
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2008

A LAYERED FRAMEWORK FOR SURGICAL SIMULATION A LAYERED FRAMEWORK FOR SURGICAL SIMULATION

DEVELOPMENT DEVELOPMENT

Timothy James Hayes
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Hayes, Timothy James, "A LAYERED FRAMEWORK FOR SURGICAL SIMULATION DEVELOPMENT" (2008).
Digitized Theses. 4237.
https://ir.lib.uwo.ca/digitizedtheses/4237

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4237&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4237?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4237&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

A LAYERED FRAMEWORK FOR SURGICAL SIMULATION DEVELOPMENT

(Spine title: A Layered Framework for Surgical Simulation Development)

(Thesis format: Monograph)

by

Timothy James Haves

Graduate Program in Engineering Science

Department of Electrical and Computer Engineering

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Engineering Science

School of Graduate and Postdoctoral Studies

The University of Western Ontario

London, Ontario, Canada

© Timothy Hayes 2008

THE UNIVERSITY OF WESTERN ONTARIO
FACULTY OF GRADUATE STUDIES

CERTIFICATE OF EXAMINATION

Joint-Supervisor

Dr. Raj ni V. Patel

Joint-Supervisor

Dr. Luiz F. Capretz

Examiners

Dr. Mike Katchabaw

Dr. Hamada H. Ghenniwa

Dr. Hanif Ladak

The thesis by

Timothy James Haves

entitled:

A Layered Framework for Surgical Simulation Development

is accepted in partial fulfillment of the
requirements for the degree of

Master of Engineering Science

Date____________________________ _________________________________
Chair of the Thesis Examination Board

Dr. Vijay Parsa

Abstract

The field of surgical simulation is still in its infancy, and a number of projects are

attempting to take the next step towards becoming the de facto standard for surgical

simulation development, an ambition shared by the framework described here.

Dubbed AutoMan, this framework has four main goals: a) to provide a common

interface to simulation subsystems, b) allow the replacement of these underlying

technologies, c) encourage collaboration between independent research projects and,

d) expand the on targeted user base of similar frameworks.

AutoMan's layered structure provides an abstraction from implementation details

providing the common user interface. Being highly modular and built on SOFA, the

framework is highly extensible allowing algorithms and modules to be replaced or

modified easily. This extensibility encourages collaboration as newly developed

modules can be incorporated allowing the framework itself to grow and evolve with

the industry. Also, making the programming interface easy to use caters to casual

developers who are likely to add functionality to the system.

Keywords: Surgical Simulation, Simulation Development Framework, Virtual Reality

Acknowledgements

First and foremost, I must acknowledge the guidance, and patience of my supervisors

Dr. Rajni Patel and Dr. Luiz Fernando Capretz. Without the opportunities they

provided and the assistance along the way, this thesis would never have seen the light

of day.

To Mr. Kenn Sippell and Mr. Craig Follett who helped me get started on the right foot.

And to Mr. David Allison for listening to constant ranting and providing much needed

input along the way. And to my friends and family far and wide whose love and

friendship kept me going through the years.

Everything I accomplished here is due to these people and the support they provided.

I am indebted to you all.

IV

Contents

Certificate of Examination..ii

Abstract..iii

Acknowledgements... iv

List of Tables...ix

List of Figures.. x

Chapter 1 Introduction... 1

1.1 Thesis A im s..3
1.2 Related W ork...7

1.2.1 SO FA ... 7
1.2.2 VR Juggler...8
1.2.3 Other Surgical Simulation Projects... 9

1.3 Outline of Thesis..12

Chapter 2 System Requirements... 14

2.1 Targeted Users...14
2.2 Main Functional Requirements..16

2.2.1 Load Model Geometry...17
2.2.2 Model Representation...18
2.2.3 Simulate Realistic Physics and Object Interactions.....................................18
2.2.4 Render Scene..19
2.2.5 Manipulate Scene.. 20

2.3 Non-Functional Requirements..20
2.3.1 Usability..20
2.3.2 Extensibility...21
2.3.3 Performance.. 21
2.3.4 Accessibility..22

Chapter 3 The AutoMan Framework for SO FA.. 24

3.1 Framework Architecture.. 25
3.1.1 Internal Architecture.. 27

v

3.2 Framework Operation...30
3.2.1 System Initialization..30
3.2.2 Main Loop Execution...31
3.2.3 System Termination...31

Chapter 4 Design and Documentation Framework... 32

4.1 Module Design.. 32
4.1.1 Simulation.. 32
4.1.2 Application... 38
4.1.3 Rendering.. 45

4.2 Documentation Framework..55
4.2.1 Coding Standard Definition.. 56
4.2.2 API and Tutorials.. 57
4.2.3 Visual Studio .NET Project Wizard.. 58

Chapter 5 Implementation and Testing..59

5.1 Implementation.. 59
5.1.1 Interface...60
5.1.2 Threading..64
5.1.3 Behavioral Model File Loading... 65

5.2 Testing..67
5.2.1 Test Plan...67

5.3 Test Results..68
5.4 Case Study..69

Chapter 6 Conclusions and Future W ork..74

6.1 Conclusions..75
6.2 Future Work...79

6.2.1 Virtualized Input Device Manager.. 79
6.2.2 Event System ... 80
6.2.3 Multithreading... 80
6.2.4 Rendering Engines... 81
6.2.5 Helper Tools... 83

Appendix A Software Requirements Specification... 91

A .l Introduction..93
A. 1.1 Purpose...93
A.1.2 Scope..94

vi

A. 1.3 References..94
A. 1.4 Overview... 95

A.2 Overall Description.. 96
A.2.1 Product Perspective.. 96
A.2.2 Product Functions... 97
A.2.3 User Characteristics.. 98
A.2.4 Constraints...99

A.3 Specific Requirements... 99
A.3.1 Functionality..100
A.3.2 Quality of Service.. 108
A.3.3 Design Constraints.. 110
A.3.4 On-line User Documentation and Help System Requirements.................... I l l
A.3.5 Purchased Components.. I l l
A.3.6 Legal, Copyright, and Other Notices.. 112

A. 4 Supporting Information.. 113
A.4.1 Supporting Diagrams.. 113
A. 4.2 GNU LG PL..114

Appendix B C++ Coding Standards Document..123

B. l Introduction...125
B. 1.1 Purpose...125
B .l.2 Intended Audience.. 125
B.1.3 References...126
B.1.4 Organization of this Document...126

B.2 Naming.. 126
B.2.1 Naming Guidelines.. 127
B.2.2 File Names..127
B.2.3 Class Names...127
B.2.4 Method Names... 128
B.2.5 Variable Names... 128

B.3 Formatting the Code.. 128
B.3.1 Tabs and Lines of Code...128
B.3.2 Braces... 129

B.4 Documentation...129
B.5 Coded Examples..129

B.5.1 Application.h..130
B.5.2 Application.cpp... 133

Appendix C Test Plan Document... 135

VII

C .l Introduction..137
C.1.1 Supporting Documents...137

C.2 Test Approach...138
C.3 Test Items..138
C. 4 Features to be Tested... 138

C.4.1 Installation Process... 139
C.4.2 VS .Net Project Wizard..139
C.4.3 AutoMan-Application M odule.. 142
C.4.4 AutoMan - Rendering Module.. 142
C.4.5 AutoMan-Simulation Module.. 145
C. 4.6 Website...149

Appendix D Test Results Document..151

D. l Introduction...153
D.2 Test Results...153

D. 2.1 Installation Process.. 153
D.2.2 VS .Net Project W izard...153
D.2.3 AutoMan - Application Module.. 156
D.2.4 AutoMan - Rendering Module.. 156
D.2.5 AutoMan - Simulation Module... 158
D.2.6 Website..160

V ita ... 162

Vili

List of Tables

Table 2-1 Types of Users..

Table 4-1 Simulation Package - Object Tree Class Descriptions

IX

List of Figures

Figure 2-1 Business Use Case Diagram..17

Figure 3-1 Overview of the AutoMan Framework... 26

Figure 3-2 Package View.. 27

Figure 4-1 collisionTriangle.scn Object Graph.. 34

Figure 4-2 Simulation Package - Class Diagram... 35

Figure 4-3 Application Package - Class Diagram.. 40

Figure 4-4 Application Module - System Initialization Sequence Diagram....................44

Figure 4-5 Rendering Package - Class Diagram.. 47

Figure 4-6 SofaQtRenderingEngine - Sequence Diagram..51

Figure 4-7 VRJugglerRenderingEngine - Sequence Diagram.. 54

Figure 5-1 SOFA GUI - Partial Class Diagram... 63

Figure 5-2 chainRigid.scn... 71

Figure 5-3 collisions.sen... 72

Figure 5-4 collisionSphere.scn... 73

x

Chapter 1 Introduction

The benefits of training simulations are truly undeniable. Some of the obvious benefits

include the ease of restarting, the low cost of running, and the increased safety of both

the user and the equipment. All have been well documented and there is little need

for them to be presented again here. These benefits fueled the development of flight

simulators from their infancy 100 years ago to such a level of fidelity and in turn, such

a level of acceptance that the Federal Aviation Administration requires that all of its

pilots pass a simulated flight test on an annual basis [1].

These same benefits are fueling similar developments and advancements in the area

of surgical simulation. Unfortunately, the simulation of surgery is far more

complicated than that of flying [1]. This high degree of complexity is one of the major

challenges that surgical simulations need to surmount to become commercially viable

and eventually become accepted and used as common practice. A development

framework that provides implementations of these complex algorithms could really

expedite the development of all types of surgical simulators. At the very least, this

would reduce project duration and cost.

This is not a new idea, many research projects [2], [3], [4], [5] have attempted to take

the first real step towards a de facto framework for developing high end simulations.

Although each has provided a unique take on the problem, none have yet achieved the

1

ultimate goal. Each has their own benefits and potential failings, but all have supplied

valuable insight into how such a framework should be developed. The framework

presented in this thesis does not claim to have reached this ultimate goal, and is more

an attempt to improve upon some of the potential failings of these other projects. By

improving on such failings as low usability, and the lack of virtual reality support,

AutoMan attempts to help the field of surgical simulation development take one step

closer to its holy grail.

This introductory chapter provides an overview of a simulation development

framework dubbed AutoMan. AutoMan is named for Automatic simulation Manager

since it uses dedicated managers to control the main parts of the simulation1. The

following section presents the aims of the thesis and of AutoMan and is followed by

some background information that will be helpful in understanding the rest of the

thesis. Also highlighted in this chapter are a number of similar projects, this should

provide some insight into the current state of the industry and what is available. It

should also lay the foundations for many of the requirements and design decisions

that are presented in the subsequent chapters. This chapter ends with an outline of

the organization and the content of the thesis.

1 AutoMan is built upon the SOFA framework, the pun was just too fitting to resist.

2

1.1 Thesis Aims

On the grand scale, there are four main goals of the AutoMan framework:

• Provide a common interface to a variety of libraries and engines for simulation

development.

• Allow the addition and replacement of components as new and improved

algorithms are developed.

• Encourage collaboration among different research projects and allow the

incorporation of these projects.

• Expand the targeted user base of these systems.

Before these grand goals can be realized, a number of base requirements for the

simulation development framework must be met. These base requirements will not

necessarily make a simulation development framework successful, but their omission

will undoubtedly result in failure. These include things like real-time performance, a

method of input and output, and high fidelity model representations and interactions.

These represent many of the specific requirements that AutoMan has been designed

to provide. However, rather than attempting to build a single all-encompassing

framework, it is wise to make use of a number of technologies that are dedicated to

specific tasks. In general, this will increase the quality of the system [2].

3

To make simulation development easier for the user, AutoMan provides a common

interface to these libraries and technologies. The developer of the simulation is only

required to learn the AutoMan interfaces and does not need to worry about the

implementation details of the specific libraries. This opens many new technologies to

developers that may only have expertise in certain areas of simulation development.

However, providing an interface to common libraries raises a problem. The state of

the surgical simulation industry is thriving. On a very regular basis, new algorithms are

developed, each improving on its predecessor. If a framework is built on specific

libraries, it will be become deprecated as soon as any improvement is made to its

underlying technologies. Considering the regular rate of algorithm improvement, this

is unacceptable for a development framework such as AutoMan. To try and

counteract this tendency, AutoMan is designed to be highly extensible and modular,

allowing new modules and algorithms to be added and old ones replaced.

Furthermore, incorporating new algorithms does not require any change to the

existing simulation code built within the framework. This can allow any simulation

built within AutoMan to ride the wave of innovation; constantly on the leading edge of

simulation technology.

By allowing the different underlying technologies to be replaced, AutoMan inherently

encourages collaboration between different research projects. Instead of each project

developing their own version of every component in the simulation, they can focus on

4

only a small subset of them and use the components developed by other research

endeavors. Focusing the efforts of a project to a smaller subset of goals tends to

produce better results; do one thing well. When they are finished, the algorithms can

be integrated into AutoMan and simulations built therein will benefit from the

endeavors of all of the external research projects.

However, beyond targeting research projects, AutoMan attempts to also cater to

wider audience. There is a lot to be said for the users who develop on their free time.

This is an untapped resource in terms of surgical simulation development. Already

there are many developers who write add-ons to their favorite video games and even

create their own games from scratch. These kind of casual developers have a very

wide range of skills and have the expertise to improve the world of surgical simulation.

They provide a user base for the existing technology, which in turn fuels the continual

research of new algorithms, but they also can directly help the industry by developing

new algorithms themselves.

Furthermore, should an active user community grow from the AutoMan project, it can

be self delegating. The community will continue to develop simulations in the

framework providing examples of its use. It will continually not only develop new

algorithms and modules for the framework, but also support them. The community

will generate its own documentation for new modules, even tutorials on how to use it.

5

This sort of community driven development is the main reason that many open source

initiatives are thriving. Projects like Ogre3D [6], a graphical rendering engine, has this

same community of developers that continually provide new tutorials and examples of

the engine's use as well as add-ons that increase the functionality of the engine (for

example, OgreODE). Simulation development should not be left solely to the academic

community, in fact academic projects may significantly benefit from these casual

developers.

The AutoMan Framework has been designed with these main goals in mind. However,

its purpose still remains to help developers to create high-end simulations, like those

of surgery. To that end it has a number of more focused requirements to meet, such

as:

• Loading model geometry.

• Representing various types of models, both physical and visual.

• Simulating realistic physics and object interactions.

• Displaying the simulated scene.

• Manipulating the simulated scene.

6

These are the basic requirements that every simulation will likely need. The AutoMan

Framework strives to meet these base functional requirements yet also meet the

constraints of extensibility, accessibility, and community as described above.

1.2 Related Work

There have been a number of similar endeavors whose goal is a framework for

simulation development. This section of the thesis presents a few of these projects

and highlights a number of potential benefits and failings of each. The projects

described here are either used in AutoMan to provide some functionality, or at the

very least have provided an example that helped at various phases of this project.

1.2.1 SOFA

SOFA aims to provide an extensible framework in which algorithmic modules can be

exchanged between research groups [7]. This allows for distribution across a number

of development teams and greatly improves the extensibility and scalability by

allowing new and improved algorithms to be easily incorporated. This extensibility is

one of the main reasons that SOFA was used as the backbone for the development of

AutoMan.

SOFA also uses multiple representations of a single simulated object that allows

different components to use the representation that best serves its purpose. For

example, a high resolution polygonal surface would be used as the visual model while

7

a mass-spring or FEM model would be used as the behavior model [7]. Furthermore, it

provides a scene graph loader that will load all of the simulation's information via a

single XML file [5].

SOFA provides a number of features that are common with the requirements of this

thesis. This made SOFA a favorable choice on which to build AutoMan. On top of this,

while designing this framework SOFA had been getting a lot of attention and it was

thought that it could be the first to really take off as the basis for all surgical simulation

endeavors thereafter.

1.2.2 VR Juggler

VR Juggler is not a surgical simulation framework; it is a "virtual platform for virtual

reality application development" [8]. That is to say it provides everything that should

be required to develop virtual reality (VR) applications. AutoMan uses the tools

available with VR Juggler to provide a VR rendering option for any simulation

developed in the framework. But beyond that, a number of cues in regard to the

design of AutoMan have been extracted from the structure of the VR Juggler suite,

which includes the application object concept for one.

Also, considering that VR Juggler is a very successful community oriented, open-source

project, AutoMan has attempted to mimic a lot of the support structure provided with

VR Juggler. However, in November 2003, Infiscape Corporation began offering

8

commercial support and services for VR Juggler, and would later assume responsibility

of the project altogether [8]. Having this commercial backing has greatly improved the

quantity and quality of documentation and services available to its users. AutoMan

does not have this backing, nor does it have the resources to provide the same caliber

of support, but the design of AutoMan's support system has been greatly affected by

that of VR Juggler and many other open source community projects.

1.2.3 Other Surgical Simulation Projects

This section describes a number of other simulation projects, SPRING, GiPSi,

Hysteroscopy Simulator, and general game development engines. These frameworks

have taken some important preliminary steps towards the development of a fully

functional surgical simulation development framework. The intent of the AutoMan

Framework is to serve as the next step towards this fully functional framework. Many

cues have been extracted from these related works, which has heavily affected the

design of AutoMan.

1.2.3.1 SPRING

SPRING [2], [9], [10] was one of the first concerted efforts to develop a general

simulator. It strives, "to be a general simulator with a broad base of technological

features and a broad range of potential applications, with the emphasis on real-time

performance" [2]. SPRING provides a number of the basic modules required for high

end simulation applications and they perform with a reasonable level of proficiency.

9

Actually, SPRING has implemented more than most other frameworks to date,

including algorithms for piercing and cutting [9], [10]. However, there is a distinct lack

of separation of components meaning low extensibility and makes it difficult to modify

and maintain. Combined with a shortage of API documentation, and usage tutorials,

development within this framework can be trying.

1.23.2 GiPSi

GiPSi, an open source/open architecture venture, focuses on "providing support for

heterogeneous models of computation and defined API's for interfacing

heterogeneous physical processes"[3]. This framework supports both mesh and point

based geometry definitions and has placed a lot of focus on model representation.

Generalized interfaces keep the representation independent of the modeling methods.

