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Abstract
The focus of this thesis is the study of spin foam models of quantum gravity on a 
computer. These models include the standard Barrett-Crane (BC) spin foam model, 
as well as the new Engle-Pereira-Rovelli (EPR) and Freidel-Krasnov (FK) models. 
New numerical algorithms are developed and implemented, based on the existing 
Christensen-Egan (CE) algorithm, to allow computations with the BC model in the 
presence of a cosmological constant (implemented through g-deformation) and to 
allow computations with the recently proposed EPR and FK models.

For the first time, we show that the inclusion of a positive cosmological constant, 
a long standing open problem for spin foams, curiously changes the behavior of the 
BC model, rendering the expectation values of its observables discontinuous in the 
limit of zero cosmological constant. Also, unlike previous work, this investigation was 
carried out on large triangulations, which are closer to large semiclassical space-times.

Efficient numerical algorithms are described and implemented, for the first time, 
allowing the evaluation of the EPR and FK spin foam vertex amplitudes. An initial 
application of these algorithms is the study of the effective single vertex large spin 
asymptotics of the new models. Their asymptotic behavior is found to be qualitatively 
similar to that of the BC model. The leading asymptotic behavior does not exhibit 
the oscillatory character expected by analogy with the Ponzano-Regge model.

Two important tests of the spin foam semiclassical limit are wave packet prop
agation and evaluation of the graviton propagator matrix elements. These tests are 
generalized to encompass the three major spin foam models. The wave packet prop
agation test is carried out in greater generality than previously. The results indicate 
that conjectures about good semiclassical behavior of the new spin foam models may 
have been premature.
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Chapter 1 
Introduction

1.1 Quantum gravity

The problem of quantum gravity, in broad strokes, consists of constructing a quan
tum mechanical model of the gravitational field. The success of this program should 
be measured by the agreement of the constructed model with experiments. Unfor
tunately, to date, the most sensitive experiments have yet to yield any measurable 
effect that can be unambiguously attributed to quantum gravity [4]. In the absence 
of experimental data, the constructed model should also agree with existing physical 
theories, at least within the realm where their validity has been established. This 
requirement includes reproducing Einstein’s theory of general relativity (GR) [55] in 
the classical limit. An excellent and comprehensive overview of the historical devel
opment of quantum gravity can be found in Appendix B of [48]. A briefer and more 
focused review is presented below.

Following the successful quantization of electrodynamics and other wave and 
matter fields, the methods of quantum field theory (QFT) were applied to perturba
tive gravity. That is, the linearized deviation of the gravitational field from a fixed 
classical background was treated as a quantum field, with higher order terms in the 
GR Lagrangian treated as interactions [34,35]. The standard Fock space quantization 
method ensured agreement with perturbative GR in the classical limit [29]. Unfortu
nately, the inclusion of interactions revealed the theory to be non-renormalizable [54], 
unlike for other fundamental fields. This feature makes the perturbative quantization 
of G R an unsuitable basis for the definition of quantum gravity, as the theory would 
require an infinite number of empirical parameters to be fully specified. However, 
recent work, treating perturbatively quantized GR as an effective field theory, has 
shown that despite non-renormalizability it can yield unambiguous physical predic
tions at finite precision [15].

An approach that does not require a perturbative treatment is canonical quanti
zation. In its most basic form, it requires an explicit parametrization of the GR phase 
space by generalized conjugate “position” and “momentum” coordinates, which are
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then promoted to operators satisfying canonical commutation relations. Unfortu
nately, such an explicit parametrization has proved extremely difficult. The alterna
tive is an implicit parametrization of the GR phase space as a constrained system, 
embedded in a larger phase space, which includes unphysical degrees of freedom. 
Similarly, applying canonical quantization to a constrained system aims to describe 
it implicitly as a subsystem of a larger quantum mechanical system. The treatment 
of GR as a constrained canonical system goes back to the seminal works of Dirac and 
Bergmann [16,17,27]. Unfortunately, the expressions of the constraints in terms of 
metric variables have proved difficult to work with. Much later, Ashtekar formulated 
G R in terms of the connection and tetrad variables, which resulted in a simplification 
of the constraints to polynomial expressions [5].

Ashtekar’s formulation of GR is closely analogous to that of Yang-Mills gauge 
theories. This analogy prompted the introduction of holonomy and later spin network 
observables [33], similar to Wilson loop observables in Yang-Mills theory. The quan
tization of this algebra of observables allowed the construction of the Hilbert space 
of spin network states, which describe quantum states of 3-geometries. These states 
satisfy the constraints generating spatial diffeomorphisms (in a 3 +  1 formulation of 
GR). The result of this program is known as loop quantum gravity (LQG) [48,53]. 
However, this space needs to be further reduced by the Hamiltonian constraint, which 
generates temporal diffeomorphisms, to recover physical states. Unfortunately, the 
construction of the quantum Hamiltonian constraint met with difficulties. It is still 
an active research topic [52].

The absence of a well-defined Hamiltonian constraint is akin to the absence of 
well-defined dynamics for the gravitational field. As the difficulties of constructing the 
Hamiltonian constraint in a 3 +  1 formulation became apparent, spin foams emerged 
as an alternative space-time way of specifying dynamics.

Spin foam models were first defined a decade ago [7,11,12]. They resemble dis
crete path integral or statistical models. A spin foam is a discretization of space-time 
where the fundamental degrees of freedom are the areas labelling its 2-dimensional 
faces. A given spin foam model may also be interpreted as a transition amplitude for 
a particular process evolving one spin network state into another.

The spin foam formalism is quite general. It naturally appears in the study of 
discretized B F  theory (a topological quantum field theory) [6] and in the study of 
group field theory (field theory defined on group manifolds) [30,43]. In fact, both B F  
theory and group field theories have been used to derive new spin foam models [28,31, 
43,45]. The relation with B F  theory will be explored further in section 4.2. The same
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formalism has also been applied to the dual formulation of lattice Yang-Mills gauge 
theories [19,22,26,41,42,46]. Historically, the first spin-foam model (retrospectively 
so classified) was the Ponzano-Regge model for 3-d Riemannian gravity [47].

