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Abstract

RANSAC [15, 38, 1] is a reliable method for fitting parametric models to sparse data with 

many outliers. Originally designed for extracting a single model, RANSAC also has vari­

ants for fitting multiple models when supported by data. Our main insight is that, in prac­

tice, inliers for each model are often spatially coherent — all previous RANSAC-based 

methods ignore this. Our new method fits an unspecified number of models to data by 

combining ideas of random sampling and spatial regularization. As in basic RANSAC, we 

randomly sample data points to generate a set of proposed models (labels). We formulate 

model selection and inlier classification as a single problem — labeling of triangulated data 

points. Geometric fit errors and spatial coherence are combined in one MRF-based energy. 

In contrast to basic RANSAC, inlier classification does not depend on a fixed threshold. 

Moreover, our optimization framework allows iterative re-estimation of models/inliers with 

a clear stopping criteria and convergence guarantees. We show that our new method, SCO- 

RANSAC, can significantly improve results on synthetic and real data supporting multiple 

linear, affine, and homographic models.

Keywords: RANSAC, a-expansion, multi-model fitting, discrete optimization, graph 

cut algorithms, energy minimization.
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1

Chapter 1 

Introduction

1.1 Model Fitting in Computer Vision

Model fitting is widely used in data analysis. The problem of model estimation becomes 

more complex when the noise level in the data increases and when it is corrupted by out­

liers. There are two main approaches to model fitting in such cases. The first approach is 

“robust regression” [32], which tries to generate model estimates that are not affected by 

outliers by randomly sampling a large number of model hypotheses. Least Median Square 

(LMS) and Random Sample Consensus (RANSAC) [15] are the most common robust re­

gression techniques used in computer vision.

The second approach is called “regression diagnostics” [32], These techniques compute 

outlier diagnostics, which are statistics that are used to detect data points that have a signif­

icant influence on the estimator. Regression diagnostics are also used in computer vision. 

For example, Wei Zhang and Jana Kosecka [44] estimate multiple models using a technique 

that follows a regression diagnostics paradigm. They detect and estimate multiple models 

in the data by analyzing the distribution of the errors for individual data points with respect 

to a set of hypotheses. The hypotheses are generated by a RANSAC-like sampling process.

Our contribution is a novel general multi-model fitting method, Spatially Coherent 

RANSAC (SCO-RANSAC). Our method follows the robust regression paradigm. The 

novelty is incorporation of spatial coherency of the inliers for each model. In a nutshell, 

SCO-RANSAC searches for a set of spatially coherent models that fits any given data set. 

It works by generating a set of model hypotheses at random, and then iterating over identi­
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fying their spatial support and refitting the models.

Our main assumption is that inliers for all models are spatially coherent. Our insight 

is that this assumption is valid in many applications particularly in computer vision. Yet, 

sometimes the set of inliers of a model may have spatial gaps either due to an overlap with 

another model of or due to missing data or a large number of outliers. In sections 2.7 and 

3.2.2, we show how SCO-RANSAC deals with these problems.

Out method does not require the number of models to be specified. It automatically 

finds the least number of models that fit the data. In particular it may hallucinate some 

models among outliers [see Fig. 2.2(f)] such weak models are easy to prune out using 

a simple post processing step. SCO-RANSAC could be extended by adding a diagnostic 

step to filter out the weak models, as there are no constraints on the number of models that 

SCO-RANSAC can find. In that step, one could possibly use a diagnostic technique or 

criteria to filter out weak models (e.g. based on the goodness of fit), such an extension is 

further explored in section 3.2.2.

In the following sections, we will discuss existing single and multi-model fitting tech­

niques. In the context of single model fitting, we will consider the RANSAC [15] algorithm. 

We will also discuss Sequential RANSAC [39] and multiRANSAC [45] as the RANSAC 

extensions for fitting multiple models.

1.2 Single Model Fitting

1.2.1 Basic RANSAC

The RANSAC algorithm (1) proposed by Fischler and Bolles [15], is a general model­

fitting approach designed to deal with a large number of outliers in the data. We will con­

tinue our discussion of RANSAC and RANSAC-based methods in the context of synthetic 

multi-line fitting examples in 2D [see Fig. 1.1(a)].

Definition 1 The Minimal Sample Set (MSS) is a set that contains the minimal number 

o f data points required to estimate a model. For example, when fitting line models each 

minimal sample set consists o f two points.
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Definition 2 The consensus set (CS) is the set o f data points that fits a given model, ac­

cording to a given error measurement metric and a predefined threshold r  [see Fig. 1.1(c)].

1

09

0.7 •

0 6 - • %
0 5 - 

0.4

0.3 - 

0.2 

0.1 -

(a) The data set (b) Four randomly sampled models

(c) A model’s consensus set (d) RANSAC result

Figure 1.1: Figure (a) shows a data set containing 80/80 inliers/outliers which was per­

turbed by a Gaussian noise (a =  0.0075). Figure (b) shows each model generated by 

randomly sampling a MSS (two points shown as red ’X’). Figure (c) shows the consensus 

set of the model, which consists of all the points that lie inside the shaded area. Figure (d) 

shows the model with the largest CS.

RANSAC iteratively samples a random minimal sample set to estimate a model [see 

Fig. 1.1(b)]. It then finds the model’s consensus set [see Fig. 1.1(c)]. This process is 

repeated a certain number of times while keeping only the largest consensus set [see Fig.
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1.1(d)]. Finally, the model parameters are re-estimated using the largest consensus set. The 

rationale for selecting a model with the largest consensus set is that if one of the points of 

the minimal sample set is an outlier then the model estimated from this minimal sample set 

will not gain much support, the result being a small consensus set.

In each iteration, RANSAC samples a random minimal sample set and estimates a 

model from that set. The number of iterations required by RANSAC to guarantee a global 

optimal solution is often computationally infeasible, as that would be equivalent to exhaus­

tive search over all possible minimal sample sets. Instead, a sufficiently large number of 

iterations is chosen to ensure with probability k, that at least one of the sampled minimal 

sample sets is free from outliers. Suppose t  is the probability that any selected data point is 

an inlier, while assuming that the cardinality of the minimal sample set is n. Then at least 

N  iterations are required so that (1 — tn)N =  1 — fc [19] thus,

log (1 - k) 
lo g (l -  tn)

(1.1)

RANSAC and many RANSAC-based algorithms are nondeterministic as they produce a 

good model only with a certain probability, which increases as the number of iterations 

(randomly sampled models) increases.

The major advantage of RANSAC is that it can estimate the model parameters with 

high accuracy even when the data contains a large proportion of outliers and is perturbed 

by a high level of noise. One of the disadvantages of RANSAC is its sensitivity to the 

threshold parameter r .  Also, it can only fit one model to a given data set. When there exists 

more than one model, it may fail to find any of them. Wang and Suter [41] showed that 

RANSAC is more likely to fail in cases in which there are clustered outliers (see Fig. 1.2). 

One possible way to overcome this problem is to estimate multiple models and then select 

the best model using a criteria other than the number of inliers.

RANSAC is more accurate and efficient than the Randomized Hough Transform (RHT). 

Both RHT and RANSAC reduce the search space by random sampling. RHT keeps track 

of the votes for the sampled models by discretizing the model space, it then selects the 

model with the largest number of votes as the estimated model. As you can see the dis­
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cretization of the model space could lead to less accurate models, and the discretizing high 

dimensional spaces will not be efficient.

Algorithm 1 Basic RANSAC
input:

P  -  The data set of points
n -  Minimum number of points required to estimate the model parameters 
k -  The probability that at least one of the sampled MSSs is free from outliers 
t -  The probability that any selected data point is an inlier 
t  -  The threshold for determining whether a data point fits a model or not 

output :
m -  Estimated model parameters 
s -  The CS of the found model

1
2
3
4
5
6 
7

J \ T  _ _  lO g(l-fc)  l o g ( l - £ n )
for i =  0 to N  do

rn «— Select n points at random and solve for the model parameters. 
s* <— Find the CS of the model m  according to the threshold r. 
s <— Select the largest set from s and s*. 

end for
m  Estimate the model parameters using the largest CS found, s.

1

0.9 - 0 ?

0.1 - 0 :
O'------------ 1------------------------- 1--------1----------------------------- 1-------- 1------------1------------- 1--------------» 0

0 0 1 0.2 0.3 0 4 0.5 0.6 0.7 0 8 0.9 1 0 0 ;  0 0 3 0 4 0 5 0 6 0  0 3 0 r-

(a) The data set (b) RANSAC result

Figure 1.2: Figure (a) shows a data set that contains 80/80 inliers/outliers which was per­

turbed by a Gaussian noise (a = 0.0075). The outliers were added to form a cluster. Figure

(b) shows that RANSAC failed to find the right model.
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1.2.2 Applications

In computer vision, RANSAC is widely used for estimating homographies (e.g. in mo- 

saicing), fundamental matrices [38J, trifocal tensors [1], and for many other problems [19J. 

RANSAC was also used by Le Lu et al. [29J to implement a robust 3D face tracking 

technique. Capel and Zisserman [101 used RANSAC to simultaneously estimate a homog- 

raphy and its consensus set for image mosaicing [see Fig. 1.3(a)]. Brown and Lowe [8, 9] 

used RANSAC in creating their fully automatic panorama construction technique [see Fig. 

1.3(b)]. In computer vision, many problems are based on fitting a set of data points to some 

suitable model.

(a) The Keble mosaic projected onto a cylinder, 

Original image from Capel and Zisserman [10J.

(b) Recognized panorama number 1, 

Original image from Brown and Lowe [8].

Figure 1.3: The results of image mosaicing algorithms that use RANSAC as a robust esti­

mation algorithm.
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1.3 Multi-Model Fitting

The Standard RANSAC algorithm is restricted to cases where a single model accounts 

for all of the inliers in the data. Sequential RANSAC [39] and multiRANSAC [45] were 

proposed to generalize the RANSAC algorithm to the case when data supports multiple 

models.

1.3.1 Sequential RANSAC

The Sequential RANSAC algorithm (2) is the simplest and the most straightforward gen­

eralization of the basic RANSAC algorithm. Given a set of data points that supports mul­

tiple models, the Sequential RANSAC algorithm finds the first model by applying basic 

RANSAC algorithm. The next model is found in the same way after the inliers of the first 

model are removed from the data (see Fig. 1.4). Sequential RANSAC continues in the 

same manner until there are no more models with enough data support.

The main disadvantage of the Sequential RANSAC approach is its high sensitivity to­

wards the threshold parameter. Sequential RANSAC is more sensitive to the threshold 

parameter because it uses the same threshold parameter for all models. For example, Se­

quential RANSAC fails in case each model contains different noise level, since different 

threshold values are necessary to identify inliers for each model. Using a single threshold 

value for all the models will lead to inaccurate inlier detection, which in turn will affect the 

over all robustness. As mentioned in [42], reducing the data sequentially by the removing 

the inliers of the dominant model as in [42] could prevent the detection of other models. 

