calculation shows that a number like 0.873873873 . . .,
also written 0.873 in the sequel, is equal to 873/999, and generalization to all possible type of ultimately
periodic b-expansion is trivial.

Proposition 1.2. Let v ⩾ 1 be an integer and u < v prime with v. The fraction u/v admits a purely
periodic b-expansion iff v is prime with b.

By a purely periodic b expansion is meant an expansion of the form 0.M , where M is a finite sequence
of digits (which may be regarded as an integer written in base b).

Note that, in the case b is equal to ten, the converse of this proposition was proved possibly for the
first time by Alexander Malcolm [Malcolm, p. 477] (see Section 3.4).

Proof. We start by the case u = 1. Assume first that 1/v has a purely periodic b-expansion, so 1/v = 0.M ,
with M can be identified with a positive integer. Denoting by ℓ the length of M , we have

1

v
= 0.M =

+∞∑
n=1

M

bnℓ
=

M

bℓ − 1
,

so bℓ−1b − Mv = 1, so v and b are mutually prime (recall Bézout’s identity: two integers p and q are
mutually prime iff there exists two integers u and v such that up+ vq = 1).

Now, assume v prime with b. The long division algorithm applied to 1 and v provides the successive
equalities

1 = 0v + 1

1b = q1v + r1

r1b = q2v + r2
...

rmb = qm+1v + rm+1

...

with 0 ⩽ qm < b and 0 ⩽ rm < v for any m. By the pigeonhole principle, we can find m ̸= m′

such that rm+1 = rm′+1. The equalities rmb = qm+1v + rm+1 and rm′b = qm′+1v + rm′+1 thus imply
(rm′ − rm)b = (qm′+1 − qm+1)v. Since |rm′ − rm| < v and lcm(b, v) = bv (where lcm stands for the least
common multiple), we must have rm′ = rm. Hence, by induction, the b-expansion of 1/v given by the
long division algorithm is purely periodic.

Consider now the general case of u < v with u and v mutually prime. If v is prime with b, then we
already know that 1/v is purely periodic, so we easily get that u/v is purely periodic as well. Conversely,
assume that u/v is purely periodic. Since u and v have no common divisor, we can find an integer k such
that ku/v is of the form n+ 1/v, so 1/v is purely periodic, so v and b are mutually prime.
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Corollary 1.3. For any integer v prime with b, there exists ℓ > 0 such that v divides bℓ − 1.

In standard decimal numeration system, this means that for any integer v /∈ 2Z ∪ 5Z, the set
{9, 99, 999, 9999, . . .} contains an element which is divided by v. In the case b is equal to ten, this
quite unexpected fact was also proved in [Malcolm, p. 476], in the following way.

Proof 1. Consider the b-expansion of 1/v, which is purely periodic by Proposition 1.2. Writing it as 0.M
with ℓ for the length of the period, we therefore have 1/v = M/(bℓ − 1), so Mv = bℓ − 1 and we are
done.

An alternative presentation makes use of the relation 0.9 = 1 in its general form in base b: 0.β = 1
where β = b− 1.

Proof 2. Apply the long division algorithm to get the b-expansion of 1/v, written as 0.β/v, to get suc-
cessively:

0 = 0v + 0

0b+ β = q1v + r1

r1b+ β = q2v + r2
...

rmb+ β = qm+1v + rm+1

...

with 0 ⩽ qm < b and 0 ⩽ rm < v for all m ∈ N∗. By Proposition 1.2, the obtained b-expansion is purely
periodic. Hence, writing ℓ for the length of the period, we have rℓ+1 = 0 (the rest of the initial division
0 = 0v+0), so 0.β · · ·β = v× 0.q1 · · · qℓ (with ℓ times the digit β in the left side). Multiplying by bℓ then

gives that bℓ − 1 = v ×
ℓ∑

i=1

10ℓ−iqi.

Another important property of the sequence (bn − 1)n is the following one.

Theorem 1.4. Let ℓ and ℓ′ be two positive integers. The smallest positive integer n such that bn − 1 is
divided by both bℓ − 1 and bℓ

′ − 1 is n = lcm(ℓ, ℓ′).

An equivalent form is:

Theorem 1.4 (second form). For any positive integers n and ℓ, bn − 1 is divided by bℓ − 1 iff n is
divided by ℓ.

Proof. Write n = kℓ+ r with 0 ⩽ r < ℓ for the Euclidean division of n by ℓ. The formula for the sum of
the first terms of a geometric sequence gives

k−1∑
i=0

biℓ+r = br
bkℓ − 1

bℓ − 1
=

bn − br

bℓ − 1
=

bn − 1

bℓ − 1
− br − 1

bℓ − 1
,

so bℓ − 1 divides bn − 1 iff it also divides br − 1 (since the left side is an integer). Since r < ℓ, this is the
case iff r = 0.

The previous theorem is coined in [Wallis] in the following form:

Theorem 1.4 (third form). Let v and v′ be denominators of two irreducible fractions, the former
(respectively: the latter) corresponding to a periodic expansion of length ℓ (respectively: of length ℓ′). If v
and v′ are mutually prime, then the product of the two fractions has a decimal expansion whose periodic
part is of length lcm(ℓ, ℓ′).
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As regards the product of two rational numbers, the following Proposition, whose proof is a fancy
application of standard divisibility criteria, shows that the multiplication of rational numbers is much
more difficult to tackle when considering only b-expansions. Quite unexpected (especially considering the
relative smallness of the length of the product of two fractions as given by the third form of Theorem
1.4), it is probably sufficient in itself to explain why practitioners, after some attempts in the first part
of the 18th century (see Section 3), eventually gave up the idea and went back to fractions and decimal
approximations for their calculations. (See Theorem 6.1 for a more general result in the framework of
circular words.)

Proposition 1.5. In the decimal numeration system, let 0.M and 0.N be two rational numbers, with M
and N of length 2 (that is, M and N are written with two different digits). Let P be the shortest sequence
of digits such that 0.M × 0.N = 0.P . In general, the length of P is equal to 198.

Proof. By Proposition 1.2, 0.M (respectively: 0.N) is equal to some fraction u/v (respectively: u′/v′)
with v (respectively: v′) prime with b = 10, so the product is equal to (uu′)/(vv′). Since vv′ is prime
with 10, Proposition 1.2 gives that this product can indeed be written 0.P for some P .

The fact that 0.P can also be written 0.PP (hence doubling the length) justifies the reference to
the minimal possible length for P . Write ℓ for it. Now, by the proof of the converse of Theorem
1.1, we know that 0.M = M/99, that 0.N = N/99 and that 0.P = P/(10ℓ − 1). Hence, we have
MN/(99 · 99) = P/(10ℓ − 1), so (99 · 99)P = (10ℓ − 1)MN . Thus, whenever MN is prime with 99 (hence
the “in general” in the statement of the Proposition) we have that 99 · 99 divides 10ℓ − 1. In this case,
the value of ℓ is the smallest positive integer for which 10ℓ − 1 is divided by 99 · 99 = 92 × 112.

First, 10ℓ − 1 is divided by 9 whatever ℓ > 0 is. The quotient is equal to the rep-unit rℓ = 11 . . . 11
(with ℓ copies of the digit 1). Since an integer belongs to 9Z iff the sum of its digits belongs to 9Z, the
rep-unit rℓ is in 9Z iff ℓ ∈ 9Z.

It remains to show for which values of ℓ the rep-unit rℓ is divided by 11 twice. An integer belongs to
11Z iff its alternate sum also belongs to 11Z, so rℓ ∈ 11Z iff ℓ is even. In this case, we have that rℓ/11 is
of the form 101010 . . . 101 (with ℓ− 1 digits). By the same criterion, this latter integer is divisible by 11
iff the number of 1s in it belongs to 11Z, that is, ℓ/2 ∈ 11Z.

Taken together, the preceding conditions show that 10ℓ − 1 is divisible by 99 · 99 iff ℓ is a multiple of
9, 2 and 11, so ℓ = 198.

Even the simple example of (0.01)2 in base ten provides an example of the previous Proposition.
Its periodic part is made of the concatenation of words of length 2 in increasing order from 01 to 97,
eventually followed by 99 instead of 98 (i.e., the periodic part is 010203 · · · 95969799).

Since the divisibility criteria by 9 and 11 in base ten easily extend to divibility criteria by b− 1 and
b+ 1 in base b, the previous proof can be generalized straightforwardly in any base, hence providing the
following more general result.

Proposition 1.6. Let 0.M and 0.N be two rational numbers written in base b, with M and N of length
2 (that is, M and N are written with two different digits). Let P be such that 0.M × 0.N = 0.P . Most
of the time, the minimal possible length for P is 2(b2 − 1).

2 0.999. . . = 1 in mathematics education

Studies in mathematics education on the comparison between 0.999... (or 0.9) and 1 are numerous and old
[Ta78, Ta80, Si]. It is frequently regarded as a key point in the understanding of the set of real numbers,
related to several and different notions: completeness (there is no “hole” between 1 and 0.999 . . .), the
notion of limit, infinitesimals (between standard and non-standard analysis), the double representation of
finite decimals, the impact on Euclidean geometry (with abscissa on a straight line), potential and actual
infinity, etc. The importance of it also arises in high-level mathematics as for example when dealing with
Cantor’s diagonal argument on the non-denumerability of R.

The equality 0.999 . . . = 1 is a part of mathematics but also of daily life, hence useful to understand
not only in mathematical classrooms. Some times ago in Geneva, one of the authors paid with a 50 euros
banknote a good whose price was 50 swiss francs. The shop assistant proposed an exchange rate of 1.20
swiss franc for 1 euro, and started a calculation to determine the amount of swiss francs he had to give
back. He calculated in euros by computing 50− (50/1.2), then multiplied the result by 1.2. His calculator
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gave the result 9.99999 and he proposed to give back 10 swiss francs. Maybe the shop assistant thought
he was rounding to the nearest integer whereas, in fact, the value he offered was the exact result of the
calculation.

It should not be believed that this phenomenon arises from the rudimentary calculator used. Let’s
take the case of a spreadsheet to make the previous calculation (Table 1). For a cell format Standard
or Number with at most 13 decimals, the result is the expected one, but this is not the case with more
decimals. What do we do with these writings? Are the first results rounded? Is the exact value the one
obtained with 14 decimals? In short, how to interpret the signs displayed by the computer?

Cell format (50–50/1.2)*1.2 display Some details
Standard 10

Number (2 decimals) 10.00
Number (8 decimals) 10.00000000 8 0s after the decimal point
Number (13 decimals) 10.0000000000000 13 0s after the decimal point
Number (14 decimals) 9.99999999999999 14 9s after the decimal point
Number (15 decimals) 9.999999999999990 14 9s after the decimal point
Number (16 decimals) 9.9999999999999900 14 9s after the decimal point

Table 1: Spreadsheet roundings for the calculation (50− 50/1.2)× 1.2.

All studies in mathematics education agree on the fact that it is very difficult to make the students
understand the necessity of the equality 0.999 . . . = 1. According to [WAD], preliminary training on
periodic decimal expansions contributes to the understanding and control of this equality. The difficulties
that arise are about logic, construction of numbers, psychological obstacle of the strong semiotic difference
between the two sides, and conceptual complexity. Also, to preserve a distinction between 0.999 . . . and
1, many scholars as well as students endorse a non-standard analysis viewpoint, writing things like
1 = 0.9 + 0.01 (see [V11]). This shows that the equality 0.999 . . . = 1 heavily relies on the algebraic
structure one wishes to define (see [RV14]).

2.1 apos theory

A particularly efficient way to describe the complexity of the conceptualization required to understand
0.999 . . . = 1 is apos theory [ACD, Dub, WBD]. This theory emphasizes on the difficulty for a learner to
go from the stage of Action (a finite number of 9s) to the stage of Process (the digits 9 continue forever),
then to the stage of Object (0.999 . . . becomes 0.9, a “static” number), on which we can operate and
justify its value 1. The biggest difficulty seems to be the transition from the stage of Process to the stage
of Object.