While the previously discussed non-perturbative approaches to quantum gravity 
avoid the non-renormalizability problem, discussed at the beginning of the previous 
section, they suffer from difficulties in recovering the expected classical or semiclas- 
sical limit. In large part this difficulty is computational. In these models, when 
defined, physical observables tend to be complicated functions of many parameters. 
These functions are difficult to evaluate analytically and often expensive to compute 
numerically. Fortunately, much progress has been made recently from the compu
tational angle [8-10,20,21,23-25]. Analytical calculations have also been fruitful 
in some cases [14,32,38,49]. In particular, the semiclassical limit of the standard 
Barrett-Crane spin foam model [11] does not correctly reduce to GR [2,3]. This dis
covery prompted the proposals of so-called new models [28,31]. Their investigation is 
a current research topic and our results in this direction will be discussed in chapters 4 
and 5.

1.2 Abstract spin networks

Abstract spin networks, or just spin networks, are mathematical objects that naturally 
arise in the LQG [48, Chapter 6] and spin foam [7] approaches to quantum gravity, but 
also in other contexts [44], including the dual formulations of gauge theory [19,22, 26]. 
Their evaluation is the most computationally expensive part of studying spin foams 
on a computer. The bulk of the work presented in this thesis is based on designing 
and implementing efficient algorithms for spin network evaluation.

In general, spin networks are closely related to tensor contractions. Given an 
(^)-tensor (with m  covariant and n contravariant indices), it can be represented 
graphically as a vertex with n outgoing and m  incoming edges incident on it. For 
example, a (2) -tensor would be represented as

The outer (a.k.a. Kronecker or tensor) product of two tensors is represented by jux-
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taposition. For this is

Note that the relative orientation of the tensor vertices is irrelevant. Also, edge labels 
are necessary only indicate the tensor index a given edge corresponds to. The same 
problem can also be solved by some fixed ordering convention for edges around the 
vertex. In that case, two tensors that are index permutations of each other are repre
sented by the same vertex, but with the incident edges braided to distinguish one from 
the other. Both conventions are convenient and used in the literature. Contraction 
of tensor indices is indicated by joining the edges representing the contracted index 
pairs. The examples for and T ^ mS ^  are

The case relevant for us is when each index of a tensor carries a representation 
of a group G. Even more so is the case when each representation is irreducible and the 
vertices correspond to intertwiners (tensors that are invariant under the simultaneous 
action of G  on all their indices). Thus, a spin network is a graph1 whose edges are 
labelled by irreducible representations ( irreps) of G, while its vertices are labelled by 
intertwiners between them. The particular group G  used in this thesis, as well as 
in most of the spin network literature, is SU (2). Consequently, the group irreps are 
classified by an integer or half-integer called a spin1 2,whence the name spin network.

1. LQG actually defines an additional notion of embedded spin networks, where the graph 
is supplemented with an embedding into a 3-manifold with a G-connection. Embedded 
spin networks define functions on the space of G-connections on the given manifold. These 
functions are evaluated in the same way as spin networks described above, with the exception 
of inserting between each pair of contracted indices a representation of the group element 
effecting parallel transport over the corresponding embedded graph edge.

2. Traditionally, spins are half-integral (0,1/2, 1, 3/2, 2, ...) . Multiplying these labels 
by a factor of 2, we get only integral quantities called twice-spins. Chapters 2 and 3 use 
spins, while chapters 4 and 5 use twice-spins. Footnotes indicate which convention is used 
if confusion is possible.
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SU (2) representation theory has a number of helpful features, which simplify the 
notation. Particularly, all SU (2) spin networks can be written as undirected trivalent 
(cyclically ordered) ribbon graphs. The ribbon structure becomes necessary when 
the graph directedness is dropped. The details are explicitly discussed in chapter 2, 
with all the mathematical details supplied in the monographs [18] and [36]. These 
simplifications also apply to Spin(4) networks. This group is the double cover of 
5 0 (4 )  and decomposes as Spin(4) =  SU (2) x SU (2). Expressing Spin(4) irreps as 
tensor products of SU (2) irreps, each Spin(4) spin network can be written in terms 
of SU (2) networks.

1.3 Evaluating spin networks

Now that we have defined spin networks, we will show how to evaluate some of them. 
As a relevant example, consider the so-called SU (2) 15.7-symbol:

(1.4)

The 3-valent vertex here corresponds to the Clebsch-Gordan 3-index intertwiner, Oa ĉ , 
whose normalization is fixed according to the conventions of [18] and [36] (cf. sec
tion 3. A):

a

b c

If the value of the 15.7-symbol network is written out explicitly as a tensor contraction, 
there will be 10 3-index tensors with 15 pairs of contracted indices. Each index ranges 
over a basis for an irrep of SU{2), specified by the twice-spin, say / ,  labelling the 
corresponding edge. The dimension of this space is ( f  +  1). Suppose that each spin 
labelling the 15.7-symbol is taken to be 0 ( j ), that is, to be of the same order of 
magnitude as some average spin j .  Then, each tensor index contraction requires a 
summation over a range of size 0 ( j ) .  W ith 15 summations, a naive implementation of
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the tensor contraction evaluation will require 0 (715) operations3. This is a very high 
exponent polynomial complexity, which makes its use prohibitively expensive already 
for small values of 7. This example only underscores the importance of developing 
more efficient ways of evaluating spin networks.

The structure of the tensor contractions in the 157-symbol can be exploited to 
reorder some summations and tensor products to reduce the number of operations 
necessary to compute its value. However, any variation of this method still suffers 
from a deficiency; it requires explicit computation of the tensor components of the 
Clebsch-Gordan intertwiner, which invariably leads to making choices regarding the 
phases in its normalization factors: not impossible, but tedious. However, the knowl
edge of some identities from SU(2) representation theory can help avoid evaluating 
the Clebsch-Gordan tensors directly and reduce the evaluation’s run time complexity 
even more dramatically.

The basic identity is the so-called recoupling identity [cf. equation (3.43)]:

(1.6)

where the curly brackets denote the so-called 6j-symbol. It is closely related to 
the Wigner-Racah 6.7-symbol familiar from the quantum theory of angular momen
tum [40] and its definition in the current normalization can be read off from equa
tion (3.43) (see also [36, Chapter 9]), where the relevant notation is is also defined in 
context.