This issue is more critical in case of motion detection due to the phantom motion, for more 

information the reader is refereed to [37].
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Algorithm 2 Sequential RANSAC 
input:

p , n, k , t and r  -  These are the basic RANSAC parameters 
o u tp u t:

M -  The set of found models which best fit the data 
S  -  The set of corresponding CSs of the found models

l: repeat
2: (ra, s ) Basic RANSAC(P,n,k,t,r)
3: M  = M  U {m}
4: 5 = 5 U { s }
5: P  = P - s
6: until no more models can be found.

(a) Initial data set
1r

0 9 ■■ .

0.8 -

0 7 -  * g

0.6 r  * "

0 0.1 0.2 0 3 0 4 0 5 0.6 0.7 0.8 0.9 1

(c) Reduced data set

(b) First model found

Figure 1.4: Figure (a) show the initial data set of 80 inliers per model and 160 outliers, 

perturbed by a Gaussian noise (cr = 0.0075). Figure (b) shows the model found in the first 

iteration. Figure (c) shows reduced data set, which is the initial data set after removing the 

inliers of the first model. Figure (d) shows the model found by applying basic RANSAC 

algorithm to the reduced data set.
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1.3.2 MultiRANSAC

We will use the notations shown in Table 1.1 to describe the multiRANSAC algorithm [45]. 

The multiRANSAC algorithm (3) requires prior knowledge of the number of models to be 

estimated, W . Assuming that the data set supports W  distinct models, the multiRANSAC 

algorithm works as follows. At each iteration, multiRANSAC randomly draws a minimal 

sample set and computes its corresponding consensus set. It then removes the found con­

sensus set from the data set. The same procedure is repeated (W  — 1) times to find the 

remaining models. The probability of sampling W  minimal sample sets composed entirely 

of inliers, given that the number of inliers for the W  models are |P i|, |P2| , .....\P w l is

( I^ IA - l-P il)  . . .  (IA-E™=i1l^ l)
( 1.2)

Notation Description
P The given data set of points
Pi The set of inliers of the model i
\V\ Denotes the cardinality of the set V
W The number of models
n The minimum number of data points required to define a model

MSS of the model i
Si The corresponding CS of the MSS s*
s The set of CSs of the W  models
M The set of W  models
N Is the number of iterations required by multiRANSAC
V Probability that multiRANSAC fails

Table 1.1: Notations used in describing the multiRANSAC algorithm.

The probability of having one or more minimal sample set with members other than 

those from the inliers sets is (1 — q). When randomly sampling W  minimal sample sets 

N  times, the probability that no iteration will contain W  minimal sample sets that are 

composed entirely of inliers is given by (1 — q)N, where

lim (1 — q)N =  0.
N —+oo
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The value of N  should be large enough to ensure that probability (1 — q)N is less than 

some specified value rj:

N  = log v (1.3)
log 1 -  q

It is not possible to estimate the number of iterations required by the multiRANSAC 

algorithm using (1.3), since the number of inliers of each model is not known. Under the 

assumption that the size of the consensus set of a model is smaller than or equal to the 

number of inliers of that model, it is possible to approximate the value of N  for every 

iteration by using the cardinalities of consensus sets found in the previous iteration:

q(S) =
p \-Y%=i11® ')

N (S ) =
log ?7

(1.4)
log 1 -  q(S ) '

In summary, in each iteration multiRANSAC randomly samples W  models, and re­

moves the consensus set from the original data set of a model once found. The number of 

iterations required by the multiRANSAC can be approximated using (1.4). The consensus 

sets found in each iteration are merged with those of the previous iteration, keeping only 

the largest W  disjoint consensus sets. The merging algorithm (4) is greedy, as it combines 

2W  consensus sets of two consecutive iterations to find W  consensus sets that maximize 

the total number of inliers.
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Algorithm 3 multiRANSAC
input:

P -  
n -  
W -  
V ~
T -

output:
M - 
S -

The set of data points
Minimum number of points required to estimate the model parameters
Number of models
Probability that multiRANSAC fails
A threshold for determining when a data point fits a model

the set of found models which best fit the data 
the set of corresponding CSs of the found models

1
2
3
4
5
6
7
8 
9

10
11
12
13
14

s^< t>
N  <— oo
for i =  0 to N  do

for w = 1 to W  do
m  <— Sample a random MSS and compute the corresponding model m  
S* Find the CS of the model m
p* _̂ p* _ p*

v+-vu s*
end for
S Greedily merge S and V 
N  <- log??

log 1 -q(S)
end for
M *— Compute the models of the final W  CSs in S

Algorithm 4 Greedy Merging Algorithm of MultiRANSAC 
input:

V  -  The set of W  CSs at iteration i 
T  -  The set of W  CSs at iteration i + 1 
W -  The number of models 

output:
S  -  The merged W  CSs of the models

1: Sall^ V U T  
2: S ^ ( f>
3: repeat
4: S* <— CS with the largest cardinality from Sail
5: if S* fl S = (j) then
6: S *- S U S*
7: W <— w + 1
8: end if
9: Sau <— Sau ~  S*

10: until w = W
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1.3.3 Applications

Zhang and Kosecka [44] proposed a diagnostic approach to identify multiple models and 

outliers by analyzing the distribution of the residuals of individual data points with respect 

to the set of hypotheses generated by a RANSAC-like sampling process. They also used 

their technique in motion segmentation for just two models of foreground/background mo­

tions.

Vincent and Laganiere [39] introduced Sequential RANSAC algorithm in the context of 

detecting multiple homographies in an image pair. Kanazawa and Kawakami [24] detected 

local planar regions in a scene by estimating multiple homographies using a variant of 

Sequential RANSAC. The Kanazawa and Kawakami technique will be covered in greater 

detail in section 3.2.3.1.

Zuliani et al. [45] introduced multiRANSAC algorithm to overcome some of the limi­

tations of the Sequential RANSAC algorithm [39]. They used multiRANSAC in estimat­

ing multiple lines and multiple homographies. Lôpez-Nicolâs et al. [27] proposed a new 

method for estimating multiple homographies from two views of a multi-plane scene us­

ing matched lines and points. Later, they estimated multiple homographies to compute 

the fundamental matrix between two views [33]. Qiang He and Chee-hung [21] assumed 

known camera calibration for estimating multiple planar homographies. This was done by 

enforcing homographie constraints, as proposed by Faugeras and Luong [14].

We believe that practical applicability of existing multi-model fitting methods is severely 

restricted by their quality, see section 1.3.4 and experimental comparisons in section 2.6.1. 

The goal of this work is overcome the limitations of the current techniques. Out approach 

also suggest further extensions to piece-wise smooth fitting of models, see section 3.3.
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1.3.4 Shortcomings of Standard RANSAC-Based Methods

The RANSAC-based approaches covered in the previous sections suffer from two major 

problems. The first one is their high sensitivity to the threshold parameter, especially if 

models have different noise levels. In the cases in which the data set contains a subset of 

points that can fit into more than one model, we refer to these models as competing mod­

els and to the subset of points as the ambiguous set of points. Standard RANSAC-based 

approaches are random when assigning the ambiguous set of points to one of the compet­

ing models. This section will elaborate on these disadvantages. Only the multiRANSAC 

approach will be considered in this discussion.

1.3.4.1 Sensitivity to Threshold Parameter r

The multiRANSAC algorithm uses the same threshold value in finding the consensus sets 

for all models. This only works if the inliers of each model are perturbed at the same noise 

level. The data set shown in Figure 1.5(a) shows three models with 40 inliers each and 

no outliers, for simplicity. For two of the models, the inliers were perturbed with a low 

level of Gaussian noise. The parameters of these two models are very close; thus, low 

threshold value is required for correct inlier classification for each model. The third model 

was perturbed with a high level of Gaussian noise, which requires large threshold to enable 

multiRANSAC to identify its inliers correctly.

The result of using a low threshold is shown in Figure 1.5(b). The two models with 

the low noise levels were correctly identified, while most of the inliers of the model with 

the high noise level were marked as outliers. Figure 1.5(c) shows the result for a higher 

threshold. The CS of the model with the high noise level was identified correctly, but 

the two models with the low noise level were identified as one. This example also shows 

another disadvantage of the multiRANSAC approach. Since it requires a priori knowledge 

of the number of models W , it fits exactly W  models to the data. This could be a problem 

if data supports a number of models different from W .
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(a)The data set (b) Result of using a low threshold

(c) Result of using a high threshold

Figure 1.5: Figure (a) shows the data set contains 3 models, 40 inliers per model. Two 

models were perturbed with a low level of Gaussian noise and the other one with a higher 

level noise. MultiRANSAC results for using a low threshold and a high threshold are shown 

in Figures (b) and (c) respectively.

1.3.4.2 Ambiguous Points

Current RANSAC-based approaches can produce random results when assigning an am­

biguous set of points to competing models (see Fig. 1.6). Figure 1.6(a) shows two models 

with spatially separated sets of inliers. Figure 1.6(b) shows the area in which a data point 

could fit for each. The inliers located inside the red circle (ambiguous set) fit both models. 

RANSAC-based approaches assign the ambiguous set of inliers to the first model to be
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% • •.1,

(a)The data set

•Cfr-vvi.r.nc

(b) The ambiguous set of inliers

Figure 1.6: Competing models, Figure (a) shows two models with spatially separated sets 
of inliers. Figure (b) show for the horizontal line/model in which the blue area represents 
the set of all points that are at distance r  or less from the line/model. Any point that lies 
within that area fits the horizontal line. The same is true for the vertical line and the green 
area. The red circle depicts the ambiguous set.

detected.

Two models shown in Figure 1.7(a) are competing models. Figures (1.7)(b) and (c) 

show two different results obtained by using multiRANSAC to fit the given data points. 

Since the number of inliers is the same for both models, there is a 50% probability of ob­

taining either one of these results based on which model is detected first. The first model 

to be detected gets the ambiguous set. These two results show how RANSAC-based ap­

proaches depend upon the order in which the models are detected.
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00

0
0
0

(a) The data set (b) MultiRANSAC result 1

(c) MultiRANSAC result 2

Figure 1.7: Figure (a) shows the data set contains two models, 40 inliers each. These two 
models are competing models. Both models were perturbed with the same Gaussian noise. 
Figure (b) shows the result of the ambiguous set being assigned to the correct model. Figure 
(c) shows the result of the ambiguous set being assigned to the wrong model.
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SCO-RANSAC tries to find the smallest set of lines that fit all the data points. It does 

that by formulating the problem of classifying the inliers to the lines as a multi-labeling 

problem, in which each line is considered as a label and each data point is considered as 

a site, refer to section 1.4.1 for detailed explanation of the multi-labeling problem. Notice 

that unlike RANSAC-based methods, SCO-RANSAC neither rely on a threshold parameter 

r  in identifying the inliers nor it requires the prior knowledge of the number of models. 