Interestingly enough, the different stages of the apos theory appears in the historical development of
the mathematical tools underlying 0.999 . . . = 1. Section 3, in which some detailed aspects of the work
by 18th century accountants is presented, can therefore be regarded as showing a scheme in the apos
sense, in which periodical expansion and periodic parts (independently of the base of numeration) are
considered as Objects.

The following quote is a good summary of the way the apos theory understands the equality 0.9 = 1
[Dub, p. 261-262]:

An individual who is limited to a process conception of .999. . . may see correctly that 1 is not
directly produced by the process, but without having encapsulated the process, a conception of
the “value” of the infinite decimal is meaningless. However, if an individual can see the process
as a totality, and then perform an action of evaluation on the sequence .9, .99, .999, . . . , then
it is possible to grasp the fact that the encapsulation of the process is the trancendent object.
It is equal to 1 because, once .999. . . is considered as an object, it is a matter of comparing two
static objects, 1 and the object that comes from the encapsulation. It is then reasonable to
think of the latter as a number so one can note that the two fixed numbers differ in absolute
value by an amount less than any positive number, so this difference can only be zero.

Of course, this is linked with the distinction between actual and potential infinity, as Dubinsky et al.
explain in their paper.
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More recently, Arnon et al. suggested in [ACD], specifically for 0.999 . . . = 1, the introduction of an
intermediate stage between Processus and Object: Totality in which all the 9s make a single entity. The
idea is that 0.9 is regarded as a whole, before having access to the object itself (the number), regardless
of the understanding that this number is equal to 1. In [V11] is suggested a quite similar idea by making
the distinction between two objects: the number and the period. Indeed, Totality can be seen as the
encapsulation of the repetition process of the 9s to produce the object we denote by 9 — in other words,
the transition from potential to actual infinity. Afterwards, it remains to establish 0.9 as an object (a
number), regardless of the mathematical details.

2.2 Classical ways to prove the equality

Teachers are frequently uneasy when confronted to the equality 0.999 . . . = 1. They commonly rely on
calculations to justify it to their students, without these calculations being defined beforehand. The
elementary combinatorial construction given in Section 4 provides a way to overcome this difficulty, thus
possibly offering an interesting tool for teachers, even if its efficiency remains to be checked.

Among the classical elementary justifications for 0.999 . . . = 1 inventoried in [Ta78] we find the
following ones:

Method 1: We have 1/3 = 0.3, so 3× (1/3) = 3× 0.3, hence 1 = 0.9.

Method 2: Write 10× 0.9 = 9 + 0.9 to get 9× 0.9 = 9, hence 0.9 = 1.

Method 3: Let a = 0.9. Dividing 1 + a by 2 by the usual long division gives (1 + a)/2 = a, so a = 1.

Most of the time, when presented to the classroom, none of these calculations are properly defined in
the first place. All of them contain a lot of implicit assumptions. In method 1, it is assumed that 0.3 (and
its triple) represents a rational number. In methods 2 and 3, it is assumed that the equalities between
infinite expansions can be simplified under the rule a+ b = a+ c =⇒ b = c. According to [Ta78], method
3 is the most legitimate, since it is the only one in which calculations are rightfully made from the left to
the right. In that article, it is also suggested the following alternative explanation for 0.9 = 1: we have
1/9 = 0.1, 2/9 = 0.2 and so on until 8/9 = 0.8, hence 9/9 = 0.9. This could be justified by the form of
the long division derived from the alternative Euclidean division a = qb+ r in which we have 0 < r ⩽ b
instead of 0 ⩽ r < b. Such an alternative long division always provides the quotient in a decimal form
that never ends.

An alternative proof, for which we did not find any reference, comes from geometry: on the real line
(or even on the rational line), the segment I = [0.9, 1] has no point in its interior (since there is no
decimal expansion between 0.9 and 1), hence I reduces to a single point. Quite convincing in itself, such
an argument still needs real analysis to be properly completed.

Other procedures can be set up, involving topology and analysis, like summation of series [ND, Ta81]
or the use of the separation axiom for the standard topology of the real line (∀ ε > 0, |a−b| < ε =⇒ a = b)
made in [Dub]. It is this latter property that lies behind Zeno’s paradox (see [F]). More generally, in
[WGL] is presented several ways to justify that two numbers are equal. Nevertheless, they rely explicitely
on the construction of the field R and its general properties.

In fact, contrarily to a quite common belief, the equality 0.999 . . . = 1 is not necessarily linked to
the structure of the real line R, and can be regarded as a fundamental property of the field Q alone.
Therefore, staying in Q not only focus on an essential issue, but also avoids technical considerations about
analysis or topological properties of the real line.

2.3 Students’ difficulties

As we said, all the previous methods to reach the equality 0.999 . . . = 1 (for which maybe we should
speak of evidences rather than proofs) rely on some properties of a structure already set up, in general R.
Moreover, several studies [Men, ND, Ta81] explain that, in general, these arguments are not convincing
for students, even if they frequently acknowledge their validity. The point is that the semiotic opposition
between 0.9 and 1 appears to be too tough.

Besides, it is highly significant that the proportion of mathematically skilled people for which 0.9 = 1
remains around 60 %, a figure quite independent from time, country or specific preparation:
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• At an undergraduate level, 28 students out of 43 (65 %) assert that 0.9 < 1 [V11]; [Ta80] reports
20 students out of 36, so a proportion of 56 %.

• In [Men], the authors find 23 teachers and student teachers out of 40 (57.5 %) in favor of the
inequality. In the same study, they find 12 out of 19 teachers (63 %) enrolled in maestria of
mathematical teaching and for which 0.9 < 1.

For the sake of completeness, let us also mention the study [WAD], made on a non-mathematician
population of 204 students-teachers of primary school. This study found that 73.5 % of them believed
that the inequality holds, a significantly bigger proportion than for mathematically skilled people, but
by a rather small margin. Unsurprisingly, the only population for which the margin is really large is the
one of scholars of secondary school: 100 % out of 113 scholars assert that 0.9 < 1 [V11].

An explanation could be the direct opposition of 0.9 = 1 with the knowledge, firmly established for
numerous years, about comparison of decimal expressions. The necessary reset of this knowledge is more
difficult to do than it is for other results like (−1)×(−1) = 1, which does not oppose any prior knowledge.

To try and overcome this difficulty, we prove that the equality 0.9 = 1 derives from the need to make
use of infinite digit sequences as numbers. Following [RV14], we argue that the equality 0.9 = 1 consists
in a technology (in the sense of [C99]), typical of Q but generally not made explicit.

An experiment made in [RV14] involved 29 undergraduate students in France and relied on ancient
knowledge. After a study, somehow too fast, of the usual summation algorithm, it is observed that if the
decimal expansion of a number a has a nontrivial periodic part, then the computation of 0.9+a provides
the same result as 1+a [Ri], hence the need to assume 0.9 = 1 to preserve standard algebra. The interest
of this is that it is based solely on ancient algebraic knowledge.

From another perspective, the reorganization of the knowledge of the student does not necessarily
imply the acceptance of the equality 0.9 = 1. Indeed, in the context of non-standard analysis it is
concievable to write 0.999 . . . < 1, the difference being an infinitesimal commonly written as 0.000 . . . 1
(with the idea that the expression contains infinitely many 0s) by students (see also [Ma]). Nevertheless,
the theory is difficult, and despite some promising attempts to introduce it in the curriculum [A, H], non-
standard analysis remains marginal. Still, some researchers are trying to develop it as an enlightening
way to look at numbers (see [KKa, KKb]). Such a point of view is important to consider when trying to
understand the way students develop personal concepts that can sometimes oppose those of the standard
curriculum [E]. For example, [MH, p. 404-405] asked 93 primary preservice teachers the question “what
is the largest number?” and got once the answer 99 . . .. To the question “What number is closest to the
number 0.5?”, 67 students1 answered 0.4999 . . . and 3 answered 0.500 . . . 1. These answers are regarded
as a way to deal with potential infinity, but we could see them as echoing a non-standard conception of
numbers as well.

2.4 From digit representations to numbers

The initial question is: how to make numbers from infinite sequences of digits. Such sequences of digits
are not sufficient per se, as Chevallard explained in [C89] in his definition of system of numbers, which
contains the necessity of being able to compare and make basic operations with usual properties. Hence,
the question becomes: how can we operationalize the set of decimal expressions?

In 1971, the French grade 8 curriculum (“classe de quatrième”) made an attempt for this. The
point was that the underlying motivation was to set up the field R, hence the attempt led to difficult
considerations of approximations. One can reasonably assert that such an approach remained purely
theoretical, without any practical use in the classroom. Recently, in [FL] was proposed a more operational
definition that allows to multiply two infinite sequences of digits starting from the left, hence avoiding the
problem of approximation that arise when extending the usual algorithm which starts from the right. This
construction consists in a non-trivial extension of the corresponding natural idea for addition starting
from the left (in which the carry is handled by looking separately the case in which the sum of the k-th
digits is ultimately equal to 9 for all k). The point is that there is no focus on a concrete method to
identify the appearance of this case.

Considering the field Q instead of R allows us to consider only ultimately periodic sequences of digits
(see Theorem 1.1). At first, these are semiotic representations in which the signs (digits and decimal

1That is 68%, which is close to the percentages presented in the previous section.
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points) are numerical, and we wish to make them authentic numbers. Therefore we cannot make use of
an approch like in [AV], in which operations are made using the register of fractions.

According to [Y], teachers for the end grades of primary school should have some knowledge about
the equality 0.9 = 1, since it has an impact on arithmetic understanding of rational numbers. Such a
conclusion may be extended to a broader set of people. Indeed, it is observed in [RV14] that no student for
which 0.9 = 1 shares any infinitesimal way of thinking [Ma] like 0.01. Also, at a primary level, a teacher
may have to deal with the tricky situation of 0.9 and 1 considered by some pupil as a counterexample to
the fact that, between two numbers, there is always a third one.

Duval showed how important it is for a mathematical object to be understood in two different registers
[D]. Fractions and (ultimately) periodic decimal expansions are two numerical registers for rational
numbers. They should be articulated to each other, whereas secondary school mostly consider only
fractions. Not only this could impede the cognitive appropriation of the object, but it also paves the way
to the confusion between the mathematical object (a rational number) and the unique data structure in
use to represent it (a fraction).

Inspired by [WAD], Voskoglou made an attempt to link the two different representations [Vo]. In
particular, his experiment aims at identifying both fractionary and decimal representations of rational
numbers. At it seems, this work on several representation systems is helpful for a better understanding
of the notions of rational and irrrational numbers.

In the framework of apos theory, the study [WAD] (see also [ACD, chapter 8]) is a strong case in
favour of an operationalization of periodic sequences of digits. It argues for the teaching of rational
numbers in both fractional and decimal registers, proposing operations on decimal expressions with the
help of a software. This software makes all the computations by the use of fractions, something the user
cannot notice since the interface only shows the decimal register. The study shows a clear improving of
knowledge, both quantitatively and qualitatively, about rational numbers in decimal expansion, especially
as regards the two expansions of decimal numbers (experimental group of 77 individuals, control group of
127 students-professors of primary school). These results can be understood as the institution of periodic
sequences of digits as numbers, since it becomes possible to perform basic arithmetic operations on them
(see also [Y] and [V11]). The object “number” can therefore emerge from this. The link between these
numbers and fractions is done as well, an essential step to avoid the constitution of two separates and
somehow “parallel” sets of numbers instead of only one which can be studied with two registers.