The 15.7-symbol can be redrawn as the ladder network illustrated in figure 3.1(c). 
Its rungs are the spins j i }6 (e =  0, • • • ,4), and the rest of the spin labels can be de
duced from the graph’s topology. The recoupling identity is applied to each rung, 
yielding the network depicted in figure 3.1(d), prefixed by a 67-symbol and a sum
mation over an extra recoupling spin m e for each recoupled rung j\̂ e . Fortunately, 
Schur’s lemma guarantees that the only non-vanishing terms in this sum are those 
where all recoupling spins are equal, m e .= m, and also that each bubble network is 
proportional to the Kronecker <5, with an easily deducible proportionality factor. The

3. We shall generally assume that the tensor components of the Clebsch-Gordan tensor 
may be computed in 0(1) time. That is, our estimates may underestimate the actual run 
time complexity, which is sufficient for the purposes of this discussion.
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result is that the 15.7-symbol evaluates to the following expression:

0(*e,.72 ,e-lim ) 
( - ) m(m +  1)

32,e 
32,e-\

(1.7)

Note that the index e is always taken mod 5. An explanation of the notation 
and full details o f this computation are presented in the original paper deriving the 
Christensen-Egan algorithm [24]. The notation is also explained in section 3. A, where 
the 9 symbol is explicitly defined. Note that each 6.7-symbol in the above expression 
can be computed in 0 { j )  time, as evidenced by the explicit formulas of section 3.A. 
Further, the range of the recoupling spin m  is bounded by linear inequalities involving 
the fixed spins (known as the triangle inequalities; cf. admissible spins in section 3.A), 
making it O (j )  in size as well. Therefore, we have managed to reduce the run time 
complexity for evaluating the 1 5 symbol to 0 ( j 2), a dramatic improvement over the 
previous 0 ( j 15) estimate.

Unfortunately, the search for efficiency never stops. The Barrett-Crane spin 
foam model defines the so-called 10j-symbol, one of its basic building blocks and a 
highly non-trivial spin network to evaluate. It is defined by combining equations 3.5 
and 3.4. Ultimately, the lOj-symbol is defined by a sum of a product of two identical
15.7- symbols with some coefficients, which do not significantly impact the complexity 
of the computation. The sum is five-fold and ranges over all allowed values of the ie 
spins of equation (1.4):

{ u y > - £ ( • • • ) { « j ? .  ( i .8)
{U}

Using the formula of equation (1.7) and naively implementing the outer sums, 
we estimate the run time complexity of the lOj-symbol evaluation as 0 ( j 7), given that 
the ie sums have ranges of size O(j)  (again, due to bounds by triangle inequalities). 
The insight of the Christensen-Egan algorithm is to notice that the summand in the
15.7- symbol evaluation formula (1.7) factors into terms that depend on no more than 
two consecutive ie spins, ie and ie+\. So, concentrating at the moment only on the 
spins that are summed over, the lOj-symbol evaluation (1.8) can be rewritten as

{ 10; }  =  £  (1-9)
ml >m2 {ie}

where 0 depends only on m\ and m 2, the recoupling spins coming from each 15.7- 
symbol factor, and each T 2e also depends on m i, m 2, as well as on the j\ e and .72 e
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spins. It should be straightforward to recognize the ie summations over the Ts as the 
trace of a product of five matrices:

{ ioj} = £  0tr[T4r3r2T1ro], (no)
mi,m2

where each Te is an O(j)  x O(j )  matrix. To compute the above expression, for each 
value of m i and th2, we must fill the five Te matrices (each matrix element contains a 
product o f 6j-sym bols and hence takes O(j)  time to compute), compute their five-fold 
product and the product’s trace. Clearly, it takes 0 ( j 3) time to fill the Te matrices, 
and it is well known that the successive product of a fixed number of 0 ( j )  x O(j )  
matrices also takes 0 ( j 3) operations. Including the m i and m 2 sums, the overall run 
time complexity estimate for the Christensen-Egan lOj-symbol evaluation algorithm 
is 0 ( j 5) operations. It is a factor of 0 ( j 2) faster than our previous naive version. 
The efficiency of the Christensen-Egan algorithm has made tractable the numerical 
investigation of the asymptotic large-j behavior of the Barrett-Crane lOj-symbol, 
which was one of its first applications [9].

The product-trace structure (1.10) of the Christensen-Egan algorithm has proven 
to be very robust. It is the basis of the g-deformed generalization presented in chap
ter 3 and of the new algorithms of chapters 4 and 5. With the basic computational 
problem that is attacked in this thesis outlined, the next section describes the subse
quent contents.

1.4 Summary of thesis

Numerical calculations provide a strong check for theoretical hypotheses and ana
lytical calculations. They are especially useful for detecting errors (essentially, as 
an independent means of verifying a calculation) and for indicating new avenues of 
investigation.

One of the first tests of the Barrett-Crane (BC) spin foam vertex amplitude as 
a building block of a theory of gravity was an analytical calculation of its asymptotic 
expansion in the limit of large spins [13], The hope was to find a term of the form 
eiSti\ where S[j] is the Regge action for simplicial gravity, and j  collectively describes 
the input spins. The stationary phase arguments of [13] yielded a leading asymptotic 
o f the form 0 ( j “ 9/ 4 cosS\j]). This result was tested numerically [9], as one of the 
first applications of the Christensen-Egan (CE) algorithm. The numerical calculation 
revealed a non-oscillatory leading asymptotic of the form 0 ( j ~ 2). This inconsistency
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quickly revealed an error in the original asymptotic analysis and subsequent analytical 
calculations yielded the correct leading asymptotic term [14,32].

Shortly after the graviton propagator problem was proposed for the BC model 
by Rovelli [49] (cf. section 5.2.2), its numerical investigation was begun. An implemen
tation of these calculations on a computer requires explicit and detailed descriptions 
of each step. The necessity for such precision of formulation prompted refinements 
and clarifications to the problem’s theoretical framework [38]. The synthesis of these 
theoretical and numerical investigations culminated in [25].

This thesis presents some further numerical investigation of the BC model and 
its variations, as well as of the new models. The algorithms presented in chapters 4 
and 5 allow efficient numerical evaluation of the new vertex amplitudes, as the CE 
algorithm did for the BC vertex. The discovery and implementation of these algo
rithms is a crucial step for studying the new spin foam models on a computer. The 
first paper to use numerics to study one of the new models was [39]. Already, by 
adopting our algorithms, they were able to push their calculations much further [1]. 
Related calculations are also presented in chapter 5. As anticipated, investigation of 
the new models on a computer is already bearing fruit.