However, GiPSi is not a complete simulation engine [3] and fails to support a number

of features required by the AutoMan Framework.

1.2.3.3 HystSim

The Hysteroscopy Simulator (HystSim) is a highly modular framework that has placed

great emphasis on parallelization and multi-threading. This improves scalability and

extensibility while maintaining the real-time constraints [4]. This parallelism greatly

affected the design of AutoMan and a few concepts in that regard have been

incorporated into its design. HystSim also supports basic multi-representational

10

models. However at the time that the AutoMan Framework was being developed,

there was yet to be a stable release of this simulator.

1.2.3.4 Game Engines

Although not geared directly towards surgical simulation, video game engines in both

the commercial realm and public domain were also considered. Many of these

engines have served as development frameworks for some of the biggest and most

advanced video games in the industry [6], [11], [12].

They do lack many of the key components required for surgical simulations, such as

support for deformable models, and cutting simulation [4]. However, considering the

widespread use of some of these frameworks, it would be foolish to not consider

them. Their extensive documentation tends to draw a large user base and community

which further increases the popularity. However, engines like Valve's Source [11]

engine or ID's id Tech 4 [12] engine are not extensible. They are built to get the best

results out of the current technology but it is difficult to incorporate new algorithms or

libraries. This means that they need to be rebuilt every couple of years or so. The

gaming industry has the resources to rebuild on a regular basis, but the world of

surgical simulation does not have the same means. Medical companies are hesitant to

spend money on developing training systems as they consider it "a cost without

11

financial return" [1]. The field of surgical simulation needs a framework that can

evolve with the technology; continually improving with each new advancement.

However, the main cues that have been extracted from video game engines refer to

the architecture and interfacing used. These game engines are designed and built with

usability in mind. This is achieved through things like incorporating concepts that map

directly to the real world and thoroughly defining programming interfaces. On top of

this, they are very well documented and have a healthy support system set up for their

users. Since one of the main goals of AutoMan is to expand the user base of the

surgical simulation technology, many of these concepts that increase the usability and

support of the framework have been incorporated.

1.3 Outline of Thesis

This chapter has provided the reader with an introduction to the AutoMan Framework.

It has also provided sufficient background information for the reader to fully

understand the work that has gone into the development of the framework and the

impact of its completion, all of which will become apparent in subsequent chapters.

The second chapter presents the foundations of the AutoMan framework by defining

the targeted types of users and the overall functions and constraints on the system.

12

Chapter 3 presents the functional and quality of service requirements of the

framework. This includes a definition of each module and a description of the

system's operation.

Chapter 4 is a detailed look at the design and inner workings of each module within

the framework. The presentation of this material is aided with UML diagrams and

descriptions of the details therein. This will provide the reader an excellent

understanding of the structure and of how many of the stated requirements have

been met.

This is followed by a discussion of the implementation process that highlights some of

the more interesting development issues and concerns. This chapter also presents the

testing methodology and results, and showcases the framework in action.

The final chapter, Chapter 6, concludes the thesis by discussing the success of the

project by reaffirming that the requirements set out at the beginning of the project

have in fact been achieved. This chapter also presents a number of possible

extensions to the framework.

13

Chapter 2 System Requirements

This chapter covers the main requirements of the AutoMan framework. It starts with a

discussion of the types of users targeted, and moves onto a description of the

functional and quality-of-service requirements. The information presented in this

chapter starts to lay the foundation of the framework's design.

2.1 Targeted Users

AutoMan is primarily targeting software developers who are attempting to build

simulations of complex activities, such as surgery. It is safe to assume that these users

have some experience in developing simulations, and are generally familiar with the

C++ programming language. It is also expected that they have experience using other

3D development engines whether it be other surgical simulation frameworks (such as

Spring[2], or SOFA[5]) or video game and general rendering engines (such as Valve's

Source Engine[ll], or Ogre3D[6]). This type of user will utilize the framework to build

specific simulation applications. It is expected that they will make little effort to

advance the development of the framework itself. Their endeavors are primarily

focused on the simulation being developed.

Although they are not the primary targets for the framework, there are two other sets

of users who are still within the target market of the framework; casual users and

advanced users.

14

Casual users include those who enjoy working with new technology, specifically the

cutting edge of computer graphics and simulation. It is expected that they are

knowledgeable in the C++ programming language and have a moderate understanding

of real-time computer graphics. They have likely used a number of the other 3D

development engines and are familiar with many of the common concepts.

Furthermore, it can be assumed that they have a basic knowledge of Newtonian

mechanics and the physics of rigid bodies; however it is unexpected that this expertise

stretches into the areas such as the advanced physics of deformable models or fluid

dynamics. To clarify, term "casual" is no indication of the expertise of the user, but is

more an indication of the user's intent in using the framework. These users may be

using the framework for entertainment purposes and may not be developing a specific

simulation application. However, should these users really get interested in the

software it is very likely that they will move into the advanced user category.

The set of advanced users are generally comprised of experienced real-time

developers. They have extensive knowledge of simulation development and are

experts in one or more facets therein, such as graphical rendering optimization, haptic

feedback rendering, advanced physics simulation, etc. These users may not only use

the framework to build simulations, but may add functionality to the framework itself.

This may include developing new modules for it to use, or even modifying the

framework core. Some example additions could include new rendering engines,

15

deformable model representations, or separate tools that will aid development within

the framework.

Table 2-1 summarizes the three types of users we expect to use the AutoMan

framework. Throughout the rest of this text, the terms in this table will be used to

denote the type of user in question.

Table 2-1 Types of Users

Type of User Description

Normal User A developer who has some simulation development experience and
intends to create advanced simulations.

Casual User A developer who may only have a basic understanding of the
simulation development and wishes to use the framework for a more
nominal application or entertainment purposes.

Advanced User A developer with extensive knowledge in simulation development
who will add to or modify the core components of the framework.

2.2 Main Functional Requirements

The next step was to define the specific operation and functionality requirements of

the framework. This list of functional requirements was extracted from the features of

similar development frameworks and from personal experience using these other

frameworks. This list of requirements serves as a base on which the system can be

designed and also serves as a method of validating the implementation once it is

completed [13].

16

Figure 2-1 shows a business level use case diagram. Each use case represents a

functional requirement or feature of the system. Please note that the functional

requirements addressed in Figure 2-1 and throughout the rest of this chapter are only

those that have a significant bearing on the architecture. For a complete list of the

functional requirements and the full Use Case diagram, please refer to Appendix A.

2.2.1 Load Model Geometry

In order to create a simulation, there must be a method of defining the scene entities,

especially geometrically. The easiest way for this to be achieved is by allowing the

geometry to be created in another software package whose primary function is to

generate 3D geometry, and then import this geometry into the simulation. Therefore

the framework must have the ability to load CAD object models. The file format used

for importing the object should be an available export option for most common CAD

packages, including non-professional or open-source packages such as Blender [14].

17

Content creation is outside the scope of this thesis, nonetheless allowing users to

create the geometric content in dedicated software packages will likely increase the

quality of the content created. Furthermore, this facilitates the use of other methods

of content creation, such as retrieving geometry from a physical model by the use of a

3D scanner or medical imaging equipment.

2.2.2 Model Representation

Model representation is a key component of AutoMan. The objects should be multi-

representational models. This means that each acting object in the scene may have

more than one representation. This may be a high resolution visual model for

visualization, a lower resolution to help speed up the collision detection algorithms,

and a physical model to define physical properties such as rigidity or elasticity.

Furthermore, considering that there is no standard algorithm that accounts for all

deformable models, it must be possible to change the physical model's representation

and solving algorithm. For instance, a Mass-Spring representation may be better

suited for a purpose than an FEM representation.

2.2.3 Simulate Realistic Physics and Object Interactions

The physical models and algorithms should define how an object interacts within the

simulation environment and with other objects within the scene. For instance, objects

should fall due to gravity, collide with other objects, and adhere to all expected laws of

physics.

18

This is a fundamental requirement for any simulation. In the area of medical

simulation where complex physical models are required for simulating organs and

tissue, meeting this requirement becomes difficult. But this is one of the main areas of

simulation development that the AutoMan framework is intended to aid, therefore it

must be able to handle this sort of model representation and calculations.

Also, as mentioned before, the use of the multi-representational models allows the

collision and physical models to be separate from the visualization. This means that

the physics algorithms have dedicated representations to help ease the computations.

2.2.4 Render Scene

First and foremost, the simulation must be able to give feedback to the user.

Therefore the framework must supply at the very least a method of rendering the

scene geometry to a regular monitor display. This visualization should constantly

update as simulation state changes, thereby allowing the viewer to observe the

scene's response to various forces and inputs.

On top of this, the system must also support the addition of other methods of

rendering the simulation. If desired, an advanced user should have the ability to add

rendering engines that use other devices, such as speakers for audio feedback, or a

haptic device for force feedback. These users must have the ability to easily define a

rendering engine that will instruct the framework as to how to use the device.

19

2.2.5 Manipulate Scene

There must also be a method for the user to manipulate the simulated scene via

device inputs. This may include moving objects through the scene space, moving the

camera through the scene, changing simulation options, and exiting the simulation.

If so desired, the developer must be able to define what actions are performed as an

input device is activated. This allows the developer to define specific controls on a per

simulation basis.

2.3 Non-Functional Requirements

The definition of non-functional requirements is the next improtant step required in

developing a framework such as AutoMan. Non-functional requirements do not define

the behavior of the system, but rather define quality of service [15]. They define the

constraints under which the functionalities, as defined in the previous section must be

performed. This includes the ease of use, scalability, performance, and accessibility of

the functions.

This section describes these constraints and suggests methods of achieving the desired

quality of service. Further details on these requirements may be found in Appendix A.

2.3.1 Usability

Usability primarily deals with the effort required to learn and operate a piece of

software[13]. To ensure that AutoMan meets this requirement, a comprehensive API

20

and tutorials should be supplied. This includes the programming interfaces, UML

documentation, and coded examples. Verbose commenting of all code, especially the

example applications, should be incorporated to aid the developer understand each

feature's structure and function.

To also aid in this respect, the framework should use generic, common interfaces to

the framework. Common coding standards and practices will round out the learning

curve thus reducing overall development time.

2.3.2 Extensibility

As hinted at in the functional requirements, the framework should have an easy

method upgrading and expanding. This defines the framework's level of extensibility.

Should developers want to add features to the framework, a simple, easy method

should be provided along with a method of distributing the addition to the other users

of the framework. These interfaces should be well documented to encourage users to

develop the additional modules.

2.3.3 Performance

There are a lot of factors that affect the performance of a simulation. However, the

two main factors are the computational power of the system running the application,

and the complexity of the simulation.

21

The first of the two cannot be attended to in software, but it is something that

requires thought during the design of the framework. Simulations developed in the

framework, should be able to run the sample applications at a real-time frame rate on

most workstation-grade computers with a high-end graphics processing unit (GPU).

The performance may be enhanced by running the simulation on more powerful

hardware.

The second of the two major factors can be addressed in software, at least to an

extent. As hinted at in the requirements section, the user must be allowed to define a

lower quality model for use in the collision detection and response algorithms. These

are algorithms with a high degree of computational complexity and really hinder the

performance of a simulation. Allowing them to be run against simplified versions of

the object models, reduces the computations required and ultimately increases the

performance of the system.

2.3.4 Accessibility

To ensure that the framework has a high degree of accessibility, a web site devoted to

the framework should be available. Here users will be able to download the software

binaries for immediate use, as well as view code samples, tutorials, and API

documentation.

22

Also, the site should provide a method for users to download the source code of the

framework allowing them to directly modify the core of the framework. This is how

the advanced users can make modifications and upgrades.

23

Chapter 3 The AutoMan Framework for SOFA

As stated in the introduction of this thesis, the main goals of this framework are to:

• Provide a common interface to a variety of libraries and engines for the medical

community.

• Allow the addition and replacement of components as new and improved

algorithms are developed.

• Encourage collaboration among different research projects and allow the

incorporation of these projects.

• Expand the targeted user base of these systems.

But even beyond these grand goals, there are a number of more basic requirements

that must be first met. These basic functionalities were described in the previous

chapter. With this list of required functionality and quality of service, the analysis and

design phase of software development lifecycle may progress. This chapter discusses

this phase of the AutoMan project by describing the framework architecture and

operation.

24

3.1 Framework Architecture

One of the primary reasons that the development of surgical simulations is so difficult

is that many common features of a surgical simulation still require a great deal of

expertise from the developer to implement, both in terms of mathematical theory and

in terms of environment nuances. A framework for surgical simulation development

should provide a layer of abstraction between the developer and the low level

implementation details of the simulation. This not only unifies the development

environment but allows users with limited expertise to develop complete simulations.

Figure 3-1 shows an overview of this structure. Please keep in mind that this is not a

technical diagram; it serves to show the layered organization of the framework.

The Simulation Logic block represents the code that the user of the framework will

implement. This should contain all of the simulation specific information such as

which models to load and where to find them, what kind of feedback the user wishes

to receive, etc. It resides in the upper most layer, meaning that it only will have direct

contact with the layer directly below; the AutoMan framework.

AutoMan functions as the middle layer of the structure. Aside from providing its own

functionality, it provides the mapping between the action that the simulation code

wishes to perform and the implementation in a software library.

25

The lower most layer contains all of the implementations of the algorithms to be used

during the simulation. Here specific software libraries and engines are called by the

AutoMan Framework to perform a specific task.

Since the user's simulation code is contained in the upper layer, it does not have direct

contact with any code in the lowest layer. This means that the implementation

specific details of each engine or library are completely hidden from the user.

AutoMan handles all of the environmental nuances of these engines, thus providing a

unified development environment for the user.

This abstraction reduces development time and avoids some of the risk of incorrectly

initialized libraries. Furthermore, the simulation developer does not need to be

26

knowledgeable in using the specific implementation libraries; the code the user writes

is completely independent of the library that will be performing the actions.

3.1.1 Internal Architecture

Beyond the layered structure AutoMan is separated into three different main modules.

Figure 3-2 shows the overall layout of the different modules in the framework.

Figure 3-2 Package View

This overall structure takes after the Model-View-Controller software architectural

model. The simulation package stores the state of the entire simulation and resembles

the model archetype. The rendering package displays the state of the simulation and

supplies it to the feedback devices, which is similar to the view archetype. The

application module simulates the controller archetype in its role to manage the

application as a whole.

27

Adhering to this multitier architectural model allows the framework to be easily

modified and upgraded. It decouples the data from the application logic and the

presentation allowing either of the modules to be modified without requiring changes

to be made to any other [16].

3.1.1.1 Simulation Module

The simulation package stores the current state of the simulation. This includes all the

information relating to the objects in the simulation. These include ambient objects

that are only used for visualization and active objects that can be manipulated and

follow the laws of physics.

It also encapsulates all of the processing logic of the simulation. All of the physics and

collision detection / response algorithms are contained within this module.

3.1.1.2 Rendering Module

The main purpose of a simulation is to supply feedback to the user. Therefore it is

important to provide a method for defining methods of doing so. This could include

visualization, sound, networking interfaces, or force feedback for haptic devices. The

term "rendering" is used to signify the act of sending specific information about the

simulation state out through an interface. For instance a visualization rendering

engine draws the objects of the scene to a display device, where an auditory rendering

engine would provide auditory feedback in the simulation to the speakers. This allows

28

the developers to choose between a few supplied rendering engines or develop their

own for specific devices. For example, the developer may choose to make a rendering

engine that renders the force exerted on an object to a haptic device.

This functionality is encapsulated in the rendering module. Everything that will send

data out of the system will do so through this module.

3.1.1.3 Application Module

One part of simulation development that is often understated is definition of the

application logic. Many libraries focus on the visualization component and leave the

structure of the actual application up to the developer. Although this means that the

developer has total freedom on how the application is structured, it often does not get

the same attention. This may result in poorly designed applications that are difficult to

modify and maintain. It also makes it nearly impossible for anyone except the original

developer to make modifications, resulting in applications that go unmaintained, using

deprecated technology and eventually going unused. A unified application structure

eases this maintenance phase of the development cycle. Also, by supplying a sample

application structure, the developer can focus on content and fidelity rather than

spend valuable time on defining the application structure.

The application module provides this unified structure. It can be considered the

control centre of the framework. It creates and initializes the entire application and

29

starts the main loop execution. This ensures that the initialization and setup is

performed correctly and efficiently. Also, all device input is handled in this module

and propagated through the rest of the system, keeping with the controller archetype

of the MVC architecture.

3.2 Framework Operation

This section outlines the different stages of execution during operation. This can be

divided into the following stages:

• System initialization

• Main loop execution

• System termination

All applications follow these operation phases during the course of execution.

3.2.1 System Initialization

The system initialization stage consists of initialization and scene creation. These steps

will be discussed in greater detail in Section 4.1.2.1 of this document.

During the initialization phase, each component is constructed and initialized. This

includes each of the modules mentioned in the previous section. Once these are

created and ready to perform their task, the scene to be simulated is generated.

30

The scene creation phase creates all of the scene objects that are to be simulated. This

builds the scene that will be rendered to devices and modified throughout the course

of the simulation's execution.

3.2.2 Main Loop Execution

The main loop runs the entire simulation. Here the state of the simulation is rendered

through the defined rendering engines, input is handled, and the state of the

simulation objects is updated. This is repeated until the simulation execution has

ended. Again, this will be discussed in greater detail in Sections 4.1.3.2 and 4.1.3.3 of

this document.

3.2.3 System Termination

This stage is invoked when the main loop is signaled to finish. The system termination

phase destroys all the objects created, releases the allocated memory and terminates

the execution threads. This ends the simulation application.

31

Chapter 4 Design and Documentation Framework

This chapter presents the design of the AutoMan framework. Included are many UML

diagrams that will help to explain the structure and operation of the different modules

within the system. Along the way, the rationale behind many of the design decisions

should become apparent. The chapter ends with description of the supporting

documentation available for users of the framework.

4.1 Module Design

The previous chapter covered many of the requirements for each module and hinted

at many items that should be considered during the design. It was about this stage of

the software development lifecycle that it was decided SOFA would serve as a solid

backbone for the AutoMan. The reasons behind this decision will become apparent

through the design presented in this section.