3 Periodic expansions in the history of practical arithmetics

The equality 0.999 . . . = 1 and its links to circular words theory is part of the history of the more general
subject of the present paper, noticeably investigated in [B]: the representation of rational numbers by
the way of decimal numeration instead of fractions. The starting point is the result recalled in Theorem
1.1: the decimal expansion (or, should we write, a decimal expansion) of any (positive) real number x
is ultimately periodic iff x is rational. It seems that it took some time before the importance or such
a result is recognized. For example, Stevin, in his famous 1585 text entitled La Disme about decimal
representation of numbers and computation [St], ignores the periodicity property of rational numbers
(see especially Proposition IV, Nota 1). An explanation could be that it took time for mathematicians
to become interested in decimal representation, which is more a subject for accountants in the first
place, and that accountants themselves were more interested in decimal approximation than in theoretical
considerations about numbers. Also, the almost intractable problem of the multiplication (see Proposition
1.5 and, more generally, Theorem 6.1) could also have been a huge practical restraint.

As already mentioned in Section 1, the beginnning of deep mathematical investigations from the
equivalence between rational numbers and ultimately periodic expansion, together with some comple-
ments on the size of the period, is probably due to Wallis in his Treatise of Algebra of 1685 [Wallis,
chapter LXXXIX]. Wallis did not noticed the equality 0.999 . . . = 1, nor he investigated the effects of
arithmetic operations on decimal expansion of rational numbers (even if his chapter VIII is quite close to
this). His study is primarily about the length of the periodic part of the decimal expansion of a fraction.
His short work [Wallis, p. 326-327] mainly indicates that this length ℓ is given by writing the denominator
as 2a · 5b · v with biggest possible integers a and b, then looking for the smallest ℓ such that v divides
the number 99 · · · 99 (with ℓ times the digit 9 — see Corollary 1.3). He also mentions that if the decimal
expansion of a fraction of denominator u (respectively: u′) has a periodic part of length ℓ (respectively:
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ℓ′) and that u and u′ are mutually prime, then the length of the periodic part of the decimal expansion
of a fraction of denominator uu′ is lcm(ℓ, ℓ′). (See our Theorem 1.4.) Also, Wallis’ final remark that
“What have been said of Decimal Fractions, may, with very little alteration, be easily accomodated to
Sexagesimal Fractions” shows that he perfectly understands that all his results have a base-b counterpart.
Also, Wallis states that, for square roots like

√
2, “we have not the like recurrence of the numeral Figures

in the same order” (i.e., there is no periodic pattern in the sequence of decimals).
The history of the sequels of Theorem 1.1 split into two differents parts, theoretical and pratical,

the latter one being the most sensible for our purpose. We will present the details of it relevant for the
present article, postponing to a forthcoming paper the presentation of the full story of the consequences
of Theorem 1.1 to what was called “practical arithmetics” in the 18th century. Before going into this, for
the record, let us present some aspects of the theoretical aspects investigated after Wallis (see [B]).

Wallis’ most famous followers in studying the subject are: Johann Heinrich Lambert, whose first at-
tempt to prove the irrationality of π, before his more fruitful approach by continued fractions, consists in
trying to show that its decimal expansion is not periodic; Leonhard Euler, who presents the general prop-
erties of decimal expansions rational numbers with the formalism of series [Euler]2; Johann Bernoulli; and
eventually Carl Gauss, who provides in his famous Disquisitiones Arithmeticae of 1801 the mathematical
background to understand the properties of decimal expansions (or, more generally, b-expansions, where
b > 1 is any integer) of rational numbers: length of the periodic part, effect of the multiplication by an
integer. . .

Then the story seems to end, since Gauss proves that all that can be said on the subject mainly
rely on Fermat’s Little Theorem and its consequences. Nowadays, b-expansion of rational numbers are
more regarded as recreational mathematics (as it is already the case for example in [Ra, p. 113-126]).
Nevertheless, alternative numeration systems investigated from the second part of the 20th century (with
the seminal works of Rényi, Parry and others [Re, Pa]) provide new scopes for these old questions.

Now, a more relevant part of the story surrounding Theorem 1.1 in our context is about mostly
forgotten English writers concerned with teaching and accounting necessities during the first part of the
18th century. Starting from Wallis’ initial ideas, these numerous authors develop several new practical
algorithms to deal with periodic decimal expansion: addition, multiplication, division, and even elevation
to the n-th power. Here, to remain in the bounds of our purpose, we limit ourselves to a brief presentation
of some of the works of five authors: Brown, Cunn, Hatton and Marsh. (The forthcoming paper on the
full story involves many more authors.)

3.1 George Brown: a mixed numeration system

We may argue that George Brown is the first to face the equality 0.999 . . . = 1, since he is seemingly
the first to operate with periodic expansions in his System of decimal Arithmetick [Brown]. Nevertheless,
he is not concerned with such an equality, because of his very clever interpretation of “Infinites” (i.e.,
infinite periodic expansions) that allows him to consider them as finite expressions. In his explanation of
it right from the beginning of his study of infinite periodic part [Brown, p. 12], the part which is closest
to correspond to 0.999 . . . = 1 is:

you must reckon the figure next the Right hand of an Infinite, as Ninth parts, but not as Tenths
of the next preceding Unites ; and for that cause, you must in Addition and Multiplication,
carry one for every Nine of the Sum, or Product ; and in Substraction and Division, reckon
upon Nine, for every one of the borrowed, or imaginary prefix.

Hence, when Brown writes the decimal expansion of 1/240 as 0.00416, this latter expression is to be

interpreted as
4

103
+

1

104
+

6

9 · 104
.

Brown representation is an exact one, essentially equivalent to the WCP-representation we will present
in Section 4.2. The only issue is the ambiguity of notation that makes difficult to distinguish numbers
like 3/10 and 3/9 (which could be both written as 0.3). Most importantly, in Brown’s mixed numeration
system in which the last digit is to be considered as ninths parts of the previous one, there is no need to
consider anything close to 0.999 . . . = 1.

In some way, it is a little bit disappointing that Brown, the first real user of infinite periodic decimal
expansion, is so clever that he overcomes right from the beginning any reference to the puzzling equality.

2See chapter XI, section III, points 523-524, then chapter XII — especially the scholium p. 174-175.
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The only calculation in his book in which we could potentially recognize it (even if, so, it is quite abusive to
interpret it this way) is the one of Figure 1, corresponding to the sum 0.0010416+0.0020833 = 0.003125.

Figure 1: Brown’s calculation for the sum of two periodic decimal expansions.

In this figure, “decimal for one Penny” stands for the decimal expression of the value of one penny
expressed in pound: 1 penny is one twelfth of a shilling and 1 shilling is one twentieth of a pound, so a
penny is a (1/12)× (1/20) = 1/240-th of a pound, so 0.00416.

Most of the time, Brown remains in this context of conversion between units of English money of the
time, in which appears mainly periodic expansion of length 1, frequently 3 or 6. He is at ease to make
the correspondence between such an expression and a fraction, as in Figure 2 for 29.16 [Brown, p. 46],

straightforwardly identified with 29 +
1

10
+

2/3

10
. (The written numbers in the left stand for the product

35× 50 = 1750 and 1750/6 = 29, 166 . . ..)

Figure 2: Brown’s identification of 29.16 with 29 + 1/10 + (2/3)× (1/10).

When possibly confronted with periodic parts of length greater than 1, Brown avoids it by an approx-
imation, without any elaboration. In one case [Brown, p. 46], presented in Figure 3, he uses a kind of

improvisation: when computing 297.5/11, which is 27.045, Brown writes 27 +
1

22
instead, the fractional

part being deduced from the rest 0.5 to be divided by the divisor 11.

Figure 3: Brown’s avoidance of periodic expansion of length more than 1.

3.2 Samuel Cunn: operating on periodic expansions and 0.999. . .

The work of Samuel Cunn in the field of periodic decimal expansions is the second substantial one since
Wallis [Cunn]. Contrarily to Brown, Cunn mentions the previous work of Wallis, as well as some minor
considerations made by two other authors, but seems unaware of Brown’s book and has a very different
standpoint. Cunn’s full chapter on the subject shows a clear understanding of many issues. It is quite
frustrating that he does not provide any proof for the many results he states, all of them being very
accurate.

In his preliminary definitions, Cunn makes the difference between decimal an non-decimal numbers,
what he calls terminates and interminates, noticing two pages later that “Every Terminate may be
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consider’d as Interminate, by making Cyphers the Repetend”.3

The way Cunn understands ultimately periodic expansions is very combinatorial, being in particular
highly interested in the length of the periodic part of an expansion. Cunn’s perspective is close to what
we call the WCP representation of numbers in Section 4.2. He mentions explicitely what corresponds
to the shift identification and circular powers identification. He understands it both ways, that is, a
repetend like 56 can be extended as 565656, but also “if the Repetend consists of some other Repetend
of fewer places, retain the latter only”. He also states in a general form some results given by Wallis, as
well as the equality 0.N = N/99 . . . 9 (with as many 9s as the length of N). He explains precisely, and
with examples, how to add and substract ultimately periodic expansion, but also how to multiply and
divide them.

With such an approach, it is quite inevitable that Cunn is also interested specifically in 0.999 . . .,
writing what is possibly the first explicit remark on this expression, made as a theorem stating that
[Cunn, p. 63]:

Instead of .9999 an so on continually, put an Unit, for that is either equal to this, or else
wants of it less than any thing assignable.

Unfortunately, this observation is nowhere followed by anything else, neither for a more rigorous proof
nor in subsequent rules and examples. Hence, we cannot know for sure the reason why Cunn made such
a fundamental observation. Even some of his subsequent examples which could explicitely require the
identification of 0.999 . . . and 1 (like 3.176× 0.3 = 0.9530) are treated with a method that does not need
it.

After addition and substraction, Cunn goes for multiplication, which is much more difficult as we
already mentioned in Proposition 1.5 (see also Section 6). He states his results in increasing complex-
ity, eventually providing complete algorithms, valid in all possible cases. Two of his statements are
particularly striking [Cunn, p. 66]:

If any required Root of some terminate Number be not exactly had from the Places given, it
cannot be exactly had.

If any required Root of some circulating Expression doth not repeat from the Repetend once
used, it cannot repeat at all.

Even if these sentences are quite imprecise, we can interpret them as stating that if x ∈ D then n
√
x is

either decimal or irrational, and that the same is true for x ∈ Q. It is probable that, here, Cunn is simply
restating the corresponding remark made by Wallis (see the beginning of section 3). Unfortunately, he
does not try to go beyond this statement, nor he provides any clue for a proof in the spirit of his repetends.
(See Theorem 7.1 for such a proof, for a more general statement.)

3.3 Edward Hatton: accounting and recreational mathematics

Hatton’s presentation of decimal arithmetics can be seen as a rationalization of some ideas on numbers
sometimes rather naive. For example, in [Hatton1721, p. 131], Hatton defines decimal numbers as
fractions whose denominator is a power of 10, then goes for the decimal expansion of them, and eventually
consider decimal numbers as possibly “infinite” (i.e., with infinitely many digits). One may interpret it
as an implicit shift from the arithmetical definition of decimal numbers (fraction of denominator 10n) to
a combinatorial one (a sequence of digits), the latter one being praised by Hatton “because so like to an
intire Number” [Hatton1721, p. 13].

In [Hatton1721, p. 147], Hatton presents what is possibly the first historical example of an explicit
computation leading to a number ending with infinitely many 9s, namely the product 0.12564×0.00009 =
0.0000113079, as shown in Figure 4. (In Hatton’s notation, the “r 1” means that the one last digit is to
be repeated ad infinitum, as he explains it in [Hatton1721, p. 134].)

