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Abstract 

Non-motor symptoms such as perceptual deficits and cognitive impairments, i.e., deficits in 

executive functions, presented at an early stage of Parkinson’s Disease (PD) substantially 

affect a PD patient’s quality of life and may contribute to motor impairments. Studies have 

emphasized the need to better understand these impairments and the abnormalities contributing 

to them as it provides a means to efficiently manage the disease. Further, due to the early onset 

of these deficits, the contributing abnormalities may be considered a potential biomarker for 

early diagnosis of PD. However, the impairments and the contributing abnormalities are not 

yet fully understood, leading to inadequate options to efficiently manage the disease. The Basal 

Ganglia, the region affected by PD, plays a vital role in Sensorimotor Integration (SMI) and 

Sensorimotor Control (SMC) functions – two fundamental processes involved in sensory 

perception and movement planning. The hypothesis is that the impairments in SMI and SMC 

contribute to deficits in perception and executive functions, leading to motor deficits and these 

impairments may be altered due to medication. The primary contribution of the thesis is the 

development of robotic tools for characterizing the SMI and SMC impairments in PD patients. 

The study’s results showed that PD patients suffer from an impaired SMI and SMC circuit that 

adversely affects multi-sensory integration, movement planning, online error correction, and 

execution of voluntary movements. Additionally, the findings have shown that dopaminergic 

medication significantly worsens SMI and SMC impairments. The secondary contribution is 

the development of a musculoskeletal model that can accurately estimate in-depth SMC 

features. The developed model may be used to guide and enhance the efficacy of PD-related 

therapies. The novel findings of the study contribute to advancing our knowledge about the 

disease and the effect of medication by characterizing the SMI and SMC impairments and 

demonstrating their contribution to deficits in perception, executive functions, and motor 

performance. The study’s results enable us to better target these deficits through efficient 

treatment optimization. Further, the thesis describes the development and validation of tools 

to effectively diagnose, monitor, and individualize the assessment of SMI, SMC, and, 

consequently, the corresponding non-motor impairments in PD. 
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Summary for Lay Audience 

Parkinson’s Disease (PD) is one of the most common neurodegenerative disorders, known for 

its cardinal motor symptoms such as tremor, slowness of movement (bradykinesia), and 

rigidity. However, non-motor symptoms, such as impairments in perception and cognitive 

abilities, may be presented earlier than motor symptoms and can significantly affect the 

patient’s quality of life. Further, studies have reported that non-motor symptoms may 

contribute to the motor symptoms appearing later in the disease, making non-motor symptoms 

a promising biomarker for an early diagnosis. However, the nature of these non-motor 

symptoms and their contributors are not fully known, leading to inadequate options for 

managing these complex symptoms. Consequently, there is a need to better understand them 

to efficiently manage the disease. Sensorimotor Integration (SMI), which is responsible for 

accurately perceiving the world around us, and Sensorimotor Control (SMC), which is 

responsible for planning and execution of movements, have been hypothesized to be impaired 

in PD, leading to perceptual and cognitive abnormalities. Therefore, in this work, robotic tools 

were developed to explore the factors contributing to perceptual and cognitive abnormalities 

and the effect of medication. Multiple robot-based tasks were designed to examine the SMI 

and SMC performance in PD patients. It was found that the various aspects of SMI and SMC 

have been impaired in PD patients, leading to abnormalities in perception, and cognitive 

abilities, thereby affecting the patient’s ability to perform day-to-day tasks. Further, the 

dopaminergic medication has been found to worsen SMI and SMC impairments in PD patients, 

emphasizing the need to better optimize the treatment. A muscle model that can analyze in-

depth SMC parameters was also developed as a potential tool to enhance the efficiency of PD 

therapies. The findings from the study provide valuable insights into factors contributing to 

specific non-motor impairments and the effect of medication, allowing us to target these 

impairments better. Additionally, owing to the lack of existing techniques to monitor non-

motor impairments, robotic and simulation tools have been developed and validated. This may 

be considered a first step to using objective metrics in conjunction with existing clinical tools 

to better diagnose, monitor, and manage the disease. 
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Chapter 1  

1 Introduction 

This chapter provides a brief overview of the symptoms presented due to Parkinson’s 

Disease (PD). Specifically, the chapter discusses non-motor abnormalities, such as 

perceptual and cognitive dysfunctions, which may lead to motor abnormalities. With regard 

to the factors that may contribute to perceptual and motor abnormalities, the current 

findings about Sensorimotor Integration (SMI), Sensorimotor Control (SMC), and how PD 

may alter these functions are reviewed in this chapter. The chapter also outlines the 

treatments available for PD patients and the need for a more patient-specific treatment and 

monitoring approach. Finally, the hypothesis and the objectives of the thesis are stated. 

1.1 Background 

Parkinson’s Disease is one of the fastest growing neurodegenerative disorders, with age 

being the most significant risk factor for PD, resulting in the epidemiological burden of 

Parkinsonism increasing with age. The World Health Organization (WHO) [1] reported 

that the prevalence of PD has risen globally in the last 25 years, with over 8.5 million 

individuals diagnosed with PD around the world. PD also places a significant economic 

burden on the health care system, with costs varying from one country to another. A study 

in 2010 indicated that the financial burden due to PD exceeds $14.4 billion in the US, which 

is equivalent to $22,800 per patient [2]. As the aging population increases globally, the 

number of PD cases is projected to be over 12 million globally by 2040. The lack of a cure, 

preventive methods, and long-term management strategies for PD highlight the importance 

of better understanding the disease to equip the healthcare system with newer, innovative 

techniques to manage the disease efficiently, thereby reducing the burden on the healthcare 

system and the global population.  

PD is caused by the degeneration of dopaminergic neurons in the Basal Ganglia 

(BG) and is usually characterized by cardinal motor symptoms such as bradykinesia, 

rigidity, tremor, and postural instability. As the disease progresses, the symptoms may get 

worse, and the medication or treatments need to be adjusted accordingly. However, the 
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experience of one PD patient may differ extensively from that of another due to the 

heterogeneous nature of PD [3]. Consequently, the symptoms and the rate of progression 

will change from one person to another, necessitating a more individualized treatment 

approach. Recent studies have focused on exploring non-motor symptoms of PD, such as 

sensory and cognitive dysfunction, that severely affect the patient’s quality of life. Findings 

indicate that the non-motor symptoms have a more significant impact on the health-related 

quality of life than the motor symptoms [4]. Furthermore, there is considerable evidence 

that non-motor impairments, such as perceptual deficits, may be presented much earlier in 

the disease and contribute to the motor abnormalities presented at a later stage. This makes 

the non-motor symptoms a potential target for early disease diagnosis. Despite the 

substantial burden of the non-motor symptoms, little is known about the factors 

contributing to non-motor symptoms, such as perceptual deficits or impairments in 

executive functions, and how to manage these symptoms. Moreover, there is a lack of 

assessment or diagnostic techniques to detect these symptoms early, which may assist in 

better managing the disease. The objective of the thesis is to unveil and examine the 

contributors of perceptual deficits and executive functions that lead to motor dysfunctions 

by developing objective robotic, machine learning and simulation tools to assess specific 

aspects of non-motor impairments and the impact of dopaminergic medication on these 

impairments. Further, the thesis also aims to propose technology-driven tools that can be 

improved to complement the existing subjective scales for an early diagnosis and to 

individualize the monitoring and management strategies for PD. 

1.2 What is Parkinson’s Disease? 

1.2.1 Epidemiology of Parkinson’s Disease  

Parkinson’s Disease (PD) is recognized as the second most common neurodegenerative 

disorder – a synucleinopathy, after Alzheimer’s disease and is an increasing challenge to 

public health. A crude prevalence range of 100 to 200 people diagnosed with PD per 

100,000 of the population at any time is generally accepted [5] [6]. Globally, the prevalence 

of PD increased from 2.5 million in 1990 to 6.1 million in 2016 [7]. PD is primarily an 

illness of later life, as indicated by the prevalence of PD increasing significantly after the 

age of 70 [8]. As such, the global prevalence of PD is expected to double in the next few 
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decades due to the increase in population age [9]. With an aging population leading to an 

increasing trend in the prevalence of PD worldwide, enabling appropriate medical 

responses to manage PD is likely to prove a more challenging task for neurologists and 

general physicians. 

1.2.2 Etiology of Parkinson’s Disease 

New evidence regarding PD indicates that it is a multifactorial disorder influenced by age, 

genetic and environmental factors. Professional exposure to pesticides such as 

organochlorine [10] and herbicides such as paraquat [11] has been associated with the onset 

of PD, and its relation grows stronger in the late onset of PD. Further, occupational 

exposure to heavy metals, such as iron, manganese, aluminum, etc., could also increase the 

risk for PD [12][13]. Genetics is also a risk factor for PD, as approximately 15% of patients 

diagnosed with PD have a family history [14] [15], and researchers have linked 23 PARK 

genes to the cause of PD [14].  

1.2.3 Pathology of Parkinson’s Disease  

The crucial pathological feature of PD is the neuronal loss in the substantia nigra followed 

by dopaminergic denervation of the striatum [16]. Morphometric studies show a strong 

correlation between the percentage loss of dopaminergic neurons with the severity of the 

motor symptoms and disease duration [17]. A lack of dopaminergic signaling is considered 

responsible for the observed motor symptoms.  

Konstantin Tretiakoff described the presence of Lewy bodies in the substantia nigra 

for PD patients, which is another pathological hallmark of idiopathic PD [18]. Lewy bodies 

are inclusions of aggregates of abnormally folded protein identified as alpha-synuclein 

within the cell body, and a mutant form of alpha-synuclein can cause familial PD [19] [20]. 

However, studies have argued that while non-motor symptoms may be associated with 

Lewy bodies, patients may experience motor symptoms without the presence of Lewy 

bodies [21]. Neuroinflammation, an inflammatory response mediated in the brain by 

astrocytes and microglia, is another pathological PD feature [22] [23]. 
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In 2003, the staging system of PD pathology was proposed by Braak et al. [24] who 

argued that the progression of PD occurs in six stages. In stages 1 and 2, the peripheral 

nervous system is affected, and an onset of premotor symptoms is seen in this early stage. 

In stage 3, along with Lewy body pathology, neuronal loss in substantia nigra pars 

compacta occurs, leading to the onset of motor symptoms. Regions such as locus coeruleus 

and the amygdala are affected, followed by the temporal limbic cortex in stage 4. Finally, 

during stages 5 and 6, the neocortex, prefrontal cortex, and other primary motor and 

sensory areas get affected [17]. Severe gait impairments and cognitive impairments may 

present during this later stage. However, the staging system has been a topic of debate as 

some studies have shown that a proportion of brains affected by PD does not precisely 

correlate with the Braak staging system [15]. It could be that PD is a very diverse disease 

in that no two patients experience the disorder the same way.  

1.2.4 Models of Basal Ganglia Function in Parkinson’s Disease 

For a significant part of the 20th century, BG was regarded as the dark basement of the 

human brain, as very little was known about BG despite its crucial role in motor and 

cognitive domains [25]. However, recent studies have shed light on the anatomy and 

functions of BG (one of the largest subcortical structures in the deep forebrain) [26]. The 

components of BG include striatum (caudate nucleus (CN), putamen (Put)), globus pallidus 

internal (GPi), globus pallidus external (GPe), subthalamic nucleus (STN), substantia nigra 

pars reticulata (SNr) and substantia nigra pars compacta (SNc) [27] [28]. Primarily, two 

neurotransmitters (gamma-aminobutyric acid (GABA) and glutamate) are used to 

communicate between the structures of BG [29]. Dopamine is a critical neuromodulator of 

striatal activity, and appropriate functioning of BG requires dopamine to be released by 

SNc to the input nuclei [27].  

While multiple models were proposed to explain the BG circuits, the classical 

model captures much of the intrinsic connectivity of BG [30]. In the classical model, the 

BG regulates motor behavior through two pathways: a direct pathway that facilitates 

movements and an indirect pathway that inhibits movements. Recent evidence also 

indicates a hyperdirect pathway that can transmit information much more quickly than the 

direct and indirect pathways [31]. Figure 1.1(a) shows the connectivity of basal ganglia-
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thalamo-cortical circuits in a healthy state. As shown in Figure 1.1(a), the dopamine 

receptor exerts a dual effect on striatal neurons, with the excitatory D1 receptor in the direct 

pathway and the inhibitory D2 receptor in the indirect pathway [32] [33]. The dopamine-

D1 receptors in the direct pathway and dopamine-D2 receptors in the indirect pathway 

modulate the activity of the thalamus and motor cortex. Therefore, any deficiency in 

dopaminergic neurons could disrupt the pathway and lead to impairments in motor control, 

learning, and cognition [34].  

The core pathology of PD is the death of dopaminergic neurons in SNc, leading to 

a depletion of dopamine that is required to modulate the direct and indirect pathways.  The 

depletion of dopaminergic neurons leads to increased neuronal activity in GPi/SNr and 

increased inhibition of the motor cortex leading to Parkinsonian motor features such as 

bradykinesia, akinesia, and impairments in motor control [33][35]. Figure 1.1(b) shows the 

connectivity of basal ganglia-thalamo-cortical circuits in PD subjects. While the classical 

model of BG provides a clear organization of the BG circuitry, the model struggles to 

explain complex BG functions. Contrary to the classical model, recent studies have 

postulated that coordinated activation of direct and indirect pathways is necessary for 

appropriate timing and synchrony of BG circuits [32][36]. Another BG model proposed 

was the Rate model, which explained the onset of hypokinetic movements and the 

dyskinesias observed after medication [34] [37]. Considering the multiple motor, sensory 

and cognitive impairments in PD being linked to a disrupted BG circuit, studies have 

hypothesized that PD patients might be better off with no input from BG rather than a 

distorted input from BG due to abnormal signaling patterns [33]. 

Medications such as Levodopa or dopamine agonists have been used to restore 

dopamine levels in BG and thereby restoring normal functionalities of BG. However, 

growing studies have suggested that these medications can produce an oscillation between 

deficient and excessively high dopaminergic activity. This erratic oscillation could force 

an already abnormal and disrupted BG circuit to an even more stressful situation whereby 

they need to adapt to highly varying levels of dopamine [33]. As such, the dopaminergic 

medication has been found to negatively affect sensory and cognitive functions. It is 

evident from the multitude of clinical and experimental studies that BG circuitry is far more 
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interconnected, and its functions are far more complex and extensive. More work is needed 

to understand the exact functionalities of BG and to identify the altered physiology of BG 

due to disorders.  

 

 

Figure 1.1: BG circuitry in healthy and PD states 

Note: The change in thickness of the arrows in the Parkinsonian state represents the 

increase or decrease in the firing rate of specific connections. Figure 1.1) a) represents the 

functionality of BG in healthy states, and Figure 1.1) b) represents the functionality of BG 

in Parkinsonian states. In the Parkinsonian state, the loss of SNc dopamine causes 

hypoactivity of the direct pathway and hyperactivity of the indirect pathway, leading to 

excessive GPi output and over inhibition of the thalamus and cortex, thereby suppressing 

the movement. M1 - primary motor cortex; PMC - pre-motor cortex; SMA, supplementary 

motor area; CMA - cingulate motor area. 

1.3 Symptoms of Parkinson’s Disease 

Traditionally, PD has been recognized as a disease that primarily affects motor 

performance, as only the cardinal motor symptoms were associated with PD when it was 

first described in 1817. However, in the past 10-20 years, PD has been recognized to 

a) b) 
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present a broad spectrum of non-motor symptoms, including but not limited to cognitive 

and sensory impairments. Motor and non-motor symptoms become progressively worse as 

the disease advances, and the rate of progression varies extensively between patients [3]. 

These symptoms are assessed through various clinical scales such as Unified Parkinson’s 

Disease Rating Scale (UPDRS) and Montreal Cognitive Assessment scale (MoCA), each 

assessing a specific sub-group of symptoms in PD [38] [39] [40][41]. Recently, with the 

emergence of biosensors and robotic technologies, numerous objective assessments have 

also been researched [40][41]. However, not many of these objective assessment tools have 

been used in clinical practice as of now.  

1.3.1 Motor Symptoms 

PD is primarily a movement disorder, and thus it is clinically manifested by a triad of motor 

symptoms caused by dopamine depletion in BG. Cardinal features of this disorder include 

primary motor symptoms such as rest tremor, bradykinesia, akinesia, rigidity, postural and 

gait impairments, and also secondary symptoms such as impairment in speech [42], 

handwriting, saccadic eye movements, hand movements, and precision grip [43]. Since PD 

is a heterogeneous disease, the symptoms vary extensively from one patient to another. 

Based on the motor symptoms, PD patients are divided into two major sub-types: akinetic 

rigid and tremor dominant [44] [45]. Performing complex motor actions requires optimal 

functioning of elemental processes such as action selection, movement modulation, 

movement planning, sequencing, coordination, and execution. Furthermore, appropriate 

sensing of the environment also dramatically influences motor performance. Since motor 

performance heavily relies on proper functioning and integration of numerous elemental 

processes, one hypothesis is that motor deficits in PD [43] might arise from abnormalities 

in the elemental sensory and cognitive processes. However, more work is needed to 

understand the abnormalities in sensory or cognitive functions and their relation to motor 

deficits. 

1.3.2 Non-Motor Symptoms 

Contrary to James Parkinson’s description of ‘the senses and intellect being uninjured’ 

[46], PD does present a broad spectrum of non-motor symptoms that are found to precede 
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the onset of motor symptoms. These findings have evolved our understanding of PD from 

a paradigmatic movement disorder to a more multi-systemic disorder that affects several 

brain regions, including those that are not directly involved in motor control and only 

present non-motor symptoms, which are critical determinants of health-related quality of 

life [47]. 

1.3.2.1 Cognitive Impairments 

Cognitive impairments are a common non-motor symptom presented by PD; an average of 

30% of PD patients experience some form of cognitive impairment, which could then 

progress to dementia in about 80% of the patients [48]. Recent studies have suggested that 

the cognitive deficit in PD typically affects a plethora of domains, such as executive 

functions, attention, memory, visuospatial skills, processing speed, and language [49][50].  

Visuospatial deficits in PD are considered one of the most common cognitive 

impairments, as studies have indicated that anywhere between 78% to 93% of PD patients 

suffer from visuospatial deficits [51][52] [53][54]. It has been reported that visuospatial 

dysfunctions could adversely affect various paradigms, such as pattern recognition, spatial 

analysis, constructional ability, forward planning, set-shifting, solving problems, and 

mental flexibility, leading to a deterioration of motor performance [55] [56]. Another 

central cognitive domain that is affected due to PD is the frontal-executive function 

resulting from the close anatomical association of cortico-striatal circuitry with the 

prefrontal cortex. This deficit in executive function is usually presented at a much earlier 

stage of PD and can be detected even in newly diagnosed patients [57][58] [59]. The 

frontal-executive function includes cognitive processes needed to adapt to a new 

challenging environmental situation by processing relevant information and generating and 

learning new mental concepts [56]. A few other vital cognitive functions that might be 

affected due to this deficit are decision-making, planning, and multitasking. Studies [60] 

have shown that PD patients lack the ability to self-generate a plan and organize a task, a 

vital function needed to perform a goal-directed task-specific motor movement. A few 

other studies have also suggested a relationship between executive dysfunction and motor 

deficits that it might lead to at a later stage [61]. Executive dysfunction was also an 

important factor in impairments of motor features such as gait and postural stability [57]. 
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Thus, cognitive dysfunction, specifically poorer executive function, is related to worsening 

motor processes resulting in several motor deficits. However, the full extent of deficits in 

executive functions, their contributing factors, and their relation to motor deficits are yet 

to be fully understood. Similar to the slowing of motor movements (bradykinesia), 

cognitive slowing (bradyphrenia) is also experienced in patients with PD [62] [63]. It has 

also been found that when the speed of the mental operation task increased, thereby 

demanding faster cognitive processing and increasing the cognitive load, the cognitive 

slowing also worsened significantly compared to healthy controls. Therefore, this deficit 

in processing speed may be due to the inability of PD patients to handle excessive cognitive 

load resulting in slowing down the cognitive processes. Adams et al. [64] have also 

indicated that increased cognitive load could adversely affect intelligibility in activities 

such as speech and even postural stability [65]. More work is needed to understand the 

relationship between cognitive slowing and the cognitive load associated with a task. 

1.3.2.2 Sensory Impairments  

In recent times, a growing body of literature has demonstrated that PD may present an array 

of perceptual deficits in a large proportion of patients at any time during the disease and 

can be present even before the diagnosis. Common sensory abnormalities include pain, 

reduced sense of smell, touch, and deficits affecting the perception of other modalities such 

as proprioception, vision, haptics, and auditory. James Parkinson wrote that the sensation 

of pain could be the first sign of the impairments [66]. As such, pain is a universal symptom 

experienced by more than 40% of PD patients [67].  

Another prevalent sensory impairment in PD is olfactory dysfunction which is 

considered an early pre-clinical sign of PD as the dysfunction typically presents 4 to 8 years 

before diagnosis [68] [69] [70]. Recent evidence suggests that olfactory dysfunction may 

be a direct consequence of abnormalities associated with the central nervous system [71], 

as perceptual deficits associated with other modalities have also been reported. Studies also 

indicate an impairment in taste appreciation among PD patients [72]. Another PD-related 

sensory deficit was reported in proprioception, i.e., the ability to sense self-movement, joint 

position, and muscle force. As proprioception plays a vital role in performing various motor 

movements, a deficit in proprioception could gravely compromise multiple motor tasks, 
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including goal-directed voluntary movements [73] [74], reflex action, and maintaining 

postural stability. It has also been suggested that impaired proprioception may lead to 

increased dependence on visual guidance when performing voluntary movements [75].  

A few visual deficits include impairment in visual acuity, color discrimination, 

contrast sensitivity, and pupil reactivity [76]. PD patients also suffer from an inability to 

discriminate between irrelevant and relevant visual information, which could explain the 

phenomenon of freezing of gait in crowded surroundings [77]. PD patients also encounter 

deficits in object perception, motion perception, and interpreting facial expressions 

[78][79]. Other oculomotor dysfunctions involve abnormalities in eye movements [80], 

reduced blink frequency causing dry eyes, and abnormal saccadic and smooth pursuit eye 

movements [76]. Further, delayed initiation and slowness in eye movements have been 

reported in PD patients as ocular bradykinesia, which correlates with the bradykinesia 

experienced in hand movements [81]. The visual perception of displacement and time has 

also been found to be abnormal in recent studies [82][83][84]. Finally, visual hallucinations 

commonly associated with high mortality rates have also been reported in 74% of PD 

patients after 20 years of disease [85]. With dopamine being an important neurotransmitter 

in the retina, reduced dopamine concentration in the retina is speculated to be a factor in 

these visual deficits [86] [87][88]. However, optimal visual perception requires the proper 

functioning of highly interconnected brain regions that extend beyond the functions of the 

retina. An impairment in central processing or higher-order neural regions is also 

speculated to play a much bigger role in sensory deficits, including impaired visual 

perception [81] [89]. This hypothesis has been gaining a lot of attention in recent years as 

deficits associated with other modalities have been reported indicating a more centralized 

impairment affecting the perception and interpretation of multiple sensory modalities.  

A decline in haptic sensitivity is observed in PD patients as the haptic threshold to 

detect object curvatures have been elevated when actively or passively exploring the 

workspace [90]. Haptic perception relies on integrating proprioceptive, tactile, and pressure 

cues in conjunction with the output from the internal model, which is predicted sensory 

feedback derived from the efferent motor commands [91] [92]. Therefore, studying the 

haptic sensitivity and acuity in PD is vital as it would also shed light on how mechanisms 
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of sensory integration may be affected in PD and its contribution to the sensory and motor 

deficits experienced by PD patients. Existing evidence also points to several dysfunctions 

in the auditory system. Dysfunctions in hearing are often hypothesized to be due to 

impaired neural processing of auditory stimuli [93] and may also arise from impaired 

integration of multi-modal sensory inputs, which affects the perception of auditory 

information [94]. Managing sensory impairments in PD is particularly complex as the 

deficits can arise at any level starting from an impaired peripheral sensory organ to an 

impairment in sensory pathways that transmits the received sensory information to the 

brain or the impaired neural regions that process and integrates sensory information to 

ensure accurate interpretation of the world around us. It is, therefore, necessary to 

determine the basis for the sensory deficit so that the treatment can be targeted specifically 

to tackle the impairment that leads to the deficit. With studies hypothesizing that an 

abnormality in the sensory integration process may be responsible for deficits in 

perception, it may be beneficial to explore impairments in multi-sensory integration and 

how they lead to perceptual deficits. 

1.3.2.3 Other Non-Motor Impairments 

Very few non-motor symptoms that relate to the work described in this thesis have been 

discussed here. However, several non-motor symptoms are presented during PD, severely 

affecting the quality of life in about 50% to 60 % of PD patients [95]. In recent times, it 

has been understood that non-motor symptoms present a greater impact on health-related 

quality of life than motor symptoms. Certain symptoms, including hallucinations, could be 

a strong predictor of nursing home placements [96]. Figure 1.2 indicates the predominant 

non-motor symptoms in PD. 
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Figure 1.2: Non-motor symptoms in PD 

1.4 Treatments for Parkinson’s Disease 

With the number of people diagnosed with PD expected to double in the next decade, 

managing PD remains a challenging and complicated task for the global healthcare system. 

Several treatment options are available to manage the motor and non-motor symptoms 

experienced by PD patients. A major limitation of the current treatment approach is that 

due to the diverse nature of the disease, a treatment that may improve one patient's 

condition may have no effect or even worsen the quality of life in another patient, 

necessitating a patient-specific approach.  

1.4.1 Pharmacological Treatments  

Several pharmacological approaches have been available to provide symptomatic relief for 

the motor symptoms experienced by PD patients. However, they provide little to no benefit 
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in non-motor symptoms, and more work is needed to understand the effects of these 

medications on non-motor symptoms. 

Dopaminergic medications are the mainstay of the current PD treatment to restore 

dopamine levels within the depleted dorsal striatum. Developed in the 1960s, levodopa is 

one of the most common dopaminergic medications prescribed by clinicians and is 

considered the most successful medication in mitigating the motor symptoms of PD [97] 

[98] [99]. Although effective in managing motor symptoms, levodopa presents side effects 

such as dyskinesias, on-off motor fluctuations, nausea, hallucinations, and sleep 

disturbances, which severely affect the patient’s quality of life [100]. Another therapeutic 

option often introduced as an initial treatment for PD is the dopamine agonists that came 

on the market in 1978 [98] [101]. Although levodopa is much better at controlling motor 

symptoms, dopamine agonists are usually considered an initial treatment in patients 

younger than 60 to avoid the adverse effects of levodopa. While dopamine agonists can 

reduce the risk factor of dyskinesia, they also include side effects such as compulsive and 

impulsive behavioral problems, nausea, vomiting, insomnia, constipation, and fainting 

[98]. Other PD medications, such as monoamine oxidase B (MAO-B) and Catechol-methyl 

transferase (COMT), work by inhibiting enzymes responsible for the breakdown of 

dopamine. Out of all the medications, levodopa is considered the gold standard for the 

treatment of PD despite its side effects. However, recently, there has been a lot of interest 

in understanding the effect of dopaminergic medications such as levodopa on sensory and 

cognitive functions.  

Medications seem to have a paradoxical effect on sensory abnormalities, such as 

olfactory dysfunction, which was uninfluenced by the anti-Parkinsonian medication. 

Dopamine agonists and levodopa are also reported to have acute depressant effects on 

proprioception [102]. The adverse effects of levodopa, such as visual hallucination, are 

recognized to worsen with the dose and duration of the levodopa treatment. Dopaminergic 

medication has had a mixed effect on cognitive deficits, with certain impairments 

worsening and others improving or unaltered. Studies have indicated an adverse effect of 

dopaminergic medication on reversal learning, reward processing, and error correction, 

which can negatively affect motor performance. Results from a few other studies have also 
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correlated with this finding; dopaminergic medication was found to have decreased 

cognitive learning, worsened bradyphrenia, and induced attentional instability [103] [104] 

[105]. Studies exploring detrimental effects of medication on cognition suggest that the 

impact of medication varies from patient to patient, depending on the affected brain regions 

[104] [105]. This points to the need for a more patient-specific assessment tool to determine 

the impairment and the right course of action specific to that patient. A dopamine overdose 

hypothesis [57] was also put forth to explain these mixed results, which indicated that the 

effect of medication depends on the affected brain region and stage of illness in PD. 

According to the dopamine overdose hypothesis, the medication increases dopamine across 

all regions. While the medication increases the pathologically low dopamine levels in the 

putamen and dorsal striatum, it overstimulates the ventral striatum, which is not severely 

dopamine depleted, thereby impairing the functioning of the ventral striatum, leading to 

several cognitive deficits. This hypothesis explains the differential effect of medication 

between the motor, sensory and cognitive symptoms and the change in the effect of 

medication based on the stage of illness.  

Therefore, the paradoxical effect of dopaminergic medication on cognitive domains 

such as executive functions and how it affects motor performance is yet to be understood 

clearly. This will help in understanding if prescribing dopaminergic medicines at a very 

early stage of PD to alleviate the motor symptoms could, in turn, increase the rate at which 

the cognitive deficits worsen in PD, thereby increasing the risk factor of more severe 

cognitive dysfunctions.  

1.4.2 Surgical Treatments  

Surgical treatments for PD have been studied since the 1930s and are usually considered 

for patients in the advanced stages of PD for whom the dopaminergic medication may not 

be effective in managing motor symptoms. Primary categories in surgical interventions for 

PD are (1) ablative surgeries and (2) Deep Brain Stimulation (DBS). Based on the lesioned 

brain regions, ablative techniques can be further sub-categorized into pallidotomy, 

thalamotomy, and subthalamotomy. 
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Thalamotomy involves lesioning a part of the thalamus. Hassler et al. [106] were 

among the first to choose the ventral nucleus of the thalamus as the target region for relief 

from tremors [107] [108]. Despite the benefits of thalamotomy, it is not recommended due 

to its detrimental effects, such as increasing the rate of cognitive decline in PD patients 

[109]. The procedure involving lesioning of globus pallidus or pallidotomy is another 

surgical technique used to mitigate cardinal motor symptoms in PD [110]. Pallidotomy has 

been found to mitigate levodopa-induced dyskinesia by about 82% [111] [110]. The final 

category in the ablative procedure is the subthalamotomy which includes subthalamic 

lesions. This procedure has emerged only recently, and limited research shows that 

subthalamotomy has more benefits than many other surgical procedures [109]. In 

conclusion, ablative surgeries are usually not recommended due to their irreversible nature 

and high incidence of side effects [112]. In recent times, DBS has replaced ablative 

surgeries and is a widely used surgical procedure due to its reversibility and adaptability. 

In 1987, it was discovered that high-frequency stimulation of the thalamus mimics the 

effects of lesioning done in ablative procedures and suppresses tremors. [113][110]. 

Several subcortical nuclei, including the ventral intermediate nucleus of the thalamus, GPi, 

and STN, are targeted for stimulation depending on the desired effects [114][115][107]. 

The ideal brain target for stimulation is still debated. 

While surgical procedures such as DBS effectively control motor symptoms, 

significant risks such as intracranial or intracerebral hemorrhage, ischemic stroke, and 

implantation site infection must be considered [116][115][117][118]. Additionally, several 

domains of cognition were also found to be adversely affected after DBS [119], and its 

effect on sensory perception is still a topic of debate. Finally, DBS surgery is also highly 

invasive, which could lead to several other intraoperative and postoperative complications 

[120]. While non-invasive stimulation techniques [121] have emerged as promising 

adjunct treatments for PD, more work is needed to understand their efficacy in managing 

motor and non-motor symptoms and any associated side effects. 

1.4.3 Non-Pharmacological Treatments  

Non-pharmacological interventions include physical therapies, cognitive rehabilitation 

programs, video-assisted swallowing therapy, and speech therapies. Rehabilitation 
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programs can be considered to manage a broad spectrum of symptoms spanning across 

motor, sensory and cognitive domains. Several symptoms that remain unimproved by 

medication and surgical treatment may improve with rehabilitation therapies. Furthermore, 

unlike medication or surgical treatment, these therapies do not pose any risks or side effects 

that may adversely affect the patient’s quality of life. 

Rehabilitative therapies have improved motor symptoms such as postural 

instability, difficulties in upper-limb movement, balance disturbance, and gait. Statistically 

significant improvements in mobility, such as walking, standing from sitting, and sitting 

from lying, were observed in patients doing physiotherapeutic exercises. This improvement 

was seen irrespective of the duration of the disease [122][123][124][125]. Recent 

innovations in robotics, virtual reality (VR), and wearable technologies have paved the way 

for an efficient, individualized, and task-specific rehabilitation program that can potentially 

add more value than traditional approaches [126] [127]. Studies comparing traditional and 

advanced rehabilitation techniques using VR found that VR rehabilitation has been more 

effective in improving gait, upper-limb function, and overall quality of life than traditional 

approaches [128]. In addition to the increased efficacy of the advanced rehabilitation 

techniques, they require the participants to use visuospatial functions, motor sequencing, 

higher-order motor control, and other cognitive functions to complete the objectives. 

Numerous therapies aimed at improving cognitive abilities have been shown to be quite 

useful in enhancing motor performance in PD patients, as cognitive domains such as 

executive functions, visuospatial skills, logic memory, and motor learning play a vital role 

in any task-specific motor action [129] [130]. Reviewing the outcomes of several 

rehabilitation strategies show that while dopaminergic medication can only briefly improve 

specific aspects of cognitive functions, non-pharmacological interventions are more 

effective in improving cognitive abilities (executive functions, movement planning, error 

correction) that are vulnerable to PD and yet very critical to performing any day-to-day 

activity without the triad of side effects presented by dopaminergic medications 

[131][132][133]. The limitation of non-pharmacological intervention stems from an 

inadequate understanding of the cognitive impairments resulting in an inability to target 

specific cognitive domains that may be impaired and the lack of patient-specific therapies. 

Quantification of the cognitive impairments is necessary to address the broad spectrum of 
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deficits presented by PD. Finally, a patient-specific analysis would help structure the 

rehabilitation program specific to each patient [134].  

Another important aspect that needs to be discussed is sensory cueing, as motor 

performance improves substantially in rehabilitation programs when provided with multi-

modal sensory cueing [135][136], i.e., providing external temporal or spatial stimuli to 

compensate for the defective generation of internal signals in PD. External sensory cueing 

was found to reduce gait variability and improve the timing and coordination of upper-limb 

movements in patients with freezing of gait, suggesting that internal motor control may 

benefit from the sensory cueing [137] [138] [139]. These findings suggest that cues can be 

used as an efficient tool for motor learning in PD patients [140]. However, with PD also 

presenting deficits in the sensory domain, it is vital to quantify the sensory deficits and 

determine their contributing factors to understand the type and nature of sensory cues that 

could be most effective. Therefore, a patient-specific approach taking into account their 

individualized sensory deficits might be necessary to determine the optimal sensory 

environment for rehabilitation programs. 

Rehabilitation therapies have been a promising alternative or adjunct treatment for 

PD, as advanced rehabilitation techniques present numerous benefits with little to no side 

effects. The next step should be to provide a more patient-specific rehabilitation program 

[134] combined with adaptive multi-modal sensory cueing to increase the efficacy of the 

therapies. To this end, there is a need to quantify and understand the mechanism that 

contributes to the deficits in sensory and cognitive domains in PD patients. Any deficit 

related to the motor or cognitive learning should also be explored, as the efficacy of the 

rehabilitation therapies hinges on the patient’s ability to learn, retain and transfer the 

performance improvements to day-to-day motor or cognitive activities [141][140] [142].  

1.4.4 Current Pitfalls and Strategies for Future Treatment 

While there is currently no permanent cure for PD, multiple treatments are available to 

manage the symptoms of PD and slow down the progression of the disease. Dopaminergic 

medications are very effective in mitigating cardinal motor symptoms; however, recent 

evidence [143][103] suggests that the effect of medication on sensory or cognitive deficits 
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is paradoxical. Few studies have reported adverse effects of medication on proprioception 

[102] and have also shown worsening of cognitive deficits [103] [143]. Therefore, the 

effect of dopaminergic medication on sensory and cognitive deficits is not fully understood. 

There is a need to better understand the impact of medication on these deficits, as these 

multi-modal effects of medication need to be taken into account during treatment 

optimization. Discussing the need to better optimize the treatments, there is a growing 

number of studies [144][145][146] that indicate the necessity for a patient-specific 

approach in analyzing and treating the patient’s condition. This need for a patient-specific 

and targeted treatment applies not only to dopaminergic medication but also to other 

treatments, such as botulinum toxin or lidocaine, used to treat PD symptoms. 

Another promising field of treatment for PD is rehabilitation therapies, which fall 

under the category of non-pharmacological treatment. As discussed earlier, rehabilitation 

therapies have been very effective in improving both motor and cognitive abilities with no 

substantial side effects. However, many unanswered questions must be explored to 

efficiently employ or optimize these therapies. Therapies targeted to mitigate specific 

deficits may be more effective than a generic physical therapy. Understanding and 

characterizing the impairments caused due to PD and the factors contributing to these 

deficits is essential to better target the deficits through therapies. This is specifically critical 

in therapies aimed at improving cognitive abilities, as any deficits affecting cognitive 

function will invariably impair motor functions. With no standard metrics to evaluate 

cognitive abilities such as executive functions and no in-depth understanding of the sensory 

and cognitive impairments in PD, any treatment aimed at improving motor function may 

not be effective. Additionally, there may also be potential benefits to the patients in 

tailoring a patient-specific rehabilitation system based on an individualized analysis. 

Another aspect that needs to be considered is that the efficacy of rehabilitation therapies 

heavily depends on how effectively patients can use the tools provided during the therapies. 

Numerous studies [135] have emphasized the role of sensory cues in effectively mitigating 

the symptoms through therapies. Therefore, the type of sensory cues that may be optimal 

for the therapy and whether the PD patients can use the multi-modal sensory cues needs to 

be explored to determine the optimal rehabilitation environment that might yield the best 
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results. Characterizing the deficits in perception, executive functions, and their 

contributing factors may be essential to structuring and designing rehabilitation systems.  

This section discussed the limitations of the current treatment and the strategies that 

might help improve the efficacy of the existing treatment protocols. The existing treatment 

protocols, such as dopaminergic medications, have been proven to be very effective in 

managing motor symptoms. However, the high prevalence of non-motor symptoms [147], 

such as cognitive or perceptual impairments, has changed how we conceptualize PD. While 

there have been substantial advances in treating the motor symptoms of PD, current 

treatment options for perceptual or cognitive impairments are limited. It is necessary to 

first understand these deficits and the contributing factors before structuring a treatment 

plan to mitigate the perceptual or cognitive impairments. Recent studies report that non-

motor symptoms predate motor symptoms, which makes it vital to understand these deficits 

and to better manage them [147]. Expanding our knowledge about the sensory and 

cognitive impairments in PD may assist in determining an efficient and targeted treatment 

approach.  

1.5 Sensorimotor Integration (SMI) and Sensorimotor 
Control (SMC) 

The primary focus of the thesis is to investigate the deficits in Sensorimotor Integration 

(SMI) and Sensorimotor Control (SMC) in PD patients. This section discusses the neural 

and mathematical bases associated with the functioning of SMI and SMC in healthy 

subjects and the current knowledge about the effect of PD on SMI and SMC. 

The motor system, which is responsible for driving any voluntary movements, 

requires information about the environment to appropriately plan and execute the 

movements. The sensory system collects information about oneself and the world around 

us through multiple sensory organs and organizes the gathered information. The motor 

system uses this sensory information to modulate the motor commands based on the 

demands of the environment. Therefore, the two systems must work together to process 

and use the sensory information to complete a desired motion. This interaction between the 

sensory and motor system is called SMI [148][149]. Multi-sensory integration, one of the 
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components of SMI, is the ability to integrate inputs from multiple modalities to obtain an 

unambiguous interpretation of the world [150][151]. The perceptual estimate formed 

through multi-sensory integration aids us in understanding the state of oneself and the 

environment, which is used to modulate or generate the motor commands to achieve the 

desired outcome [152][153]. Therefore, the SMI has two distinct facets: (i) multi-sensory 

integration and (ii) the ability to use the perceptual estimates to appropriately modulate the 

motor output. 

While integrating the multi-modal inputs and using them to modulate motor output 

is important, how the humans interpret the perceptual estimate and accordingly plan, 

update, and generate motor commands is also vital to the success of a task-specific 

voluntary movement. It is this ability to interpret the acquired multi-modal inputs and 

appropriately plan or correct a planned strategy and execute the planned movement to 

achieve the outcome(s), which is called the SMC [154]. Apart from the motor and sensory 

systems, the SMC has an additional contributor, which is the cognitive system that has a 

role to play in the interpretation of perceptual estimates and aids in a series of decision-

making processes to plan and correct motor control strategies [134][155]. While the 

execution of voluntary movements may require other elemental processes than just 

movement planning (ability to plan a movement) and online error correction (ability to 

correct a planned strategy), the thesis focuses primarily on these two aspects when 

investigating the SMC. Characterizing the deficits related to these aspects of SMC might 

help us understand the difference in vital SMC functionalities between PD patients and 

healthy subjects, which may enable us to target these deficits during rehabilitation 

therapies.  

Owing to the high interconnectivity of the brain, it must be noted that the 

functionalities of SMI and SMC are heavily intertwined and dependent on each other. In 

other words, SMI and SMC put together are cyclical processes, with one process 

representing the multi-sensory integration and sensory-motor coupling (integration of 

sensory and motor system) and the other process focusing on how the multi-modal inputs 

are being used to plan, update, and execute movements to suit the demands of the 

environment. Therefore, these two processes need to be studied together as both processes 
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are interconnected. The exact functioning of SMI and SMC are largely unknown. However, 

researchers have expended considerable effort in recent years to understand the neural 

regions involved in the process (Neural Bases) and the mathematic criterion used by the 

CNS (Computational Models). The thesis does not discuss all the proposed neural and 

computational hypotheses but focuses on a few that relate to this study or have been used 

in this study during analysis. 

1.5.1 Neural Bases for Sensorimotor Integration 

The human brain, with its high interconnectivity, is a very complex network; therefore, the 

exact regions and their involvement in SMI are still a topic of debate. However, several 

anatomical models have been hypothesized to explain the brain regions involved in the 

process of SMI. Riemann et al. [156] have discussed that multi-sensory integration may be 

initiated in the spinal cord, where the multi-modal sensory inputs from the periphery are 

filtered before sending them to higher brain regions.  

Another school of thought was a hierarchical approach hypothesized by Machado 

et al. [157] that includes three levels of SMI processing (medullary, subcortical, and 

cortical level). Other brain regions, such as the bilateral insula and vestibulo-cerebellum 

[158] [159], were also hypothesized to participate in the SMI functions. In contrast to the 

hierarchical model proposed by Machado et al. [157], another hypothesis by Monfils et al. 

[160] proposed a more parallel approach where SMI is carried out in multiple regions of 

the brain. Aligning with the approach of Monfils et al. [160], another experimental study 

by Sakai et al. [161] proposed a parallel and concurrent architecture for the sensorimotor 

processing involved in motor control. Recent evidence also suggests a significant role for 

BG in SMI. Almeida et al. [162] discussed that the functions of the BG involve the 

integration of visual and proprioceptive sensory inputs. Another study by Nagy et al. [163] 

indicated that the caudate nucleus and substantia nigra may play a role in multisensory 

integration and complex sensory processing functionalities. Jabri et al. [164] have also 

proposed the BG model to explain its role in sensorimotor integration and processing. 

These newer studies have indicated a larger role for BG in SMI. However, more work is 

needed to fully understand BG’s contribution to sensory processing and integration.  
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Although previous studies have attributed certain functionalities to various brain 

regions, due to the high interconnectivity, it is challenging to determine the functional 

contributions of each brain region. This section shows that the SMI may not be a centralized 

process involving few brain regions but a highly distributed procedure that includes 

multiple neural regions. Therefore, a neural disorder that affects a specific brain region 

could potentially disrupt this highly interconnected and distributed process. Specifically, 

understanding the role of BG in SMI may assist in predicting the deficits that may be 

presented by disorders such as PD affecting this neural region. 

1.5.2 Computational Models for Sensorimotor Integration 

It has long been debated that CNS integrates inputs from multiple modalities based on some 

rationale criterion. Numerous mathematical models have been proposed to explain the 

criterion used in multi-sensory integration. Ernst et al. [165][166] proposed a Maximum 

Likelihood Estimator (MLE) model as a criterion for multi-sensory integration. The MLE 

model assigns a weight to each modality depending on the noise associated with that 

modality to minimize its effect on the integrated sensory estimate (perceptual estimate). 

Equation (1.01) shows the mathematical model proposed in MLE. 

Ŝ =  ∑ WiSi

i

 
(1.01) 

where Wi is the weight assigned for the modality Si. The weight for each modality 

would be determined based on its variance, which is considered a representation of the 

noise in the sensory signal. Therefore, equation (1.02) was used to determine the weight of 

each modality to obtain a Minimum Variance Estimate (MVE), i.e., an integrated sensory 

estimate with lesser variance than the variance present in individual modalities. 
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where σi is the variance associated to the ith modality. Equation (1.03) shows the 

variance of the integrated sensory estimate. Biologically, the variance of sensory stimuli 

may be determined through experience or in real-time using perceptual judgments [150]. 

Apart from the MLE model, another criterion proposed to explain multi-sensory integration 

was the competitive integration model [167], which theorizes that the modality with the 

least variance would be used to drive motor actions, and the remaining modalities would 

be discarded. Equation (1.04) shows the competitive integration model. 

Ŝ =  Si if σi
2  ≤  σj

2 (1.04) 

A stochastic integration model was also proposed, which is an extension of the 

earlier model. Equation (1.05) shows the stochastic integration model. 

Ŝ =  max P(S|Sv Sh Sa … ) (1.05) 

where Sv, Sh, Sa represents the visual, haptic, and auditory estimates, respectively. 

Deneve et al. [167] have discussed a context-dependent Bayesian model for SMI. Another 

criterion [168][169] proposed for SMI was a causal inference, in which the sensory 

modalities are combined depending on each modality's causality. For instance, if the 

stimuli gathered by modalities have a common cause, they are integrated to improve their 

resulting overall estimate. The Bayes rule mentioned in equation (1.06) was proposed to 

determine the cause of the sensory stimuli. 

P(C|Sv, Sh, Sa,..) =  
P(Sv, Sh, Sa,..|C) P(C)

P(Sv, Sh, Sa,..)
 

(1.06) 

where C is the causal structure for the sensory stimuli. An extension of this criterion 

was the hypothesis [170] [171] that the multi-sensory integration might depend on the 

spatial and temporal factors of the stimuli in the environment. The modality 

appropriateness hypothesis proposed by Welch et al. [172][173] discusses that the modality 

appropriate for a given task at hand is given higher importance and will dominate other 

modalities. Depending on these hypotheses, the sensory stimuli could undergo various 

processing, such as complete integration, partial integration, or segregation of the stimuli.  