4.1.1 Simulation

Adhering to the MVC structures; the simulation package stores all information relating

to the state of the objects in the simulation (geometry, position, orientation, velocity,

rigidity, etc). Furthermore, it handles the model logic such as the physics algorithms

and collision detection / response algorithms. Since SOFA already has a package that

very closely mirrors these requirements, it was a logical step to base AutoMan's

version on the existing SOFA module.

32

However, the SOFA simulation objects are not easy to work with. For a single entity in

the simulation, many different classes needed to be instantiated and added to the

scene. Figure 4-1 shows the object graph, each box represents a class that needs to be

created to define two objects, a deformable cube and a static floor. With AutoMan

striving to make simulation development easier, requiring the simulation developer to

create and configure every one of these classes for a single entity in the simulation was

unacceptable. Therefore, the concept of a simulation object was extracted and

defined in AutoMan's simulation module. A simulation object instantiates the SOFA

classes automatically; the user only needs to create the object as defined in AutoMan.

To reiterate, the cube defined in Figure 4-1 corresponds to a single class in AutoMan,

and the floor is another single class. This single class creates all of the SOFA classes

upon its own creation, completely hiding them from the simulation developer.

Figure 4-2 shows the static structure of AutoMan's simulation module. For the most

part the module consists of the simulation object class inheritance tree. At the top of

this tree is the SimulationNode class. This embodies the concept of a frame of

reference within the scene. Other objects can be added as children to this node,

meaning that they exist within this frame of reference. For example, if the parent

node was translated a certain value, all of the objects within this node would also be

translated this value. For those that are familiar with developing in SOFA, this is an

extension of the GNode class.

33

Figure 4-1 collisionTriangle.scn Object Graph

34

r ~ 1

L l ' "
SimulationVisualModel

1

#_model : VisualModel *
#_map : M *

♦Simulation VisualModelO
-MoadObjectFileO
♦getModelO
♦getMappingO

1
1

SimulatlonRigidObject
Assolver : OdeSoiver •
*_mass : BaseMass *
#_visual : SimulationVisualModel *
* surface : SimulationCollisionModel ’
+applyTranslation()
+applyRotation()
+applyScaleO
+SimulationRigidObject()

“ +-SimulationRigidObject()
+getVisualModel()
+setVi8ualModel()
■►setVisualModelO
+setCollisionModel()
+setBehavioralModel()
+setMass()
WnitialiseO
-skipToEOL()
•parseMassFileQ__________

Simulation DeformableObJect
#Jopology : Topology *
#_force_field : BaseForceField *
#_solver : OdeSolver *
#_mass : BaseMass *
#_visual : SimulationVisualModet *
If surface : SimulationCollisionModel '
+applyTranslation()

- +appiyRotation()
+applyScale()
+SimulationDeformableObject()
+~SimulationDeformableObject()
■►setVisualModelO
+setCollisionModel()
+setMass()
+setTopology()
+setForceFleld()
tfinitialiseQ_______________________

- I T , M
I

SlmuiationColliaidivmvwwf- r ----- — J

#_collision_model : Topology *
iMri : VisualModel *
(Mine : VisualModel *
#_point : VisualModel *
IMnap : M *
+applyTranslation()
+applyRotation()
+applyScale()
+SimulationCollisionModelO
+SimulationCollisionModel()
-t-’SimulationCollisionModelQ

SimulationStaticObject
If visual model : VisualModel '

►SimulationStaticObjectO
+~SimulationStaticObject()
+getVisualModel()
♦setVisualModelO
+setVisualModel()
♦setCollisionModelO
+applyTranslation()
♦applyRotationO
+applyScale()
WnttialiseQ

Figure 4-2 Simulation Package - Class Diagram

35

Inheriting from this SimulationNode class is the SimulationRootNode class.

This class defines the root of the simulation and as such, it has a little more to do than

a regular SimulationNode. This node automatically sets up the physics solvers for

the scene, including gravity, and collision detection / response algorithms. Since it

inherits from the SimulationNode class, gravity and other environmental physics

set up here will affect all of the objects attached to this node. Considering this is the

root node, the entire scene will be affected by the physics defined here.

The rest of the classes in this module are rather similar to each other so, for the sake

of space and avoiding a rather dry reading chapter, the main function of each class is

summarized in Table 4-1.

Along with this simulation object tree described above, there is also a manager that

controls the state of the tree. This class is called the Simulât ionManager. Before

every frame is rendered, the Simulât ionManager increments the simulation by a

time step which updates the positions, orientations, velocities, etc., of all the objects in

the scene. This is repeated every frame causing the scene to be animated.

Although at the time of the writing of this thesis, it has not been completed (please

refer to section 5.1.2 for an explanation), a multithreaded version of the AutoMan

framework is under development. In the multithreaded version, the

36

Table 4-1 Simulation Package - Object Tree Class Descriptions

Class Name Description

SimulationNode Scene node.

SimulâtionRootNode Setup up scene physics and store simulation objects. Defines the root node of the scene.

SimulationVisualModel
Defines a visual model. It stores the geometry of an object that will be rendered to the
screen. It does not store any physical properties so it is often mapped to a physical
object.

SimulationObj ect Defines a basic physical object. This class does not define any geometry, just a position
and orientation in simulation space.

SimulationCollisionModel Stores collision geometry to be used in collision detection algorithms. This geometry is
not used for rendering and often is mapped to a visual model.

SimulationStaticObj ect
Defines an object that has visual geometry and physical geometry but cannot move
within the scene. Other objects can collide and deform upon collision with this type of
object, but this object will not change position or orientation as a result. Could be used as
the floor of the scene.

SimulationRigidObject Defines an object that has both visual and collision geometry and can move through
scene space. It will be affected due to gravity and other object collisions.

SimulationDeformableObject
Defines an object that has the same properties as a SimulationRigidObject.
However, the surface of this object will deform due to physical contact with another
object or even under its own weight due to gravity.

37

SimulationManager will have a dedicated thread that will continually update the

state of the simulation based on a specific time step instead of having to wait for each

frame to be rendered before updating it again. This decoupling should improve the

fidelity of the physics simulation by ensuring a constant time step that mimics real

world movement rates [17]. If the system has trouble rendering the frame, the state

of the simulation does not slow down with it.

4.1.2 Application

This module is considered the controller of the application following the MVC

structure. It creates and initializes the entire application and starts the main loop

execution. Furthermore, it provides a unified structure for applications using

AutoMan. A few reasons for this were discussed in Section 3.1.1.3 of this document.

Also discussed in a previous chapter (Section 2.1) were the types of users targeted by

AutoMan and some of the features that each requires. This section discusses the

design of this module.

Figure 4-3 shows the class diagram for the application module. It contains four classes

but the current implementation only fully makes use of one, the Application class.

This class handles the entire system initialization phase of the program's execution. In

a general program, the main() function defines the entry point [18]. This is true only to

an extent in the case of an AutoMan application. The entry point is still the main()

38

function, but this method basically remains the same for any program made using

AutoMan. Its sole purpose is to create the Application class and start the

simulation.

The Application class is abstract. This means that it cannot be instantiated itself,

because it is missing the definitions of one or more methods [19]. This class is created

by main() and is an instance of a user created application. In Figure 4-3, the

TestApp_CollisionTriangle class completes the implementation of the

Application class by extending it. This means that it inherits the functionality of

the parent class [19].

The two methods that Application does not provide definitions for are the

constructScenef) method, which loads the model geometry, and the

constructRenderingManagerf) method, which tells the framework how to render the

scene to a device. Reasons for this should be obvious since every simulation will have

a different scene and will need to render that scene in some form or fashion.

However, the default implementations for many of the other methods will not suffice

for more than the simplest of simulations; it is expected that the user will override

these methods and re-implement them.

39

Figure 4-3 Application Package - Class Diagram

40

This allows casual users to develop simulations by only implementing the necessary

functions, yet allows normal and advanced users to fully customize the framework for

his or her specific simulation.

Looking at the other classes defined in this module, the

ApplicationDeviceManager is empty at the time of writing this thesis. It is a

placeholder class with only stubs of each method implemented. When completed, this

class will provide a method of defining input devices in a similar manner to how the

RenderingManager handles output devices.

Since there have been enormous advancements in tools for simulation, especially that

of surgical simulation, the AutoMan framework should provide a method of allowing

the advanced users to develop drivers for specific input devices. This should be similar

to VR Juggler's Gadgeteer project [8].

The user will be able to choose from some supplied device drivers and add them to the

ApplicationDeviceManager. The state of each device added will be monitored

by the manager and it will perform the required actions as specified by the user.

This feature is a significant amount of work and it was deemed to be outside of the

scope of this initial release of AutoMan. Currently, defining input devices is left to the

simulation developer and can all be implemented within the user's code. So, although

the AutoMan framework does not directly provide this feature, it only means that the

41

user will need to implement it themselves. This way the user can implement all the

input handling using whichever methods and tools they are familiar with.

The other two classes in this module provide a method of having a thread start

execution on a member function of a class. The C++ process threads generally require

a pointer to a global static method as the entry point. This would make multithreading

a framework like AutoMan remarkably difficult. However, hiding this method inside a

private abstract class, ApplicationThreadBase, and providing a template

implementation, ApplicationThread, makes it possible [20]. This uses the

concept of external polymorphism [21].

One need only create an instance of an ApplicationThread with a template

parameter corresponding to the object that contains the method to be the thread's

entry point. Then the startQ method can be called when the thread is ready to be

started.

These classes are the result of the cursory steps taken towards multithreading

AutoMan and although they are unused within the framework at the time of writing,

they are fully implemented and provide the user with the same threading

functionality. Should the user want to manually multithread his or her simulation, a

quick and efficient way to do so is supplied.

42

4.1.2.1 Application Initialization

The application module handles the system initialization phase of the program's

operation. Figure 4-4 shows the method calling events during this phase.

The phase starts with a call to startAppf), which is a member function of the

Application class. This starts the creation and initialization process of the

application. The first task is to create a SimulationManager which stores the root

node of the simulation. This root node will store all of the scene objects.

After the root node is created, the RenderingManager is created along with a

RenderingEngine. In this case, the engine chosen is the

VRJugglerRenderingEngine but this could be a Sof aQtRenderingEngine

or a user defined RenderingEngine, the operation is the same. A

RenderingEngineFrameListener is added to the rendering engine. This will

call a method in TestApp once the RenderingEngine starts rendering a frame,

and again when it has finished. There will be more information on the

RenderingEngineFrameListener class in the subsequent sections. Then the

newly created RenderingEngine is added to the RenderingManager.

This is one of the virtual abstract methods of the Application class mentioned before.

This must be implemented in the user's class. This method should load all of the scene

geometry and set the initial conditions and parameters of the simulation.

43

TestApp CollisionTrianale

T

Figure 4-4 Application Module - System Initialization Sequence Diagram

44

Once the scene is created, all the managers are initialized by calling their respective

initialiseQ methods. This step completes the system initialization phase. The only

thing left to do is to start the simulation.

This is achieved with a call to the RenderingManager's startQ method. Only the

RenderingManager needs to be started since the framework is not fully

multithreaded at this point. In the multithreaded version, the startQ method of all

three managers would be called in different threads. Then each manager has its own

dedicated thread and hence would not rely on any other manager to finish its

operation before continuing. This would facilitate the complete parallelization of

simulation updates, rendering of the scene, and input from devices.

Note that for simplification purposes, Figure 4-4 only shows the function calls from

classes within the application module. For instance, the SimulationManager's

initialiseQ function performs a lot of operations and makes many different function

calls. These were excluded to simplify the diagram.

4.1.3 Rendering

Every simulation will need to perform some sort of feedback. In the AutoMan

framework it is the rendering package that provides this functionality. Whether it is

rendering geometry to a display, or haptic feedback to a device, this module should be

45

able to handle it. This section of the thesis describes the design of the rendering

package and shows its extensibility to output different information.

Figure 4-5, shows the static structure of this module. Technically it is only the upper

four classes of the module that are considered part of this package. The rest of the

classes in the figure make up different implementations of engines that will render the

scene. This will become clearer shortly.

Like in the other two modules, there is a manager, RenderingManager. This class

contains all of the references to the RenderingEngines to be used in the

simulation. It ensures that all of them are initialized and that they get updated on

every frame. In the multithreaded version that is under development, it would only

need to start a thread for each of the rendering engines and then they could manage

themselves.

The RenderingEngine class is an abstract class that defines an engine that will

provide feedback to the user. Most commonly this will be via some sort of display. In

that case, a RenderingEngine will draw the scene geometry and pass the

information to the system's video card for output to the display. However, a

RenderingEngine can be anything that provides the user with feedback. So this

can include sending information to a console, or out a network interface. It could also

include sending force feedback information to a haptic device. Anything that will send

46

Many Operations and Attributes are
excluded from this class for the sake
of space.

RenderingOGLDrawer /
1

■groot: GNode *
-sceneFileName: string
•_W: int
-_H : int
•_clearBuffer: int
- lightModelTwoSides: bool
-_lightPo8ition[4] : float
-_navigationMode: int
-_currentTrackball: Trackball
-_newTrackball: Trackball
• mouseY: int
-_mouseX: int
♦RenderingOGLDrawer()
♦~RenderingOGLDrawer()
♦initialise()
+draw()
*calcProjection()
MnitializeGLQ
•tpaintGLO
i*resizeGL()
SApplyShadowMapO
WCreateRenderTextureO
lVStoreLightMatrices()

SofaQtRenderlngEngine
(f_sim__mgr : SimulationManager *
If app : QAppUcation *
*_gui : S im pleG Ul *

♦SofaQtRenderir
♦ -SofaQtRender

igEngineO
ngEngine{)

DummyRenderingEngine

♦Dumm yRenderingEngineO
— DummyRenderingEngineO

♦initialise^) : bool
+start{)
♦updateQ_____________________

VRJuggierRenderingEngine
#_kernel : Kernel *
*_drawer : RenderingOGLDrawer *
<f_sim_mgr : SimulationManager *

d raw e rjn it : bool

♦InitialiaeO
♦start()
♦VRJugglerRer>deringEngine()
•~VRJugglerRenderingEngine()

♦preFrameO
♦postFrame()
frinito
M raw Q___________________________

U I_G U I

♦fileNewAction: QAction *
♦flleOpenAction: QAction *
♦fileReloadAction: QAction *
♦fileSaveAction: QAction *
♦fileSaveAsAction: QAction *
♦filePrintAction: QAction •
♦fileExitAction: QAction *
♦editlindoAction: QAction *
♦editRedoAction : QAction *
♦editCutAction: QAction *
♦editCopy Action : QAction •
♦editPasteAction: QAction *
♦editFindAction: QAction *
♦helpContentsAction: QAction *
♦helpIndexAction: QAction *
♦helpAboutAction: QAction *
♦simulationAnimateAction: QAction *
♦ view er: AutoViewer *
♦ m enubar: QM enuB ar *
♦fileMenu: QM enu*
♦editM enu; QM enu *
♦simulationMenu: QM enu *
♦helpMenu : QM enu *__________________

♦setupUifin G U I : QMainWindow*)
♦retranslateUi(in G U I : QMainWindow*)
Wconfin id : Ic o n lD I: QPixm ao

U rS im p ie G U I

—

S im p le G U l

•_animated: bool

-~Sim pleG UI()
•fileSaveAs(in filename : const char*)
-fileOpen(in filenam e: const char*)
♦fileOpen()
♦fileReload()
♦fileSave()
♦fileSaveAa()
♦filePrint()

■ ♦flleExit()
♦editUndo{)
♦editRedo{)
♦editCut()
♦editCopyQ
♦editPasteO
♦editFindQ
♦helplndexf)
♦helpContents()
♦helpAbout()
♦simulation Animate()
♦ahowQ_______________________________

1

AutoViewer
•_drawer : RenderingOGLDrawer *
#_root : SimulationRootNode *
-timerStep : Q Tim e r *
•timerAnimate : Q Tim e r *_____________________

•~AutoViewer()
-setRootfin root : SimulationRootNode*)

. ttnitializeGLO
#paintGL()
#resizeGL(in w : int, in h : int)
#keyPressEvent(in e : QKeyEvent*)
ifkeyReleaseEventfin e : QKeyEvent*)
tfmousePressEvent(in e : QMouseEvent*)
mouseReleaseEvent(in e QMouseEvent)
#mouseMoveEvent(in e : QMouseEvent*)
<rinou8eEvent(in e : QMouseEvent*)_________

Figure 4-5 Rendering Package - Class Diagram

47

information out of the system can be a RenderingEngine. Further detail will be

presented throughout this section. Since this class is abstract, it cannot be

instantiated; it must be extended by another class that implements the virtual

methods. This is the same as with the Application class described above.

The RenderingEngineFrameListener is another abstract class. Its purpose is

to provide a method for the other classes to be informed when a specific

RenderingEngine has finished rendering a frame. A class that implements

RenderingEngineFrameListener will have at least two methods,

frameStartedQ, and frameEnded(). Once this frame listener is attached to a

RenderingEngine, before every frame is rendered, the frameStartedQ function is

called, and likewise after a frame is rendered, frameEndedQ is called. This allows other

classes to make per frame calculations and changes to the simulation.

A RenderingEngine can have more than one frame listener and each one will have

their respective frameStartedQ and frameEndedQ methods called at the beginning and

at the end of every frame the engine renders.

The final class in the rendering package is the RenderingOGLDrawer. This is a

helper class for the RenderingEngines that are going to render the scene

geometry to a display. Simply by calling the drawQ method, the geometry of the

48

entire scene will be rendered. This class is heavily based on the SOFA's QtViewer

class.

There are three RenderingEngine implementations included with AutoMan, they

are: DummyRenderingEngine, SofaQtRenderingEngine, and

VRJugglerRenderingEngine. These are provided within the rendering package

of AutoMan, but there not exactly part of the framework itself. These

implementations are provided but their use is completely optional.

The following sections describe each of these RenderingEngine implementations

in detail. Also, although the rest of the framework is not dependent in any way on the

implementation of the RenderingEngine, the internal workings of each are slightly

different. As such, the operation of main execution loop operation phase will also be

described for each of the following RenderingEngines.