As before, both factors are regarded as “Decimals”. The justification for this calculation consists in
reporting adequately the carry for the periodic part. To quote Hatton, who is quite clear here [Hatton1721,
p. 147-148]:

3He also unifies finite and periodic decimal expansions by defining the notion of compleat decimal, but without using it
afterwards; he also avoids talking explicitely about aperiodic expansions, opposing compleat decimals to approximate ones,
“that hath some places true, but all the following ones uncertain”. This separation may be understood as algorithmical, in
the sense that approximate decimals are those for which there is no obvious rule for their sequence of digits.
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Figure 4: Hatton’s computation of 0.12564× 0.00009 = 0.0000113079.

Note, That in the fourth Example, because the 4 is repeated ad infinitum, therefore I say, 9
times 4 is 36, and 3 (which would be carry’d if you actually put down another 4) is 39 ; put
down 9, and carry 3. Now if you had put down and multiplied 100 Fours of those repeated,
so many Nines would also be repeated in the Product ; but for brevity-sake I only put down
one of each with an r.

The main difference with Cunn is the fact that Hatton introduces the sign r1 to unify the infinite
sequence of digits.

Hatton is not really interested in a general theory of calculation with periodic expressions. In his
second work on the subject [Hatton1728], he sees the question merely as practical or recreational. He
provides a few examples for which a quite naive algorithm is sufficient (as it is already the case in
[Hatton1721] even if there are more examples and details in the latter). Still, Hatton’s 1721 book proves
that Hatton does understand how to calculate with periodic expansions.

Nevertheless, one of his calculations makes it quite clear that identifying 0.9 and 1 is beyond his scope
(see Figure 5).

Figure 5: Hatton’s non-identification of 362139999.9 with 362140000.

3.4 Alexander Malcolm: 0.9 = 1 and beyond

In 1730, Alexander Malcolm provides what is possibly the first general statement about the existence of
two decimal expansions for decimal numbers (Figure 6), as well as a rigorous proof of it [Malcolm, p.
472].

Figure 6: Malcolm’s assertion on decimal expansions of decimal numbers.
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By the “Repetend of any Circulates”, Malcolm means the periodic part of the decimal expansion of a
number. Also, Malcolm writes 9̇ for our 9, hence the equality .9̇ = 1 corresponds exactly to our 0.9 = 1.
The theorem he refers to states the general correspondence between rational numbers and ultimately
periodic expansions, based on the equality 0.M = M/(10ℓ − 1), where ℓ is the number of digits in M .
Malcolm proves this theorem at length, by the use of the formula of the sum of the terms of a geometric
sequence.

3.5 John Marsh

Wherever all previous authors consider periodic decimal expansions rather as an aspect of decimal arith-
metics among others, John Marsh is the first, in 1742, to write a book fully devoted to this single notion
[Marsh]. (For an extensive presentation of his work, see [Mel].) Marsh is fully aware of the authors before
him, but want to get rid of some mistakes he found in their works. He produces general algorithms for
multiplication and division, and understands the problems arising by rapidly increasing length of periodic
decimal parts in calculations (see our Proposition 1.5).

Marsh does understand very well the equality 0.999 . . . = 1, and states the same general result as
Malcolm (see previous section), providing some more general examples like 19.9 = 20 and 399.9 = 400
[Marsh, p. 16]. His justification of the equality is mainly topological, close to the argument given in
[Dub, p. 261-262].

Figure 7: Marsh’s argument for 0.9 = 1

The equality 0.9 = 1 seems very natural to Marsh, as illustrates his first sentence of his proof (“The
Reason is manifest”). Marsh is possibly the first author to show this equality in action at length, providing
a lot of examples of its usefulness in subsequent calculations. His first explicit case [Marsh, p. 36] is a
calculation reproduced here in Figure 8, corresponding to the calculation 0.571428+0.285714+0.142857 =
0.9 = 1. It appears among his first examples of computation with periodic expansions.

Figure 8: A computation made by Marsh with periodic expansion, mentioning the identification of 0.9
with 1.

Beforehand [Marsh, p. 32], we may find the same kind of identification reproduced in Figure 3.5 but
only in an indirect manner, in the calculation 0.93 + 0.73 + 0.26 + 0.06.

The result is 2.00 and not 1.99 since the rule Marsh is following (given in [Marsh, p. 30]) is more
or less equivalent to consider the “circulate” digits of each number as ninths parts, as Brown does (see
Section 3.1).
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Figure 9: Another calculation made by Marsh, with the implicit assumption that 0.9 = 1

3.6 An APOS interpretation

The work of the previous authors (and some others) on decimal expansion of rational numbers can be
interpretated in the framework of apos theory. Here we focus on two aspects. The first one is the number
obtained, with infinitely many digits. It may be understood as a process or object, here referred as P1

and O1. The second aspect is the understanding of the periodic part, which can also constitute a process
or an object, P2 and O2. Besides the production of decimals by division (P1 and P2), we are interested
more specifically in operations on objects O1 and O2 (which can also be interpretated as stages of apos
theory) as well as the equality 0.9 = 1 which allows to regard a fraction and its corresponding decimal
expansion as equivalent, defining a rational number.

Wallis is at the stage of objects O1 and O2, furthermore asking for the length of the periodic parts.
He is much interested in O2, and not so much in O1. He does not consider operations on periodic
parts, and does not seem to remark the equality 0.9 = 1. He uses commas to circumscribe a periodic
part, as in 0.803, 571428, 571428, 57&c (with the use of the abbreviation for et cætera to emphasize on
the repetition). Wallis has a more general notion of a number, mentioning the sexagesimal numeration
system and, above all, real numbers [Wallis, chapter LXXXIX]:

But the concinnity which thus appears in the interminate Quotient of a Division, (the same
numbers again returning in a continual Circulation ;) is not to be expected in like manner
in the Extraction of Roots, (Square, Cubick, or of higher Powers.) For though the Surd
Root may be continued by Approximation in Decimal parts, infinitely: Yet we have not
therein the like recurrence of the numeral Figures in the same order, as in Division we had.
As

√
2 = 1.41421356+. Which yet hiders not but that this approximation may be safely

admitted in practice; and if so supposed infinitely continued, must be supposed to equal the
Root of that Surd number; as truly as 0.33333, &c, infinitely, to equal 1

3 .

The stage Totality is recognizable, with a specific + sign, meaning that the digits that come next are
different from the first ones, providing the status of an object.

Brown seems to be at the stage O1, operating on O1 as if it were decimal numbers (by appending
enough digits). We can also interpret what he does as a desencapsulation of O1 allowing to operate (stage
Action). This is facilitated by the fact that the numbers he deals with come from English monetary units,
hence have periodic parts of length 1, essentially 3 and 6 (deriving from 1/3 and 1/12). For example, he
does not identify the periodic part of 908/19, only writing “etc”. He seems to be at the P2 process stage,
since he does not operate directly on periodic parts, even if the circular powers identification (see section
4.2) is recognizable [Brown, p. 11]:

Here you see the Decimal, for one penny is infinite, and yet you may limit it at any one of the
reiterated Figures after Decimal thirds, or you may extend it as much further as you pleased.

Cunn is at stage O1, with an understanding of the equivalence between periodic decimal expansions
and fractions, the use of integers of the form 99 · · · 99 for the denominator, operations made on O1 by
algorithms showing the Process stage. He is also at stage O2. He uses explicitely the word “period”,
and identifies 222222 with 2 (circular powers identification), with a specific notation for these, made of
slashes delimiting the period (as in 8.59/35881/ for 8.5935881). He even provides, for a multiplication, a
period of length 24. He gets the identity 0.9 = 1, refers to Wallis and makes use of his notation + for the
aperiodicity of square roots.
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One of Hatton’s calculations makes it quite clear that identifying 0.9 and 1 is beyond his scope
(see Figure 5). Nevertheless, we can consider that he is at the stage O1, since he succeedes in making
computation with them. He is also at the stage O2, with a specific notation. The Object is very clearly
stated. However, he desencapsulates it into the Process when writing “because the 4 is repeated” to
compute the product, then reencapsulates the Process into the Object with the notation r6 to indicates
that six digits are to be repeated. He carries out some multiplications involving 1/3, hence with periodic
parts of length 1. He seems quite close to Brown when he makes calculations with appending decimals
rather than considering true periodic parts (apart from very simple cases like 3r + 6r).

Malcolm is at stages O1 and O2, with operations at the Process stage (with algorithms). He identifies
clearly the equality 0.9 = 1, based on a geometric series (without details). The equivalence between
fraction and periodic decimal expansion is explicit, with the periodic part as a numerator and 10ℓ − 1
as a denominator. Malcolm’s notation for periodic part is made of a point over the initial and final
digits of it. Also, Malcolm provides some examples of multiplication of periodic decimal expansions, but
rather suggests to convert them into fractions [Malcolm, p. 483]: “it is much more tedious than the
Multiplication of Finite Decimals, considering how easily the Finite Value of a Circulate is found ; and
how easy it is to divide their Denominators”.

In his treatise, Marsh considers the full set of (positive) rational numbers and provide complete
computation algorithms (referring to Wallis, Brown, Cunn and Malcolm). He is at stage O1 and O2

with his algorithms for standard operations (Process), but also writes a chapter on powers and roots.
Multiplication reiterated could indicates that he is at the Object stage for operations. He also identifies
the equality 0.9 = 1, with an explicit topological argument relying on a geometric series. He makes
the equivalence between fractions and periodic expansions explicit, and he uses Malcolm’s notation for
periodic parts.

None of these authors set up a coherent and complete structure of the set of rational numbers from
periodic decimal expansion, even if Cunn, Malcolm, and above them Marsh, were not far from it. To be
more precise, consider the apos notion of Schema, defined in [ACD, p. 111] as “a tool for understanding
how knowledge is structured and its development through the learning process”. More specifically, we are
interested in the schema for the set of rational numbers, in the three stages intra-Q, inter-Q and trans-Q.
The same paper explains these stages as follows:

In apos theory, the Intra-stage of Schema development is characterized by a focus on in-
dividual Actions, Processes, and Objects in isolation from other cognitive items. At the
Intra-stage, the student concentrates on a repeatable action or operation and may recognize
some relationships or transformations among Actions on different components of the Schema.
(p. 114)

The Inter-stage is characterized by the construction of relationships and transformations
among the Processes and Objects that make up the Schema. At this stage, an individual
may begin to group items together and even call them by the same name. (p. 116)

As a student reflects upon coordinations and relations developed in the Inter-stage, new
structures arise. Through syntheses of those relations, the student becomes aware of the
transformations involved in the Schema and constructs an underlying structure. This leads
to development of the Schema at the Trans-stage. A critical aspect of the Trans-stage is
development of coherence. Coherence is demonstrated by an individual’s ability to recognize
the relationships that are included in the Schema and, when facing a problem situation, to
determine whether the problem situation fits within the scope of the Schema. In some cases,
the constructions involved in the mathematical definitions of a concept show coherence of the
Schema; this means the individual is able to reflect on the explicit structure of the Schema
and select from it the content that is suitable in solution of the problem. (p. 118)

Hence, we can specify the three stages of the Schema for rational numbers:

• Intra-Q: periodic decimal expansions derive from fractions, with possibly the periodic part at a
Process or Object stage, and also possibly Actions on these objects (operations). Wallis, Brown
and Hatton are at this stage.
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• Inter-Q: the fundamental relationship is the equality 0.9 = 1, which provides the link between the
two equivalent representations of rational numbers. These ones can be properly defined as periodic
decimal expansions, which are not subordinate to fractions anymore. The periodic parts are seen
as objects, operations with algorithms can be at the Process stage. Notions of topology may arise
to justify that 0.9 = 1. This stage is reached by Cunn and Malcolm.