Figures 1.8(a), (b), and (c) show the RANSAC inliers counting function that is maximized, 

and the RANSAC truncated geometric fitting error that is minimized as a final step, and the 

SCO-RANSAC geometric fitting error that is minimized, respectively.

(a) RANSAC, inliers counting function

(1 if inlier 0 otherwise)

(c) SCO-RANSAC, Geometric fitting function

Figure 1.8:
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1.4.1 Regularization and MRF-based models in Computer Vision

Many image analysis and computer vision problems can be posed as multi-labeling prob­

lems e.g., surface reconstruction from stereo [18], optical flow [22] and shapes from shad­

ing [23]. A Multi-labeling problem [31] is specified in terms of a set of sites P  and a set of 

labels P. For example, in the image restoration problem, the set of sites P  are the image 

pixels and the set of labels £  are the gray scale values 0 , 1 , 2 , ,  255. The solution (a.k.a 

configuration) L to the multi-labeling problem is a set of labels £  assigned to the sites P  

that minimizes the following energy function

£(L)  =  £ | | I » - p | |
peP

where Lp is the label assigned to the site p, and \ \L — p || defines the penalty for assigning 

the site p to the label L. The previous energy term is refereed to as the data term.

The aforementioned multi-labeling problems are ill-posed The main idea for solv­

ing ill-posed problems is to restrict the class of admissible solution by introducing a suit­

able constraint (prior knowledge). This type of solution has been developed into a general 

framework, called regularization [31, 3], for a variety of low level vision problems. A 

generic constraint on this world is smoothness. Smoothness assumes that physical proper­

ties (in the neighborhood1 2 of space N )  show some coherency, and generally do not change 

rapidly. For example, the surface of a table is flat. Since its early applications in vision 

[18, 22, 23] aimed to impose constraints, in addition to those from the data the smoothness 

prior has been one of the most popular prior assumptions. The smoothness prior is often 

expressed as the prior probability or equivalently an energy term measuring the extent to 

which the prior assumption is violated (discontinuity). The following equations show the

1 A mathematical problem is ill-posed in the Hadamard sense if  its (1) does not exist, (2) is not unique, or 
(3) does not depend continuously on the initial data.

2In image analysis, the most basic neighborhood systems are the 8-neighborhood and the 4-neighborhood 
systems, in which each pixel is connected to its 8 or 4 neighboring pixels, respectively.
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energy function after adding the smoothness term

£ (L ) =  £ | | L p - i , | |  +  A J 2  V (LP,L ,) ,
P&P

whereV(Lp, L q) is the penalty of assigning the neighboring pixels p  and q to the labels Lp 

and L q, respectively.

Finding the optimal solution for the multi-labeling problem is NP-hard [7]. Geman 

and Geman [16] proposed an approach to regularization that is based on MRF models. In 

this approach the a priori knowledge is represented in terms of an appropriate probability 

distributions. In a MRF the value of a site depends only on the values within its given 

neighborhood. In this approach the best configuration maximizes some likelihood criterion 

such as the maximum a posteriori estimate MAP, for more details about the MAP-MRF 

models the reader is referred to [26, 16, 31].

1.4.2 Optimization and a-expansion

Since 1984 various methods have been applied to solve such MAP-MRF models in com­

puter vision and other fields. Geman and Geman [16] proposed simulated annealing as 

a general method for obtaining an sub-optimal configuration for the MAP-MRFs. In the 

past few years more powerful optimization methods were introduced. Boykov, Veksler 

and Zabih [7] proposed the a-expansion graph cut algorithm that efficiently finds a local 

minimum within a factor of two from the optimal solution. The a-expansion allow large 

moves (namely expansion moves) which can simultaneously change the labels of arbitrar­

ily large sets of pixels. In contrast to simulated annealing in which small moves (only one 

site changes its label at a time) where only allowed. Also, there are other new powerful 

methods such as loopy belief propagation [43] and tree-reweighed massage passing [40]. 

A recent comparative study [35] between these new methods showed that the graph cuts[7] 

usually finds the best configuration in the least amount of time. For more details on how 

a-expansion finds the sub-optimal configuration for the multi-labeling problem the reader 

is referred to [7, 6].



1.5 Our Contribution

Our contribution is a new robust regression method for multi-model fitting. The main target 

of our work was to overcome the standard RANSAC-based methods’ shortcomings: they 

are sensitive towards the threshold parameter; as pointed out in [36], they require a large 

number of initial labels; they do not guarantee a spatially coherent set of inliers for each 

model; and finally, they randomly assign one of the competing models to an ambiguous set 

of points.

Our algorithm attempts to remove these limitations. It is based on an insight that is, in 

practice, inliers for each model are often spatially coherent. All previous RANSAC-based 

methods ignore this. Like RANSAC-based methods, our method randomly samples data 

points to generate a set of hypotheses for the models (labels). Our method combines inlier 

classification and model fitting as a single energy minimization problem. Our objective 

function combines the geometric fit error and spatial coherence in one MRF-based energy. 

Moreover, it allows iterative re-estimation of models’ parameters/inliers with a clear stop­

ping criterion and convergence guarantees. We show that our new method, SCO-RANSAC, 

does not require a threshold parameter, empirically needs a smaller number of initial pro­

posals compared to RANSAC-based methods, guarantees spatially coherent models, and 

often resolves ambiguity of points for competing models. In order to illustrate the general­

ity of SCO-RANSAC, we demonstrate results for linear, affine and homographic models.

20
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Chapter 2

SCO-RANSAC

Standard RANSAC-based methods depend on a threshold parameter, as described in sec­

tion 1.2. Its value is important for detecting inliers for each model. Any misclassified point 

may significantly affect the accuracy of the estimated model. Accurate classification of 

points is even more critical when fitting multiple models, as the decision to assign a point 

to one of the models becomes more complex, especially when same points may fit more 

than one model (e.g., competing models).

We propose a new framework, Spatially Coherent RANSAC (SCO-RANSAC), for fit­

ting multiple models. This framework combines model fitting and inlier identification into 

a single MRF-based regularization framework. In addition to considering some error func­

tion measuring geometric fit of the data points to a model as in RANSAC, our framework 

takes spatial coherence between the data points into account. Spatial relationships between 

sparse data points can be obtained via triangulation (e.g., Delaunay triangulation). Our 

regularization-based approach alleviates the dependence of the standard RANS AC-based 

methods on a single threshold parameter.

This chapter explains our multi-model fitting. In general, a model can be described by 

n  real-valued parameters. For simplicity in this section, we illustrate the main idea in the 

context of synthetic multi-line fitting examples in 2D. In chapter 3, we validate the SCO- 

RANSAC approach by using real data for fitting other types of parametric models in higher 

dimensions.
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2.1 Overview of the Main Idea

Similar to earlier RANSAC-based methods, SCO-RANSAC uses random sampling of min­

imal sample sets to create an initial finite set of model proposals (labels). Then an MRF- 

based regularization framework is used to assign labels (models) to data points. In this 

case, the energy combines geometric fit errors and spatial smoothness prior. As long as the 

number of labels is finite (<  10000 or so), such an approach can be handled by graph-based 

optimization methods. We use a-expansion [6] to identify the spatial support (consensus 

set) for each model. Once the consensus set of each model is known, the models (labels) 

can be re-estimated by minimizing only the geometric errors part of the energy. Clearly, 

one can continue in an EM  style optimization of the energy until convergence by iterating 

over the two main steps: computing spatial support using a-expansion and re-estimating 

models parameters. In practice, given enough initial models, SCO-RANSAC converges on 

the average after three or six iterations, depending on whether the geometric error is linear 

or non-linear.

2.2 Initial Labels £ 0

For initial models (labels), SCO-RANSAC randomly samples minimal sample sets and 

generates a finite set of initial model proposals C0 C Kn, where n is the number of pa­

rameters describing each model (n = 2 for lines, n =  6 for affine models, and n =  8 

for homographic models). The idea of generating models by sampling the data points is 

borrowed directly from RANSAC [15]. Theoretically, the number of initial models |£o| 

required by the RANSAC-based methods depends upon the number of data points, the 

number of outliers, the minimum number of points required to estimate a model, and the 

level of confidence that SCO-RANSAC will converge to a correct solution. In practice, 

we have found that SCO-RANSAC requires far fewer samples than the theoretical number: 

assuming that there exists W  models in the data set with |P | data points, and that the num­

ber of inliers of the models are |P i|, |P2| , .....\Pw\> such that |P i| >  |P2| >  .... > \Pw\-

In contrast to Sequential RANSAC that generates initial set of models for each model in
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the data set, SCO-RANSAC generates only one set of initial models for all the models in 

the data set. Thus, in SCO-RANSAC, the number of initial models is chosen sufficiently 

high to ensure, with a probability of k, that at least one of the sampled minimal sample sets 

encloses data points that belong to the set Pw  (the model with the smallest data support). 

Suppose that t  is the probability that the selected data points belong to the set Pw . Then

( ? )

and at least N  iterations are required, such that

(2.1)

(1 — t)N = (1 — k)

where

N  =
log (1 -  k)

(2 .2)
log (1 -  t ) '

It follows directly from (2.1) and (2.2) that the number of initial proposals |£ 0| required 

by SCO-RANSAC depends upon the size of the smallest data support \Pw\ and the total 

number of data points in data set |P |.

2.2.1 Outlier Labels

Our approach is based on assigning labels to all data points. In the previous section we 

described how a set of possible labels (models) is sampled. Our problem is that many 

outliers will not fit well into any of the sampled models1 [see Fig. 2.1], Yet, such outliers 

will still have to be assigned to some model (label). Clearly this can corrupt the set of 

inliers for such a model (label). In order to avoid this situation, we can introduce a label 

(model) for each data point, we call these labels outlier labels.

Definition 3 An Outlier label o f a data point p is a unique label fo r  p that fits it with zero 

error and fits all the other data points with oo error. The consensus set o f p outlier label is 

either empty (p is an inlier o f another model) or contains only p (p is an outlier).

'unless the number of samples is nearly exhaustive
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(a) The data set (b) Ten initial proposals

Figure 2.1: Figure (a) shows a data set with 150 inliers and one outlier (shown in red). 

Figure (b) shows ten initial proposals. As you can see its unlikely for the outlier to get 

sampled unless the number of initial proposals was really large. To avoid this we introduce 

an outlier label for each data point.

By introducing an outlier label for each data point to the set of initial proposals, we 

guarantee that the SCO-RANSAC will always find a model that fits any data point with 

zero error, whether it was sampled or not. Although the solution that assigns each data 

point to its outlier model will have a zero sum of fitting errors, that solution will also 

maximize the number of spatial discontinues. This is not a possible solution in our case, 

since we are minimizing both the geometric fit error and the number of spatial discontinues. 

Thus, it is safe to introduce the synthetic models.