4.1.3.1 DummyRenderingEngine

This engine does nothing except write one line to the console on every frame. It was

used in the testing of the RenderingManager's capability of handling more than

one engine at a time.

It also serves as a bare bones template for advanced users to develop their own

rendering engines. All the required methods are already implemented with stubs; the

user only needs to fill in the methods to perform the required function.

49

4.1.3.2 SofaQtRendering Engine

This RenderingEngine is similar to the graphical user interface (GUI) provided with

SOFA. However, there have been minor changes to the layout, and drastic changes to

the code. The layout of the original SOFA GUI provided more information than was

actually needed for a simulation user, this has been removed. The engine itself still

runs on Qt [22], but the viewer that was provided with SOFA, QtViewer, was not

satisfactory for the purposes of AutoMan. Section 5.1.1 explains the reasoning behind

this.

Figure 4-6 is the sequence diagram for the main execution phase of the framework

when the Sof aQtRenderingEngine is being used. It begins with a call to the

startQ method of the RenderingManager, which in turn starts the

RenderingEngine by calling its startQ method.

The Sof aQtRenderingEngine displays the GUI but calling the showQ method of

the SimpleGUI class. After the program is displayed, the engine starts the

QApplication, a Qt class, by calling the execQ method. Both the SimpleGUI and

the QApplication objects were created during the initialization phase of the

program.

50

TestApp Collisionirianale SimulalionManaaer RenderinaManaaer SofaQtRenderinaEnaine

Figure 4-6 SofaQtRenderingEngine - Sequence Diagram

51

Starting the QApplicat ion by calling the exec() method gives the main thread of

execution over to the Qt library. Every frame, the paintGLQ function of AutoViewer

is called to draw the geometry to the window in the GUI. However, this is the only

occasion where AutoMan has control of the program until the next frame. So, the

AutoViewer informs the Sof aQtRenderingEngine that it is about to start

rendering the frame by calling the frameStarted() method.

This allows the rendering engine to make the calls to the attached frame listeners. The

first is back to the RenderingManager so it can update the other

RenderingEngines. The next is back to the user application for any processing

that he or she may wish to perform at this time.

Then it steps the Simulat ionManager by calling the updateQ method. This causes

the simulation to take one step in time allowing the simulation objects to move and

react. This finishes the pre-frame calculations and the AutoViewer is free to render

the scene by calling the draw() function of the RenderingOGLDrawer.

When the AutoViewer is finished, the post frame calculations need to be

performed. So it calls theframeEndedf) function of the

Sof aQtRenderingEngine, which makes all the required calls to its attached

frame listeners respectfully. This ends the frame. When the QApplication makes

the next paintGLQ call, the whole process starts over for the next frame.

52

4.1.3.3 VRJugglerRendering Engine

This rendering engine uses the VR Juggler library to display the scene geometry. This

library not only allows the use of regular 2D displays, but also 3D stereoscopic displays.

That means that a simulation built in the AutoMan framework that uses this engine

can run the simulation on a stereoscopic display.

The following sequence diagram, Figure 4-7, describes the operation of this engine.

Like with the Sof aQtRenderingEngine, the process begins with calling the start()

method of the RenderingManager, which in turn calls the start method of the

VRJugglerRenderingEngine.

The VRJugglerRenderingEngine has created an instance of a VR Juggler

Kernel, (vr j : : Kernel) in the initialization phase of the program. The call to its

waitForKemelStopQ will give it control of the program's main execution thread like the

call to exec() of the QApplication in the previous case.

However, the vr j : : Kernel expects pre-frame calculations and makes a call back to

the VRJugglerRenderingEngine just prior to starting the frame's rendering.

This allows for the same pre-frame calculations to be done. This step is the same as

the previous example, the RenderingEngine calls theframeStartedQ method of

the attached frame listeners and then steps the simulation by calling the updateQ

method of the SimulationManager.

53

With that finished, the vr j : : Kernel makes the draw() callback to the

VRJugglerRenderingEngine which passes the instruction onto the

RenderingOGLDrawer.

Figure 4-7 VRJugglerRenderingEngine - Sequence Diagram

54

When the frame has been rendered, vr j : : Kernel calls the postFrameQ method of

the rendering engine allowing it to propagate the call though all of its frame listeners

just as before. This ends the frame, and the vr j : : Kernel makes another

preFrameQ call starting the process over again.

Since VR Juggler expects that pre- and post-frame calculations are probably necessary,

the VRJugglerRenderingEngine is less complex than the

Sof aQtRenderingEngine. This is expected as VR Juggler is designed for

rendering graphics in real time applications, where Qt mainly used for windowed

GUI's. Advanced users of the framework will find that writing their own rendering

engines will be much simpler for libraries that are designed for this kind of graphical

rendering.

4.2 Documentation Framework

One of the grand goals of this framework is to encourage collaboration between

different institutions in the development of high caliber simulations, especially surgical

simulations. Ideally as new algorithms and data representation models are developed,

they will be added to the AutoMan framework, allowing everyone that has built

simulations using this framework to benefit from the improved performance or

fidelity.

55

In order to support the addition of new technology to AutoMan, a robust and

thorough documentation framework must be set up. This should help new

developers, regardless of their expertise, to familiarize themselves with the AutoMan

structure and implementation. It should support all types of users of the framework,

those that are just developing stand alone simulations and those who are attempting

to add new functionality to or upgrading the framework itself.

This is realized through a number of different ways. Standard coding conventions

ensure that the code is uniform throughout the framework reducing many possible

bugs [23]. Extensive API documentation provides users with a look at specific

interfaces and allows them to view the hierarchy structure of the classes. Also, user

guides and how-to's will help aid developers with specific problems. Each is discussed

further in the following sections.

4.2.1 Coding Standard Definition

The AutoMan framework has been coded to the standard as stated in the AutoMan

C++ Coding Standard document which can be found in Appendix B.

This document defines the conventions followed during the implementation of the

framework, including naming conventions for files and classes, proper commenting

structure, and indenting and spacing rules.

These standards should allow the framework to:

56

• Have a consistent style throughout the environment.

• Be easy to read and understand for new developers.

• Be maintainable by other developers [23].

These are all important traits to have for the framework especially as it is expected

that new developers will be adding to it. Advanced users who are developing new

modules or modifying the framework code should be familiar with these standards and

adhere to them whenever possible.

4.2.2 API and Tutorials

Since the code followed the above Coding Standard and has correctly commented

each class with Doxygen [24] comments, the generation of an HTML based API is

trivially easy to create. This API provides a method of viewing the structure and

interface of each class.

A public website has been set up on the UWO Panther server2 to host this API. This

resource will be continually updated as major changes are committed to the AutoMan

project. The public site also provides a number of tutorials that show the users of the

framework how to complete specific tasks in the code. Currently this is managed

internally, but ideally it will evolve into a community maintained endeavor like a Wiki

2 The URL is as follows: http://publlsh.uwo.ca/~thayes4/

57

http://publlsh.uwo.ca/~thayes4/

[25]. In this case, users of the framework can provide their own examples and create

their own tutorials so that the rest of the user community can benefit from them.

4.2.3 Visual Studio .NET Project Wizard

In addition to the API documentation and tutorials, a helper tool is provided. The

AutoMan Simulation Application Wizard generates the skeleton Visual Studio .Net

project file. It automatically links all to the required library directories, saving the

developer of the simulation a relatively lengthy project set up. The wizard prompts

the user to enter a name for the project and a couple of parameters and automatically

sets everything up, allowing him or her to start on the simulation content immediately.

58

Chapter 5 Implementation and Testing

This chapter starts with a discussion of a few of the major and therefore more

interesting issues that arose during the implementation of AutoMan. Some of these

issues were substantial enough to warrant a change in the design, or even the feature

being dropped completely for the initial release of the software.

Following the discussion of the implementation issues is a description of the testing

procedure carried out on the framework along with the ensuing results.

5.1 Implementation

This section covers the implementation issues encountered during the development of

AutoMan. Although there were numerous issues, only a few of the major ones are

described here. The first is in relation to the GUI supplied with SOFA and the many

difficulties that arose from working with it. The second issue is in regard to

multithreading the framework. The final issue that is discussed is in regard to the

loading behavioral model information form files. This last discussion shows many of

the difficulties in working with poorly documented software.

59

5.1.1 Interface

The original interface supplied with SOFA, QtViewer, did not fully meet the

requirements of an AutoMan RenderingEngine. The following is a list of some of

the shortcomings:

• Contained a sidebar that provided unnecessary options and information.

o Included is the ability to show the wireframe, polygon normals, and

mappings. Also, the ability to set the time step and take single

animation steps, among other things.

• All of the OpenGL setup code was contained within the GUI class using private

methods.

• No support of per-frame calculations.

The sidebar provided the SOFA GUI allowed the simulation user to do more than is

likely needed in most simulations. There is little need for the simulation user to have

access to the options provided by this panel, they are really helpful only in a debugging

scenario. Most simulations should only require the scene to be loaded in a paused

state, and the ability to start the simulation. Therefore, for the AutoMan version of

this GUI, this sidebar was to be removed.

60

This required a complete rewriting of the GUI window. This was not too difficult as it

was built in Qt; which is a very well supported development framework that is widely

used for GUI applications, though not exclusively.

However, during this rewrite it was realized that the SOFA GUI was spread out over a

few classes and much of the OpenGL setup was completed within one of them. Figure

5-1 shows a partial class diagram that illustrates the structure of the SOFA GUI. This

was fine for the purposes of SOFA which was not designed to be used with different

methods of rendering however, it was not sufficient for AutoMan's purposes.

This required a full re-write of one of the SOFA GUI classes, QtViewer. This class

defined the Qt widget that served as the rendering window in the GUI. All of the

OpenGL setup was completed here along with the calls to the simulation objects to

render the geometry. It was decided that a new class should be implemented whose

sole purpose was to handle all of the OpenGL calculations and method calls, it was

called RenderingOGLDrawer.

The RenderingOGLDrawer class was briefly described in section 4.1.3. Most of

this class is comprised of methods taken directly from SOFA's QtViewer class, but

considering that QtViewer consists of roughly 2700 lines of code, it was no easy task

determining what was required and what could be excluded. After the OpenGL code

61

was separated, the rest of the functionality of QtViewer needed to be implemented

to use the new class. This resulted in the AutoViewer class.

This separation of and re-implementation of the QtViewer class inherently solved

the final shortcoming. QtViewer did not supply any method for the rest of the

application to get control once the GUI had started the rendering loop. By using the

AutoViewer class instead, this functionality was easily implemented. Every time that

the GUI window asks this widget to refresh the scene, it made the correct calls to the

RenderingEngineFrameListener's attached to the parent

RenderingEngine. This would not have been possible using the QtViewer

supplied with SOFA.

The magnitude of this change to the GUI was not factored in during the design of

AutoMan. This issue resulted in the addition of two new classes to the framework and

required some rethinking of the operation of the rendering module altogether.

Furthermore, it showed that although the addition of new RenderingEngine

implementations to AutoMan may be easy, the act of developing them in the first

place may not. However, this was no fault of AutoMan and is outside of its scope for

the time being.

62

qt::QtViewer

-groot: GNode *
•sceneFileName: string
-timerStep: QTimer*
-timerAnimate: QTimer*

Ui.GU I -_ W : int
•_H: int
-_animationOBJ: bool
-_animationOBJcounter: int
-_axis: bool
-_background: int
- shadow: bool

♦fileNewAction : QAction *
+fileOpenAcöon : QAction *
+fileReloadAction : QAction *
+fileSaveAction : QAction *
+fileSaveAsAction : QAction *
+filePrintAction : QAction *
+fileExitAction : QAction *
+editUndoAction : QAction *
♦editRedoAction : QAction *

*
+QtViewer(in parent: QWdget*, in name: const char* = *"')
+~QtViewer()
+step()
+animate()
+playpause{in value: bool)
+setDt(in value: double)
+-setDt(in QString : const int)
*resetScene()
+resetView{)
+saveView()
*$howVi$ual(in value: bool)
#newTime(in_t1 : double)

+setupUi(in GUI : Q3Main\Mndow*)
+retranslateUi{in GUI : Q3MainVWndow*)
Siconfin id • leonine • QPixmfiD

Z

GUI
+ Q Strina : ini
■t-staticMetaObjecl; QMetaQDiect___
+GUI(in parent: QWidget* = 0, in name : const char* — 0, in f l : WFIags = Qt::W Type TopLevel)
+~G U I()
+fileNew()
+fileOpen()
+ftleReload()
+fileSave()
+fileSaveAs()
+filePrint()
+fileExit()
+edrtUndo()
+editRedo()
+editCut()
+edrtCopy()
+editPaste()
+editFind()
+heiplndex()
+helpContents()
+helpAbout()
+saveXML()
WanguageChange()
+qt_metacast(in _c lna m e : const char*): void *
+m etaObject(): const QMetaObject *
+qt metacall(in c : Call, in id : int, in _a : void**): int

------------ =----------- =---------- A --

qt::RealGUi

#graphlistener: GraphListenerOListView *

+fileNew()
+ftleOpen()
+fileReload()
+fileSaveAs()
+fileExit{)
+saveXM L()
+RealGUI(in groo t: GNode* = 0, in filename : const char* = 0, in use_docked_windows : bool = true)
+~RealGUI()
+fileOpen(in filenam e: const char*, in resetView : bool = true)
+fileSaveAs(in filenam e: const char*)
+$etScene(in groo t: GNode*, in filename : const char*= 0, in resetView : bool = true)
+setTitle(in windowTitle : const char*)___

Many Operations and Attributes are
excluded from these classes for the
sake of space.

Figure 5-1 SOFA GUI - Partial Class Diagram

63

5.1.2 Threading

Initially, this release of AutoMan was supposed to be multithreaded. The fact that

much of this feature is already accounted for in the design and is partially

implemented should attest to that. Unfortunately an issue arose that drastically

complicated the finalization of this feature.

The original design called for the initialisef) method of each manager to create itself a

dedicated thread. Then the Application class could start each manager's thread

simply by calling the startf) method of each manager. The RenderingManager

would have initialized a thread for each RenderingEngine attached and each

would be started during the Application's call to startf). The problem arose

when specific implementations of these RenderingEngines cannot work when

they are started by anything but the main execution thread. VR Juggler for one.

VRJugglerRenderingEngine creates a vr j : : Kernel which will not work

properly unless is it run by the main execution thread. So, in an attempt to save the

feature, the threading structure was reworked to allow the main execution thread to

start all the other modules and then run the first RenderingEngine that was

attached. This implies that when the user is attaching RenderingEngines, the

main graphical display must be the first one attached. This is not the ideal solution,

but it works as a "band-aid" fix.

64

However, the issues that ensued thereafter were irrecoverable. Running under this

new multithreaded structure led to catastrophic failures in the system and it was

realized that this feature required a lot more time and effort than was available. As a

result, multithreading succumbed to functional triage in this first release of AutoMan.

It has been pushed back to a later release of AutoMan to allow more time to work out

this issue.

5.1.3 Behavioral Model File Loading

One feature that AutoMan strives to provide for its users is the ability to easily create

the objects in the simulation in code instead of defining a scene file. As it turns out,

this proved to be a bigger task than originally planned.

The SOFA Ob j ectFact ory class is built after the factory model [26]. A factory is an

abstraction of a constructor that ensures a class instantiates the correct object for its

purpose [27]. It is this class that SOFA uses to create the simulated objects when

loading a scene file. However, this is also the only way the factory can be used. The

creation of an object from the factory requires a call to the parse() method of the

object to be created. This method parses the BaseObj ect Description that is

supplied as an argument, and sets the correct attribute values. This object description

class is created while the scene file is being parsed. It is useless to attempt to create

this object procedurally since it requires the exact line from the scene file that defines

65

the object that you wish to create. This essentially means that the Ob j ectFactory

cannot be to generate any new simulation objects from within the code.

In order to keep SOFA unaltered, AutoMan had to call the constructor methods of

each specific SOFA object instead of using the factory class. Unfortunately this method

falls short since some of the object member variables do not have accessor methods or

the object itself did not have the ability to load information from a file. This was the

case with the Unif ormMass object that defines the mass of a rigid object and is used

in SimulationRigidObj ect.

Creating the Unif ormMass object was trivial if only a mass was required. All that

was needed was to supply the number that corresponds to the mass of the object.

The problem arose when mass information is stored in a behavioral file, such as with

the case of the chain samples that come with SOFA.

In order to allow a SimulationRigidObj ect to load behavioral information from

a file, it had to parse the file itself. This turned out to be easily implemented as the

functionality was already present in SOFA, but was not accessible from the outside the

class.

It had been a stipulation of using SOFA as the backbone of AutoMan that there would

be no changes made to SOFA itself. This would have made it a lot more difficult to

distribute AutoMan since it would also be required that the updated SOFA files also be

6 6

distributed. Also, talking with the developers of SOFA, it seems that this functionality

will be publically accessible in future releases of the framework.

This hidden functionality issue arose numerous times in the development of AutoMan.

This is one of the shortcomings of using new technologies that are not fully

implemented or documented. Unfortunately, this shortcoming ended up being a

major cause of stress and delays in the development of AutoMan.

5.2 Testing

In order to test the full extent of the AutoMan functionality, a test plan was created

and executed. The following sections describe this test plan and the results of the

tests that were performed.

5.2.1 Test Plan

Considering the limited resources and time at hand, only coarse unit tests were

performed to ensure that the implemented features worked as they should. This

includes not only the framework itself, but the installation process, the VS .Net Project

Wizard, and website. This is by no means a complete testing phase, but this is all that

was possible under the resources and time at hand. Further testing will be performed

for the next iteration of the framework; this release should still be considered an alpha

build.

67

Appendix C is the test plan document that outlines the testing process and describes

each test case in full.

5.3 Test Results

By executing this test plan, a Test Results document has been generated. It can be

found in Appendix D. This document presents the results of each test case and

comments on each.

To summarize the testing results, the implemented features of AutoMan work as

expected. Each component of the AutoMan achieves the base functionality that it was

designed to perform.