• Trans-Q: the structure of periodic decimal expansions is coherent, with full equivalence with frac-
tions, and operations as Objects and with their algebraic properties, defining the field Q. With his
treatise devoted to periodic decimal expansions and operations at the stage Object, Marsh is at this
stage, even if not completely since he does not identify the structure of Q with decimal expansions.
(The fact is that algebraic structures were not really considered for themselves at the time.)

It seems that such an analysis about periodic decimal expansions was never carried on to its end,
since the reference Schema is mainly the one for R (as we can already see for Wallis). In the next section,
the aim is to set up a mathematical framework that could constitute the basis for a Schema trans-Q.

4 Combinatorial definitions for sets isomorphic to Q
Here and in the next sections, we are interested in more strictly mathematical aspects of circular words
in base b. We wish to investigate what can be done with a purely combinatorial definition of the set Q
without making use of fractions. Our aim is to define two set (hereafter named QWCP and QDC) that will
be eventually proved to correspond to Q. Both definitions derive from the characterization of rational
numbers given by Theorem 1.1, namely: for any integer b ⩾ 2, a number is rational iff its b-expansion is
ultimately periodic.

The definition of the two sets QWCP and QDC are quite similar, but are suited for different purposes.
The first one remains close to the usual perception of b-expansion, the second one is better for theoretical
reasoning. Ultimately, such representations will allow us to define the field Q (Sections 5 and 6), and
to provide a new and quite simple proof that algebraic integers are either integers or irrational numbers
(Section 7).

4.1 Circular words

Let b ⩾ 2 be a fixed integer. A b-expansion of a number x is a codage of x by a sequence, called a word,
of elements of the alphabet A := {0, 1, . . . , β}, where β := b − 1. A finite word W is generically written
w0w1 · · ·wℓ−1 (with wi ∈ A for all i), where ℓ is the length of W , also written |W |. For W ′ = w′

0 · · ·w′
ℓ′ , we

define WW ′ as the concatenation of W and W ′, that is, WW ′ = w0 · · ·wℓw
′
0 · · ·w′

ℓ′ . Defining W 1 := W ,
we also put, for any n ⩾ 2, Wn := WWn−1.

Occasionally, there will be some ambiguity with the notation for exponents, but the context will make
things clear. For example, the expression βℓ will always stand for the concatenation of ℓ copies of the
single-letter word β (and never for the value β to the ℓ-th power), whereas bn will always denote the
usual n-th power of the natural number b.

The application N(w0 . . . wℓ−1) :=
∑
i<ℓ

wib
ℓ−1−i defines a one-to-one correspondence between the set

of finite words with w0 ̸= 0 and the set N∗. Such an application corresponds to the usual writing in
base b (in which the rightmost letter wℓ−1 corresponds to units). To avoid cumbrous notations, we will
frequently confuse W and N(W ) in the sequel. Again, the context will make things clear.

We already encountered infinite periodic words in the previous sections, denoted by W (as in 0.9 or

0.873). A slightly distinct notion is the notion of circular word of length ℓ, a word W̃ whose letters are
indexed by Z/ℓZ instead of {0, 1, . . . , ℓ − 1}. Intuitively speaking, a circular word it is a finite word in
which its final letter is followed by its initial one (indexed by 0, so one may speak of dotted circular

words for the sake of precision). The set of circular words of length ℓ is denoted by Ãℓ, and the set⋃
ℓ⩾1

Ãℓ of all circular words on the alphabet A is written Ã. The shift σ on Ã is the bijection such that

σ( ˜w0 . . . wℓ−1) = ˜w1 . . . wℓ−1w0 for any circular word of length ℓ.
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Despite its natural appearance in decimal expansion of rational numbers, the study of circular words
seems to be very recent [RV12b, RV11, R], apart from its intuitive utilization.4 Here is a classical and
interesting application:

Theorem 4.1 (Fermat’s little theorem). Let p be a prime number. For any integer b, we have bp ≡
b (mod p).

Proof. Since p is prime, for any W̃ ∈ Ãp not of the form w̃p, we have that W̃ , σ(W̃ ), . . . , σp−1(W̃ ) are

different circular words. Hence, Ãp splits into subsets made of exactly p elements (the equivalence classes

under the equivalence relation W̃ ∼ W̃ ′ iff W̃ ′ = σk(W̃ ) for some k, except for the words of the form

w̃p), plus the subset {w̃p, w ∈ A}, which contains exactly b elements. Therefore, the cardinality of Ãp,
equal to bp, is also of the form kp+ b, where k is some integer. We thus have bp ≡ b (mod p).

Note that, apart from the primality of p, the proof relies on combinatorics, not on arithmetic. A
way to generalize the theorem is to consider circular words with some combinatorial constraints. For
example, let A := {0, 1}, and consider the set of circular words of length ℓ in which the subword 11 does

not appear (note that 11 appears in the word 1̃0ℓ−21 because of the circular structure). It can be shown
that its cardinality is given by the Lucas sequence (Lℓ)ℓ defined by L1 = 1, L2 = 3 and Lℓ = Lℓ−1+Lℓ−2

(see [RV12b]). The same proof as before then gives the following variant of Fermat’s Little Theorem:
for any prime number p, we have Lp ≡ 1 (mod p). This result can, of course, be generalized to other
combinatorial constraints5.

4.2 The set QWCP of word-circular-point representation of rational numbers

This set is in some sense the most natural one, and from a teaching perspective the simplest one. As
presented in Section 3, it is, at least in an implicit way, the representation chosen by English authors of
the 18th century involved in the study of periodic decimal expansion for practical arithmetics.

Consider the rational number whose decimal expansion is 24.83756. We will say here that its word-
circular-point representation (WCP) is the triple (24837, 5̃6,−3). In this triple, the part 24837 corresponds

to the aperiodic part of the expansion, 5̃6 corresponds to the periodic part, and −3 localizes the position
of the decimal point (by counting the number of digits between it and the beginning of the periodic
part, counted negatively if the decimal point lies in the aperiodic part and positively otherwise). Also,
to get negative rational numbers, we would need to symmetrize the set, which can be done by defining
quadruples (s,W, P̃ , c) with s ∈ {+,−}. This would be quite cumbrous, so we will not consider it in the
following. (Still, it will be needed in Section 5.3 to get the group structure.)

It is easy to prove that the rational number that corresponds to the given triple (W, P̃ , c) is bc
(
W +

P/β|P |) = bc(W+0.PPP . . .). To make this application bijective, several identifications are to be made to

take into account that several expressions of the form (W, P̃ , c) correspond to the same rational number.
These identifications are:

1. the leading zeroes identification: (W, P̃ , c) ≡ (0W, P̃ , c);

2. the circular powers identification: (W, P̃ , c) ≡ (W, P̃ k, c) for any k ∈ N∗;

3. the “0.999 . . . = 1” identification: (W, β̃, c) ≡ (W + 1, 0̃, c);

4. the shift identification: (W, P̃ , c) ≡ (Wp0, σ(P̃ ), c− 1), where p0 is the initial letter of P̃ ;

Definition 4.2. The set QWCP is the set of triples (W, P̃ , c) quotiented by these four identifications.

4Wallis already coins the term “circulation”; Marsh uses indifferently the terms “circulant” and “repetend”; between
Wallis and Marsh, Jones talked in [Jones, p. 104-105] of “circulating figures”, Cunn of “circulating numbers” [Cunn, p. 61],
Malcolm of “circulating decimals” [Malcolm, p. 150]. Some years after Marsh, Robertson speaks of “circulating fractions”
[Ro].

5A lot of what is presented here can probably be generalized to b-expansions for algebraic values of b. (The previous
example corresponds to the case b = (1 +

√
5)/2.) Nevertheless, the extension of the theory for these values is in no way

trivial and still a work in progress. For example, Theorem 5.1 does not hold for b = (1 +
√
5)/2, in the sense that, in this

case, for some values of ℓ, the group Gℓ is not monogenetic.
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Most of the English authors of the 18th century state the circular powers and the shift identifications,
mainly for the purpose of addition (see Section 5.1).

The three first identifications are somewhat inescapable: the first one provides a rule for the aperiodic
part, the second one a rule for the periodic part, and the third one articulates the link between the two,
link without which the structure would reduces to a direct product. There is still a gap between the
two firsts, easily accepted at an elementary level, and the third one, much more difficult to accept (see
Section 5.4 for a way to make the third one “natural”; note also that we will make use of it only when the
addition of rational numbers is defined). As for the shift identification, it does not rely on a fundamental
structure, it is more a technical identification, which is less satisfactory in a theoretical meaning. This
inconvenience will be overcome by our second construction (section 4.3), in which there will be no need
for such a shift identification.

Even if we will not elaborate on this later, observe that the integer c is more important for addition
than for multiplication in QWCP. Indeed, addition of numbers given on a b-expansion form requires a
clear positioning of the digits, whereas multiplication does not. As can be checked, Marsh’s algorithm
for multiplication (Section 3.5) does not fundamentally need a value c. Algebraic properties of the set

made of pairs (W, P̃ ) has some historical roots since, as shown by historians like François Thureau-Dangin
[Th, p. 117] and Christine Proust [Pr, p. 249-251], such a numeration system without position was the
underlying mathematical structure in use in the Babylonian sexagesimal numeration system, four millenia
ago.

4.3 The set QDC of decimal-circular representation of rational numbers

This second representation is interesting in that it can be seen as a more natural extension of the set Db

of b-decimal numbers (i.e., the set of all rational numbers which can be written on the form δ = u · be
with u ∈ Z and e ∈ Z).

First, we define a ring Db isomorphic to the ring Db in a combinatorial way similar to the previous
ones. An element δ of Db is a finite wordW on the alphabet A together with an integer c with 0 ⩽ c ⩽ |W |
(c corresponds to the place of the “decimal” point, with c = 0 for c after the rightmost letter of W ) and a
sign s ∈ {+,−}. The necessary and sufficient identifications that make Db isomorphic to Dd are therefore:
(s,W, c) = (s, 0W, c) = (s,W0, c+ 1).

Up to some more identifications, the set QDC is then defined as Db × Ã. To understand the way it
is done, consider again the rational number r = 24.83756. Its representation by a pair (δ, P̃ ) consists, in
some sense, in forcing its periodic part to start right after the decimal point by writing the number as
the sum 24.181+ 0.65, so the number is represented by the pair (24.181, 6̃5). This is the decimal-circular
representation.

The (δ, P̃ ) corresponds to the rational number δ+P/β|P | = δ+0.PPP . . .. As for the identifications
we need to make ultimately QDC isomorphic to Q as fields, they appear to be more natural than those
for QWCP. The leading zeroes identification now derives from the preliminary construction of Db and,
most importantly, the shift identification is not required anymore. Moreover, there is no need for an ex
post symmetrization since Db is already a group. The remaining identifications are:

• the circular powers identification: (δ, P̃ ) = (δ, P̃ k) for any k ∈ N∗;

• the “0.999 . . . = 1” identification: (δ, β̃) ≡ (δ + 1, 0̃), where δ = 1 is defined in a standard way.

Definition 4.3. The set QDC is the set of pairs (δ, P̃ ) quotiented by these identifications.

In a teaching perspective, the main inconvenient of QDC is that the decimal number δ may strongly
differ from the usual aperiodic part of the represented number. For example, the DC representation of
2.14444 . . . is (1.7, 4̃), hence its integer part is not equal to the integral part of its δ. It can even occur in
some cases that δ is negative whereas r is positive, as the example of 0.47777 . . . = (−0.3, 7̃) shows.

Apart from this inconvenience and the cumbreness it produces for ordering considerations (see Section
4.4), QDC appears to be considerably more tractable than QWCP in most aspects.