This thesis is structured as follows. Each chapter is essentially self contained, 
with its own introductory, concluding and bibliography sections. The overarching 
theme connecting them is the goal of developing efficient computational tools needed 
to investigate spin foam models. As mentioned previously, one of the biggest obsta
cles to the development of spin foam models is the difficulty in evaluating physical 
observables and extracting their semiclassical limit. Numerical methods have proven 
to be an invaluable aid in working toward this goal. The relevance of the algorithms 
and software libraries described below to the problem of extracting the classical limit 
is emphasized in each chapter. Although spin foam models can be defined for both 
Lorentzian and Riemannian metric signatures, this thesis will consider only the latter, 
as does much of the existing literature.

Chapter 2 is an excerpt from [22]. It is included for reference. It explains the 
relation between tensor contractions and spin networks described in section 1.2 and 
illustrates how spin networks and spin foams arise in the dual treatment of lattice 
gauge theory. Its original purpose in [22] was to summarize the basics of spin foam 
models and of the recoupling approach to evaluating spin networks to an audience 
only familiar with the lattice gauge theory literature.

Chapter 3 describes a generalization of the classic CE algorithm [24] to the 
case of so-called q-deformed spin foam amplitudes. It is based on [37]. Section 3.2.2
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describes g-deformation and how it incorporates a positive cosmological constant into 
the standard Barrett-Crane (BC) spin foam model [11], following Smolin’s identifica
tion of the Kodama state as the LQG analog of de Sitter space [50,51]. Section 3.3 
describes how ^-deformation modifies the BC model, answering this long standing 
question. Then, section 3.4 describes statistical simulation techniques used to com
pute spin foam partition functions (already introduced in previous work [10]), ex
tending these techniques to arbitrarily large space-time triangulations. Section 3.5 
then summarizes the application of these tools to the computation of some physical 
observables and points out the surprising result that they are not continuous as a 
function of the cosmological constant, taken to zero through positive values, provid
ing some information about another long standing problem (posed in the original 
paper of Barrett and Crane [11]): how g-deformation affects the physics of spin foam 
models.

Chapter 4 examines the previously discussed new models. Besides [39], this 
is the first study of these models on a computer. The significant contributions of 
chapters 4 and 5 include the description of new, efficient algorithms for the evaluation 
of new spin foam vertex amplitudes, both more general and more efficient than those 
used in [39]. Section 4.2 discusses the relation between the new models and B F  theory, 
and puts them, as well as the BC model, into a unified framework, following [31]. 
Section 4.3 describes and extends the CE algorithm to encompass the new models 
as well. Finally, section 4.4 uses the new algorithm to give the first data on their 
effective asymptotic behavior and compares it to that of the Barrett-Crane model.

Chapter 5 builds on the developments of chapter 4 to describe an efficient algo
rithm for computing a spin foam partition function including a boundary state. Such 
a computation would have been intractable otherwise. The large class of problems 
this algorithm is applicable to includes two important ones, described in section 5.2 
(semiclassical wave packet propagation and graviton propagator calculation), known 
to be relevant for extracting the semiclassical limit. The algorithm is presented in 
section 5.3 and applied in section 5.4. The applications involve a generalized ver
sion of the wave packet propagation problem posed in [39] and call for more careful 
scrutiny of hypotheses put forward in that paper.

Chapter 6 summarizes important results from the preceding chapters and points 
out promising avenues for future work.
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Chapter 2
Spin foams and gauge theory

The following is an excerpt (edited for consistency) of section 2.1 and appendix A 
of [4]. It is provided here for reference. Section 2.A .1 introduces spin foams as the 
dual formulation of lattice gauge theory. Sections 2.A .1 and 2.A .2 also elaborate the 
relation between tensor contractions and spin network diagrams.

2.1 Review of pure Yang-Mills theory on the 
lattice

First we recall the Euclidean partition function of pure Yang-Mills theory in D  di
mensions, with gauge group G  =  SU(N),  where N  >  2 (we shall later specialize to 
the SU(2) case). It takes the form

Z  =  J  V A  e x p (-S ) , (2.1)

with A ® the gauge field, S the action functional, and V A  the functional integration 
measure. In the continuum version of the theory the standard action functional is

S =  S[i4] =  ^ 3  J d DF * , F P ,  3 (2.2)

j  r
where F9[u is the field strength tensor and g the continuum coupling. Unfortunately, 
the continuum functional measure V A  is not well-defined.

One way to give the above path integral rigorous meaning and, at the same 
time, make it amenable to computational treatment, is to put the theory on a discrete 
finite lattice. The simplest variant uses a hyper-cubic lattice. Let E  and P  denote 
respectively the sets of edges and plaquettes of a hyper-cubic lattice in D  dimensions. 
The gauge field A  is replaced by gauge group elements ge assigned to each oriented 
lattice edge e G E. The same edge with opposite orientation gets g¿"1 instead of ge.
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The functional integral measure can now be replaced by an integral over the product 
of \E\ copies of G  using Haar measure:

VA =  J ]  dge . (2.3) 
eeE

At the same time, the action functional is replaced by a discretized version, S =  5[p], 
that must reproduce the continuum action S[A] as the lattice spacing is taken to zero. 
The discretized action is usually split into a sum over plaquettes, S[g] =  YlpeP  £(0p)» 
where the group element gp is the holonomy around an oriented plaquette p. That 
is, gp =  <71 <720304» where gi is either the group element assigned to the 2th edge of p 
or its inverse if the orientations of p and the 2th edge are opposing. This yields the 
conventional lattice partition function

Z = / U d g e e - ^ S^ .  (2.4)

There are many candidate discretized plaquette actions S(gp). While the Wil
son action [19] is perhaps the most well-known in conventional LGT (it was also used 
in the dual computations of [8- 10]), a variety of actions S(gp) leading to the correct 
continuum limit are known and have been used in the literature [11,13,14]. In the 
present work, we use the heat kernel action [15]; in the dual model this action leads 
to plaquette factors that are particularly easy to compute. The heat kernel action 
(at lattice coupling 7 ) for a fundamental plaquette p and plaquette holonomy gp is

-S(Sp) ^ (g p . j 2)C O ,
^r)

(2.5)

where the heat kernel K , which is a function of a group element g and of a “time” 
parameter i, satisfies a diffusion type differential equation

^ K ( g , t )  =  A  K(g,t), 0) =  ¿¡(g).  (2.6)