The one exception is the ability to rotate the simulated object. This is another case of

hidden functionality that is not accessible from outside classes. That is to say that the

SOFA objects can be rotated but, this functionality can only be invoked internally. The

developer release of SOFA has remedied this issue, but the current version of

AutoMan is built on the stable Beta 2 release of SOFA. In subsequent releases of

AutoMan, this feature should work in full.

It is understood that there is a significant amount of testing that should still be

performed, but these cursory results show that the main functionality of AutoMan is

indeed present and working.

6 8

5.4 Case Study

To supplement the testing process and showcase some of the features of AutoMan a

small application was developed as a case study.

The basic premise of this application was to retrieve a scene filename from the

command line upon execution and run it using the VRJugglerRenderingEngine.

This task was nearly trivial with the help of the VS .Net Project Wizard which generated

the project and files and also implemented most of the required methods. In fact the

only method that needed to be implemented was createSceneQ. All that was required

here was to load the file specified as the command argument. This is a single call to

the loadSceneFile() method of the SimulationManager.

The following figures are screen captures of this application running a number of the

SOFA sample scene files. By modifying the VRJuggler configuration file used, many

display options can be set including stereoscopic rendering, multiple viewports, and

simulated 3d device input.

The first thing that should be noted about this exercise is the ease at which it was

developed. Three lines of code needed to be added to the files generated by the

project wizard to load the scene; two to store the filename from the command

argument list, and one to load the file. The biggest task was adding the input handling

code, but even then, this is around ten lines of code that are simple to produce

69

assuming the developer is knowledgeable in the input system they are using.

Furthermore, this whole process should be simplified when later releases of AutoMan

provide input handling support.

However, there is a mild drop in performance (around 0.5 frames per second) when

these scenes are run through AutoMan. This was expected since AutoMan has to do

more per-frame processing than SOFA. However, most of this processing will be done

in parallel as soon as the multithreaded version of the framework is complete.

Figure 5-2, Figure 5-3, and Figure 5-4 each show screen captures of this application

running some SOFA sample simulations.

70

Figure 5-2 chainRigid.scn

A chain comprised of rigid links shown at various times (T) throughout its swing.

Figure 5-3 collisions.sen

A rigid box colliding with a textured floor model.

72

Figure 5-4 collisionSphere.scn

A deformable box falling due to gravity and colliding with a sphere.

73

Chapter 6 Conclusions and Future Work

This thesis has presented a framework named AutoMan that aids in the development

of advanced simulations.

It started with an introduction to the background of simulation development and

described a number of other projects and endeavors that have attempted to tackle a

similar task.

The next chapter presented the foundations of the AutoMan framework by describing

the targeted types of users and the overall functions and constraints on the system.

Chapter 3 offered the functional and quality of service requirements of the framework.

This includes a definition of each module and a description of the system's operation

The next chapter was a detailed look at the design and inner workings of each module

within the framework. This should have given the reader a good understanding of the

structure and how many of the stated requirements have been met.

This was followed by a discussion of the implementation process that highlighted some

of the more interesting development issues and concerns. Also presented was the

testing methodology and results.

74

This chapter concludes the thesis by discussing the success of the project and reaffirms

that the requirements set out at the beginning of the project have in fact been

achieved. The chapter also presents a number of possible extensions to the

framework in the Future Work section.

6.1 Conclusions

Eric S. Raymond's book, The Cathedral and The Bazaar [28], discusses open source

development and many of the preconditions required for a successful open source

project. The following is an excerpt,

When you start community-building, what you need to be able to present is a

p la u sib le p ro m ise . Your program doesn't have to work particularly well. It can be

crude, buggy, incomplete, and poorly documented. What it must not fail to do is (a)

run, and (b) convince potential co-developers that it can be evolved into something

really neat in the foreseeable future.

The AutoMan project is still far from a level of completeness that would realize its use

in commercial caliber applications. However, it presents a step in the right direction

for surgical simulation development. According to Eric S. Raymond, this is all that is

required to start a community based project, and AutoMan has exceeded this

expectation.

75

As stated at the beginning of this thesis, the AutoMan framework had the following

grand goals:

• Provide a common interface to a variety of libraries and engines for simulation

development.

• Allow the addition and replacement of components as new and improved

algorithms are developed.

• Encourage collaboration among different research projects and allow the

incorporation of these projects.

• Expand the targeted user base of these systems.

Now that the reader is familiar with the AutoMan framework, this section will discuss

the completion of these goals and by extension the success of the project itself.

AutoMan is built on top of many lower level libraries such as SOFA, and VR Juggler.

However, since all the implementation details of these libraries are hidden from the

user's application, the user has does not need any expertise in using these libraries.

Furthermore, the structure of the framework allows the incorporation of new and

improved implementations of these engines. This virtualization allows AutoMan to

provide a common interface to developing simulations, regardless of the library

implementation.

76

The highly modular design, supported with the use of SOFA as a backbone for

AutoMan, the incorporation of the new and improved algorithms has been realized.

This is partially demonstrated by the development of the two rendering engines that

are supplied with this version of the project. These are two different rendering

algorithms and can easily switch in and out and can both run the same simulation

application.

Supplying a method to incorporate new algorithms, and providing a means of

distributing and these new advancements inherently encourages independent

research projects to work together. This community based structure has been used by

the open source community to achieve the same goal, collaboration between many

different developers. This is supported by the documentation framework which

should allow developers to quickly become proficient in the development of

simulations using AutoMan. The hard part is to get exposure and start building a user

base which unfortunately has not been achieved at this point. Ideally, as the

framework realizes new releases and the addition of new technologies, the exposure

will come and by extension the user base.

In an effort to expand the user base, AutoMan has been developed to encourage non

professional / academic development. Facilitating casual users to develop in the

framework provides a number of benefits. Getting people using the framework will

serve as the beta testing phase that was not performed for the release of AutoMan for

77

this thesis. Also, even though these casual users are not developing in a professional

manner, many will have great expertise in the area and will develop additional

modules and interfaces to other engines that are not currently supported.

To encourage the use of AutoMan by casual developers, the application module

defines an easy to use method of creating simple simulations. The use of the provided

helper tools such as the Visual Studio Project Wizard simplifies this process even

further. However the most important part of encouraging casual users is the

availability of thorough documentation. AutoMan does indeed provide a number of

basic tutorials and how-to's and also provides a method of contacting the developers

through a mailing list. At its current level, the documentation is enough to get people

started. The content of the tutorials needs expansion to further meet the needs of the

simulation developers.

AutoMan has met all of the grand goals it originally set out to achieve, meaning the

project a success despite the fact that there is still a long way to go before it is ready

for commercial use. Since there was not enough time to perform a full user testing

phase, this claim is of course unverified. However, this thesis has shown that the

framework has been designed and implemented to meet these goals. Verification will

come as this release is employed and user feedback can be received. This initial

release of AutoMan has provided the foundations that may lead to a de facto

78

framework for surgical simulation. Subsequent releases will further step towards this

end.

6.2 Future Work

There have been many hints to future advancements to the AutoMan framework

throughout the body of this thesis. This section will formalize and discuss possible

advancements that will require a more concerted effort to complete.

6.2.1 Virtualized Input Device Manager
Developing an easy to use method of defining input devices is a difficult task.

However, the ApplicationDeviceManager is ready to support the

implementation when it is completed. The idea here is that input devices can be

defined and included the same way that output devices can be defined and used via

the RenderingEngine interface.

With the large jump in the number of input devices developed for simulation

purposes, and the staggering number of custom built input devices, it is important this

interface is as general as possible.

In developing this manager, VR Juggler's Gadgeteer [8] project should be looked at.

This package may already meet most of the requirements. This would mean that it

need only be virtualized and wrapped to interface with the rest of the AutoMan

framework.

79

6.2.2 Event System

Something that would ease the development of full size simulations would be an event

system that would be supplied with AutoMan. This would allow the users to define

and add events to objects within the scene and have the framework handle the

processing instead of requiring them to develop it themselves.

Events could be based on time. For instance, a simulated surgery must be completed

within a specific time limit or the attempt should be considered a failure. Or at a

random time during the surgical simulation, a blood vessel bursts or something else

goes awry.

Another example is an event based on object interactions. Keeping with the example

of surgical simulation, an event could be thrown when a tool comes in contact with a

particular object, perhaps a scalpel piercing the wrong organ.

This sort of event system would be a great addition to the AutoMan's functionalities

and may alleviate a great deal of work for the simulation developer.

6.2.3 Multithreading

This is something that has already been seriously thought about and development

started. The framework has been designed to reduce the coupling between packages

which should allow the multithreading of the framework to be easy and beneficial.

80

Each of the three managers should have a dedicated thread that should continually

update regardless of the state of the other managers. The thread devoted to the

ApplicationDeviceManager would continually receive user input from devices

and make the required changes to the state of the system. Meanwhile the

RenderingManager thread could continually supply feedback of the simulation to

the user via the added rendering engines. The Simulat ionManager thread would

then continually update the state of the simulation based on the physical properties of

each model and any affects caused by user input.

This setup would mean that neither of the managers has to wait for another to finish

before they can do their required task. This should allow the simulation to realistically

simulate the scene whether or not the rendering engine can keep up. As mentioned

before, this would increase the realism and fidelity of the system since the physical

simulation would not slow down if there is a lag in the input handling or the rendering.

All in all, it should increase the fidelity of the simulation and improve performance if

the system running the application has multiple processors.

6.2.4 Rendering Engines

At the time of writing, there are only two non-trivial implementations of a

RenderingEngine: SofaQtRenderingEngine, and

VRJugglerRenderingEngine. This was enough to show the proof-of-concept,

but for the framework to be successful there should be a lot more provided. The

81

following sections explain some rendering engines that should be investigated and

developed.

6.2.4.1 Commercial Rendering Library

Although VR Juggler can be considered a commercial library, looking into developing a

rendering engine that is built on a high-end graphics rendering should be considered.

Something like Ogre3D [6] would provide higher quality rendering capabilities such as

dynamic shadows, the use of procedural shaders, and many algorithms that can

improve rendering performance [29], [30]. Ultimately this could greatly improve the

look of the simulations created in the framework.

6.2.4.2 Ray tracing

With the increase in the power and number of processors in common computer

systems, the use of ray-tracing in real time applications has become more and more a

viable option [31]. There are many benefits that come with ray-tracing over the

conventional rasterizing method of rendering. These include trivially simple

parallelization, correctness, occlusion culling [32], and direct computation of global

effects [33].

Since AutoMan has separated the scene geometry from the rendering, incorporating a

ray tracing rendering engine should be as simple as incorporating a new rasterizing

82

rendering engine like the others described here. Furthermore, open source libraries

like OpenRT [34] have begun to show up that would certainly aid in this endeavor.

6.2A.3 Non-graphical Rendering Engines

As was shown in previous chapters of this thesis, the rendering engine interface

supports rendering other than graphical. Some examples of this should be provided

with the framework. One such example would be an engine that provides auditory

feedback to the user. A rendering engine based on OpenAL [35], an open source audio

API, would be a welcome addition to the framework. Other examples include, haptic

feedback rendering for common devices such as the Phantom, and the output of

object positions to a physical robot.

6.2.5 Helper Tools

Along with the additions directly to the framework itself, the entire project would

greatly benefit from a couple of helper tools. A helper tool is a separate application

that aids the in the use of the AutoMan framework. These include tools like the VS

.Net Project Wizard. The following sections describe some other tools that would be

beneficial in aiding the users of AutoMan.

83

6.2.5.1 Scene File Creator / Editor

AutoMan supports the loading of SOFA scene (.sen) files. However, these files have to

be manually written. It would be nice to have a GUI that would allow the user to input

object models and place them in a scene.

The loaded models could then be scaled and oriented to the required position in the

scene space. The user should also be able to set the global scene parameters such as

gravity.

Once the scene has all of the objects positioned and oriented, the scene can be

exported to a file, ready for loading into the simulation application.

Having a file that contains all the information of the scene's initial conditions trivializes

the implementation of the createSceneQ method. In fact, the application built as the

case study for this thesis did just that. No actual coding would be required if users had

access to a scene file creator. This would open the use of the framework to users that

have zero programming expertise whatsoever.

6.2.5.2 RenderingEngine Creator

Although it is expected that the users creating new RenderingEngine

implementations will be advanced users, it would be nice to streamline the process. A

method of streamlining rendering engine development would need to be designed and

84

analyzed, but the benefits of this endeavor are obvious. The greater the variety of

modules that is available for use with AutoMan, the greater the chances of drawing in

more users. It is difficult to state what this tool would look like, but it would definitely

be beneficial to find an easier way to develop new RenderingEngine

implementations.

85

Bibliography

[1] Satava, R. M., "Accomplishments and challenges of surgical simulation." New York :

Surgical Endoscopy, 2001, Issue 3, Vol. 15.

[2] Montgomery, K., et al., "Spring: A General Framework for Collaborative Real-time

Surgical Simulation." Newport Beach, CA : Proceedings of Medicine Meets Virtual

Reality (MMVR02), 2002.

[3] Goktekin, Tolga G. and Cavusoglu, M. C., "GiPSi: An Open Source/Open Architecture

Software Development Framework for Surigcal Simulation." Newport Beach, CA :

Proceedings of Medicine Meets Virtual Reality MX (MMVR 2004), 2004.

[4] Tuchschmid, S., et al., "A Flexible Framework for Highly-Modular Surgical

Simulation Systems." Zurich, Switzerland : Proceedings of Biomedical Simulation: Third

International Symposium, ISBMS 2006, 2006.

[5] Allard, Jérémie, et al., "SOFA - an Open Source Framework for Medical Simulation."

Newport Beach, CA : Medicine Meets Virtual Reality (MMVR), 2007.

[6] , Ogre 3D: Open Source Graphics Engine. [Online] [Cited: May 2, 2008.]

www.ogre3d.org.

8 6

http://www.ogre3d.org

[7] Cotin, S. M., et al., "Collaborative Development of an Open Framework for Medical

Simulation." s .l.: 2005 MICCAI Open-Source Workshop, 2005.

[8] , VR Juggler—Open Source Virtual Reality Tools. [Online] [Cited: April 28, 2008.]

http://oldsite.vrjuggler.org/.

[9] Bruyns, Cynthia D. and Montgomery, Kevin., "Generalized Interactions Using Virtual

Tools within the Spring Framework: Cutting." Newport Beach, CA : Medicine Meets

Virtual Reality (MMVR02), 2001.

[10] Bruyns, Cynthia D. and Montgomery, Kevin., "Generalized Interactions Using

Virtual Tools within the Spring Framework: Probing, Piercing, Cauterizing, and

Ablating." Newport Beach, CA : Medicine Meets Virtual Reality (MMVR02), 2001.

[11] Valve Corporation., Source Engine. [Online] Valve Corporation. [Cited: May 2,

2008.] http://source.valvesoftware.com/.

[12] id Software., Technology Licensing: id Tech 4. [Online] id Software. [Cited: May 2,

2008.] http://www.idsoftware.com/business/idtech4/.

[13] Pressman, Roger S., Software Engineering: A Practitioner's Approach, Sixth Edition.

New York : McGraw-Hill, 2005. 0-07-285318-2.

[14] , Blender. [Online] [Cited: May 2, 2008.] http://www.blender.org/.

87

http://oldsite.vrjuggler.org/
http://source.valvesoftware.com/
http://www.idsoftware.com/business/idtech4/
http://www.blender.org/

[15] Sommerville, Ian., Software Engineering. New York, NY : Addison-Wesley, 2007.

[16] Krasner, Glenn E. and Pope, Stephen T., "A Cookbook for Using hte Model-View

Controller User Interface Paradigm in Smalltalk-80." Journal of Object-Oriented

Programming, Denville, N J : SIGS Publications, 1988, Issue 3, Vol. I.

[17] Smith, Russell., "Open Dynamics Engine v0.5 User Guide." Open Dynamics Engine.

[Online] February 23, 2006. [Cited: May 2, 2008.] http://www.ode.org/ode-latest-

userguide.pdf.

[18] , "VR Juggler: The Programmer's Guide." [Online] [Cited: May 2, 2008.]

http://developer.vrjuggler.Org/docs/vrjuggler/2.2/programmer.guide/programmer.gui

de.html.

[19] McGregor, Robert W., Practical C++. [World Wide Web] Indianapolis, Ind.: Safari

Books Online, 1999.

[20] Chan, Ben Chun Pong., CodeGuru: Delegate in Standard C++. CodeGuru. [Online]

Janurary 2002. [Cited: April 21, 2008.]

http://www.codeguru.com/cpp/cpp/cpp_mfc/article.php/c4119/.

[21] Cleeland, Chris, Schimdt, Douglas C. and Harrison, Timothy H., External

Polymorphism - An Object Structural Pattern for Transparently Extending C++ Concrete

Data Types. Department of Computer Science and Engineering. [Online] Washington

88

http://www.ode.org/ode-latest-userguide.pdf
http://www.ode.org/ode-latest-userguide.pdf
http://developer.vrjuggler.Org/docs/vrjuggler/2.2/programmer.guide/programmer.gui
http://www.codeguru.com/cpp/cpp/cpp_mfc/article.php/c4119/

University in St. Louis, October 22,1996. [Cited: April 21, 2008.]

http://www.cs.wustl.edu/~cleeland/papers/External-Polymorphism/External-

Polymorphism.html.

[22] Trolltech., Qt. [Online] Trolltech. [Cited: May 2, 2008.]

http://trolltech.com/products/qt.

[23] Paoli, S., C++ Coding Standard Specification. CERN Project Support Team. [Online]

CERN, Januray 5, 2000. [Cited: Aprii 21, 2008.]

http://pst.web.cern.ch/PST/HandBookWorkBook/Handbook/Programming/CodingSta

ndard/c++standard.pdf.

[24] , Doxygen Source code documentation generator tool. [Online] [Cited: May 2,

2008.] www.doxygen.org.

[25] Mader, Stewart., Wikipatterns. Indianapolis, IN : Wiley, 2008.

[26] Tohen, Cal and Gil, Joseph., "Better Construction with Factories." s.l. : Journal of

Object Technology, 2007, Issue 6, Voi. 6.