In graph cuts outliers are commonly dealt with by using a robust measure for the data 

term. For example its possible to replace the quadratic error by a truncated linear or trun­

cated quadratic error measure. But using a truncated linear or truncated quadratic measure 

adds an extra parameter, the truncation threshold. As you can see, using outlier labels does 

not introduce another parameter.
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2.3 Energy Formulation

Once the initial finite set of proposed models £ 0 C Rn is known [see Fig. 2.2(a)], we 

can estimate their spatial support. We use an MRF-based regularization framework and 

a-expansion optimization [7] to assign models to data points. The set of current models in 

£ 0 is interpreted as the set of current labels. Assume that P  is a set of data points and that 

Lp C R" is a label (model) assigned to a given data point p G P, then the SCO-RANSAC 

method estimates models and their spatial support (inliers) by optimizing the following 

energy of labeling L =  {Lp\p € P}:

E (L) = J 2 \ \ p - L p\\ + X- J 2  wpq-5(Lp y iL q). (2.3)
P (p,q)eAi

The first term | \p — L\ | in (2.3) describes the geometric error between point p and model 

L. For example, line fitting examples in this section measure deviation between 2D point 

p  =  (x, y) and line L = (a, b) based on “vertical shift”:

\ \p-L\ \  =  { y ~ a x - b ) 2.

There are other ways to measure geometric errors ||p — L\ \ as well. For example, one can 

measure distance from p  to the nearest point that perfectly fits model L. Robust (trun­

cated) measures are also possible. The data term | \p — L\ | corresponds to the log-likelihood 

In Pr(p|L) when energy (2.3) is interpreted as an MRF-based posterior energy. Thus, the 

use of quadratic distance for ||p — L\ \ is equivalent to assuming Gaussian distribution for 

errors. Clearly, optimal labeling L  for (2.3) depends on the specific choice of geometric 

measure \ \p — L\\.

The second term of energy (2.3) is a smoothness prior. It assumes some specific neigh­

borhood system N  for the data points. For example, the neighborhood system can be based 

on a triangulation of points (see Fig. 2.3). In this work, we use the Potts model [7], where 

8(-) is 1 if the specified condition inside the parentheses holds, and 0 otherwise. Weights 

wpq set discontinuity penalties for each pair of “neighboring” data points. For example, the 

synthetic line fitting examples in this chapter used weights wpq inversely proportional to
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the distance between points p and q, because closer points are more likely to fit the same 

model. Besides the Potts (piece-wise constant) prior, one can also consider piece-wise 

smooth priors. Such priors will allow small variations in model parameters between data 

points.

2.4 Inlier Classification and Model Re-estimation

Energy (2.3) can be minimized using an a-expansion algorithm [7] for labels a £ Cq. In 

this case, it is possible to interpret a-expansions as a competition among models/labels 

for spatial support; models that best ft the data points find the largest number of spatially 

coherent “inliers”, while most of the “erroneous” models get no inliers.

Once inliers are computed, models/labels in £ 0 C Rn with non-empty sets of inliers 

can be re-estimated as follows. Note that the first term of energy (2.3) can be represented 

as

Eiip-̂ n = E Eiii’- iii
P L& C q p€PL

where PL — {p £ P \Lp =  L}  denotes a set of inliers for label L. Clearly, we can minimize 

this expression by re-estimating parameters of each model L £ C0;

L = arg min ^  \\p -  l \|. (2.4)
peP L

We replace each label L  with a non-empty support PL by label L £ Rn, which has a better 

fit to points in PL. Finally, after discarding all labels with no inliers, we obtain a new set of 

labels, Ci. Note that this operation does not affect the second (smoothness) term in (2.3) 

unless two labels, L  and L ', become equal after re-estimation L — L' (in this case, the 

smoothness energy also decreases). Clearly, the described operation of changing the set of 

labels

Co Ci

can only decrease the energy (2.3).

There are many known methods for optimizing the sum of geometric errors | \p — L\ \ in
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(iteration 5)

Figure 2.2: Illustrations of SCO-RANSAC’s iterations. Figure (a) show the proposals gen­
erated by random sampling. Figures (b) through (f) show the re-estimation of models and 
their inliers. This is an illustrative example. SCO-RANSAC only produces a reasonable 
result with a certain probability. This probability increases as more initial proposals are 
used.
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(a) Lines data set (b) Clorox data set from 
Birchfield and Tomasi [4]

(c) Triangulation of the data set points (d) Triangulation of points of interest 
used in estimating the models

Figure 2.3: Delaunay triangulations of data points. Other techniques can be used, particu­
larly for higher dimensional data.
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(2.4). The optimization method may depend upon the specific choice of measure | \p — L\ |. 

For example, to minimize the sum of squares of vertical-shift errors in our line fitting 

examples, we use standard SVD-based methods to solve for the least squares fitting. One 

could also minimize the sum of squares of the perpendicular offsets. A large number of 

other examples of geometric and algebraic error measures \\p — L\\, and different methods 

for optimizing them, are widely discussed in computer vision literature. Our approach 

can incorporate many of these error functions ||p — L\\. Figure 2.2 (b) illustrates clusters 

of inliers and re-estimated models £ \  obtained in the two separate steps described above: 

a-expansion (inlier classification) and geometric error minimization (model re-estimation).

2.5 Our Algorithm

Both “inlier classification” and “model re-estimation” steps described in the previous sec­

tion decrease energy (2.3). Thus, we can iterate over these steps until convergence [see 

Fig. 2.2 (b)-(f)]. We can stop the iterations when a new round of a-expansion does not 

change inliers. As soon as the spatial support of the current models (labels) stops chang­

ing, re-estimation of the models (2.4) cannot improve the geometric error term. The SCO- 

RANSAC algorithm is summarized in Algorithm 5.

Algorithm 5 SCO-RANSAC_____________________________________________
input:

P -  The data set of points
n  -  Minimum number of points required to estimate the model parameters 
k  -  The probability of SCO-RANSAC success in finding all the models 
t  -  The probability of randomly sampling two inliers of the smallestmodel 

output:
C - The models found

i. =  los(^-k) 
log(l-in)

2: C, <— Randomly sample N  MSSs {Initialization} 
3: repeat
4: C *— Run a-expansion for energy (2.3) {Inlier classification}
5: C *— Solve (2.4) to obtain new model parameters {Model re-estimation}
6: until the energy does not decrease
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2.6.1 Noise and Outliers

In this section, we will compare SCO-RANSAC to multiRANSAC and Sequential RANSAC 

using synthetic examples based on the seven models/lines shown in Figure 2.4. Six of these 

lines are parallel to each other (shown in black) and the last model (shown in red) is a com­

peting model. Most of the inliers of the competing model also fit into one of the parallel 

models. Each of the six parallel models will contribute 80 points and the competing model 

will contribute 90 points. The synthetic examples were generated by adding different lev­

els of Gaussian noise to the points and a different number of uniformly distributed outliers 

were added to the data set.

Figure 2.4: The seven Original models used in generating the synthetic data sets.

In the following experiments, we will show all the models found by Sequential RANSAC 

and SCO-RANSAC without any post processing that would eliminate the weak models. 

The number of models to be found is a parameter to the multiRANSAC method, thus it 

will always find only seven models.

We tuned the multiRANSAC and Sequential RANSAC parameters for each data set in 

order to get the best possible results for these methods. For SCO-RANSAC, the normal­

ization factor A and the number of initial proposals were the same in all of the following 

experiments. This shows that SCO-RANSAC parameters were more tolerant to noise level
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variation than the parameters of the RANSAC-based methods that required retuning for 

each data set.

Low Noise Level

As can be seen in Figure 2.5(b)-(c) the results obtained from the RANSAC-based methods 

were fine for the parallel models; however the competing model lost some of its ambiguous 

points to the parallel models. Figure 2.5(d) shows that SCO-RANSAC was able to identify 

the data points for all the models correctly. Notice how the SCO-RANSAC assigned the 

added outliers to models as if they were actually inliers. These models could easily be 

filtered out based on the variance of a model’s error fit or the number of points assigned to 

it.

(c) MultiRANSAC

(b) Sequential RANSAC

(d) SCO-RANSAC

Figure 2.5: Comparing the results for fitting lines to noisy data points. The data points were 
perturbed with a low level of Gaussian noise (a — 0.005) and 120 outliers were added.



32

Medium Noise Level

For the data set shown in Figure 2.6(a), Sequential RANSAC was still able to identify 

the models, but the competing model lost more of its inliers to the other models. Multi- 

RANSAC failed to identify the parallel models, as it uses a greedy algorithm for selecting 

the models that cover the maximum number of inliers, which is not always correct. In this 

experiment, the number of inliers covered by a model across the parallel models is more 

than those covered by a parallel model; thus, multiRANSAC fails. SCO-RANSAC was 

able to correctly identify the data support for all the models.

(a) The perturbed data set (b) Sequential RANSAC

Figure 2.6: A Comparison of the results for fitting lines to noisy data points. The data 
points were perturbed with a medium level of Gaussian noise (a = 0.01) and 200 outliers 
were added.
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High Noise Level

The data set shown in Figure 2.7(a) is the result of perturbing the data points with a high 

level of Gaussian noise and adding 300 outliers. Both Sequential RANSAC and multi- 

RANSAC failed to identify the parallel models. In this experiment, the perturbed data 

points of the parallel models started merging into one another, forming almost one cluster 

of points. SCO-RANSAC was able to identify all the models, as it makes use of the dis­

tance between two neighboring points. The discontinuity penalties wpq in (2.3) were set 

to be inversely proportional to the distance between each pair of neighboring data points. 

Thus, SCO-RANSAC was able to efficiently discriminate between the data points of each 

model.

Although the competing model was identified by all the methods, only SCO-RANSAC 

was able to correctly identify the data points for that model. Both RANSAC-based meth­

ods assigned some of the ambiguous data points to the wrong model (one of the parallel 

models).

As mentioned in [45], the number of iterations required by the multiRANSAC algo­

rithm becomes large when the standard deviation of the Gaussian noise that perturbs the 

data points becomes larger. To cope with this problem, we limited the number of iterations 

to 1,000. In each iteration, multiRANSAC randomly sampled seven models; thus, in total, 

multiRANSAC randomly sampled 7,000 models in this experiment. Sequential RANSAC 

found 15 models, and for each model it randomly sampled 700 models. Thus, in total, 

Sequential RANSAC randomly sampled 10,500 models. The number of initial proposals 

used by SCO-RANSAC in this experiment was 500.
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(a) The perturbed data set (b) Sequential RANSAC

(d) SCO-RANSAC
0 0.1 0 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c) MultiRANSAC

Figure 2.7: A comparison of the results for fitting lines to noisy data points. The data points 
were perturbed with a high level of Gaussian noise (a — 0.02) and 300 outliers were added.
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2.6.2 Number of Initial Samples

The data set shown in Figure 2.8(a) was obtained by perturbing the data points with a very 

high level of Gaussian noise (a = 0.025) and 500 outliers were uniformly distributed over 

the domain. In this experiment, outliers constitute 87% of the data set. Figures 2.8(b) 

and (c) show SCO-RANSAC result for 500 and 6, 000 initial proposals respectively. These 

results show that SCO-RANSAC is robust to noise and outliers once it is provided with a 

sufficient number of initial proposals.