To summarize, there are currently several schools of thought about how SMI may 

occur in humans, although none of the above-mentioned criteria has been clinically verified 

or accepted. It is highly challenging to determine the exact SMI criteria as it is currently 
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not possible to measure the perceptual estimates for a given event from a subject. However, 

understanding the SMI criteria may be useful in determining how SMI occurs in healthy 

subjects, which can help explore how it may be affected in PD patients. 

1.5.3 Sensorimotor Integration and Parkinson’s Disease 

The traditional view was that BG dysfunction in PD may disrupt the direct and indirect 

pathways, thereby affecting the motor ability in the patients. However, several studies that 

examine the sensory perception and the involvement of BG in sensory processing, 

integration, and SMI have challenged this traditional view. 

Multiple studies have reported perceptual abnormalities in PD patients and how 

they may affect their quality of life. Maschke et al. [174] reported impairments in 

kinesthesia among PD patients due to dysfunction in BG. Proprioceptive deficits in PD 

patients have also been discussed in other literature [175][176][73][75][177][178]. Patients 

diagnosed with PD exhibit visual dysfunctions, such as impairments in visuospatial 

construction, depth perception [179], motion, object perception [180][89], and contrast 

sensitivity [181]. Adams et al. [182][94] reported impairments in loudness perception and 

speech intensity among PD patients and how intelligibility in speech may vary under 

dynamic conditions [64]. Findings by Bernardinis et al. [83][84] also point to deficits in 

visual displacement and temporal perception in PD patients. Deficits in other modalities, 

such as haptic [90][91] [178] and auditory perception [93] have also been reported among 

PD patients in multiple studies.  

Therefore, there is an extensive number of studies that explored various aspects of 

sensory deficits in PD, although the factor that contributes to these deficits are still unclear. 

Certain studies [86] [87][88] have indicated the peripheral sensor organ in PD patients may 

be impaired. However, the deficits spanning multiple modalities that consequently affect 

motor movements cannot be explained as a consequence of just the peripheral impairment 

without considering a central deficit in SMI [94]. Other studies [184][81] have also 

indicated that the sensory and motor abnormalities in PD may not be due to peripheral 

impairment but may be related to an abnormality in the central processing of sensory 

inputs. The involvement of BG in SMI has also been discussed in the earlier section, which 
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further indicates that the BG dysfunction caused due to PD may lead to an impairment in 

SMI. It is yet unclear if the sensory and motor deficits observed in PD can be traced back 

to the abnormal central processing (impaired SMI) resulting from a physiological 

disturbance in BG function due to PD.  

A few studies have explored SMI in PD patients. Dubbioso et al. [185] indicated 

that a change in the cortical structures where the sensory inputs are integrated might lead 

to altered SMI. Another study [91] reported an altered SMI in PD patients. However, only 

haptic perception was evaluated during the study, and multi-modal evaluation was not done 

to examine the multi-sensory integration. Muller et al. [186] discussed the relationship 

between cholinergic terminal loss and dopaminergic denervation with postural sensory 

integration in PD patients. Studies [187][188] have argued that the increased visual 

dependence observed in PD patients may indicate SMI deficits. The increased visual 

dependence may imply an inability to organize sensory hierarchy and prioritize sensory 

information depending on its accuracy and importance to the task at hand. Lewis et al. 

[189] suggested a defective integrative unit followed by inappropriate motor response may 

give rise to sensor and motor abnormalities observed in PD patients.  

While earlier studies have explored SMI in PD patients, several unanswered 

questions regarding the functionalities of SMI in PD patients still exist. Experimental 

studies evaluating SMI only assess the patients on a single modality and do not examine 

their performance when provided with multi-modal inputs. With multi-sensory integration 

being one of the vital facets of SMI, evaluating the performance of PD patients when 

provided with multi-modal inputs is necessary to understand the nature of the SMI 

impairment. Moreover, considering that humans interact in dynamic environments in their 

day-to-day life, there is also a need to understand the performance of SMI in dynamic and 

unpredictable testing conditions. Studies also suggest sensory deficits may be presented 

earlier than motor impairments and may contribute to motor deficits [190][84][83][191]. 

Therefore, there is a need to objectively investigate SMI in PD patients and how it relates 

to sensory and motor abnormalities. Additionally, the effect of medication on SMI is still 

unknown and needs to be explored. The significance for investigating SMI functionalities 

in PD patients are several and are as follows: 
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• Understanding the effect of PD on SMI may inform us more about the disease. It 

would help understand the factors contributing to the sensory and motor 

abnormalities, which is necessary to provide a more targeted treatment. 

• Studies [135][192][134] have shown that sensory cues may improve the efficacy of 

rehabilitation therapies if provided appropriately. Characterizing SMI deficits 

would shed light on the nature of sensory cues that would be beneficial in enhancing 

the effectiveness of the treatment.  

• Evaluating the SMI performance in the OFF and ON states would inform us how 

medication has altered the SMI, indicating when it is most beneficial for the patients 

to undergo rehabilitation. Evaluating the effect of the medication is also useful in 

determining the general treatment plan for the patients.  

• While the BG has been linked to SMI functionalities, there is still no clear 

understanding of the role of BG in SMI. Investigating the SMI performance in a 

disease such as PD that affects BG may shed some light on the role of BG in SMI. 

• Although motor or cognitive evaluations are done as part of clinical practice, the 

SMI is not evaluated in the patients due to the lack of assessment techniques. An 

objective tool developed to assess the SMI may be extended to be used in clinics to 

assess the SMI impairments and provide a more targeted treatment. With studies 

indicating that non-motor symptoms may present earlier than motor symptoms, it 

may also be used to diagnose PD early and manage the disease better. 

1.5.4 Neural Bases for Sensorimotor Control 

Sensorimotor control is a complex process focused on planning and updating a motor plan, 

requiring the involvement of several brain regions. Although the exact neural bases 

involved in SMC is still being debated, studies have hypothesized the involvement of 

specific neural region through clinical and behavioral studies.  

Studies [193] have discussed the role of cortical and subcortical regions in optimal 

decision-making processes as a technique similar to reinforcement learning. Yeom et al. 

[194] indicated that regions such as the primary motor cortex (M1) and supplementary 

motor area (SMA) were also active during the movement planning phase. Earlier studies 
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have shown [195] [196] [197] that SMA may be involved in the planning and preparation 

of movements, while the pre-SMA shows greater activity during complex and self-initiated 

movements. Kakei et al. [198] have shown that the neurons in the M1 may be divided to 

represent either the movement parameters (direction, position, and orientation) or muscle 

parameters (muscle force and activity). The involvement of M1 in motor unit recruitment 

and its related strategies has also been studied extensively [199]. Owing to the high 

interconnectivity between the M1 and BG, which is the affected region in PD, studying the 

effect of PD on motor unit recruitment may also prove to be useful.  

With the effect of PD on SMC being one of the primary foci of this thesis, it may 

also be beneficial to discuss the role of BG (affected region in PD) in SMC. Numerous 

studies have indicated that BG's role is vital in movement planning, selection, sequencing, 

correction, and execution [200] [201] [202]. Calabresi et al. [32] proposed a complex 

model of the direct/indirect pathways that could account for the concurrent activation of 

the pathways. This implies that besides movement regulation, BG may also be involved in 

more complex SMC functionalities. Studies [203][204] have indicated that BG could be 

involved in memory-guided movements, suggesting that BG may use reinforcement 

learning to regulate the desired movement. Turner et al. [205] have hypothesized that BG 

may have a far more vital role in motor learning, modulating the motor outputs, predicting 

the reward for reinforcement learning, and movement selection or switching [206][207] 

[208]. Additionally, it has also been inferred that the BG may be responsible for 

determining the criterion that the CNS had to use in deciding the optimal course of action 

to complete the desired motion [209]. To add to the mounting evidence of BG’s 

involvement in crucial SMC functionalities, Gurney et al. [210] theorized that the BG has 

two separate pathways: selection and control pathway. While the selection pathway may 

be involved in action selection, the control pathway modulates the selection process to 

accomplish the desired task. Finally, the relationship between the motor unit or muscle 

recruitment (an important SMC function) with BG has also been discussed [211]. 

This section discusses the findings from earlier studies pinpointing the neural 

regions involved in various SMC functions. Based on evidence from earlier literature, it 

may be understood that BG plays a vital role in movement planning, error correction, 
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retrieving past experiences to guide the movement process, and determining the SMC 

criterion. This is on top of its already established role of movement regulation through the 

direct and indirect pathways. However, more work is needed to fully understand the extent 

of BG’s role in SMC functions. 

1.5.5 Computational Models for Sensorimotor Control 

Similar to the CNS’s criterion for the SMI process, there is numerous evidence that the 

CNS may also abide by a single or adaptive criterion for action selection, motor learning, 

movement planning, and online error correction. Although the exact criterion used by CNS 

is still unknown, researchers have spent considerable time and effort explaining this 

criterion through computational models. Understanding how the process of SMC may 

occur in healthy subjects could help pinpoint the deficits in PD patients. Computational 

models proposed to explain SMC usually tend to contain a cost function that needs to be 

minimized to obtain the optimal solutions for the SMC problem. Anderson et al. [212] 

proposed a model that minimizes the metabolic energy spent to perform a motor action. 

Equation (1.07) shows the cost function for the minimum energy model. 

𝐶 =  
∫ 𝐸𝑡𝑜𝑡𝑎𝑙

𝑀𝑡𝑓

0

𝑋(𝑡𝑓) − 𝑋(0)
 𝑑𝑡𝑓 

(1.07) 

where 𝐸𝑡𝑜𝑡𝑎𝑙
𝑀  is total metabolic energy consumed and 𝑋(0), 𝑋(𝑡𝑓) represent the 

position of the center of mass at the initial and final state. Flash et al. [213] and Hogan et 

al. [214] proposed a minimum jerk model, with the objective of the model being 

minimizing the jerk in the movement, which would maximize the smoothness of the 

movement. Equation (1.08) shows the cost function for the minimum jerk model. 
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where 𝑥 and 𝑦 are the coordinates of the fingertip. An extension to the minimum 

jerk model was the minimum commanded torque model [215], which aims to reduce the 

torques commanded in the joints. The computational models till now are open-loop 

optimization models that place minimal emphasis on the importance of sensory feedback 

in guiding a movement or adapting oneself to a dynamic environment. However, newer 

models suggest that guiding and correcting motor outputs may occur via a combination of 
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feedforward and feedback loops. Harris et al. [216] discussed a computational model to 

minimize the fingertip variance and improve movement accuracy. Harwood et al. [217] 

have also discussed a similar model to account for the saccade movement in humans. The 

relationship between speed and accuracy has also been discussed. Earlier studies 

[216][218][219] have described the speed-to-accuracy trade-off in which the authors have 

inferred that there may be a tradeoff to increasing the movement speed, i.e., an increase in 

movement speed may reduce the accuracy. Studies [216] have indicated that the underlying 

phenomenon related to the speed-to-accuracy tradeoff may be the signal-dependent noise 

which is the noise present in the neural control signal. Task-specific computational models 

have also been theorized; Hamilton et al. [220] discussed how humans might approach an 

obstacle avoidance problem.  

Todorov et al. [221][222] proposed an optimal feedback control scheme that abides 

by the minimum intervention principle as a criterion to correct any movement errors. 

According to the minimum intervention principle, the SMC model receives the sensory 

feedback and corrects only the task-relevant error, i.e., only the error that affects the task 

performance and not task-irrelevant errors. Studies have also attempted to validate this 

principle [223]. The feedback model discussed here could use sensory feedback and abide 

by the minimum intervention principle to correct errors. However, the feedback models 

come with their limitation: the time delay caused due to the feedback loops. The 

feedforward model does not use a feedback loop and, therefore, may solve the problem of 

time delay. Desmurget et al. [224], Wolpert et al. [225], and Haruno et al. [226] examined 

the application of the forward models in SMC. These models could predict motor 

movement depending on the motor command through a process of continuous learning, 

and this prediction is then used for motor control. The drawback with the feedforward 

models would be that online error correction would not be possible without a sensory 

feedback loop. To overcome this limitation, studies have proposed the internal model, a 

combination of feedforward and feedback models for movement planning and online error 

correction. Wolpert et al. [227] discussed the working of the internal model and conducted 

a study to validate the internal model dictating motor actions. Figure 1.3 shows the internal 

model hypothesized for SMC. Few studies have also discussed how humans interact with 

physical objects [228] [229] [230], wherein the impedance of the muscles was controlled 
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depending on the force required to be exerted on the object of interest. Finally, studies 

[231][232][199][233] have also explored the CNS’s criteria in muscle recruitment, another 

essential component of SMC. 

 

Figure 1.3: Internal model of SMC 

As indicated earlier, the computational models discussed in this section shed light 

on the criterion that may be used in SMC functionalities. Apart from using these models to 

understand the working of SMC in healthy subjects, they could also be used to pinpoint the 

SMC deficits in PD patients. As such, in this thesis, specific computational models 

discussed in this section were used to analyze PD patients to understand how they might 

differ from healthy subjects in abiding by the computational models. However, it must be 

noted that the models discussed here are just various schools of thought; no model has been 

officially recognized as an accurate description of brain functionality.  

1.5.6 Sensorimotor Control and Parkinson’s Disease 

The optimal execution of any motor action relies heavily on properly functioning SMC 

circuits. While the cardinal motor symptoms have been widely studied, it is only recently 

that the focus has turned towards studying how PD may affect the fundamental SMC 

processes, which are the building blocks for any goal-directed motor action. 

Studies [61] [57] [234] [235] have discussed the relationship between motor 

symptoms in PD and dysfunctions in executive functions. Lu et al. [236] tested PD patients 

with an obstacle avoidance task presented, which implied a deterioration in movement 
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execution or even planning. Gentilucci et al. [237] theorized that the PD patients may have 

a deficit in storing and retrieving a planned motor action, leading to regenerating or 

reprogramming an already generated motor plan. Leis et al. [238] also studied this deficit 

in retrieving motor plans, and the study’s result indicated that PD patients exhibited higher 

reaction time, movement time, and jerk. It may be that the repetitive reprogramming due 

to BG’s inability to store a motor plan led to slowness and increased difficulty in movement 

execution and control. Fama et al. [61] tested the sequencing ability in PD patients through 

motor and cognitive tasks; the PD patients exhibited impairments in higher cortical 

functioning and motor planning. This deficit in constructing a temporal sequence during 

movement execution among PD patients has also been widely discussed in other studies 

[239][240]. Movement switching in PD patients was also studied and found to be impaired 

[239][240]. Movement switching can be associated with online error correction if asked to 

do it unexpectedly. However, the switching of movement direction in this study was not 

unexpected.  

Although the earlier studies explored certain aspects of SMC in PD patients, several 

limitations must be addressed. Most studies discussed earlier use metrics representing 

motor features such as speed and time taken. However, they neither test the patient’s SMC 

ability specifically nor explore metrics specific to assess motor planning. Additionally, the 

SMC functions in dynamic environments have not been explored. Testing in dynamic 

environments may better represent the real world and provide valuable insights into how 

well the patients may plan or correct movement while performing day-to-day activities. 

Not much is also known about medication's effect on movement planning and error 

correction. As indicated earlier, SMC requires the proper functioning of sensory, motor, 

and cognitive systems. There is still a lack of understanding if the SMC deficits in PD 

originate from an impairment in motor, sensory, or cognitive domains or a combination of 

impairments from multiple domains. Finally, comparing the performance of PD patients 

based on computational models would help determine the aspects or metrics of movement 

planning or error correction that need to be targeted during treatment. Currently, no study 

has assessed deficits in PD from the perspective of computational models. Hence, it is safe 

to conclude that an objective and quantitative characterization of SMC deficits in PD 

patients is needed to understand the multi-modal effects of PD and consequently optimize 
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the treatments. There are several reasons to study deficits in SMC functions, especially in 

the context of movement planning and error correction in PD patients: 

• Understanding the SMC deficits would inform us about their relationship with 

motor deficits and executive dysfunctions, which would help optimize the 

treatment plan [241].  

• Characterizing the SMC deficits in PD would help determine the aspects of SMC 

that are affected and need to be targeted. Developing metrics to analyze individual 

domains of SMC may allow us to target each domain separately. 

• Exploring the SMC deficits from the perspective of computational models is vital 

to know how the criterion used in PD may be altered compared to healthy subjects. 

The cost function equation in these models also informs us of the metrics that must 

be targeted during treatments. 

• Examining the patients under changing or unpredictable testing conditions may 

help determine how efficiently they can handle simple daily tasks.  

• Understanding the impact of medication on SMC deficits is vital, as these complex 

effects must be considered when determining the treatment plan. 

• Clinical scales do not assess SMC functions in PD patients. Moreover, these 

subjective scales have their limitations. Complementing the existing subjective 

assessments with quantitative and objective patient-specific analysis of SMC may 

help better quantify the deficits, thereby improving the quality of care [242].  

1.6 Rationale 

PD is a highly heterogeneous disease that presents itself differently in different patients, 

leading to a myriad of motor and non-motor symptoms that must be managed through 

targeted treatments. It is necessary, therefore, to characterize the symptoms, their 

contributing factors, and the underlying mechanisms to better target the impairments and 

manage the disease efficiently. However, the full extent of these non-motor symptoms, 

specifically deficits in perception and executive functions and their contributors, is not yet 

fully understood, thereby increasing the difficulty in managing the symptoms. The 

perceptual deficits and executive dysfunctions greatly impact the patient's quality of life, 

leading to workplace challenges such as affecting the patient’s ability to drive, write, and 
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operate heavy machinery. Moreover, studies [190][191] have also indicated that the non-

motor symptoms may arise much earlier in the disease and may contribute to the motor 

deficits that arise later. Finally, how perceptual and cognitive deficits respond to the main 

treatments of PD, such as dopaminergic medication is also a topic of debate. Therefore, 

there is a need to better understand the nature of these deficits, the factors that contribute 

to them, and how the current treatment protocols alter them. Treating a symptom requires 

understanding the underlying problem that gives rise to the symptoms. Examining and 

characterizing the factors that contribute to perceptual and executive deficits, and later to 

motor abnormalities, allows us to understand the underlying mechanism involved in these 

deficits. This may open new doors to manage these symptoms through a more efficient, 

individualized, and targeted treatment. Moreover, understanding how the dopaminergic 

medication, the preferred therapy for PD, alters PD-related impairments may provide 

valuable insights into treatment optimization. 

The SMI functionalities involving the central processing of sensory inputs and the 

SMC functionalities involving the appropriate planning and correction of voluntary 

movements are the fundamental building blocks for accurate perception of the world 

around us and execution of the desired movement. Therefore, impairment in SMI and SMC 

may lead to deficits in perception, and executive functions, adversely affecting the ability 

to perform daily activities. Additionally, research has indicated that BG, which is the 

affected region in PD, may play a critical role in SMI and SMC processes. This implies 

that a dysfunction in BG may alter the SMI and SMC circuits. Therefore, how PD affects 

SMI and SMC functions may be the missing piece that needs to be investigated to 

understand the framework involved in deficits of perception, executive functions, and, 

consequently, motor abnormalities. This may be vital to effectively treat the disease. 

Taking this into account and the earlier literature review detailing the symptoms of PD and 

the neural and computational bases involved in SMI and SMC, this thesis focuses on 

investigating SMI and SMC functions in PD patients.  

Early diagnosis and treatment of PD may prove to be effective and beneficial to the 

patient’s quality of life while also reducing the economic burden on the patient. With non-

motor symptoms such as perceptual deficits manifesting much earlier in the disease, these 
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symptoms and the impairments that give rise to them may be considered promising 

biomarkers for an early diagnosis [243]. With the accessibility and cost-effectiveness of 

the technology increasing, a technology-driven tool that can assess and detect these 

biomarkers may be valuable as an early diagnostic technique that can enhance the quality 

of care and reduce the economic burden on the patients. Apart from these technologies 

being looked upon as diagnostic tools, they may also serve as an efficient analysis and 

monitoring tool that could assist clinicians in optimizing the existing therapies, thereby 

enhancing the efficacy of the treatments. For the last few decades, considering the diverse 

nature of PD, there have been growing calls for a more individualized and targeted 

treatment approach using a patient-specific analysis tool [134]. Therefore, an objective tool 

to individually analyze domain-specific bio-makers may be useful in providing a patient-

specific treatment. Taking these together, the thesis focuses on designing, developing, and 

utilizing robotic tools and simulation models to investigate and extract biomarkers that 

provide crucial information about SMI and SMC, which may be useful for an early 

diagnosis and efficient management of the disease. These objective tools and metrics lay a 

foundation for our research goal of using innovative, technology-driven tools for diagnosis 

and treatment. 

1.7 Hypothesis 

• The hypothesis is that the abnormalities in perception and executive functions 

observed in PD patients that may lead to motor deficits arise from central 

impairments associated with SMI and SMC. 

• The use of dopaminergic medication for treating PD further alters the functioning 

of SMI and SMC. 

• Impairments in SMI and SMC may be seen more commonly across PD patients, 

and therefore may be considered a potential biomarker for early diagnosis of PD. 
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1.8 Objectives 

1.8.1 Objective 1: Characterization of SMI impairments in PD 
Patients  

As discussed earlier in this chapter, perceptual abnormalities in PD patients are observed 

across multiple stages of PD, which may then contribute to motor deficits. Studies 

[81][244] hypothesize that an impairment in the central processing of sensory inputs such 

as SMI may lead to sensory deficits, contributing to motor deficits. Dysfunctions in SMI 

would adversely affect the patient’s ability to perceive the environment and adapt their 

motor output to suit the demands of the environment. Currently, very little is known about 

the effects of PD on SMI. Understanding and characterizing any SMI deficits would inform 

us more about the contributors to perceptual and motor abnormalities. This enables us to 

provide a treatment targeted to mitigate the SMI deficits that would, in turn, mitigate other 

perceptual and motor deficits. One of the objectives of the work is to investigate and 

characterize SMI deficits in PD patients under varying sensory conditions. The 

methodology and results pertaining to the investigation of SMI are provided in Chapter 2 

and Chapter 3, respectively.  

1.8.2 Objective 2: Effect of Medication on SMI in PD Patients 

Dopaminergic medication is effective in mitigating cardinal motor symptoms. However, 

the effect of medication on perceptual and cognitive dysfunctions has been mixed, 

inconsistent, and not fully understood. No study has yet analyzed the effect of medication 

on SMI, which is hypothesized to contribute to perceptual and motor abnormalities in PD. 

However, understanding the impact of medication on these deficits and the impairments 

that give rise to these deficits is essential to better optimize the treatment. A treatment that 

mitigates the cardinal motor symptoms but fails to improve or worsens the overall motor 

performance due to its adverse effect on the central processing of sensory inputs may 

negatively impact the patient’s quality of life. Therefore, in addition to testing the patients 

in their OFF state, the patients were also tested in the ON state (one hour after medication). 

This objective is an extension of the earlier one as the methodology and metrics used to 

assess the patients in their ON state are the same as the ones described in the earlier 

objective. 
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1.8.3 Objective 3: Characterization of SMC impairments in PD 
Patients  

The building blocks for executing voluntary movements are the optimal functioning of 

SMC components such as movement planning and online error correction. While the 

cardinal motor symptoms have traditionally grabbed a lot of attention, PD patients also 

experience difficulties in accurately and efficiently performing even simple day-to-day 

motor tasks. Factors contributing to motor difficulties are still a topic of debate; it has been 

hypothesized that a deficit in SMC functions may lead to a cascade of motor deficits 

affecting the patient’s ability to perform motor tasks. However, the nature and extent of the 

SMC deficits in PD and how they may affect voluntary movements are not fully 

understood. Moreover, with SMC functions involving multiple domains (sensory, 

cognitive, and motor), no study has attempted to individually analyze each domain as to 

how they contribute to SMC and how it may be affected due to PD. This work aims to 

objectively investigate the SMC functions in PD patients and determine how they differ 

from healthy subjects. Participants performed an upper-limb obstacle avoidance task under 

varying testing conditions to evaluate movement planning and online error correction in 

PD patients. Kinematic data acquired from the task was used to extract features or metrics 

for individually evaluating sensory, motor, and cognitive domains associated with SMC 

functions. This work extracted features to investigate these domains based on their 

involvement in SMC functions and does not evaluate other aspects of the domains. For 

instance, the cognitive domain is responsible for multiple functions, but in this work, only 

the cognitive functions related to movement planning and online error correction were 

assessed. Finally, the SMC performance of all PD and healthy subjects were compared 

with the existing computational model to understand how PD dysfunction may affect the 

CNS's criterion to complete the desired task. This would further provide valuable insights 

about the aspects that needed to be targeted during the rehabilitation therapies. Currently, 

no study has analyzed the performance of PD patients from the perspective of 

computational models. The methodology and outcomes related to the evaluation of SMC 

in PD patients are provided in Chapter 2 and Chapter 4, respectively. 
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1.8.4 Objective 4: Effect of Medication on SMC in PD Patients 

As indicated in section 1.8.2 and earlier sections, the effects of dopaminergic medication 

on brain functions and computations have been complex and mixed. How medication may 

affect the SMC functions such as movement planning and error correction is still unknown 

and need to be understood. It is necessary to not just take into account the effects of 

medication on cardinal motor symptoms but also its effect on SMC functions which are 

fundamental to any motor action, to determine the optimal treatment strategy that provides 

an effective quality of care. Therefore, as an extension of the objective mentioned in 1.8.3, 

the patients were tested one hour after medication to analyze the effects of medication on 

SMC functions.  

1.8.5 Objective 5: Development of a Robot-based Objective Tool 
and Metrics to Analyze the SMI and SMC Functions in PD 
Patients 

As previously noted, there is a lack of objective diagnostic and assessment methods to 

monitor the motor and non-motor symptoms presented by PD, especially the impairments 

in SMI and SMC functions. Studies [242] have shown that the objective assessment may 

provide a more accurate representation of the patient’s condition than a subjective one and 

that complementing the existing subjective clinical scales with objective methods helps 

better monitor PD patients. With PD being a heterogeneous disease, an objective 

assessment is vital to providing a patient-specific treatment. Further, with the deficit in 

perception being presented much earlier in the disease than the motor symptoms, there is a 

need to diagnose the perceptual deficits and the impairments in SMI/SMC that may lead to 

these deficits as soon as possible. However, clinical scales such as UPDRS or MoCA are 

not targeted to evaluate the SMI or SMC functions. An objective tool to assess the SMI or 

SMC functions may assist in diagnosing the disease at an early stage and managing the 

disease better. In the current work, multiple robot-based tasks were designed and developed 

to objectively evaluate SMI and SMC using the KINARM endpoint robot. A detailed 

explanation of the robot-based tasks and the methodology involved in designing them is 

provided in Chapter-2. 
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1.8.6 Objective 6: Development of a Subject-specific 
Musculoskeletal Model to Extract In-depth Features Related 
to Motor Recruitment 

As discussed in this chapter, several studies [245][246][134] have suggested the need to 

individualize the treatment of PD to improve the efficacy of the treatment plan. While the 

tool described earlier provides patient-specific objective evaluation of the SMI and SMC 

performance, evaluating the muscle recruitment behavior may also be useful in optimizing 

PD-related therapies. Studies have discussed the abnormalities in muscle recruitment 

behavior due to PD, and a tool to assess the muscle recruitment strategies might be of 

clinical significance, especially to improve the efficacy of targeted treatments such as 

injections of lidocaine and botulinum toxin type A. While the sEMG is currently the gold 

standard to measure muscle parameters used during targeted therapies, this technique has 

numerous limitations, which are explained in Chapter 2. Therefore, a patient-specific 

musculoskeletal model has been designed to take the joint kinematic data as an input, and 

output the individual muscle forces, activity, and the contribution required to complete the 

desired motion. The model’s performance and accuracy were validated using healthy 

subjects and the model’s potential to be used as a guiding tool for targeted therapies has 

been explored. The methodology and developments pertaining to the musculoskeletal 

model are provided in Chapters 2 and 5. 

1.9 Brief Outline of the Thesis 

The thesis includes six Chapters, and a brief overview of each chapter is as follows: 

• Chapter 1 – Provides the background information on the symptoms, treatment for 

PD, and existing knowledge about SMI and SMC in PD. 

• Chapter 2 – Gives an overview of the methods used to investigate SMI and SMC 

impairments in PD. The chapter discusses the robotic tools and metrics for 

objectively analyzing impairments and provides information about the 

development of the musculoskeletal model. 
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• Chapter 3 – Discusses the study’s findings related to SMI impairments and the 

effect of medication. 

• Chapter 4 – Discusses the study’s findings related to SMC impairments and the 

effect of medication. 

• Chapter 5 - Provides validation of the muscle model and discusses its potential 

application in targeted therapies. 

• Chapter 6 – Provides a detailed overview of all findings and their clinical 

significance. It also suggests directions for future work, followed by concluding 

remarks on the research described in the thesis. 
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Chapter 2  

2 Materials and Methods 

2.1 Design and Development of Robot-Based Tasks to 
Quantify Impairments due to Parkinson’s Disease 

The primary objective of the thesis is to quantify the SMI and SMC impairments presented 

due to PD, affecting the patient’s ability to perform task-specific voluntary movements. To 

examine these impairments, we need: 

1. Precise equipment that can accurately capture the upper-limb kinematic parameters 

of the participants when performing a task and also provide real-time multi-modal 

sensory feedback.  

2. There is also a need to determine and design tasks suitable to assess the SMI and 

SMC performance of PD patients. 

3. Since SMI and SMC broadly include the functioning of multiple domains, 

including motor, sensory and cognitive structures, the testing environment and 

sensory feedback should be varied so that the participants are assessed under 

differing motor, sensory and cognitive demands and conditions. 

4. Finally, there is a need to design metrics or features that can be used to objectively 

evaluate the SMI and SMC performance. 

This section discusses the methodology used to quantify the SMI and SMC 

impairments presented due to PD. 

2.1.1 KINARM Endpoint Robot 

With current technological advancements, robotic devices are the preferred option to 

develop a flexible virtual testing environment to accurately assess motor, sensory, and 

executive functions. Kinesiological Instruments for Normal and Altered Reaching 

Movement (KINARM) End-Point robot [1][2] is a robotic device that offers an interactive 

environment using a graspable robotic manipulandum coupled with a virtual reality 

display. KINARM end-point robot (BKIN Technologies Ltd, Kingston, ON, Canada) was 

used to assess the SMI and SMC impairments in PD patients. The robot includes two 
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primary components (i) a graspable robotic manipulandum and (ii) a 2-dimensional Virtual 

Reality (VR) display that is placed above the robotic manipulandum.  

 

Figure 2.1: KINARM End-point robot comprising a robot handle and a virtual 

reality display 

The VR display shows the virtual objects and the real-time fingertip position (as a 

white cursor or dot) of the participants when they held the robotic manipulandum. The 

participants can grasp the robotic manipulandum and interact with any virtual objects 

shown on the display by generating a planar movement and controlling the white cursor in 

real-time. Figures 2.1 and 2.2 show the image of the KINARM end-point robot. Through 

its flexible and programmable environment, several custom tasks with multi-modal sensory 

feedback and varying cognitive demands were designed and developed using 

MATLAB/Simulink (MathWorks, Inc.) [3] and Dexterit-E (BKIN Technologies, Ltd.) to 

investigate various aspects of SMI and SMC functions. The following sections provide a 

more comprehensive overview of the tasks designed for the robotic assessment and the 

corresponding sensory feedback and cognitive demands for each task. The primary 

outcome measure of the robotic assessment is the upper-limb kinematic and force data of 

the participants, which is collected by the real-time data acquisition system at 1kHz. The 

acquired kinematic and force data are used to extract multiple features for assessing the 

upper-limb motor control and higher-order functions, including executive and sensory 

performance. A list of features extracted as the performance metrics for each task is 

discussed in the later sections. 
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Figure 2.2: Robot handle 

2.1.2 Experimental Setup 

The participants (PD patients and Healthy controls) were seated in a deluxe chair with no 

armrest and positioned in front of the robot with their foreheads in the center of the visual 

field. The height of the chair was adjusted to ensure that the participants had a clear view 

of the entire VR display and also ensured that the robot manipulandum was in parallel to 

the subject’s waist level. A black screen was placed between the VR display and the 

participant’s arm to prevent the participants from seeing their arm when performing the 

robotic tasks. Figure 2.3 shows how the black screen was used to block the view of the 

participant’s arm. 

                  

(a)                                                            (b) 

Figure 2.3: Virtual reality display  

Note: (a) The Virtual-Reality Display without using the Black Screen; The virtual reality 

display is transparent, as shown in the figure, and without the black screen, the participant 
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can see their arm. The black screen was pulled in to block the view of the participant’s arm 

during the experiment. (b) The Virtual-Reality Display with the black screen; the black 

screen ensures that only the virtual objects are visible to the participant. 

2.1.3 Task Design 

In this study, tasks were designed and developed for the robotic device to investigate SMI 

and SMC performance of PD patients. The development of the tasks was done using 

MATLAB, Simulink and Stateflow. Figure 2.4 briefly outlines the tasks designed to 

evaluate SMI and SMC functions. 

 

Figure 2.4: Robot tasks for SMI and SMC investigation 

2.1.4 Task Protocol for Investigating Sensorimotor Integration 

Tasks designed to investigate SMI functions in the participants are discussed in this section. 

The sensory conditions are varied in each task to understand how the task performance of 

the participants varies with differing sensory conditions. Variation in the sensory 
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conditions includes tasks with and without assistive multi-modal sensory feedback and 

tasks with and without sensory manipulation or disturbance. Multi-modal assistive 

feedback was provided to understand if the participants were able to integrate inputs from 

multiple modalities optimally and interpret the integrated sensory estimate accurately to 

improve their task performance. The inclusion of sensory manipulation was aimed at 

understanding if the participants could adapt to sensory disturbance or inaccuracies. 

Adapting to sensory manipulation requires optimal SMI functions to differentiate between 

accurate and inaccurate sensory feedback, and accordingly determine a strategy to 

optimally integrate sensory inputs and appropriately adjust their motor outputs to ensure 

that the task performance is not affected due to inaccurate sensory feedback. The 

participants were evaluated independently in each sensory condition to investigate and 

quantify any deficits associated with sensory integration and processing in PD patients.  

2.1.4.1 Reaching Task 

Performing a reaching movement is considered one of the fundamental features of human 

competence [4]. Optimal multisensory integration is necessary for accurately planning and 

executing reaching movements [5][6][7]. Earlier literature [8] has also discussed the 

possibility of evaluating SMI depending on how accurately and efficiently a reaching 

movement may be performed. Further, the reaching movement [9][10] is considered an 

essential component in performing any day-to-day activity including eating, interacting 

with objects, exploring the space around oneself, etc. Additionally, researchers [11] have 

also indicated that since reaching movements have a clear objective, they are well suited 

to study how the CNS may use the sensory inputs to complete the desired motor action. 

Therefore, in the current study, a reaching task is designed to quantify any SMI deficits in 

PD patients. Multi-sensory integration is investigated based on the participant’s 

performance in the reaching task under four sensory conditions (with/without multi-modal 

assistive sensory cues and with/without sensory manipulation). Reaching tasks with and 

without multi-modal Assistive Sensory Cues (ASC) are used to assess visuomotor and 

sensorimotor performance. Sensory manipulation is also used to resemble the real-world 

scenario where the received sensory stimuli are often noisy or inaccurate. The results from 

the reaching task with sensory manipulation are essential in understanding how efficiently 
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the participants can integrate multiple modalities while considering the sensory 

disturbances. Studies [12] [13] have indicated that SMI processes may have flexible 

strategies during movement planning depending on the relevance and reliability of the 

information provided by the sensory modalities. Adapting SMI strategies based on the 

reliability of the received sensory inputs is vital to minimizing the error in the perceptual 

estimates, that are used to plan and execute a movement optimally. Investigating the 

performance of PD patients in the presence of a sensory manipulation or inaccurate sensory 

input may provide insights as to whether they can adapt their SMI strategies considering 

the unreliable sensory input. 

The primary objective for the participants in the reaching task was to reach the 

targets (red dot) shown on the VR display using the robotic manipulandum within a given 

time. In other words, the white fingertip marker had to reach the red target for the 

participants to complete the reaching task successfully. The trial began when the 

participant’s arm was located at the center of the screen, which was indicated by a marker 

dot. A red dot which is the target, was shown when the trial began, and the participants 

were given a specific amount of time to reach the target. The time limit to reach the target 

dot was six seconds. It should also be mentioned that the participants had to reach the 

targets and stay on the target for 3 seconds for it to be counted as a successful reaching 

action. The trial ended when the participants reached and were on the target dot for three 

seconds or if six seconds had passed without the participants reaching the target. Once the 

trial ended, a marker dot appeared in the center of the screen, and the participant had to 

reach the marker, at which point the subsequent trial began. Figure 2.5 shows the design 

of the reaching task. The reaching task encompassed four subtasks, each testing the 

participants in different sensory conditions (see Table 2.1). The protocol and specifications 

for each subtask are explained in the following sections. 
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Table 2.1: Subtasks of the reaching task 

 Subtasks Sensory Conditions 

Reaching task 

(RT) 

First subtask Without Assistive Sensory Cues (ASC) 

Second subtask With ASC  

Third subtask With ASC and without sensory 

manipulation 

Fourth subtask (Mirror-

reaching task) 

With ASC and with sensory manipulation 

                   

Figure 2.5: Reaching task 

Note: The objective for the participant is to reach the target dot; The white dot indicates 

the fingertip position of the participant while holding the robotic handle. 

2.1.4.1.1 First Subtask (Without Assistive Sensory Cues) 

In this subtask for the reaching task, the participants only received visual input through the 

VR display. No multi-modal ASC was provided to assist the participants in accurately 

reaching the targets. Participants performed ten trials of this subtask. The size, location, 

and distance of the target from the center have been randomized across the ten trials to 

ensure that the participants do not predict the location of the target and initiate the 

movement before the target appears on the screen. Randomization of the task parameters 

also ensured that the trials were not the exact replica of each other and that the participants 

did not find the tasks repetitive, which may result in reduced task difficulty. Literature [14] 

have pointed out that repetitive task may require reduced cognitive and sensory effort than 

randomized tasks. Therefore, the randomized task would be more suitable for investigating 

the SMI functions as it demands optimal sensory integration, and any inaccuracies in SMI 
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would deteriorate the task performance. All targets are circular, and the target size ranges 

from 1 cm to 2.5 cm in radius. The distance between the screen center and the target ranges 

from 7 to 12.2 cm. The targets were spread out in all directions to pinpoint any bias in 

performance depending on the target direction. 

2.1.4.1.2 Second Subtask (With Assistive Sensory Cues) 

In addition to the visual input received through the VR display, participants also received 

multi-modal assistive sensory cues, which assisted the participants in reaching the target 

accurately. Multi-modal sensory inputs include vibrotactile and auditory input. These 

multi-modal sensory inputs were feedback provided by the robotic system to the 

participants when they reached the target so that they could stay on the target for 3 seconds 

to complete the task successfully. Vibrotactile and auditory sensory cues were provided to 

assist the participants in movement regulation and control. Integrating these ASC may 

improve the participant’s task performance. Vibrotactile input is applied to the robot 

manipulandum, which the participant grasped. A separate speaker attached to the robotic 

system was used to provide an auditory input: a single beep sound when the participants 

reached the target. All the multi-modal inputs were provided in real-time with no delay. 

Participants performed a total of 10 trials, and the parameters used for this subtask were 

the same as the ones used in the first subtask.  

2.1.4.1.3 Third Subtask (Without Sensory Manipulation) 

This reaching subtask was done to evaluate the performance of the participants when 

performing the reaching action without any sensory manipulation or disturbance. In 

addition to the visual input, participants also received multi-modal assistive cues 

throughout this subtask. The earlier sub-section explains the parameters for the vibrotactile 

and auditory inputs and when these multi-modal inputs were evoked. The participants 

under this sensory condition performed a total of 33 trials. The target size ranges from 0.6 

cm to 2.6 cm in radius, and the distance of the target from the screen center ranges from 20 

cm to 40 cm. 
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2.1.4.1.4 Fourth Subtask (With Sensory Manipulation) 

In this subtask, the participants encountered sensory manipulation or disturbance when 

performing the reaching movement. The visual input on the VR display was manipulated 

to investigate how the participants cope and adapt to sensory inaccuracies. To be specific, 

the fingertip position of the participant shown on the VR display was manipulated such 

that the fingertip position shown on the screen is a mirror image of the actual fingertip 

position of the participant. The fingertip movement shown on the screen moves in the 

mirror image of the actual movement made by the participant. For instance, if the 

participant moved to the left side, the marker indicating the fingertip position moved to the 

right, which is the direction opposite to that of the actual movement. If the participant 

moved in the upward direction, the marker indicating the fingertip position shifted in the 

downward direction. Therefore, the participant had to consider this visual manipulation 

when attempting to reach the target. For instance, If the target was located on the right side 

from the screen center, the participant had to move the robotic manipulandum to the left 

side for the marker indicating the fingertip position to move to the right side and reach the 

target accurately. Throughout this subtask, the participants received the vibrotactile and 

auditory assistive cues in addition to the manipulated visual input. However, the 

vibrotactile and auditory inputs were not manipulated. The parameters associated with the 

multi-modal assistive cues were mentioned in the earlier section. The target size and the 

distance from the screen center were the same as the third subtask. Figure 2.6 shows the 

reaching task with and without sensory manipulation. As shown in Figure 2.6(a), with 

sensory manipulation, the fingertip position (white dot) moves in the direction opposite to 

the participant’s arm, whereas, in the three earlier subtasks without sensory manipulation, 

as shown in Figure 2.6(b), the fingertip position would move along with the participant’s 

arm. 
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         a) With sensory manipulation                   b) Without sensory manipulation 

Figure 2.6: Reaching task with and without sensory manipulation 

Note: This figure is captured from the analysis software to provide a better understanding 

of the task and does not indicate what the participants would see during the experiment. 

During the experiment, the participants would not see their arms or the blue line indicating 

the robot manipulandum. They would only see the fingertip position (white dot) and the 

virtual objects associated with the tasks. 

2.1.4.2 Tracing Task 

The difficulties experienced by PD patients in performing fine motor tasks that require 

smooth continuous movements have been extensively reported [15][16][17]. Generating 

multiple discrete sub-movements rather than a smooth continuous movement and an 

inability to adapt to the task requirement and demands of the environment during 

continuous motions have been widely discussed [18]. While the motor impairments such 

as rigidity could contribute to this difficulty, an impairment in SMI may also lead to 

inaccuracies and choppy movements when performing the continuous motion. A tracing 

task was designed and developed in this study to assess the deficits in sensorimotor abilities 

that may adversely affect motor control and smooth modulation of motor commands when 

performing continuous movements. 

In the tracing task, a green circular path was shown in the center of the VR display. 

A marker dot was presented on the right half of the circular path. This marker dot was 

primarily used to determine when the trial could begin. When the participant was ready, 

they grasped the robotic manipulandum and reached the marker dot, at which point the trial 

started. Once the participants reached the marker dot, a red dot appeared just above the 
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marker dot and within the green circular path. The objective for the participant was to move 

in the clockwise direction or, in other words, go around the circular path and reach the red 

dot while staying within the green circular path. Any deviations from the green circular 

path were considered a violation or error, and the participants received sensory feedback 

indicating that the fingertip position was outside the green circular path. Figure 2.7 shows 

the design of the tracing task. 

                            

Figure 2.7: Tracing task 

Note: The participants are only allowed to move in the clockwise direction when reaching 

the target dot and must stay within the green circular path 

In addition to the visual feedback provided by the VR display, haptic and auditory 

feedback was also provided as ASC when the participants deviated from the green circular 

path. While the auditory feedback was the beep sound, the haptic feedback included a force 

input that pushed the participant’s arm back into the green circular path. This sensory 

feedback was provided to assist the participants in performing the tasks more accurately 

and efficiently. Unlike the reaching task that had four subtasks, the tracing task only 

includes two subtasks (see Table 2.2): one with sensory manipulation and the other without 

sensory manipulation. This was done to reduce the amount of time it takes for the 

participants to complete all the tasks so as to ensure that the study’s results are not unduly 

affected by fatigue. Earlier studies [19][20] have found that fatigue is a common problem 

in PD patients, and an increased assessment time may adversely affect a patient’s 

performance due to fatigue. 
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Table 2.2: Subtasks of the tracing task 

 Subtasks Sensory Conditions 

Tracing 

task (TT) 

First subtask (Tracing task 

without delay) 

With ASC and without 

sensory manipulation 

Second subtask (Tracing task 

with delay) 

With ASC and with sensory 

manipulation 

2.1.4.2.1 First Subtask (Without Sensory Manipulation) 

The trials in this subtask included no sensory manipulations. Participants performed a total 

of 12 trials, with the diameter of the green circular path varying randomly. The width of 

the circular path is 2.5 cm. 

2.1.4.2.2 Second Subtask (With Sensory Manipulation) 

 

                             

           a) With sensory manipulation                b) Without sensory manipulation 

Figure 2.8: Tracing task with and without sensory manipulation 

Note: This figure is captured from the analysis software to provide a better understanding 

of the task to the audience and does not indicate what the participants would see during the 

experiment. The participant would not see their arm or the blue line indicating the robot 

manipulandum during the experiment. They would only see the fingertip position (white 

dot) and the virtual objects associated with the tasks. 

In this subtask, the visual sensory input shown on the VR display was manipulated by 

adding a time delay of 1000 milliseconds to the visual input. In other words, the white dot 

indicating the fingertip position moves 1000 milliseconds after the participants have 



68 

 

moved. Adapting to the visual delay requires the optimal functioning of SMI and cognitive 

abilities. Literature [21][22] has suggested that an efficient strategy used by CNS when 

integrating multiple modalities is to determine the reliability of each modality and assign 

weights based on the reliability of the modality. Therefore, the participants needed to 

determine the reliability of the modalities taking into account the visual delay, to efficiently 

integrate these modalities and modulate the motor output accordingly. Furthermore, 

integrating multi-modal ASC is also essential to recognize and correct any errors 

committed due to this visual delay. Therefore, the performance of the participants when 

encountering visual delay could highlight any deficits in SMI. Similar to the first subtask, 

participants performed 12 trials per arm, with the width of the circular path being 2.5 cm. 

Figure 2.8 shows the tracing task with and without sensory manipulation. As shown in 

Figure 2.8(a), with sensory manipulation, the fingertip position indicated by a white dot is 

delayed compared to the participant’s arm. It does not accurately show the exact fingertip 

position. However, in Figure 2.8(b), without sensory manipulation, the white dot accurately 

indicates the exact fingertip position of the participant’s arm, as there is no delay between 

the fingertip marker and the participant’s arm. 