[27] Shalloway, Alan and Trott, James., Design Patterns Explained: A New Perspective

on Object-Oriented Design. Boston, Mass. : Addison-Wesley, 2001.

[28] Raymond, EricS., The Cathedral and The Bazaar (1st ed.). Beijing : O'Reilly, 1999.

89

http://www.cs.wustl.edu/~cleeland/papers/External-Polymorphism/External-
http://trolltech.com/products/qt
http://pst.web.cern.ch/PST/HandBookWorkBook/Handbook/Programming/CodingSta
http://www.doxygen.org

[29] Fernando, Randima., GPU Gems. Boston, MA : Addison-Wesley, 2004.

[30] Nguyen, Hubert., GPU Gems 3. Upper Saddle River, NJ : Addison-Wesley, 2008.

[31] Benthin, Carsten, et al., "Ray Tracing on the Cell Processor." s.l. : 2006 IEEE

Symposium on Interactive Ray Tracing, 2006.

[32] Wald, Ingo, et al., "Interactive Rendering with Coherent Ray Tracing." s.l. :

Computer Graphics Forum, 2001. Eurographics.

[33] Woop, Sven, Schmittler, Jorg and Slusallek, Philipp., "RPU: A Programmable Ray

Processing Unit for Realtime Ray Tracing." Los Angeles, CA : ACM Siggraph 2005, 2005.

[34] , OpenRT Real-Time Ray Tracing Project. [Online] [Cited: May 3, 2008.]

http://www.openrt.de/.

[35] OpenAL Cross-Platform 3D Audio. [Online] [Cited: May 3, 2008.]

http://www.openal.org/.

[36] Montgomery, Kevin, et al., "Project Hydra - A New Paradigm of Internet-Based

Surgical Simulation." Newport Beach, Ca : Medicine Meets Virtual Reality, 2006.

90

http://www.openrt.de/
http://www.openal.org/

Appendix A Software Requirements Specification

A Layered Framework for Surgical
____________ Simulation Development

Software Requirements Specification

Version 2.1

91

Revision History

D a te V ersion D escr ip tio n A u th o r
5 /26 /2 006 1.0 Initial Creation. Tim H ayes, Ryan W eiss
10 /4 /2007 1.1 U pdated Sections 1-3.1 Tim H ayes
4 /9 /2 0 08 2.0 Full docum ent overhaul. T im H ayes
4 /1 5 /2 00 8 2.1 U pdated Supporting Information Tim H ayes

92

A .l Introduction

This Software Requirement Specification document describes in detail the

requirements for a development framework for surgical simulators. This framework

will be designed and developed by current and future students of Dr. Rajni Patel of The

University of Western Ontario.

The framework will aide in the creation of surgical simulations for the purpose of

training. This includes the display and manipulation of basic 3D models and volumetric

based models. It will also handle soft tissue modeling and rigid body dynamics on the

displayed objects to achieve a greater sense of realism in the simulation. A number of

different interaction devices can be supported via a generic I/O interface. This will

facilitate the use of tracking sensors, wands, gloves, haptic devices and even custom

built devices.

A.1.1 Purpose

The SRS is designed to fully and unambiguously describe the development framework

for surgical simulators - its features, its operating environment and its functional

performance. For developers, technical readers, or anyone who requires detail,

Section 3 of this document will list all functional and non-functional requirements

along with a description for each. For those readers that do not require such detail,

Section 2 outlines the main functionality providing a more immediate overview of this

framework.

93

This document details the requirements for a development framework for surgical

simulators. It outlines all of the functional requirements of the system as well as the

non functional requirements. This document does not perform any analysis nor

provide any design for the system. The details contained within this document should

be used in the design of the system, but are not discussed here. This document should

be referenced at the end of the development cycle to compare the finished project

with the pre-design requirements. This should ensure that the final project is

completed as originally planned and discussed before the start of the design and

development phases.

A.1.3 References

1. Montgomery, K., Bruyns, C , Brown, J., Sorkin, S., Mazzella, F., Thonier, G.,

Tellier, A., Lerman, B., Menon, A.: Spring: A General Framework for

Collaborative, Real-time Surgical Simulation, In: Westwood, J., et. al. (eds.):

Medicine Meets Virtual Reality, IOS Press, Amsterdam, (2002).

2. R. M. Satava. "Accomplishments and challenges of surgical simulation", Surgical

Endoscopy, vol. 15, no. 3: 232-241, Springer New York, March 2001

3. Cotin, Stephen; Delingette, Hervé; Ayache, Nicholas. "Real-Time Elastic

Deformations of Soft Tissues for Surgical Simulations." IEEE Transactions on

A.1.2 Scope

94

V isu a liza tio n a n d C o m p u te r G ra p h ics , vol. 5 , no. 1, March 1999: 62-73. IEEE

Xplore. 25 May 2006.

<http://ieeexplore.ieee.org/xpl/abs free.isp?arNumber=764872>

4. Vuskovic, V; Kauer, M.; Szekely, G; Reidy M. "Realistic force feedback for virtual

reality based diagnostic surgery simulators." IEEE International Conference on

Robotics and Automation, 2000, vol 2 : 1592-1598. IEEE Xplore. 25 May 2006.

<http://ieeexplore.ieee.org/xpl/abs free.isp?arNumber=844824>

A. 1.4 Overview

This report contains the following sections:

1. Introduction: Provides a brief overview of the project and discusses the purpose and

scope of this document.

2. Overall Description: Describes in general the requirements of the project. This

includes the perspective, main functionality, and constraints.

3. Specific Requirements: Contains specific details on each requirement to a level

sufficient enough to produce a complete design of the system. Each feature presented

here should be found in the finished project.

4. Supporting Information: Includes information to help the reader further understand

the project detailed in this document.

95

http://ieeexplore.ieee.org/xpl/abs_free.isp?arNumber=764872
http://ieeexplore.ieee.org/xpl/abs_free.isp?arNumber=844824

A.2 Overall Description

This section describes the general requirements of the project. This includes the

perspective, main functionality, and constraints. Further description of the features

presented here can be found in Section 3 of this document.

A.2.1 Product Perspective

The benefits of a computer-based surgical simulators are numerous and significant.

For example, computer-based surgical simulators easily widen the training curriculum

by facilitating anatomical variations (gender, size), pathologies (diseases, trauma), and

operating environment conditions (emergency room, microgravity, battlefield)[l].

Furthermore, they provide the ability of objectively quantify the performance of a

surgeon's skills[2] and a simulation can be repeated indefinitely without the cost of

purchasing cadavers or animals for training. The benefits are undeniable; the problem

is that surgical simulations are difficult and costly to produce.

The framework described in this document will provide a platform from which

powerful simulation applications can be developed quickly and easily in a relatively

short amount of time. This reduces development cost and will encourage

organizations to undertake the development of surgical simulations for training. The

use of this framework will allow the developers to focus more on content than worry

about the technical difficulties.

96

A.2.2 Product Functions

This section presents a list of functions that the framework will perform. Details on

each feature will be discussed in Section 3.

• Load model geometry.

o Load common file formats,

o Load files for each model representation,

o Load scene file.

• Represent a Model.

o Handle multiple representations: visual, collision, and behavioral,

o Specify type of model: Ambient, Rigid, Deformable, etc

o Specify type of representations: FEM, Mass-Spring, etc.

• Simulate realistic physics and object interactions.

o Environment physics and Newtonian Mechanics,

o Object-object collision detection and response,

o Object deformation from acting force.

• Render scene

o Specify methods of rendering the scene: visual, auditory, haptic, etc.

o Ability to define new methods of rendering.

■ Supply at least one implementation.

• Manipulate scene

97

o Ability to use input devices to manipulate the scene.

A.2.3 User Characteristics

The primary users of the framework are software developers that should have a good

understanding of the C++ programming language, and have some background in

developing for real-time, graphical applications. It can also be assumed that the user

has either been trained, or has is being guided by someone who knows how the

surgery being simulated is to be performed. Ideally this would be a trained surgeon

who has a lot of expertise in the specific surgery being simulated, and a basic

knowledge of computer programming. These users will be deploying the framework

to build specific applications to be used for surgical purposes.

A second set of users, although not specifically the prime target of the project should

be addressed. These users are developers who enjoy working with new technology,

specifically the cutting edge of computer graphics and simulation. It is expected that

they are well versed in the C++ programming language and have a great understanding

of real-time computer graphics. It can be assumed that they have a basic knowledge

of Newtonian mechanics and the physics of rigid bodies; however it cannot be

assumed that they have a good understanding of the physics of deformable models

and fluids. These users may be using the framework for purposes not specifically

surgical in nature.

98

A.2.4 Constraints

To aid the users of this framework, a comprehensive API and tutorials will be supplied.

This will include the programming interfaces, UML documentation, and coded

examples. Verbose commenting of all code, especially the example applications,

should be incorporated to aid the developer understand the feature's structure and

function.

To also aid in this respect, the framework should use generic, common interfaces to

the framework. Common coding standards and practices add as sense of which will

round out the learning curve thus reducing overall development time.

The framework should have an easy method upgrading and expanding. Should

developers want to add features to the framework, a simple, easy method should be

provided along with a method of distributing the addition to the other users of the

framework.

A.3 Specific Requirements

This section contains specific details on each requirement to a level sufficient enough

to produce a complete design of the system. Each feature presented here should be

found in the finished project.

99

This section describes the main features of the system. Refer to Section 4.1.2 - Use

Case Diagram for supplementary information on the behavior described here.

A.3.1.1 Load geometry

Purpose: For visualization of simulation objects.

Input: The model file, with position and orientation in the virtual world.

Output: The model will be loaded for use later in the simulation

Exceptions: Invalid file formats or corrupt data will result in a failure to load the

data and a notification displayed to the user.

A.3.1.2 Load common file formats

Purpose: Allows users to define models in common CAD packages and then

import them into the simulation.

Input: The model file.

Output: The model will be loaded for use in the simulation

Exceptions: Invalid file formats or corrupt data will result in a failure to load the

data and a notification displayed to the user.

A.3.1 Functionality

1 0 0

A.3.1.1 Load files for each model representation

Purpose: Allows users to specify different models for each representation. For

example, high poly version for rendering, low poly for collision, etc.

Input: A model file for each representation.

Output: The specified model will be loaded for use as its respective model

representation.

Exceptions: Invalid file formats or corrupt data will result in a failure to load the

data and a notification displayed to the user.

A.3.1.2 Load a scene file

Purpose: Allows the user to specify one file that defines the entire scene

instead of manually loading and placing all the objects within the scene.

Input: A scene file.

Output: The specified scene will be loaded for use in the simulation.

Exceptions: Invalid file formats or corrupt data will result in a failure to load the

data and a notification displayed to the user.

1 0 1

A.3.1.3 Represent a Model

Purpose: The system needs to understand that the loaded geometry defines a

simulation object with physical properties.

Input: Object geometry and physical properties.

Output: None.

Exceptions: None.

A.3.1.4 Handle multiple representations

Purpose: To help reduce unnecessary calculations and increase the

performance of the application.

Input: The user specifies different representations of the same model to be

used for determining collision detection and response, physical

behavior, and visual representation.

Output: The model will be represented using the visual model, but collision

calculations will be processed on the collision model and physical

behavior calculations will be performed on the physical representation.

1 0 2

Exceptions: If only the visual representation is specified, the bounding box will

be used in collision calculations and the specified visual representation

will be used for both visualization and physical behavior.

A.3.1.5 Specify type of model

Purpose: Allows users to define simulation objects as Ambient, Static, Rigid,

and Deformable.

Input: Specified by the object constructor used.

Output:

• Ambient - purely visual, does not affect the simulation
• Static - affects the simulation but does not move
• Rigid - affects the simulation and moves but does not deform
• Deformable - affects the simulation, moves and is deformed due to

applied forces

Exceptions: None.

A.3.1.6 Specify type of representations

Purpose: To allow more freedom in model definition. Certain objects will react

as roughly expected using a mass-spring system, where others may

require an FEM model representation.

Input: Determined via a class access method call.

103

Exceptions: None.

A.3.1.7 Simulate realistic physics and object interactions

Purpose: To improve the realism of the simulation.

Input: The scene's initial condition and physical properties must be loaded

before the simulation begins. Then the simulation must be started.

Output: The system will constantly calculate the current world condition (ie:

object placement, shape, etc.) and update the visualization device as

necessary.

Exceptions: None.

A.3.1.8 Simulate environment physics and Newtonian mechanics

Purpose: To improve the realism of the simulation.

Input: The scene's initial condition and physical properties must be loaded

before the simulation begins. This includes the gravitational force and

Output: The model will be simulated using the specified system.

other worldly forces.

Output: The system will calculate the current simulation condition (ie: object

placement, shape, etc.) based on the defined forces and update the

visualization device as necessary.

Exceptions: None.

A.3.1.9 Simulate Object-Object collisions

Purpose: To improve the realism of the simulation.

Input: The scene's initial condition and physical properties of each model must

be loaded before the simulation begins. Then two objects need to

move and collide.

Output: The system will calculate the response to the collision and update the

state of simulation (ie: object placement, shape, etc.) and update the

visualization device as necessary.

Exceptions: None.

A.3.1.10 Simulate Object deformation

Purpose: To improve the realism of the simulation.

Input: The scene's initial condition and physical properties of each model must

be loaded before the simulation begins. Then a force needs to be

105

applied to a deformable model, this could be gravity or a collision with

another object, etc.

Output: The system will calculate the response of the force on the deformable

model's surface and update the visual representation.

Exceptions: None.

A.3.1.11 Render the scene

Purpose: Gives feedback of the simulation state to the user.

Input: The state of the simulation's scene.

Output: The simulation state will be rendered to a device.

Exceptions: None.

A.3.1.12 Specify rendering method

Purpose: Allows user to specify what feedback they wish to receive about the

simulation state.

Input: The state of the simulation's scene and a type of feedback they wish to

receive. This may include visual feedback to a monitor display, or

auditory feedback to speakers.

106

Output: The simulation state will be rendered in the specified manner.

Exceptions: None.

A.3.1.13 Define new rendering method

Purpose: Allows user to define new methods of receiving feedback from the

system.

Input: An implementation of the new rendering method.

Output: The simulation state will be rendered in the specified manner.

Exceptions: None.

A.3.1.14 Manipulate the scene

Purpose: Allows the user to use input devices to manipulate the scene.

Input: The user must perform an action on an input device that has been

mapped to an action in the simulation.

Output: The mapped simulation action will be performed.

Exceptions: None.

107

A . 3.2 Q u ality o f Service
A.3.2.1 Usability

A comprehensive API and tutorials should be supplied. This should include the

programming interfaces, UML documentation, and coded examples. Verbose

commenting of all code, especially the example applications, will be incorporated to

aid the developer understand the feature's structure and function.

The code will use generic, common interfaces to the framework. Common coding

standards and practices should round out the learning curve thus reducing overall

development time.

A.3.2.2 Scalability / Extensibility

The project should have an easy method upgrading and expanding. This increases

both the scalability and extensibility of the framework. Supplementary to this, a

method of distributing any addition to the other users of the framework should also be

provided. These interfaces should be well documented to encourage users to develop

the additional modules.

108

A.3.2.3 Performance

There are a lot of factors that affect the performance of a simulation. However, the

two main factors are the computational power of the system running the application,

and the complexity of the simulation.

A.3.2.4 Computational Power

Computational power of the system is not something that can be addressed in

software, but it is something that requires thought during the design of the

framework. Simulations developed in the framework, should be able to run the

sample applications at a real time frame rate on most workstation-grade computers

with a moderate to high end GPU. The performance may be enhanced by running the

simulation on more powerful hardware.

A.3.2.5 Complexity of the simulation

To help reduce the complexity of calculations in the simulation, the user must be

allowed to define a lower quality model for use in the collision detection and response

algorithms. These algorithms with a high degree of computations really hinder the

performance of a simulation. Allowing them to be run against simplified versions of

the object models, reduces the computations required and ultimately increases the

performance of the system.

109

A.3.2.6 Accessibility

A web site devoted to the framework should be created. It will link to downloads the

software binaries for immediate use, as well as code samples, tutorials, and API

documentation.

Also, the site should provide a method for users to download the source code of the

framework allowing them to directly modify the core of the framework. This is how

the advanced users can make modifications and upgrades and allows the framework

to be scalable and extensible.

A.3.3 Design Constraints
A.3.3.1 Hardware Limitations

The framework's performance will be limited to the hardware specifications of the

users' computer, depending on the processor speed, video rendering capabilities, and

the amount of ram installed.

A.3.3.2 Software Language

The framework will be implemented in C++ and compiled using the Visual Studio .Net

2005 C++ compiler.

1 1 0

A.3.3.3 Software Process Requirement

The software process for this software will be based on the incremental model.

However, the framework should be designed as a whole to ensure that the modules

therein work together efficiently. The implementation of the software will be more

incremental, adding features and then testing before the next feature is implemented.

A.3.4 On-line User Documentation and Help System Requirements

The framework will provide a web site that offers documentation and tutorials. This

includes the source code API.

Included with the tutorials should be a User Guide that walks new users through the

installation and setup of the software. Also, a General Programmer Guide should be

provided to help users with the general setup and running of applications built using

the framework. Aside from that, there should be a method for users to distribute their

own tutorials on development specifics.

A.3.5 Purchased Components

Development of the framework includes the use of various applications, all of which

would be installed on Windows XP based PCs. Visual Studio 2005 will be used for the

coding and compiling of the software. Visio 2005 will be used to develop UML

diagrams to design the structure of the software. Visual Studio 2005 will allow the

1 1 1

software to be developed and complied under the same IDE. Additional software that

will be used includes Office 2007 and Dreamweaver for documentation.

A.3.6 Legal, Copyright, and Other Notices

A.3.6.1 License

The project is to be released under the Lesser Gnu Public License. For a full description

of the license, please refer to section 4.2 LGPL.

A.3.6.2 Disclaimer of Warranties

Yet to be discussed.

A.3.6.3 Logo

Yet to be discussed.

A.3.6.4 Restrictions on Use

Refer to the 4.2 LGPL.