(a) The perturbed data set (b) SCO-RANSAC |£ ()| =  500

Figure 2.8: The results for using SCO-RANSAC for fitting lines to noisy data points. The 
data points were perturbed with a very high level of Gaussian noise (a =  0.025) and 500 
outliers were added.
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2.6.3 Accuracy of Estimated Models

In this section, we will compare the accuracy of the model parameters estimated by SCO- 

RANSAC and RANSAC to the ground truth model. SCO-RANSAC could be used to fit 

a single model, simply after SCO-RANSAC converges select the strongest model e.g. the 

model with the largest number of inliers. We will only show the accuracy plot for only 

one of the line parameters. In the case of synthetic lines, the two model parameters are 

the slop m, and the intercept b. Figure 2.9 shows the average absolute error of slope (as 

¿/-axis) over 400 different data sets, for both SCO-RANSAC and RANSAC, using different 

number of randomly sampled models (as a*-axis). In general SCO-RANSAC estimate more 

accurate model parameters compared to those estimated by RANSAC. What is interesting 

is that SCO-RANSAC gives highly accurate model parameters for small number randomly 

sampled models.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 17 18 19 20

-♦ -R A N SA C  — SCO-RANASC

Figure 2.9: Error vs. the number of randomly sampled models plot
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2.6.4 Performance

Let n  and W  denote the number of data points and the number of models in P, respectively. 

For each model, the Sequential RANSAC generates N  random samples and computes their 

consensus sets. Thus, the Sequential RANSAC [39] algorithm’s complexity is 0 (n N W ),  

when the number of models in the data is known.

As described in [45], multiRANSAC requires N  iterations. In each iteration, it ran­

domly samples W  models and computes their consensus sets. Thus, multiRANSAC’s 

complexity is O (nN W ). In [45], the author’s have shown that multiRANSAC is more 

complex than Sequential RANSAC (N  > N ), especially when the noise level increases.

SCO-RANSAC’s complexity depends upon the number of initial proposals and the 

number of edges and vertices in the neighborhood graph. Assuming that the number of 

initial models |£ 0| is N , the first step in an SCO-RANSAC iteration is to apply a-expansion 

on each label. The key step in a-expansion is to solve the min-cut/max-flow problem. 

The theoretical worst case complexity for using the push-relabel algorithm [17, 5] to find 

the min-cut in an m-edge, n-vertex graph is 0 { n 2\/rn). Thus, the complexity of SCO- 

RANSAC’s first step becomes 0 (N n 2y/We), where N e is the number of edges.

Lemma 1 Given a set P  o fn  points, any triangulation o f P  has the same number o f edges, 

(Ne = 3 (n — 1) — N h), where Nh is the number o f points on the convex hull o f P  [11, 25].

Thus, the complexity of the first step can be simplified to 0 (N n 2^Jn). The complexity of 

the second step, estimating the models’ parameters, is less complex than the first step. As 

shown in Table (2.1) on average, SCO-RANSAC empirically requires 3 iterations to con­

verge. Thus, SCO-RANSAC complexity is 0 { N n 2y/n). Compared to the other methods, 

SCO-RANSAC’s complexity is not far off, as it does not depend on the number of models 

in the data. The empirical results also show that N  is much smaller than N  and N . In 

the example shown in Figure 2.7 N  is by smaller than N  and N  by an order of magnitude. 

Later on in section 3.2.3.2 we will present an example for estimating more complex models 

in which N  is smaller than N  by two orders of magnitude.
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Run
Iteration

0 1 2 3 4

1 500 17 15 15 15

2 500 16 15 14 14

3 500 16 15 13 13

4 500 16 16 15 15

Table 2.1: Convergence, this table shows the number of labels N  remaining after each 

iteration for four independent runs of SCO-RANSAC using the data set shown in Figure 

2.7(a). Notice how the first iteration eliminated most of the hypotheses.

2.6.5 Overcoming the Limitations of Previous Methods

Figure 2.10(a) shows SCO-RANSAC result for the data set shown in Figure 1.2(a). Basic 

RANSAC failed to identify the true model due to the clustered outliers, but SCO-RANSAC 

was able to find both models. Figure 2.10(b) shows SCO-RANSAC result for the data set 

shown in Figure 1.7. SCO-RANSAC assigns the ambiguous set of inliers in a deterministic 

way. Figure 2.10(c) shows that SCO-RANSAC was able to correctly identify all the inliers 

for the case in which the models were perturbed by different noise levels (see Fig. 1.5 for 

multiRANSAC result for the same data set).

In summary, SCO-RANSAC was able to identify the models and classify the data points 

among them without any problems, as it takes spatial coherence into account and makes 

use of the distance between neighboring points. As the amount of noise increases, multi­

RANSAC [45] becomes very sensitive to the threshold parameter and estimates incorrect 

models. Also, as mentioned in [45], as the noise level increases, multiRANSAC requires 

that the number of iterations to be increased. Sequential RANSAC [39] was no better 

than multiRANSAC for high noise levels. SCO-RANSAC demonstrated robustness to the 

amount of noise. It also ran in about the same amount of time in the experiments provided. 

Moreover, SCO-RANSAC required much fewer random samples to converge to the correct 

models. Based on the results presented in this section, we conclude that SCO-RANSAC is
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robust to noise and outliers, as it accounts for spatial coherence between data points.

(a) SCO-RANSAC result in the case (b) SCO-RANSAC result in the case 

of clustered outliers of competing models
1 r

0.9

0 .8 -

(c) SCO-RANSAC result in the case of 

models with different noise levels

Figure 2.10: This figure shows SCO-RANSAC results for the data sets presented in Figure 

1.2(a), Figure 1.7(a) and Figure 1.5(a), respectively. These results demonstrate that SCO- 

RANSAC was able to overcome the pitfalls of the RANSAC-based approaches, and the 

clustered noise situation in which basic RANSAC failed.
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2.7 Merging Spatially Overlapping Models

The case of overlapping models was referred to in the introduction section 1.1, as a case in 

which our main assumption is violated. The example in Figure 2.11 contains two overlap­

ping models, the consensus sets of these two models overlap with one another. Obviously, 

at least one of the models cannot get spatially connected support region. As shown in 

Figures 2.11 (b) and (c) SCO-RANSAC is not guaranteed to merge the two spatially dis­

connected models, even if their parameters are close. In the case of spatially disjoint data 

support, one can use a simple post processing step that can merge any two models if the 

resulting model increases the sum of geometric fit errors by no more than a predefined 

threshold [see Fig. 2.11(d)]. This operation can be justified by adding an extra term to 

energy (2.3), penalizing the number of labels \L\:

P (P,Q)€N
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1 r
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(c) SCO-RANSAC found three models

(b) SCO-RANSAC found two models
1

0.9- 

0.8 -  
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(d) SCO-RANSAC with post processing.

Figure 2.11: This figure illustrates the case of spatially overlapping models. Figure (a) 

shows the data set. Figures (b) and (c) show the two results that SCO-RANSAC generated 

for different runs. Figure (d) shows the guaranteed result after adding the post processing 

step.



Chapter 3

Applications in Computer Vision



3.1 Fitting Multiple Affine Models
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In this section, we apply SCO-RANSAC to fitting more complex parametric models, with 

more parameters and different fitting energies. We use SCO-RANSAC to estimate affine 

transformations induced by planes in the context of rectified narrow-base stereo. In this 

case SCO-RANSAC can be compared to an earlier work of Birchfield and Tomasi (BT) [4] 

who also used MRF-based regularization for fitting affine models.

3.1.1 Estimating Planes in Narrow-Based Stereo

We use SIFT [28] features as points of interest, since they are scale- and rotation- invari­

ant. SIFT features are also partially invariant to illumination1 and 3D camera viewpoint 

changes. Matches between pairs of points in the two images were found using exhaustive 

search2 along the corresponding scan line (see Fig. 3.1). When fitting affine models each 

matched feature is considered a data point.

The neighborhood graph was obtained by computing the Delaunay triangulation of the 

matched features of one of the images (the right image). We used constant discontinuity 

penalties wpq for each pair of “neighboring” data points. In the synthetic examples de­

scribed in chapter 2, the original data points of each model were perturbed with a random 

number (based on a Gaussian distribution with zero mean). Thus, it was legitimate to as­

sume that the closer a pair of neighboring data points, the more likely that they belonged 

to the same model. Such an assumption could not be guaranteed to hold for the detected 

SIFT features.

We will use the notation (x i,y i), (xr, yr ) to describe the coordinates of an image- 

matched feature on the left image pi and right image pr, respectively. Also, the symbol 

p will denote a pair of matching features (x i,y i,x r,y r). A planar homography has only 

three degrees of freedom in the case of rectified images, as the epipole e =  [1 0 0]T is 

at infinity. In turn, the fundamental matrix could be formulated as (F  = [e]x); we use 

the notation [e]x to describe the skew-symmetric matrix of the vector e. Since a planar

1A low-contrast image can be automatically detected and adjusted. This is beyond the scope of the current 
topic.

2In principle, it is possible to replace the exhaustive search with ’’smarter” methods, as in [30, 2].
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(a) Left image (b) Right image

(c) Matched features between images

Figure 3.1: Figures (a) and (b) show the SIFT matches found on the left and right images 
respectively. Figure (c) shows the matched features between the two images.
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homography must satisfy the following constraint: [14]: (H TF  +  F TH  =  0). This will 

enforce the planar homography for the rectified stereo pair to be a special case of an affine 

transformation, with only three degrees of freedom:

 ̂ a b 

0 1 

 ̂ 0 0

0 (3.1)

We will refer to this special affine transformation as the affine transformation for simplicity 

(see appendix A for complete proof).

The finite set of initial proposals A 0 is generated by randomly sampling three match­

ing pairs and computing their corresponding model parameters. The result is obtained by 

applying SCO-RANSAC to minimize the following energy:

£ (A ) =  X > - 4 > I I  +  * £  S(Ar ^ A , )  (3.2)
p (p,g)eA/"

where A  =  {Ap\p G P }  is an assignment of affine models to data points p. The following 

section considers using two different energies for fitting an affine transformation induced 

by a plane.

3.1.2 Geometric Fit Measures

3.1.2.1 Horizontal Shift

In our case based on (3.1), an affine model requires only three matching pairs to be uniquely 

identified. One way to measure the geometric error between a matching pair of points p 

and a given model A  is by considering the horizontal shift between pr and the mapping of 

Pi by A  onto the right image (see Fig. 3.2)

\\p -  A\\ = (axi + byi + c -  x r)2, (3.3)

which is the horizontal shift (along the epipolar line) between pr and Apt.