Here A  is the Laplace-Beltrami operator on G  and 6j is the delta function at the 
group identity I. The denominator in (2.5) represents a normalization of the partition 
function in which flat holonomies (gp =  I)  are assigned an amplitude of unity. We 
shall follow the common practice of discussing the phase structure of a lattice theory 
using the ¡3 parameter ¡3 =
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We now turn to the definition of the dual model for the specific case of G =  
SU(2) pure Yang-Mills in three dimensions. Starting from the conventional formula
tion of the lattice partition function Z  given in (2.4) above, the duality transformation
can be applied (see Appendix 2.A.1) to yield the following expression for Z  in terms

\

of the dual variables:

2=EiEn «¿"(h.*) n w * * ’ m ) (n +1)
j  \ i veV  eeE / \p€P

(2.7)
Here V  denotes the vertex set of the lattice, while the summations over i and j  range 
over all possible edge and plaquette labellings, respectively. A plaquette labelling j  
assigns an irreducible representation of SU (2) to each element of P. These represen
tations are labelled by non-negative half-integers (we will denote this set by ^N) and 
are referred to as spins; a labelling j  is thus a map j :  P  —► ^N. An edge labelling 
i , on the other hand, is valued in a basis of maps that intertwine the representations 
of the plaquettes incident on the same edge. In our present case, the choice of basis 
corresponds to a grouping of the four incident plaquette spins into two pairs. When 
such an edge splitting has been made, the intertwiners may also be labelled by spins, 
as described in Appendix 2.A .2. Different choices of splitting can be made, but some 
are more computationally efficient than others. In writing (2.7), we assume a fixed 
choice of splitting has been made and so an edge labelling is a map i : E  —► ^N.

In the first pair of parentheses of (2.7), there is a product of 18j  symbols, each of 
which is a function of the 18 spins which label the 12 plaquettes and 6 edges incident 
to a vertex v\ we denote the spins which appear by j v and iv. Next to it is a product 
o f edge normalizations N e depending on the edge spin ie and on the four spins j e 
labelling the plaquettes incident on e. It is important to recognize that the 18j  sym
bol and the normalization factors N e are purely representation-theoretic quantities 
(independent of the action chosen) and that, from a computational viewpoint, they 
represent the non-trivial part of the amplitude evaluation. Efficient algorithms can be 
found (using diagrammatic techniques similar to those used in [5]) for computing the 
18j  symbols and edge normalizations. Two of these are reviewed in Appendix 2.A .2.
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2.A  The dual model and 18j  symbol algorithms

2.A.1 Derivation of the dual model

This section sketches some of the steps of the transformation from the conventional to 
the dual form of the lattice Yang-Mills partition function, (2.4) and (2.7) respectively. 
Our approach is inspired by the spin foam picture, and is closest to that found in 
[6]. Non-abelian dual models have also been analyzed from a spin foam perspective 
in [17,18].

We begin by observing that, due to gauge invariance, the plaquette action S(gp) 
of (2.4) depends only on the conjugacy class of its argument. Thus, its exponential 
can be expanded in terms of group characters \j

e -S(g) = J 2 c jX j ( g ) ,  (2.8)
3

where j  ranges over the equivalence classes of finite-dimensional irreducible unitary 
representations of the gauge group G. Substituting into (2.4) and interchanging the 
order of summation and integration yields

Z = J 2  /  II d9e II c3pXjp(9p)- (2-9)
{jp) e tE  peP

At this point it is convenient to specialize to a D  =  3 cubic lattice with periodic 
boundary conditions and to fix an orientation for the plaquettes and edges of the 
lattice. Choose a right-handed set of xyz  axes for the lattice. Orient all of the edges 
in the positive coordinate directions. Every lattice cube is in the first octant of one 
of its vertices. Take each of the three plaquettes of the cube that are incident to
* . ’ j

this vertex and orient it in the counterclockwise direction, as seen from outside the 
cube. It is easy to see that this choice of orientations is translation invariant, that the 
orientation of each edge agrees with two of the four plaquettes incident on it and is 
opposite to the other two, and that every plaquette has two edges whose orientations 
agree with its own and two that do not.

W ith this choice of orientation, the holonomy around a plaquette p is gp =  
91929*1 i where g\, g<i, <73 and <74 are the group elements associated to the edges of 
the plaquette p, starting with an appropriate edge and going cyclically. Recall that
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the inverse g- 1 is used if the orientation of edge i does not agree with that of p. Thus

XiP(9p) =  U jp ig i t  Ujp{g2)t  Ujp{ g ^ ) dc Ujp( g ^ ) ad , (2.10)

where Uj(g)a denotes a matrix element with respect to a basis of the j  representation. 
If we insert (2.10) into (2.9) and collect together factors depending on the group 
element pe, we get a product of independent integrals over the group, each of the 
form

J  dge Uh  (ffe)o* Uh (ge)% Uh (9; l )%  Uk {g~ l )ba\ =  j  dge . (2.11)

Here and below we use a graphical notation for tensor contractions, defined as follows. 
Each wire represents a matrix element of the unitary representation labelling it. 
Parallel wires represent products of such matrix elements. The four matrix elements 
in (2.11) come from the characters associated to the four plaquettes incident on the 
edge e. The free ends of the wires represent the indices of these matrix elements. 
The wires can be joined together into loops, one for each plaquette. The joining 
corresponds to contracting with other matrix elements from different edge integrals 
to form the product of characters as in (2.10).

Equation (2.11) defines a projection operator on the space of linear maps <S) 
J3 —► 31 <8> 32' ^  is the usual group averaging operator whose image is precisely the 
intertwiners. Since it is a projection operator, it can be resolved into a sum over a 
basis of intertwiners 7* : j 4 <8> jz  —> j\ ® j2 >

Jj
-*—{£) h 

J4
¿ r v i h )

(2.12)

where the intertwiners I* : j\ <8> j ’2 ~ " H  ® h  3X6 chosen such that the trace (I*,, / j)  
of the composite 7*,/  ̂ is zero whenever i! ^  i and non-zero if i! — i. The projection 
property is readily verified.

If, for each edge of the lattice, we fix a term i in the above summation, we can 
contract the intertwiners I{ and 7* with those coming from the other edges. At each



vertex of the lattice, there will be six such intertwiners, and their contraction can be 
graphically represented as an octahedral network that we call the 18j  symbol:

+z

-y - X

(2.13)

-z

The vertices are labelled by the directions of the associated lattice edges emanating 
from the given lattice vertex, namely ± x , ± y ,  and ± z .  The value of the 18j symbol 
depends on the choice of basis elements / j and J* in (2.12), the six summation indices

N  =  ( /* , Ij) depends on the choice of basis elements at an edge, the summation index 
i on that edge, and the four plaquettes incident on that edge. Note that the choice 
of basis can be made independently at each edge.