1 1 2

A.4 Supporting Information
A.4.1 Supporting Diagrams
A.4.1.1 Package Diagram

113

A.4.1.2 Use Case Diagram

A.4.2 GNU LGPLGNU LESSER GENERAL PUBLIC LICENSE Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates the terms and conditions of version 3 of the GNU General Public

114

http://fsf.org/

License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser General Public License, and the "GNU GPL" refers to version 3 of the GNU General Public License.
"The Library" refers to a covered work governed by this License, other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided by the Library, but which is not otherwise based on the Library.Defining a subclass of a class defined by the Library is deemed a mode of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an Application with the Library. The particular version of the Library with which the Combined Work was made is also called the "Linked Version".
The "Minimal Corresponding Source" for a Combined Work means the Corresponding Source for the Combined Work, excluding any source code

115

for portions of the Combined Work that, considered in isolation, are based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the object code and/or source code for the Application, including any data and utility programs needed for reproducing the Combined Work from the Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a facility refers to a function or data to be supplied by an Application that uses the facility (other than as an argument passed when the facility is invoked], then you may convey a copy of the modified version:
a] under this License, provided that you make a good faith effort toensure that, in the event an Application does not supply the

116

function or data, the facility still operates, and performs whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from a header file that is part of the Library. You may convey such object code under terms of your choice, provided that, if the incorporated material is not limited to numerical parameters, data structure layouts and accessors, or small macros, inline functions and templates (ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the Library is used in it and that the Library and its use are covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license document.

4. Combined Works.
117

You may convey a Combined Work under terms of your choice that, taken together, effectively do not restrict modification of the portions of the Library contained in the Combined Work and reverse engineering for debugging such modifications, if you also do each of the following:
a) Give prominent notice with each copy of the Combined Work that the Library is used in it and that the Library and its use are covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license document.
c) For a Combined Work that displays copyright notices during execution, include the copyright notice for the Library among these notices, as well as a reference directing the user to the copies of the GNU GPL and this license document
d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this License, and the Corresponding Application Code in a form
118

suitable for, and under terms that permit, the user to recombine or relink the Application with a modified version of the Linked Version to produce a modified Combined Work, in the manner specified by section 6 of the GNU GPL for conveying Corresponding Source.
1) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is one that (a) uses at run time a copy of the Library already present on the user's computer system, and (b) will operate properly with a modified version of the Library that is interface-compatible with the Linked Version.

e] Provide Installation Information, but only if you would otherwise be required to provide such information under section 6 of the GNU GPL, and only to the extent that such information is necessary to install and execute a modified version of the Combined Work produced by recombining or relinking the Application with a modified version of the Linked Version. (If you use option 4d0, the Installation Information must accompany the Minimal Corresponding Source and Corresponding Application Code. If you use option 4dl, you must provide the Installation Information in the manner specified by section 6 of the GNU GPL
119

for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the Library side by side in a single library together with other library facilities that are not Applications and are not covered by this License, and convey such a combined library under terms of your choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based on the Library, uncombined with any other library facilities, conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it is a work based on the Library, and explaining where to find the accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions of the GNU Lesser General Public License from time to time. Such new versions will be similar in spirit to the present version, but may

120

differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library as you received it specifies that a certain numbered version of the GNU Lesser General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that published version or of any later version published by the Free Software Foundation. If the Library as you received it does not specify a version number of the GNU Lesser General Public License, you may choose any version of the GNU Lesser General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide whether future versions of the GNU Lesser General Public License shall apply, that proxy's public statement of acceptance of any version is permanent authorization for you to choose that version for the Library.

121

122

Appendix B C++ Coding Standards Document

C++ Coding Standard
AutoMan Framework

Department of Electrical and Computer Engineering

The University of Western Ontario

London, Ontario, Canada

© Timothy Hayes 2007

123

Revision History
D a te V ersion D escrip tio n A u th o r

10/1/2008 1.0 Initial Creation T. H ayes

124

B .l Introduction

This chapter describes purpose of this document and briefly examines the importance

of coding standards. Then the intended audience is described, followed by a list of

references. The chapter ends with an overview of the contents of this document.

B.1.1 Pu rpose

This document is intended to define a C++ coding standard to be followed during the

development and maintenance of C++ applications. Standards such as the ones

defined in the following sections aid in allowing the application's code to:

• Have a consistent style throughout the environment.

• Be easy to read and understand for new developers.

• Be maintainable by other developers [1].

All hand written code should follow the guidelines defined in this document. However,

computer generated code is exempt from these guidelines as it was likely generated

under a different set of standards.

If this document does not implicitly state a convention, the developer is free to user

his or her own discretion.

B.1.2 Inten d ed A u d ien ce

This document is specifically intended for current and future developers involved in

the creation of AutoMan, from The University of Western Ontario (UWO) Department

125

of Electrical and Computer Engineering and Canadian Surgical Technologies and

Advanced Robotics (CSTAR).

B .1 .3 R eferences

1. http://pst.web.cern.ch/PST/HandBookWorkBook/Handbook/Programming/Co
dingStandard/c++standard.pdf

2. http://www.cs.northwestern.edu/academics/courses/311/html/coding-
std.html#NameSensible

3. http://www.possibility.eom/Cpp/CppCodingStandard.html#cuh

4. http://www.infospheres.caltech.edu/resources/code_standards/java_standard
.html

5. http://geosoft.no/development/cppstyle.html

B .1 .4 Organization o f this D ocu m ent

This document is organized in the following manner:

1. Introduction - this section

2. Naming - description of naming conventions

3. Documentation - description of documentation convention

4. Indenting and Spacing - description of indenting and spacing conventions

5. Code Examples - examples of code that follows the described conventions

B.2 Naming

This chapter describes the conventions that should be used for naming files and items

within the code.

126

http://pst.web.cern.ch/PST/HandBookWorkBook/Handbook/Programming/Co
http://www.cs.northwestern.edu/academics/courses/311/html/coding-std.html%23NameSensible
http://www.cs.northwestern.edu/academics/courses/311/html/coding-std.html%23NameSensible
http://www.possibility.eom/Cpp/CppCodingStandard.html%23cuh
http://www.infospheres.caltech.edu/resources/code_standards/java_standard
http://geosoft.no/development/cppstyle.html

The following are some guidelines that should considered when naming any element.

This includes the naming of files, classes, methods and variables.

• Use pronounceable English names.

• The name should be descriptive of the element it represents.

• Abbreviations should be avoided except when widely accepted [1].

B.2.2 Fite N am es

Header files should be named after the name of the class it defines appended with

".h". If more than one class is defined within the same header files, it should be

named after the root of the class inheritance tree or the most prominent class defined

therein.

Implementation files should follow the same pattern as the header files except with

".cpp" appended instead.

B .2 .3 Class N am es

Class names should be first letter capitalized and should describe the function of the

class it represents.

If the class is within the framework, the name should be prefixed with the name of the

package it is in.

Examples: RenderingFrameListener, SimulationObject.

B.2.1 Naming Guidelines

127

B.2.4 Method Names

Methods should be lower-case and logical. If the name Is more than one word,

concatenate all the words and capitalize the first letter of every word excluding the

first.

Examples: start (), attachFrameListener (), createScene ().

B .2 .5 Variable N am es

Variable name should be all lower case. If the name is more than one work, each word

should be separated with an underscore,

Member variables should also be prefixed with an underscore,

If the variable has a very small scope, such as within a single method or a loop then it is

not required to follow these conventions.

Examples: mouse_evt, _f rame_listeners, _sim_mgr.

B.3 Formatting the Code
B.3.1 Tabs a n d Lin es o f Code

Every line of code should start with one tab for every nested block that the line is

within. This makes the blocks more noticeable and easier to read.

No line should exceed 80 characters in length. This should avoid the need to side scroll

on most IDE environments on most screen resolutions.

128

B.3.2 Braces

Follow all control primitives (if, else, while, for, do, switch, and case) with a block

unless the contents is one instruction and can fit on the same line as the primitive.

Examples:

while (condition)
{ Statement ;

Statement ;
}

if (condition) Statement; // This is acceptable,
if (condition)

Statement; // This is NOT acceptable.
B.4 Documentation

All comments should follow the DOxygen standard for documenting the code, found at

http://www.stack.nl/~dimitri/doxvgen/docblocks.html. This will make it easy to keep

the API up to date.

B.5 Coded Examples

The following are the header and implementation file for the Application Class. This is

shown as an example of correctly standardized code.

129

http://www.stack.nl/~dimitri/doxvgen/docblocks.html

B.5.1 A p plication.li

#ifndef APPLICATION_H__
♦define _APPLICATION^__
♦include <exception>
♦include "application/ApplicationDeviceManager.h"
♦include "rendering/RenderingManager.h"
♦include "simulation/SimulationManager.h"
/** \brief App Object.

*
* This class defines an application. User applications should
* extend this class and implement the virutal methods defined
* here.
*/

class Application
{
public:
/** \brief Constructor.

*
* Default Constructor.
*/

Application();
/** \brief Deconstructor.

★
* Default Deconstructor.
*/

~Application();
/** \brief Starts the application.

*

* This starts the initialisation, setup, and execution of
* the application.
*/

void startAppO;
/** \brief Gets the Rendering Manager.

*
* Returns a pointer to the application's rendering manager.
* ©return a pointer to the rendering manager.
*/

inline RenderingManager * getRenderingManager()
{ return _rendering_mgr; };

/** \brief Gets the Simulation Manager.
*
* Returns a pointer to the application's simulation manager.
* ©return a pointer to the simulation manager.
*/

inline SimulationManager * getSimulationManager()
{ return _sim_mgr; };

/** \brief Gets the Device Manager.
*

* Returns a pointer to the application's device manager.

130

* @return a pointer to the device manager.
*/

inline ApplicationDeviceManager * getDeviceManager()
{ return _dev_mgr; };

protected:
/** \brief The main execution loop.

★

* This is the main execution loop.
*/

void mainLoop();
/** \brief Initialises the managers.

★

* This method initialises the managers by calling each respective
* initialise method.
* Sreturn True if initialisation was successful.
*/

virtual bool initialise ();
/** \brief Constructs the scene to be rendered.

*
* This method constructs the scene to be rendered. It should be
* overridden by the user application. A default scene is defined here.
*/

virtual void constructScene();
/** \brief Destroys the created scene.

■k

* This method destroys the scene. It should be overridden by the user
* application.
*/

virtual void destroyScene();
/** \brief Constructs the Rendering Manager.

*
* Constructs the Rendering Manger. It needs to be implemented in the user
* application. This is a puerly virtual function.
*/

virtual void constructRenderingManager() = 0;
/** \brief Constructs the Application Manager.

*
* Constructs the Application Manger. It needs to be implemented in the user
* application. This is a puerly virtual function.
*/

virtual void constructDeviceManager() = 0;
/** \brief Constructs the Simulation Manager.

*

. * Constructs the Simulation Manger. It needs to be implemented in the user
* application. This is a puerly virtual function.
*/

virtual void constructSimulationManager() = 0;
/** \brief Method for any user application specific setup.

★
* Method for any user application specific setup. It needs to be implemented
* in the user application. This is a puerly virtual function.
*/

virtual void setup() = 0;

RenderingManager * _rendering_mgr;
/**< Pointer to the rendering manager. */

131

ApplicationDeviceManager * _dev_mgr;
/**< Pointer to the device manager. */

SimulationManager * _sim_mgr;
/**< Pointer to the simulation manager. */

#ifdef MULTITHREADED
ApplicationThread<SimulationManager> * _sim_thread;
ApplicationThread<ApplicationDeviceManager> * _dev_thread

tendif
} ;

#endif // APPLICATION H

132

♦include "Application.h"
Application::Application()
{ };

Application::'Application()
U;
bool Application::initialise()
{

//initialise the world manager
if(!_sim_mgr->initialise()) return false;
// initialise the rendering engine
if(!_rendering_mgr->initialise()) return false;
// initialise the application manager
if(!_dev_mgr->initialise()) return false;
//any other initialisation
return true;

};

B.5.2 Application.cpp

void Application::constructScene()
{};

void Application::startApp()
{

constructSimulationManager();
_root = _sim_mgr->getSimulationRoot();
constructRenderingManager();
constructDeviceManager();
constructScene() ;
if(!initialise()) throw new std:: exception() ;
setup ();

♦ifndef MULTITHREADED
_rendering_mgr->start();

♦ else
_sim_thread = new ApplicationThread<SimulationManager>(_

&SimulationManager: : start);
_app_thread = new ApplicationThread<ApplicationManager>(

&ApplicationManager: : start);
_sim_thread->start ();
_app_thread->start();
_rendering_mgr->start();

♦endif

sim_mgr,
_app_mgr,

133

destroyScene();
} ;

void Application::mainLoop()
{

bool finished = false;
while(!finished)
{

//finished = _app_mgr->update()
//_rendering_mgr->update();
//_rendering_mgr->start();

}
} ;

void Application:¡destroyScene()
{
} ;

134

Appendix C Test Plan Document

Test Plan
AutoMan Framework

Department of Electrical and Computer Engineering

The University of Western Ontario

London, Ontario, Canada

© Timothy Hayes 2007

Revision History

135

D a te V ersion D escrip tio n A u th o r
10/1 /2008 1.0 Initial Creation T. H ayes

136

C .l Introduction

This document is intended to define a test plan for the quality assurance of the

AutoMan project.

C.1.1 Su pporting D ocum ents

The following table lists documents that are required reading before reviewing this

test plan. These documents provide much information such as the project scope,

background, and operation instructions.

Title Description Filename

C++ Coding
Standards

Describes the coding
standards to be used during
development.

AutoMan_CodingStandards

Software
Requirement
Specification

Details all requirements of
the project.

AutoMan_SRS_v##

Installation
Guide

Describes the software's
installation process.

AutoManJnstallGuide

Getting Started
Guide

Walks through the
development of a simple
application in AutoMan

AutoMan_GettingStartedGuide

Project Wizard
User Guide

Describes the installation and
use of the AutoMan
Simulation Application
Project Wizard.

AutoManProjectWizard_UserGuide

137

C.2 Test Approach

Considering this project does not have the resources for a full thorough testing phase,

only rough overall black box testing will be performed.

The items to be tested along with the specific cases are defined in subsequent sections

of this document. These test cases should be performed internally by the developer.

The results of each test case should be tabulated into a Test Report.

C.3 Test Items

The following is a list of the modules and programs to be tested. The individual

features that need to be tested within each will be addressed in subsequent sections.

• Installation Process

• VS .Net Project Wizard

• AutoMan-Application Module

• AutoMan - Rendering Module

• AutoM an-Simulation Module

• Website

C.4 Features to be Tested

This section details the specific features of each module / program that need to be

tested. A set of tests should be devised for each feature listed here.

138

C.4.1 Installation P rocess

C.4.1.1 Installation Guide

Objective: Explain the proper installation procedure for AutoMan.

Prereauisites: A copy of the AutoMan Installation Guide document.

Test Process: Follow steps as stated in Install Guide

Acceptance Criteria: The system should have a valid installation of AutoMan.

C.4.2 VS .N et P roject W izard
C.4.2.1 Installation Guide

Objective: Explain the proper installation procedure for the Visual Studio
Project Wizard

Prereauisites: A copy of the AutoMan Project Wizard User Guide document.

Test Case C.4.1.1 passed.

Test Process: Follow steps for installation as stated in the guide.

Acceptance Criteria: The system should have a valid installation of the project
wizard. This implies they should be able to select an 'AutoMan
Simulation Project' from the list of project templates when they
create a new project in Visual Studio 2005.

C.4.2.2 Generates project

Objective: A Visual Studio 2005 project should be created.

Prereauisites: Test Case C.4.2.1 passed.

Test Process: Run the project wizard.

Input "TFlayes" as the author's name.

Input "TestClass" as the class name.

Press the finish button.

139

Acceptance Criteria: Visual Studio Project should be created.

TestCase.h header file should be present.

TestCase.cpp file should be present.

Project should compile successfully.

C.4.2.3 FrameListener included [/ not included]

Objective: Generated class should [/ should not] extend
RenderingEngineFrameListener.

Prerequisites: Test Case C.4.2.2 passed

Test Process: Run the project wizard.

Input "THayes" as the author's name.

Input "TestClass" as the class name.

Select [/ Deselect] "Include FrameListner" checkbox.

Press the finish button.

Acceptance Criteria: Visual Studio Project should be created.

RenderingEngineFrameListener header should [/should not] be
included.

TestCass class should [/ should not] extend
RenderingEngineFrameListener

Project should compile successfully.

C.4.2.4 VRJugglerRenderingEngine correctly included [/ not included]

Objective: Generated class should [/ should not] use the
VRJugglerRenderingEngine

Prerequisites: Test Case C.4.2.2 passed.

140

Test Process: Run the project wizard.

Input "THayes" as the author's name.

Input "TestClass" as the class name.

Select [/ Deselect] "VRJugglerRenderlngEngine" radio option.

Press the finish button.

Acceptance Criteria: Visual Studio Project should be created.

VRJugglerRenderingEngine header should [/ should not] be
included.

TestCass::constructRenderingManager() method should [/
should not] create an instance of VRJugglerRenderingEngine
and attach it to the RenderingManager

Project should compile successfully.

C.4.2.5 SofaQtRenderingEngine correctly included [/ not included]

Objective: Generated class should [/ should not] use the
SofaQtRenderingEngine

Prerequisites: Test Case C.4.2.2 passed.

Test Process: Run the project wizard.

Input "THayes" as the author's name.

Input "TestClass" as the class name.

Select [/ Deselect] "SofaQtRenderingEngine" radio option.

Press the finish button.

Acceptance Criteria: Visual Studio Project should be created.

SofaQtRenderingEngine header should [/should not] be
included.

TestCass::constructRenderingManager() method should [/
should not] create an instance of SofaQtRenderingEngine and
attach it to the RenderingManager

Project should compile successfully.

141

C.4.3 Au toM an - A p p lica tion M odule

C.4.3.1 Initialize and start the simulation

Objective: Should initialize and start the simulation.

Prereauisites: Test Case C.4.2.2 passed.

Test Process: Create a project using the project wizard.

In the createScenef) method, create add the following line,

sim mgr->loadSceneFile("collisionTriangle.scn");
Compile and run the simulation.