2.1.5 Task Protocol for Investigating Sensorimotor Control 

Sensorimotor control is the ability to interpret the acquired sensory input and appropriately 

plan, update, and generate motor output to perform the desired movement considering the 

state of oneself and the world around us. Optimal motor, sensory and cognitive functioning 

is essential to perform two vital SMC functions: movement planning and online error 

correction. An obstacle avoidance task was built to investigate the impairments in multiple 

domains (motor, sensory or cognitive) that would adversely affect the functioning of SMC. 

An obstacle avoidance task was chosen to evaluate the SMC functions as it allows us to 

explore not only the motor planning ability in PD patients to reach the targets but also the 

ability to correct the planned strategy to avoid obstacles. Numerous studies [23][24] have 

also indicated obstacle avoidance tasks to be more suitable for evaluating SMC functions. 

Additionally, there have been many studies [25][26] that have used obstacle avoidance 

tasks to assess lower-limb motor control performance and to evaluate the effect of 

rehabilitation therapies on motor control. However, the obstacle avoidance task used in 



69 

 

most of these earlier studies neither included any sensory cues nor trials with varying 

cognitive loads. In our study, the obstacle avoidance task was aimed at testing movement 

planning and online error correction in participants under varying cognitive loads. 

Examining the participants under variable cognitive loads would help to understand the 

deterioration in performance as the tasks become more cognitively demanding. In addition 

to investigating the effect of motor and cognitive deficits on SMC, the sensory domain 

related to SMC was also investigated, i.e., if the SMC functions such as movement 

planning and error correction were affected by impairments in perceiving and interpreting 

sensory inputs. The protocol used in the obstacle avoidance task is explained in the next 

section. Figure 2.9 shows the task design of the obstacle avoidance task. 

 

Figure 2.9: Obstacle avoidance task 

Note: Targets are Square Shaped; Obstacles are in Circle and Triangle Shape; The objective 

of the participant is to move the fingertip marker using the robot handle to reach the targets 

and avoid the obstacles. 

2.1.5.1 Obstacle Avoidance Task 

Table 2.3: Levels in the obstacle avoidance task 

Level Target Obstacle Perturbations 

Level – 1 (L-1) Stationary Stationary None 

Level – 2 (L-2) Moving Stationary One (2 to 2.8 N) 

Level – 3 (L-3) Stationary Moving Two (3 to 4.2 N) 

Level – 4 (L-4) Moving Moving Three (4 to 5.6 N) 
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The objective for the participants was to reach all the targets while avoiding the obstacles 

simultaneously. Participants can differentiate an obstacle from the targets based on their 

shapes; while targets were square shaped, the obstacles were triangular and circles. The 

task was divided into four levels, with ten trials in each and 40 trials overall. To vary the 

cognitive load for the participants, the difficulty of the task was increased with each level 

by varying the state (stationary or moving) of the obstacles and targets. Each trial included 

eight obstacles and four targets, with a total of 160 targets and 320 obstacles throughout 

the task. The width of the obstacles and targets ranged from 1 to 6 cm. On average, the task 

takes about 6 to 8 minutes. 

 

Figure 2.10: Trajectory of two different obstacles with varying radii and centers 

Table 2.3 shows the state of the obstacles and targets at each level. The obstacles 

and targets might be stationary or moving depending on the level of the task. When the 

obstacles and targets were moving, they moved in a circular trajectory with the radius, 

speed, and center of these virtual objects varying from one another. Equations (2.01) and 

(2.02) show how the x and y coordinates of the virtual objects have been updated using 

Simulink. Figure 2.10 shows the trajectory of two obstacles with varying centers and radii. 

The speed of the obstacles and targets ranged from 1.8 to 22.8 cm/s, and this range 

remained constant for all moving virtual objects across all levels. 
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𝑥 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 = 𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑟𝑎𝑑𝑖𝑢𝑠 × cos(𝑠𝑝𝑒𝑒𝑑 × 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) (2.01) 

𝑦 𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒 = 𝑐𝑒𝑛𝑡𝑒𝑟 + 𝑟𝑎𝑑𝑖𝑢𝑠 × 𝑠𝑖𝑛 (𝑠𝑝𝑒𝑒𝑑 × 𝑐𝑜𝑢𝑛𝑡𝑒𝑟) (2.02) 

A haptic (vibrotactile input to the robot handle) and auditory (beeping sound from 

a speaker) sensory cue were provided as a warning cue to the participants when they 

reached 2 to 2.5 cm from an obstacle. Understanding if the participants could use the 

external sensory cues to efficiently avoid obstacles would inform us of any impairments in 

the sensory domain and how they may affect the SMC functions. 

Perception of force is also a vital component for the optimal functioning of SMC. 

While earlier studies have reported altered kinesthetic sensitivity [27], there has been a lack 

of understanding if PD also alters the detection threshold for force perception. Analyzing 

the participant’s ability to perceive perturbations of varying force and appropriately 

correcting their planned strategy to account for this disturbance would shed light on any 

impairment in force perception and how it affects the SMC. Furthermore, this would also 

show that altered kinesthetic sensitivity is not specific to a single modality but a universal 

phenomenon that affects the sensitivity of multiple modalities due to a central processing 

deficit rather than an impairment related to a particular modality. Therefore, multiple 

mechanical perturbations separated by a few seconds were applied to the robot handle 

while the participants were performing the task. While there was no mechanical 

perturbation in level-1, there were one, two, and three mechanical perturbations in level-2, 

3, and 4, respectively. In levels with multiple mechanical perturbations, each perturbation 

was separated by a few seconds. The magnitude of force applied to generate the 

perturbations increased as the levels increased.  

Table 2.4: Direction of force used to generate perturbation 

𝑭𝒙 𝑭𝒚 

1 1 

1 -1 

-1 1 

-1 -1 

1 0 

0 1 
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Note: A positive value applies a force in the positive direction of the x and y axes, and a 

negative value applies a force in the negative direction of the x and y axes. A zero value 

indicates no force in the x or y directions. 

Let 𝐹𝑥 and 𝐹𝑦 be the force applied along the x- and y-axis, respectively. First, the 

directions of forces applied along the x- and y-axis were chosen, and then the force 

magnitude was determined based on the level. Table 2.4 shows the six directions in which 

the force may be applied, and one of these directions was chosen at random. A positive 

value for 𝐹𝑥 indicates that the force was applied in the positive direction of the x-axis and 

vice versa.  Once the force direction in the x- and the y-axis was chosen, the 𝐹𝑥  and 𝐹𝑦 was 

scaled based on the desired force magnitude. The scaling factor changed based on the level 

with force magnitude increasing with levels. The scaling factors used for level-2, level-3, 

and level-4 were 2, 3, and 4, respectively. For instance, if 𝐹𝑥 = 1 and 𝐹𝑦 = −1 was chosen 

as the force direction in level-2, it was then multiplied with the scaling factor of 2, resulting 

in 𝐹𝑥 = 2 and 𝐹𝑦 = −2. This will apply 2 newtons of force along the x-axis and -2 newtons 

of force along the y-axis. The overall force magnitude was calculated as shown in equation 

(2.03), and the force magnitude range for each level is shown in the Table 2.3. 

𝐹𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 =  √𝐹𝑥
2 + 𝐹𝑦

2 
(2.03) 

In levels 3 and 4, multiple perturbations were applied, with each perturbation 

separated by a few seconds. The time interval between subsequent perturbations was varied 

to ensure that the participants did not get used to the time interval between the perturbation 

and attempt to generate a corrective movement even before the perturbation was applied. 

Predicting the perturbation and generating corrective movements before the perturbation 

was applied might be counterproductive when attempting to investigate how the 

participants perceive the perturbation and correct for it after it has been applied. Therefore, 

a variation in the time interval between perturbations was included, and the interval 

between the perturbation ranged from 2.5 to 5 seconds. 
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2.2 Feature Extraction  

Quantifying the SMI and SMC deficits in PD patients requires evaluating the performance 

of the participants in each of the tasks. While the KINARM provides the upper-limb 

kinematic data, it does not provide any insights into the participant’s performance. 

Therefore, specific features were extracted during this study to be used as metrics in 

evaluating the performance of the participants. The features (performance metrics) 

extracted from the kinematic data vary from one task to another based on the nature and 

objective of a given task. This section discusses the features extracted for each task and 

how these features may be used to evaluate the SMI and SMC functions. 

2.2.1 Parameters Extracted for Reaching Tasks 

In reaching tasks, the objective for the participants was to reach the targets within a given 

amount of time. Therefore, the features were extracted to evaluate how accurately and 

efficiently the participants reached the targets. Table 2.5 shows the features extracted for 

the reaching task and the corresponding definitions for these features. 

Table 2.5: Features extracted for the reaching task 

Features Definitions 

Target reach Mean percentage of targets reached 

Mean endpoint error Mean distance between the fingertip and center of the target 

when the subject reaches and stays at the target 

Mean direction error Mean distance traveled by the white dot, indicating the 

fingertip position, in the wrong direction, i.e., a direction in 

which there is no target. 

Mean Deviation 

Error (MDE) 

Mean deviation between the ideal and the actual path taken by 

the participants was calculated using the K-Nearest neighbor 

(K-NNR). A higher MDE indicates a lower efficiency. 

Maximum endpoint 

error 

Maximum distance between the fingertip and the center of the 

target when the subject reaches and stays at the target 

Maximum direction 

error 

Maximum distance travelled in the wrong direction 

Mean velocity Mean velocity when performing the reaching task 

2.2.2 Parameters Extracted for Tracing Tasks 

The tracing task requires the participants to stay within the green track and move in a 

clockwise direction to reach the targets. Therefore, extracted features for the tracing task 
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focus on whether the participants committed any violation by moving outside the green 

track and how efficiently they used the sensory cues to correct any violations. Furthermore, 

the smoothness and speed of the continuous movements were investigated. Table 2.6 shows 

the features extracted for the tracing task. 

Table 2.6: Features extracted for the tracing task 

Features Definitions 

Mean number of 

violations 

Mean number of times the participants have moved 

outside the green track 

Time spent under 

violation 

Mean time spent by the participants outside the green 

track 

Mean violation distance Mean distance the participants have travelled or deviated 

from the green track 

Mean Deviation Error 

(MDE) 

Mean deviation between the ideal and the actual path 

calculated using K-NNR. In the tracing task, the ideal 

path is the center of the green track. A higher MDE 

indicates a lower efficiency. 

Mean velocity Mean velocity when performing the tracing task 

2.2.3 Parameters Extracted for Obstacle Avoidance Task 

Firstly, the objective for this task was to reach the targets while also avoiding obstacles. 

The extracted features focused on how efficiently and accurately the participants could 

avoid obstacles and reach the targets. Secondly, testing conditions were varied at each level 

to test the participants in varying cognitive loads. Therefore, features also focused on 

investigating if the participants’ performance improved or deteriorated as the cognitive 

load has been varied to understand how the performance of PD patients may be affected as 

tasks become more complex.  

Finally, it should also be noted that the obstacle avoidance task examined the SMC 

functions, such as movement planning and online error correction in PD patients. SMC is 

a complex network that requires multiple systems (motor, sensory and cognitive systems) 

working together [28][29][30]. To investigate the SMC deficits in PD patients, 

impairments that may adversely affect SMC functions in each domain (motor, sensory and 

cognitive) needed to be explored. Quantifying these impairments would show how these 

domain-specific impairments may have adversely affected the SMC functions. The role of 
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motor, sensory and cognitive domains in SMC and how an impairment in any of these 

domains may affect the overall SMC functionalities has been debated for years 

[31][32][33]. Therefore, all the features extracted for this task were assigned to assess a 

specific domain. We categorized the extracted features based on which domain (motor, 

sensory or cognitive) influences that feature the most. For instance, features such as speed 

and movement time were assigned to assess motor deficits, whereas components of testing 

that were not directly related to the generation of motion, but influenced the overall task 

performance through planning and correction of the movement were grouped as cognitive 

features. While the features may not be considered a pure measure of the respective 

domains that it was categorized to assess, the principal contributor to the improvement or 

deterioration of a feature would be the domain that it was assigned to evaluate. An in-depth 

explanation of how these features were grouped to assess motor, sensory or cognitive 

deficits is explained below. Table 2.7 shows all the features extracted for this task and 

which domain-specific impairment it was assigned to evaluate. 

Table 2.7: Features extracted for the obstacle avoidance task 

Features Definitions Purpose 

Mean speed Mean velocity throughout the task Motor features 

Peak speed Maximum velocity throughout the task Motor features 

Time to reach 

maximum speed 
Time taken to reach the peak velocity Motor features 

Movement area Area covered during the task using convex hull Motor features 

Reaction time Time required to reach 10 % of the total distance Motor features 

Speed peaks Number of maxima in hand speed Motor features 

Movement time Time taken from the movement onset to the end.  Motor features 

Obstacle hit to warn 

ratio 
Ratio of (i) number of obstacles hit in each trial. (ii) 

number of warnings provided through auditory, and 

vibrotactile sensory cues in each trial 

Sensory 

features 

Corrective time for 

perturbation 
Time required to correct for any perturbation Sensory 

features 

Target reach percent Mean percentage of targets reached Cognitive 

features 
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Efficiency Ratio of (i) distance travelled to reach a target, (ii) 

distance pertaining to the shortest path to reach a target 
Cognitive 

features 

Target order Target order requiring participants to travel the least 

distance was considered the ideal target order. R2 values 

were calculated between the ideal order and the order in 

which subjects reached the targets. The ideal target 

order was determined, taking into consideration the 

target and obstacle location. 

Cognitive 

features 

Endpoint error Distance between the fingertip and center of the target 

when the subject reaches and stays at the target 
Cognitive 

features 

Mean obstacle hit 

proportion per trial 
Mean proportion of obstacles hit during the trial Cognitive 

features 

Corrective movements Number of corrective movements performed throughout 

the task 
Cognitive 

features 

Slope between 

performance and Index 

of Difficulty (ID) 

ID was calculated using Fitts's law, and the performance 

indicator is taken as movement time per Fitts's law.  
Cognitive 

features 

Endpoint variance Variance of the distance between the fingertip position 

and the target center  
Features for 

computational 

model 

Error-speed ratio  Ratio between Endpoint error and Mean speed. Rate at 

which the endpoint error increases for every 1cm/s 

increase in mean velocity 

Features for 

computational 

model 

(1) Correlation between 

the corrective 

movements and target 

reach (2) Correlation 

between the corrective 

movements and 

Obstacle hits 

Correlation between different sets of variables was 

calculated. 
Features for 

computational 

model 

Correlation between 

Endpoint variance and 

Obstacle hit-to-warn 

ratio 

A correlation between two error metrics was calculated 

to understand how efficiently the participants could 

optimize their movements. 

Features for 

computational 

model 
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2.2.3.1 Motor Features 

Certain features were aimed at investigating motor impairments that may affect SMC 

functions. These features were categorized to assess the motor domain based on earlier 

literature [34][35] that has used these features to evaluate motor performance in humans. 

2.2.3.2 Sensory Features 

There is a lack of objective assessment of sensory deficits that may adversely affect the 

SMC functions in PD patients. Therefore, the features were categorized based on earlier 

literature that explains the sensory abilities that might be vital in performing goal-directed 

movements. The sensory features were designed to provide an understanding of how the 

SMC functions might be affected due to impairments in the sensory domain [36][37][27]. 

This study explored the ability to interpret sensory inputs to avoid obstacles and the 

threshold to perceive force input. Consequently, the feature–corrective time for 

perturbation was extracted to understand if the threshold to perceive force inputs is altered 

in PD patients. This aspect of sensory function was explored to understand if a universal 

sensory dampening exists in PD patients across multiple modalities due to a central 

processing deficit [38] and how it affects SMC. Likewise, the obstacle hit-to-warn ratio is 

extracted to understand if the participants could interpret these sensory warning cues and 

use them efficiently to update their motor plan and avoid obstacles.  

2.2.3.3 Cognitive Features 

Certain features were categorized to evaluate any cognitive deficits impairing SMC 

functions. Cognitive deficits defined in this study may not directly align with the clinical 

definition of cognition but point towards the impairment in cognitive abilities related to 

movement planning and error correction. While the features used to evaluate motor 

performance were determined based on earlier literature, an objective investigation of 

cognitive ability, specifically executive functions in PD patients, has been lacking. 

However, earlier studies [39] have shown that cognitive abilities such as executive 

functions may be vital in planning and correcting the planned motor strategy during goal-

directed movement. Therefore, features that captured and represented the participant’s 
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cognitive performance (efficiency and accuracy of executive functions) that were essential 

to performing goal-directed movements were categorized as cognitive features. 

2.2.3.4 Features to Compare with Computational Models 

The strategies that may be employed by the CNS when performing an executive function 

have been discussed in Section 1.5.5 in Chapter 1. Multiple computational models have 

been hypothesized to explain the criterion used by the CNS to plan and correct any 

voluntary movement optimally. The criterion proposed by each model varies from one to 

another. Certain models also include cost functions that represent the criterion 

hypothesized to be used by the CNS. It has also been hypothesized that the CNS can adapt 

to dynamic environments through its flexibility in adjusting the SMC strategies. In other 

words, the CNS may use different criteria to accomplish optimal performance based on the 

demands of the environment and task at hand rather than using a fixed criterion 

[40][41][42]. While the exact functioning of the CNS is still largely unknown to the 

scientific community, and these computational models are not validated by clinicians, it 

does provide valuable insights into how the CNS may approach a movement planning or 

online error correction problem and the policy that the CNS may use to perform the SMC 

functions optimally. Therefore, to understand how PD may alter the criterion that may be 

used by the CNS to plan and correct movements, the performance of the participants was 

also compared from the perspective of the computational models. To this end, specific 

features that represent the criterion proposed by the computational models were calculated. 

For instance, as the criterion proposed by the minimum variance model is to minimize the 

fingertip variance, the endpoint variance, which was the fingertip variance in our task, was 

calculated for each group. These extracted features representing the criterion proposed by 

a computational model were then compared between the participants to understand which 

groups performed the best from the perspective of the computational models. In this study, 

six computational models were considered. Table 2.8 shows the six computational models, 

the objective or the criterion proposed by the models, and the features extracted to represent 

the criterion of each model. 
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Table 2.8: Computational models, their objectives, and the features extracted to 

compare a participant’s performance from the perspective of the computational 

model 

Computational models Objectives or Criteria of the 

computational models to 

optimally plan or correct 

movements 

Features used to compare 

the groups from the 

perspective of a given 

computational model 

Minimum Variance Model To increase the fingertip accuracy 

by reducing the fingertip variance 

Endpoint Variance 

Minimum Energy Model To reduce the metabolic energy 

consumed when performing a given 

task by reducing any sub-

movements 

Minimum Jerk Model To reduce the jerkiness and 

generate a smooth trajectory from 

origin to target 

Speed Peaks 

Obstacle Avoidance 

Model 

To reduce the (i) Mean Squared 

Error (MSE) between the actual and 

predicted arm position, (ii) 

Collision Probability 

Correlation between the 

Endpoint Variance and 

Obstacle hit-to-warn ratio 

Speed-to-accuracy Trade-

off model 

To reduce the ratio at which the 

movement error increases when the 

movement speed increase 

Error-speed ratio (Ratio 

between the endpoint error 

and mean speed indicating 

the increase in endpoint error 

to every 1cm/s rise in mean 

speed) 

Minimum Intervention 

Model 

To perform corrective movements 

only for task-relevant errors (to 

avoid obstacles) by accurately 

distinguishing between the task-

relevant and task-irrelevant errors 

Two sets of correlation 

coefficients were used (i) 

correlation between 

corrective movements, and 

obstacle hits, (ii) correlation 

between corrective 

movements, and target reach 

Models such as minimum variance [43] and minimum energy [44] were used to 

compare the performance of the participants. The objective of the minimum variance model 

is to reduce the fingertip variance, and thereby increase the fingertip accuracy. The energy 

model, which attempts to reduce metabolic energy spent in each task, also indirectly aims 

to reduce variance in the fingertip to preserve the energy that might be used for any 

corrective movements to compensate for the fingertip variance. Therefore, the objective of 

both these models is to minimize the fingertip variance. Correspondingly, the endpoint 

variance representing the fingertip variances was calculated to compare the participants' 
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performance based on these models. Flash et al. [45] and Hogan et al. [46] have discussed 

the minimum jerk model to plan arm movements, as the jerk in the movement may indicate 

uncertainty and the inability to generate a smooth trajectory leading to inaccuracies and 

inefficiencies. Therefore, the speed peaks, indicating the amount of jerkiness present in the 

subject’s trajectory, were calculated to compare the participants' performance from the 

perspective of the minimum jerk model. Studies have also discussed the speed-to-accuracy 

trade-off model [43]. However, no study has so far explored the ratio of the trade-off 

between movement speed and accuracy, even in healthy subjects. To understand if this 

trade-off ratio has been altered due to PD, the error-speed ratio (the rate at which the 

endpoint error increases for a very cm/s increase in mean velocity) was calculated and used 

to compare the groups. 

Apart from these generic models, a task-specific model was also considered. The 

cost function for the obstacle avoidance model [23] includes two criteria (1) minimize the 

mean squared error between the actual and predicted arm position and (2) minimize the 

collision probability with the obstacles. The endpoint variance represents the mean squared 

error between the actual and predicted arm position. The obstacle hit-warn ratio is used to 

evaluate the subject’s ability to minimize the collision probability. The rationale is that if 

the subjects hit the obstacles even after the sensory warning cue indicating a higher 

probability of collision with the obstacles, then the subjects have failed to reduce the 

collision probability. A correlation coefficient was calculated between the variables 

representing the two criteria of the model (endpoint variance and obstacle hit-warn ratio). 

This correlation value was used to understand if subjects were to minimize at least one part 

of the cost function or were unable to reduce both parts of the cost function. Finally, to 

evaluate the participant’s ability to correct errors, the performance of the participants was 

compared from the perspective of the minimum intervention model [42][47]. The objective 

or criteria of the model is to differentiate between task-relevant and task-irrelevant errors 

and efficiently correct only task-relevant errors. In the obstacle avoidance task, the task-

relevant error is obstacle hit. Therefore, two correlation coefficients were calculated; one 

between obstacle hits and corrective movements; another between target reach and 

corrective movements. These correlation values would be used to evaluate if the corrective 

movements helped reduce the obstacle hit while also ensuring it did not adversely affect 
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the primary objective of the task, which was to reach the targets. It would help in 

understanding if the participants were able to optimally correct only the task-relevant errors 

without affecting their task performance. 

2.3 Statistical Analyses 

MATLAB was used to perform the statistical comparisons between the different groups to 

investigate the difference in the performance metrics calculated to evaluate the SMI and 

SMC functions of the participants. As the extracted features were found to be non-normal, 

non-parametric statistical tests were used in this study as these methods do not necessitate 

the assumption of normality. Furthermore, non-parametric tests were found to be more 

robust, especially in medical analysis, due to the limited sample size and the existence of 

skewness and outliers [48][49][50][51]. The Mann-Whitney-Wilcoxon test was used to 

compare the extracted features between unpaired groups, and the Wilcoxon signed-rank 

test was used to perform statistical comparisons between paired groups [52]. While the 

Mann-Whitney-Wilcoxon test was used for statistical comparison between PD patients in 

the ON and OFF states with the control subjects, the Wilcoxon signed-rank test was used 

to compare PD patients in the OFF state with PD patients in their ON state. Any within-

group comparisons were done using the Wilcoxon signed-rank test. The null hypothesis 

for the statistical tests was that the two compared samples came from the same population 

with an equal median. The alternate hypothesis was that the two came from different 

populations with unequal medians. Since the risk of wrongly rejecting the null hypothesis 

increases as multiple statistical tests are conducted, Bonferroni’s correction [53] was used 

to correct the acquired p-values for multiple comparisons. The p-values are corrected by 

multiplying it with a correction parameter to obtain the corrected p-values. The correction 

parameter was determined separately for each task depending on the number of statistical 

tests conducted for that task. The number of statistical tests for a given task rely on the 

number of features extracted for that task and the number of groups. While the number of 

groups for all the tasks remained constant, equal to three (PD patients in OFF medication 

state, PD patients in ON medication state, and control subjects), the number of features 

varied from one task to another. Only the p-values pertaining to statistical comparisons 

were corrected using Bonferroni’s correction. A p-value of 0.05 was considered 
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statistically significant to reject the null hypothesis in Mann-Whitney-Wilcoxon and 

Wilcoxon signed-rank test. Finally, the relationship between the extracted features and the 

clinical scales was determined by measuring the correlation coefficient between the 

variables of interest. In this study, the correlation coefficient was calculated using the 

spearmen correlation [54]. A significance test was also done to determine if the correlation 

coefficient was statistically significant. A p-value of 0.05 was considered to be statistically 

significant. When calculating the correlation coefficient and its significance between 

extracted features and clinical scales, they were calculated separately for each level of the 

task. Fisher’s Z transformation [55][56] was used to combine correlation coefficients 

obtained from multiple levels wherever needed. To combine p-values, the harmonic mean 

method [57] has been used. 

2.4 Feature Selection and Pattern Recognition 

The metrics developed to assess SMI and SMC functions may be a potential biomarker for 

an early diagnosis and may also be used in patient-specific analysis for a more efficient 

and individualized treatment approach. While the tools developed in the thesis may not be 

directly employed in a clinical environment, this may be considered a first step in using 

technology-driven tools to diagnose, monitor, and manage the disease efficiently. To this 

end, the metrics or features extracted from the robotic task needed to be analyzed to 

understand if they can be used to differentiate between the PD and control subject, which 

would imply that the metrics can be considered as a promising marker for diagnosis. This 

section focuses on using the extracted feature to classify between the PD and control 

subjects using pattern recognition algorithms. Pattern recognition [58] uses machine 

learning techniques to recognize the regularities and patterns in a dataset, which can then 

be used to determine the distribution to which a given data point belongs. In this study, 

neural network (NN) models have been used to determine if the patterns from the extracted 

features (informing us of SMI and SMC impairments) is sufficient to classify between a 

PD, and a control subject, thereby implying that these metrics may be considered a 

potential diagnostic variable. Before training the NN model, it is necessary to select the 

correct metrics that can be used for the training process. Filtering out irrelevant or 

redundant metrics and only choosing metrics that provide valuable and unique information 
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that is representative of the population is vital to the performance of the NN model. 

Therefore, we use feature selection methods [59] to determine the metrics that provide 

unique and necessary information about the population. This section explains the 

methodology involved in the feature selection process and the methodology involved in 

designing and training a NN model. 

2.4.1 Feature Importance 

Selecting the features needed to train a NN model is a critical step in preprocessing. It is 

necessary to only include features that contain unique and relevant information about the 

population and filter out the remaining features that may be irrelevant or noisy, that can 

affect the model’s predictive accuracy. Furthermore, reducing the number of features 

would also help avoid the curse of dimensionality, which saves computational power and 

time.  

In our study, a decision tree [60] was used to determine the importance of the 

features in accurately predicting and differentiating between the PD and control subjects. 

Based on the feature importance score provided by the decision tree, the most important 

features were used to train the NN model. The decision tree was used to determine the 

importance of the features separately for each task; accordingly, the selected features differ 

from task to task. This section discusses the technique involved in determining the 

importance of features using the decision tree. A decision tree is a non-parametric 

supervised learning method used for classification, where the data is split continuously 

based on a particular feature. Figure 2.11 shows the schematics associated with the decision 

tree.  
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Figure 2.11: Schematic of the decision tree 

The dataset is split continuously at each decision node down to the leaf node until 

all data is classified, and the dataset can no longer be split based on any feature. The 

decision node is where the features used to split the data points are decided, and the leaf 

nodes denote the output of those decisions. All data points in the leaf nodes are assigned to 

a specific class based on the split. The decision node uses a variable selection criterion to 

determine which feature may be used to split the data points. In this study, a Gini index  

[61] has been used to make this decision. The Gini index is an impurity measure that 

calculates the probability of a random data point being misclassified; therefore, a lower 

Gini index represents a lower likelihood of misclassification. Equation (2.04) shows the 

method to calculate the Gini index. 

𝐺𝑖𝑛𝑖 𝑖𝑛𝑑𝑒𝑥 = 1 −  ∑ 𝑃(𝑖)2

𝐾

𝑖=1

 

(2.04) 

where 𝐾 represents the number of classes and 𝑃(𝑖) is the probability of a data point 

belonging to 𝑖𝑡ℎ class. To determine which feature needs to be used for splitting the 

decision node, we calculate the Gini index of the potential child nodes (child nodes are the 

resulting nodes from the split of the parent node) if we are to pick a given feature as the 

splitting condition. This process is repeated for each feature, i.e., if there are n features, we 

calculate the Gini index for each feature. The objective is to pick the feature with the least 
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Gini index. Once a specific feature is picked, the decision node is split into multiple child 

nodes using the selected feature. This process continues until all data points are classified. 

Figure 2.12 explains the working of a decision tree. 

 

Figure 2.12: Working of a decision tree 

This method is an efficient way to determine which features are most crucial for 

accurately classifying a data point between the PD and the control subject. The importance 

of each feature is calculated using the Gini index, as shown in equation (2.05). 

𝐼𝑖 =  ∑ 𝑝(𝑛)∆𝐺𝑖𝑛𝑖(𝑛)
𝑛∈𝑇
𝑖𝑛=𝑖

 
(2.05) 

where 𝐼𝑖 represents the importance of 𝑖𝑡ℎ feature, T represents the nodes that use 

feature 𝑖 for splitting, 𝑝(𝑛) is the proportion of data points in node n, and ∆𝐺𝑖𝑛𝑖(𝑛) 

represents the difference between the Gini score of node n and its child nodes.  

2.4.2 Artificial Neural Network 

Artificial neural networks (ANNs) belong to a class of systems based on the human brain 

and mimic how biological neurons communicate. Warren McCulloch and Walter Pitts [62], 
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in 1943, proposed the first artificial neuron, called the perceptron. Kustrin et al. [63] 

discusses the basic concepts of ANNs. An ANN usually comprises input layers, one or 

more hidden layers, and an output layer, each containing a defined number of neurons. 

Figures 2.13 and 2.14 show the working of a neuron and a simple NN model, respectively. 

 

Figure 2.13: A single neuron and its computations 

 

Figure 2.14: A simple Neural Network (NN) model with one hidden layer 

2.4.2.1 Deep Learning Model 

In this study, a deep-learning neural network (NN) model was implemented in python 

through the TensorFlow [64] backend and was used to differentiate between the two classes 

(PD patients in OFF medication state (PD-OFF) and Control subjects). The data from PD 

patients in ON medication state (PD-ON) was not included in the training or testing phase. 

Only the data from PD-OFF was included and therefore, the model can only classify 

between PD-OFF and control subjects. The data from PD-ON was not included in the deep 
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learning model because the goal of this model is to understand if the SMI/ SMC 

impairments are more commonly presented across PD patients in their baseline state and if 

these patterns can be detected using a neural network model. While numerous deep 

learning methods have been discussed in earlier studies [65] for the detection of PD, the 

features representing the SMI and SMC impairments have not been explored in these 

studies. Considering that the SMI and SMC impairments may be presented earlier in the 

disease, it might be beneficial to understand if a machine learning model could differentiate 

between a PD and a healthy control subject based on the features representing the 

SMI/SMC impairments. The proposed NN model had input layers equivalent to the number 

of features (one for each input feature), 8 hidden layers, and one output layer with two 

neurons, each representing one class (PD-OFF or control subject). A deep neural network 

was used because of the following advantages: (i) Its ability to learn complex nonlinear 

relationships; (ii) its capability for continuous learning; (iii) handling multi-modal datasets. 

While the model is currently trained using only the kinematic parameters obtained from 

the robot, the neural network model will be further expanded in future work and trained 

using data from other assessments. Some of these assessments could even provide image 

data, and unlike traditional machine learning models, a deep neural network is more 

customizable and is capable of being trained incrementally using newer data without the 

need to be re-trained from the scratch. Figure 2.15 shows the schematic of the NN model 

used in this study. The hyperparameters for the model are provided in Table 2.9. 

 

Figure 2.15: Schematic of the proposed NN Model 
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Table 2.9: Hyperparameters of the NN model 

 Hyperparameters 

Train-Validation-Test Split 70:15:15 

Learning Rate 0.001 

Optimization Algorithm Adam 

Activation function for hidden layers ReLU 

Activation function for the output layer SoftMax 

Loss function Categorical Cross-entropy 

Number of hidden layers 8 

Drop-out rate 0.2 

2.4.2.1.1 Activation Function 

In this study, two different activation functions were used. The ReLU (Rectified Linear 

Unit) activation function was used on hidden layers. Equation (2.06) shows the 

mathematical representation of the ReLU activation function.  

𝑓(𝑥) = max(0, 𝑥) (2.06) 

where 𝑥 is the weighted sum of the neuron’s inputs. The SoftMax activation 

function was used on the output layer. Equation (2.07) shows the mathematical expression 

associated with the SoftMax function. 

𝑓(𝑥𝑖) =  
𝑒𝑥𝑖

∑ 𝑒𝑥𝑗𝐾
𝑗=1

 
(2.07) 

where 𝑥𝑖 represents the output of 𝑖𝑡ℎ neuron in the output layer, and 𝐾 represents 

the number of classes, which will be equivalent to the number of neurons in the output 

layer. In our case, there are two classes (PD and control) and, therefore, two neurons in the 

output layer.  

2.4.2.1.2 Loss Function 

This study used the categorical cross-entropy loss function to evaluate the model’s 

performance during training. Equation (2.08) shows the mathematical expression for the 

loss function. 

𝐶𝐸 =  − ∑ 𝑦𝑖  log (�̂�𝑖)

𝑁

𝑖=1

 

(2.08) 
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where CE represents the Categorical Cross-entropy, N represents the number of 

classes, 𝑦𝑖 indicates the prediction of the model, and �̂�𝑖 is the ground truth or the expected 

result from the model. 

2.4.2.1.3 Optimizers 

The Adam optimizer [66] was used in this study to optimize the loss function by updating 

the weights. Adam optimizer is an extension of two other gradient descent optimizers 

namely, gradient descent with momentum and Root Mean Square Propagation. It inherits 

the strengths of the two optimizers, which makes it more efficient in reaching the global 

minimum with the least oscillations and ensures that the algorithm does not get stuck in 

the local minima. Equation (2.09) shows how the network weights (𝑤) may be updated 

using the algorithm. 

𝑤 = 𝑤 −  𝛼 
𝑉𝑑𝑤

√𝑆𝑑𝑤 +  𝜎
 

 

(2.09) 

𝑉𝑑𝑤 =  𝛽1𝑉𝑑𝑤 +   (1 − 𝛽1)𝑑𝑤 
 

(2.10) 

𝑆𝑑𝑤 =  𝛽2𝑆𝑑𝑤 +   (1 − 𝛽2) 𝑑𝑤2 

 

 

(2.11) 

where 𝛼 is the learning rate. 𝛽1 and 𝛽2 represents the decay rate of the moving 

average of gradients. 

2.4.2.1.4 Performance Metrics 

The NN's performance was determined using the following performance metrics: accuracy, 

recall, precision, and F-1 Score [67], as shown in equations (2.12) to (2.15).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(2.12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(2.13) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(2.14) 
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𝐹 − 1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑇𝑃

(2 ∗ 𝑇𝑃) + 𝐹𝑃 + 𝐹𝑁
 

(2.15) 

where 𝑇𝑃, 𝑇𝑁, 𝐹𝑃, 𝐹𝑁 represent the True Positive, True Negative, False Positive, 

and False Negative rates [67], respectively. Further, the area under the curve for the plot 

between the true positive rate and false positive rate was also calculated using Simpson’s 

rule as a performance metric [68]. 

2.5 Musculoskeletal Model 

In the recent past, patient-specific analysis and treatment have been gaining much attention 

as literature has shown that targeted therapies may be more efficacious than generic ones. 

While the KINARM provides upper-limb kinematic data that can be used to analyze 

sensory and cognitive networks, it still does not provide any information about the 

biomechanics of the movements, such as activity and contribution of individual muscles 

when performing a task. Earlier studies [69][70] have indicated an altered motor unit 

behavior, although the nature of this abnormality is unknown. Understanding the motor 

recruitment strategies in PD patients and how they may differ from healthy subjects may 

provide new insights into how PD may alter motor unit recruitments, which is an essential 

component in SMC functions. In addition to being used as an analysis tool, investigating 

the biomechanics of upper-limb movements in PD patients might be of clinical significance 

as the efficacy of certain treatments [71] that are now provided to mitigate motor symptoms 

require accurate estimation of biomechanical parameters, such as muscle activity and 

contribution.  

Currently, the widely accepted method to measure muscle activity is surface 

electromyography (sEMG). While sEMG is considered the gold standard in measuring 

muscle activity, it has several inherent limitations. The primary limitation of sEMG is its 

inability to measure the activity of deep muscles, and the high chance of muscle crosstalk 

[72][73][74][75] when the superficial muscles are in close proximity to one another. This 

makes it difficult to accurately measure the activity of even the superficial muscles. 

Additionally, the output from the sEMG may also be contaminated with noise due to 

mechanical and motion artifacts [76], adversely affecting the quality of sEMG’s output. 

Some of the limitations associated with sEMG may not apply to intramuscular EMG. 
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However, the intramuscular EMG is highly invasive and painful (in some cases, the 

patients need to be anesthetized) and is, therefore, seldom used [77][78]. Finally, while 

muscle activity can be measured using EMG despite its limitations, neither surface nor 

intramuscular EMG can be used to measure the relative contribution of individual muscles 

to a movement. While the most predominant methods for measuring muscle activity 

involve surface and intramuscular EMG, other methods such as ultrasonography (USG), 

radioligand imaging (18F- FDG PET/CT), and frequency analysis [71] have also been 

used. However, the accuracy and efficacy of these techniques have not been well 

established [79][80]. Finally, numerous muscle models [81][82] and machine learning 

models [83] have been discussed in earlier literature as an alternative to measuring muscle 

activities. However, these models suffer from a lack of detail (only a few muscles were 

designed in these models leaving out the remaining muscles) and lower prediction 

accuracy. These models are also not subject-specific, which may further reduce the 

accuracy of these models [84]. Therefore, there is a need for a detailed, accurate, patient-

specific muscle model that can estimate the activity and contribution of individual muscles 

to analyze and effectively guide targeted therapies for treating PD. To this end, a 

musculoskeletal model was designed and developed to estimate the muscle activity and 

contribution, based on the upper-limb kinematic data. While the KINARM analysis 

involved extracting features using the acquired kinematic data, the musculoskeletal model 

can be considered an extension of this feature extraction as it uses the upper-limb joint data 

as an input to estimate the corresponding biomechanical parameters. The proposed muscle 

model has been validated using healthy subjects, and the result related to this validation 

are provided in the result section. 

One potential application of this musculoskeletal model is to be used as a guiding 

tool for targeted therapies (lidocaine, botulinum toxin type A) [71]. Botulinum toxin 

injections are an effective targeted therapy in treating tremor in PD patients. It is ideally 

injected into the muscles that contribute to the tremor. As such, accurately identifying 

muscles that contribute to the tremor and how much each muscle contributes to this 

involuntary movement is necessary to determine the muscles that need to be injected and 

the dosage per muscle. Currently, muscle selection and dosage determination are made by 

intramuscular EMG and visual assessment [71][85]. However, this may not be an optimal 
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strategy because of the subjective nature of the visual assessment and the limitations of the 

intramuscular EMG discussed earlier. With the efficacy of the therapy heavily depending 

on whether the correct muscles are being injected with optimal dosage [86][87], the 

validated muscle may act as a guiding tool for dosage determination, which in turn may 

enhance the efficacy of the therapy. The methodology behind using the validated model to 

estimate the dosage has been explained in this chapter. Therefore, apart from being an in-

depth analysis tool to study motor unit recruitments, this model can also be used to translate 

patient-specific information into a clinical setting, enhancing and optimizing the treatment 

plan for PD patients. 

2.5.1 Design and Development of the Musculoskeletal Model 

The musculoskeletal model discussed in this study was designed using the AnyBody 

Modeling SystemTM (AMSTM) (Version 7.2.3, AnyBody Technology) [88]. The model 

includes seven bones, 61 upper-limb muscles, and seven functional joints [89]. This section 

discusses the parameters used in designing each element of the model (bones, joints, and 

muscles) and the corresponding mathematical model. Figure 2.16 shows the upper-limb 

musculoskeletal model developed in this study. 

 

Figure 2.16: Musculoskeletal model 

2.5.1.1 Bones 

The model includes seven bone structures (rigid bodies): the humerus, radius, ulna, 

clavicle, scapula, hand, and thorax. When designing the rigid bodies, the effects of wobbly 
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masses of soft tissues were ignored. Equation (2.16) shows the position and orientation of 

an 𝑖𝑡ℎ rigid body [90]: 

𝑞𝑖 =  [𝑟𝑖
𝑇 𝑝𝑖

𝑇]𝑇 (2.16) 

where 𝑟𝑖 represents the position vector of the center of mass and 𝑝𝑖 represents the 

four Euler parameters of the 𝑖𝑡ℎ rigid body. Further, the velocity of the 𝑖𝑡ℎ rigid body can 

be represented as shown in equation (2.17). 

𝑞𝑖 =  [�̇�𝑖
𝑇 𝜔′𝑖

𝑇]𝑇 (2.17) 

where �̇�𝑖 and 𝜔′𝑖 represents the linear and angular velocity of the 𝑖𝑡ℎ rigid body 

measured in the reference frame. Parameters such as length, mass, and radius of the rigid 

bodies also need to be set, and these parameters can be adjusted to fit the subjects.  

2.5.1.2 Joints 

Seven functional joints (wrist, elbow, radioulnar (forearm), glenohumeral (shoulder), 

scapulothoracic, acromioclavicular and sternoclavicular joints) were included in the model, 

which allows for the movement of the upper limb in multiple Degrees of Freedom (DOF). 

Each joint consists of two or more reference frames, which would be the rigid bodies 

(bones) connected to the joints. Table 2.10 shows the reference frames and the degree of 

freedom associated with each joint.  

Table 2.10: Modeled joints, their corresponding DOF, and reference segments 

Joints Reference segments DOF 

Wrist Radius and hand 2 

Elbow Humerus and ulna 1 

Radioulnar Radius and Ulna 1 

Glenohumeral Scapula and humerus 3 

Acromioclavicular Clavicula and scapula 3 

Sternoclavicular Thorax and clavicula 3 

Scapulothoracic Scapula and thorax 3 
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2.5.1.3 Muscles 

Muscles facilitate joint movements, postural stability and maintain tone. In this study, 61 

muscles critical to upper-limb movement were designed. Parameters such as PCSA, tendon 

slack length, neutral fiber length, and maximum isometric force must be estimated and 

inputted for each muscle. In this study, muscle parameters estimated through earlier 

cadaveric studies [91][92][93][94] were used to design the muscles and were kept constant 

throughout the study. While these parameters were kept constant, it is not a shortcoming 

of the model as it is possible to vary these parameters based on the subject. The model is 

capable of estimating activity taking into account the varying subject-specific parameters. 

The reason for keeping parameters such as PCSA constant is that calculating these 

parameters requires cost and time-intensive procedures such as MRI. To demonstrate the 

model’s ability to predict activity for varying parameters, a separate section is included in 

Chapter-5, discussing the model’s prediction for varying values of PCSA and neutral fiber 

length obtained from earlier studies. Table 2.11 shows the muscle parameters used in the 

model design. 

Table 2.11: Muscle parameters 

  PCSA 

(cm2) 

Tendon 

slack length 

(cm) 

Neutral fiber 

length (cm) 

Maximum 

isometric 

force (N) 

1 Biceps brachii caput breve 1.72 1.95E+01 1.50E+01 1.97E+02 

2 Biceps brachii caput longum 1.78 2.75E+01 1.00E+01 1.89E+02 

3 coracobrachialis 5.58E+00 7.82E+00 9.10E+00 524.3589 

4 Deltoideus posterior 3.60E+00 3.41E+00 1.16E+01 338.2446 

5 Deltoideus lateral 8.20E+00 5.96E+00 1.28E+01 770.446 

6 Deltoideus anterior 5.44E+00 5.40E+00 1.40E+01 511.1251 

7 Infraspinatus 8.16E+00 5.48E+00 6.50E+00 767.8152 

8 Latissimus dorsi thoracic 1.302 12.6 14 122.4 

9 Latissimus dorsi lumbar 2.48 22.7 14 233 

10 Latissimus dorsi iliac 1.8 22.7 14 169 

11 Levator scapulae 3.44E+00 6.23E+00 1.00E+01 323.3054 

12 Pectoralis major clavicular part 2.60E+00 6.62E+00 1.20E+01 244.2877 

13 Pectoralis major sternocostal part 3.90E+00 1.39E+01 1.20E+01 366.4316 
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14 Pectoralis major abdominal part 2.60E+00 1.43E+01 1.20E+01 244.2877 

15 Pectoralis minor 3.43E+00 4.12E+00 8.00E+00 322.084 

16 Rhomboid major 5.05E+00 9.14E+00 6.80E+00 474.1061 

17 Rhomboid minor 2.52E+00 5.05E+00 6.80E+00 2.37E+02 

18 Serratus Anterior superior part 3.81 12.25 7.3 358 

19 Serratus Anterior middle part 1.905 8.86 7.3 179 

20 Serratus Anterior inferior part 5.715 4.98 7.3 537 

21 Subscapularis 1.50E+01 5.85E+00 8.00E+00 1409.352 

22 Supraspinatus 4.68E+00 7.56E+00 4.70E+00 439.7179 

23 Teres major 3.00E+00 7.24E+00 1.00E+01 281.8705 

24 Teres minor 3.10E+00 5.04E+00 7.00E+00 290.8903 

25 Trapezius ascending 4.37E+00 5.97E+00 9.81E+00 410.1215 

26 Trapezius middle 4.37E+00 2.85E+00 9.89E+00 410.1215 

27 Trapezius descending 8.73E+00 6.14E+00 1.00E+01 820.2431 

28 Triceps long head 5.62E+00 2.38E+01 9.40E+00 744.138 

29 Triceps lateral head 4.78E+00 1.01E+01 5.50E+00 719.7093 

30 Triceps middle head 9.04E+00 7.41E+00 8.70E+00 986.5466 

31 Brachialis 6.10E+00 7.39E-01 1.12E+01 573.5069 

32 Brachioradialis 2.20E+00 1.48E+01 1.28E+01 206.7014 

33 Anconeus 1.85E-01 3.32E+00 2.40E+00 112.0301 

34 Pronator teres humeral head 1.86E+00 6.81E+00 6.65E+00 175.0883 

35 Pronator teres Ulnar head 1.86E+00 6.49E+00 6.65E+00 1.75E+02 

36 Supinator 1.19E+01 4.28E+00 4.00E+00 1118.62 

37 pronator quadratus 2.18E+00 2.82E+00 2.00E+00 206.7014 

38 Extensor Pollicis Longus 9.00E-01 15.272 5.5 8.46E+01 

39 Extensor Pollicis Brevis 3.00E-01 6.253 6.8 2.82E+01 

40 Abductor Pollicis Longus 1.30E+00 18.460 5.4 1.22E+02 

41 Extensor Indicis 5.00E-01 16.540 5.9 4.70E+01 

42 Extensor Carpi Ulnaris 2.10E+00 24.673 5.1 1.97E+02 

43 Extensor Carpi Radialis Longus 2.20E+00 24.040 8.1 2.07E+02 

44 Extensor Carpi Radialis Brevis 2.20E+00 24.445 5.9 2.07E+02 

45 Flexor Carpi Radialis 1.60E+00 23.122 6.3 1.50E+02 

46 Flexor Carpi Ulnaris 2.90E+00 23.972 5.1 2.72E+02 

47 Palmaris Longus 6.00E-01 23.252 6.4 5.64E+01 

48 Flexor Digitorum Superficialis 

Digit5 

4.00E-01 33.284 5.2 3.76E+01 
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49 Flexor Digitorum Superficialis 

Digit4 

1.30E+00 32.763 7.4 1.22E+02 

50 Flexor Digitorum Superficialis 

Digit3 

2.00E+00 33.294 7.5 1.88E+02 

51 Flexor Digitorum Superficialis 

Digit2 

1.40E+00 32.009 8.4 1.32E+02 

52 Flexor Digitorum Profundus Digit5 1.80E+00 27.457 7.5 1.69E+02 

53 Flexor Digitorum Profundus Digit4 1.40E+00 29.016 8 1.32E+02 

54 Flexor Digitorum Profundus Digit3 1.80E+00 29.260 8.4 1.69E+02 

55 Flexor Digitorum Profundus Digit2 1.50E+00 29.045 7.5 1.41E+02 

56 Extensor Digitorum Digit5 3.00E-01 33.277 6.5 2.82E+01 

57 Extensor Digitorum Digit4 8.00E-01 34.987 6.3 7.52E+01 

58 Extensor Digitorum Digit3 8.00E-01 34.674 7.2 7.52E+01 

59 Extensor Digitorum Digit2 4.00E-01 34.387 7 3.76E+01 

60 Extensor Digiti Minimi 6.00E-01 35.265 6.8 5.64E+01 

61 Flexor Pollicis Longus 1.70E+00 19.330 5.5 1.60E+02 

Once the muscle parameters were set, the contact points for the muscles needed to 

be determined. Depending on the functionality and pathway of the muscles, either via-point 

or wrapping muscles were chosen when designing the muscles in the model. The final step 

was to determine how muscles needed to behave when performing a movement. In this 

study, a three-element hill muscle model [95] was chosen as it closely resembles the active 

and passive properties of the muscles in the human body. Figure 2.17 shows a schematic 

representation of the three-element muscle model. The 𝐿𝑚 and 𝐿𝑡 shown in Figure 2.17 

represents the length of the muscle’s contractile element and the tendon, respectively. As 

the name suggests, the model includes three crucial components: (i) a Contractile 

Component (CC) representing the active properties of the muscle, (ii) a Parallel Elastic 

Component (PEC) representing the passive properties of the muscle fibers (iii) a Serial 

Elastic Component (SEC) representing the elasticity of the tendon.  