The discussion up to this point has been quite general, assuming a 3-dimensional 
cubic lattice. Next, we specialize to G — SU (2) and give the plaquette action char
acter expansion coefficients. For the heat kernel (2.5), the expansion coefficients take 
the particularly simple form [15]

where K (g , t )  is defined by (2.6). Putting these pieces together, we obtain the dual 
formula for the lattice Yang-Mills partition function

i labelling the edges, and the 12 incident plaquette labels j .  Each normalization factor

2
e -S(9) = ---- 1 ^ - V ( 2 j  +  l ) e - ^ + % ( g ) ,  j -  0, $, 1..........  (2.14)

j

Z  =  ]  (2ip +  1) e- :

(2.15)

where an overall numerical factor of K ( I ,  ^ -) per plaquette has been discarded. This
precisely reproduces Equation (2.7), where we described the notation we are using
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for the plaquette and edge labellings j  and i.

2.A .2 Efficient algorithms for the 1 Sj symbol via recoupling

In order to perform computations with (2.15), we first need to choose explicit basis 
elements / j  and /*  of the spaces of intertwiners that appear in (2.12). Below, we 
consider two patterns for choosing such bases for each edge of the lattice, one we 
call the ladder recoupling and one we call the tetrahedral recoupling. They lead to 
different 18j  symbols and have different properties with respect to lattice translations.

2.A .2.1 The ladder recoupling

Recall that for compatible spins j ,  k and m, there is an intertwiner j  ® k —► m 
that is unique up to scale. To be explicit, we choose the specific intertwiner defined 
in [3, 2.5.4], and we denote it by

(2.16)

Similarly, we use the same reference1 to define

It is well-known that for fixed j i, j%, and j'4, the intertwiners

(2.17)

(2.18)

form a basis of the space of intertwiners .74 0 J3 —► j\ <8>j2, as i varies over admissible 
spins. We call this the vertical splitting.

1. Note that our diagrams are read downwards, while those of [3] axe read upwards.
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There is also a second vertical splitting, given by interchanging and which 
changes the intertwiner by a factor of (—l)J3+J4~*. The geometry of the lattice 
provides a natural way to choose between the two: we make sure that the plaquette 
labels on the left (j'4 and j\ above) are part of the same lattice cube, and same for 
the labels on the right.

A convenient choice of dual basis is given by

i ,  y  h

i r =  • (2-i9)

U h

One can check that (IV,*, 1^) =  0 for i' ^  i. We next need to evaluate the normaliza
tion factor

In order to accomplish this, we now explain how to relate our tensor contraction 
diagrams to spin networks. While it would be possible to work entirely with tensor 
contraction diagrams, there are two reasons to switch to the spin network notation. 
First, spin networks do not require that the edges be directed, which relieves us 
of some complicated bookkeeping. Second, by using spin networks, we can take 
advantage of many existing formulas and software libraries for computing spin network 
evaluations.

Recall that a spin network is a trivalent undirected ribbon graph whose edges 
are labelled by spins. One assigns a value to a spin network in the following way. 
First, draw it in the plane, in general position, with the ribbon flat. Then, read it 
from top to bottom, interpreting the vertices as the trivalent intertwiners discussed 
above, and interpreting cups and caps as certain intertwiners which can introduce 
signs. If the spin network is closed, the resulting intertwiner is a map from the 
trivial representation to itself, and so can be identified with a complex number. The 
result is independent of the embedding in the plane, a fact that is quite useful in 
computations. In particular, the trivalent intertwiners are chosen carefully so that 
the evaluation remains unchanged when inputs are deformed into outputs and vice 
versa. We refer the reader to [3] for more details. While the starting point is different,
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the formulas given in [12], with A =  1, also apply to these diagrams2. Note that some 
other authors have slightly different conventions, e.g. some take A =  — 1.

We will now work out how to compute tensor contractions using spin networks. 
Take a tensor contraction diagram involving just the trivalent intertwiners discussed 
above and draw it in the plane such that all edges are pointing downwards except 
for some edges which leave the bottom of the diagram and loop around to reenter 
at the top. If we erase the arrows, the resulting spin network will have the same 
interpretation as the tensor contraction diagram, except for the signs introduced in 
the cups and caps. One can show that the difference is exactly a factor of (—l ) 2*̂ , 
where J is the sum of the spins labelling the edges that loop around.

As a first example, the value of a loop labelled with j  in the tensor notation is 
the dimension 2j  +  1 of the representation. However, in the spin network notation, 
the value of a loop is A  j  =  (—1)2-?(2 j  +  1).

Similarly, the value of the edge normalization factor is

K 1 A  i

(2.21)
where 9(a , 6, c) stands for the value of the following theta network:

9(a,b,c)=^ 3 -  (2-22)

Its value is given explicitly in [12, Chapter 9].
Note that the conversion sign factor (—l ) 2i from (2.21) can be expressed as 

( _  1)20’i +J2) by appealing to the parity constraints. Since each plaquette is “outgo
ing” from two edges, each plaquette spin contributes ( - l ) 4j =  1. In other words, 
the conversion sign factors from the edge normalizations N v cancel. It can be 
shown that the conversion sign factor for the 18j  symbol appearing in (2.13) is in
dependent of the edge splitting and can be written as (—l ) 2*̂ , where, for instance, 
J =  j +x+y +  j+ x -z  +  j - y - z • Each plaquette spin shows up in exactly one such sign

2. Note that while we use half-integer spins, [12] uses twice-spins, which are always 
integers.
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factor, so the signs combine to give (—l ) 2*̂tot, where Jt0t is the sum of all plaquette 
spins. Note that on a lattice with two or more odd side-lengths, this sign factor can 
be non-trivial.

Next we must work out the value of the 18j  symbols that arise using the vertical 
splitting. The corresponding spin network is obtained by applying this splitting to 
the vertices of the octahedron shown in (2.13) and erasing the arrows from its edges. 
A method for evaluating this spin network is shown in Figure 2.1. The calculation is 
similar to that of [5], where a “ladder” structure also appears. The recoupling move

is applied to each of the six “rungs” of the ladder, producing a chain of bubbles. The 
function of six spin labels appearing in (2.23) is the tetrahedral network, shown in 
the last step of Figure 2.2. The value of the tetrahedral network is given explicitly 
in [12, Chapter 9] and is closely related to the Wigner-Racah 6j  symbol of angular 
momentum theory [16, Appendix B], see (2.25).