46

Figure 3.2: This figure illustrates the horizontal shift error dhr • The distance between two 

triangulated points is denoted by d. The first triangulated point is obtained from pi and pr 

(shown in red). The second triangulated point is obtained from pi and the mapping of pi 

onto the second image by A n. A is the affine/model induced by the plane tt. The image of 

d onto the second image is denoted by dhr.

Figure 3.3 shows SCO-RANSAC result for fitting multiple-affine models. The finite 

set of initial proposals A {) was generated by randomly sampling three matching pairs and 

computing their corresponding model parameters using (3.3). The result is obtained by 

applying SCO-RANSAC to minimize the energy (3.2).
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(a) Left image (b) Right image

(c) SCO-RANSAC result using weighted shift (3.6).

Figure 3.3: Figures (a) and (b) show the original stereo pairs obtained by BT [4]. Figures 

(c) and (d) show SCO-RANSAC result for using the horizontal shift error (3.3) and the

weighted shift error (3.6).
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3.1.2.2 Weighted Shift

As can be seen from the results in Figure 3.3(c), the horizontal shift error (3.3) worked 

well for all the vertical planes in the scene, but it split the ground plane into two separate 

planes. The problem with the horizontal shift error (3.3) is illustrated in Figure 3.4. The 

red point is the triangulation of a matching pair of points. 7Ti is the plane induced by the 

estimated affine transformation that minimizes the horizontal shift error. In this case, if 

there was no error in localizing the image features, the red point would lie on 7Ti. 7t2 is 

obtained by rotating ni around the shown axis3. As you can see, the horizontal shift error is 

the same for 7Ti and 7r2, even though the perpendicular distance between the red point and 

7t2 is smaller than that between the red point and 7Ti. Thus, the horizontal shift error is not a 

fair error estimate. It significantly overestimates the distance between a triangulated point 

and non-vertical planes in the 3D scene.

We propose using a fairer geometric error measure, we call “weighted shift”. The 

weighted shift error weights down the horizontal shift error for non-vertical planes. This 

error is derived from the fact that allowing some vertical shift for both corresponding points 

Pi and pr to a different epipolar line adds an additional degree of freedom in computing the 

shortest distance to the perfect alignment with the affine model induced by a 3D world 

plane. This significantly reduces the error for non-vertical planes while not changing the 

error for vertical planes.

In order to derive the weighted shift error, we assume that a line belongs to a 3D titled 

plane and is mapped as a vertical line l on the left image, and thus as a tilted line l' on the 

right image [see Fig. 3.5(a)]. Figure 3.5(b) shows two corresponding points pi (xi, y) and 

pr (xr , y) (in red) and the mapping of pi by A (in green) on the epipolar line y; thus, the 

horizontal shift error is

Ehr =  {axi +  byt +  c -  xrf  = d2hr.

Shifting the epipolar line by Ay will cause the pi and pr to be shifted to pi (x i,y  + A y) 

and pr (xr, y +  A y), respectively. Also, pi will be mapped to the blue point on l' by A.

3 The axis of rotation is line o f intersection between 7Ti and the the epipolar plane of pr and pi
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Figure 3.4: That figure illustrates that the horizontal shift error 3.3 does not take the slope 
of a plane into account. Obliviously, the red point is closer to plane 7r2, even though the 
horizontal shift error dhr is the same for both tti and 7t2.

The coordinates of the blue point are (xr +  Ax, y +  Ay)  by construction, and (ax/ +  (y +  

Ay)b +  c, y +  Ay)  as the mapping of pi by A. Thus, we can derive the following relation 

between A x  and A y

x r +  A x  = ax i + (y + Ay)b + c

A x  = ax i + by + c — x r + bAy  (3.4)

A x  = dhr +  bAy.

The weighted shift error that we propose minimizes the squared distance between pr 

(xr,y)  and the closest possible point that lies on V (blue point). This error allows the 

epipolar line (of the matched pair) to shift vertically4. The squared distance between pr 

(xr , y) and the blue point is (Ax2 +  A y 2) by construction. Minimizing the squared distance

4The horizontal shift error is a special case of the weighted shift (Ay =  0).
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subject to the constraint (3.4) will lead to the following solution:

A x  -  dhr 1 + b2 ,
A j  ~ hA y  -  dhr 1 + b2 ’

and thus the weighted shift error is

E whr =  A x 2 +  A y 2

= d2 1
hrl  + b2

- F  1

_  (ax¿ +  byi + c -  x r )2 
1 +  62

Finally, a weighting factor w can be introduced to remove the dependence of the weighting 

factor ( 1 / 1+ b 2 )  on the coordinate system used. As, the value of b is dependent upon the 

coordinate system used:

Ewhr
(axi + byi + c -  x r)

(3.5)
1 + w • b2

In summary, the weighted horizontal shift error weights down the horizontal shift error for 

non-vertical planes (b > 0) while not changing the error for vertical planes (6 =  0).
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y

y +-̂ y

Figure 3.5: This figure illustrates the effect of allowing the epipolar line of matched pair of 

points pi, pr to shift. Figure (a) shows that line L belongs to the plane n  and it is mapped 

as l and l' on the left and right images, respectively. Figure (b) shows the 2D view of the 

two rectified image planes.

The weighted shift error (3.5) is a nonlinear error. The initial solution required by 

any nonlinear least squares minimization technique could be the models obtained by SCO- 

RANSAC for minimizing the horizontal shift error. The geometric error between a match­

(a) 3D view

(b) 2D view of the rectified image planes
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ing pair of points p and a given model A  in this case is

(axi + byi + c -  x r)2
l | p - ' 4 | l  = -----------------i T ^ -------

(3.6)

Figure 3.3(d) shows the results obtained while using the weighted shift error. As can be 

seen using the appropriate geometric error, SCO-RANSAC was able to find the ground 

plane.

3.1.3 SCO-RANSAC vs. Birchfield and Tomasi

Our approach to sparse stereo differs from the BT dense stereo method in many ways. 

The most significant difference is that our framework for estimating models automatically 

generates initial proposals by random sampling, as in RANSAC-based methods. In con­

trast, BT [4] compute initial estimates of affine models from a disparity map generated by 

another dense stereo method [6].

There are also significant differences in our formulations of stereo. Our model-fitting is 

based on geometric alignment of matched features, as common in sparse stereo. In contrast, 

BT [4] used a photoconsistency-based measure, typical for dense stereo. The method in [4] 

is limited to disparity maps and narrow-based stereo, as it does not handle large occlusions 

common with wide-based stereo.

Their focus on narrow-based stereo justifies the use of affine models in [4]. In contrast, 

our method applies to narrow -  and wide -  based stereo and could be potentially extended 

to volumetric multi-view reconstruction. Also, the dense stereo method in [4] is bound to 

regular grids, while our method can be used with any triangulation.

Figure 3.6 compares affine model fitting results generated by BT [4] and the two results 

generated by SCO-RANSAC using different geometric error measures ||p — A||. BT [4] 

use dense segmentation of pixels based on photoconsistency. This measure does not work 

well in textureless regions and they have to rely on intensity edges (static cues) to detect 

the boundaries between regions supporting different models. In contrast, SCO-RANSAC 

labels a sparse set of distinct features based on geometric (or algebraic) errors and spatial 

proximity.
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(a) SCO-RANSAC (b) SCO-RANSAC
horizontal shift error weighted shift error

(c) BT [4] result

Figure 3.6: Comparisons of the results for the Clorox stereo pair [4]. Figures (a) and (b) 
show sparse inlier classification by SCO-RANSAC using different geometric fit measures. 
Figure (c) show dense pixel segmentation by BT [4] using photoconsistency. BT’s method 
did not segment the Clorox box correctly, and it split the plane corresponding to the books.
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In order to provide some quantitative comparison between the affine models generated 

by BT [41 and SCO-RANSAC, we found the “ground truth models” (see Fig. 3.7) by 

manually extracting point (and line) correspondences and computing the affine model for 

each plane except the “books” plane.

Assuming that two intersecting planes, 7Ti and 7r2, are represented by the affine models 

A*1 and A71”2, then the homogeneous vector representing their line of intersection is defined 

as the first row of the matrix (A*1-A**). Therefore, such lines can be computed from the 

models estimated by either BT"" [4] or SCO-RANSAC. Table 3.1 compares the geometric 

accuracy of the commuted lines of intersection using the models found by each method. 

Figures 3.9, 3.8, and 3.10 show the computed lines of intersection.

Figure 3.7: We computed the ground truth affine models for the planes A i , .... A4 using 

10 manually matched features (shown in white) and a line L4. The lines L \ , L4 (shown 

in green) are the lines of intersection computed using the ground truth affine models. The 

computed affine model for the ground plane was up to 0.25 pixel accurate.

"'BT used affine models with six degrees of freedom, although they mentioned that for rectified images the 
motion of a plane could be described only by three parameters only. In computing the lines of intersection 
using their models we approximated the second row of their affine models to be [0 1 0]. For all the affine 
models found by BT [4], the second row was approximately [0 1 0], except for the ground plane.



55

Line BT [41 SCO-RANSAC (3.3) SCO-RANSAC (3.6)

u 34.55 8.80 9.46

L-l 16.83 4.82 3.66

Ls 5.56 13.27 6.26

La 5.99 4.46 12.05

Total 62.94 31.37 31.45

Table 3.1: Show the geometric errors for lines where affine models intersect. Errors were 

computed as the sum of distances between the ground truth line segment comers and the 

computed lines.

Figure 3.8: SCO-RANSAC using the horizontal shift error. Lines were computed for all 

pairs of intersecting planes (affine models).
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Figure 3.9: BT [4] using photoconsistency measure. Lines were computed for all pairs of 

intersecting planes (affine models).

Figure 3.10: SCO-RANSAC using the weighted shift error. Lines were computed for all 

pairs of intersecting planes (affine models).
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In this section, we apply SCO-RANSAC to fitting models with a larger number of pa­

rameters (n — 8), and a nonlinear geometric fit measure. We use SCO-RANSAC to es­

timate multiple homographies in the context of uncalibrated wide-based stereo. Finally, 

we compare SCO-RANSAC results to those obtained by Sequential RANSAC [39], multi- 

RANSAC [45], and the Kanazawa and Kawakami method [24].

3.2.1 Estimating Planes in Uncalibrated Wide-Based Stereo

The matched features and the neighborhood graph in this case are obtained exactly as de­

scribed in the case of fitting affine models, except in this case we do not assume calibration. 

Thus, each feature on the left image is tested against all the features on the right image to 

find the match. This leads to a larger number of outliers that will cause gaps. We will 

show how to deal with these gaps in section 3.2.2. The gaps issue was referred to in the 

introduction section 1.1 as a case of spatially disconnected inliers.