The active and passive components needed to be considered to accurately estimate 

the overall force generated by the muscle when performing a movement. Muscle force can 

be classified into two types (i) active force and (ii) passive force. The active force is 

required to carry out a task and is generated by the CC during muscle contraction. On the 
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other hand, passive tension arises from the PEC when the muscle is stretched beyond its 

resting length and is essential to maintaining the structural integrity of the muscle and bone. 

By considering the active and passive components of the muscle, the overall muscle force 

(𝐹𝑚) can be calculated as shown in equation (2.18), which can then be used to estimate 

muscle activity and contribution.  

𝐹𝑚 =  𝐹𝑃 +  𝐹𝐴 cos 𝛾 (2.18) 

where 𝐹𝑃 and 𝐹𝐴 represent the passive and active forces, respectively. The 𝛾 

represents the pennation angle of the muscle. 

 

Figure 2.17: Three-element muscle model 

2.5.2 Kinematic Analysis 

This section discusses the kinematic analysis, i.e., how the joint kinematic data is used to 

replicate the movement imposed on the model. Based on the kinematic analysis, the inverse 

dynamics optimization algorithm (discussed in the next section) can determine the muscles 

needed to be recruited (activated) to perform the given movement. The kinematic analysis 

does not calculate the muscle force but only calculates the position, velocity, and 

acceleration of each rigid-body element, given the joint constraints while performing the 

movement. 

The joint kinematic data was used as input to the model to perform the kinematic 

analysis. Each joint may contain more than one driver depending on the joint’s DOF; 

therefore, the joint kinematic data must be provided for each driver assigned to the joints. 

For instance, a wrist joint had two drivers, one dedicated to flexion/extension movement 
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and the other reserved for abduction/adduction movement. Therefore, two sets of kinematic 

data pertaining to the wrist joint must be provided, one representing the wrist joint's flexion/ 

extension movement and the second representing the wrist joint's abduction/adduction 

movement. The modeling system uses system coordinate vectors, kinematic constraints, 

and Euler parameter constraints to perform its kinematic analysis. The nonlinear equation 

in (2.19) represents the constraints associated with drivers, Euler parameters, and 

holonomic joint constraints. 

Φ(𝑞, 𝑡) = 0 (2.19) 

where 𝑡 is explicit time and 𝑞 =  [𝑞1
𝑇 … . . 𝑞𝑛

𝑇]𝑇 is the coordinate vector for n rigid-

body segments. For all the kinematically determinate problems [96], the modeling system 

performs the position analysis by solving the Jacobian constraint (Φ𝑞) using the Newton-

Raphson scheme. Further, the velocity and acceleration constraints are solved using 

equations (2.20) and (2.21). 

∅𝑞∗𝑣 =  −∅𝑡 (2.20) 

∅𝑞∗�̇� =  𝛾(𝑞, 𝑣, 𝑡) (2.21) 

where ∅𝑞∗  is the transformed Jacobian with respect to 𝑞∗. By solving equations 

(2.20) and (2.21), the entire motion imposed by the joint kinematic data can be properly 

specified to the model to replicate the movement. 

2.5.3 Motor Unit Recruitment  

Human locomotion is achieved through the contraction of activated muscle fibers leading 

to the generation of force and power to overcome external resistive forces. While each 

muscle has multiple fibers that can contract to generate the force required to complete the 

desired task, selecting the appropriate muscles that need to be activated is crucial to the 

optimal execution of movements. The functional building blocks of muscles are motor 

units that activate the muscle fibers [97]. A single motor unit comprises a motor neuron 

and muscle fibers scattered across a localized region, with these muscle fibers innervated 

by the axon of the motor neuron. Motor unit recruitment is the phenomenon of different 

motor units recruited by the CNS, resulting in the corresponding muscle fibers being 

activated to exert the force required to perform the desired movement. Therefore, the CNS 

determines the force needed to perform a task and accordingly modulates the force exerted 
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by the muscle fibers through motor unit recruitment. The recruitment process is particularly 

complex due to the redundancy problem (humans have more muscles than strictly needed 

to perform specific tasks), as infinitely different sets of muscle groups can be recruited to 

perform a given action, and the CNS has to choose one of these muscle groups to drive the 

motion based on some rational criteria. Numerous studies [98][99][100][101] have 

attempted to explore the criteria used in the muscle recruitment process. However, 

currently, no optimal criterion is universally accepted as exactly explaining the criteria 

used by the CNS.  

In this study, an inverse dynamics optimization algorithm [102][88] was used to 

determine the muscles that needed to be recruited and to estimate the corresponding muscle 

forces and moments based on the joint kinematic data and inertial forces. This muscle 

recruitment algorithm requires knowledge of the movements imposed on the model. The 

information from the kinematic analysis was used to determine the muscles that needed to 

be recruited and the force required to be generated to balance the external resistive force 

and successfully complete the imposed movement. The equilibrium equations in (2.22) and 

(2.23) represent the relation between the muscle and joint forces with the external and 

inertial forces. No additional external loads are applied in the study, and the gravity is 

compensated by simulating an equivalent load in the y-direction. 

𝐶𝑓 = 𝑟 

 

(2.22) 

[𝐶(𝑀) 𝐶(𝑅)] [
𝑓(𝑀)

𝑓(𝑅)
] = 𝑟 

(2.23) 

where 𝑟 represents the external forces and inertial forces, 𝑓 is the vector containing 

the internal forces, which is divided between the muscle forces (𝑓(𝑀)) and joint forces 

(𝑓(𝑅)). Finally, 𝐶 represents the coefficient matrix for the unknown muscle and joint forces. 

Any solution for muscle force must abide by this equilibrium equation. Equation (2.24) 

shows the non-negativity constraints on the estimated muscle force as the muscles can only 

pull and not push. 

𝑓𝑖
(𝑀)

 ≥ 0, 𝑖 = 1, 2, 𝑛 (2.24) 
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Equation 2.22 shown above would provide infinitely many solutions for the muscle 

forces due to the redundancy problem explained earlier. Therefore, an objective function 

proposed by Rasmussen et al. [102] was used as a criterion to recruit muscles and estimate 

the optimal muscle forces pertaining to movement. Equations (2.25) and (2.26) show the 

optimization criteria used in this study. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐺(𝑓(𝑀)) 

 

(2.25) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∶ 
𝑐𝑓 = 𝑟 

𝑓𝑖
(𝑀)

 ≥ 0, 𝑖 = 1, 2, 𝑛 

(2.26) 

𝐺 is the objective function that needs to be minimized to obtain the optimal solution 

for the muscle force. A polynomial criterion was used as the objective function (𝐺), as 

shown in equation (2.27). 

𝐺 =  ∑ (
𝑓𝑖

(𝑀)

𝑁𝑖

)

𝑃𝑛

𝑖=1 

 

(2.27) 

In this study, 𝑁𝑖 is the muscle strength and is used as a normalization factor in the 

objective function. This ensures that the larger and stronger muscles do more work and 

carry more load than the smaller and weaker muscles, which is physiologically reasonable. 

Through the normalization factor, the model also limits the maximum force that a muscle 

can produce at a given instant and considers the force-length-velocity relationship when 

predicting the muscle force. The normalization parameter, which is the time-dependent 

muscle strength parameter, is shown in equation (2.28). 

𝑁𝑖 =  𝐹0 𝑐𝑜𝑠 (𝛼) 𝐹(𝑙)̂ 𝐹(𝑣)̂ (2.28) 

where 𝐹0 is the maximum isometric force for a muscle and adds a limit to the 

maximum force a given muscle can generate. 𝐹(𝑙)̂ and 𝐹(𝑣)̂ represent the normalized 

force-length and force-velocity relationship, thereby ensuring that any muscle force 

predicted using the objective function satisfies the force-velocity-length relationship. 

Finally, 𝛼 represents the pennation angle of the muscle. The polynomial value (𝑃) used in 

this study was three, as earlier studies [103] have suggested that a polynomial value of 

three had the least prediction error and promoted better muscle synergism.  
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2.5.4 Predicting Muscle Activity and Contribution 

This section discusses how the active and passive forces predicted using the muscle 

recruitment criterion explained in the earlier section were used to estimate the activity and 

contribution of individual muscles. 

2.5.4.1 Muscle Activity 

Muscle activity can be defined as a representation of the percentage of fibers recruited in 

an individual muscle to enable a motion. Several studies [104] have discussed the 

relationship between muscle activity and active force produced by the muscle. One of the 

drawbacks of EMG activity is that it only represents the electrical activity of the muscle 

contraction and does take into consideration the mechanical aspects of the contraction. In 

this study, the muscle force has been estimated based on the objective function declared in 

the earlier section while considering the mechanical parameters, including the muscle’s 

force-length-velocity relationship. Therefore, estimating muscle activity based on the 

predicted active force might accurately represent the percentage of muscle fibers recruited 

by CNS. As indicated earlier, muscle activity should indicate the percentage of muscle 

fibers recruited in an individual muscle. Therefore, the active force produced by the muscle 

was divided by the maximum force that could be produced during maximum voluntary 

contraction. Equation (2.29) shows how the individual muscle activity was estimated based 

on the active force. 

𝑀𝐴𝑖  =
𝐹𝐴

𝑖

 𝐹𝑀𝑉𝐶
𝑖  

(2.29) 

where 𝐹𝐴
𝑖 represents the active force generated by the 𝑖𝑡ℎ muscle at a given time 

instant, 𝐹𝑀𝑉𝐶
𝑖  indicates the force produced by the 𝑖𝑡ℎ muscle during maximum voluntary 

contraction and 𝑀𝐴𝑖 represents the activity of the 𝑖𝑡ℎ muscle. While the estimated muscle 

activity has numerous advantages over EMG activity owing to the accuracy and detail of 

the model, there also exist a few limitations. Since it is biologically possible that the muscle 

force may vary while the same volume of motor units is recruited by CNS, predicting the 

volume of recruited motor units based on the muscle force may lead to a mismatch between 

the predicted and actual activity. Therefore, some discrepancy between the EMG and 
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predicted activity can be attributed to this factor and needs further work for a more accurate 

estimation of the muscle activity. 

2.5.4.2 Muscle Contribution 

Muscle contribution is not a concept that has been widely explored in earlier studies. 

Neither the sEMG nor other existing methodologies can estimate the relative contribution 

of an individual muscle when performing a motion. In this study, muscle contribution 

represents the relative contribution of individual muscles in performing the imposed 

movement or maintaining joint stability. This is different from muscle activity as an 

activity only represents the percentage of fibers recruited in an individual muscle and does 

not provide any information about the relative contribution of a given muscle compared to 

other muscles that may be involved in the motion. However, the contribution indicates the 

relative percentage of an individual muscle's contribution while considering the other 

muscles involved in that movement. For instance, the biceps and brachioradialis might be 

involved in performing an elbow flexion. Activity only shows the fibers recruited by CNS 

in each of the two muscles; contribution provides information about how much each muscle 

has contributed to produce the force required to complete the elbow flexion. That is, it may 

be that 30% of the fibers from the biceps and 10% of the fibers from the brachioradialis 

were recruited to complete the flexion movement, and the muscle activity would represent 

this. On the other hand, the percentage that each muscle has contributed to performing the 

motion would be indicated in the muscle contribution. This would be different from muscle 

activity as the biceps, with their 30% of recruited fibers, may have produced 80% of the 

force required to complete the task, and 10% of the recruited brachioradialis fibers 

produced the remaining 20% of the force needed to complete the task. Equation (2.30) 

shows the methodology behind calculating the muscle contribution: 

𝑀𝐶𝑗 =  
(𝐹𝑝

𝑗̅̅ ̅ +  𝐹𝐴
𝑗̅̅ ̅ cos  𝛾𝑗) ∗  𝑃𝐶𝑆𝐴𝑗

 ∑  (𝐹𝑝
𝑘̅̅̅̅ +  𝐹𝐴

𝑘̅̅̅̅ cos  𝛾𝑘)𝑛
𝑘=1 ∗ 𝑃𝐶𝑆𝐴𝑘

 

 

(2.30) 

where 𝐹𝐴
𝑗̅̅ ̅, 𝐹𝑃

𝑗̅̅ ̅ represents the normalized active and passive forces for the 𝑗𝑡ℎ  

muscles respectively; 𝐹𝐴
𝑘̅̅̅̅ , 𝐹𝑃

𝑘̅̅̅̅  represent the normalized active and passive forces for the 𝑘𝑡ℎ 

muscles respectively; 𝑃𝐶𝑆𝐴𝑘  and 𝑃𝐶𝑆𝐴𝑗 represent the PCSA for the 𝑘𝑡ℎ and 𝑗𝑡ℎ  muscles 
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respectively; and 𝛾𝑘  and 𝛾𝑗  represent the pennation angles for the 𝑘𝑡ℎ and 𝑗𝑡ℎ  muscles 

respectively. 

2.5.5 Subject-Specific Modeling 

The muscle model was designed to estimate muscle activity and contribution, taking into 

account the subject-specific parameters associated with bones, joints, and muscles. Studies 

[105][106][107] have shown that bone, joint, and muscle parameters influence the force 

produced by the muscles and, consequently, the activity and contribution of individual 

muscles. Furthermore, earlier literature [108][84] has also indicated that subject-specific 

muscle models may predict activity more accurately than generic models. Therefore, in this 

model, multiple parameters associated with bones, muscles, and joints may be altered based 

on the subjects. Table 2.12 shows all the parameters that may be altered to fit the subjects. 

Table 2.12: Subject-specific parameters 

 Bones Joints Muscles 

Subject-

Specific 

Parameters 

a) Mass 

b) Radius 

c) Length 

d) Moment of 

Inertia 

a) Joint Constraints 

(range of joint 

movements) 

a) Muscle Path 

b) Insertion Point 

c) Origin Point 

d) Via Point 

e) Physiological Cross-

Sectional Area (PCSA) 

f) Muscle Volume 

g) Fiber Length 

h) Tendon Length 

2.5.5.1 Subject-Specific Bone Parameters 

The major rigid body parameters that can be adjusted to fit the subjects are the radius, mass, 

and length of the rigid body. The length of the rigid body was estimated as a percentage of 

the subject’s arm length and height. The mass of the rigid body was calculated as a 

percentage of the subject’s overall body mass. The radius of the rigid body was calculated 

based on the estimated length and mass of the corresponding rigid body [109][110]. 

Finally, since the moment of inertia is a function of these parameters, the inertia was 

adjusted based on the subject’s parameters.  
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2.5.5.2 Subject-Specific Joint Parameters 

The joint parameters determine the constraints imposed on a given joint and the degrees of 

freedom associated with the attached rigid bodies. While these joint parameters may be 

kept constant for healthy subjects, patients with joint dysfunctions [111] or injuries [112] 

may have reduced joint mobility. Therefore, the joint constraints must be adjusted 

considering the injuries or dysfunctions. 

2.5.5.3 Subject-Specific Muscle Parameters 

Table 2.12 shows all the muscle parameters that can be altered in the muscle model to suit 

the subject. The two ends of the muscles attached to the rigid body – insertion and origin 

points have been adjusted based on the rigid body lengths. While all the parameters shown 

in Table 2.12 can be adjusted based on the subjects, estimating parameters such as muscle 

length, mass, volume, and PCSA requires extensive, time-consuming, and expensive 

techniques to be used. For instance, parameters such as PCSA can be estimated only 

through MRI, which is time-consuming and expensive. Therefore, throughout the study, 

these parameters were not altered. However, a separate result was included wherein these 

parameters were altered based on the existing dataset from earlier studies to showcase the 

model’s ability to vary these parameters and take them into account when estimating the 

muscle force and, consequently, the muscle activity and contribution.  

2.5.6 Model Validation 

The overall working of the model is shown in Figure 2.18. The model used an inverse 

dynamics based optimization algorithm to estimate the muscle forces (as explained in 

Section 2.5.3) based on the joint kinematic data. The muscle force was then used to estimate 

the activity (explained in Section 2.5.4.1) and relative contribution (explained in Section 

2.5.4.2) of individual muscles. The proposed model has been validated to determine the 

efficacy and accuracy of the model’s output. Validation of the model was done by 

comparing the model’s output with the sEMG output. The rationale behind using the 

normalized sEMG data to validate the proposed model was that while the sEMG does not 

provide an accurate representation of muscle activity, as discussed earlier, the sEMG is 

still the gold standard used in clinical practice. Therefore, despite the limitations of the 
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sEMG, the model’s output was compared with the normalized sEMG data for validation. 

The sEMG data was only used to validate the model’s output and does not play a role in 

the functioning of the model and in estimating the muscle force or activity.  

 

Figure 2.18: Flowchart indicating the working of the musculoskeletal model 

Healthy subjects were recruited to perform five tasks involving a sequence of 

upper-limb movements requiring the motion of three different joints (wrist, elbow, and 
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shoulder). The subjects performed each task for five trials. The wireless motion sensors 

and sEMG sensors were attached to the healthy subjects when performing the sequence of 

movements. While the wireless motion sensors provided the joint kinematic data needed 

to drive the model, the sEMG sensors provided the normalized sEMG data required to 

validate the model’s output. The model’s output (muscle activity) pertaining to the upper-

limb movements was compared with the normalized sEMG data corresponding to the exact 

motion. This section discusses the sequence of movements the subjects had to perform 

during the five tasks and how the kinematic joint data and normalized sEMG data was 

obtained when the subjects performed the upper-limb motions. 

2.5.6.1 Kinematic Data Acquisition 

Table 2.13: Placement of wireless sensors 

Sensor Placement 

Wrist electro-

goniometer 

Posterior side of arm: third metacarpal and midline of the 

forearm 

Forearm 

torsiometer 

Anterior side of the forearm: mid-region of the forearm 

Elbow electro-

goniometer 

Exterior side of the elbow: upper end of the forearm and 

lower end of the humerus 

Shoulder electro-

goniometer 

Exterior side of shoulder: right over the deltoid muscle and 

between the shoulder point and neck joint 

Electro-goniometers [113] and torsiometers were used to gather the joint kinematic data of 

the upper-limb joint. Three electro-goniometers were used, each gathering the joint data 

pertaining to the wrist, elbow, or shoulder movement. Additionally, one torsiometer was 

also used to capture the forearm movement. Table 2.13 shows the placement of the sensors 

on the upper limb. Figure 2.19 shows an image of the upper limb with the sensors attached 

to the joints. The data collected from the motion sensors were independent of each other 

[114]. 
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Figure 2.19: Placement of wireless motion sensors (electro-goniometers, torsiometer) 

Before the joint kinematic data are used in the muscle model, the data needs to be 

pre-processed. In this study, the kinematic data obtained from the sensors were first filtered 

using a high pass filter to avoid any noise interference. Secondly and more importantly, 

there were offsets between the kinematic data collected from the sensors and what it may 

represent when fed into the muscle model. For instance, a fully flexed wrist in the muscle 

model corresponds to -90 degrees, and a fully extended wrist corresponds to 90 degrees. 

However, the kinematic data obtained from the sensor would be different as the range of 

values for the sensor may not be between -90 to 90 degrees. This offset was corrected after 

the filtering process for kinematic data pertaining to all joint movements. Table 2.14 shows 

the range of angles pertaining to every joint. Finally, a B-spline interpolation function 

[115][116] with an order of four was used on the kinematic data to obtain a smooth 

approximation of the data points.  
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Table 2.14: Range of joint angles 

Movements Joint angles 

(degrees) 

Shoulder flexion/extension -180 to 180 

Shoulder abduction/adduction 0 to 180 

Elbow flexion/extension 0 to 180 

Forearm supination/pronation -90 to 90 

Wrist flexion/extension -90 to 90 

Wrist abduction/adduction 20 to -20 

2.5.6.2 sEMG Data Acquisition 

In this study, the sEMG data was collected at the same time the joint kinematic data was 

collected to ensure that both data correspond to the same motion. A Delsys multi-contact 

surface EMG sensor was used to calculate the muscle activity of eight superficial muscles 

(Biceps, Triceps, Flexor Carpi Radialis (FCR), Extensor Carpi Radialis (ECR), Deltoid, 

Teres Major, Pectoralis Major, Latissimus Dorsi) when the participants were performing 

the five different upper-limb tasks. To avoid noise and extract essential information, based 

on the recommendations in [117], the sampling rate was kept at 1000 Hz. Finally, the 

sEMG data was rectified and filtered using a second-order Butterworth filter with a cut-off 

frequency of 20 Hz [76]. The sEMG recordings obtained from the superficial muscles were 

normalized using the root mean squared value of the amplitude of sEMG data obtained at 

MVC.  

2.5.6.3 Sequence of Movements 

In this study, the participants performed five distinct tasks, each involving a sequence of 

upper-limb movements. Table 2.15 shows the five tasks that the participants performed 

during the study. 
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Table 2.15: Five tasks performed for model validation 

While the sequence of movements involves three functional joints and the 

corresponding rigid bodies, other rigid bodies that were not involved in this sequence of 

movements, such as the scapula and clavicle, were also modeled in this study. Furthermore, 

the muscle activity corresponding to the scapula or clavicle movements can also be 

calculated. Therefore, to showcase this ability of the model, an additional result is added 

in the result section wherein the clavicle and scapula movements, such as shoulder 

protraction/retraction and shoulder elevation/depression, were performed, and related 

muscle activity was shown. 

 Movement sequence 

Task 1 Shoulder flexion to 90 degrees with the fully supinated forearm – elbow 

flexion to 90 degrees – Maximum wrist flexion – Maximum wrist extension– 

Neutral wrist position– Elbow extension (neutral elbow position) - Shoulder 

extension (neutral shoulder position) 

Task 2 Elbow flexion to 90 degrees with the fully supinated forearm– Forearm semi-

pronation – Maximum forearm supination – Elbow extension (neutral elbow 

position) 

Task 3 Shoulder abduction to 90 degrees with neutral forearm position – Maximum 

forearm supination – Maximum wrist abduction – Maximum wrist adduction 

– Neutral wrist position – Neutral forearm position (Semi-prone) – Shoulder 

adduction (neutral shoulder position) 

Task 4 Shoulder abduction to 90 degrees with the fully supinated forearm – Wrist 

rotation – Shoulder adduction (neutral shoulder position) 

Task 5 Elbow flexion to 90 degrees with neutral forearm position - Shoulder 

abduction to 90 degrees – Maximum wrist flexion – Neutral wrist position – 

Shoulder adduction (neutral shoulder position) – Elbow extension (neutral 

elbow position) 
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2.5.6.4 Performance Metrics 

Muscle activity predicted by the muscle model was compared with the normalized sEMG 

data obtained from the participants. It must be noted that the predicted and actual muscle 

activity was divided into sectors based on the timed change of the movements. Only the 

predicted activity of a specific sector was compared to the sEMG activity of the same 

sector. In this study, two metrics were used to evaluate the performance of the muscle 

model by comparing its output with normalized sEMG recordings. The Root Mean Squared 

Error (RMSE) was calculated separately for each sector between the predicted and actual 

activity pertaining to each of the eight superficial muscles. The RMSE from the sectors 

was then averaged together for each muscle. Equation (2.31) shows how RMSE was 

calculated using the actual and predicted activity.  

𝑅𝑀𝑆𝐸 =  √(𝑀𝐴𝐸𝑀𝐺 −  𝑀𝐴𝑆𝐼𝑀)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  
(2.31) 

where 𝑀𝐴𝐸𝑀𝐺  and 𝑀𝐴𝑆𝐼𝑀 indicate the sEMG activity and predicted activity, 

respectively. Similarly, the Pearson correlation coefficient between predicted and actual 

activity was computed for each sector and combined using the Fisher’s Z transformation 

method [55][118] for each muscle. Finally, a test to determine the significance of the 

correlation coefficient [119][120] was calculated alongside the Pearson correlation 

coefficient, and the harmonic mean method [57] was used to combine the p-values. A p-

value less than 0.05 was considered to be statistically significant. Equation (2.32) shows 

the method used to calculate the Pearson correlation coefficient. 

𝑟 =  
∑ (𝑀𝐴𝐸𝑀𝐺𝑖

−  𝑀𝐴𝐸𝑀𝐺
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) (𝑀𝐴𝑆𝐼𝑀𝑖

−  𝑀𝐴𝑆𝐼𝑀
̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1

√∑ (𝑀𝐴𝐸𝑀𝐺𝑖
−  𝑀𝐴𝐸𝑀𝐺

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )
2𝑛

𝑖=1  √∑ (𝑀𝐴𝑆𝐼𝑀𝑖
−  𝑀𝐴𝑆𝐼𝑀

̅̅ ̅̅ ̅̅ ̅̅ ̅)
2𝑛

𝑖=1

 
(2.32) 

2.5.7 A Prospective Application of the Model 

One of the primary reasons behind validating the muscle model was to ensure that it could 

be used in a clinical setting. Apart from using the muscle model as an analysis tool to study 

the muscle recruitment strategies, which are a vital part of SMC functions, the muscle 

model may also be used to improve the efficacy of certain PD-related treatments. This 

section discusses one potential application - the estimation of Botulinum toxin dosage 

using the muscle model. Identifying the correct muscles to be injected and the dosage per 
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muscle is vital to the success of the therapy. Using the muscle contribution and activity 

from the muscle model, a method was devised to estimate the dosage per muscle. The 

muscle contribution estimated by the model may be used to determine how much each 

muscle contributes to the tremor movement. The kinematic data of the PD patients 

undergoing the therapy was obtained. The methodology behind obtaining the kinematic 

data has been explained earlier. Based on the tremor movement imposed by the kinematic 

data, the muscle model predicted the muscle contribution using equation (2.30). A total of 

nine upper-limb muscles (prime movers of elbow, forearm, and wrist joint) were 

considered for injection. The dosage pertaining to these muscles was estimated based on 

the muscle contribution. As indicated earlier, all the PD patients involved in this part of the 

study were undergoing the therapy. Therefore, the actual dosage provided to the patients 

was used as a baseline to estimate future dosage using the muscle model. Equation (2.33) 

shows the methodology used to estimate the dosage of the elbow (Biceps, Triceps), wrist 

(FCR, ECR, FCU, ECU), and forearm (supinator, pronator teres (PT), pronator quadratus 

(PQ)) muscles. 

𝐷𝑜𝑠𝑎𝑔𝑒 𝑜𝑓 𝑖𝑡ℎ𝑀𝑢𝑠𝑐𝑙𝑒
= 𝑡𝑜𝑡𝑎𝑙 𝑑𝑜𝑠𝑎𝑔𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑚𝑢𝑠𝑐𝑙𝑒 𝑔𝑟𝑜𝑢𝑝𝑠 
∗ 𝑐𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑖𝑡ℎ 𝑚𝑢𝑠𝑐𝑙𝑒    

(2.33) 

The total dosage to the muscle groups indicates the sum of all the dosages provided 

to the muscle group of interest during the previous clinic visit. The total dosage for the 

muscle groups was calculated based on the work of Samotus et al [114] [87].  For instance, 

when estimating the dosage of FCR (one of the prime movers of the wrist joint), the total 

dosage provided to all the prime movers (FCR, ECR, FCU, ECU) of the wrist joint 

corresponds to the total dosage of the muscle groups. Likewise, when estimating the dosage 

for the muscle responsible for forearm movement, the total dosage to the muscle groups 

would indicate the sum of the dosage provided to the supinator, PT, and PQ. Finally, to 

estimate the dosage for the muscles involved in elbow motion, the total dosage to the 

muscle groups would be the sum of the dosages provided to the biceps and triceps. 
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Chapter 3  

3 Sensorimotor Integration in Parkinson’s Disease 

This chapter discusses the results pertaining to the evaluation of Sensorimotor Integration 

in patients diagnosed with Parkinson’s Disease. 

3.1 Introduction 

Integration of sensory and motor systems is vital for accurate perception of the world and 

optimal execution of voluntary movements. The sensory system collects information from 

multiple modalities, which are processed and integrated to obtain a perceptual estimate, 

which informs us about the state of oneself and the properties of the environment. This 

information is used for determining the motor command needed to achieve the desired goal 

while also ensuring that the motor output meets the demands of the environment [1][2]. 

This integration between the sensory and motor system is called Sensorimotor Integration 

(SMI), and it has two principal facets: (1) multi-sensory integration (integration of sensory 

information obtained from multiple modalities) (2) modulation of motor output based on 

the perceptual estimate [3][4]. The process of SMI is vital in perceiving the world around 

us and completing daily activities accurately and efficiently. The neural bases for SMI have 

been discussed in Chapter 1 under Section 1.5.1. Studies [5][6] [7] [8] [9] have pointed to 

BG as a neural region that may be involved in the process of SMI, and therefore, 

dysfunctions in BG may affect SMI functionalities. Various computational models 

[10][11] have attempted to explain the criteria used by the CNS in SMI. However, no study 

is universally accepted to precisely describe the exact brain computation involved in SMI. 

Parkinson’s Disease, a neurodegenerative disorder that primarily leads to 

dysfunctions in BG, presents a cluster of motor and non-motor symptoms. Recent evidence 

suggests that the non-motor symptoms, specifically perceptual abnormalities, are presented 

much earlier than any motor deficits and may contribute to the motor deficits that arise 

later. Studies have reported perceptual deficits across multiple modalities in PD patients 

(kinesthetic [12][13], visual [14][15], haptic [16], and auditory perception [17]). The 

traditional view was that these deficits arise from a peripheral impairment due to PD. 
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However, with the perceptual deficits being experienced in multiple modalities, studies 

[18] point to a more central impairment in processing sensory inputs, leading to perceptual 

deficits. As discussed in section 1.3.2.2, an impairment in SMI may be a primary 

contributor to the perceptual deficits experienced by PD patients, leading to motor deficits 

later in the disease. The involvement of BG (an impaired region in PD) in the functioning 

of SMI also supports this hypothesis of SMI impairment. Therefore, impairments in SMI 

have been hypothesized to primarily contribute to perceptual abnormalities. Further, a 

deficit in the SMI process could substantially degrade the motor performance as 

modulation of motor output pertaining to voluntary movements heavily relies on the 

optimal functioning of SMI. Understanding the factors contributing to the perceptual 

abnormalities leading to motor deficits is necessary to better target these deficits. Recent 

evidence [19][20] suggests that a more targeted and patient-specific approach to managing 

the symptoms of PD may be more effective than a generic one and would, in turn, 

significantly improve the patient’s quality of life. Additionally, studies [21][22] have 

discussed that the efficacy of rehabilitation therapy heavily depends on whether the sensory 

cues provided as part of the therapy are optimal and how the patients use the sensory cues 

during the therapy. Therefore, in-depth knowledge of how PD patients integrate the multi-

modal sensory inputs to perceive the world around them as compared to a healthy subject 

may provide valuable insights about the nature and type of sensory cues that may be 

effective during the therapy. Furthermore, with SMI impairments presumably presented 

much earlier in the disease, a reliable method to detect these impairments may be useful to 

diagnose the disease at an early stage, which may help in better managing the disease. 

Finally, PD patients use pharmacological treatments to mitigate the symptoms of the 

disease. It is also vital to understand how medication commonly prescribed to patients 

alters SMI functioning. Understanding the complex effects of medication is important to 

optimize the treatment protocols and to plan or structure the rehabilitation therapy. 

Currently, very little is known about how PD may alter the functioning of SMI. 

Only a few studies [23] [24] [25] [26][27] have explored the impairments of SMI in PD 

patients, although there are numerous limitations and literature gaps that need to be 

addressed. Most studies evaluating SMI examined the perceptual deficits associated with 

a single modality and failed to investigate the patient’s ability to integrate multi-modal 
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inputs. Furthermore, the relationship between task-specific voluntary movements and 

multi-sensory integration in PD patients has not been studied extensively. This relationship 

between movement expression and sensory perception in PD patients must also be 

understood to better treat PD. Finally, the effect of dopaminergic medication on SMI 

performance is unknown. With certain studies [28][29][30] reporting adverse effects of 

medication on perception, it is vital to understand how SMI may be altered due to 

medication. Earlier studies on SMI functions in PD patients, followed by the literature gap 

and limitations, have been discussed in detail in Chapter 1 under section 1.5.3. Therefore, 

there is a need for an objective assessment of SMI in PD patients. 

3.2 Methods 

3.2.1 Participants 

One hundred and twenty-five patients diagnosed with Parkinson’s Disease and fifty age-

equivalent healthy controls were recruited to investigate the SMI deficits caused due to PD. 

While all participants performed the reaching tasks, only seventy-four participants 

performed the tracing tasks. The participants were recruited through the Movement 

Disorders Clinic at University Hospital, London Health Sciences Centre in London, 

Ontario, Canada. Inclusion criteria for patients were diagnosis of PD, no injuries limiting 

upper-limb movements, and normal or corrected-to-normal vision. For the control subjects, 

the inclusion criteria were no known neurological or psychiatric disorders, no injuries 

limiting upper-limb movements, and normal or corrected-to-normal vision. 

All participants performed the robotic assessment tasks using their right and left 

arms. While the control subjects had to perform these tasks once, the PD patients performed 

them twice, once in their medication OFF state and later in their medication ON state. In 

this thesis, the group of PD patients in their OFF state is referred as PD-OFF and that for 

PD patients in their ON state is referred as PD-ON. The first robotic assessment was done 

after overnight suspension of the dopaminergic medication to ensure that the PD patients 

were completely OFF medication. Once the assessments were completed in the OFF state, 

the patients were administered the same amount of medication prescribed by the clinicians 

to be taken every day. One hour after the administration of the medication, the patients 
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underwent the robotic assessment in their ON state. No dyskinesia was observed after 

medication in patients included in this study. Before the robotic assessments, the motor and 

cognitive status of the PD patients were assessed using clinical scales. Before each 

experimental session, section 3 (motor sub-scale) of the UPDRS was used to evaluate the 

motor complications and their severity in each patient. The UPDRS score was calculated 

before and one hour after the medication. Furthermore, the MoCA [31] was used to 

evaluate the cognitive status of PD patients during the ON state. 

3.2.2 Ethics 

The office of Human Research Ethics at Western University's Research Ethics Board 

approved the study protocol (protocol numbers: 115770, 108252) required for this work. 

The experiments in the study were conducted per the ethical standards laid down in the 

1964 Declaration of Helsinki and the Tri-Council Policy Statement of Ethical Conduct for 

Research Involving Humans in Canada. The letter of information detailing the nature of 

the study and consent forms were provided to the patients before their participation. All 

recruited participants provided their written and informed consent to participate in the 

study. 

3.2.3 Testing Apparatus and Experiment Setup 

The KINARM Endpoint robot was used to characterize the SMI deficits presented due to 

PD. The robot allows movement in two dimensions along a horizontal plane. The device 

includes a robotic handle and a VR display. The robotic handle is placed directly below the 

VR display, and the earlier figures (2.1, 2.2, and 2.3) show the robotic device used in the 

study. More information about the robotic device is provided in Chapter 2 under section 

2.1.1. The participants sat upright in front of the KINARM Endpoint robot, holding the 

robot handle, and the height of the chair was adjusted to ensure optimal viewing of the 

entirety of the VR display. To ensure that the participants were only able to view the virtual 

objects displayed in the VR display and did not have a direct view of their arm, a black 

screen was placed between the VR display and the participant’s arm. Figures 3.1 and 3.2 

shows the experimental setup for the reaching and tracing task, respectively. 
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Figure 3.1: Experimental setup for the reaching task 

 

Figure 3.2: Experimental setup for the tracing task 

3.2.4 Design and Development of Reaching and Tracing Tasks 

To evaluate the SMI performance in PD patients, a set of reaching and tracing tasks were 

performed using the KINARM Endpoint robot [32]. The tasks used to assess the SMI were 
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discussed in Chapter 2 under Section 2.1.4. Further, the rationale behind the nature of the 

tasks and how they can be used to evaluate SMI performance is discussed in Chapter 2. 

Participants performed the reaching and tracing tasks under varying sensory conditions 

(with/without Assistive Sensory Cues (ASC) and with/without sensory manipulation). 

Tables 2.1 and 2.2 show the subtasks associated with the reaching and tracing tasks and 

the sensory condition related to each subtask. The ASC include a vibrotactile input given 

to the robotic handle held by the participant and an auditory cue (beep sound) provided to 

the participants through an external speaker. The multi-modal ASC provide additional 

information intending to assist the participants in performing the tasks more efficiently and 

accurately. Section 2.1.4 explains when the multi-modal ASC would be provided to the 

participants. Subtasks with and without ASC evaluate the participant’s ability to integrate 

the multi-modal sensory inputs and use the resulting perceptual estimate to improve one’s 

motor performance. Sensory manipulation was also included in specific subtasks of 

reaching and tracing subtasks. The nature of sensory manipulation is explained in section 

2.1.4. Subtasks with sensory manipulation were used to evaluate the participant’s ability to 

adapt to inaccurate sensory signals and filter them out. It would also provide insights into 

how voluntary movements may be affected by inaccurate sensory signals and if the 

participants can adapt and learn to improve their motor performance taking into 

consideration the inaccurate sensory information provided by the experimenter. 

3.2.5 Feature Extraction and Analysis 

The features extracted to analyze SMI performance in participants were described in 

Chapter 2 under section 2.2. Statistical analyses for comparing the performance of the 

groups were discussed in section 2.3. The feature extraction and statistical analyses were 

performed using MATLAB and Python. Additionally, a trial-by-trial analysis was 

performed using the extracted features discussed in section 2.2 to evaluate the motor 

learning ability of the participants. Motor learning is the ability to learn and improve motor 

performance over time using acquired sensory cues, and thereby heavily depends on the 

optimal functioning of the SMI. Therefore, the trial-by-trial analysis evaluates if 

impairment in SMI may affect motor learning ability and the extent to which it may be 

affected. In a trial-by-trial analysis, the performance of each group was averaged across an 
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individual trial for selected features. For instance, if the mean velocity is selected, we start 

by averaging the mean velocity across all the participants in the first trial of the task, 

subsequently, the second trial, and so on, and this was done individually for each group. 

Then the difference between the two groups in each trial was calculated. To understand if 

the difference between the two groups increased or decreased as they performed more 

trials, a correlation between the trial numbers and the difference between the groups was 

calculated. While a positive correlation indicates an increase in the difference between the 

groups, a negative correlation indicates a reduction in the difference between the groups. 

This provides insight into whether the participants can improve their task performance as 

they complete more trials. For instance, PD-OFF may have higher endpoint error than the 

control subjects. However, suppose the trial-by-trial analysis for the endpoint error between 

PD-OFF and the control subjects indicates a negative correlation. In that case, it suggests 

that PD-OFF reduced their endpoint error at later trials and improved their performance as 

they completed more trials. The trial-by-trial was performed only in tasks with sensory 

manipulation to understand if the participants could adapt to the incorrect sensory inputs 

and improve their performance over time. Therefore, the trial-by-trial analysis was 

performed on four error metrics (direction error, mean number of violations, mean 

violation distance, and time spent under violation) extracted from the reaching and tracing 

task with sensory manipulation. 

3.3 Results 

3.3.1 Demographic Data and Clinical Assessment 

In this study, a hundred and twenty-five PD patients (81 males and 44 females) and fifty 

age-equivalent control subjects (37 males and 13 females) were recruited. The motor and 

cognitive status of the PD patients were assessed using the UPDRS and MoCA scales. 

Table 3.1 shows the demographic and clinical information pertaining to the participants. 
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Table 3.1: Demographic and clinical data for PD patients 

Demographic Data PD patients Control 

subjects 

Number of participants 125 50 

Age (years) (Mean (Minimum - Maximum)) 64 (38 – 79) 57 (30 - 81) 

Gender (M/F) 81/44 37/13 

Years with disease (Mean (Minimum - 

Maximum)) 

10 (2 -30) N/A 

Clinical Data 

MOCA (Mean (Minimum - Maximum)) 25.0 (17- 30) N/A 

UPDRS motor sub-scale in OFF therapy (Mean 

(Minimum - Maximum)) 

39.8 (4 – 73) N/A 

 

UPDRS motor sub-scale in ON therapy (Mean 

(Minimum - Maximum)) 

23.5 (1 - 57) N/A 

3.3.2 Sensorimotor Integration: Within-Group Comparison 

This section compares the performance of each group against their own performance under 

varying sensory conditions [32]. First, the performance of a given group with and without 

ASC was compared. Second, a comparison between the performance of each group with 

and without sensory manipulation was performed. Table 3.2 shows the performance of the 

groups in the features extracted for the reaching and tracing tasks. Table 3.3 shows the 

significance value for the within and between-group comparisons. 

Table 3.2: Task performance of each group in reaching and tracing tasks 

Parameters PD-OFF 

(Median (Range)) 

PD-ON  

(Median (Range)) 

Control subjects 

(Median (Range)) 

Reaching Task 

Target Reach (%) w.o. ASC 100 (80) 98 (33) 100 (0) 

w. ASC 97 (75) 99 (50) 100 (0) 

w.o. SM 96 (87) 98 (100) 100 (50) 

w. SM 93 (100) 90 (100) 100 (75) 

Mean Endpoint 

error (cm) 

w.o. ASC 0.477 (4.56) 0.435 (2.58) 0.374 (0.59) 

w. ASC 0.488 (3.94) 0.406 (1.79) 0.345 (0.75) 

w.o. SM 0.490 (13.5) 0.426 (10.4) 0.314 (4.04) 

w. SM 0.744 (22.3) 0.632 (17.4) 0.518 (11.15) 

Mean Direction 

Error (cm) 

w.o. ASC 0.009 (1.49) 0.008 (2.17) 0.002 (0.63) 

w. ASC 0.013 (1.68) 0.005 (0.74) 0.001 (0.38) 

w.o. SM 0.057 (15.7) 0.051 (6.14) 0.032 (4.74) 

w. SM 1.296 (14.4) 1.651 (19.1) 0.901 (7.34) 

MDE (cm) w.o. ASC 0.419 (1.44) 0.443 (1.23) 0.364 (1.03) 
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w. ASC 0.425 (4.17) 0.412 (2.37) 0.341 (1.06) 

w.o. SM 0.436 (12.2) 0.448 (4.04) 0.360 (1.50) 

w. SM 0.605 (12.8) 0.642 (8.68) 0.494 (6.04) 

Maximum 

Endpoint Error 

(cm) 

w.o. ASC 4.971 (7.02) 6.712 (6.75) 1.576 (1.34) 

w. ASC 2.034 (12.5) 3.035 (6.53) 1.400 (1.83) 

w.o. SM 2.212 (26.1) 1.884 (27.6) 1.074 (19.8) 

w. SM 3.989 (28.5) 5.476 (29.2) 2.677 (16.3) 

Maximum 

Direction Error 

(cm) 

w.o. ASC 2.421 (4.48) 3.875 (6.52) 1.588 (2.53) 

w. ASC 1.067 (2.20) 2.959 (2.91) 0.427 (0.46) 

w.o. SM 1.588 (21.5) 2.613 (20.8) 1.009 (7.82) 

w. SM 4.187 (22.4) 5.329 (25.2) 3.790 (12.5) 

Mean Velocity 

(cm/s) 

w.o. ASC 0.036 (0.13) 0.038 (0.06) 0.040 (0.02) 

w. ASC 0.036 (0.10) 0.037 (0.05) 0.039 (0.02) 

w.o. SM 0.058 (0.12) 0.061 (0.10) 0.065 (0.08) 

w. SM 0.050 (0.09) 0.055 (0.14) 0.060 (0.09) 

Tracing Task 

Mean Number of 

Violations 

w.o. SM 0.60 (9.6) 0.35 (8) 0.25 (1.10) 

w. SM 2.12 (12.1) 2.57 (7.17) 1.60 (4.46) 

Time Spent under 

Violation (s) 

w.o. SM 0.08 (2.31) 0.16 (2.80) 0.03 (0.33) 

w. SM 1.05 (5.66) 1.32 (4.77) 0.59 (3.50) 

Mean Violation 

Distance (cm) 

w.o. SM 0.0008(0.35) 0.001 (0.24) 0.0003(0.007) 

w. SM 0.015 (0.44) 0.022 (1.06) 0.008 (0.157) 

MDE (cm) w.o. SM 0.421 (1.26) 0.478 (1.94) 0.343 (0.590) 

w. SM 0.669 (1.65) 0.700 (2.25) 0.578 (1.367) 

Mean Velocity 

(cm/s) 

w.o. SM 0.055 (0.08) 0.060 (0.05) 0.062 (0.06) 

w. SM 0.052 (0.07) 0.057 (0.07) 0.066 (0.04) 

Note: w.o. ASC = without assistive sensory cues; w. ASC = with assistive sensory cues; 

w.o. SM = without sensory manipulation; w. SM = with sensory manipulation.  