Because of Schur’s Lemma, the six independent sums from the recoupling moves 
become a single sum. The bubbles are proportional to the identity, weighted by a 
theta network divided by a loop. Six theta networks arising from the bubbles cancel 
against six of the twelve theta networks from the recoupling moves to give the six 
theta networks shown in the final line. The bubbles also contribute six loop factors 
(A*) in the denominator, which exactly cancel the loop factors from the recoupling. 
The final result can be written as:

________________ 1________________
9(m, 2 + x ,  j - y - z)0(m, i— x , j+y+z )

x ________________ t_________________________________ \________________ (2.24)
9{m , i .̂y, j-x -z )9 (m , i-y, j+ x+z) 0(m, i+z, j - x-y)0(jn1 i - z , j+x+y )

where the arguments of the six tetrahedral networks are those that appear in the 
last line of Figure 2.1. The explicit relation between the tetrahedral network and the

n
6 bubbles -m

m
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+ x + x + y +y

* + x  j + x + y m 1 r j + x + v * + v m
* - x  j - y - x j+X-Z  _1 N1H1 t - x j+ y -z

J + V + *  *+ x
• m  1 1 * + x  J + x + x m

j —x—y * — s ,7 - x + x  J :.  * - V  J- x - y j -y + z

+y+z +2 +x+z

* + V  j+ v + z  m  
l-x J-x—z 3-x+y

j+x+z
j - V - z

i+x  m  ( t t  _ _ ^ E _  1
* - »  j+ x —y _ 0('••)$(•••) J

Figure 2.1: The ladder recoupling of the 18j symbol; a single sum.
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Wigner-Racah 6j  symbols is

J\ J2 J3
J i  h

=  V \ e ( J i ,J 2 J 3 ) 0 ( h ,h J z W ( J h h ,h W u h ,J3)l {  J  "  j J .  (2-25)

Note the row swap and the fact that the four theta networks correspond to the four 
triples of spins from the 6 j 's arguments that must satisfy triangle inequalities. For 
reference, |0(a, 6, c)| =  (—l ) a+ )̂+c0(a1b1c).

The 18.7 symbol described in this section was used in computing the data ap
pearing in Sections 3 and 4 of [4].

2.A .2.2 The tetrahedral recoupling

Next we consider a different splitting of the vertices of the octahedron, which we 
call the tetrahedral recoupling. The 18j symbol that arises here is more efficient to 
compute than the 1 Sj symbol for the ladder recoupling, because it does not require 
a sum. However, the splitting is not translation invariant, which makes it slightly 
harder to work with. This section is not needed in the rest of the paper, but is useful 
as a comparison to other sources and will be important for future calculations.

We begin by considering a different basis for the space of intertwiners j± ® jz  —► 

j\ ® J2- ^  is given by the horizontal splitting

U

I h =i —

Ji

as i varies over admissible spins. Note that it makes no difference which way the 
arrow on the edge labelled by i points.

There is also a second horizontal splitting, given by interchanging and j'4. 
As we did for the vertical splitting, we choose between the two by requiring that j 4 
and j\ label plaquettes that are part of the same cube. Unlike the vertical splitting, 
the two horizontal splittings are not in general related by a sign.

h

h

(2.26)
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A convenient dual basis is given by

Jn  xh

(2.27)

U J3

(2.28)

For the tetrahedral recoupling, we use the vertical splitting (2.18) on three edges

connected to one another in a tetrahedral pattern.
For this recoupling, a minor complication arises because the intertwiner split

tings axe different on opposite edges. This means that a simple translation of the given 
tetrahedral 18j  symbol to neighboring vertices does not correspond to a consistent 
choice of basis for the intertwiners. This is easily overcome by dividing the lattice into 
a checkerboard of odd and even sites, and alternately using the original and reflected 
versions of the 18.?' symbol. For periodic boundary conditions, this does limit one to 
lattices with even side-lengths, but this constraint is not serious in practice.

As was the case with the ladder recoupling, the conversion sign factors from the 
normalization factors cancel, and the conversion sign factors from the 18j  symbols 
give a factor of (—l ) 2,7tot. In this case, because the checkerboard pattern forces even 
side-lengths, one can show that (—l ) 2 t̂ot =  1.

The diagrammatic relation

and the horizontal splitting on the opposite edges. The pattern we use is indicated in 
the first step of Figure 2.2. The result is a planar network consisting of four triangles

h

*1 3 2 *3 (2.29)

can be used to collapse each of the four triangles into 3-valent vertices, as shown in 
the last step of Figure 2.2. The final result is simply:
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-z

Figure 2.2: The tetrahedral recoupling of the 18j symbol; no sum.
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^+X j+X+Z Î+Z i+z 3 -y+ z  i - y

_j+y+z i+y j+x+y_ J—x —y l - x  J -x+z

0(i+xi i+yi  i+z'jQii'+z, i - X )  i - y )

i+x j+ x —z i - z i+y j - x + y  i - x

3 - y - z  i - y  j+ x —y_ j - x - z  i - z  j+y-z_

0(^+X) i—y> i—z)Q(i+yi i—zi i —x )
i—x ^—y i —z 
i+x i+y i+z

(2.30)

Because this formula is essentially a product of tetrahedral networks with no auxiliary 
summations, it is highly efficient to compute.

The tetrahedral recoupling is easy to express in terms of Wigner-Racah 6j sym
bols using relation (2.25). In order to compare our work to other work, we give some 
of the details. Ignoring signs for the moment, the theta networks from the edge 
normalizations (2.21) and (2.28), the conversion formula (2.25), and the vertex am
plitude (2.30) all cancel. Now we collect the signs of the theta networks. The theta 
networks from the edge normalizations contribute a sign of ( - 1 ) 2*(—lÿ i+ h + h + M ^  
where i labels the edge and the jk  label the incident plaquettes. Since each pla
quette is shared by four edges, the factors (—lÿl+h+JS+M  cancel. Thus the edge 
normalizations become (—1 )2V ^ i  =  1 / (2z +  1). Since this is positive, we can multi
ply each vertex amplitude by y/2i +  1 to take this into account. The theta networks 
from (2.30) contribute a sign of (—l)£ fc= i where the label the edges incident
on the vertex. Since each edge is shared by two vertices, the vertex signs also can
cel. The final answer is that the vertex amplitude (2.30) becomes a product of five 
Wigner-Racah 6j  symbols multiplied by a product of six factors of the form y/2i +  1.