One way to measure the geometric error \\p — H\ \ between a matching pair of points 

p and a given homography H  is by using the symmetric transfer error (STE) [19]. We 

generate our finite set of initial model proposals H0 by randomly sampling four matching 

pairs at a time. Then we compute the model parameters as described in [19] by minimizing 

the nonlinear least squares of the STEs using Levenberg-Marquard technique, which is 

covered in appendix B. The energy function to be minimized using SCO-RANSAC is

£(H) = X>--Hpll+A £  W r t B , )

where H  =  {H\p  G P }  is an assignment of models to data points p.

3.2.2 Removing Outliers and Retriangulating Holes

In the case of line fitting, SCO-RANSAC uses a 2D triangulation as the neighborhood 

graph for the 2D data points, while in case of stereo images SCO-RANSAC uses a 2D
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triangulation of the matched features even though the matched features impede 3D infor­

mation (see Fig. 3.11). Thus, by using a 2D triangulation, outliers will cause gaps between 

the inliers of a model. When the number of outliers increases, it becomes possible for 

the introduced gaps to split the inliers of a model into spatially disconnected sets, which 

violates our assumption that the inliers of a model are spatially coherent.

Figure 3.11: This figure shows the gap that an outlier for the plane zr will introduce if points 

are triangulated in one of the image planes instead of 3D.

Outliers occur in two forms: isolated outliers (random false matches) or clusters (e.g., 

a symmetry in the scene might lead to multiple false matches that are spatially coherent. 

This will from a cluster of outliers).

Definition 4 An isolated outlier is said to exist, if after an iteration o f SCO-RANSAC there 

exists a model such that its CS contains only one data point. This data point is an outlier 

as no model with large data support fits it.

In practice, we found that the isolated outliers are more likely to occur than the clustered 

case. Thus, we will modify the SCO-RANSAC algorithm to solve the isolated outliers 

case and add a post processing step to avoid having a set of clustered outliers as a legiti­

mate model. In order to cope with the isolated outliers, after each iteration we remove the
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isolated outliers from the Delaunay triangulation and then retriangulate the resulting holes 

(see Fig. 3.12). The resulting global triangulation remains a delaunay triangulation [13].

(a) Isolated outlier (b) After the remove and retriangulate operation

Figure 3.12: Figure (a) shows the general case of an isolated outlier, in which we only 

know that the yellow edges were severed. Figure (b) the isolated outlier was removed and 

the hole was retriangulated. The new edges are shown as dotted lines (see appendix C for 

further details on the effect of this operation on the energy).

Clustered outliers can also occur due to two other cases: The first case occurs when a 

model exists but its CS is not large enough to efficiently estimate the model’s parameters. 

In this case, the inliers for that model should be treated as outliers. The second case occurs 

when the CS of a model do not follow a certain criteria required in order to estimate the 

model (e.g., the inliers of a homography should not be collinear). Following Santos-Pereira 

and Pires’s [34] criteria for detecting such clusters, we used a post processing step that 

removes any model with a CS smaller than (2n  +  2), where n is the number of the model 

parameters. Their argument for using this criterion is that for a number of data points 

smaller than (2n +  2), the covariance matrix6 estimates become unreliable.

3.2.3 Comparisons and Results

Only 500 initial models were used in the examples shown in Figures 3.14 and 3.13. SCO- 

RANSAC converged after three iterations in both examples. In these two examples we will

6The covariance matrix is used to estimate a confidence limit of the fit.
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show the inlier classification on the left and right images. In the rest of the results and 

comparisons we will show the inlier classification on only one of the images.

(c) Inliers classification 

shown on the left image

(d) Inliers classification 

shown on the right image

(a) Left image (b) Right image

Figure 3.13: SCO-RANSAC was able to find three planes. The original images are taken 

from Marc Pollefeys’s Leuven castle data set.
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(c) Inliers classification shown on the left image

(d) Inliers classification shown on the right image 

Figure 3.14: SCO-RANSAC was able to find two planes. The original images are from 

VGG (Oxford) Merton College. SCO-RANSAC was able to accurately classify the inliers. 

Notice the place where the two planes intersect.
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3.2.3.1 SCO-RANSAC vs. Sequential RANSAC Methods

In the example shown in Figure 3.15(e) SCO-RANSAC was able to identify three planes 

using 500 initial labels. SCO-RANSAC found the three dominate planes: the staircase 

and the two vertical planes shown in blue, yellow, and violet, respectively. SCO-RANSAC 

converged after five iterations.

Sequential RANSAC [39] required 817 random samples and found five planes. Two of 

them were the vertical planes while the remaining three were an over fit for the staircase 

plane. The over fitting is due to Sequential RANSAC sensitivity towards the threshold 

parameter. Using higher threshold would merge the three staircase planes into one plane, 

also that will cause one of the two vertical planes to grab more inliers on the account of the 

other vertical plane.

Kanazawa and Kawakami [24] proposed a robust method for detecting local planar re­

gions in a scene with an uncalibrated stereo. Their method is a variation of Sequential 

RANSAC. They use the distributions for each feature point, defined by the distances be­

tween the point and the other points, to generate more appropriate initial models, not just 

random models. They first sample a matched feature uniformly and then the next matched 

feature gets sampled based on distribution of the previously sampled matched feature. By 

doing this, they increase the probability of sampling four matched features that belong to 

the same plane. Their method does not guarantee spatially coherent regions as mentioned 

in [24] (see Fig. 3.15(d)). The Kanazawa and Kawakami [24] method found three planes. 

The plane shown in red was not spatially coherent.
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(c) Sequential RANSAC 

using SIFT

(d) Kanazawa and Kawakami [24] 

using Harris corners

(e) SCO-RANSAC result 

using SIFT

Figure 3.15: This figure compares Sequential RANSAC and Kanazawa and Kawakami 

method to SCO-RANSAC. The original stereo pair si from Kanazawa and Kawakami [24J.
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3.2.3.2 SCO-RANSAC vs. Multi-RANSAC

In the example, shown in Figure 3.16 SCO-RANSAC was able to identify eight planes. Un­

like multiRANSAC [45J, SCO-RANSAC does not require the prior knowledge of the num­

ber of planes. Also SCO-RANSAC produces spatially coherent set of inliers for each plane 

as compared to multiRANSAC. Tn [45] multiRANSAC required 46,416 random samples 

in order to find just four planes. On the other hand SCO-RANSAC used only 900 initial 

random samples (2% of the number required by multiRANSAC) and found more planes 

than multiRANSAC. SCO-RANSAC required only three iterations to converge.

(a) Left image (b) Right image

(c) MultiRANSAC [45] (d) SCO-RANSAC

Figure 3.16: Comparing multiRANSAC and SCO-RANSAC using stereo images from 

VGG (Oxford) Merton College I.
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3.2.3.3 Scenes with Large Number of Models

In this section, we only computed results for SCO-RANSAC, as the other RANSAC- 

based methods would have required a gigantic number of initial models, especially mul- 

tiRANSAC. In the example shown in Figure 3 .2 3 3  SCO-RANSAC was able to identify 

eight planes. Only 2,800 initial labels were used, and SCO-RANSAC converged after four 

iterations. Notice how planes with varying numbers of inliers were easily identified by 

SCO-RANSAC. For example, the roof of the building on the left (shown in light brown) 

was supported by very few inliers compared to its two neighboring large planes (shown in 

blue and purple).

Figure 3.18 shows Raglan Castle Tower. Using 5,500 initial labels and only four it­

erations to convergence SCO-RANSAC was able to identify 15 planes. Identifying this 

number of models was not archived before. The maximum number of identified planes 

by the RANSAC-based methods in [39], [24] ,and [45] was 3,3, and 4, respectively. The 

use of a relatively large number of initial labels allowed SCO-RANSAC to identify very 

small structures. Notice how SCO-RANSAC was able to identify very small planes like 

those that are marked by red and green rectangles in Figure 3.18(a). SCO-RANSAC actu­

ally was able to identify smaller coherent structures but these were filtered out in the post 

processing step.

The first time we used SCO-RANSAC to find the models for this stereo pair, we thought 

that the result was over segmented, based on the assumption that there should be only four 

planes —a plane for each vertical segment of the tower. Later on, we discovered from 

looking at another picture shown in Figure 3.19 that each floor shifts to the inside by one 

step from the floor beneath it. Simply, SCO-RANSAC was able to to see what our eyes 

failed to see.
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(c) SCO-RANSAC result

(a) Left image (b) Right image

Figure 3.17: Stereo images from VGG (Oxford) Merton College ITT.
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(c) SCO-RANSAC result

Figure 3.18: In this example from VGG (Oxford), we used the same color more than once 

to represent different planes. Only spatially connected planes are shown in different colors. 

Figure (a) shows red and green rectangles, which are drawn to facilitate their referencing 

in the text.
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Figure 3.19: Image of Raglan Castle tower found on Flicker. Anonymous photographer.
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3.3 Conclusion

We conclude that our new general fitting algorithm is robust to outliers and noise in the data. 

SCO-RANSAC proved to be very efficient in fitting multiple lines compared to the other 

RANSAC-based methods. By using a spatial prior, SCO-RANSAC eliminated the need for 

a threshold parameter to classify the inliers. Empirically SCO-RANSAC requires far fewer 

hypothetical models than the other methods. As shown earlier, SCO-RANSAC required 

only %2 of the hypotheses required by multiRANSAC, and it found a larger number of 

models than multiRANSAC. SCO-RANSAC’s complexity was shown to be comparable to 

the complexities of the other methods described.

3.4 Extensions

We aim to extended SCO-RANSAC to volumetric multi-view reconstruction, and use other 

triangulations as well. We also intend to generalize the isolated outlier removal technique 

to be able to handle clustered outliers. By doing this, the weak model filtering post process 

will be part of the SCO-RANSAC process. We also intend to investigate the possibility 

of clustering higher dimensional data by using their projection on lower dimensional sub­

spaces. For example, in the case of stereo vision, we were able to fit planes in 3D (by 

computing their affine transformation) by using the information incorporated in two 2D 

images. We hope to be able to cluster 4D points by using their projections on multiple 3D 

subspaces.

Using a piecewise-smoothness model other than piecewise-constant (pott’s) model would 

more helpful to identify and fit close models (close in the model parameter space). We 

aim to investigate the use of SCO-RANSAC in detecting multiple motions. One previous 

method[42] for estimating multiple motion used regularization in the final step (dense seg­

mentation) only not in the motion detection step. Unlike that method SCO-RANSAC uses 

regularization in model estimation.
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Appendix A

Plane-to-Plane Transformation in 
Rectified Images

Assuming that the projection matrices for the two views are

P  = 0 ] and P ' = [ m  a ] ,

and the plane is defined by 7r with n  =  (vr , 1)T, then the homography 7/^ induced by that 

plane is

Hn =  A  — av T.

The complete proof of the formulation can be found in [19].