Table 3.3: Significance value for within and between-group comparisons 

 
 

  

Significance for within-group comparison  Significance for between-group comparison   
PD-OFF PD-ON Control 

Subjects 
PD-OFF vs. 

Control Subjects 
PD-OFF vs. 

PD-ON 
PD-ON vs. 

Control 

Subjects 

Reaching Task 

Target 
Reach 

w.o. ASC p = 0.0147* p = 0.7087 p = 1 p = 0.6636 p = 0.0294* p = 0.2419 

w. ASC p = 0.0095* p = 0.8945 p = 0.0764 

w.o. SM p < 0.0001* p < 0.0001* p = 0.0260* p < 0.0001*  p = 0.0604  p < 0.0001* 

w. SM p < 0.0001*  p = 0.0506  p = 0.0001* 

Mean 
Endpoint 

Error 

w.o. ASC p = 0.0057* p = 0.1913 p = 0.2409 p < 0.0004*  p = 0.0688  p = 0.0011* 

w. ASC p < 0.0001*  p = 0.1342  p = 0.0007* 

w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p < 0.0001* p < 0.0001*  p < 0.0001* 

w. SM p < 0.0001*  p < 0.0001*  p < 0.0001* 

w.o. ASC p < 0.0001* p < 0.0001* p = 0.0106* p = 0.0503  p = 0.5118  p = 0.0515 

w. ASC p < 0.0001*  p = 0.9635  p = 0.0024* 
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Mean 
Direction 

Error 

w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p < 0.0001*  p < 0.0001*  p = 0.0022* 

w. SM p = 0.1707 
 p < 0.0001*  p = 0.0027* 

MDE w.o. ASC p = 0.5887 p = 0.6408 p = 0.9922 p < 0.0001*  p = 0.1149  p < 0.0001* 

w. ASC p < 0.0001*  p = 0.0434*  p < 0.0001* 

w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p < 0.0001*  p < 0.0001*  p < 0.0001* 

w. SM p < 0.0001*  p = 0.3702  p < 0.0001* 

Maximum 

Endpoint 

Error 

w.o. ASC p = 0.0993 p = 0.4432 p = 0.4049 p < 0.0001*  p = 0.1080  p = 0.0036* 

w. ASC p < 0.0001*  p = 0.0167*  p < 0.0001* 

w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p < 0.0001*  p < 0.0001*  p < 0.0001* 

w. SM p < 0.0001*  p < 0.0001*  p < 0.0001* 

Maximum 

Direction 

Error 

w.o. ASC p < 0.0001* p < 0.0001* p = 0.0046* p = 0.0022*  p = 0.9598  p = 0.0505 

w. ASC p < 0.0001*  p = 0.6599  p = 0.0031* 

w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p = 0.0031*  p = 0.0034*  p = 0.0019* 

w. SM p = 0.0686  p < 0.0001*  p = 0.0002* 

Mean 

Velocity 

w.o. ASC p = 0.4055 p = 0.2536 p = 0.2835 p < 0.0001* p = 0.0019* p = 0.0068* 

w. ASC p < 0.0001* p = 0.0050* p = 0.0009* 

w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p < 0.0001* p < 0.0001* p = 0.0040* 

w. SM p < 0.0001* p < 0.0001* p = 0.0021* 

Tracing Task 

Mean 

Number of 

Violations 

w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p = 0.0012*  p = 0.0021*  p < 0.0001* 

w. SM 
p = 0.0118*  p = 0.0694  p = 0.0019* 

Time Spent 
under 

Violation 

w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p < 0.0001*  p = 0.0009*  p < 0.0001* 

w. SM 
p = 0.0020*  p = 0.0457* p < 0.0001* 

Mean 
Violation 

Distance 

w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p = 0.0001*  p < 0.0001*  p < 0.0001* 

w. SM 
p = 0.0396*  p = 0.0070*  p = 0.0038* 

MDE w.o. SM p < 0.0001* p < 0.0001* p < 0.0001* p = 0.0103*  p = 0.1817  p = 0.0001* 

w. SM p = 0.0272*  p = 0.9335  p = 0.0477* 

Mean 
Velocity 

w.o. SM p = 0.002* p = 0.0042* p < 0.0001* p < 0.0001* p < 0.0001* p = 0.1800 

w. SM p < 0.0001* p < 0.0001* p = 0.6622 

Note: w.o. ASC = without assistive sensory cues; w. ASC = with assistive sensory cues; 

w.o. SM = without sensory manipulation; w. SM = with sensory manipulation; * after the 

p-value indicates statistical significance 

3.3.2.1 PD Patients in OFF state 

Comparing the performance of PD patients in the OFF state with and without ASC, in the 

reaching task, the PD patients reached 3% fewer targets with ASC than without ASC. This 

decrease in reaching the target when provided with ASC was also statistically significant 

(see Table 3.3). Further, the PD patients were also less accurate when provided with ASC, 

as the endpoint error increased by 2% when encountering ASC compared to without ASC. 
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Similarly, the direction error has also increased by 36% when encountering ASC. Finally, 

the efficiency in reaching a target has also worsened with the inclusion of ASC. This is 

indicated by a 1.4% increase in MDE in trials with ASC compared to those without any 

sensory cues. Interestingly, the findings imply that the multi-modal sensory cues provided 

to help improve motor performance have adversely affected the performance of the PD 

patients in most features. 

Moving to the within-group comparison between the performance in trials with and 

without sensory manipulation, the PD patient underwent both reaching and tracing tasks 

under these sensory conditions. In reaching tasks, the PD patients reached 3% more targets, 

far more accurately (41% less endpoint error and 183% less direction error), and more 

efficiently (32% less MDE) in trials without sensory manipulation than with sensory 

manipulation. Further, the PD patients were much faster without sensory manipulation, as 

shown by a 14% increase in mean velocity in trials without sensory manipulation than in 

trials with sensory manipulation. Across all the features, there is a statistically significant 

difference (see Table 3.3) when comparing the performance of the PD patient with and 

without sensory manipulation. This trend continues into the tracing tasks. In this task, the 

primary goal of the participants is to move in a clockwise direction to reach the target and 

stay within the green track when performing the task. Any deviation from the green track 

is referred to as a violation. The patients committed more violations and spent more time 

under violation before correcting the violation when encountering sensory manipulation 

compared to the task without sensory manipulation. Further, the mean violation distance, 

which indicates how far the patients have moved away from the green track they are 

instructed not to deviate from, is 179% higher in trials with sensory manipulation than in 

trials without any manipulation of sensory inputs. Similar to the reaching task, the MDE 

was higher when encountering sensory manipulation, with the difference in MDE between 

the trials with and without sensory manipulation being statistically significant (see Table 

3.3). The findings from comparing the performance between trials with and without 

sensory manipulation were on the expected line. Manipulation of sensory inputs affected 

the perceptual estimates, which, in turn, affected the motor performance of PD patients. 

The more interesting question is if there is a difference in how PD patients adapt to sensory 

manipulation compared to control subjects. This is discussed in a later section.    
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3.3.2.2 PD Patients in ON state 

In this section, the performance of PD patients in their ON state was compared under 

differing sensory conditions. Regarding reaching tasks with and without ASC, PD patients 

have shown marginal improvement when provided with ASC. A minor increase in the 

number of targets reached, followed by a minimal improvement in efficiency and accuracy, 

was observed when provided with ASC. However, apart from direction error, no 

statistically significant difference (see Table 3.3) was observed when comparing the 

performance with and without ASC. The study’s findings reveal that the ASC neither 

improved nor deteriorated the motor performance of PD patients in their ON state. This 

may imply that the PD patients in their ON state could not benefit from the ASC provided 

to assist them and therefore did not improve their motor performance significantly. 

Furthermore, this may indicate that the effect of sensory cues or inputs on motor 

performance is minimal during the ON state, which may adversely affect specific aspects 

of the motor ability, such as adapting to the demands of the testing environment.  

Comparing the performance with and without sensory manipulation, in reaching 

tasks, the PD patients in their ON state reached fewer targets, with their accuracy and 

efficiency worsening when encountering sensory manipulation. Regarding accuracy, the 

endpoint and direction errors were 38% and 188% higher in trials with sensory 

manipulation than without sensory manipulation. Similarly, the MDE increased by 35% 

when provided with sensory manipulation, indicating a worsening of efficiency with 

manipulation of sensory manipulation. When encountering sensory manipulation, there 

was statistically significant deterioration across all features (see Table 3.3). A similar trend 

was also observed when comparing performance in the tracing tasks with and without 

sensory manipulation. While the mean number of violations was 0.35 without sensory 

manipulation, the PD patients committed a significantly higher mean number of violations 

at 2.57 when encountering the manipulated sensory input. Further, there was a statistically 

significant deterioration (see Table 3.3) in the mean violation distance and time spent under 

violation in trials with sensory manipulation compared to trials in which the visual inputs 

were not manipulated. This performance deterioration was also carried over to the 

movement speed as the mean velocity decreased by 5% in trials with sensory manipulation 
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compared to those without sensory manipulation. Therefore, the sensory manipulation has 

affected the motor performance as expected. However, as indicated earlier, a more vital 

question may be answered through the between-group comparison that may indicate which 

group adapted to the sensory manipulation quickly and efficiently and, thereby, modulated 

their motor output using an integrated perceptual estimate that considers the inaccurate or 

unreliable sensory input. 

3.3.2.3 Control Subjects 

When comparing the tasks with and without ASC, the control subjects reached 100% of 

the targets in both sensory conditions. However, there was a difference in the accuracy and 

efficiency of the performance between the two conditions. The control subjects were more 

accurate in tasks with ASC, as indicated by a decrease in endpoint and direction error by 

8% and 66% respectively when provided with ASC compared to without ASC. Further, 

the reduction in the direction error with ASC was also statistically significant (see Table 

3.3). Regarding efficiency, there was a 6% reduction in MDE in tasks with ASC compared 

to without ASC. Therefore, it is pretty evident that the accuracy and efficiency improved 

when provided with ASC, implying that the control subjects benefitted from the multi-

modal sensory inputs as they were able to construct a more informative and coherent 

perceptual estimate through their SMI process, which in turn improved their motor 

performance. 

Regarding tasks with and without sensory manipulation, the findings were as 

expected: the control subjects performed better in the task without sensory manipulation 

compared to the task with sensory manipulation. In reaching tasks, the control subjects 

were less accurate and efficient in the task with sensory manipulation than without. 

Similarly, in tracing tasks, there was a statistically significant deterioration (see Table 3.3) 

in the performance of the control subjects when encountering the sensory manipulation. 

They committed more violations, spent more time outside the green track, and had higher 

mean violation distance in the task with sensory manipulation compared to those without 

manipulation of the sensory inputs. This indicates that the motor performance was 

negatively affected even in the control subjects when the sensory inputs were manipulated. 

While the relationship between sensory input and motor output has been discussed in 
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earlier studies [33], these findings further emphasize the importance of an accurate or 

reliable sensory input in optimally executing any voluntary movement. 

3.3.3 Sensorimotor Integration: Healthy Controls vs. PD Patients 
in the OFF State (PD-OFF) 

This section compares the performance of PD patients in their OFF state with the 

performance of the control subjects under differing sensory conditions. Table 3.4 shows 

the results from the trial-by-trial analysis. Figure 3.3 and Figure 3.4 compare the 

performance of all groups in reaching and tracing tasks respectively. 

Table 3.4: Trial-by-trial analysis 

 Trial-by-trial 

analysis between 

PD-OFF and 

Controls 

Trial-by-trial analysis 

between PD-OFF and PD-

ON 

Trial-by-trial 

analysis between 

PD-ON and Controls 

Mean Direction error 0.3302 (p = 0.0866) 0.1524 (p = 0.6362) 0.4136 (p = 0.0250) 

Mean Number of 

Violations 

-0.6781 (p = 0.015) 0.3676 (p = 0.1252) -0.1740 (p = 0.5899) 

Mean Violation 

Distance 

0.1741 (p = 0.3885) 0.3961 (p = 0.2023) 0.3424 (p = 0.2758) 

Time Spent under 

Violation 

-0.4652 (p = 0.1354) 0.5921(p = 0.0429) -0.0234 (p = 0.9423) 

3.3.3.1 Tasks with and without ASC 

In the reaching task without ASC, the accuracy of the control subjects was substantially 

better than PD-OFF. While PD-OFF had a 24% higher mean endpoint error than the control 

subjects, the direction error was 127% higher in PD-OFF compared to the control subjects. 

Furthermore, the efficiency also deteriorated in PD-OFF as the MDE for PD-OFF was 14% 

higher than the control subjects, with the difference being statistically significant. PD-OFF 

was also significantly slower as their mean velocity was 10% less than control subjects. 

For reaching tasks with ASC, the control subjects reached a higher number of targets than 

PD-OFF. Concerning the other metrics, PD-OFF were less accurate and efficient than the 

control subjects, with their endpoint error, direction error, and MDE being 34%, 171%, 

and 21% higher than the control subjects. The percentage difference between PD-OFF and 

the control subjects increased in tasks with ASC than without ASC. This may indicate that 
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the control subjects could effectively use the multi-modal inputs to improve their motor 

performance. However, an impairment in SMI among PD-OFF that adversely affects their 

ability to integrate multi-modal inputs leading to inaccurate perceptual estimates may have 

worsened their motor performance when provided with ASC. Therefore, there exists an 

impairment in SMI due to PD, which adversely affects the voluntary movements of PD 

patients during their OFF state. 

 

Figure 3.3: Features extracted from the reaching task for the three groups across all 

sensory conditions 



135 

 

Note: w.o. ASC = without assistive sensory cues; w. ASC = with assistive sensory cues; 

w.o. SM = without sensory manipulation; w. SM = with sensory manipulation. 

 

Figure 3.4: Features extracted from the tracing task for the three groups across all 

sensory conditions 

Note: w.o. ASC = without assistive sensory cues; w. ASC = with assistive sensory cues; 

w.o. SM = without sensory manipulation; w. SM = with sensory manipulation. 
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3.3.3.2 Tasks with and without Sensory Manipulation 

For the reaching task without sensory manipulation, the control subjects have once again 

outperformed PD-OFF across all features. The control subjects reached 4% more targets, 

43% less endpoint error, 56% less direction error, and 19% less MDE than PD-OFF. Higher 

movement speed for the control subjects was also noticed, as their mean velocity was 11% 

higher than PD-OFF. Moving to the tracing task without sensory manipulation, PD-OFF 

suffered from higher inaccuracies than the control subjects. PD-OFF committed 82% more 

violations than the control subjects while spending 90% more time under violation than the 

control subjects. Furthermore, the mean violation distance for PD-OFF was substantially 

higher than the control subjects. Lastly, the MDE was 20% higher in PD-OFF than the 

control subjects, implying that PD-OFF were less efficient than the control subjects. 

To evaluate the effect of sensory manipulation on these two groups, the 

performance of the groups when encountering sensory manipulation was compared. For 

the reaching task with sensory manipulation, PD-OFF had a statistically significant 

deterioration (see Table 3.3) in performance across most features. The number of targets 

reached by PD-OFF was 7% lower than the control subjects. PD-OFF were also 

significantly less accurate as their mean endpoint and direction errors were 35% and 36% 

higher than the control subjects. Finally, the efficiency of the reaching movement was also 

affected by the manipulation of sensory inputs, as PD-OFF had a statistically significant 

deterioration (see Table 3.3) in efficiency compared to the control subjects. Apart from the 

accuracy and efficiency, the mean velocity was also 18% lower for PD-OFF than the 

control subjects. Similarly, in tracing task with sensory manipulation, PD-OFF committed 

27% more violations, and spent 56 % more time under violation than control subjects. The 

findings suggest an apparent impairment among PD-OFF in the ability to flexibly adapt 

the SMI strategy based on the reliability of the sensory inputs. It must be noted that the 

control subjects also performed worse when encountering sensory manipulation, as 

indicated in the within-group comparison of the control subjects (Section 3.3.2.3). 

However, the performance of PD-OFF was significantly worse than that of the control 

subjects when performing tasks with sensory manipulation. This may imply that while the 

motor performance of both groups was affected due to unreliable sensory inputs, the 
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control subjects could adapt their SMI strategies to account for the unreliable sensory 

inputs and improve their motor performance over time. In contrary, PD-OFF were either 

unable to or less efficient in adapting to the manipulation of sensory inputs by varying their 

strategy for the SMI process based on the reliability of the sensory inputs, implying an 

impairment in SMI due to PD. 

In the case of trial-by-trial analysis (see Table 3.4) that evaluates the motor learning 

ability, a positive correlation (r = 0.3302) was observed for the mean direction error. 

However, a negative correlation was observed between the two groups for the mean 

number of violations (r = -0.6781) and time spent under violation (r = -0.4652). This 

implies that the difference between the groups in the two features reduced as they 

performed more trials. 

3.3.4 Sensorimotor Integration: PD Patients in the ON State (PD-
ON) vs. PD Patients in the OFF State (PD-OFF) 

This section discusses the effect of medication on SMI and how it affects voluntary 

movements. Therefore, the performance of PD-OFF and PD-ON was compared under 

varying sensory conditions. 

3.3.4.1 Tasks with and without ASC 

In the reaching task without ASC, while PD-OFF reached 2% more targets and was more 

efficient than PD-ON, their mean endpoint and direction error were also 9% and 11% 

higher, respectively, than PD-ON. Interestingly, while the mean error for PD-OFF was 

higher than that for PD-ON, the latter had a substantially higher maximum endpoint and 

maximum direction error than PD-OFF. This may imply that while the frequency of error 

committed by PD-ON was less than by PD-OFF, they commit much bigger errors 

compared to PD-OFF when they do end up committing errors. 

Moving to the reaching task with ASC, PD-ON reached 2% more targets, 

committed 18% less endpoint, and 88% less direction error than PD-OFF. However, the 

maximum endpoint and maximum direction error for PD-ON were 39% and 93% higher 

respectively than for PD-OFF. This finding aligns with the ones from the reaching task 
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without ASC. Finally, the efficiency of PD-ON was better as their MDE was 3% less than 

PD-OFF. An interesting finding was that the maximum error was higher for PD-ON, 

although their mean error was less than PD-OFF, which implies that the magnitude of error 

was much higher in PD-ON than PD-OFF, although the number of errors for PD-ON was 

less than PD-OFF. This may suggest that PD-ON struggled to correct errors once they had 

committed them as opposed to PD-OFF, who, despite committing more errors, could fix 

them; thereby, the magnitude of their errors was less. Correcting errors requires optimal 

integration of sensory inputs, proper interpretation of environmental properties, and 

appropriately modulating the motor outputs. It could be inferred that the medication may 

have affected the ability to use the sensory inputs to modulate the motor outputs, thereby 

being unable to correct errors once they have been committed. 

3.3.4.2 Tasks with and without Sensory Manipulation 

For tasks without sensory manipulation, in the reaching task, PD-ON reached 2% more 

targets, had 13% less endpoint error, and 11% less direction error than PD-OFF. Therefore, 

across most features, PD-ON performed better than PD-OFF. However, as it was observed 

earlier, while PD-ON performed better than PD-OFF across many features, PD-ON was 

much worse than PD-OFF in features such as maximum direction error. PD-ON had a 48% 

higher maximum direction error than PD-OFF. In the tracing task without sensory 

manipulation, PD-ON committed 52% fewer violations than PD-OFF. However, the time 

spent under violation and mean violation distance for PD-ON was 66% and 22% higher 

than PD-OFF, respectively. This further aligns with our earlier findings that PD-ON 

commits less violations or errors than PD-OFF. However, the magnitude of their violation 

was much higher than PD-OFF, owing to their inability to correct violations once they have 

been committed. PD-OFF also had better efficiency as PD-ON had 12% more MDE than 

PD-OFF. Finally, the mean velocity for both reaching and tracing tasks was 5% and 8% 

higher for PD-ON than PD-OFF. 

For the tasks with sensory manipulation, in the reaching task, PD-OFF reached 

more targets than PD-ON, with the efficiency of PD-OFF being much higher than that of 

PD-ON, as indicated by an increase of 6% in MDE after medication. Mean direction error 

is an important performance indicator of how the participants can adapt to sensory 
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manipulation and appropriately modulate motor output. With the manipulation being the 

fingertip position moving in the opposite direction to actual movement, the ability to adapt 

to the manipulation of visual inputs is vital to determine the direction in which the 

movement needs to be made to reach the desired target. In this, PD-OFF was much better 

than PD-ON as the mean direction error for PD-OFF was 24% less than PD-ON. Similarly, 

the maximum direction error was also 24% less for PD-OFF than PD-ON. In the tracing 

task with sensory manipulation, PD-ON committed 19% more violations than PD-OFF, 

with the time spent under violation and mean violation distance for PD-ON being 22% and 

37% more than that for PD-OFF. The efficiency in performing the tracing task with sensory 

manipulation was also much better for PD-OFF as their MDE was 4.5% less than PD-ON. 

In both reaching and tracing tasks with sensory manipulation, the mean velocity for PD-

ON was 9.1% and 9.5% higher than PD-OFF, respectively. To summarize, PD-ON 

performed worse than PD-OFF across most features when encountering sensory 

manipulation. While the movement speed improved after medication, the overall task 

performance was adversely affected due to the poor accuracy and efficiency in performing 

the task after taking medication. The findings suggest that the medication affected the 

ability to adapt to sensory manipulation, and therefore, could not appropriately modulate 

the motor outputs to suit the demands of the environment. Furthermore, even without 

sensory manipulation, the PD patients in their ON state struggled to correct errors once 

committed. Putting these results together, it may be inferred that the medication worsened 

the SMI impairments in PD patients, adversely affecting their ability to use the multi-modal 

sensory inputs to correct errors and adapt to the sensory manipulation resulting in poor 

motor performance. 

Discussing the trial-by-trial analysis (see Table 3.4) between PD-OFF and PD-ON 

groups, a positive correlation was observed across all four features (mean direction error, 

mean number of violations, time spent under violation, and mean violation distance). 

Further, the positive correlation observed in time spent under violation was statistically 

significant. 
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3.3.5 Sensorimotor Integration: PD Patients in the ON State (PD-
ON) vs. Healthy Controls 

This section compares the performance of PD patients in their ON state with control 

subjects.  

3.3.5.1 Tasks with and without ASC 

In tasks without ASC, the control subjects reached 2% more targets than PD-ON. 

Furthermore, the accuracy of the control subjects was also much better compared to PD-

ON, as their mean endpoint error and mean direction error was 15% and 120% less than 

for PD-ON. The control subjects also had 19% less MDE than PD-ON, indicating a better 

efficiency for the control subjects than for PD-ON. The trend was similar in tasks with 

ASC as the control subjects reached more targets and had substantially less endpoint error 

and direction error than PD-ON. The efficiency of the control subjects was also better with 

ASC, as the MDE for PD-ON was 18% higher than that for the control subjects. In both 

tasks with ASC and without ASC, the mean velocity for the control subjects was 5.1% and 

5.2% higher than for PD-ON, with the difference being statistically significant. 

3.3.5.2 Tasks with and without Sensory Manipulation 

In tasks without sensory manipulation, the control subjects outperformed PD-ON across 

all features for the reaching task. The control subjects reached 2% more targets, had 30% 

less endpoint error, 45% less direction error, and 21% less MDE than PD-ON, resulting in 

better accuracy and efficiency than PD-ON. Similarly, in tracing tasks, the control subjects 

committed 33% fewer violations than PD-ON, with the time spent under violation and 

mean violation distance for the control subjects being 136% and 107% less than PD-ON. 

MDE for the control subjects was 32% less than PD-ON, indicating better efficiency for 

the control subjects. Finally, PD-ON was substantially slower across both reaching and 

tracing tasks than the control subjects. 

When encountering sensory manipulation in the reaching task, the performance of 

the control subjects was once again better than PD-ON across all features, with the control 

subjects reaching 10% more targets, committing 19% less endpoint error, 58% less 

direction error, and 26% less MDE than PD-ON. In the tracing task with sensory 
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manipulation, PD-ON committed substantially more violations than the control subjects. 

Furthermore, the time spent under violation and mean violation distance for PD-ON was 

76% and 93% higher than the control subjects. The efficiency of PD-ON was also lower 

than the control subjects as the MDE was 19% lower for the control subjects compared to 

PD-ON. The mean movement speed for control subjects was 8% and 14% higher than PD-

ON in reaching and tracing tasks with sensory manipulation, respectively. The comparison 

indicates that the control subjects performed far better than PD-ON across all tasks and 

sensory conditions. The medication did not normalize the task performance of PD-ON and, 

therefore, was still much worse than the control subjects across all features. Even the 

features such as mean velocity, which was seen to improve after medication as shown in 

the comparison between PD-OFF and PD-ON, did not get normalized to the pre-PD state 

resulting in PD-ON being substantially slower than the control subjects. Finally, in trial-

by-trial analysis, a statistically significant positive correlation was observed between the 

two groups for mean direction error. 

3.3.6 Feature Selection and Pattern Recognition 

3.3.6.1 Selecting Features using the Decision Tree Algorithm 

With two different tasks being used to investigate the SMI performance, the feature 

selection and NN training were done separately to understand if the metrics acquired from 

these tasks may be used to predict or diagnose PD. This is primarily because some patients 

who completed the reaching tasks did not complete the tracing task. Therefore, it was not 

possible to combine the features from the two tasks to train a single NN model. As such, 

the feature importance was calculated using the decision tree algorithm separately for each 

task. Figures 3.5 and 3.6 show the feature importance calculated for reaching and tracing 

tasks, respectively. Based on the importance value, four metrics (speed peaks, mean 

endpoint error, maximum direction error, and maximum endpoint error) obtained from the 

reaching task were selected to train the NN model. For the tracing task, the five metrics 

with the highest importance value (time taken, mean violation distance, median MDE, 

mean velocity, and mean number of violations) was used to train a separate NN model. As 

illustrated earlier, the participants performed vastly differently depending on the sensory 

conditions of the task. Therefore, the sensory conditions were also used as a feature when 
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training the NN model. For ease of training purposes, a feature indicating the sensory 

condition of each data point is used when training the model. This will ensure that the NN 

considers the sensory manipulation and learns the participants' behavior under varying 

sensory conditions.  

 

Figure 3.5: Feature importance score for the reaching task 

 

Figure 3.6: Feature importance score for the tracing task 
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3.3.6.2 Training and Testing of NN Models 

Two different NN models were trained separately using the selected features. While one 

NN model was trained using features pertaining to the reaching task, another NN model 

was trained using the features pertaining to the tracing task. The architecture of the NN 

model is illustrated in Chapter 2 under section 2.4.2.1. In this study, 70% of the dataset 

was used to train the model, 15% of the data was used for validation, and 15% of the data 

was used to test the model’s performance. Figures 3.7 and 3.8 show how the training loss 

was minimized in each NN model. The trained model was tested using the remaining 

dataset to evaluate if the model could accurately differentiate between the PD and control 

subjects. Five performance metrics were calculated to evaluate the model’s performance 

and predictive accuracy. Tables 3.5 and 3.6 show the performance metrics of the NN model 

based on the reaching and tracing tasks, respectively. Both models have more than 80% 

accuracy, with the F-1 score of the NN for the tracing task being 0.87. This indicates that 

the model could differentiate between the PD and control subjects using the selected 

features.  

Table 3.5: Performance metrics of the NN model for the reaching task 

Accuracy (%) Recall Precision F-1 Score ROC-AUC 

81.56 0.8156 0.8122 0.8137 0.7481 

Table 3.6: Performance metrics of the NN model for the tracing task 

Accuracy (%) Recall Precision F-1 Score ROC-AUC 

88.27 0.8821 0.8813 0.8795 0.8359 
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Figure 3.7: Training loss for the reaching task 

 

Figure 3.8: Training loss for the tracing task 

3.4 Discussion 

This section focuses on quantifying and characterizing any impairments in SMI caused due 

to PD and how dopaminergic medication may alter these impairments. To evaluate the SMI 

performance, the healthy subjects and PD patients in their OFF and ON state of medication 

performed a series of reaching and tracing tasks under differing sensory conditions. The 

participants were tested under four sensory conditions: (i) without ASC, (ii) with ASC, (iii) 
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without sensory manipulation (iv) with sensory manipulation. The kinematic data acquired 

from the robotic device were used to calculate the features that serve as metrics to evaluate 

the performance of the participants. Two different comparisons were made using the 

extracted features: (i) within-group comparison, and (ii) between-group comparison. These 

comparisons provide us information about the participant’s ability to perform various 

facets of SMI appropriately: (i) integrate the multi-modal ASC, (ii) use the resulting 

perceptual estimates to modulate the motor output taking into account any changes in the 

testing environment or presence of sensory manipulation (inaccurate sensory inputs). 

Therefore, this objective investigation evaluated the SMI impairments in PD patients and 

the effect of dopaminergic medication. Furthermore, a trial-by-trial analysis was also 

performed to evaluate the motor learning ability, which is highly dependent on the proper 

functioning of SMI. The findings from this study may be used to understand and 

characterize the impairments in SMI that may contribute to the perceptual and motor 

deficits experienced by PD patients. Better knowledge about the contributing factor may 

enable us to target these deficits through a more systematic treatment regime. Furthermore, 

understanding the effect of medication would shed light on how the rehabilitation regimes 

needed to be planned and structured to be effective. 

A within-group comparison for each group was done to evaluate how the 

performance of the participants changes with the sensory conditions. Firstly, across all 

groups (PD-OFF, PD-ON, control subjects), when performing a within-group comparison 

between tasks with and without sensory manipulation, the participants performed better in 

tasks without sensory manipulation than in tasks with sensory manipulation. Therefore, it 

can be concluded that both the PD and control subjects were affected to varying degrees 

due to the inaccurate sensory inputs provided in the task with sensory manipulation. 

Moving to the within-group comparison between the reaching task with ASC and without 

ASC, PD-OFF appeared to perform worse when provided with ASC than their performance 

without ASC. This suggests that the assistive cues provided to help the patients perform 

better have instead affected their performance, implying an impairment in integrating 

multi-modal sensory cues. The reasoning behind this inference is that in the task without 

ASC, the participants received only visual input with no ASC (haptic or auditory inputs) 

and therefore are not required to integrate the inputs from multiple modalities and can 
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perform motor movements or modulate motor outputs based on the perceptual estimates 

formed through just the visual inputs. However, in the task with ASC, sensory inputs were 

provided through multiple modalities. Therefore, the patients are required to integrate 

multi-modal inputs and filter out unnecessary inputs to form the perceptual estimate that 

would be used to modulate the motor outputs. Therefore, the performance deterioration in 

the task with ASC compared to without ASC implies an impairment in PD-OFF to integrate 

multi-modal sensory inputs, resulting in an inaccurate perceptual estimate when provided 

with ASC, which in turn led to the incorrect modulation of motor outputs and, consequently 

the motor underperformance. Moving to PD-ON, the results from the within-group 

comparison were not statistically significant. While PD-ON showed marginal 

improvement when provided with ASC, there was no substantial improvement in the 

performance, implying that the ASC neither significantly improved nor deteriorated their 

performance. This may indicate that the external sensory cues provided to assist the 

patients did not alter their motor performance in any significant way. Finally, for the 

control subjects, the performance marginally improved in the task with ASC compared to 

without ASC. It may be that the control subjects have been exhibiting close to optimal 

performance even without ASC as shown by the fact that they were able to reach 100 % 

targets even in task without ASC. The reason for control subjects showing only marginal 

improvement in certain features when provided with ASC may be due to the limits of 

human motor control precision. However, a marginal improvement was seen in control 

subjects across most features when provided with ASC. Therefore, the motor performance 

of the control subjects may have benefitted from the ASC as they could optimally integrate 

the multi-modal inputs to obtain an accurate perceptual estimate and modulate the motor 

outputs to suit the demands of the environment. The reason for their better motor 

performance in the task with ASC may be the additional information provided by the haptic 

and auditory inputs, which resulted in a more coherent and detailed perceptual estimate. 

However, in the task without ASC, with no multi-modal inputs, their perceptual estimate 

may not be as robust and accurate as the task with ASC. This may explain the improvement 

in performance when the control subjects received ASC compared to when they did not 

receive any ASC. Studies [34][35] have also indicated that the perceptual estimate formed 

through multi-modal inputs may be a more accurate, robust, and coherent representation of 
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oneself and the world around us than an estimate formed through a single modality. In 

conclusion, while PD-OFF exhibited deficits in integrating multi-modal inputs due to SMI 

impairment, the control subjects with their optimal SMI functioning have shown that the 

ASC provided in the task was able to elicit an improvement in their motor performance.  

Moving to the comparison between PD-OFF and the control subjects, in tasks with 

and without ASC, the control subjects outperformed PD-OFF across all features. The 

underperformance by PD-OFF compared to the control subjects in the task without ASC 

(where the participants only had visual inputs) also aligns with earlier studies [36] [37] that 

reported abnormal vision-based spatial and temporal perception in PD patients. 

Additionally, while the control subjects performed better than PD-OFF with and without 

ASC, the difference in performance between the two groups was much higher in the task 

with ASC than in the task without ASC. The difference in endpoint error between the 

groups was 0.143 cm and 0.103 cm in tasks with and without ASC, respectively. Similarly, 

the difference in MDE between the groups was also 0.084 and 0.055 cm in tasks with and 

without ASC, respectively. Finally, while there was a statistically significant difference 

between the groups in features such as mean direction error and target reach in the task 

with ASC, there was no statistically significant difference between the groups in these 

features without ASC. This may be because the control subjects improved their motor 

performance when provided with ASC as opposed to PD-OFF, whose motor performance 

deteriorated in the task with ASC, resulting in a higher difference between the two groups. 

This opposing reaction between the two groups, when provided with ASC, was also 

observed in the within-group comparison. Therefore, this implies an impairment in one of 

the facets of SMI (multi-sensory integration) among PD patients. Computational models 

explaining how CNS may perform multi-sensory integration have been discussed in 

Chapter 1. The MLE model [10][11] indicates that a weight value is assigned to each input 

obtained from various modalities depending on the noise associated with that modality and 

then integrated. A modality with higher noise will receive a lower weight and vice versa. 

Interpreting the results from the perspective of the MLE model, there appears to be an 

impairment in determining the noise associated with a given modality and, therefore, could 

not assign appropriate weights to that modality during multi-sensory integration. 

Furthermore, apart from the noise associated with the modality, other factors, such as the 
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appropriateness of the information provided by a given modality to complete the task at 

hand, also needed to be considered based on earlier computational models [38][39]. This 

ability to determine which modality provides the most vital and accurate information 

necessary to complete a given task may be impaired in PD patients, leading to impairment 

in SMI. Studies [26] [27] have also suggested that an increased dependence on visual input 

among PD patients may indicate an apparent inability to rank the modality based on its 

importance and accuracy. This suggests that PD patients give higher importance to visual 

inputs irrespective of whether other modalities may provide equally or, if not more, vital 

information than the visual input due to an impaired multi-sensory integration process. 

However, it must be noted that while PD patients may rely more on visual inputs, they do 

not ignore the inputs from other modalities. This inference can be validated by examining 

the performance of PD-OFF in tasks with ASC, as the additional multi-modal inputs 

affected the motor performance and were not ignored by the PD patients. Therefore, while 

PD patients could utilize or consider the multi-modal inputs during the sensory integration 

process, there is an impairment in their ability to appropriately integrate multi-modal inputs 

as a result of CNS criteria for sensory integration being altered due to PD. Further work is 

still needed to understand how this multi-sensory integration criteria was altered in PD 

patients and if these criteria can be normalized through treatment strategies to better 

manage the sensory deficits in PD. Moving to tasks with and without sensory manipulation, 

the control subjects have again performed better than PD-OFF in tasks with and without 

sensory manipulation across all features. The findings from the reaching and tracing task 

without sensory manipulation further emphasizes our earlier inference that when provided 

with multi-modal ASC, the control subjects are better than PD-OFF in integrating inputs 

from multiple modalities and using the resulting perceptual estimate to modulate the motor 

outputs. In reaching and tracing tasks with sensory manipulation, while the control subjects 

performed better than PD-OFF, certain features that showed a statistically significant 

difference between the two groups in the task without sensory manipulation were not 

significant in the task with sensory manipulation. This may indicate that both groups were 

adversely affected due to sensory manipulation. Furthermore, this reduction in the 

difference between the two groups in the presence of sensory manipulation may also 

suggest that while PD-OFF may be more affected by the sensory manipulation, they were 
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able to improve their performance and get closer to the control subjects. This inference can 

be further validated by examining the trial-by-trial analysis, which evaluates the 

participant’s ability to adapt to sensory manipulation, learn and improve their motor 

performance as they complete more trials. In the tracing task with sensory manipulation, a 

negative correlation was observed in features such as the mean number of violations and 

time spent under violation. This indicates that while the overall performance of the control 

subjects was better than PD-OFF, the difference in performance between PD-OFF and the 

control subjects reduced over time in these two features as they performed more trials. 

Since there is no evidence of the deterioration in the performance of the control subjects in 

later trials, the only explanation for this finding is that PD-OFF improved their performance 

and got closer to the control subjects. This indicates that PD-OFF can adapt to sensory 

manipulation and learn over time to improve their motor performance. Interestingly, while 

PD-OFF improved their performance over time in the tracing task with sensory 

manipulation, they failed to do so in the reaching task with sensory manipulation, as a 

positive correlation was observed in the trial-by-trial for the mean direction error, 

indicating that the difference between the two groups has increased over trials. An 

explanation for the difference in the ability to learn over trials may be that the nature of 

ASC provided during the tracing task was much more helpful and efficient in guiding the 

motor movements. While the ASC in the reaching task was provided only when the 

participants reached the target as a sign of confirmation, the ASC provided in the tracing 

tasks existed throughout the trial to ensure that the participant did not move out of the green 

track. Consequently, the ASC in the tracing task may be more efficient in guiding the 

participants, resulting in a more accurate and efficient motor performance than the reaching 

task with sensory manipulation.  Therefore, the improvement observed in the trial-by-trial 

analysis may be attributed to the multi-modal ASC provided during the task. While 

examining the tasks with and without ASC, PD-OFF underperformed in the task with ASC 

due to the impairment in appropriately integrating the multi-modal inputs. However, in 

tasks with and without sensory manipulation, PD-OFF showed that despite the impaired 

SMI circuit, if provided with appropriate multi-modal inputs, PD-OFF is capable of 

improving their ability to integrate the multi-modal inputs over time and using the resulting 

perceptual estimate to improve their motor performance as they complete more trials. As 
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indicated earlier, the SMI has two facets (i) multi-sensory integration and (ii) modulation 

of motor outputs based on the resulting perceptual estimate. Taking these results together, 

while PD-OFF showed a deficit in the first facet of the SMI, they still retained the ability 

to modulate the motor outputs based on the perceptual estimate. This is why when they 

eventually improve their multi-sensory integration process over time, it gets translated into 

an improvement in motor performance. The findings suggest that if PD-OFF are provided 

with appropriate sensory inputs during their rehabilitation regimes, they can improve motor 

performance. However, retaining this improvement over a longer period is still a topic of 

debate. 

A comparison was done between PD-OFF and PD-ON under different sensory 

conditions. In tasks with and without ASC, PD-ON performed better than PD-OFF across 

most features except for the maximum endpoint and direction errors. In both these sensory 

conditions, PD-ON exhibited higher maximum endpoint and maximum direction error than 

PD-OFF. However, PD-ON performed better than PD-OFF in mean endpoint and direction 

error. The findings suggest that while PD-ON may commit fewer errors than PD-OFF when 

PD-ON commits an error, PD-ON is less efficient in correcting it than PD-OFF. In the 

reaching task without sensory manipulation, PD-ON had performed better than PD-OFF 

except in maximum direction error. Again, while the mean error was less for PD-ON than 

PD-OFF, their maximum error was much higher than PD-OFF. Therefore, PD-OFF may 

be able to use the perceptual estimates obtained from an impaired SMI circuit to correct 

the errors. While this estimate may not be very accurate due to the SMI impairment, PD-

OFF could still use it to correct errors, resulting in lower maximum endpoint and maximum 

direction errors. On the other hand, the results indicate that PD-ON may be unable to use 

the perceptual estimates to correct the endpoint and direction error committed during the 

task. For the tracing task without sensory manipulation, the findings show that while PD-

ON had a less mean number of violations than PD-OFF, the time spent under violation, 

MDE, and the mean violation distance for PD-ON were much higher than PD-OFF. 

Congruent to our earlier conclusion, the results imply that while PD-ON committed fewer 

violations (deviating from the green track) than PD-OFF, when they do commit a violation, 

the magnitude of the violation is much higher due to their inability to modulate motor 

outputs based on perceptual estimates to correct the violation. Hence, the findings suggest 
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that the medication may impair the online motor control (ability to listen to the sensory 

inputs and appropriately adjust the motor outputs to suit the demands of the environment), 

which is vital to performing any task-specific voluntary movements. Finally, in the 

reaching task with sensory manipulation, PD-ON performed worse than PD-OFF across all 

features apart from mean velocity and mean endpoint error. The mean and maximum 

direction error, which evaluate one’s ability to adapt to the sensory manipulation and adjust 

motor output, was statistically significantly worse in PD-ON compared to PD-OFF. This 

trend continued in the tracing task with sensory manipulation as PD-ON performed poorly 

across all features except the mean velocity compared to PD-OFF. Therefore, the patients 

in their medicated state struggled to adapt to the sensory manipulation compared to their 

unmedicated state. Earlier studies [10][11] [38][39] have shown that SMI is responsible 

for ranking the modalities based on their accuracy, reliability, and relevance to the task at 

hand and integrating them. Therefore, identifying and adapting to an inaccurate sensory 

input requires proper functioning of SMI. Considering the findings, it can be concluded 

that the medication has exacerbated the SMI deficits in PD patients. This may be why the 

inaccurate sensory inputs have negatively affected the performance of PD-ON much more 

than the performance of PD-OFF. Apart from this deficit in ranking the modality based on 

their accuracy, the more important finding is the worsening of the ability to modulate the 

motor outputs based on the perceptual estimate. Studies [40][41] have discussed an internal 

model that includes a forward and inverse model to explain how humans may perform 

online motor control (see Section 1.5.5). By comparing PD-OFF and PD-ON, it was 

evident that PD-ON was unable to recognize that they had committed an error. From the 

perspective of the internal model, there exists a deficit in PD-ON to appropriately use the 

perceptual estimates and understand that the motor outcome is not what was expected. As 

a result, they fail to recognize and correct the error. This impairment in correcting errors 

using perceptual estimates among PD-ON may also be the reason for why the magnitude 

of the error or violation committed by PD-ON is much worse than that by PD-OFF, 

although the number of errors committed by PD-OFF is higher than that by PD-ON. 

Therefore, it can be concluded that the medication has adversely affected online motor 

control ability, affecting task-specific voluntary movements. Any deficit in this ability 

would also adversely affect the performance when encountering sensory manipulation. 
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While PD-OFF did struggle when encountering sensory manipulation, as they retained the 

ability to recognize an error and adjust the motor output accordingly, their performance 

was better than PD-ON. However, PD-ON, due to their deficit in online motor control, 

could not use the perceptual estimate to appropriately determine an error and were far less 

efficient in correcting the error. The observation from within-group comparison was also 

in line with this inference as the motor performance of PD-ON was not impacted 

significantly when provided with ASC. This could also be attributed to the impaired online 

motor control as they could not use the additional information provided through multi-

modal inputs to modulate the motor outputs. Finally, the motor learning was also evaluated 

between the two groups using trial-by-trial analysis, which indicated that a positive 

correlation was observed between the mean violation distance, time spent under violation, 

and mean number of violations in the tracing tasks with sensory manipulation. Therefore, 

in addition to PD-ON being worse than PD-OFF in these features, the difference between 

the two groups also increased as more trials were performed. This suggests that while PD-

OFF improved their performance in these features when encountering sensory 

manipulation, PD-ON failed to do so. Therefore, motor learning, which is heavily 

dependent on SMI performance, was also affected due to medication. To summarize, 

numerous studies in the past have reported that the medication has mitigated the cardinal 

motor symptoms of PD. The result from our study also aligns with earlier studies as the 

movement speed improved after medication. However, there exists a distinction between 

the speed at which a task is performed and the quality (accuracy and/or efficiency) with 

which a task is performed. Optimally performing a task-specific voluntary movement 

requires constant learning, re-learning, and updating of motor outputs based on the changes 

in the environment and task at hand. These abilities depend on the proper functioning of 

SMI circuits, and any impairment in SMI functions may affect these abilities, resulting in 

poorer task performance. This is why an improvement in movement speed due to 

medication did not translate to improving task performance. While the medication 

improved the movement speed, it adversely affected certain aspects of the SMI, which 

impaired the ability to learn, re-learn, and modulate motor outputs to suit the demands of 

the testing environment. These impairments during the ON state led to a deterioration in 

task performance despite an improvement in movement speed. Therefore, on a cautionary 
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note, these findings imply that the medication may negatively impact various aspects of 

SMI, which in turn impairs the online motor control and motor learning abilities in PD 

patients. This effect of medication on the functioning of SMI needs to be considered when 

planning and structuring the rehabilitation regimes. 

A comparison between the control subjects and PD-ON was performed. The results 

indicate that the control subjects performed better than PD-ON in both reaching and tracing 

under all sensory conditions. A few crucial findings needed to be discussed when 

comparing the two groups. While the medication improved the movement speed in PD 

patients, the control subjects were still faster than PD-ON, indicating the medication did 

not normalize the movement speed in PD patients. Comparing the performance of the two 

groups in tasks with and without ASC, the difference in error metrics between the two 

groups increased in the task with ASC compared to without ASC. This implies that the 

control subjects improved their motor performance because of multi-modal ASC as 

opposed to PD-ON who did not benefit substantially from the ASC. Additionally, the 

difference between the two groups in tasks with sensory manipulation was much higher for 

most features than for tasks without sensory manipulation. The finding suggests that the 

control subjects were better than PD-ON in adapting to sensory manipulation. Finally, a 

positive correlation was observed in the trial-by-trial analysis for mean violation distance, 

indicating the difference between the two groups increased. Considering that the control 

subjects performed better than PD-ON in tasks with sensory manipulation, the positive 

correlation implies that the control subjects improved their performance over time while 

PD-ON failed to do so. To conclude, compared to the control subjects, PD-ON showed 

deficits in SMI, which impaired their ability to use the ASC to exhibit any motor 

improvements, adapt to sensory manipulation, and learn to improve their motor 

performance over time. 