Acceptance Criteria: The simulation should start running.

C.4.4 Au toM an - R en dering M odu le

C.4.4.1 Attach a RenderingEngine to the RenderingManager

Objective: Should be allowed to specify which RenderingEngine is to
be used.

Prereauisites: Test Case C.4.2.2 passed.

Test Process: Create a project using the project wizard.

In the createRenderingManager() method, create a
VRJugglerRenderingEngine.
Call the RenderingManager addEngineQ method and
specify the created RenderingEngine as the argument.

Compile and run the simulation.

Acceptance Criteria: A VRJuggler window should appear and render the scene.

C.4.4.2 Handle multiple RenderingEngines

Objective: Should be allowed to specify multiple RenderingEngine's
that are to be used.

142

Prerequisites: Test Case C.4.4.1 passed.

Test Process: Create a project using the project wizard.

In the createRenderingManagerQ method, create a
VRJugglerRenderingEngine.
Call the RenderingManager addEngineQ method and
specify the created RenderingEngine as the argument.

Also in createSceneQ, create a DummyRenderingEngine.
Add this engine to the RenderingManager using the
addEngineQ method.

Compile and run the simulation.

Acceptance Criteria: A VRJuggler window should appear and render the scene.

The console should print "Dummy Rendering Engine - update
method called."

C.4.4.3 RenderingEngineFrameListener makes callbacks

Objective: RenderingEngine should inform attached frame listener
when it is about to start rendering a frame and when it has
finished rendering a frame.

Prerequisites: Test Case C.4.4.1 passed.

143

Test Process: Create a project using the project wizard selecting to include a
frame listener.

In the createRenderingManager() method, create a
VRJugglerRenderingEngine.

Call the attachFrameUstenerQ method of the
RenderingEngine and specify this as the parameter.

Call the RenderingManager addEngineQ method and
specify the created RenderingEngine as the argument.

Create a member variable, frame count in the test
application class and initialize it to 0 in the constructor.

In the frameStartedQ method, add the line,

std::cout « "Frame number " « frame counter « " started..." « std::endl;
In theframeEndedQ method, add the line,

std::cout « "Frame number " « frame counter++ « " ended." « std::endl;

Acceptance Criteria:

Compile and run the simulation.

Output to the console should be look like this,

Frame number 0 started...
Frame number 0 ended.
Frame number 1 started...
Frame number 1 ended.
Frame number 2 started...
Frame number 2 ended.

C.4.4.4 Handle multiple RenderingEngineFrameListeners

Objective: RenderingEngine should accept and handle multiple
listeners.

Prerequisites: Test Case C.4.4.3 passed.

144

Test Process: Create a project using the project wizard selecting to include a
frame listener.

Set up application as in Test Case C.4.4.3

Create a second class called TestFrameListener that
extends RenderingEngineFrameListener.
In theframeStartedQ method, add the following line,

std::cout « "TestFrameListener:: frameStarted() called..." « std: rendi;
In the frameEndedQ method, add the following line,

std::cout « "TestFrameListener::frameEnded()called." « std::endl;

Acceptance Criteria:

Compile and run the simulation.

Output to the console should be look like this,

Frame number 0 started...
TestFrameListener: : frameStarted () called...
Frame number 0 ended.
TestFrameListener::frameEnded()called.
Frame number 1 started...
TestFrameListener: : frameStarted () called...
Frame number 1 ended.
TestFrameListener::frameEnded()called.

C.4.5 Au toM an - Sim ulation M odule

C.4.5.1 Load scene file

Objective: Should be allowed to specify multiple RenderingEngine's
that are to be used.

Prereauisites: Test Case C.4.4.1 passed.

Test Process: Create a project using the project wizard.

In the createSceneQ method, add the following line,

sim mgr->loadSceneFile("collisionTriangle.sen");
Compile and run the simulation.

Acceptance Criteria: The collisionTriangle simulation should run.

145

C.4.5.2 Create Simulation Objects

Objective: Should be able to create objects that are static, rigid or
deformable in the scene.

Prerequisites: Test Case C.4.4.1 passed.

146

Test Process: Create a project using the project wizard.

In the createScenef) method, add the following lines,

SimulationRootNode * root = _sim_mgr->getSceneRoot() ;
SimulationNode * chain = new SimualationNode();
root->addChild(chain);

SimulationStaticObject * base_link = new SimulationStaticObject();
base_link->setName("BaseLink");
base_link->setVisualModel("VisualModels/torus2.obj", "");
base_link->setCollisionModel(

"CollisionModels/torus2_for_collision.obj");
chain->addChild(base_link); //end base_link
SimulationDeformableObject * linkl = new

SimulationDeformableObj ect();
linkl->setName("Linkl");
linkl->setVisualModel("VisualModels/torus.obj", "");
linkl->setCollisionModel(

"CollisionModels/torus_for_collision.obj");
linkl->setMass(5.0);
sofa::component::forcefield::TetrahedronFEMForceField<

sofa::defaulttype::Vec3Types> * force_field = new
sofa:¡component::forcefield::TetrahedronFEMForceField<
sofa:¡defaulttype::Vec3Types>;

force_field->setYoungModulus(1000);
force_field->setPoissonRatio(0.3);
force_field->setComputeGlobalMatrix(false);
force_field->setMethod(0); //I = large displacements, 0 = small.
linkl->setForceField(force_field);
sofa::component::topology::MeshTopology * topo = new

sofa:¡component:¡topology:¡MeshTopology;
topo->load("Topology/torus_low_res.msh");
linkl->setTopology(topo);
linkl->applyTranslation(sofa::defaulttype::Vec3f(-2.5, 0.0, 0.0));
chain->addChild(linkl); //end linkl
SimulationRigidObject * link2 = new SimulationRigidObject();
link2->setName("Link2");
link2->setVisualModel("VisualModels/torus2.obj", "");
link2->setCollisionModel(

"CollisionModels/torus2_for_collision.obj");
link2->setBehavioralModel("BehaviorModels/torus2.rigid");
link2->applyTranslation(sofa::defaulttype::Vec3f(-5.0, 0.0, 0.0));
chain->addChild(link2); //end link2

Compile and run the simulation.

147

Acceptance Criteria: The rendered scene should consist of 3 links of a chain. The
first is static, the second is deformable, and the third is rigid.

C.4.5.3 Objects can be translated, rotated, and scaled

Objective: Allows the objects to be placed and oriented correctly in the
scene before the simulation starts.

Prereauisites: Test Case C.4.5.2 passed.

Test Process: Create a project using the project wizard.

In the createSceneQ method, create simulation objects as in
Test Case C.4.5.2.

Translate, rotate, and scale each object.

Compile and run the simulation.

Acceptance Criteria: The rendered scene should display the objects at the new
position, orientation, and scale.

C.4.5.4 Objects affected by gravity

Objective: Objects in the scene should be affected by gravity unless they
are static objects.

Prereauisites: Test Case C.4.5.1 passed.

Test Process: Create a project using the project wizard selecting the
SofaQtRenderingEngine.

In the createSceneQ method, add the following line,

sim mgr->loadSceneFile("collisionTriangle.sen");
Compile and run the simulation.

From the menu select Simulation->Animate.

Acceptance Criteria: The scene should start animating and the box should fall due to
gravity.

The floor, being static, should remain in place.

148

C.4.5.5 Collisions detected and correct response performed

Objective: Objects in the scene should be affected by gravity unless they
are static objects.

Prerequisites: Test Case C.4.5.4 passed.

Test Process: Create a project using the project wizard selecting the
SofaQtRenderingEngine.

In the createSceneQ method, add the following line,

sim mgr->loadSceneFile("collisionTriangle.sen");
Compile and run the simulation.

From the menu select Simulation->Animate.

Wait for the box to fall until it touches the floor.

Acceptance Criteria: When the box touches the floor, it should start deforming due
to the collision with a rigid surface.

C.4.6 W ebsite

C.4.6.1 Publically accessible

Objective: Site should be publically available.

Prerequisites: None.

Test Process: On an computer that is not on the UWO network, browse to
the site: http://oublish.uwo.ca/~thaves4

Acceptance Criteria: The web site's home page should load.

C.4.6.2 Download Software - AutoMan, VS .Net Project Wizard

Objective: Site should allow the public to download AutoMan and the VS
.Net Project Wizard.

Prerequisites: Test Case C.4.6.1 passed.

149

http://oublish.uwo.ca/~thaves4

Test Process: Browse to the site: http://publish.uwo.ca/~thaves4

Navigate to the Downloads page.

Select software to download.

Acceptance Criteria: Selecting AutoMan should start downloading the AutoMan
framework.

Selecting VS .Net Project Wizard should start downloading the
project wizard.

C.4.6.3 View User Guides

Objective: Site should allow the public to view user guides.

Prerequisites: Test Case C.4.6.1 passed.

Test Process: Browse to the site: http://publish.uwo.ca/~thaves4

Navigate to the Docs page.

Select the user guide to view.

Acceptance Criteria: Selecting any user guide from the list on this page should open
the document for viewing.

C.4.6.4 View API pages

Objective: Site should allow the public to view the API.

Prerequisites: Test Case C.4.6.1 passed.

Test Process: Browse to the site: http://publish.uwo.ca/~thaves4

Navigate to the Docs page.

Select the Doxygen API.

Acceptance Criteria: The HTML version of the API should load.

150

http://publish.uwo.ca/~thaves4
http://publish.uwo.ca/~thaves4
http://publish.uwo.ca/~thaves4

Appendix D Test Results Document

Test Report
AutoMan Framework

Department of Electrical and Computer Engineering

The University of Western Ontario

London, Ontario, Canada

© Timothy Hayes 2007

151

Revision History

D a te V ersio n D escr ip tio n A u th o r
3 /5 /2008 1.0 Initial Creation T. H ayes

152

D .l Introduction

This is a report generated from the testing phase of the AutoMan project. It contains

the results of the testing performed as described in the Test Plan document.

D.2 Test Results

D.2.1 Installation P rocess

D.2.1.1 Installation Guide

Test Case: 4.1.1 Prereauisites: None:

Expected Result: AutoMan successfully installed.

Actual Result: AutoMan successfully installed.

Comments: Guide is clear and easy to understand. An average user should
be able to follow it to install the framework.

Pass/Fail: Pass.

D .2.2 VS .N et Project W izard

D.2.2.1 Installation Guide

Test Case: 4.2.1 Prereauisites: 4.1.1

Expected Result: Project wizard successfully installed.

Actual Result: Project wizard successfully installed.

Comments: Guide is clear and easy to understand. An average user should
be able to follow it to install the project wizard.

Pass/Fail: Pass.

153

D.2.2.2 Generates Project

Test Case: 4.2.2 Prerequisites: 4.2.1

ExDected Result: Visual Studio Project should be created.

TestCase.h header file should be present.

TestCase.cpp file should be present.

Project should compile successfully.

Actual Result: Project created.

TestCase header and code files created.

Project successfully compiled.

Comments: Works as expected.

Pass/Fail: Pass.

D.2.2.3 Frame Listener included [/ not included]

Test Case: 4.2.3 Prerequisites: 4.2.2

Expected Result: Visual Studio Project should be created.

RenderingEngineFrameListener header should [/ should not] be
included.

TestCass class should [/ should not] extend
RenderingEngineFrameListener

Project should compile successfully.

Actual Result: When option is selected the project is created, header is
included, class is extended and the project compiles

When option is not selected the project is created, include is
not present, no class extension, and project compiles.

Comments: Works as expected.

Pass/Fail: Pass.

154

D.2.2.4 VRJugglerRenderingEngine correctly included [/not included]

Test Case: 4.2.4 Prereauisites: 4.2.2

Expected Result: Visual Studio Project should be created.

VRJugglerRenderingEngine header should [/ should not] be
included.

TestCass::constructRenderingManager() method should [/
should not] create an instance of VRJugglerRenderingEngine
and attach it to the RenderingManager

Project should compile successfully.

Actual Result: When option is selected the project is created, include is
present, RenderingEngine is created and attached, and the
project compiles.

When the option is not selected, the project is created, the
include is not present, no RenderingEngine is created and the
project compiles.

Comments: Works as expected.

Pass/Fall: Pass.

D.2.2.5 SofaQtRenderingEngine correctly included [/ not included]

Test Case: 4.2.5 Prereauisites: 4.2.2

Expected Result: Visual Studio Project should be created.

SofaQtRenderingEngine header should [/should not] be
included.

TestCass::constructRenderingManager() method should [/
should not] create an instance of SofaQtRenderingEngine and
attach it to the RenderingManager

Project should compile successfully.

155

Actual Result: When option is selected the project is created, include is
present, RenderingEngine is created and attached, and the
project compiles.

When the option is not selected, the project is created, the
include is not present, no RenderingEngine is created and the
project compiles.

Comments: Works as expected.

Pass/Fail: Pass.

D .2 .3 Au toM an - A p plication M odu le

D.2.3.1 Initialize and start the simulation

Test Case: 4.3.1 Prereauisites: 4.2.2

Expected Result: The simulation should start running.

Actual Result: Simulation starts running.

Comments: Works as expected.

Pass/Fail: Pass.

D .2 .4 AutoM an - R endering M odule

D.2.4.1 Attach a RenderingEngine to the RenderingManager

Test Case: 4.4.1 Prereauisites: 4.2.2

Expected Result: A VRJuggler window should appear and render the scene.

Actual Result: Window displays the scene.

Comments: Works as expected.

Pass/Fail: Pass.

156

D.2.4.2 Handle multiple RenderingEngines

Test Case: 4.4.2 Prerequisites: 4.4.1

Expected Result: A VRJuggler window should appear and render the scene.

The console should print "Dummy Rendering Engine - update
method called."

Actual Result: Window displays the scene.

Message printed to console.

Comments: Works as expected.

Pass/Fail: Pass.

D.2.4.3 RenderingEngineFrameListener makes callbacks

Test Case: 4.4.3 Prerequisites: 4.4.1

Expected Result: Console should print:
Frame number 0 started...
Frame number 0 ended.
Frame number l started...
Frame number l ended.
Frame number 2 started...
Frame number 2 ended.
Frame number 0 started...

Actual Result: Frame number 0 ended.
Frame number 1 started...
Frame number 1 ended.
Frame number 2 started...
Frame number 2 ended.

Comments:

Pass/Fail:

Works as expected.

Pass.

D.2.4.4 Handle multiple RenderingEngineFrameListeners

Test Case: 4.4.4 Prerequisites: 4.4.3

157

Expected Result: Console should print:
Frame number 0 started...
TestFrameListener: : frameStarted () called...
Frame number 0 ended.
TestFrameListener::frameEnded()called.
Frame number 1 started...
TestFrameListener: : frameStarted () called...
Frame number 1 ended.
TestFrameListener::frameEnded()called.

Actual Result:
Frame number 0 started...
TestFrameListener: : frameStarted () called...
Frame number 0 ended.
TestFrameListener::frameEnded()called.
Frame number 1 started...
TestFrameListener: : frameStarted () called...
Frame number 1 ended.
TestFrameListener::frameEnded()called.

Comments: Works as expected.

Pass/Fail: Pass.

D .2 .5 AutoM an - Sim ulation M odule

D.2.5.1 Load scene file

Test Case: 4.5.1 Prerequisites: 4.4.1

Expected Result: The collisionTriangle simulation should run.

Actual Result: The collisionTriangle simulation runs.

Comments: Works as expected.

Pass/Fail: Pass.

D.2.5.2 Create simulation objects

Test Case: 4.5.2 Prerequisites: 4.4.1

Expected Result: The rendered scene should consist of 3 links of a chain. The
first is static, the second is deformable, and the third is rigid.

158

Actual Result: All 3 links are present.

Comments: Works as expected.

Pass/Fail: Pass.

D.2.5.3 Objects can be translated, rotated, and scaled

Test Case: 4.5.3 Prerequisites: 4.5.2

ExDected Result: The rendered scene should display the objects at the new
position, orientation, and scale.

Actual Result: Objects are at the new positions.

Comments: Rotation does not work.

SOFA doesn't support it yet. The methods are not publically
accessible. SOFA site implies this will change soon.

Pass/Fail: •♦ ♦ Fall.

D.2.5.4 Objects affected by gravity

Test Case: 4.5.4 Prerequisites: 4.5.1

Expected Result: The scene should start animating and the box should fall due to
gravity.

The floor, being static, should remain in place.

Actual Result: The box falls and the floor remains in place.

Comments: Works as expected.

Pass/Fail: Pass.

D.2.5.5 Collisions detected and correct response performed

Test Case: 4.5.5 Prerequisites: 4.5.4

159

Expected Result: When the box touches the floor, it should start deforming due
to the collision with a rigid surface.

Actual Result: The box deforms on contact with the floor.

Comments: Works as expected.

Pass/Fail: Pass.

D .2.6 W ebsite

D.2.6.1 Publically accessible

Test Case: 4.6.1 Prereauisites: None.

Expected Result: The web site's home page should load.

Actual Result: The web site's home page loads.

Comments: Works as expected.

Pass/Fail: Pass.

D.2.6.2 Download software - AutoMan, VS .Net Project Wizard

Test Case: 4.6.2 Prereauisites: 4.6.1

Expected Result: Selecting AutoMan should start downloading the AutoMan
framework.

Selecting VS .Net Project Wizard should start downloading the
project wizard.

Actual Result: Both project archives can be downloaded.

Comments: Works as expected.

Pass/Fail: Pass.

160

D.2.6.3 View User Guides

Test Case: 4.6.3 Prerequisites: 4.6.1

ExDected Result: Selecting any user guide from the list on this page should open
the document for viewing.

Actual Result: Users guides can be opened for viewing.

Comments: Works as expected.

Pass/Fail: Pass.

D.2.6.4 View API pages

Test Case: 4.6.4 Prerequisites: 4.6.1

Expected Result: The HTML version of the API should load.

Actual Result: API is present and available.

Comments: Works as expected.

Pass/Fail: Pass.

161

	A LAYERED FRAMEWORK FOR SURGICAL SIMULATION DEVELOPMENT
	Recommended Citation

	tmp.1691610917.pdf.FaoGl