Definition 5 Let H  be a homography from the first image to the second image. We say that 

this homography is a planar homography if  and only i f  there exists a plane 7r such that 

H  = Hn.

Theorem 1 Given a pair o f images and the corresponding fundamental matrix F, let there 

be a homography from the first to the second image plane represented by the matrix H. The 

following conditions are equivalent:

1. The homography H  is a planar homography.

2. H t F  + F t H  = 0.
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For rectified images, the epipole e is at infinity and the fundamental matrix F  can be 

formulated as F  = [e]x. We use the notation [e]x to describe the skew-symmetric matrix of

the vector e:

F  = [e]x =

0 0 0

0 0 - 1  

0 1 0

One possible way to restrict a homography to be planer is to enforce the second con­

dition in Theorem (1), rather than the first one, as they are both equivalent. For the com­

plete proof of that theorem (1) refer to [14]. A homography must satisfy the constraint 

H TF  + F TH  =  0 [14] in order to be planar. Enforcing this constraint implies the follow­

ing :

H TF  + F TH  = 0

hi h2
i

CO

T
0 0 0 0 0 0

T
hi h2 hs

hi Hq 0 0 - 1 + 0 0 - 1 hi h§ h6

h7 h$ hg 0 1 0 0 1 0

____1 ¿3- 00 hg

0 h*j —hi

h7 2  he hg -  hi

—hi hg — he - 2  he

which implies the following :

h7 =  0, hi =  0, h$ =  0, h 5 = hg, and he =  0.

Since H  is defined up to scale then we can enforce that hg =  1 without loss of general­

ity1. Finally we arrive at the following conclusion; a planar homography H, in the case of

•in the case o f a narrow-based stereo, a finite point will always be mapped to a finite point, and a point at 
infinity will be mapped to a point at infinity; thus, it is safe to assume that hg ^  0.
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rectified images, can be parameterized as follows:

hi h2 hz

0 1 0

0 0 1

Since this parametrization is a special case of the affine transformation, we will refer to it 

as an affine transformation (and denote it by the matrix A) for simplicity.

A  =

a b c

0 1 0

0 0 1

where a,b, and c are the three parameters that define the affine model.

(A.l)
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Appendix B

Levenberg-Marquard

The Levenberg-Marquard algorithm [12] is a modification of Newton’s algorithm, which 

can be used to find local minima of a nonlinear function. Newton’s algorithm uses the 

first and second derivatives of the function, and thus performs better than the well-known 

gradient descent, which uses only the first derivative. Given a starting point, Newton’s 

algorithm constructs a quadratic approximation for the objective function that matches the 

first and second derivative values at that point. It then minimizes the quadratic function 

instead of the original objective function. Finally, it uses the minimizer of the approximate 

function as the starting point for the following step and this procedure is repeated until 

convergence.

Assuming that /  : Rn —> R is the objective function and that it is twice continuously 

differentiable, we can obtain the quadratic approximation q for /  at a certain point xfe by 

using the Taylor expansion of /  and neglecting terms of order three and higher as follows:

/(x )  fa f ( x k) +  (x — xk)Tgk +  ^(x — xfc)r F fe(x — xk) =  q(x)
Lt

where g fc and F fc denote the first and second derivatives of the function /  at xk.

Theorem 2 First Order Necessary Condition. Let Q be a subset o f  Rn, and f  a real 

valued function on Q. Ifx* is a local minimizer o f f  over Q, then fo r  any feasible direction 

d  at x*, we have

d TV /(x*) >  0.
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Applying the first order necessary condition on q, we deduce the following:

Vg(x) =  gfc +  F fe(x — xfc) =  0.

And, if F fc > 0, then q archives minimum at

X*H-1 _

If the Hessian matrix F fe is not positive definite (F fc < 0), then the direction obtained by 

(—(F fc)-1g fc) may not point in the descent direction. The Levenberg-Marquard technique 

simply augments the symmetric matrix F  to be (F +  /¿fcI), where > 0 guarantees 

that the eigenvalues of (F +  iikI) are all positive, and thus (F +  //^I) becomes positive 

definite. If /j,k is sufficiently large, then the search direction (—(Ffc +  /ZfcI)-1gfc) will always 

point in a decent direction.For the detailed derivation and comparisons between gradient 

descent, Newton’s algorithm, and Levenberg-Marquard, refer to [12]. After introducing the 

Levenberg-Marquard modification the recurve formula becomes

\ k+1 = x k -  (Fk + / / f c i r v .

For the case in which Levenberg-Marquard in used to solve nonlinear least-squares prob­

lem, this formula could be approximated by

xfc+i =  x k _  ((jfc)Tj* +  ^fci ) - i ( j * ) r r*,

where : Rn —> M, i =  1, ...,m  are given functions, and the objective function to be 

minimized is X^”Li(r i(x)2) and J k is the Jacobian of r  at xk:

J(x) =
few few

few few
(B.l)
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B .l Minimizing The Symmetric Transfer Error Using LM

In this section we will use the LM technique for estimating a homography H  that minimizes 

the symmetric transfer error, such that

h h2 hz

H  = hi h§ h§

h7 h8 hg

k k k hi hi hg

H ~ l = /¿4 k k = /14 h$ Hq

h7 k k hj hg hg

and the symmetric transfer error r  : R9 —> R4, assuming that Pi and p\ are two matching 

pairs:

r i  (Pi,Pi) 

r 2(Pt,Pi) 

Mp'nPi) 

r  4(pi,Pi)

Xihi+yih,2+h,3
- AX ih^+yihg+hg  

x% h-4 ~\~ /iß
- y ' iX-ì h f  ~\~yi /̂ 8

~  Xix'Jii+ y ihs+ hQ
X ih ^ V ih s+ h e

-v % _. x f a + y f i s + h g

The LM technique requires an initial solution for H  that can be obtained by solving for 

H, that minimizes the linear algebraic error:

P'i ^  HP,

Pi x HPi =  0 (B.2)

[PilxHPi = 0

such that Pi is the homogeneous coordinate of pt and [v\x represents the skew-symmetric 

matrix of the vector v. Given a set of n  matching pairs, the system of equations in B.2 

will generate two linearly independent equations for each pair. Thus, solving the following 

system of 2 • n equations for n >  4 using SVD will result in the initial values of H  that
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minimize the algebraic error. The coordinates of the matching pairs must be normalized, 

as in [20], pre-conditioning the system equation to provide a better conditioned system of 

equations (refer to direct linear transform [19]).

Once we have an initial solution for H  the following recursive formula of LM can be 

used to find H  that minimizes the sum of squared transfer errors for all the n  matching 

pairs:

H k+1 = H k -  ((Jk)TJ k +  /ifcI ) " 1(J fc)Tr fc, (B.3)

where

t i - ( p i ’ p l )  •••

••• Jfe (P i> P i)

5& (P i> P i)  ••• i £ ( P i > P  i)

& ( P i . P i )  ••• f £ ( P i > P i )

l f c ( P n , P n )  ••• fe (P n » P n )

5&(Pn>Pn) ••• fe (P n > P » )

••• § £ ( P h ’Pn)

1---
-- 3 i % ( P n ’Pn)

As mentioned in [19], a typical initial value for Hk is 10“3 times the average of the diagonal 

elements of J TJ. If the new estimate leads to a decrease in the error, then the current ¡ik 

is divided by a factor (typically 10) before the next iteration. On the other hand, if the 

current ¡ik increases the error, then the ¡it is multiplied by the same factor. The process of 

searching for a /i^ value that minimizes the error constitutes one iteration of LM. The LM 

iterations are repeated until the energy either stops decreasing or the amount of reduction 

in the symmetric transfer error is too small.
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Appendix C

Outlier Gap in the Case of a 2D Line

In chapter 2, we demonstrated how to apply SCO-RANSAC to fit multiple lines [see Fig. 

C.l(a)]. In that case, we used the 2D triangulation of points [see Fig. C.l(c)]. In this 

appendix, we will show how to apply SCO-RANSAC to the same problem, while using 

a ID triangulation. The ID triangulation is obtained by first projecting the data points 

onto a subspace (y =  0) [see Fig. C. 1(b)], and then triangulating the projected points [see 

Fig. C.l(d)]. By comparing Figures C .l (c) and (d), one can easily see the amount of 

information about the spatial connectivity between the data points that is lost when using 

ID triangulation.

Figures C.l (e) and (f) show SCO-RANSAC results for 2D and ID triangulation, re­

spectively. As can be seen from these two results, the triangulation of points on ID affects 

the inferred information about the spatial connectivity between the data points. In the case 

of 2D triangulation SCO-RANSAC found two models (one for the line and the other for 

the outlier), while in the case of ID triangulation SCO-RANSAC found three models. As 

the outlier caused a gap that prevented the points of the other two models (shown in yellow 

and blue) from merging.
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(a) 2D data points (b) 2D points projected on a 1D subspace

(V = °)

(d) Triangulation on the ID subspace

(f) Result for the ID case

Figure C. 1: This figure shows a line fitting example for the 2D data points/2D triangulation 

case (first column) and the 2D data points/lD triangulation case (second column). The first 

row shows the data sets, the second row shows the triangulation, and the third row shows 

the SCO-RANSAC results. The severed edges are marked by a cross. In Figures (b) and 

(d), the outlier is shown in red to help the reader track it, but in Figure (f), the red data point 

is an isolated data point and represents a separate model.
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The gap caused by the outlier can be solved (see Fig. C.2). We have observed that if 

there is a model that is assigned only one data point after the first a-expansion, then it is 

highly probable that it is an outlier. We refer to such data points as isolated data points, 

since all the incident edges on these points have already been severed. In order to avoid the 

gap caused by the isolated data points, before the next SCO-RANSAC iteration we remove 

these isolated data points from the graph and then retriangulate1 the resulting holes. By 

doing this, we gain information about spatial connectivity that did not exist in the previous 

iteration.

Figure C.2: Figure (a) shows the result of removing the outlier (an isolated data point) 

and retriangulating the hole. By applying the next SCO-RANSAC iteration on the new 

graph, we obtain the result shown in Figure (b). This iteration makes use of the new spatial 

connectivity information and merges the two models. Retriangulating the hole (caused by 

the outlier) makes the merging feasible.

The removal of an isolated data point does not increase the energy under any circum­

stances. If a model is assigned a single data point then the model fits that data point per­

fectly (zero error); thus, removing that data point will not affect the sum of geometric 

errors. On the other hand, the smoothness term will always decrease, as the number of 

discontinues caused by having an isolated data point is equal to the number of its inci­

dent edges, while the retriangulation of the resulting hole will require a smaller number of 

edges/discontinuies.

'In the case of ID Delaunay triangulation, removing a node n and retriangulating the resulting hole is 
equivalent to computing the Delaunay triangulation -  of the set of all nodes except n.

(a) Remove the isolated data point and retriangulate the hole

(b) SCO-RANSAC result
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