Machine learning models were designed and trained to determine if the robotic 

tasks and the metrics may be used as a potential diagnostic tool to detect abnormalities in 

SMI and SMC functions. Two different NN models were tested using the metrics from the 

reaching, and tracing task, which indicated that the models could accurately predict and 

differentiate between the PD and control subjects. The NN models showed an accuracy, 
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and F-1 score of more than 80%, implying that the robotic task and metrics designed in this 

thesis were able to characterize the impairments caused due to PD accurately. The results 

from these tasks may be used to manage the disease better. Another notable finding is that 

the NN trained using the features related to the tracing task performed better than the NN 

trained using the features pertaining to the reaching task. This may suggest that the tracing 

task was more efficient in highlighting the difference between the PD and control subjects 

than the reaching task. Moving forward, it may be worthwhile to investigate if selected 

features from the objective analysis may be used in conjunction with the current clinical 

method to better diagnose and gauge the disease's severity and progression. 

Summarizing the findings, PD-OFF exhibited clear impairments in integrating 

multi-modal sensory inputs, affecting the task-specific voluntary movements. As a result, 

PD patients were unable to benefit from the multi-modal ASC. From the perspective of 

computational models [11] [38], the PD appears to alter the criteria used by the CNS to 

rank modalities based on accuracy and appropriateness before integrating them. The 

studies [26][27] that discuss the increased visual dependence of PD patients also support 

this inference. This altered criterion may be the root cause of the SMI impairment, leading 

to perceptual and motor deficits.  However, the PD patients still retained the ability to use 

the residual perceptual estimates formed using the impaired multi-sensory integration 

process to modulate the motor outputs based on the requirements of the testing 

environment. Therefore, while the first facet (multi-sensory integration) of SMI is 

impaired, the second facet (modulation of motor output) of SMI may be unaffected due to 

PD. Due to this, the PD patients were able to adapt to sensory manipulation, although they 

took more time than the control subjects to do so. Moreover, the PD patients were also able 

to learn and improve their performance over time, implying that they still retain their motor 

learning ability. With the motor learning ability being heavily reliant on the proper 

functioning of SMI, the PD patients, despite the impairment in the multi-sensory 

integration process, were able to improve on the SMI process as they completed more trials 

which in turn led to improvement in motor performance over time. Therefore, PD patients 

only exhibit deficits in one facet of the SMI. If provided with appropriate sensory cues that 

guide the patients throughout the task, they can improve their SMI performance over time. 

The effect of the medication on the PD patients was evaluated, which indicated that the 
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medication worsened the SMI impairments. The medication has disrupted the ability to use 

the perceptual estimate to modulate the motor outputs based on the changes in the 

environment and to learn or relearn any motor skills. Any task-specific voluntary 

movement, including daily activities such as driving or eating, requires the ability to use 

the perceptual estimates for constant updating of motor commands and the ability to learn 

new tasks or modify an already learned task to suit the demands of the environment. The 

worsening of the impairment due to medication affecting the integration between the 

sensory and motor system may have resulted in the motor system outputting a motor 

command without accurately considering the changes in the testing environment. This 

deficit in online motor control resulted in PD-ON being unable to benefit from the multi-

modal ASC and has also exhibited a significant deterioration in motor performance when 

encountering sensory manipulation. Furthermore, the ability to learn and improve motor 

performance was also impaired as it requires optimal use of the acquired sensory inputs to 

continuously refine their skills and improve performance. Therefore, as opposed to PD-

OFF (who were able to learn and improve over time), the worsening of impairment in the 

SMI due to medication affected the ability to use the sensory feedback to refine the motor 

skills, adversely affecting the motor learning ability. Although the medication improved 

the movement speed, it has substantially deteriorated the functioning of SMI, which led to 

a deterioration in the accuracy and efficiency of voluntary movements. While the 

improvement in movement speed helped the patients complete the tasks quicker, it 

negatively affected their overall task performance, owing to the worsening SMI 

impairment. Therefore, despite their impairment in multi-sensory integration, PD-OFF 

were better than PD-ON in using the sensory feedback to modulate the motor outputs, adapt 

to erratic testing conditions, and learn new motor skills. Studies [21] discussed the 

importance of providing appropriate sensory cues during rehabilitation regimes and the 

role of sensory cues in improving the efficacy of the regimes. Therefore, the ability to use 

sensory cues to improve motor performance is the key to the success of rehabilitation 

therapies. Taking these results together, the PD patients in their OFF state may benefit 

more from the therapy as they still retain the ability to modulate or learn motor skills based 

on sensory feedback. This would ensure that the sensory cues essential to the success of 

the therapies are utilized appropriately to improve motor performance, enhancing the 
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efficiency of therapy. On the other hand, the efficacy of the therapies may be negatively 

affected when the PD patients in their ON state are exposed to the rehabilitation regimes 

as they exhibit worsening SMI impairments and are unable to learn and improve motor 

performance using sensory cues. This inability to use sensory cues to better their motor 

performance may result in the patients not benefitting from the therapies. Therefore, it may 

be that rehabilitation therapies with an enriched sensory environment that provides useful 

and appropriate multi-modal inputs may be more beneficial to PD patients before 

medication. However, certain PD patients do experience severe motor symptoms during 

their OFF state, thereby affecting their ability to perform any motor tasks. Hence, the 

patient’s motor symptoms during the OFF state also need to be considered when 

determining their rehabilitation strategy.  
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Chapter 4  

4 Sensorimotor Control in Parkinson’s Disease: 
Abnormalities in Movement Planning and Online Error 
Correction 

This chapter discusses results pertaining to the investigation of Sensorimotor Control 

(SMC) in Parkinson’s Patients. 

4.1 Introduction 

Motor actions are the means through which humans physically interact with the world 

around them. Chapter 3 discusses Sensorimotor Integration, which provides the motor 

system with the necessary information about oneself and one's surroundings. However, 

humans still need to use this information and determine the best course of action to achieve 

the desired goal. In short, having the necessary information from the SMI process alone 

does not guarantee the proper execution of a motor task. Optimal planning and correction 

or updating of an existing motor plan are necessary for the optimal execution of a motor 

task in a dynamic environment. The ability to use and interpret the information obtained 

from the SMI process to plan, update, correct the motor strategies and generate the 

appropriate motor commands to achieve the desired outcome is called Sensorimotor 

Control (SMC). SMC encompasses a broad network of functions intertwined with each 

other that involves and requires multiple systems to work together. Therefore, in addition 

to the motor system, which plays a vital role in movement execution, and the sensory 

system, which provides the necessary information to perceive the world around oneself, 

the cognitive system also plays a crucial role in SMC as it aids in a series of decision-

making processes involved in planning or correcting the motor strategies. Therefore, 

optimal functioning of SMC requires multiple systems (sensory, motor, and cognitive 

systems) communicating with each other in a closed loop. The neural and computational 

bases related to SMC functions were discussed in Chapter 1 under sections 1.5.4 and 1.5.5. 

Since almost all daily activities are performed in an environment that is constantly 

changing and sometimes unpredictable, i.e., a dynamic environment, executing any day-

to-day task requires constant planning and updating of planned movements. Therefore, 
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SMC functions such as movement planning, and online error correction are vital for 

performing voluntary movements. Any disease affecting the domains (motor, sensory, and 

cognitive) related to the SMC functions may, in turn, severely impair the individual’s 

ability to perform any voluntary movement, adversely affecting their quality of life. 

Cardinal motor symptoms such as tremor, rigidity, and bradykinesia presented by 

PD have garnered a lot of attention over the years and have been associated with difficulties 

in movements. However, the planning and execution of motor actions are far more 

complex, as explained earlier, and may contribute to the difficulties in voluntary 

movements. It is well known that PD not only affects the motor systems but may also 

impair sensory or cognitive systems, which may lead to a disruption of fundamental 

processes involved in performing voluntary movements. SMC functions such as movement 

planning and online error correction, which act as building blocks for any motor action, 

may be impaired due to PD, adversely affecting the patient’s ability to perform any day-

to-day tasks. The neural regions involved in SMC functions are not yet fully understood, 

although numerous studies [1] [2] [3][4] have pointed to BG, the affected region in PD, 

having a vital role in movement planning and error correction. Therefore, the BG 

dysfunction due to PD may give rise to an impairment in SMC, which aligns with our 

earlier hypothesis stated in Chapter 1. It is important to characterize any impairments in 

SMC that may be presented due to PD and to understand the underlying mechanism as to 

how an impairment in a specific domain affects the SMC functions. To better understand 

the mechanisms or criteria associated with SMC that may be altered due to PD, it may be 

necessary to analyze the SMC functions of PD patients from the perspective of 

computational models that have been hypothesized to explain the functioning of SMC. This 

would shed light on how dysfunctions in PD may affect the CNS’s criterion in executing 

an SMC function. So far, to the best of our knowledge, no study has evaluated the SMC 

performance of PD patients based on existing computational models. Furthermore, 

investigating the SMC impairments in PD patients using objective metrics would provide 

new insights into the factors contributing to motor dysfunctions. This may open new doors 

in patient-specific and domain-specific rehabilitation therapy to target SMC impairments 

using specific objective metrics that signify an improvement or deterioration in SMC 

performance due to the therapy. Using objective metrics in rehabilitation therapies would 
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provide a more tangible method to assess the patient’s response to the therapy, thereby 

improving the efficacy of the therapy. Furthermore, with deficits in certain sensory and 

cognitive domains arising at an early stage, there is a need to objectively detect these 

deficits at an early stage. While clinical scales may be used to detect these deficits, some 

studies [5] discuss the limitations of subjective assessments, such as clinical scales, and 

recommend complementing these scales with objective metrics for more effective 

diagnosis and management of PD. Additionally, there is also a lack of clinical methods to 

evaluate SMI and SMC performance. Finally, there is also a need to understand the effect 

of medication on SMC function, as some studies [6][7][8] have reported that medication 

has mixed results on PD-related impairments. While it is well-known and even clinically 

established that the medication may mitigate cardinal motor symptoms, the studies in 

[6][7][8] show that the medication may have an adverse effect on the sensory, and cognitive 

systems, which are also vital for the proper functioning of SMC. Therefore, it is necessary 

to understand the effect of medication on SMC functions and how it may affect a patient’s 

ability to perform voluntary movements. 

Studies have discussed difficulties in performing motor functions and impairments 

in SMC among PD patients. A detailed discussion of existing studies on SMC impairments 

in PD patients is provided in Chapter 1 under section 1.5.6. However, several unanswered 

questions about movement planning and error correction aspects of SMC functions need 

to be explored. Most studies that examine SMC functionalities either do not use objective 

metrics to evaluate SMC functions or fail to individually explore all domains associated 

with SMC functions. Furthermore, to the best of our knowledge, no study has evaluated 

the functioning of SMC from the perspective of the computational model, which is also 

one of the objectives of this study. Therefore, it is essential to objectively investigate all 

domains involved in SMC functions (specifically movement planning and online error 

correction) and the effect of medication on these functions.  
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4.2 Methods 

4.2.1 Participants 

Fifty-six patients diagnosed with PD and twenty age-equivalent control subjects were 

recruited to evaluate the effects of PD on SMC. The patients were recruited at the 

Movement Disorders Clinic of the London Health Sciences Centre in London, Ontario, 

Canada. The Office of Human Research Ethics at Western University's Research Ethics 

Board approved this study (protocol numbers: 115770, 108252). The nature of the 

experiment was explained to the participants before the study through a letter of 

information, and all participants provided their informed consent before their participation. 

The experiments were conducted in accordance with the ethical standards indicated by the 

Declaration of Helsinki and the Tri-Council Policy Statement of Ethical Conduct for 

Research Involving Humans in Canada. The robotic assessment for the OFF state was done 

after overnight suspension of the dopaminergic drugs. Later, the patients were administered 

the prescribed medication, and the robotic assessment was repeated one hour after the 

medication intake. Therefore, all PD patients underwent the robotic assessment in both 

OFF and ON states. The patients included in this study did not experience any dyskinesia 

after medication that affected their upper-limb movement. Furthermore, the control 

subjects and PD patients performed the robotic tasks separately using their right as well as 

left hands. Before the robotic assessment, motor complications, if any, were evaluated for 

each PD patient using section 3 (motor sub-scale) of UPDRS in both the OFF and ON 

states. The cognitive status of the PD patients was evaluated in the ON state using the 

MoCA scale. 

4.2.2 Experimental Setup 

During the robotic assessment, participants sat upright and comfortably on a wheelchair 

base facing the VR display. The height of the chair was adjusted such that the participant’s 

forehead was aligned with the fixed headrest ensuring optimal arm reach and screen 

visibility. The position of the chair was also adjusted so that the participants could 

comfortably grasp the robotic handle and move it across the entire workspace. Figure 4.1 

shows the experimental setup.  
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Figure 4.1: Experimental setup for the obstacle avoidance task 

4.2.3 Design and Development of an Obstacle Avoidance Task 

A custom-designed obstacle avoidance task was used to assess if sensorimotor control in 

PD patients is altered. Participants were tested under dynamic conditions to evaluate their 

sensory, motor, and cognitive performance, as the optimal functioning of SMC requires 

multiple systems (sensory, motor, and cognitive) working together. The primary objective 

for the participants was to reach all the targets within a given time while avoiding all the 

obstacles. Targets were square-shaped, and the obstacles were circle- or triangle-shaped. 

The testing conditions were varied by changing the state (moving or stationary) of the 

targets or obstacles and adding single or multiple mechanical perturbations. The task was 

divided into four levels, with the obstacles and targets either moving or stationary 

depending on the level of the task. Table 2.3 shows the testing conditions for each level of 

the task. Apart from these variations, the speed at which the objects may move and the 

objects' width were also randomly varied. Humans need to perform most day-to-day tasks 

in a dynamic environment. Optimally planning a movement in an environment where its 

properties are constantly changing and correcting or updating a planned motor strategy to 

adapt to the changes in the environment is essential to perform any daily activity. 
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Therefore, various aspects of the testing conditions were varied to evaluate the movement 

planning and online error correction ability of the participants in dynamic environments. 

Additionally, mechanical perturbations were added to understand if PD also alters the force 

sensitivity in individuals. Participants performed 40 trials, with each level containing ten 

trials. Finally, to evaluate the individual’s ability to use multi-modal inputs, haptic and 

auditory inputs were provided to help the participants avoid obstacles. With the SMC 

network spanning multiple domains (cognitive, sensory, and motor), the task was designed 

to evaluate the SMC functions associated with each domain and individually characterize 

the SMC impairments in each domain. The obstacle avoidance task was explained in 

greater detail in Chapter 2 under Section 2.1.5. 

4.2.4 Feature Extraction and Analysis 

To quantitatively analyze the SMC performance of the participants, features were extracted 

using the kinematic data collected by the robotic device when the participants performed 

the obstacle avoidance task. The extracted features were used to evaluate each domain 

(sensory, motor, and cognitive) involved in SMC functionalities. Section 2.2.3 in Chapter 

2 provides definitions for the extracted features and the rationale behind classifying them 

to evaluate a specific domain associated with SMC functions. Table 2.7 shows the extracted 

features and the domain that it evaluates. Furthermore, specific features were extracted to 

compare each group's performance from the perspective of six computational models that 

hypothesized the criteria CNS might use to optimally perform SMC functions such as 

movement planning and online error correction.  

4.3 Results 

4.3.1 Participant Demographics 

This study tested twenty age-equivalent healthy controls (13 males and 7 females) and 

fifty-six PD patients (40 males and 16 females) in their OFF and ON states. The motor and 

cognitive status of all PD patients were examined using the section 3 motor subscale of 

UPDRS and MoCA, respectively. Table 4.1 shows the demographics and clinical data for 

PD patients and control participants. 
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Table 4.1: Demographic and clinical data for PD patients 

Demographic Data PD patients Control subjects 

Number of participants 56 20 

Age (years) (Mean (Minimum - Maximum)) 62 (49 – 78) 58 (46 – 74) 

Gender (M/F) 40/16 13/7 

Years with disease (Mean (Minimum - Maximum)) 10 (2 -30) N/A 

Clinical Data 

MOCA (Mean (Minimum - Maximum)) 26 (21 – 30) N/A 

UPDRS motor sub-scale in OFF therapy (Mean 

(Minimum - Maximum)) 

46 (6 – 73) N/A 

UPDRS motor sub-scale in ON therapy (Mean 

(Minimum - Maximum)) 

30 (4 – 51) N/A 

4.3.2 Sensorimotor Control: Healthy Controls vs. PD-OFF 

This section compares the performance of the control subjects with the PD patients in their 

OFF state. The features extracted to evaluate each domain (sensory, motor, and cognitive) 

involved in SMC functionalities were compared between the two groups individually to 

understand and characterize any domain-specific impairments that may affect SMC 

functions, such as movement planning and online error correction. Furthermore, specific 

features were also used to compare the performance of the two groups from the perspective 

of computational models. Table 4.2 shows the performance of the groups in the features 

extracted for the obstacle avoidance task, and Table 4.3 shows the significance value 

obtained from comparing the performance of the groups [9]. 

Table 4.2: Task performance of the three groups in each level of the obstacle 

avoidance task 

Parameters PD-OFF (Median 

(Range)) 

PD-ON (Median 

(Range)) 

Control (Median 

(Range)) 

Mean speed (cm/s) L-1 0.125 (0.127) 0.135 (0.123) 0.166 (0.076) 

L-2 0.154 (0.206) 0.176 (0.160) 0.214 (0.076) 

L-3 0.152 (0.169) 0.167 (0.151) 0.210 (0.097) 

L-4 0.159 (0.174) 0.178 (0.152) 0.235 (0.010) 

Peak speed (cm/s) L-1 0.563 (0.749) 0.570 (0.666) 0.887 (0.786) 

L-2 0.604 (0.815) 0.685 (0.770) 0.894 (0.624) 

L-3 0.629 (0.899) 0.679 (0.528) 1 (0.748) 

L-4 0.684 (0.759) 0.776 (0.671) 1.013 (0.666) 

Time to reach 

maximum speed (s) 

L-1 5.468 (6.086) 5.168 (6.529) 4.608 (5.008) 

L-1 626.4 (753) 644.9 (237) 737.5 (233) 
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Movement area 

(cm2) 

L-2 753.8 (1008) 852.5 (793) 954.9 (321) 

L-3 748.3 (561) 754.2 (361) 860.6 (557) 

L-4 714.1 (999) 860.1 (771) 1002 (328) 

Reaction time (s) L-1 1.571 (1.485) 1.334 (1.216) 1.295 (0.704) 

Speed peaks L-1 8 (10) 6 (8) 5 (2) 

L-2 14 (6) 12 (5) 10 (5) 

L-3 10 (9) 9 (6) 7 (2) 

L-4 13 (6) 13 (5) 11 (3) 

Movement time (s) L-1 8.969 (12.91) 7.756 (4.674) 7.484 (2.426) 

L-2 10.66 (3.351) 10.82 (4.601) 9.001 (3.414) 

L-3 8.645 (5.072) 7.964 (5.416) 7.326 (1.965) 

L-4 11.29 (3.183) 11.02 (4.083) 10.19 (2.830) 

Obstacle hit-to-warn 

ratio 

L-1 0.051 (0.300) 0.040 (0.233) 0.013 (0.144) 

L-2 0.055 (0.474) 0.043 (0.333) 0.018 (0.194) 

L-3 0.314 (0.574) 0.355 (0.300) 0.210 (0.259) 

L-4 0.300 (0.446) 0.323 (0.339) 0.145 (0.257) 

Corrective time for 

perturbation (s) 

L-2 0.196 (0.237) 0.192 (0.273) 0.162 (0.119) 

L-3 0.208 (0.127) 0.226 (0.184) 0.181 (0.113) 

L-4 0.216 (0.168) 0.238 (0.161) 0.203 (0.142) 

Target reach percent 

(%) 

L-1 91.2 (60.7) 97.5 (30.5) 98.6 (55) 

L-2 58.2 (72.2) 63.8 (71.0) 71.6 (38.8) 

L-3 92.3 (36.1) 96.8 (16.6) 100 (27) 

L-4 55.5 (61.1) 68.0 (52.7) 76.3 (22.2) 

Efficiency L-1 0.671 (0.546) 0.685 (0.410) 0.879 (0.167) 

Target order L-1 0.705 (0.577) 0.749 (0.392) 0.838 (0.278) 

Endpoint error (cm) L-1 0.454 (0.387) 0.462 (0.524) 0.257 (0.112) 

L-2 0.676 (0.541) 0.729 (0.672) 0.591 (0.510) 

L-3 0.421 (0.630) 0.396 (0.325) 0.272 (0.133) 

L-4 0.630 (0.409) 0.640 (0.550) 0.587 (0.361) 

Mean obstacle hit 

proportion per trial 

L-1 17.11 (26.25) 15.66 (24.43) 11.62 (10.90) 

L-2 45.68 (32.53) 46.27 (37.76) 26.76 (19.72) 

L-3 85.76 (63.33) 69.31 (58.31) 53.72 (43.28) 

L-4 86.87 (67.89) 89.46 (71.52) 56.67 (47.71) 

Total Corrective 

movements 

L-1 87 (141) 69 (83) 58 (14) 

L-2 111 (224) 105 (72) 65 (46) 

L-3 93 (122) 84 (98) 73 (34) 

L-4 127 (104) 121 (59) 115 (73) 

Endpoint variance 

(cm) 

L-1 0.556 (2.062) 0.517 (2.517) 0.133 (0.835) 

L-2 1.213 (5.096) 1.706 (6.245) 1.108 (3.353) 

L-3 0.488 (2.923) 0.445 (2.463) 0.201 (0.422) 

L-4 1.161 (4.451) 1.947 (5.220) 0.950 (2.475) 

Slope between 

performance and ID 

L-1 0.391 (0.284) 0.361 (0.249) 0.283 (0.198) 

L-2 0.904 (0.693) 0.940 (0.560) 0.791 (0.412) 

L-3 0.410 (0.346) 0.391 (0.331) 0.321 (0.351) 

L-4 0.927 (0.540) 0.876 (0.670) 0.827 (0.790) 
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Error-speed ratio L-1 3.60 (16.2) 3.26 (9.34) 1.40 (1.57) 

L-2 4.51 (11.5) 4.10 (9.90) 2.87 (4.43) 

L-3 2.35 (9.95) 1.98 (6.04) 1.12 (1.52) 

L-4 3.48 (10.3) 3.47 (6.96) 2.26 (3.38) 

Table 4.3: Comparing the three groups for statistical differences 

Parameters Statistical Significance 

PD-OFF Vs. 

Controls 

PD-OFF Vs. PD-

ON 

PD-ON Vs. Controls 

Mean speed (cm/s) L-1 p = 0.0016* p = 0.0879 p = 0.0139* 

L-2 p = 0.0014* p = 0.0703 p = 0.0096* 

L-3 p = 0.0007* p = 0.0062* p = 0.0065* 

L-4 p = 0.0006* p = 0.010* p = 0.0057* 

Peak speed (cm/s) L-1 p = 0.0004* p = 0.2343 p = 0.0008* 

L-2 p = 0.0031* p = 0.071 p = 0.0157* 

L-3 p = 0.0006* p = 0.032* p = 0.0003* 

L-4 p = 0.0002* p = 0.044* p = 0.0056* 

Time to reach 

maximum speed (s) 

L-1 p = 0.43 p = 0.039* p = 0.9480 

Movement area 

(cm2) 

L-1 p = 0.0062* p = 0.0836 p = 0.0050* 

L-2 p = 0.0442* p = 0.024* p = 0.2488 

L-3 p = 0.0385* p = 0.212 p = 0.0348* 

L-4 p = 0.0048* p = 0.08 p = 0.0938 

Reaction time (s) L-1 p = 0.010* p = 0.0329* p = 0.5280 

Speed peaks L-1 p = 0.0123* p = 0.0654 p = 0.0973 

L-2 p = 0.0431* p = 0.0811 p = 0.2142 

L-3 p = 0.0006* p = 0.0035* p = 0.0499* 

L-4 p = 0.1094 p = 0.160 p = 0.2723 

Movement time (s) L-1 p = 0.0027* p = 0.0022* p = 0.0231* 

L-2 p = 0.011* p = 0.0062* p = 0.3494 

L-3 p = 0.0004* p = 0.0019* p = 0.0856 

L-4 p = 0.0282* p = 0.0401* p = 0.6793 

Obstacle hit-to-

warn ratio 

L-1 p = 0.0252* p = 0.0203* p = 0.0894 

L-2 p = 0.101 p = 0.255 p = 0.0642 

L-3 p = 0.0052* p = 0.0935 p = 0.004* 

L-4 p = 0.4274 p = 0.7782 p = 0.6476 

Corrective time for 

perturbation (s) 

L-2 p = 0.040* p = 0.2432 p = 0.0780 

L-3 p = 0.09 p = 0.2954 p = 0.0679 

L-4 p = 0.115 p = 0.967 p = 0.4208 

Target reach 

percent (%) 

L-1 p = 0.1438 p = 0.87 p = 0.09 

L-2 p = 0.0801 p = 0.0220* p = 0.5413 

L-3 p = 0.0045* p = 0.26 p = 0.0084* 

L-4 p = 0.010* p = 0.0312* p = 0.1211 

Efficiency L-1 p = 0.0359* p = 0.936 p = 0.0223* 

Target order L-1 p = 0.029* p = 0.935 p = 0.0489* 
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Endpoint error (cm) L-1 p = 0.015* p = 0.0879 p = 0.0065* 

L-2 p = 0.0425* p = 0.0703 p = 0.0250* 

L-3 p = 0.018* p = 0.012* p = 0.0387* 

L-4 p = 0.0032* p = 0.159 p = 0.0647 

Mean obstacle hit 

proportion per trial 

L-1 p = 0.284 p = 0.199 p = 0.294 

L-2 p = 0.313 p = 0.193 p = 0.311 

L-3 p = 0.0421* p = 0.701 p = 0.5621 

L-4 p = 0.023* p = 0.253 p = 0.0215* 

Total Corrective 

movements 

L-1 p = 0.0068* p = 0.0021* p = 0.2028 

L-2 p = 0.018* p = 0.0329* p = 0.8276 

L-3 p = 0.0003* p = 0.018* p = 0.0611 

L-4 p = 0.0449* p = 0.0437* p = 0.3378 

Endpoint variance 

(cm) 

L-1 p = 0.044* p = 0.880 p = 0.0139* 

L-2 p = 0.056 p = 0.492 p = 0.0361* 

L-3 p = 0.0419* p = 0.730 p = 0.0780 

L-4 p = 0.232 p = 0.0071* p = 0.0616 

Slope between 

performance and ID 

L-1 p = 0.217 p = 0.0068* p = 0.683 

L-2 p = 0.026* p = 0.519 p = 0.0011* 

L-3 p = 0.028* p = 0.277 p = 0.0021* 

L-4 p = 0.0097* p = 0.687 p = 0.065 

Error-speed ratio L-1 p = 0.0009* p = 0.212 p = 0.0012* 

L-2 p = 0.0268* p = 0.076 p = 0.3275 

L-3 p = 0.0008* p = 0.032* p = 0.0057* 

L-4 p = 0.125 p = 0.398 p = 0.2314 

Note: * after the p-value indicates statistical significance 

4.3.2.1 Motor Features 

Figure 4.2 shows a comparison between the three groups across all motor features. 

Regarding motor performance, PD-OFF were much slower than the control subjects as 

their mean and peak speed were 32% and 41% less than for the control subjects across all 

levels of the task. Consequently, PD-OFF took 15% more time to complete a given trial at 

all levels than the control subjects. Across all levels, there was a statistically significant 

deterioration in mean speed (see Table 4.3) for PD-OFF compared to the control subjects. 

PD-OFF also took more time to react to the target once it appeared on the VR display. PD-

OFF took 19% more time to react than the control subjects in level 1 of the task. 

Additionally, PD-OFF group also took 17% more time to reach the maximum speed than 

the control subjects, indicating the slowness in reacting to the target. Finally, the movement 

area for PD-OFF was 21% less than for the control subjects, with the difference between 

the groups being statistically significant across all levels (see Table 4.3).  
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Figure 4.2: Motor features extracted from the three groups across all levels of the 

obstacle avoidance task. 

Note: L-1 = Level-1; L-2 = Level-2; L-3 = Level-3; L-4 = Level-4. 

4.3.2.2 Sensory Features 

A plot comparing the three groups across all sensory features is given in Figure 4.3. Two 

features were used to assess the SMC functions of the sensory domains – (1) Obstacle hit-

to-warn ratio, and (2) Corrective time for perturbation. The obstacle hit-to-warn ratio, 

which indicates if the participants could use the sensory warning cue to avoid hitting the 

obstacles, was 82% higher for PD-OFF than the control subjects across all levels. This 

implies that the control subjects could use the warning cues more effectively to avoid 
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obstacles than PD-OFF. The difference between the control subjects and PD-OFF was also 

statistically significant in levels where the targets were not moving (see Table 4.3). 

Additionally, PD-OFF took 13% more time to correct for the perturbation compared to the 

control subjects. Interestingly, the difference in the corrective time for perturbation 

between PD-OFF and control subjects reduced as the levels increased, although the control 

subjects were still better than PD-OFF in all levels. PD-OFF took 18%, 13%, and 6% less 

time to correct for perturbation than the control subjects in L-2, 3, and 4, respectively. 

Therefore, as the force applied to generate a perturbation increased with the increase in the 

task level, the performance of PD-OFF got better and became closer to the control subjects, 

resulting in a reduction in the difference between PD-OFF and the control subjects. Apart 

from increasing the applied force for the perturbations, the number of perturbations also 

increased as the levels increased, as shown in Table 2.3. The corrective time for individual 

perturbation was analyzed, indicating that PD-OFF took 2.54%, 7.12%, and 11.93% more 

time to correct for the first, second, and third perturbations, respectively, compared to the 

control subjects. 

 

Figure 4.3: Sensory features extracted from the three groups across all levels of the 

obstacle avoidance task. 

Note: L-1 = Level-1; L-2 = Level-2; L-3 = Level-3; L-4 = Level-4. 

4.3.2.3 Cognitive Features 

The performance of three groups across all cognitive features are compared and shown in 

Figure 4.4. The executive functions, a major component of the cognitive domain, play a 

vital role in using sensory information to devise a motor plan for accomplishing the primary 
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objectives of the task. This section evaluates the SMC functions associated with the 

cognitive domain. PD-OFF reached 17% fewer targets than the control subjects across all 

levels, with the difference being statistically significant in L-3 and L-4 (see Table 4.3). In 

analyzing the efficiency of the movement, PD-OFF was 26% less efficient than the control 

subjects in L-1. Moving to target order, this feature evaluates the participants’ ability in 

higher-level planning. While the median R2 value for PD-OFF was 0.705, the median R2 

value for the control subjects was 0.838, implying that the control subjects were closer to 

the ideal target order than PD-OFF. Moving to endpoint error, PD-OFF exhibited 29% 

higher endpoint error than the control subjects, with the difference being statistically 

significant across all levels (see Table 4.3). The difference in endpoint error between the 

groups varied notably depending on the state of the target. While PD-OFF exhibited 49% 

more endpoint error than the control subjects when the targets were stationary, this 

difference between the groups was reduced when the targets were moving, as PD-OFF only 

exhibited 10% more error than the control subjects in this condition. This may indicate that 

the endpoint error of even the control subjects increased during tougher levels when the 

targets were moving, resulting in the reduction of the difference between the groups. Apart 

from reaching targets, the participants were also tasked with avoiding obstacles. PD-OFF 

hit 44% more obstacles than the control subjects across all four levels. The difference 

between the groups was statistically significant in levels where the obstacles were moving 

(see Table 4.3). With the obstacles moving in the tougher levels, the control subjects did 

hit more obstacles compared to their own performance in simpler levels where obstacles 

were stationary. However, the findings suggest that the ability to adapt to a dynamic 

environment and appropriately plan a movement has deteriorated significantly in PD 

patients, resulting in a statistically significant increase in obstacle hits compared to the 

control subjects in L-3 and 4. This can be emphasized by comparing PD-OFF and the 

control subjects based on the next feature (slope between performance and ID). This feature 

explored the relationship between the participants' performance and task complexity by 

calculating a slope between the performance index and index of difficulty based on Fitts’s 

law [10]. PD-OFF exhibited a 20% steeper deterioration in their performance as the task 

complexity increased compared to the control subjects. 
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Figure 4.4: Cognitive features extracted from the three groups across all levels of 

the obstacle avoidance task. 

Note: L-1 = Level-1; L-2 = Level-2; L-3 = Level-3; L-4 = Level-4. 

4.3.2.4 Features to Compare with Computational Models 

Table 4.4: Correlation between endpoint variance and obstacle hit-to-warn ratio 

 PD-OFF PD-ON Control 

L-1 -0.4497 (p = 0.0076*) 0.0966 (p = 0.6536) -0.2143 (p = 0.0191*) 

L-2 0.3764 (p = 0.0337*) 0.2501 (p = 0.0941) -0.2857 (p = 0.0408*) 

L-3 -0.2421 (p = 0.0394*) 0.3091 (p = 0.0416*) -0.6429 (p = 0.0462*) 

L-4 0.2153 (p = 0.0320*) 0.0853 (p = 0.6920) 0.4286 (p = 0.0299*) 

Note: * after the p-value indicates statistical significance 

Table 4.5: Correlation between corrective movements and target reach; Correlation 

between corrective movements and obstacle hits 

Group Corrective movements and 

Target reach 

Corrective movements and 

Obstacle hit 

Correlation 

coefficient 

p Correlation 

coefficient 

p 

PD-OFF -0.6328 = 0.0003* 0.2771 = 0.024* 

PD-ON -0.6540 = 0.0039* -0.0445 = 0.271 

Control -0.1183 = 0.0848 -0.3618 = 0.031* 

Note: * after the p-value indicates statistical significance 
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Figure 4.5: Features related to the computational models extracted from the three 

groups across all levels of the obstacle avoidance task. 

Note: L-1 = Level-1; L-2 = Level-2; L-3 = Level-3; L-4 = Level-4. 

Table 4.4, Table 4.5, and Figure 4.5 show the features used to compare the groups from 

the perspective of computational models. The performance of the two groups was 

compared from the perspective of the six computational models to understand if the 

performance of the participants aligns with the optimality principles proposed to explain 

SMC functions and to understand the specific metrics that can be targeted during 

treatments. Regarding the minimum energy and minimum variance model, PD-OFF 

exhibited 58% higher endpoint variance than the control subjects, implying that PD-OFF 

may exhibit less fingertip accuracy and spend more energy completing the given task than 

the control subjects. Comparing from the perspective of the minimum jerk model, PD-OFF 

had 32% higher speed peaks than the control subjects, indicating the control subjects may 

exhibit a smoother trajectory than PD-OFF. In terms of speed-to-accuracy trade-off, the 

ratio of increase in endpoint error to 1cm/s increase in mean velocity was almost two times 

higher for PD-OFF than the control subjects. The difference in error-speed ratio between 

the two groups was also statistically significant in the first three levels (see Table 4.3). 

Moving to the task-specific computational model, Table 4.4 shows the correlation between 

the two parts of the cost function (mean squared error between the actual and predicted arm 

position and collision probability) proposed by the obstacle avoidance computational 

model. Both control subjects and PD-OFF exhibited a positive correlation in L-4, although 

only PD-OFF exhibited a positive correlation in L-2. Therefore, while both groups let both 
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parts of the cost function increase in L-4, which is the most complex level of the task, only 

PD-OFF performed worse in L-2, allowing both parts of the cost function to increase. This 

may suggest that the difficulty threshold in reducing at least one part of the cost function 

is altered in PD patients, as, unlike control subjects, PD-OFF were unable to optimally 

reduce at least part of the cost function in L-2. Finally, to compare the two groups from the 

perspective of the minimum intervention model, two correlation coefficients were 

calculated, as shown in Table 4.5, to evaluate the ability of participants to effectively 

correct any errors in the motor plan. There was a positive correlation (r = 0.2771, p < 0.05) 

between the corrective movements and obstacle hits for PD-OFF, indicating that as they 

performed more corrective movements, they hit more obstacles. Furthermore, the 

corrective movements also negatively affected their ability to reach targets, as shown by 

the negative correlation (r = -0.6328, p < 0.05) between the corrective movements and 

target reach, implying that as they performed more corrective movements, they reached 

fewer targets. The results suggest that PD-OFF could not distinguish between the task-

relevant and task-irrelevant errors. Therefore, the corrective movements performed by PD-

OFF were counter-productive because when they performed corrective movements with 

the intent to avoid errors, they committed more task-relevant errors (hitting the obstacles) 

and also worsened their task performance (reaching fewer targets) significantly. However, 

a negative correlation (r = -0.3618, p < 0.05) was observed between the corrective 

movements, and the obstacle hits for the control subjects, indicating that the corrective 

movements performed by the control subjects helped them to avoid task-relevant errors 

(avoid obstacles). It needs to be noted that the corrective movements performed by the 

control subjects did marginally interfere with their ability to reach the targets, although it 

was not statistically significant. 

4.3.3 Sensorimotor Control: PD-ON vs. PD-OFF 

This section explores the effects of medication on each domain associated with the SMC 

functions by comparing the performance of PD-OFF with PD-ON. 
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4.3.3.1 Motor Features 

Improvement in the movement speed after the medication was observed as the mean and 

peak velocity of PD-OFF was 10% and 8% less than for PD-ON, respectively, across all 

levels. There was a statistically significant improvement in mean and peak velocity (see 

Table 4.3) after medication at tougher levels. Consequently, the average movement time 

across all levels for PD-ON was 5.9% less than that for PD-OFF. The reaction and time to 

reach maximum speed were also 16% and 5.6% better in PD-ON compared to PD-OFF, 

indicating a marked improvement in reacting to the target once it appeared on the VR 

display. Finally, the movement area across all levels was 8.6% higher for PD-ON than PD-

OFF, although a statistically significant difference was observed only in one level (L-2). 

The findings indicate that motor performance has benefitted from the medication as the 

treatment has effectively mitigated the motor deficits presented due to PD. 

4.3.3.2 Sensory Features 

Features evaluating the sensory domain associated with SMC were compared between PD-

OFF and PD-ON. With regards to obstacle hit-to-warn ratio, while PD-ON performed 

better than PD-OFF in simpler levels when the obstacles were stationary (L-1 and L-2), the 

medication adversely affected the patients as PD-ON had 12% and 7% higher obstacle hit-

to-warn ratio compared to PD-OFF in tougher levels when the obstacles were moving (L-

3 and L-4). Moving to corrective time for perturbation, this trend continues as PD-ON took 

8.2% and 9.6% more time to correct for the perturbation in L-3 and 4. However, their 

corrective time for perturbation was less than PD-OFF in a simpler level (L-2). This 

indicates that the medication has had an adverse effect on the patient’s sensory domain, 

which is critical to the appropriate functioning of SMC. This worsening of sensory 

impairment has been amplified as the difficulty of the task increases, resulting in 

performance deterioration. 

4.3.3.3 Cognitive Features 

Analyzing the effect of medication on the cognitive ability to optimally plan goal-directed 

movement, PD-ON reached 10% more targets than PD-OFF at all levels. Likewise, the 

efficiency and target order in L-1 for PD-ON was 2% and 6% better than PD-OFF, 
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respectively. However, the medication has negatively affected the performance of the 

participants in tougher levels owing to higher cognitive load. PD-ON exhibited 7.5% and 

1.5% higher endpoint error in L-2 and 4, respectively (levels with moving targets) 

compared to PD-OFF. Additionally, PD-ON also hit 1.2% and 2.9% more obstacles in L-

2 and L-4. It must be noted that PD-ON had performed worse than PD-OFF only in 

complex and tougher levels, demanding higher cognitive resources. Concerning the slope 

between the performance index and index of difficulty, PD-ON showed a 3.9% steeper 

deterioration in L-2 compared to PD-OFF. The results suggest a deterioration in cognitive 

ability to appropriately plan or correct movements due to medication as the task became 

complex demanding higher cognitive resources. 

4.3.3.4 Features to Compare with Computational Models 

Comparing the two groups from the perspective of the computational models, in terms of 

minimum variance and minimum energy model, PD-ON had 33% and 50% worse endpoint 

variance than PD-OFF in L-2 and L-4 (levels with moving targets) respectively, with the 

difference being statistically significant in L-4 (see Table 4.3). This may imply a 

deterioration in fingertip accuracy and an increase in energy spent after medication in 

complex levels of the task. Regarding the minimum jerk model, PD-ON had fewer speed 

peaks than PD-OFF in L-1, 2, and 3, although this reduction in speed peaks could be 

attributed to the improvement in motor performance. Comparing from the perspective of 

the speed-to-accuracy trade-off, PD-ON had shown an improvement as their error-speed 

ratio was 9% better than PD-OFF across all levels. In terms of the obstacle avoidance 

model, while PD-OFF was able to reduce at least one part of the cost function in L-3 as 

shown by the negative correlation (r = -0.2421, p < 0.05), a positive correlation (r = 0.3091, 

p < 0.05) was observed in L-3 for PD-ON. This indicates that PD-ON was unable to reduce 

at least one part of the cost function proposed by the obstacle avoidance model. Finally, 

from the perspective of the minimum intervention model, while PD-OFF hit more obstacles 

as they performed more corrective movement, as shown by the positive correlation (r = 

0.2771, p < 0.05), PD-ON may have shown improvement as a negative correlation (r = -

0.0445, p = 0.271) was observed between the corrective movement and obstacle hit, 

although this correlation was not statistically significant. 
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4.3.4 Sensorimotor Control: PD-ON vs. Healthy Controls 

This section discusses the comparison between PD-ON and the control subjects. 

4.3.4.1 Motor Features 

Comparing the motor features between PD-ON and the control subjects, PD-ON had 22% 

and 33% less mean and peak velocity, respectively, than the control subjects across all 

levels, with the difference between the two groups being statistically significant (see Table 

4.3). Additionally, the movement time for the control subjects was 9% less than PD-ON. 

Furthermore, the control subjects were also able to react much more quickly to the targets 

than PD-ON. The reaction time and the time to reach maximum speed were 2.9% and 11% 

less for the control subjects than PD-ON. Finally, the movement area for control subjects 

was also 13% higher for the control subjects than for PD-ON. The findings indicate that 

despite the improvement in motor features due to medication, the control subjects have 

outperformed PD-ON across all features evaluating the motor performance.  

4.3.4.2 Sensory Features 

Comparing the two groups, the average obstacle hit-to-warn ratio across all levels for PD-

ON was 77% higher than for the control subjects. Another sensory feature, the corrective 

time for perturbation, was again 18% lower for control subjects than for PD-ON across all 

levels. The results show that the control subjects performed much better than PD-ON 

across all sensory features, indicating that the sensory deficits affecting the SMC functions 

exist after medication. 

4.3.4.3 Cognitive Features 

Regarding the cognitive features, the control subjects reached 6.8% more targets across all 

levels than PD-ON. Furthermore, the efficiency and target order for the control subjects 

were 24% and 11% better than PD-ON, respectively, indicating that PD-ON struggled to 

efficiently plan or correct goal-directed voluntary movements. Additionally, the endpoint 

error and obstacle hits for PD-ON were 30% and 38% worse across all levels, respectively, 

compared to the control subjects. Finally, PD-ON also had a 16% steeper performance 

deterioration as the task complexity increased. Considering these results, the control 
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subjects outperformed PD-ON across all metrics evaluating the cognitive domain 

associated with the SMC functions. This implies that the medication did not normalize the 

cognitive ability to plan or correct voluntary movements in PD patients.  

4.3.4.4 Features to Compare with Computational Models 

Comparing the two groups from the perspective of the computational models, across all 

levels, PD-ON had 76% worse endpoint variance than the control subjects, implying that 

PD-ON may have poorer fingertip accuracy and spent more energy on a given task 

compared to the control subjects. Regarding the minimum jerk model, PD-ON had 19% 

more speed peaks than the control subjects, implying that the control subjects had the 

smoothest trajectory of the two groups. Furthermore, the ratio of increase in error for 1 

cm/s increase in speed is higher for PD-ON as their error-speed ratio was 53% higher than 

that for the control subjects. Moving to task-specific computational models, PD-ON could 

not reduce both parts of the cost function in L-2 and 3 as opposed to the control subjects. 

Therefore, PD-ON performed worse than the control subjects in these two levels, although 

it must be noted that both PD-ON and control subjects were also unable to reduce both 

parts of the cost function in L-4, the most complex level of the task. This may point to a 

threshold of difficulty or complexity beyond which the participants were unable to reduce 

both parts of the cost function. While for the control subjects, this threshold appears to be 

the complexity exhibited in L-4 of the task, PD-ON seems to have an altered threshold of 

difficulty as they were unable to reduce both parts of the cost function even in levels (L-2 

and L-3) that are less complex than L-4. Finally, from the perspective of the minimum 

intervention principle, the control subjects were able to efficiently correct only task-

relevant errors, as indicated by the statistically significant negative correlation (r = -0.3618, 

p < 0.05) between the corrective movements and the obstacle hits. While a negative 

correlation (r = -0.0445, p = 0.271) was also observed between the corrective movements 

and obstacle hits for PD-ON, it is not statistically significant. This may imply that the 

control subjects were better than PD-ON in distinguishing between the task-relevant and 

irrelevant errors or were better equipped to correct errors optimally without affecting the 

task performance. 
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4.3.5 Correlation between Task Performance and Clinical Scores 

The correlation between the extracted features and the clinical scores (UPDRS motor 

subscale and MoCA) was calculated. Table 4.6 shows the correlation between the extracted 

features and UPDRS. A predominant number of features that correlated with the UPDRS 

were motor features. Correlation between the features and UPDRS shows that 11 (out of 

which 7 are motor features) and 6 (all motor features) correlated with the UPDRS score in 

the OFF and ON states, respectively. Table 4.7 shows the correlation between the extracted 

features and MoCA. The features correlated with the MoCA score were predominantly 

cognitive features. While four features (out of which three are cognitive features) correlated 

with the MoCA score in the OFF state, five features (out of which four are cognitive 

features) correlated with the MoCA score in the ON state. 