4.4 Order on QWCP and QDC

Order on QWCP and QDC are slightly difficult to be defined on a proper way, since the identifications
forced by ≡ makes it difficult to provide a definition simply from triples (W, P̃ , c) and (δ, P̃ ).
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First, we can define the lexicographical order ⩽ on the set of finite words on the alphabet A in the
following way: for W = wℓ · · ·w1 and W ′ = w′

ℓ′ · · ·w′
1 with ℓ < ℓ′, replace first W by 0ℓ

′−ℓW to ensure
both words have the same length, then let k be the biggest index for which wk ̸= w′

k (if any; otherwise
W = W ′). Then, W and W ′ are in the same order as wk and w′

k are in A.

In Ã, we can define a lexicographical order as well: to compare two circular words P̃ and P̃ ′, we use

the identifications P̃ k = P̃ and P̃ ′k′ = P̃ ′ to get two circular words of the same length, then use the
lexicographical order to decide which one is bigger than the other.

InQWCP, to compare (W, P̃ , c) and (W ′, P̃ ′, c′), we first use the circular powers and shift identifications

to transform c′ into c and to get |P̃ | = |P̃ ′|, then the leading zeroes identification to get |W | = |W ′|.
Since the sets Aℓ and Ãℓ are ordered by the lexicographical order (both denoted by <), a first natural
order on QWCP is the semiotic one, here denoted by ≺ (and ≼):

(W, P̃ , c) ≺ (W ′, P̃ ′, c) ⇐⇒
{

W < W ′ or

W = W ′ and P̃ < P̃ ′,

the binary relation ≼ being defined in the same way, only replacing P̃ < P̃ ′ by P̃ ⩽ P̃ ′.
Such a semiotic order suggests, as scholars and students often believe, that 0.9 < 1 (since (0, 9̃, 0) ≺

(1, 0̃, 0)). To take into account the “0.999 . . . = 1” identification, the order ⩽ we wish to define is the
following one:

(W, P̃ , c) ⩽ (W ′, P̃ ′, c) ⇐⇒


(W, P̃ , c) ≼ (W ′, P̃ ′, c) or

W ′ = W + 1, P̃ = 0̃ and P̃ ′ = 9̃ or

W = W ′ + 1, P̃ = 9̃ and P̃ ′ = 0̃.

Now, let us compare the DC representations of x = (δ, P̃ ) and x′ = (δ′, P̃ ′). By the circular powers

identification, we may assume that |P̃ | = |P̃ ′| = ℓ. By the equalities x = δ + P/βℓ and x′ = δ′ + P ′/βℓ,
we easily get that x < x′ iff bℓ(δ−δ′) < δ−δ′+P ′−P (where P and P ′ are to be understood as integers).
This way to present the inequality allows to minimize the non-combinatorial calculations to be made to
compare x and x′ (recalling that multiplying by bℓ corresponds to a shift).

5 The abelian groups (QWCP,+) and (QDC,+)

5.1 Abelian structure on circular words

Circular words of length ℓ can be added in the same way as for usual b-expansion of integers, except
when, as in the right example in Figure 10, the sum of the leftmost digits (7+5) produces a carry, which
has to be put on the rightmost place (thus changing the 6 into a 7).

Figure 10: Examples of summations of circular words.

The addition in Ãℓ is associative, commutative and admits 0̃ℓ as a neutral element. Unfortunately,

this addition does not make Ãℓ a group, since none of its elements admits an inverse element (apart for

0̃ℓ itself). To get an abelian group, the following observation can be made: for any W̃ ∈ Ãℓ \
{
0̃ℓ
}
, we

have W̃ + β̃ℓ = W̃ . In other words, β̃ℓ is an “almost neutral element” of (Ãℓ,+) (see also [RV12a]). If

we can make it a true neutral element, then Ãℓ becomes a group: indeed, the opposite of any W̃ is the
circular word in which each letter w of W̃ is replaced by β − w.
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The idea, behind which lies for a part the equality 0.999 . . . = 1, is therefore to identify 0̃ℓ and β̃ℓ,

thus defining a new set, Gℓ, quotient of Ãℓ under the single equivalence 0̃ℓ = β̃ℓ. On this new set the

addition is well-defined (since we have 0̃ℓ + β̃ℓ = β̃ℓ = 0̃ℓ) and makes Gℓ an abelian group. Since Gℓ is

also monogenetic (a generator is 0̃ℓ−11) and contains bℓ − 1 elements, we have:

Theorem 5.1. The abelian group Gℓ is isomorphic to Z/(bℓ − 1)Z.

Note that, in Gℓ, the shift corresponds to the multiplication by b. As a consequence, any subgroup H
is shift-invariant (that is, σ(H) = H).

Now, put G =
⋃
ℓ⩾1

Gℓ, and let G∗ be the quotient set G̃/ ≡ defined by the equivalence relation that

identifies a circular word with all its nontrivial powers, that is,

W̃ ≡ W̃ ′ ⇐⇒ W̃m = W̃ ′n for some positive m and n.

Thus, an addition in G∗ can be easily derived from the addition in Gℓ. For example, we have 5̃4+6̃27 =

5̃45454 + 6̃27627 = 1̃73082, and it is easily proved that such a definition is consistent.

Theorem 5.2. The set G∗ equipped with this addition is a abelian group. Any finite subgroup of it is
monogenetic. If p is a prime number, then the set Pp made of all circular words of order p (plus the
neutral element) is a finite subgroup isomorphic to Z/pZ iff b and p are mutually prime.

Proof. The first part of the theorem is trivial. Consider a finite subgroup of G∗, say H. By identification
of circular words with their powers, it is possible to find an ℓ > 0 such that any element of H has a
representative in G̃ℓ. Hence, from Theorem 5.1 we deduce that H is monogenetic.

Now, for any ℓ > 0, consider the set Lℓ of all the elements of G∗ of order p which admits a representative
of length at most ℓ. As before, there exists ℓ′ > 0 such that all the elements of Lℓ has a representative in
Gℓ′ . Hence, completing the set with the neutral element of Gℓ′ , It is easily proved that we get a subgroup
of Gℓ′ . Again by Theorem 5.1, Lℓ is therefore either reduced to the neutral element or equal to Z/pZ.

The last remaining thing to do is to prove that, for some big enough ℓ, the set Lℓ is nontrivial iff b
and p are mutually prime. Two different presentations of the proof can be given: a purely algebraical
one and a presentation with the help of common fractions. Here we give both of them, the first one being
more in line with the general way we construct our sets, the second being an unexpected application of
Proposition 1.2.

Let us first provide the algebraical proof. First, assume b and p without any common divisor. By
Fermat’s little theorem, there exists ℓ > 0 and v ∈ N such that bℓ − 1 = vp, hence v is of order p
in Z/(bℓ − 1)Z which is isomorphic to Gℓ by Theorem 5.1, so we are done. Now assume b = kp and
that there exists g ∈ Gℓ of order p. By the group isomorphism we can therefore find v ∈ Z such that
vp ≡ 0 mod (bℓ − 1), so we can find an integer c such that vp = c(bℓ − 1). Since p and bℓ − 1 are mutually
prime and p divides c(bℓ − 1), p divides c, so c = pc′ and v = c′(bℓ − 1), so g cannot be of order p.

Now for the second presentation of the proof. Again, assume first that b and p have no common divisor.
Then, the b-expansion of 1/p is purely periodic by Proposition 1.2, and the circular word associated to
its period provides an element of Lℓ (for big enough ℓ). Conversely, assume that Lℓ has a nontrivial

element W̃ , and consider the number x = 0.W . We then have that n := px ∈ N∗, so n/p = x has a
purely periodic b-expansion, hence p and b are mutually prime by Proposition 1.2.

5.2 The commutative ring Db and its action on circular words

The standard action of Z on Ã defined by the addition with “circular carry” extends naturally to an
action of the ring Db, which therefore makes Ã a module over Db, hence also on Db (as defined in Section
4.3). Such an extension goes as follows: let δ = u · be ∈ Db, and let (s,W, c) be its counterpart in Db. Let

P̃ ∈ G∗. Then, δP̃ is defined as σc(s ·WP̃ ) (or, equivalently, as σe(uP̃ )) where σ is the shift operator on
circular words and W stands for its corresponding integer. Observe that, in this expression, σc, s and W
commute (as well as u and σe).
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5.3 Abelian structure on (QWCP,+) and (QDC,+)

The simplicity of the addition in Gℓ cannot remain unchanged when considering ultimately periodic b-
expansion of rational numbers, since we have to deal with a possible carry. Therefore, we need some
complement to get the additive structure from the additive structure of circular words. Defining binary
operations is a task simpler in QDC than in QWCP. Nevertheless, because of the distinct interests of these
representations, we will do it for both of them.

For any word W and any ℓ > 0, define qℓ(W ) as the quotient of the Euclidean division of W by βℓ.

Most of the time we will simply write q(W ) instead, under the following type of assumption: let P̃1 and

P̃2 be two circular words, of lengths ℓ1 and ℓ2. Then, q(P1 + P2) stands for qℓ(Q1 + Q2), where ℓ is a

common multiple of ℓ1 and ℓ2 and Q̃i = P̃
ℓ/ℓi
i .

With such definition (which in fact corresponds to the definition of a carry), we can define addition
in QWCP and in QDC. As announced, it is immediate in the latter one:(

δ, P̃
)
+
(
δ′, P̃ ′

)
:=
(
δ + δ′ + q(P + P ′), P̃ + P̃ ′

)
.

As regardsQWCP, we have to suppose that the decimal points are at the same place to add conveniently
the two numbers: (

W, P̃ , c
)
+
(
W ′, P̃ ′, c

)
=
(
W +W ′ + q(P + P ′), P̃ + P̃ ′, c

)
,

and to add two numbers with different values for c we need to make use of the shift identification. Such
a theoretical cumberness is a quite strong argument in favour of the use of QDC instead, even if the shift
identification often remains an easy task in practice.

In the case QWCP, as is briefly indicated in Section 4.2, elements are in fact quadruples (s,W, P̃ , c)
with s ∈ {+,−}. The general definition of the addition has to be given also for two quadruples of

different signs, say (+,W, P̃ , c) + (−,W ′, P̃ ′, c). By the “0.999. . . =1” identification, we can assume that

none of the quadruples contains the circular word 9̃, hence it makes sense to compare P̃ and P̃ ′ with the
lexicographical order. Also, by the shift identification, we can suppose c = 0. We then have

(+,W, P̃ , 0) + (−,W ′, P̃ ′, 0) =


(+,W −W ′, P̃ − P̃ ′, 0) if W ⩾ W ′ and P̃ ⩾ P̃ ′

(+,W −W ′ − 1, P̃ ′ − P̃ , 0) if W > W ′ and P̃ < P̃ ′

(−, 0, P̃ ′ − P̃ , 0) if W = W ′ and P̃ < P̃ ′

the other cases being obtained by a simple symmetrization.
There is no need for such exhaustion of cases in the context of QDC, which is another argument in

favor of its use. Nevertheless, the opposite of an element is less simply written: −(δ, P̃ ) = (−δ − 1,−P̃ ).

To avoid this quite counterintuitive minus 1, a possibility would be to define the circular words P̃ in
an alphabet A symmetric around 0 (and reconsider the theory accordingly). The problem is then that
the expression of numbers would become even more different from the common one, and also that this
symmetrization could work only for a odd value of the base b.

Eventually, what precedes leads to the following

Theorem 5.3. QWCP and QDC are abelian groups.

5.4 0.999. . . =1 from the additive structure

The additive structure defined on section 5.3, either on the triples (W, P̃ , c) or on the pairs (δ, P̃ ), provides
a powerful argument to make the equality 0.999 . . . = 1 sensible. Indeed, observe that, under the rules

defining the addition, we have, for any P̃ ′ ̸= 0̃ℓ:

(W +W ′ + 1, P̃ ′, c) =

{
(W, β̃, c) + (W ′, P̃ ′, c)

(W + 1, 0̃, c) + (W ′, P̃ ′, c)

and

(δ + δ′ + 1, P̃ ′) =

{
(δ, β̃) + (δ′, P̃ ′)

(δ + 1, 0̃) + (δ′, P̃ ′)
.