Table 4.6: Correlation between the extracted features, and UPDRS motor sub-scale 

Features Correlation with 

UPDRS score in 

OFF state 

Correlation with 

UPDRS score in ON 

state 

Mean speed -0.4749 (p < 0.05) -0.2322 (p < 0.05) 

Peak speed -0.3967 (p < 0.05) -0.2295 (p < 0.05) 

Time to reach maximum speed 0.3231 (p < 0.05) 0.3145 (p < 0.05) 

Movement area -0.3665 (p < 0.05) -0.2310 (p < 0.05) 

Reaction time 0.2926 (p < 0.05) NS 

Speed peaks 0.6417 (p < 0.05) 0.5124 (p < 0.05) 

Movement time 0.3114 (p < 0.05) 0.4514 (p < 0.05) 

Obstacle hit to warn ratio NS NS 

Corrective time for perturbation NS NS 

Target reach percent -0.5717 (p < 0.05) NS 

Efficiency -0.5253 (p < 0.05) NS 

Target order NS NS 

Endpoint error 0.2975 (p < 0.05) NS 

Obstacle hit NS NS 

Corrective movements NS NS 

Endpoint variance NS NS 

Slope between performance and 

index of difficulty 

NS NS 

Error-speed Ratio 0.3528 (p < 0.05) NS 
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Table 4.7: Correlation between the extracted features, and MoCA score 

Features Correlation with 

MoCA score in 

OFF state 

Correlation with 

MoCA score in ON 

state 

Mean speed NS NS 

Peak speed NS NS 

Time to reach maximum speed NS NS 

Movement area NS NS 

Reaction time -0.3085 (p < 0.05) -0.3146 (p < 0.05) 

Speed peaks NS NS 

Movement time NS NS 

Obstacle hit to warn ratio NS NS 

Corrective time for perturbation NS NS 

Target reach percent 0.3571 (p < 0.05) 0.2988 (p < 0.05) 

Efficiency NS 0.3123 (p < 0.05) 

Target order NS NS 

Endpoint error -0.2374 (p < 0.05) -0.3908 (p < 0.05) 

Obstacle hit NS NS 

Corrective movements NS NS 

Endpoint variance -0.3339 (p < 0.05) -0.4785 (p < 0.05) 

Slope between performance and 

index of difficulty 

NS NS 

Error-speed Ratio NS NS 

4.3.6 Feature Selection and Pattern Recognition 

4.3.6.1 Selecting Features Based on the Importance 

As discussed earlier, the feature selection was done using the importance score of each 

feature obtained by fitting the data to the decision tree model. Firstly, the task used to 

investigate SMC had multiple levels; therefore, the participant’s performance in each level 

was individually evaluated. A total of 15 features calculated separately in four levels of the 

task were considered. Figure 4.6 shows the importance score for each feature. Based on the 

score, the top six features (Maximum Minimum Velocity, Mean Velocity, Obstacle Hit-

warn Ratio, Speed peaks, Target Reach Percentage, and Mean End Point Error) were 

selected to train the model. Since the performance of the participants, and by extension, the 

six selected features vary substantially depending on the level of the task, the level is also 

considered as a feature when training the neural network model. This allows the model to 

take into consideration the level of the task and learn how the participants from the two 

different classes may perform differently in various levels. 
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Figure 4.6: Feature importance score for the obstacle avoidance task 

4.3.6.2 Training and Testing of the Neural Network Model 

As discussed in Chapter 2 section 2.4.2.1, a neural network model was designed to classify 

PD and control subjects to understand if the KINARM features could be used to 

differentiate between two sets of participants. This may assist in detecting these novel 

impairments at an early stage. The dataset was split, with 70 % of data used for training 

the model, 15 % of data used for validation and 15 % of data used for testing the model. 

Figure 4.7 shows how the loss function was minimized during training to improve the 

model’s accuracy. Once the model was trained, the trained model was then tested using the 

test dataset to determine if the neural network model could predict and differentiate 

between the PD and control subjects. Table 4.8 shows the performance metrics calculated 

to evaluate the model’s performance based on its prediction. The results show that the 

model can predict and differentiate between the PD, and control subjects to an accuracy of 

93.67%, implying the potential application of the neural network model in using the SMC 

features for an early clinical diagnosis of PD. 
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Figure 4.7: Training loss for the obstacle avoidance task 

Table 4.8: Performance metrics of the NN model for the obstacle avoidance task 

Accuracy (%) Recall Precision F-1 Score ROC-AUC 

93.67 0.9367 0.9353 0.9350 0.8787 

4.4 Discussion 

The current work focused on exploring and characterizing the deficits presented due to PD 

in SMC functions such as movement planning and online error correction. Age-equivalent 

healthy control subjects and PD patients in their OFF and ON states performed a custom-

designed obstacle avoidance task using a KINARM Endpoint robot [11]. The kinematic 

data acquired from the robot was used to extract features or metrics to analyze the SMC 

performance in PD patients before and after medication and how it may differ from that of 

the healthy subjects. Apart from individually studying each domain (Motor, Sensory, and 

Cognitive) associated with the SMC functions and comparing its performance among the 

groups (PD-OFF, PD-ON, and Control subjects), the participants were also compared from 

the perspective of six computational models using the features that closely resemble the 

cost functions proposed by the model. To the best of our knowledge, so far, no study has 

analyzed the deficits caused due to PD from the perspective of computational models. This 

computational model-based analysis may provide valuable insights into the SMC 



184 

 

impairments in PD and how they may be better managed. Therefore, in addition to 

characterizing the SMC deficits, the results obtained by comparing the participants from 

the perspective of computational models may help pinpoint the metrics that may lead to 

the deterioration in SMC performance. In the future, these metrics may be targeted through 

systematic rehabilitation regimes or treatments, thereby improving or mitigating SMC 

impairments. 

To analyze the deficits in movement planning and online error correction, the 

performance associated with the motor, sensory and cognitive domains of PD-OFF and the 

control subjects were compared. The findings related to the motor domain were in line with 

the earlier studies [12] as PD-OFF were slower, took more time to react to targets, and 

covered a smaller area. It is evident from the results that motor performance is significantly 

deteriorated due to the onset of PD. This deterioration has adversely affected the role of 

the motor domain in SMC functions. Moving to the sensory domain associated with the 

SMC functions, PD-OFF could not use the warning sensory cue to effectively avoid 

obstacles as opposed to the control subjects. The findings demonstrate that PD may have 

affected the ability to process sensory information from multi-modal inputs and interpret 

the received information, which affected their ability to use the warning sensory cue to 

avoid obstacles, resulting in a higher obstacle hit-to-warn ratio than the control subjects. 

These deficits in processing or integrating multi-modal sensory inputs among PD patients 

have also been discussed in detail in the Chapter 3. Therefore, the impairment in SMI may 

have contributed to the higher obstacle hit-to-warn ratio among the PD patients, which has, 

in turn, affected SMC functions such as movement planning and error correction. Another 

deficit in the sensory domain that may have affected the SMC function may be the presence 

of sensory dampening in force perception. Overall, the control subjects were much quicker 

than PD-OFF in responding to the perturbations and correcting for force imposed on the 

robot handle across all levels. However, the difference in the corrective time for 

perturbation between PD-OFF and the control subjects decreased as the levels and the force 

applied to generate the perturbation increased. This may imply that PD-OFF were able to 

react to the stronger perturbation (perturbation with high force) much quicker than the 

weaker perturbation (perturbation with less force), resulting in less difference between PD-

OFF and the control subjects at later levels. One inference could be the presence of sensory 
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dampening as PD-OFF were better at perceiving stronger sensory information than a 

weaker one, implying an altered threshold for force perception. This finding about force 

perception is also in line with a few other studies [13] discussing altered kinesthetic 

perception. Finally, as certain levels (L-3 and L-4) of the tasks included more than one 

perturbation, the time taken to correct for each perturbation was compared between the two 

groups. This indicated that the control subjects were more prepared to correct for the 

second or third perturbation once they had experienced the first perturbation, thereby 

correcting for the second or third perturbation much quicker than the first perturbation. In 

contrast, PD-OFF did not improve the corrective time for the second or third perturbation 

compared to their corrective time for the first perturbation. Evaluating the cognitive domain 

associated with the SMC functions, a similar trend was observed as the control subjects 

outperformed PD-OFF across all cognitive features, implying an impairment in cognitive 

abilities such as executive function. Impairments in executive functions [14] may severely 

affect an individual’s ability to plan or correct goal-directed voluntary movements. Due to 

the impairments in cognitive ability (executive functions), PD-OFF could not reach the 

targets accurately and efficiently or avoid obstacles as well as the control subjects 

irrespective of the state (moving or stationary) of the target or obstacles. Additionally, the 

SMC deficits originating from the cognitive domain also appear to worsen with increased 

task complexity as PD-OFF has shown (see slope between performance index and index 

of difficulty) stepper deterioration in the performance as the complexity of the task, and 

consequently, the cognitive load increased. To put it together, the control subjects could 

handle high cognitive loads owing to increased task difficulty better than PD-OFF, as 

shown by their better performance in tougher levels than PD-OFF. It is well known that a 

relationship between cognitive load and performance exists even in healthy subjects, as 

humans tend to perform better in easier tasks than in difficult ones. However, the results 

imply that PD may alter this relationship between the cognitive load associated with a task 

and the performance of executive functions, leading to steeper performance deterioration 

as the cognitive load increases. Another notable finding is that while a predominant number 

of PD patients can be considered cognitively normal as indicated by their MoCA scores, 

impairments in cognitive ability, such as executive function, which affects movement 

planning and error correction, were observed. This points to the fact that the executive 
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dysfunctions were detected by the objective investigation performed in this study, even in 

patients who were deemed to be cognitively normal by the clinical scales (MoCA), 

implying that certain deficits that may not be detected by the subjective assessments such 

as clinical scales may be detected through objective assessments. Studies [15] have 

discussed the limitations of utilizing subjective techniques to evaluate the severity of the 

disease. They have also recommended [5] complementing the subjective assessment with 

objective testing and analysis for better diagnosis and management of the disease. 

Information acquired through objective assessments may provide valuable insights about 

the patient’s condition, which may be vital in optimizing the treatment plan concerning the 

individual. Therefore, it may be beneficial to adopt and use objective metrics alongside 

subjective assessment to better quantify and characterize the cognitive deficits related to 

executive functions as deficits that may go unnoticed by one assessment, may be detected 

by the other. However, it must be noted on a cautionary note that the objective metrics used 

in this study were designed purely to evaluate the SMC deficits based on the task that was 

performed and needed to be validated by the clinicians and experts before being used in 

clinics. Moreover, the objective metrics should be considered a complementary tool to the 

subjective assessment and not a replacement for the existing clinical scales, as limitations 

associated with objective assessments also exist [16]. From the perspective of generic 

computational models (minimum energy model, minimum variance model, minimum jerk 

model, and speed-to-accuracy trade-off), the control subjects performed better than PD-

OFF across all features representing the cost function associated with these models. These 

comparisons from the perspective of computational models provide valuable insights about 

the impairments presented due to PD and how it can be better targeted. The endpoint 

variance indicated that PD-OFF had a poorer fingertip accuracy, which is vital for 

accurately performing any reaching movement. Deterioration in fingertip accuracy among 

PD patients may result in increased variance in the endpoint. Therefore, the patients may 

perform more sub-movements than required to compensate and correct for the variance 

resulting in higher energy being spent to complete a given task. These metrics (endpoint 

variances) may be used to evaluate the fingertip accuracy before and after treatment or 

rehabilitation to understand if the treatment had improved the patient’s ability to accurately 

perform reaching movements. Furthermore, the speed-to-accuracy trade-off model 
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indicates that the rate at which the error increases for 1 cm/s increase in velocity may have 

been altered in PD patients. This may imply a higher noise ratio in the neural control signal 

in PD patients compared to the control subjects. Studies [17] have shown that the increased 

signal-dependent noise may lead to poorer motor planning, and this alteration in the error-

speed ratio may have contributed to the impairment in motor planning. Comparing PD-

OFF and control subjects from the perspective of the obstacle avoidance model further 

emphasizes the earlier inference that PD alters the relationship between cognitive load and 

performance. While the control subjects and PD-OFF struggled to perform better from the 

perspective of the obstacle avoidance model in L-4, only PD-OFF performed poorly in L-

2, which is far less complex than L-4. It needs to be understood that only PD-OFF 

performed poorly in L-2 (not the most complex level), although both PD-OFF and the 

control subjects performed poorly in L-4 (the most complex level of the task). One possible 

explanation could be that while the control subjects have a threshold of difficulty beyond 

which they fail to abide by the cost function, as shown by their performance in L-4, their 

threshold is much higher than PD-OFF, which explains why they were able to perform 

better in L-2 as opposed to PD-OFF. Therefore, aligning with the earlier inference, the 

threshold of difficulty until which an individual can efficiently reduce both parts of the cost 

function, thereby optimally planning or correcting movements, may be altered due to PD. 

Finally, from the perspective of the minimum intervention principle, it is evident that the 

control subjects were much better than PD-OFF in correcting any task-relevant errors 

without affecting their task performance. While PD-OFF performed corrective movements, 

it was counterproductive as the very corrective movements that needed to be aimed at 

reducing task-relevant errors resulted in increased task-relevant errors (hitting the 

obstacles). In addition to hitting more obstacles, the performance of corrective movements 

also adversely affected their primary objective for the task, which is to reach the targets. 

Therefore, PD-OFF may not be able to differentiate between the task-relevant and 

irrelevant errors and thereby may not abide by the minimum intervention principle. In 

contrast, the control subjects could distinguish between the task-relevant and irrelevant 

errors and corrected only to avoid task-relevant errors. As a result, the corrective 

movements performed by the control subjects were successful in avoiding obstacles, and 

as they performed more corrective movements, they avoided more obstacles. Considering 
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PD-OFF’s deficit in generating corrective movements, it may be interesting and valuable 

to the clinical community to understand if rehabilitation regimes focused on assisting 

patients in differentiating between task-relevant and irrelevant errors may improve their 

ability to perform corrective movements. 

The effect of medication on the various domains involved in SMC functionalities 

was investigated. In terms of the motor domain, the medication improved the performance 

of the patients across all motor features compared to their performance before the 

medication. This finding aligns with earlier results [18] that report mitigation of cardinal 

motor symptoms such as bradykinesia and rigidity due to medication, which may improve 

upper-limb movements. However, an improvement in pure motor metrics due to the 

mitigation of cardinal motor symptoms after medication may not translate to an 

improvement in movement planning or online error correction as it relies on the proper 

functioning of sensory and cognitive systems as well. To this end, features evaluating the 

sensory domain involved in the SMC functions were compared between PD-OFF and PD-

ON. While the medication had improved motor features, it was accompanied by a 

worsening of performance in sensory features, especially in later levels that are designed 

to be more complex, resulting in higher sensory load. This was evident from the fact that 

PD-ON performed worse in higher levels than PD-OFF as their obstacle hit-to-warn ratio 

and corrective time for perturbation were much worse than PD-OFF in complex levels. 

Therefore, in addition to medication worsening the patient’s ability to use warning cues to 

avoid obstacles, it has also worsened the sensory dampening that further altered the force 

perception threshold. The underperformance in sensory features when encountering higher 

levels of the task may be because the trials in the higher levels are more complex than the 

earlier ones. Due to this, the ability to perceive the imposed perturbation and correct for it 

or interpret the warning sensory cues provided by the experimenter to avoid obstacles 

becomes far more vital to the overall performance in complex levels compared to the 

simpler levels. While in simpler levels, due to the reduced complexity, it may be possible 

for participants to perform a given task without the use of any external stimuli and proper 

perception of the perturbations, the later levels with their high complexity might require 

accurate perception of the perturbations and warning sensory cues from the participants to 

appropriately complete the objectives of the task. Therefore, the worsening of the sensory 
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domain after medication becomes far more evident in higher levels than in simpler ones. 

The cognitive features between PD-OFF and PD-ON were compared to understand how 

the cognitive ability to plan or correct movements has been altered due to medication. 

Findings from cognitive features were similar to the results observed from sensory features. 

While PD-ON performed better than PD-OFF at simpler levels, the performance of PD-

ON was much worse than PD-OFF at higher levels that were more cognitively demanding. 

The endpoint error in L-2, and L-4, obstacle hits in L-4 for PD-ON were worse than for 

PD-OFF. Therefore, in levels that included dynamic environments and required higher 

cognitive resources to plan and correct movements, PD-ON failed to accurately and 

efficiently complete the task compared to PD-OFF. The reasoning could again be that in 

simpler levels, the worsening of executive functions due to medication may not be 

highlighted as simpler levels do not require higher cognitive resources. On the other hand, 

the later levels that are far more complex, necessitating higher cognitive resources to 

complete the given task, accentuated the worsening of cognitive abilities due to medication. 

This also aligns with an earlier hypothesis that PD patients, after medication, may perform 

differently in a given task depending on the cognitive resource needed to complete that 

task. Kulisevsky et al. [19] inferred from their results that patients with stable motor 

responses to medication might perform differently on a given task when the complexity 

and the required cognitive resource go beyond a certain threshold needing a more flexible 

SMC strategy. However, they may show no difference when performing simpler tasks 

requiring lower resources. The literature also points to the possible adverse effects of 

medication on complex and highly demanding executive functions. This inference is 

further emphasized by our findings which showed a steeper deterioration in performance 

among PD-ON in certain complex levels (L-2), which again implied that when the 

complexity of the task goes beyond a certain threshold, PD-ON was far less efficient than 

PD-OFF in optimally planning or correcting voluntary movements. Analyzing the effect of 

the medication from the perspective of the computational models, PD-ON has once again 

performed poorly in terms of minimum energy and minimum variance model in cognitively 

demanding levels (L-2 and L-4). When viewed from the minimum jerk model, PD-ON was 

better than PD-OFF across all levels. However, these improvements in PD-ON may be due 

to the mitigation of cardinal motor symptoms and may not provide any insights into the 



190 

 

effect of medication on the sensory and cognitive domains. Moving to the speed-to-

accuracy trade-off model, PD-ON improved the error-speed ratio across all levels. 

However, the difference between PD-OFF and PD-ON appears to reduce as the levels 

become more complex. Regarding the obstacle avoidance model, PD-ON could not reduce 

both parts of the cost function at all levels. Additionally, PD-ON had again performed 

poorer than PD-OFF in certain levels (L-3). While PD-OFF and PD-ON performed poorly 

in L-4, only PD-ON performed poorly in L-3. This again emphasizes our earlier inference 

about the threshold of difficulty that can be handled by the patients being negatively altered 

by the medication. Finally, in terms of the minimum intervention principle, as opposed to 

PD-OFF, a negative correlation was observed between the corrective movements and 

obstacle hits, although it was not statistically significant. To summarize, the findings reveal 

that while the medication improved the motor domain, it adversely affected PD patients' 

sensory and cognitive performance. This was especially true in complex levels that were 

more cognitively demanding and required participants to appropriately perceive and 

interpret sensory inputs to complete a given task. Furthermore, the worsening of SMI 

impairments after medication discussed in Chapter 3 may have also contributed to the 

underperformance of PD-ON in sensory and cognitive features compared to PD-OFF. 

While other studies [7][20][21] have explored the effect of medication on PD patients, the 

findings from this study provide new insights by individually evaluating the domains 

associated with the SMC functions and comparing their performance from the perspective 

of the computational model which was lacking in earlier studies. 

Comparing the performance of PD-ON against the control subjects, the motor 

performance of the control subjects was far and above better than PD-ON. Across all motor 

features and all levels of the task, the control subjects exhibited substantially superior 

performance compared to PD-ON, with the difference between the two groups being 

statistically significant in certain features and levels. This implies that despite the 

improvements in the motor domain due to medication, the medication did not normalize 

the motor domain, resulting in PD-ON underperforming compared to the control subjects. 

Moving to the sensory features, based on the earlier comparison between PD-OFF and PD-

ON, it was evident that the sensory domain was negatively affected after medication 

resulting in PD-ON performing worse than PD-OFF. Therefore, the results from the 
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comparison between PD-ON and the control subjects were along the expected lines. The 

control subjects had far less obstacle hit-to-warn ratio and corrective time for perturbation 

than PD-ON. However, a notable finding was that while the difference in the corrective 

time for perturbation between PD-OFF and control subjects decreased as the levels and 

force applied to the perturbations increased, the difference between PD-ON and the control 

subjects remained stable as the levels increased. Therefore, as indicated earlier, unlike PD-

OFF, who improved their corrective time when perceiving stronger force, PD-ON did not 

improve their corrective time for perturbation even when the force applied to the 

perturbations increased. Similarly, the comparison between PD-ON and the control 

subjects based on cognitive features showed that the control subjects were much better than 

PD-ON across all cognitive features at all levels. Again, this is along the expected line, as 

the medication affected cognitive ability, as shown by the comparison between PD-OFF 

and PD-ON. Finally, comparing PD-ON and the control subjects from the perspective of 

the computational models, the endpoint variance for PD-ON was much higher than the 

control subjects, implying that the PD patients experienced a reduction in fingertip 

accuracy and an increase in energy consumption even after medication. In terms of the 

speed-to-accuracy trade-off model, while the medication had improved the error-speed 

ratio, the performance of PD-ON was still worse than the control subjects. This was the 

case in the minimum intervention model, which had shown a statistically insignificant 

improvement after medication. However, the control subjects were much better at 

correcting for task-relevant errors. Finally, in terms of the obstacle avoidance model, 

compared to the control subjects, PD-ON was worse than the control subjects at all levels. 

To summarize, the findings show that the current medication neither normalizes the motor 

domain involved in SMC functions nor normalizes the sensory or cognitive domains 

involved in SMC functions. While the medication mitigates the cardinal motor symptoms 

for a short time, it worsens the sensory and cognitive performance, therefore not enabling 

the PD patients to perform at the same level as the control subjects. 

A correlation between the extracted features and the clinical scales was performed, 

which showed that most motor features correlated well with the UPDRS motor subscale. 

Most cognitive features had a statistically significant correlation with the MoCA scores, 

which evaluates the participants' cognitive status. This may validate the approach used to 
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classify features based on the domain. Additionally, the sensory and cognitive features did 

not have any statistically significant correlation with the UPDRS motor subscale, implying 

that the progression of motor, sensory, and cognitive features may vary from each other. 

This progression of motor deficits differing from the progression of sensory and cognitive 

deficits has been hypothesized in earlier studies [22][23], and our findings align with them.  

Moving to the results associated with machine learning, a neural network was 

trained using six features extracted from the obstacle avoidance model to determine if the 

model can use features pertaining to SMC deficits to differentiate between the PD and 

control subjects. The machine learning model had a predictive accuracy of over 90%, 

implying that the tasks developed in this study could characterize the SMC deficits specific 

to PD patients. With the possible early onset of SMI and SMC deficits, a neural network 

model that can differentiate between the PD and control subjects based on the features 

characterizing an individual's SMI and SMC performance may be considered as a potential 

early diagnostic tool. Therefore, the neural network model proposed in this chapter showed 

that the NN model was able to detect these novel impairments and differentiate between 

the control and PD subjects. However, it must be stated on a cautionary note that while the 

machine learning models could differentiate between the two cohorts, this needs to be 

considered only as a first step in utilizing objective metrics for clinical diagnosis. More 

work is required before these diagnostic tools can be used in a clinical setting. 

To summarize the study’s findings, in addition to the motor impairments among 

PD patients, the results also point to an apparent deficit in sensory and cognitive domains 

associated with the SMC functionalities. PD-OFF demonstrates deficits in the sensory 

domain, such as the inability to use multi-modal warning cues to avoid obstacles and an 

altered force perception or sensory dampening. The deficit in using sensory cues to adjust 

motor outputs has also been discussed in Chapter 3. Therefore, the high obstacle hit-to-

warn ratio in PD patients may be due to impairments in multi-sensory integration 

(explained in Chapter 3). Furthermore, cognitive abilities, such as executive functions, may 

also be impaired in PD patients, affecting their ability to plan or correct a movement, 

especially at cognitively demanding levels. PD-OFF have shown impairment in handling 

high cognitive and sensory loads, as shown by their steep deterioration in SMC 
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performance during complex levels of the task. Finally, PD-OFF also failed to optimally 

plan or correct movement when compared from the perspective of existing computational 

models. The medication improved the motor features in the PD patients, although a 

deterioration in sensory and cognitive features compared to their performance in the OFF 

state was observed in complex levels of the task. The deterioration in sensory and cognitive 

performance after the medication was mainly observed in later levels of the task. This is 

because these levels were far more complex than the earlier ones and necessitated an 

appropriate functioning of the sensory and cognitive domains to optimally plan or correct 

movements. The findings imply that the threshold of difficulty above which the PD patients 

were unable to appropriately plan or correct movements was altered due to medication. 

While earlier findings show that this threshold has already been altered due to PD, the 

medication has further worsened this impairment. Therefore, while the improvement in the 

motor domain was observed in PD patients, a deterioration in cognitive and sensory 

domains was also observed, which exacerbated the SMC impairments and affected the task 

performance. These complex, multi-modal medication effects must be considered during 

patient assessment and medication optimization. Additionally, the improvement in motor 

features after medication does not indicate a normalization of motor performance in PD 

patients, as the control subjects were still significantly better than PD-ON across all 

features (motor, sensory, and cognitive). Therefore, the study provided new insights into 

understanding the deficits in SMC and the effect of medication. Moreover, it also explored 

how these deficits may affect movement expression. Earlier studies [24] have indicated 

that understanding the relationship between movement expression with executive and 

sensory dysfunction may assist in tailoring a more targeted, efficient rehabilitation 

program. To aid in designing a more targeted treatment approach, the metrics developed to 

evaluate performance based on the computational models may also be used to target and 

improve specific variables, which in turn may enhance the overall SMC performance. 

Finally, an interesting observation was that the objective testing and analysis detected 

impairments in cognitive abilities, such as executive function, even in patients deemed 

cognitively normal by clinical scales such as MoCA. Therefore, an objective assessment 

such as the one described in this study may complement a subjective assessment to better 

evaluate a PD patient’s condition, which may enhance the management of the disease. 
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Furthermore, past studies [25] have also stressed the importance of a more patient-specific 

approach to diagnosis and treatment. A machine learning model was discussed, which 

showed that the metrics designed in this study might be improved upon and used for an 

early diagnosis of PD. Therefore, the metrics and experiment used in this study to evaluate 

various domains of the SMC functions may be adopted as a patient-specific tool to better 

diagnose and target the deficits through a systematic rehabilitation regime. 
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Chapter 5  

5 Subject-Specific Musculoskeletal Model to Analyze 
Muscle Recruitment Strategies 

This Chapter discusses the results pertaining to the validation of the proposed 

musculoskeletal model and its application in PD-related therapies.  

5.1 Introduction 

SMC functions not only involve planning or correcting movement but also involve 

determining the force required to perform the desired movement and recruiting the 

necessary muscles [1][2][3]. Generating the desired force requires recruiting or activating 

the most relevant muscles to complete a given task. The contraction of these recruited 

muscle fibers leads to the generation of the necessary force in the appropriate direction to 

overcome the external resistive loads and perform the desired movement. This recruitment 

process occurs through the motor units that include a motor neuron that innervates the 

muscle fibers within a localized region [4] [5]. The recruitment of this motor unit and its 

corresponding muscle fibers is called motor unit recruitment, an essential component of 

SMC functions [1] [5]. Any modulation or generation of motor output can only be achieved 

by successive activation and deactivation of the muscle fibers. Therefore, the kinematic 

and dynamic variables related to the motion of interest depend on the muscle fibers 

recruited by the CNS. There are numerous studies [6][7][8] that hypothesize the strategies 

or criteria that CNS may employ in determining the motor units that need to be recruited. 

However, no one criterion is universally accepted by experts in the field to correctly explain 

the SMC criterion for muscle recruitment. Exploring the muscle activations and 

contributions in performing a given movement may be valuable in understanding the CNS's 

criteria for recruiting muscles. Abnormalities in motor unit behavior due to PD have also 

been discussed in earlier studies [9][10], and these abnormalities may contribute to motor 

deficits. A tool to understand how PD may affect the muscle recruitment process due to an 

impaired SMC circuit, while expanding our knowledge, could be helpful in efficiently 

guiding certain PD-related therapies. 



198 

 

Techniques such as musculoskeletal and machine learning models have been 

developed in recent years to study the functioning of motor unit recruitment and how it 

may differ in patients diagnosed with neurodegeneration and neuromuscular disease. A 

muscle model comprising 22 functional muscles with 74 muscle elements and six 

functional joints was proposed by Quental et al. [11][12]. To verify the model’s accuracy, 

its output was also compared with that from sEMG, which indicated a correlation of 0.9 

with the sEMG data. Nikooyan et al. [13][14] proposed the Delft shoulder and elbow model 

that includes 31 muscles and five functional joints, which yielded a correlation of 0.66 with 

the sEMG data. Another muscle model was proposed by Wu et al. [15] and comprised 26 

muscle-tendon units. The authors also indicated that their model was subject-specific, so 

certain parameters can be adjusted to fit the subject. However, the model’s output was not 

validated by comparing its results with any clinically accepted method. Klemt et al. [16] 

proposed in-depth and comprehensive techniques to construct 10 MRI-based shoulder 

models. The authors designed individual models based on the parameters measured from 

10 subjects using the MRI. The models included a total of 87 muscle elements and five 

functional joints. Another upper-limb model that comprised 24 muscle elements was 

discussed by Pennestri et al. [17]. While there are numerous simulated muscle models that 

have been designed over the years, all of which are not discussed here, there are a few 

limitations in the existing models. One of the primary limitations is the lack of detail in the 

model, i.e., only a few specific muscles have been included. This limits the model’s ability 

to estimate the activity of smaller and deeper muscles. Another limitation is that there is a 

lack of subject-specific models, with the few models that are subject-specific comprising 

only a smaller set of muscles and a lower prediction accuracy. The prediction accuracy of 

certain models was also not measured, and therefore, the output of these models was not 

validated. Apart from the model that uses the kinematic data as input to analyze the 

biomechanics of the upper limb, a few models also use the sEMG activity data as inputs to 

predict the corresponding muscle forces. Buchanan et al. [18] discussed a model that 

predicts the force exerted by four muscles based on the sEMG recording of that muscle. 

However, these sEMG-driven models would suffer from the same limitation (mechanical, 

motion artifacts, muscle crosstalk, inability to measure the activity of deeper muscles) as 

the sEMG discussed earlier in Section 2.5 of Chapter 2. Moving away from the virtual 
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muscle models, numerous machine learning models have also been proposed to examine 

and study the muscle recruitment process. Johnson et al. [19] have proposed a probabilistic 

model to predict the activity of 12 upper-limb muscles. Another machine learning-based 

approach to predicting muscle activity was discussed by Nardo et al. [20]. However, this 

model was again fed with sEMG data as input to train the model and, therefore, may suffer 

from its limitations. Further, apart from measuring muscle activity, there are currently no 

techniques that evaluate each muscle's relative contribution when performing a movement. 

Understanding and knowing the contribution of each muscle in relation to other muscles 

may be useful in improving the efficacy of targeted therapies, such as injections of 

botulinum toxin used to mitigate PD-related symptoms. Furthermore, how the CNS solves 

muscle redundancy is still a topic of debate, although it is hypothesized that the CNS 

promotes muscle synergism. Studying the relative contribution of each muscle may provide 

new insights into how the CNS recruits and the ratio in which it shares the workload with 

multiple sets of muscles. Hence, there is a need for a more detailed, accurate, and subject-

specific muscle model that can estimate muscle activity and the relative contribution of 

muscles. A detailed, accurate muscle model may be useful in studying how PD alters the 

muscle recruitment processes and to better guide targeted therapies. This study aims to 

develop a detailed, accurate musculoskeletal model to study the muscle recruitment 

strategies and validate its output using the current gold standard methods used in clinics to 

measure muscle activations.   

As discussed earlier, apart from studying the muscle recruitment strategies, the 

muscle model may also be useful in guiding targeted therapies such as injections of 

botulinum toxin. Apart from discussing the muscle model validation, this chapter also 

discusses the potential of the muscle model to be adopted as an alternative guiding tool for 

the targeted therapies used to mitigate Parkinsonian tremor. Typically, the tremor in PD 

patients occurs at rest at a frequency of 4 to 6 Hz [21], affecting the patient’s ability to 

perform even day-to-day activities [22][23]. Targeted therapies such as botulinum toxin 

injections are safer, have the least side effects, and have shown clinically meaningful 

improvement in mitigating tremor [24]. A specific dosage of botulinum toxin is injected 

into targeted muscles that contribute to the tremor. While botulinum toxin injection is 

considered a promising treatment for tremor, studies [25][26] have shown that the efficacy 
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of the injections heavily depends on optimizing the injection patterns, i.e., selecting the 

muscles that need to be injected and determining the optimal dosage per muscle. Muscle 

selection and dosage determination require an accurate estimation of muscle activity and 

its relative contribution to the tremor.  The current methods for dosage determination 

(subjective visual assessment or intramuscular EMG) suffer from numerous limitations 

[27] [28] [29] [30]. Therefore, there is a need for an objective method to determine the 

injection sites accurately and the dosage per muscle that could help improve the efficacy 

of the treatment. The muscle activity and contribution provided by the validated muscle 

model may be used to better select the muscles and the dosage per muscle. As such, the 

model’s output was used to estimate the dosage for nine upper-limb muscles in 47 PD 

patients undergoing the therapy. The methodology used to estimate the dosage is given in 

section 2.5.7 of Chapter 2. The estimated dosage, actual dosage, and the tremor in the 

follow-up visits were compared to understand the model’s potential for this application. It 

should be indicated on a cautionary note that the dosage estimated by the model was never 

used to inject patients in real-time, and neither has the validated model been used in a 

clinical setting so far. The study to evaluate the model’s ability to estimate dosage is a first 

step towards using novel techniques to improve the efficacy of the targeted therapies.  

5.2 Methods 

5.2.1 Participants 

5.2.1.1 Model Validation 

Six healthy subjects were recruited in this study to validate the accuracy of the 

musculoskeletal model. Only subjects with no injuries limiting their upper-limb 

movements were recruited. The arm was divided into three sections: (i) tip of the middle 

finger to the wrist joint, (ii) wrist joint to the elbow joint, and (iii) elbow joint to the 

shoulder joint. The length pertaining to each section of the arm was measured. These values 

for a given subject were entered into the muscle model when inputting the kinematic data 

collected from that subject. This was done to ensure that the bone parameters were adjusted 

to fit the subjects when predicting muscle activity. Table 5.1 shows the average subject-

specific bone parameters used in this study. No joint parameters were varied, as the subjects 
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did not suffer from joint dysfunctions. Finally, the muscle parameters such as PCSA and 

muscle fiber length were not measured due to the amount of time and complexity involved 

in the process. 

Table 5.1: Average of the subject-specific bone parameters 

 Mean 

length 

(m) 

Mean 

mass 

(kg) 

Mean 

radius (m) 

Mean inertia 

Ixx (kg 

m2) 

Iyy (kg 

m2) 

Izz (kg 

m2) 

Humerus 0.3132 2.282 0.0481 0.01990 0.00264 0.01990 

Radius 0.2454 1.304 0.0411 0.00110 0.00709 0.00709 

Ulna 0.2610 1.304 0.0398 0.00792 0.00103 0.00792 

Clavicle 0.1522 0.532 0.0333 0.00029 0.00117 0.00117 

Scapula 0.0120 0.532 0.1180 0.00188 0.00188 0.00375 

Hand 0.1717 0.489 0.0301 0.00131 0.00022 0.00131 

5.2.1.2 Application of the Model 

One of the prospective applications of the model was to estimate the dosage of botulinum 

toxin to improve the efficacy of the therapy. A total of forty-seven patients were recruited 

for this study. All patients had undergone botulinum toxin therapy to treat hand tremors. 

The patients were asked to come for two visits. In the first visit, the patients were injected 

with the dosage determined through visual assessment or EMG. In the second visit (follow-

up), the patient’s tremor was assessed using joint kinematic data to understand if the 

injection mitigated the tremor. 

5.2.2 Ethics 

The Office of Human Research Ethics at Western University's Research Ethics Board 

(REB) approved this study protocol (protocol number: 108252). All the participants 

provided their informed consent before the study. The experiment was conducted per the 

ethical standards laid down by the Declaration of Helsinki and the Tri-Council Policy 

Statement of Ethical Conduct for Research Involving Humans in Canada. 
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5.2.3 Experiment 

5.2.3.1 Model Validation 

The participants performed five distinct upper-limb movements involving three upper-limb 

joints (shoulder, elbow, and wrist). All participants completed the tasks in the right hand. 

Table 2.15, in Chapter 2, indicates the sequence of five tasks performed during the study. 

Each participant performed each of the five tasks for a total of five trials. 

5.2.3.2 Application of the Model 

The PD patients undergoing the therapy to mitigate rest tremors were asked to sit upright 

with their elbows bent to 90 degrees and resting on their legs when the kinematic data was 

acquired. The data collection was done during both visits of the patient. 

5.2.4 Study Design 

5.2.4.1 Model Validation 

As indicated earlier, the kinematic and sEMG data was collected when the participants 

performed the five tasks to capture joint movements and muscle activation, respectively. 

The Kinematic and sEMG data was collected simultaneously to ensure that the collected 

data corresponded to the same motion. The kinematic data was collected using wireless 

sensors (three electrogoniometers and one torsiometer) placed at the joint of interest. The 

procedure involved in collecting and processing the joint kinematic data is given in Chapter 

2 under section 2.5.6.1. Figure 5.1 shows the sample joint kinematic data collected from 

the participants when performing the five tasks [31]. These joint kinematic data was 

provided as input to the muscle model. 

The sEMG recordings were rectified and filtered using a Butterworth filter with a 

cut-off frequency of 20 Hz [32]. The filtered sEMG data was normalized using the root 

mean squared value of the amplitude of the sEMG recordings obtained at MVC. The 

normalized sEMG data for eight superficial muscles (Biceps, Triceps, FCR, ECR, Deltoid, 

Teres Major, Pectoralis Major, Latissimus Dorsi) was obtained using the Delsys Multi-

Contact sEMG sensor. The procedure involved in collecting and processing the sEMG 

recordings is explained in Chapter 2 under section 2.5.6.2. As discussed earlier, the 
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participants performed each task for five trials. Therefore, the normalized sEMG data was 

divided into sectors depending on the timed change of the movement. The normalized 

sEMG data belonging to each sector were then averaged across the five trials. A similar 

exercise was carried out for the predicted muscle activity. Finally, the averaged normalized 

sEMG data and predicted activity was compared to validate the muscle model. As 

mentioned in section 2.5.6, the normalized sEMG data was calculated only for the purpose 

of muscle validation and was not provided to the muscle model during its prediction phase. 

In other words, the sEMG data does not have any role to play in the functioning of the 

muscle model or in its prediction of the muscle activity. It was only used to compare the 

model’s predicted activity with the sEMG’s measured activity to understand if there is a 

correlation between the model’s output and the sEMG’s output. 

 

Figure 5.1: Kinematic data collected for the five tasks 
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5.2.4.2 Application of the Model 

The placement of the wireless sensors remains the same as mentioned in the previous 

section. The kinematic data collected from the PD patients were used to predict the activity 

and contribution of individual muscles using the model, which is then used to estimate the 

dosage for nine upper-limb muscles (Biceps, Triceps, FCR, ECR, FCU, ECU, Supinator, 

Pronator teres (PT) and quadratus (PQ)).  

The first step in dosage determination is to estimate the overall dosage for all the 

muscles involved in a joint movement. This is done by calculating the tremor amplitude 

pertaining to each joint, i.e., elbow, wrist, and forearm. Once the tremor amplitude for each 

joint was calculated, the overall dosage pertaining to that joint was determined based on 

the work of Samotus et al [26]. For instance, four muscles (FCR, ECR, FCU, and ECU) 

are prime movers for the wrist joint. Therefore, the wrist tremor amplitude can be used to 

determine the total dosage across the four muscles. This is carried out separately for muscle 

groups that move each joint. While this step can provide the total dosage for each muscle 

group, it does not indicate the exact dosage for individual muscles. It is not an efficient 

strategy to divide the dosage across all muscles equally, as each muscle in the group may 

contribute differently to the joint movement. Therefore, the muscle contribution, indicating 

the percentage of individual muscle contribution towards the tremor movement, was used 

to determine the dosage per muscle. Section 2.5.7 discusses further the methodology used 

to predict dosage per muscle. 

5.2.5 Analysis 

5.2.5.1 Model Validation 

This study validated the proposed musculoskeletal model by comparing the predicted 

muscle activity from the muscle model with the calculated muscle activity from the sEMG. 

Therefore, two performance metrics, namely RMSE and Pearson Correlation (r), were 

calculated to compare the predicted and sEMG activity and evaluate the accuracy of the 

proposed model. Furthermore, the coefficient of determination was also calculated by 

squaring the correlation value. The equations associated with these performance metrics 

are provided in Chapter 2.  
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5.2.5.2 Application of the Model 

Two different analyses were done to demonstrate the effectiveness of the muscle model in 

being used to estimate the dosage of Botulinum Toxin: (1) a comparison between the 

dosage predicted by the muscle model with the actual dosage prescribed by the clinicians, 

(2) Correlation analysis between the dosage difference and the tremor experienced by the 

patients after receiving the injection during their follow-up visit. Since the model’s 

accuracy has already been validated, a higher difference between the actual and predicted 

dosage indicates that the dosage currently provided to the patients through visual 

assessment or EMG is very different from the optimized dosage obtained from the muscle 

model. Secondly, a positive correlation between dosage difference and tremor during the 

follow-up visit may imply that the therapeutic efficacy may improve by using the dosage 

predicted by the muscle model. The reason is that a high tremor amplitude during the 

follow-up visit indicates that the dosage obtained through conventional methods did not 

mitigate the tremor, indicating that the dosage per muscle needs to be changed. It can be 

assumed that this change in dosage would have to be proportional to the tremor amplitude, 

i.e., if a high amplitude of tremor exists, the dosage needs to be varied by a large margin 

and vice versa. Therefore, a positive correlation would indicate that when a high amplitude 

of tremor still exists, the predicted dosage varied by a large margin compared to the actual 

dosage and vice versa. This may indicate that the predicted dosage is the optimized dosage 

per muscle and may yield a better result than the dosage currently determined through 

conventional methods. Therefore, a correlation was calculated between the dosage 

difference for a given muscle and the tremor amplitude pertaining to the joint that is moved 

by the muscle of interest. For instance, a correlation between the FCR and the tremor 

amplitude pertaining to the wrist was calculated. This was because the FCR was one of the 

prime movers of the wrist. Furthermore, a correlation between the summed dosage 

difference of a muscle group and the tremor amplitude of the corresponding joint was also 

calculated. For instance, a correlation between wrist tremor and the summed difference in 

dosage across all prime movers of the wrist (FCR, ECR, ECU, FCU) was calculated.    
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5.3 Results 

5.3.1 Validating the Musculoskeletal Model 

In this section, the musculoskeletal model proposed as a tool to evaluate the motor unit 

recruitment, which may also assist in improving the efficacy of targeted therapies, is 

validated [31]. The validation is done by comparing the muscle activity predicted by the 

model with the measured activity obtained from the sEMG. Apart from the model 

validation, the model’s ability to predict muscle activity and contribution, taking into 

account the subject-specific bone, joint, and muscle parameters, is also discussed.  

5.3.1.1 Comparing the Measured (sEMG) and Estimated Muscle 
Activity 

As discussed earlier, the model is validated by comparing the measured (from the sEMG 

recordings) and estimated (from the muscle model) muscle activity. Only activity from 

eight muscles was recorded using the sEMG due to the limitations of the device (the sEMG 

device can only record accurate activities from large superficial muscles). Therefore, only 

the activity from these muscles was compared for model validation. However, the 

musculoskeletal model can estimate activity for all deep and superficial muscles in the 

upper limb, which is one of the model's advantages over conventional methods. To 

generalize the results across multiple subjects, the predicted and measured activity obtained 

from each subject was averaged together to obtain the mean predicted and measured 

activity pertaining to a given task. Appendix C shows the mean predicted activity across 

six subjects for various muscles when performing the five tasks. The muscle activity is 

dimensionless and ranges from 0 to 1, with 0 indicating no activity and 1 indicating 

maximum activity. Additionally, the muscle model can also estimate the muscle 

contribution, represented in percentages. Appendix D shows the mean contribution 

averaged across six subjects of various muscles when performing the five tasks. 

To compare the predicted output with the normalized sEMG activity, performance 

metrics, namely RMSE and correlation value, were calculated. These performance metrics 

were used to evaluate if the predicted muscle activity aligns with the measured activity to 

validate the model's accuracy. Table 5.2 shows the muscle-wise performance metrics 
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comparing the measured and predicted activity values [31]. The results indicate that the 

average 𝑅2 value between the measured and predicted activity across the eight muscles 

was 0.8190, implying that the two activity values are closely related and increase or 

decrease at the same rate. The mean correlation value was 0.906, indicating a linear 

relationship between the measured and predicted activity. Additionally, the overall p-value 

for the correlation across all muscles was p < 0.0001. Therefore, the correlation between 

the two activity values was also statistically significant. Furthermore, the RMSE value 

averaged across the eight muscles was also 0.1031, which falls within an acceptable range 

of discrepancy between the predicted and measured values. The RMSE value indicates the 

difference between the predicted and measured value was about 10% of the maximum 

activity value. This RMSE value may be considered acceptable because even the sEMG 

values recorded across multiple trials for the same motion had a minor difference from 

each other. The RMSE value for the sEMG data between two trials of the same task was 

found to be 0.04485, which is about 4% of the maximum activity value. It must be noted 

that while the difference between the two sEMG recordings was only 4% as opposed to the 

10% between the measured and predicted value, the sEMG comes with many limitations 

that affect its accuracy, which was the motivation behind designing this muscle model.  

Table 5.2: Muscle-wise performance metrics when comparing the predicted and 

measured (sEMG) activity 

Muscle Root Mean 

Squared Error 

(RMSE) 

Pearson’s 

correlation 

Coefficient of 

Determination 

(R2) 

P-value 

Biceps 0.014185 0.9297 0.8643 < 0.0001 

Triceps 0.003462 0.8982 0.8067 < 0.0001 

FCR 0.046810 0.8922 0.7715 < 0.0001 

ECR 0.024805 0.9139 0.8352 < 0.0001 

Deltoid 0.083255 0.9293 0.8635 < 0.0001 

Latissimus 

dorsi 

0.190851 0.9042 0.8175 < 0.0001 

Teres Major 0.134105 0.8575 0.7353 < 0.0001 

Pectoralis 

Major 

0.327439 0.9034 0.8161 < 0.0001 

The five tasks only involve the three joints of the upper limb. However, the model 

has other functional joints which are not involved in the five tasks. Therefore, a secondary 

result was added where the movement, such as shoulder retraction/ protraction and 
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shoulder elevation/ depression involving the acromioclavicular, scapulothoracic, and 

sternoclavicular joints, were performed in the model, and the corresponding activity was 

predicted. No kinematic data was collected during the movement as the wireless sensors 

are not equipped to collect data from these joints. Hence, the shoulder protraction/retraction 

and shoulder elevation/ depression were directly simulated in the muscle model. For 

shoulder protraction/ retraction, the shoulder was simulated to protract initially, followed 

by a retraction, and finally back to the shoulder’s neutral position. Figure 5.2 shows the 

activity predicted by the muscle model for the four muscles primarily involved in this 

action. Moving to the shoulder elevation/ depression movement, the shoulder was 

simulated to perform a shoulder elevation, followed by a depression, and back to the 

shoulder’s neutral position. Figure 5.3 shows the predicted activity of four muscles 

primarily involved in shoulder elevation/ depression motion [31]. 

 

Figure 5.2: Predicted activity for shoulder protraction and retraction 

 

Figure 5.3: Predicted activity for shoulder elevation and depression 
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5.3.1.2 Subject-specific Muscle Activity and Contribution 

One of the model’s advantages is that the model’s parameters can be varied to suit the 

subjects to obtain a subject-specific activity prediction. During the model validation using 

healthy subjects, the bone parameters were varied to fit the subjects. Consequently, certain 

muscle parameters, such as the insertion and origin points, also varied according to the 

length of the bones. This section showcases the model’s ability to consider the subject-

specific parameters when predicting muscle activity. While the earlier section compared 

the intra-subject predicted activity with the sEMG data, this section compares the inter-

subject predicted activity with one another to show that the predicted activity varies based 

on the subject-specific parameters. 

 

Figure 5.4: Subject-specific muscle activity for the task - 1 

Two subjects were considered to understand the model's sensitivity to the subject-

specific parameters. The bone parameters of the two subjects varied. The average mass, 

length, and radius of the bones for subject 1 was 15.9%, 8.95%, and 3.15% lower than 

subject 2. The predicted activity for both subjects in task 1 for the six muscles is shown in 

Figure 5.4. It can be seen that, while the predicted activity closely aligns between the 

subjects, there are a few variations in activity between the subjects when performing certain 

regions of the task.  The minor difference in muscle activity between the two subjects may 

be attributed to the difference in the inertia tensor matrix of the rigid bodies. The reason 
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why the muscle activity between the two subjects was not vastly different from one another 

is because of the method used to determine the activity of muscles. The predicted muscle 

activity was obtained by normalizing the model’s output using the force generated by that 

subject at MVC. This mirrors the procedure to obtain normalized sEMG data where the 

sEMG recordings were normalized using the sEMG recordings obtained at MVC. This may 

be the reason why the differences between the subjects were not substantially different. 

However, this difference in the activity between the subjects might be more evident when 

used on patients with varying degrees of movement disorders or varying severity of disease 

or joint dysfunctions.  

Finally, the model’s muscle parameters, such as PCSA, can also be varied 

depending on the subject. Although, due to the time and cost-intensive nature of measuring 

the muscle volume and fiber length, which are necessary to calculate the PCSA of the 

muscles, a subject-specific PCSA for each muscle was not calculated and used in the model 

during validation. However, three sets of muscle parameters were obtained from earlier 

cadaveric studies [33][34] and used in the model to demonstrate the model’s ability to 

adjust the muscle parameters and accordingly predict the activity. Table 5.3 shows the three 

sets of PCSA and optimal fiber length values for the biceps and triceps fascicles obtained 

from earlier studies. Using each parameter set, the model predicts the muscle activity for 

an elbow flexion/extension movement. Figure 5.5 shows the muscle activity of two biceps 

and three triceps fascicles when performing the same movement using three sets of muscle 

parameters. While the trend of activity was the same, irrespective of the muscle parameters, 

the muscle activation values varied based on the parameters. This implies that the 

prediction made by the model takes into account the subject-specific muscle parameters. 
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Figure 5.5: Muscle activity of biceps and triceps fascicles with varying muscle 

parameters 

Table 5.3: Three sets of muscle parameters 

 Set – 1 Set – 2 Set - 3 

PCSA 

(cm2) 

Neutral 

fiber 

length 

(cm) 

PCSA 

(cm2) 

Neutral 

fiber 

length 

(cm) 

PCSA 

(cm2) 

Neutral 

fiber 

length 

(cm) 

Biceps Brachi 

Caput Breve 
1.72 15 1.75 18 3.1 13.2 

Biceps Brachi 

Caput longum 
1.78 10 1.57 15.6 4.5 11.6 

Triceps lateral 

head 
4.78 5.5 4.13 10.2 4.5 11.4 

Triceps long 

head 
5.62 9.4 3.6 17.6 5.7 13.4 

Triceps medial 

head 
9.04 8.7 3.21 14.4 4.5 11.4 
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5.3.2 Towards Estimating Dosage of Botulinum Toxin for 
Parkinson’s Patients: A Prospective Application 

The objective of the section is to propose the muscle model as a more effective alternative 

to determining the botulinum toxin dosage per muscle, which in turn would enhance the 

efficacy of the treatment. The muscle activity and contribution predicted by the model were 

used to estimate the dosage for nine upper-limb muscles for 47 PD patients undergoing 

botulinum toxin therapy. Further, the model’s potential to be used for this application was 

also explored. 

5.3.2.1 Calculating the Dosage based on Muscle Activity and 
Contribution 

Table 5.4: Difference between the estimated and actual dosage 

Muscles Number of 

patients with a 

change in dosage 

(Out of 47 

patients) 

Percentage difference 

between the estimated 

and actual dosage 

Significance 

Biceps 22 11.77 p = 0.1643 

Triceps 22 20.78 p = 0.0070* 

FCR 20 55.79 p = 0.0437* 

FCU 15 14.82 p = 0.0707 

ECR 21 33.76 p = 0.0002* 

ECU 22 22.10 p = 0.8414 

Supinator 30 196.96 p = 0.0014* 

Pronator Teres 13 15.71 p = 0.0022* 

Pronator 

Quadratus 

13 50.72 p = 0.1655 

Note: * after the p-value indicates statistical significance 

The kinematic data collected from the PD patients was used to predict the muscle activity 

and contribution, which was then used to estimate the dosage per muscle. The difference 

between the predicted and actual dosage for each muscle across the 47 PD patients was 

evaluated to understand if there was a statistically significant difference between the actual 

and predicted dosage. Table 5.4 shows that the predicted dosage for five out of nine upper-

limb muscles was statistically significantly different from the actual dosage.  



213 

 

5.3.2.2 Correlation between the Dosage Difference and the Tremor 
Amplitude  

A correlation between the dosage difference and the amplitude of the tremor in the patient’s 

follow-up visit was performed. This was done to understand if the model’s prediction 

differed from the actual dosage only when the treatment with the actual dosage did not 

mitigate the tremor, resulting in a higher tremor amplitude. Table 5.5 shows the correlation 

between the muscles and the tremor amplitude of the corresponding joint. A positive 

correlation between the tremor amplitude of the joint and the muscles was observed. The 

positive correlation was statistically significant for all muscles except the ECR and 

Pronator Quadratus. This implies that the predicted dosage was substantially different from 

the actual dosage when the tremor amplitude of the corresponding joint was high. 

Furthermore, Table 5.6 shows the correlation between the joint's tremor amplitude and the 

total dosage difference across every muscle in a given muscle group involved in moving 

the joint. Once again, a statistically significant correlation was observed between the 

tremor amplitude and the corresponding muscle group. There is a positive correlation of 

0.5317, 0.4176, and 0.3075 between the wrist, forearm, and elbow muscle groups and the 

tremor amplitude of the wrist, forearm, and elbow joints. Combining all muscle groups and 

tremor amplitudes of all joints, a positive correlation of 0.5570 was observed and was 

statistically significant. 

Table 5.5: Correlation between the difference in dosage of individual muscle and 

tremor amplitude of the joint moved by a given muscle 

Muscles Correlation Significance 

Biceps 0.3075 p < 0.05 

Triceps 0.3075 p < 0.05 

FCR 0.4984 p < 0.05 

FCU 0.5318 p < 0.05 

ECR 0.1848 NS 

ECU 0.2981 p < 0.05 

Supinator 0.3398 p < 0.05 

Pronator Teres 0.3020 p < 0.05 

Pronator Quadratus 0.2114 NS 
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Table 5.6: Correlation between the tremor amplitude of the joints and the difference 

in dosage among the muscle groups responsible for the joint movement 

Muscle groups Correlation Significance 

Wrist muscle group 0.5317 p < 0.05 

Forearm muscle 

group 

0.4176 p < 0.05 

Elbow muscle group 0.3075 p < 0.05 

All muscles 0.5570 p < 0.05 

5.4 Discussion 

The work described in this chapter focused on designing a musculoskeletal model to 

examine the muscle recruitment strategies, which may assist in understanding the muscle 

activation patterns in PD patients and act as a guiding tool to individualize and improve 

the efficacy of targeted therapies. Earlier literature [9][6] [25][26][35] has discussed the 

importance of studying muscle recruitment strategies and individualizing the targeted 

therapies to enhance their effectiveness. Due to the limitations in the earlier simulation or 

machine learning models [19] [11] [13] developed to examine the muscle activation 

patterns, there is a need for a subject-specific musculoskeletal model that is far more 

detailed and accurate. The proposed upper-limb musculoskeletal model comprises 61 

muscles, seven functional joints, and seven rigid bones, making it more detailed than earlier 

models. Furthermore, to perform a patient-specific analysis of the muscle activation 

patterns, the model’s parameters can be varied to suit the patient’s bone, muscle, and joint 

parameters. The muscle model uses the joint kinematic data as input and outputs the muscle 

force using the inverse dynamics optimization algorithm. The muscle force is then used to 

estimate the activity and relative contribution of individual muscles. To validate the muscle 

model, the model’s output (muscle activity) for healthy subjects was compared with the 

activity measured from the sEMG, which is currently considered the gold standard for 

measuring the activity of superficial muscles. While the muscle model may be used to 

study the muscle activation patterns in PD patients, an important application of this model 

was to better guide targeted therapies such as botulinum toxin injections. Therefore, the 

model’s output (muscle activity and contribution) for the kinematic data obtained from PD 

patients were used to estimate the botulinum toxin dosage per muscle. Furthermore, to 

explore the model’s potential as an effective tool to estimate dosage per muscle, the 



215 

 

difference between the actual and estimated dosage was correlated with the tremor 

experienced by the patients in the follow-up visits. This would indicate if there was a 

substantial difference between the actual and estimated dosage only when the dosage 

provided to the patients through subjective methods was ineffective, leading to tremor not 

being mitigated in the follow-up visit. 

Discussing the model validation, the muscle activity predicted by the model was 

compared with the normalized sEMG activity for superficial muscles. Across the eight 

superficial muscles, the average RMSE was 0.1031, and further, a statistically significant 

correlation was observed between the measured and estimated activity. Therefore, the 

performance metrics show that the activity predicted by the muscle model closely 

resembled the normalized sEMG data. This close alignment with the sEMG, which is 

currently considered the gold standard in clinics to measure the activity of superficial 

muscles, validates the output of the muscle model. While the model’s output for superficial 

muscles may align with the sEMG recordings, the model also has several benefits over 

conventional methods as it can measure the activity of even the deeper and smaller muscles 

without the need for any invasive procedures such as intramuscular EMG. Furthermore, 

while the earlier methods are not equipped to calculate the relative contribution of muscles, 

the proposed model can determine the contribution of each muscle pertaining to a motion. 

Another significant aspect that needed to be considered when designing the model 

was the detail, i.e., the number of muscles included in the model. One of the objectives was 

to develop a model that is more detailed than existing models. A discussion on the existing 

simulation and machine learning models has been provided in the introduction. To this end, 

the proposed model is more detailed than the earlier models as it includes 61 upper-limb 

muscles.  

The study was also aimed at adapting the model to suit the subject of interest. 

Therefore, the bone, joint, and muscle parameters can be varied depending on the subject. 

The model’s ability to vary the bone parameters was showcased when validating the 

model’s output using healthy subjects. A comparison between the model’s output for two 

healthy subjects was also performed, which indicated that the activity estimated for the 
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healthy subjects was not substantially different, although their subject-specific parameters 

were different. This may be because the estimated activity used for validation was obtained 

by normalizing the muscle force with force generated by that subject at MVC. Therefore, 

the difference in the parameters may have been canceled out during the normalization; 

thereby, the activity patterns were not significantly different even though the subject-

specific parameters were different. While the bone parameters were measured for each 

subject and varied during the model validation, the muscle parameters such as PCSA, 

muscle volume, and fiber length were not measured as they may require time and cost-

intensive procedures such as MRI. However, to validate the model’s ability to take the 

different muscle parameters into account when estimating the muscle activity, three sets of 

muscle parameters from earlier cadaveric studies [33][34] were used on the model to 

estimate the activity for the simulated elbow flexion/ extension movement. The results 

showed a variation in the muscle activity of the biceps and triceps, which implied that the 

model’s prediction accounts for the subject-specific parameters. 

Finally, a potential application for the model, which was to guide and individualize 

the targeted therapies, such as botulinum toxin, to improve its efficacy, was studied. The 

kinematic data collected from the PD patients undergoing botulinum toxin therapy was 

used to estimate the muscle contribution and then predict the dosage for nine upper-limb 

muscles. There was a statistically significant difference between the actual and predicted 

dosage. Considering that the model’s output was validated, the significant difference in the 

predicted and actual dosage may imply that the dosing patterns may be further optimized 

to improve the effectiveness of the therapy. To explore the model’s potential for this 

application, a correlation was calculated between the difference in the dosage and the 

tremor observed during the follow-up visit. A positive correlation was observed between 

the difference in the dosage and the tremor during the follow-up visit. This indicates that 

as the tremor in the follow-up visit increased, the difference between the predicted and 

actual dosage also increased. The result implies that only when the dosing patterns derived 

using conventional methods failed to effectively mitigate the tremor, the model predicted 

a substantially different dosage from the actual one. Therefore, taking these results 

together, the muscle model may be considered a potential alternative or a complementary 

method to better guide the therapies. However, while the model’s output was validated by 
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comparing it with sEMG, the model’s ability to predict the optimized dosage (the dosage 

that yields the best results for the patient) is yet to be validated. The muscle model has 

significant advantages over conventional methods. However, adopting the muscle model 

to guide the targeted therapies requires testing in a clinical setting and consensus from the 

experts in the field. 

The work described in this chapter was aimed at designing and developing an 

accurate, detailed, and subject-specific musculoskeletal model that can be used to study the 

muscle activation patterns in PD patients and better guide PD-related therapies. To validate 

the accuracy of the muscle model, the activity estimated by the model for eight upper-limb 

muscles was compared with the normalized sEMG activity. The results showed that the 

muscle activity estimated by the model correlated with the sEMG recordings, thereby 

validating the model’s output. Several studies [35] have indicated the need for a more 

targeted and patient-specific approach to improving the quality of care for PD patients. 

Therefore, to ensure that the model can be used for patient-specific analysis, the model’s 

ability to adjust the parameters and take them into account when estimating muscle activity 

and contribution was also demonstrated.  Hence, the model’s accuracy and ability to be 

subject-specific have been validated through a set of experiments discussed earlier. Further, 

a potential application for the model was discussed. The activity and relative contribution 

were used to predict the botulinum toxin dosage per muscle to efficiently mitigate the rest 

tremor in PD patients. A statistically significant difference between the predicted and actual 

dosage was observed. Furthermore, a positive correlation was observed between the tremor 

in the follow-up visit and the dosage difference. This implies that the predicted dosage is 

substantially different from the actual dosage only in instances that necessitate a large 

change in actual dosage to optimize the treatment. Therefore, the results show that the 

muscle model has the potential to be used as a guiding tool in targeted therapies such as 

botulinum toxin injections. However, it must be indicated on a cautionary note that while 

the model’s ability to estimate the muscle activity and contribution was validated, no 

validation was done to ensure that the model predicts the optimized botulinum toxin 

dosage. The correlation between the dosage difference and the tremor only shows that the 

model predicted a vastly different dosage when the tremor was not mitigated using the 

actual dosage. The findings still do not indicate if the dose estimated for each muscle is 
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optimized to effectively mitigate the rest tremor in PD patients. This may require clinical 

testing and analysis to understand if the predicted dosage improves the therapy's efficacy 

and does not lead to any side effects, including muscle weakness. Therefore, the work 

described here may act as the first step in objectively and accurately guiding targeted 

therapies. However, before adopting the muscle model in a clinical setting, there is a need 

for an extensive clinical trial or study, and it requires consensus from clinicians to 

understand its suitability for the application.  
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Chapter 6  

6 Discussion 

This thesis explored how PD could alter SMI and SMC functions and how objective disease 

diagnostic and management techniques could be developed. Following the objectives 

described in Section 1.8 in Chapter 1, the thesis was divided into four chapters, with 

Chapter 2 containing the methodology, followed by Chapters 3, 4, and 5 focusing 

respectively on the evaluation of the performance of SMI and SMC using robot-based 

tasks, and designing of a musculoskeletal model to analyze muscle activation patterns. 

While the deficits in perception and motor functions have been widely studied, the factors 

contributing to these deficits must be understood to better optimize the treatments. It has 

been hypothesized that an impairment in SMI and SMC in PD patients may lead to 

perceptual deficits, leading to motor dysfunctions. However, the exact nature and extent of 

these impairments are not fully understood. Therefore, multiple custom-built upper-limb 

tasks and corresponding features were designed and developed to evaluate and characterize 

various aspects of SMI and SMC impairments in PD. The extracted features were used to 

expand our knowledge about the SMI and SMC impairments in PD patients and the effect 

of dopaminergic medication. These tasks and the corresponding metrics were also designed 

to be used as an objective clinical assessment tool of the SMI and SMC impairments in PD 

patients, which may provide clinicians with vital information to optimize the treatments. 

The tool described in this thesis is a foundation for our research goal of developing an 

objective technique that can complement the existing subjective assessments, such as 

clinical scales, for better diagnosis and management of the disease. With studies [1][2][3] 

indicating that non-motor symptoms, such as perceptual deficits, are presented earlier than 

motor symptoms, this tool may be used to detect SMI and SMC impairments that lead to 

perceptual deficits at an earlier stage of the disease, thereby aiding in early disease 

diagnosis. To demonstrate the potential of the tool in differentiating PD and healthy 

subjects, a machine learning model was also trained and tested using the features extracted 

from the robotic device. Finally, in Chapter 5, another tool, a subject-specific 

musculoskeletal model, was developed to analyze a specific aspect of SMC functions: 

muscle activation and recruitment patterns in PD and healthy subjects. Unlike the robot-
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based tool, the musculoskeletal model was not used to investigate specific impairments. 

However, the model may be considered a potential tool to better guide targeted therapies 

and improve their efficacy, enhancing the patient’s quality of life. Therefore, the work 

described in this thesis focuses on developing objective tools and performing patient-

specific analysis to quantify and characterize SMI and SMC performance in PD patients. 

These tools lay the foundation for future work that focuses on developing a fully objective 

diagnosis and management tool for neurological disorders, which takes into account the 

diverse nature of the disorders and provides a more individualized, targeted treatment 

approach.  

6.1 Summary of Findings 

6.1.1 Quantification of SMI impairments in PD patients 

• PD patients underperformed in tasks with only visual input compared to controls, 

implying a deficit in visual perception. 

• The deterioration in the performance of the PD patients in tasks with ASC 

compared to without ASC implies an impairment in integrating multi-modal 

sensory inputs. 

• The discussion of the findings based on the computational models indicates that PD 

may adversely affect the ability to rank modalities based on reliability, and 

appropriateness, thereby affecting their ability to assign weights to the modalities 

during multi-sensory integration, leading to impaired SMI functioning. 

• The increased visual dependence in PD patients may be a symptom of impaired 

SMI function.  

• Considering the earlier two points, PD may alter the CNS’s criteria in integrating 

multi-modal inputs. 

• PD patients may retain their ability to adjust motor outputs using the perceptual 

estimates obtained from the impaired multi-sensory integration process. 
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• The ability to modulate the motor outputs may not be completely unimpaired in PD 

patients. However, any impairment in this aspect may be purely a motor component 

rather than a deficit in using the sensory inputs to update a motor command to suit 

the demands of the testing environment.  

• The retention of the PD patients' ability to modulate motor output based on 

perceptual estimates ensured that the patients took into account the changes in the 

testing environment when performing a movement. However, the perceptual 

estimates being inaccurate due to the impaired multi-sensory integration process 

led to inaccuracies in the modulation of motor output resulting in performance 

deterioration compared to control subjects. 

• The PD patients were also able to learn over multiple trials and improve their motor 

performance. This implies that despite the impaired SMI functions, the PD patients 

improved their SMI performance over time which translates into an improvement 

in motor performance. However, the PD patients took more time than the control 

subjects to learn and adapt to changes in the environment. 

• The PD patients were able to improve their sensory integration and motor 

performance over time when provided with appropriate sensory inputs that assisted 

the participants through a task. 

• Overall, while the second facet of SMI (modulating the motor outputs using 

perceptual estimates) is largely retained, the first facet of SMI (multi-sensory 

integration) appears to be impaired due to PD altering the CNS’s criteria in 

integrating multi-modal sensory inputs. However, PD patients improved their 

impaired SMI process over time. 

6.1.2 Effect of Medication on SMI Impairments 

• The ASC did not yield a statistically significant improvement in the performance 

of PD-ON, as shown by the within-group comparison. 
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• PD-ON committed fewer errors than PD-OFF, although PD-ON struggled to 

correct errors once they had committed them. While the number of errors 

committed by PD-ON was less, the magnitude of error for PD-ON was much higher 

than for PD-OFF. This implies that the medication worsened the ability to adjust 

motor outputs using the perceptual estimates, resulting in an inability to modulate 

motor commands to correct the errors that have been committed. 

• The earlier inference is validated by the two findings in tasks without sensory 

manipulation (i) Higher maximum error for PD-ON than PD-OFF while having 

lower mean error than for PD-OFF, (ii) Higher mean violation distance and time 

spent under violation for PD-ON than for PD-OFF, while the mean number of 

violation was lower than for PD-OFF. 

• PD-ON performed worse than PD-OFF when encountering sensory manipulation, 

which aligns with our earlier inference that the online motor control may be affected 

due to medication, which may negatively affect the ability to perform task-specific 

voluntary movements.  

• Interpreting the results from the perspective of the internal model, due to disruption 

in the sensory-motor coupling, PD-ON did not consider that the preceding motor 

output failed to yield the desired results, leading to an error. Therefore, the motor 

output was modulated without fully considering why the preceding motor output 

resulted in an error and how the successive output needed to be modulated to attain 

the desired result. 

• The findings indicate that the medication also worsens motor learning ability. With 

motor learning ability highly dependent on how an individual uses the sensory input 

to learn or re-learn to modify and refine an already learned task, the deterioration 

in motor learning may be attributed to the worsening of SMI deficit due to 

medication. 

• Taking these results together, the medication has disrupted the coupling between 

the sensory and motor systems. SMI requires proper communication and 
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coordination between the motor and sensory systems in a closed loop. The motor 

system must modulate its output based on the sensory inputs that inform us about 

any potential error or environmental changes. However, the medication affected the 

ability of the motor system to "listen" to the sensory inputs when generating or 

modulating its output, thereby making it unable to consider the errors that needed 

to be corrected or changes in the environment when performing a movement.  

• Despite the improvement in movement speed after medication, the worsening of 

SMI impairments, specifically the ability to modulate motor outputs based on 

perceptual estimates due to medication, resulted in PD-ON’s poorer overall task 

performance than that of PD-OFF. 

• Furthermore, while the medication improves the movement speed, it does not 

normalize it, as the control subjects were significantly faster than PD-ON. 

6.1.3 Quantification of SMC impairments in PD patients 

• The PD patients exhibited impairments in the motor domain of SMC, which aligns 

with earlier studies. 

• In the sensory domain of SMC, PD patients exhibited deficits in interpreting and 

using the multi-modal sensory inputs to avoid errors, implying impaired processing 

of sensory inputs. This deficit in the sensory domain of SMC may be attributed to 

the SMI impairment discussed earlier. 

• The PD has altered the threshold for force perception, leading to sensory 

dampening, as the difference in the time taken to correct for perturbations between 

PD patients and control subjects was less for stronger perturbations (perturbation 

with high force) than for weaker perturbations (perturbation with low force). This 

implies that PD patients could perceive and correct for stronger perturbations better 

and more quickly than for weaker perturbations. 
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• Regarding the cognitive domain associated with SMC, PD patients exhibited 

impairments in executive functions such as movement planning or online error 

correction. 

• Furthermore, the decline in cognitive function worsens as the complexity of the 

task increases, implying that PD patients may exhibit steeper deterioration in 

performance compared to control subjects as the cognitive load associated with a 

given task increases. 

• The impairments in executive functions were also observed in patients deemed 

cognitively normal by the clinical scales. 

• The PD patients performed worse than the control subjects when compared from 

the perspective of generic and task-specific computational models related to 

movement planning. 

• Concerning the speed-to-accuracy trade-off model, the PD patients exhibited 

increased signal-dependent noise, which may adversely affect motor planning. This 

aligns with our earlier findings from the cognitive domain, which also demonstrated 

impaired movement planning in PD patients. 

• Finally, in terms of the minimum intervention model, the PD patients exhibited 

deficits in distinguishing between the task-relevant, and task-irrelevant errors, 

leading to their corrective movements increasing the number of obstacle hits rather 

than decreasing it. 

6.1.4 Effect of Medication on SMC Impairments 

• The medication has improved all motor features, implying an improvement in the 

motor domains of SMC. 

• The obstacle hit-to-warn ratio and corrective time for perturbation worsened after 

medication in complex levels of the task. 
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• The worsening of the sensory domain due to medication was evident only in 

complex levels because the simpler levels may not require proper usage of multi-

modal sensory inputs and appropriate force perception to optimally plan or correct 

movement. However, due to high complexity, the later levels might require 

accurate sensory perception for movement planning and error correction. 

Therefore, the worsening of the sensory domain may be specifically highlighted in 

the later levels of the task. 

• Interpreting the earlier point, the medication worsened the ability to interpret 

sensory inputs to adjust the motor output. This result also aligns with the worsening 

of SMI impairment after medication, which was discussed earlier. Additionally, the 

medication has further negatively altered the force perception threshold. 

• Regarding the cognitive domain associated with SMC, the medication worsened 

the executive functions, leading to PD-ON exhibiting poorer movement planning 

and error correction in cognitively demanding levels of the task compared to PD-

OFF. Worsening of executive functions after the medication was only highlighted 

in complex levels of the task as these levels require high cognitive resources 

necessitating complex planning or correction of movement. In contrast, the simpler 

levels requiring low cognitive resources may not highlight the effect of medication 

on the cognitive domain associated with SMC. This inference that PD-ON may 

perform differently depending on the required cognitive resource also aligns with 

an earlier study [4]. 

• Compared to SMC-based computational models, the medication worsened the 

fingertip accuracy (endpoint variance) at cognitively demanding levels. However, 

the performance of PD-ON in the minimum intervention model and speed-to-

accuracy trade-off model was better compared to PD-OFF. Therefore, the effect of 

medication based on the computational models was mixed. 

• In conclusion, while the medication improved the motor domain, it worsened the 

sensory and cognitive domains of SMC, especially at cognitively demanding levels.  
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• The worsening of SMI impairments after medication may have a role to play in the 

deterioration of the sensory domain associated with SMC after medication. 

• While the medication improved the motor domain associated with SMC, it did not 

normalize its functions, as the control subjects still performed better than PD-ON 

across all motor features. 

6.1.5 Robotic Tools and Metrics to Analyze SMI and SMC 
Impairments 

Currently, no objective tool is available to evaluate SMI and SMC performance. The 

robotic tool developed in this study may be the first step in complementing the existing 

subjective scales with an objective technique to better analyze, manage, and diagnose the 

disease. With the burden on medical responses predicted to increase due to the rising 

number of PD patients globally, the robotic tasks and metrics may be improved upon for 

use in a clinical setting for earlier diagnosis or to assist in creating a more sophisticated, 

efficient, and targeted treatment approach, that could reduce the stress on the health care 

system. The tool described in this thesis has several advantages (described below) over the 

conventional methods. 

• The functioning of SMI and SMC plays a vital role in performing day-to-day tasks, 

and impairments in SMI and SMC may severely affect the patient’s quality of life. 

While there are numerous clinical scales to evaluate the cardinal motor and non-

motor symptoms, there is currently no objective method to evaluate the SMI and 

SMC impairments that contribute to perceptual and motor dysfunctions in PD 

patients. The robotic tool discussed in this thesis may be used to examine SMI and 

SMC impairments, which would assist in efficiently managing these impairments, 

thereby improving a PD patient’s quality of life. 

• Three neural network models were developed to understand if the metrics obtained 

from the robotic tasks may be improved in the future as a potential diagnostic tool. 

All three models demonstrated an accuracy of over 80% in differentiating between 

PD and control subjects. With SMI and SMC deficits arising earlier in the disease 

leading to perceptual deficits, the result may imply that the metrics examining SMI 
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and SMC performance may be used in conjunction with the current clinical 

methods to efficiently diagnose PD at an early stage. 

• While PD is considered a heterogeneous disease that presents symptoms differently 

to different patients, the neural network model was able to detect the SMI and SMC 

impairments commonly across most PD patients (around 80%). Therefore, 

abnormalities in SMI and SMC may be considered a potential biomarker for 

diagnosis of PD. 

• In evaluating SMC, the objective metrics were divided into motor, sensory, and 

cognitive features. These features may be used to individually assess each domain 

associated with SMC and target the domain-specific impairments through 

systematic rehabilitation regimes. Currently, no study has evaluated each domain 

of the SMC functionalities individually. 

• During SMC assessment, the cognitive features detected numerous impairments in 

the cognitive domain of the PD patients deemed cognitively normal by the 

subjective clinical scales. Therefore, the objective metrics could detect certain 

impairments in executive functions that the clinical scales could not detect. 

Considering this, it might be beneficial to complement the existing subjective scales 

with objective metrics and testing to better diagnose and manage the disease. 

• The robotic tool is also capable of testing the patients in dynamic environments. 

This includes varying the sensory conditions as it was done when assessing SMI or 

changing the nature of the task that demands varying cognitive resources from the 

patients, like the task used in SMC assessment. Therefore, the techniques developed 

in this thesis may be used to understand how PD patients may perform differently 

in a diverse environment. This may be important to examine as any day-to-day 

activity needs to be performed in a constantly changing or dynamic environment. 

• The objective metrics may also be used to understand if a rehabilitation regime or 

a targeted treatment improved SMI or SMC functionalities and how the treatments 

need to be optimized. 
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• As discussed earlier, the robotic tool could evaluate the effects of the medication 

on SMI and SMC functions in PD patients. Considering the heterogeneous nature 

of PD, the complex and multi-modal effect of medication needs to be considered 

individually for each patient for better optimization of the treatment and patient 

assessment. The robotic task and metrics may therefore be used to understand the 

patient-specific effects of the medication, which is vital for treatment optimization. 

• Metrics were developed to examine the participants from the perspective of existing 

computational models. The metrics for the computational model provide valuable 

insights into how PD may alter the CNS’s criteria for movement planning or error 

correction. These metrics are developed based on the cost function of the models, 

and optimizing these cost-functions-based metrics is assumed to be vital for 

appropriate motor functions. Therefore, the treatment or rehabilitation regimes 

targeted at improving or optimizing these cost-function-based metrics may, in turn, 

improve overall task performance. Currently, no study has evaluated PD patients 

using computational models. 

• These metrics may also be used to evaluate healthy subjects to expand our 

knowledge about how the CNS may optimally plan or correct motor movements. 

6.1.6 Subject-specific Musculoskeletal Model  

The musculoskeletal model was developed to be more detailed, accurate, and subject-

specific compared to existing models. While the robotic tool evaluates the movement 

performed under dynamic environments, the muscle model was developed to examine 

another aspect of SMC function: the muscle recruitment process. 

• The muscle model comprised 61 muscles, seven functional joints, and seven rigid 

bones, making it more detailed than existing upper-limb models. 

• The model’s accuracy was validated by comparing the muscle activity estimated 

by the model with the sEMG activity recorded for eight superficial muscles. The 

findings indicate that the estimated and measured activity for eight muscles have a 
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statistically significant correlation with each other, thereby validating the model’s 

output. 

• Studies [5][6] have emphasized a need for a more subject-specific model as the 

prediction accuracy of the subject-specific may be better than a generic model. To 

this end, the proposed model was developed to be subject-specific as the parameters 

associated with bones, muscles, and joints may be varied depending on the subject’s 

parameters. 

• Experiments were conducted to demonstrate that the model considers the subject-

specific parameters when estimating the activity. 

• Currently, there are no models or techniques that can estimate the relative 

contribution of each muscle when performing a motion. Therefore, the muscle 

contribution estimated by the proposed model may provide valuable insights into 

the criterion that the CNS employs in recruiting the muscles and how the workload 

is shared among the muscles.  

• Muscle recruitment is an essential SMC function to successfully perform any 

motion. The validated muscle model developed in this study may be used to 

understand if PD alters the muscle recruitment strategies compared to those of 

healthy subjects.  

• The outputs from the muscle model may also be used to guide certain targeted 

therapies, to enhance their efficacy. One potential application is discussed in this 

study, which is to use the muscle model to determine and optimize the botulinum 

toxin dosage per muscle, thereby improving the efficacy of the therapy. 

• With the model being subject-specific, the outputs from the muscle model may also 

be used for a more patient-specific treatment or therapy, as studies [7][8][9] have 

indicated the importance of a patient-specific approach in managing neurological 

disorders more effectively. Therefore, the muscle model may be considered a first 
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step in providing an individualized analysis and treatment for neurological 

disorders. 

6.2 Novel Contributions 

To highlight the study’s contributions, this section summarizes the novel contributions of 

the thesis and how the objectives mentioned in the Section 1.8 were achieved. The novel 

contributions of work described in the thesis are as follows: 

Development of robot-based tools to evaluate SMI and SMC impairments in PD 

Patients: While there are several assessment tools available for evaluating the cardinal 

motor symptoms in PD, there is a lack of assessment tools to explicitly evaluate the SMI 

and SMC impairments caused due to PD. With impairments in SMI and SMC functions 

possibly contributing to the motor, sensory and cognitive deficits in PD patients, there is a 

need for an efficient and accurate method to assess SMI and SMC functions. Therefore, in 

the work described in this thesis, a set of robot-based assessment tasks were developed to 

evaluate SMI and SMC functions. Further, a neural network model was designed to analyze 

PD patients' performance, which indicated that the abnormalities in SMI and SMC 

functions were seen more commonly across PD patients, thereby validating the hypothesis 

mentioned in Section 1.7. So far, PD has been considered a heterogeneous disease since 

the symptoms presented by the disease vary from one patient to another. However, our 

findings may suggest that despite the heterogeneous nature of the disease, there may be 

some aspects of PD that are common across multiple patients such as impairments in SMI 

and SMC. As such, these abnormalities in SMI and SMC may also be considered a potential 

biomarker for early detection of the disease. Therefore, in addition to these tools being used 

to evaluate SMI and SMC functions to facilitate better understanding of the disease, they 

may also assist in an early diagnosis of the disease by detecting abnormalities in SMI and 

SMC at an early stage. 

Characterization of SMI deficits in PD patients: In the PD literature, the impact of PD 

on SMI has been somewhat unclear. An understanding of how PD affects the SMI process 

is necessary to understand how an impairment in SMI contributes to perceptual deficits and 

how it can be treated through targeted therapies. Therefore, there is a need to characterize 
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SMI impairments in PD patients before a treatment protocol can be designed to target these 

impairments. In this thesis, using the robot-based tasks, SMI impairments caused due to 

PD were characterized. The findings show that the PD negatively affects SMI functions, 

especially the ability to integrate inputs from multiple modalities. To quantify and 

characterize the impairments, the patients were also tested under different sensory 

conditions. Therefore, in addition to the novel contribution of characterizing SMI deficits 

in PD patients, the results provide insights as to how rehabilitation therapies may be 

structured taking into account the SMI impairments. 

Characterization of SMC deficits in PD patients: SMC functionalities such as 

movement planning and online error correction are critical to performing any motor 

movements. As such, it is vital to understand how PD may affect these abilities. While 

there are some studies that explore the impact of PD on SMC. As mentioned in Section 

1.5.6, there are several limitations that needed to be addressed to obtain a more 

comprehensive understanding of SMC impairments in PD patients. To this end, in our 

study, an obstacle avoidance task was used to assess SMC functions under varying 

cognitive loads. The study’s results are useful in characterizing SMC impairments in PD 

patients. Apart from this contribution, another novelty in our assessment of SMC functions 

is that each domain (motor, sensory and cognitive) associated with SMC was evaluated 

individually. This sheds light on how PD may impact different domains in SMC differently. 

Further, multiple SMC-based computational models were also used to better understand 

SMC impairments in PD patients and the metrics associated with these computational 

models may also be used to target specific aspects of SMC through rehabilitation therapies. 

So far, to the best of our knowledge, no study has evaluated SMC functions in PD patients 

from the perspective of using computational models. 

Understanding the effect of medication on SMI and SMC: The effect of medication on 

perception and cognition has long been mixed and to some extent controversial. Therefore, 

understanding the effects of medication on SMI/ SMC which may contribute to deficits in 

perception and executive functions was necessary to ensure better treatment optimization. 

One of the novel contributions of the thesis is that the effect of dopaminergic medication 

on SMI and SMC was explored using the robot-based tasks. The findings revealed that 
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while medication improved motor features such as speed, the medication also adversely 

affected certain aspects of SMI/SMC functions, especially sensory and cognitive functions. 

These findings need to be taken into account during treatment optimization as deterioration 

of sensory and cognitive functions may have detrimental effects on PD patients' quality of 

life. 

Development of patient-specific musculoskeletal model: The final contribution of the 

thesis was the development of a novel patient-specific muscle model, which is more 

detailed and accurate than earlier models. The muscle model has been validated using 

sEMG. However, unlike the sEMG, the developed model can also estimate activity of deep 

muscles and calculate the relative contributions of individual muscles. The muscle model 

was developed as a tool to explore and study SMC functions such as muscle recruitment 

strategies and how these strategies may be impacted by PD. Further, the muscle model may 

also be used as a guiding tool to improve efficacy of the targeted therapies. As such, one 

application of the model (improving the efficacy of botulinum toxin injections using the 

muscle model) was also explored. This provides new insights into how technology-driven 

tools may be used in a clinical environment to improve the efficiency of treatment. 

6.3 Future Work 

The findings from the study reported in this thesis provide valuable insights into SMI and 

SMC impairments in PD and how to manage them better. However, the thesis does not 

explore all areas of PD, and these gaps in our understanding need to be addressed through 

future work. The following are the few areas of future work. 

Discussing the task design and experimental setup, one direction for future work 

may be to explore and understand the nature of certain perceptual deficits, such as the 

scaling of sensory inputs [10] or sensory overload, reported in PD patients. An altered 

threshold for force perception was also found in this thesis; however, the extent of this 

alteration is yet unknown. Fully understanding the extent and nature of the perceptual 

abnormalities would enable us to design targeted treatments and optimize the existing 

therapies. While the thesis studied the effect of sensory cues on PD patients, it did not 

investigate how a change in sensory cues may affect the motor performance of PD patients. 
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Exploring the relationship between the intensity and nature of sensory cues with movement 

expression may help determine the optimal sensory environment for rehabilitation 

programs to enhance therapeutic efficacy. Further, when providing ASC, inputs from 

multiple modalities (visual, haptic, and auditory) were provided to assess the impact of 

multi-modal inputs on motor performance. In future studies, it may be beneficial to 

understand how inputs from dual modalities (visual and haptic or visual and auditory) 

rather than multiple modalities may influence movement patterns. This would help to 

determine which modality is most effective in guiding the participants and improving their 

performance. Future work may also focus on understanding how the order in which the 

assessments are conducted affects the results of the assessments. In this study, the OFF-

ON testing was conducted such that the PD patients were first assessed in their OFF state 

and then later assessed in their ON state, which has been the common practice for OFF-

ON testing even in earlier studies [11][12][13]. However, it may be beneficial to repeat 

these experiments in the reverse order, i.e., testing the patients in the ON state and then in 

the OFF state. This would help understand if the order in which the assessment was 

conducted may have influenced the results of the experiment. Additionally, the impact of 

fatigue on the performance of the patients in assessment tasks also needs to be further 

explored. Earlier studies [14][15] have mentioned that the fatigue due to extended physical 

work may be a common problem in PD patients. Future work may focus on how to tackle 

this limitation and take into account the fatigue factor when assessing a PD patient’s 

condition.  

Moving to feature design and extraction, the thesis compares the performance of 

SMI and SMC from the perspective of computational models, which provides valuable 

information as to how PD alters the CNS criteria. However, it needs to be stated that 

although the computational models discussed in this thesis do a fine job of describing and 

hypothesizing the criteria used by the CNS in SMI and SMC, there is still no validated and 

clinically accepted model to explain the functioning of SMI, SMC, and the associated brain 

computations. More work is needed to understand the criteria used by the CNS in vital 

processes such as multi-sensory integration, movement planning, and error correction. This 

may shed light on how PD alters these functions from the perspective of the CNS criteria, 

and this knowledge can then be used to better target the deficits. This study investigated 
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domain-specific SMC impairments by using features primarily influenced by a specific 

domain (motor, sensory, and cognitive). Features were classified into motor, sensory, and 

cognitive to analyze domain-specific impairments. The feature classification is justified 

through earlier literature and validated through correlation with the clinical scales. While 

this classifying of features based on domain has not been done before and provided us with 

useful information, there is a possibility of minor domain overlap, i.e., features assigned to 

assess a specific domain may, to a small extent, be influenced by other domains. This is 

one of the limitations of the study. However, it is essential that various aspects of SMC 

need to be analyzed separately, considering the diverse nature of the disease. Therefore, 

future work could focus on better validating these domain-specific features and designing 

more in-depth features to evaluate the motor, sensory, and cognitive domains of SMC. To 

analyze motor learning, a trial-by-trial analysis was performed to understand if the 

difference between the groups reduced over time. It was taken that the target group (PD-

OFF or PD-ON) was able to learn if the difference between the target group and controls 

reduced over time. However, if the learning rate for the two groups involved in the trial-

by-trial analysis remained the same, there may not be any reduction in the difference 

between the performance of the two groups. Future work can focus on an in-depth study 

of motor learning skills in PD patients. Finally, as mentioned earlier, the robotic tools and 

features designed in this study may be improved to monitor and manage the symptoms of 

PD. The robotic and simulation tools developed in the study lay a foundation for a detailed 

and objective analysis of the symptoms and an equally efficient technology-driven 

technique to design patient-specific treatment strategies. With the advancements in 

robotics, virtual reality, and machine learning, future work may focus on developing more 

sophisticated methods and refining the tools developed in this thesis to increase the 

diagnostic range and management capabilities. Developing and refining technology-driven 

solutions for an earlier diagnosis and improved disease management may, in the long run, 

enable us to employ these technologies in a clinical setting. However, this is a long-term 

goal as considerable effort is needed from the research community to design and validate 

these devices.  

Focusing on early diagnosis of PD, the thesis has developed neural network models 

that can detect abnormal SMI/ SMC functions and classify participants based on their SMI/ 
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SMC characteristics. Future work could focus on recruiting participants who have high risk 

of developing PD [16] [17] [18] [19], and determine if the neural network models can 

detect any abnormal SMI/ SMC functions in these participants. This may make it possible 

to use the neural network model as a platform for early diagnosis of PD and in considering 

SMI/ SMC characteristics as a potential biomarker for PD. Finally, as indicated earlier, the 

robotics task developed in this study only assessed a few aspects of SMI and SMC 

functions and the neural network model is only trained on features representing limited 

SMI and SMC behavior. Improving and increasing the number of assessment tasks that 

consider a wider range of SMI/ SMC functions, and using features from these tasks to 

update or retrain the neural network models would enable the models to detect a large class 

of abnormalities in SMI/ SMC functions. This is also one of the reasons why the use of a 

neural network was chosen as a preferred machine learning algorithm since it allows for 

incremental and transfer learning. The performance of the neural network can be improved 

and/or generalized by including new features that represent a wider spectrum of SMI and 

SMC functions. 

6.4 Conclusion 

This thesis focused on developing tools to characterize SMI and SMC impairments that 

contribute to perceptual and motor abnormalities. Furthermore, the objective tool was also 

used to study the effects of medication on SMI and SMC impairments. The PD patients 

were tested under varying sensory conditions to explore how the disease may alter the SMI 

functions and their ability to adapt to a dynamic sensory environment. The findings showed 

a substantial deterioration in multi-sensory integration, although the patients could improve 

their performance over time. However, the medication appears to have worsened the SMI 

deficits. With regard to the findings from the SMC investigation, the patients were tested 

using an obstacle avoidance task necessitating varying degrees of cognitive resources to 

complete the task. The study explored multiple domains associated with SMC functions, 

which assisted in characterizing the domain-specific impairments associated with SMC. 

Furthermore, existing computational models were used to evaluate the performance of PD 

patients. The results indicated that the PD patients suffered significant SMC impairments, 

affecting their voluntary movements. The medication worsened the impairments associated 
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with sensory and cognitive domains of the SMC function, especially in cognitively 

demanding tasks. Further, the ability to perform reaching movements, smooth continuous 

movements as necessitated by tracing tasks, and the skill to avoid obstacles as necessitated 

by obstacle avoidance tasks are essential components in performing numerous activities of 

daily living. Therefore, the results from the study may also be generalized to explain the 

performance of PD patients in everyday tasks under dynamic sensory and cognitive 

conditions. Finally, a muscle model was developed and validated to examine the muscle 

recruitment patterns, an essential component of the SMC function. The proposed model 

may be used to better target and guide PD-related therapies, which in turn may improve 

the efficacy of the treatments; a potential application of the proposed model to improve the 

benefits of targeted therapy was also discussed. In addition to these tools being used in a 

research capacity to expand our knowledge, the potential for the robotic task, metrics, and 

muscle model to be used in a clinical environment in conjunction with existing diagnostic 

and management tools has been discussed. With SMI and SMC impairments contributing 

to non-motor symptoms that severely affect a PD patient’s quality of life, a patient-specific 

tool described in this study to assess these impairments under varying sensory and 

cognitive conditions may assist clinicians in better evaluating and targeting non-motor 

deficits through systematic treatments. Furthermore, considering that the non-motor 

deficits are presented much earlier in the disease, making them a promising biomarker for 

earlier diagnosis, an objective tool to assess the contributors to non-motor deficits may also 

be beneficial as a diagnostic tool. With the global rise in the prevalence of PD, placing the 

healthcare system under stress, there is a need for an early diagnosis and a more targeted 

treatment to provide an efficient quality of care, thereby reducing the burden on medical 

responses. We hope that the tools used in this thesis may be improved upon further to 

complement the existing subjective scales to better diagnose and manage the disease, 

thereby improving a PD patient’s quality of life. 

The results of this thesis are significant considering the unmet need to better 

understand non-motor symptoms, such as perceptual or cognitive abnormalities, and 

examine these impairments through an objective analysis. The findings from the study 

inform us about the factors contributing to perceptual and cognitive abnormalities, enabling 

us to target these deficits through systematic and patient-specific treatment protocols. 
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Furthermore, the study also explores the effect of dopaminergic medication on SMI and 

SMC, which is useful for optimizing therapeutic interventions. Finally, in addition to 

investigating SMI and SMC, the study also developed robotic and simulation tools that 

may be improved upon and used in conjunction with clinical scales to better analyze, 

diagnose, and treat PD. 
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Appendix C: Mean activity predicted by the muscle model for sixteen upper-limb 

muscles when performing the five tasks 
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Overall muscle activity for the task - 2 
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Overall muscle activity for the task - 4 
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Overall muscle activity for the task - 5 
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Appendix D: Mean contribution predicted by the muscle model for sixteen upper-

limb muscles when performing the five tasks 

Overall muscle contribution for task - 1 
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253 

 

Overall muscle contribution for task - 4 
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