TME, vol. 21, no. 1-2, p. 25

Therefore, the cancellation property (a + x = b + x ⇒ a = b) strongly supports the identifications

(W, β̃, c) = (W + 1, 0̃, c) and (δ, β̃) = (δ + 1, 0̃), which corresponds to the equality 0.999 . . . = 1.
It is an important fact that the identification between 0.999... and 1 is required for the additive

structure of the set of rational numbers. It comes from algebra, and not from analysis for the completness
of R as often mentioned, even if this identity has implication for continuum of the real numbers set.

It is worth mentioning that in the ”equation method” to prove that 0.9 = 1 (in which 0.9 is written
as x, to write that 10x = 9 + x then 9x = 9, hence x = 1), the cancellation property is used as well.
Hence, the process in itself is directly linked to the assumption that the property is legitimate.

5.5 The b-adic case

For the record, let us also mention briefly that the previous constructions also allow to define periodic b-
adic numbers, which are also the ones that are rational in Qb by a classical theorem analogous to Theorem
1.1. Instead of (W, P̃ , c) or (δ, P̃ ), we may write (P̃ ,W, c) and (P̃ , δ), since b-adic numbers are those whose
expansion in base b has infinitely many digits to the left. The identifications to be made are the same
as in the case of rational numbers, with the only exception of the “0.999 . . . = 1” one, which has to be
replaced by a different one, namely the “. . . 999 = −1” identification, that writes (β̃,W, c) ≡ (0̃,W − 1, c)

for the WCP representation, and (β̃, δ) ≡ (0̃, δ − 1) for the DC one.

6 Multiplicative structure

6.1 Preliminaries

Theorem 5.1 could provide us a notion of multiplication for circular words. A possible presentation of it
is to consider the set of circular words of length ℓ as the quotient ring Z[X]/(Xℓ − 1, X − b). The point
is that such a multiplication does not correspond to multiplication of periodic parts of b-expansion of
rational numbers.

Let us consider two circular words W̃ and X̃ of lengths ℓ and ℓ′ respectively. Their product W̃ × X̃
may be defined as the circular word Ỹ of length n such that (W/βℓ) × (X/βℓ′) = Y/βn, provided that
the existence of n is ensured6. For example, since 0.12× 0.4 = (12/99)× (4/9) = 53872/999999, we may

define 1̃2 × 4̃ as 0̃53872. The only contentious point is that, to make this definition sensible, 0̃ and 9̃
should not be identified anymore, since 0̃ is absorbing whereas 9̃ is neutral.

Not only we know that no multiplication in Gℓ can therefore correspond to the multiplication of
periodic parts of rational numbers, but an important difficulty for concrete multiplication of circular
words also derived from the fact that, as illustrated by Proposition 1.5, the length increases surprisingly
fast. Attempts made by English authors like those mentioned in Section 3 to provide extensive algorithms
were valuable, especially Marsh’s, but remained cumbrous since none of them endorsed a theoretical point
of view which is helpful to get both a complete algorithm and a rigorous proof of its validity.

In Section 6.2, we provide a generalization of Proposition 1.5 for the existence and smallest value of
n for the length of Y , knowing those of W and X (under the previous notation). Such an n allows to

define W̃ × X̃ as the circular word Ỹ of length n such that Y = WXβn/(βℓ × βℓ′). Then, an explicit
expression of βn/(βℓ × βℓ′) is given in Section 6.3 for ℓ = ℓ′ = 1, obtained as a consequence of the proof
of Theorem 6.1 (and shown as being a simplifying assumption without loss of generality). Eventually,
Section 6.4 provide an algorithm for multiplication in Q from circular words.

6.2 Length of a product

This section is devoted to the following result, that extends what we proved in Proposition 1.5 in the
particular case of b = 10 and ℓ = ℓ′ = 2. We write gcd(p, q) for the greatest common multiple of the
positive integers p and q.

Theorem 6.1. Let ℓ and ℓ′ be two positive integers. The smallest positive integer n fort which bn − 1 is
divided by (bℓ − 1)(bℓ

′ − 1) is n = (bgcd(ℓ,ℓ
′) − 1) · lcm(ℓ, ℓ′).

6This idea may be indirectly recognized in some multiplications made by Marsh, where he considers only expressions
like 0.M to be multiplied together. Nevertheless, since Marsh does not consider circular words independently of numbers,
he does not operate directly with them.
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In particular, observe that the only case for which n is not strictly bigger than both ℓ and ℓ′ is the
trivial one b = 2 and min(ℓ, ℓ′) = 1, which has no interesting structure since a rational number with a
periodic part of length 1 in base 2 necessarily belongs to D2.

The case b = 2 is also interesting in that it is the only case for which, when ℓ and ℓ′ are mutually
prime, the smallest integer n such that bn − 1 divides (bℓ − 1)(bℓ

′ − 1) is the same as the one such that
bn − 1 divides both bℓ − 1 and bℓ

′ − 1 (see Theorem 1.4).
Theorem 6.1 shows how worse the circular standpoint is compared to usual fractions as regards

practical calculation. Observe also that this result, which expresses the (typical) length n of 0.M × 0.N
as a function of the lengths ℓ (of M) and ℓ′ (of N), is very different from Theorem 1.4 which gives that
the length of the periodic part of 1/(mn) is the l.c.m. of the lengths of 1/m and 1/n (as asserted first by
Wallis) when m and n are mutually prime.

The proof of Theorem 6.1 can be given in a standard way, but we will also provide a more fancy
presentation. This latter shows how a convenient notation is sometimes useful to help the understanding
of theoretical calculations that are otherwise quite tiresome.

6.2.1 Notation and beginning of the proof

We put gcd(ℓ, ℓ′) = d, ℓ = ad and ℓ′ = a′d. (Thereofore, a and a′ are mutually prime.) Also, we write
lcm(ℓ, ℓ′) = m, so a′ℓ = aℓ′ = m.

By Theorem 1.4, any n such that bn − 1 is a multiple of bℓ − 1 belongs to ℓN∗, and the same holds
for ℓ′ instead of ℓ. Therefore, we have n ∈ mN∗. What remains to be proved is that the smallest positive
integer k for which bkm − 1 is divided by (bℓ − 1)(bℓ

′ − 1) is k = bd − 1.
First, divide bkm − 1 by bℓ − 1. The formula for the sum of the first terms of a geometric sequence

gives

bkm − 1

bℓ − 1
=

bka
′ℓ − 1

bℓ − 1
=

∑
0⩽j<ka′

bℓj =: Sk.

Now, our aim is to compute the Euclidean division of Sk by bℓ
′ − 1, looking for the smallest k for

which the rest is equal to 0. It is for this part of the proof that a fancy presentation can be helpful.

6.2.2 A“fancy” presentation of the end of the proof

In numeration in base b, the value Sk can be written as the concatenation of ka′ copies of the word
0ℓ−11. Also, in the Euclidean division of Sk by bℓ

′ − 1 we are preparing to do, we are not interested in
the quotient but in the rest.

Consider one of the digits 1 in the base b-expansion of Sk, located at some position ℓj (i.e., corre-
sponding to bℓj), and apply to it the standard way to divide by bℓ

′ − 1. The successive steps makes
our digit 1 “jump” by ℓ′ places to the right, again and again, until it attains some place among the ℓ′

rightmost digits. Now, consider the digit 1 located at the position ℓ(j − 1), then apply to it the same
algorithm. This new 1 is now jumping to the right, ℓ′ places at a time, until it reaches one of the ℓ′

rightmost places. The (circular) distance between the positions of our two final 1s is equal to ℓ modulo
ℓ′.

For the sake of clarity, assume first that ℓ and ℓ′ are mutually prime. Therefore, the successive 1 that
compose Sk are stacking together in all the possible ℓ′ rightmost places at the end of their jumps. After
the jumps of the first ℓ′ 1s, each of these places contains exactly one 1. After the jump of the next ℓ′

ones, each of the ℓ′ rightmost places contains exactly two 1s, etc. Therefore, for Sk to be divisible by
bℓ

′ − 1 we need a number of 1s in Sk multiple of ℓ′β, so that the jumps of all the 1s eventually produce
an expression of the form (pβ)ℓ

′
at the rightmost places, which is equal to p · βℓ′ . The smallest choice is

of course p = 1, so the right value for k is the value for which the number of 1s in Sk is exactly ℓ′β. The
number of 1s in Sk being equal to ka′ = kℓ′ (since ℓ and ℓ′ are mutually prime), we eventually get that
k = β.

Now for the general case of gcd(ℓ, ℓ′) = d. The final positions of the 1s after their jumps are of the
form id, for all integers i such that 0 ⩽ id < ℓ′. And, as before, the ℓ′/d = a′ first 1s displaced are all
located at different places. The next a′ ones stack on the first a′ ones, etc., so after βa′ 1s of Sk made
their jumps, we get a rest which is the word (0d−1β)a

′
. Take a′ more 1s of Sk and we get the word

(0d−1b)a
′
, whose proper b-expansion writes (0d−210)a

′
. It is then quite easy to see that we need βda′
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digits 1 in Sk to reach a rest equal to βℓ′ . Since the number of 1s in Sk is ka′, we eventually get that
k = βd = bgcd(ℓ,ℓ

′) − 1.

6.2.3 Standard writing of the end of the proof

Let j be such that 0 ⩽ j < ka′, and let ℓj = qℓ′+r be the Euclidean division of ℓj by ℓ′, where 0 ⩽ r < ℓ′.
The Euclidean division of bℓj by bℓ

′ − 1 is therefore

bℓj =

(
br
1− bqℓ

′

1− bℓ′

)
· (bℓ

′
− 1) + br.

In the sequel, we write u mod v for the rest of the Euclidean division of u by v. Hence we can write

Sk =
∑

0⩽j<ka′

bℓj

=
∑

0⩽j<ka′

(
bℓj mod ℓ′ 1− bqℓ

′

1− bℓ′

)
· (bℓ

′
− 1) + bℓj mod ℓ′

=

 ∑
0⩽j<ka′

bℓj mod ℓ′ 1− bqℓ
′

1− bℓ′

 · (bℓ
′
− 1) +

∑
0⩽j<ka′

bℓj mod ℓ′ .

Let us write S′
k for the last sum of the latter expression. Of course, S′

k is positive and increases with

k. Therefore, if we can find a k for which S′
k = bℓ

′ − 1, then this will ensure that this k is the one we are
looking for.

Recall that ℓ = ad and ℓ′ = a′d, so we can write

S′
k =

∑
0⩽j<ka′

bdaj mod da′

=
∑

0⩽j<ka′

(
baj mod a′

)d
=

∑
0⩽s<k

∑
0⩽t<a′

(
ba(sa

′+t) mod a′
)d

=
∑

0⩽s<k

∑
0⩽t<a′

(
bat mod a′

)d
= k

∑
0⩽t<a′

(
bat mod a′

)d
.

Since a and a′ are mutually prime, this is equal to k
∑

0⩽i<a′

(bi)d, so

S′
k = k

1− bda
′

1− bd
= k

1− bℓ
′

1− bd
.

Therefore, the value k = bd − 1 makes S′
k reach the value bℓ

′ − 1. Hence, k = bd − 1 is the value we are
looking for, and Theorem 6.1 is proved.

6.3 Multiplication of circular words

As mentioned in Section 6.1, product of circular words of length ℓ and ℓ′ involves the expression βn/(βℓ×
βℓ′), where n is given by Theorem 6.1. The standard writing of the end of the proof of this theorem
(Section 6.2.3) already provides a part of the answer. Indeed, with the notation in use there, for k = bd−1
we have

βn

βℓ × βℓ′
= 1 +

∑
0⩽j<(bd−1)a′

bℓj mod ℓ′ 1− bqℓ
′

1− bℓ′
,



Rittaud & Vivier, p. 28

the initial 1 being a consequence of the fact obtained in the end of Section 6.2.3 that S′
k = bℓ

′ − 1 for
k = bd − 1.

The words W̃ and X̃ being of length ℓ and ℓ′, the circular powers identification allows us to assume
ℓ = ℓ′. Now put B = bℓ, so that we may replace the alphabet A = {0, . . . , b− 1} by A′ = {0, . . . , bℓ − 1}.
In practice, such a change of base from b to B consists in grouping digits by blocks of length ℓ. This will
not provide an optimal algorithm, since such a change in notation will lead to a product W̃ × X̃ of length
(baa

′d−1)aa′d instead of (bd−1)aa′ (Theorem 6.1). Nevertheless, not only we are not really interested in
optimality here (since we already know from Proposition 1.5 that it is pointless) but such a simplification
will greatly clarify the following. (Without it, we would be led to quite technical considerations about
the continued fraction expansion of a/a′.)

What precedes shows that, up to a change of basis, we may assume that ℓ = ℓ′ = 1, so n = b − 1.
Our aim is therefore to get an explicit expression of βn/(βℓ×βℓ′) = βb−1/(β×β). The previous equality
becomes

βb−1

β × β
= 1 +

∑
0⩽j<b−1

1− bj

1− b

= 1 +
∑

0⩽j<b−1

∑
0⩽i<j

bi

= 1 +
∑

0⩽i<b−2

∑
i<j<b−1

bi

= 1 +
∑

0⩽i<b−2

(b− i− 2)bi.

Hence, we can eventually define the multiplication of circular words of length 1 (and therefore of any
length, by the circular powers identification and a change of base) in the following way:

Definition 6.2. Let p and p′ be two letters of A = {0, . . . , β}. The product p̃ × p̃′ is the circular word

Q̃ of length β such that

N(Q) = pp′

1 +
∑

0⩽i<b−2

(b− i− 2)bi

 .

Complementary algorithmic considerations could be of some help to shorten the calculation of such
a product, since the last factor has a particular form. (For example it is 12345679 in base ten.) For the
same reason as before, we will not consider it here.

6.4 The fields QWCP and QDC

From Definition 6.2 we can deduce the multiplicative structure on QWCP and QDC. For the first one, the
definition is

(W, P̃ , c)× (W ′, P̃ ′, c′) := (WW ′ + q(WP ′) + q(W ′P ),WP̃ ′ +W ′P̃ + P̃ × P̃ ′, c+ c′).

(According to the assumptions made in Section 5.3, q(WP ′) stands for qℓ′(WP ′) where ℓ′ is the length

of P̃ ′. The same remark holds for other expressions of the same kind.)
Now for QDC. For δ = kbc ∈ Db (with k ∈ Z and c ∈ Z), q(δP ′) stands for q(kP ′)bc, and r̃(δP ′) for

σc(r̃(kP ′), where r(kP ′) is the rest of the Euclidean division of kP ′ by βℓ. With the help of Section 5.2,
we then have

(δ, P̃ )× (δ′, P̃ ′) = (δδ′ + q(δP ′) + q(δ′P ), r̃(δP ′) + r̃(δ′P ) + P̃ × P̃ ′).

To get the field structure, it remains to show how to define a division. It is not very difficult to
generalize the usual algorithm of long division to get a combinatorial definition of the division (see [V15]
for some examples). Eventually, the fact that we have indeed built the field Q can be proved by showing
that the application N defined by

N(s,W, P̃ , c) := s ·
(
N(W ) +

N(P )

βℓ

)
· bc
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is a bijective morphism of rings between QWCP and Q and

N(δ, P̃ ) = δ +
N(P )

βℓ

is another between QDC and Q.
Eventually, we get the following

Theorem 6.3. QWCP and QDC are fields, both isomorphic to Q.

7 Irrationality of algebraic numbers

As recalled in introduction (see [B] for details), Lambert once tried to prove the irrationality of π by
showing that its decimal expansion is aperiodic. This idea, unsuccessful for π, can be applied to show
the irrationality of some algebraic numbers. Such a proof seems to be new. Here is a general statement:

Theorem 7.1. Let Q ∈ Z[X] be a unitary polynomial. Any (real) root of it is either an integer or an
irrational number.

Also, let Q ∈ Db[X] for some integer b > 1, with coefficient for Xdeg(Q) equal to 1. Any (real) root of
it is either in Db or irrational.

In particular, applying this theorem to the polynomial Q(X) = X2−2 shows that
√
2 is irrational, as

well as
√
n for n not a perfect square (with Q(X) = X2−n), or

√
2+

√
3 (with Q(X) = X4− 10X2+1).

To apply the second part of the theorem to prove that, for example, 3
√
3.57 is irrational (with Q(X) =

X3 − 3.57), we have to prove that it is not decimal. For this, we can use the complementary fact that,
for any decimal number δ with exactly k nontrivial digits after the decimal point, δn has exactly nk
nontrivial decimal digits after the decimal point. (Indeed, if k is the smallest integer such that δ = u/10k

for some integer u, then, since 10 is quadratfrei, δn = un/10nk cannot be simplified as a fraction with
denominator a smaller power of 10 than 10nk.) Hence, δ := 3

√
3.57 cannot be in Dten, otherwise the

number k of its digits after the decimal point would satisfy 3k = 2, an impossibility.7

In the following, for any rational number x, we write ℓ(x) for |P̃ |, where (δ, P̃ ) is the DC-representation

of x with P̃ of minimal length.

Proof. We prove first the second part of the theorem. Let Q ∈ Db[X] satisfy the hypotheses, and let

α ∈ R be a root of Q. Assume α rational, and write (δ, P̃ ) for its DC-expansion in base b. It is enough
to prove that α− δ is irrational, so without loss of generality we assume δ = 0.

Consider the successive integral powers of α. Since Q has dominant coefficient equal to 1, for any

n ≥ q there exists values d
(n)
i ∈ Db such that αn =

q−1∑
i=0

d
(n)
i αi (with q = deg(Q)). This implies:

P̃n =

q−1∑
i=0

d
(n)
i P̃ i (*)

(Here, P̃ i should not be confused with P̃ i; by P̃ i we mean the iterated product of P̃ by itself in G∗.)
To end up the proof, we need the following intermediate result:

Proposition 7.2. Let P̃ be some nontrivial circular word. The sequence (ℓ(P̃n))n goes to infinity.

Note that the sequence in Proposition 7.2 may not be strictly increasing. Indeed, for b = 7 and
P̃ = 1̃5, we have P̃ 2 = 0̃3, so ℓ(P̃ 2) = ℓ(P̃ ) = 2.

Proof of Proposition 7.2. The sequence of rational numbers that corresponds to the sequence ((0, P̃n))n
is strictly decreasing to 0. Hence, in the sequence (P̃n)n it is impossible to find the same circular word
twice. Since for any integer ℓ > 0 the number of circular words of length at most ℓ is finite, the pigeonhole
principle forces the sequence (ℓ(P̃n))n to go to infinity.8

7An alternative reasoning would be to consider the last digit of the product.
8An alternative reasoning consists in showing that the number of 0s in P̃n goes to infinity.



Rittaud & Vivier, p. 30

Now observe that the length of the right side of (∗) is upper-bounded. Hence, by Theorem 7.2, P̃ is
trivial, so α ∈ Db, and the second part of the theorem is proved.

For the first part, for Q ∈ Z[X] a unitary polynomial, the second part of the theorem applied to all

integers b > 1 shows that any rational root α of Q belongs to α ∈
⋂
b>1

Db = Z.

8 Conclusion and Remark

In this article, based on history, didactics and mathematics, we were interested in a schema (in the apos
meaning) of the field Q, in the three stages intra-Q, inter-Q and trans-Q. The equality 0.9 = 1 seems to
be an important proxy of the level of understanding of decimal expansion of rational numbers, since it
draws the frontier between the intra- and inter- stages.

In teaching of mathematics, it is common that periodic decimal expansions of rational numbers remain
in general at the stage inter-Q, or even intra-Q, the equality 0.9 = 1 being interpretated in the framework
of real numbers (note that we could also define a schema for R). Yet it seems to us that a complete
understanding of the schema Q is an important prerequisite before the construction of R (even a partial
one). For example, constructions by Dedekind cuts or Cauchy sequences can be interpretated as an
action on the object Q, obtained by thematization9 of the schema. The point is that if the schema thus
thematized is not complete as regards the periodic decimal expansions, difficulties may arise, since it is
crucial to have in mind the equality 0.9 = 1. Indeed, (−∞, 0.9] ∪ [1,+∞) is a partition of QWCP which
is not suitable as a cut, and the sequence 0.9, 0.99, 0.999, and so on, is a Cauchy sequence which would
not converge in QWCP. (By the way, some introductory notions of topology can also be presented in Q.)

The set R can also be defined directly from D, considering infinitely many decimals, as in [L] or [FL]
(see also Bronner’s notion of idecimality in [B97] and [B05]), but this approach has several issues:

• there is no (finite) algorithm for operations in R (despite Fardin an Li’s attempt), whereas there
are in Q, which can provide some sense to the operations made on infinitely many digits.

• the Totality stage is compulsory for R, but a numeral writing is not always an Process: Totality
(in the sense of apos) is not, in general, the encapsulation of a process. Sure, some processes
are required for writing numbers like 0.101101110111101111 . . . or 0.1234567891011 . . ., and also
for writing numbers defined as a limit, like e or π. This can be eased in Q by the periodic parts
regarded as Objects.

• 0.9 = 1 has therefore to be considered in the (rather elaborate) context of real numbers, whereas it
could be treated in Q first.
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[Jones] Jones, W. (1706). Synopsis Palmariorum Matheseos: or, a New Introduction to the Mathematics:
Containing the Principles of Arithmetic & Geometry Demonstrated In a Short and Easie Method,
Jeff Wale.



Rittaud & Vivier, p. 32

[KKa] Katz, K., & Katz, M. (2010). Zooming in on infinitesimal 1 − .9... in a post-triumvirate era,
Educational Studies in Mathematics, 74, 259-273.

[KKb] Katz, K., & Katz, M. (2010). When is .999... less than 1?, The Montana Mathematics Enthusiast,
7(1), 3-30.

[L] Lebesgue, H. (1938). Lamesure des grandeurs. Albert Blanchard, Paris.

[Leu] Leurechon, J. (1622). Selectæ Propositiones in Tota Sparsim Mathematica Pulcherrimæ, Gas-
parem Bernardum.

[Malcolm] Malcolm, A. (1730). A New System of Arithmetick, Theorical and Practical, J. Osborn.
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26/05/2015, Université Paris Diderot. https://hal.archives-ouvertes.fr/tel-01223012/

document



Rittaud & Vivier, p. 34

[Vo] Voskoglou, M. (2013). An Application of the APOS/ACE Approach in Teaching the Irrational
Numbers, Journal of Mathematical Sciences & Mathematics Education, 8.1, 30-47.

[Wallis] Wallis, J. (1685). A Treatise of Algebra, John Playford.

[WBD] Weller, K., Brown, A., Dubinsky, E., McDonald, M. & Stenger, C. (2004). Intimations of Infinity,
Notices of the AMS 51, 7.

[WAD] Weller, K., Arnon, I. & Dubinsky, E. (2009). Preservice Teachers’ Understanding of the Relation
Between a Fraction or Integer and Its Decimal Expansion, Canadian Journal of Science,
Mathematics and Technology Education 9, 1, Routeledge.

[WGL] Wilhelmi, M., Godino, J. & Lacasta, E. (2007). Configuraciones epistèmicas asociadas a la
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