We observe that in this form the tetrahedral recoupling is equivalent to the dual 
amplitude formula first proposed by Anishetty et al. [1,2] and later used by Diakonov 
and Petrov [7], The same formula was used in the computational work of Dass [8-10]. 
It should be emphasized that previous derivations of this formula did not make use of 
the spin foam formalism. As such, the identification of extra labels (those not coming 
from original plaquettes) with intertwiners was not explicit. We found this distinction 
between plaquette and intertwiner labels to be a crucial one in constructing our dual 
gauge theory simulation algorithm (see sections 2.2 and 2.3 of [4]).
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Chapter 3
g-deformed spin foam models of quantum

gravity

3.1 Introduction

Spin foam models were first introduced as a space-time alternative to the spin network 
description of states in loop quantum gravity [3]. The most studied spin foam models 
axe due to Barrett and Crane [8,9]. A  spin foam is a discretization of space-time 
where the fundamental degrees of freedom are the areas labelling its 2-dimensional 
faces.

An important goal in the investigation of spin foam models is to obtain predic
tions that can be compared to the large scale, classical, or semiclassical behavior of 
gravity. This work continues the numerical investigation of the physical properties of 
spin foam models of Riemannian quantum gravity begun in [5-7,13]. In this paper, 
we extend the computations to the g-deformed Barrett-Crane model and to larger 
space-time triangulations.

The main applications of ç-deformation are two-fold. On the one hand, it can 
act as a regulator for divergent models, as is apparent in the link between the Ponzano- 
Regge [27] and Turaev-Viro [31] models. On the other hand, Smolin [30] has argued 
that ç-deformation is necessary to account for a positive cosmological constant. Both 
of these aspects are explored in more detail in section 3.2.2. A surprising result of our 
work is evidence that the limit, as the cosmological constant is taken to zero through 
positive values, is discontinuous.

Large triangulations are necessary to approximate semiclassical space-times. 
The possibility of obtaining numerical results from larger triangulations takes us one 
step closer to that goal and increases the number of facets from which the physical 
properties of a spin foam model may be examined. As an example, we are able to 
study how the spin-spin correlation varies with the distance between faces in the 
triangulation.

32
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This paper is structured as follows. We begin in section 3.2 by reviewing the 
basics of g-deformation and discussing in detail its aforementioned applications. Sec
tion 3.3 reviews the details of the Barrett-Crane model, summarizes the necessary
changes for its ç-deformation, and defines several observables associated to spin foams.

\

In section 3.4, we review the existing numerical simulation techniques and how they 
need to be generalized to handle g-deformation and larger triangulations. Section 3.5 
presents the results of our numerical simulations. In section 3.6, we give our conclu
sions and list some avenues for future research. The Appendix briefly summarizes 
our notational conventions and useful formulas.

3.2 Deformation of su(2)

In this section, we describe the g-deformation of the Lie algebra su(2) into the algebra 
suq(2) (also denoted Uq(su(2))), the representations of sug(2), and the applications 
of g-deformation. The deformations of spin(4) are then obtained through the isomor
phism spin(4) =  su(2) 0 su (2 ).

The following is part of the general subject of quantum groups [21]. Here we 
shall concentrate solely on the su(2) and spin(4) cases.

i tV \ U ) kJL l

3.2.1 The algebra su?(2) and its representations

The Lie algebra su(2) is generated by the well known Pauli matrices cr̂ , which obey 
the commutation relations

[<7+,<7_] =  4ct3, [a3, cr+] =  2cr-|_, [c73,a _ ] = - 2 (t_ , (3.1)

where a± — a i ±  The universal enveloping algebra of su(2) is the associative 
algebra generated by cr± and cr3 subject to the above identities, with the Lie bracket 
being interpreted as [A, B] =  A B  — BA.

The ç-deformed algebra suq(2) is constructed by replacing <73 with another 

generator. Formally, it is thought of as S  =  q2a3, where q G C with the exceptions 
qzfi 0,1, — 1. The Lie bracket relations are replaced by the identities

X)2 _  2
[a+,c7_] =  4-------- —j—, £(J+ =  qcr+ £ , Ecr_ =  -ç c r _ £ . (3.2)

q - q  1

We can rewrite q — 1 +  2e and think of e as a small complex number. Then, formally 
at leading order in e, the substitution £  =  q?*73 =  1 +  £a3 -f 0 (e 2) reduces the
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deformed identities (3.2) to the standard Lie algebra relations (3.1). The associative 
algebra generated by <j±  and <73 subject to the deformed identities (3.2) is the algebra 
SUq( 2).

For generic q, that is, when q is not a root of unity, the finite-dimensional irre
ducible representations of su9(2) are classified by a half-integer, j  =  0, 1/ 2, 1, 3 /2 , . . . ,  
referred to as the spin, in direct analogy with the representations of su(2) and the 
theory of angular momentum. The dimension of the representation j  is 2j + 1 . When 
q =  exp(z7r /r ) is a 2rth root of unity (ROU), where r >  2 is an integer called the 
ROU parameter, the representations j  axe still defined, but become reducible for 
j  >  (r — 2)/2 . They decompose into a sum of representations with spin at most 
(r — 2)/2 and so-called trace 0 ones, whose nature will be explained below.

For the purposes of this paper we are concerned only with intertwiners between 
representations of sug(2), i.e., linear maps commuting with the action of the algebra, 
and their (quantum) traces1.

Any such intertwiner can be constructed from a small set of generators and 
elementary operations on them. These constructions, as well as traces, can be repre
sented graphically. Such graphs are called (abstract) spin networks. Their calculus is 
well developed and is described in [IS], whose conventions we follow throughout the 
paper with one exception: we use spins (half-integers) instead of twice-spins (inte
gers). A brief review of our notation and conventions can be found in the Appendix.

Trace 0 representations of suq(2) are so called because the trace of an intertwiner 
from such a representation to itself is always zero. Thus, they can be freely discarded, 
as they do not contribute to the evaluation of ç-deformed spin networks.

3.2.2 Applications of ç-deformat ion

Deformation, especially with q =  exp(in/r) a 2rth primitive ROU, is important for 
spin foam models for at least two reasons. Replacing q =  1 by some ROU can act as 
a regulator for a model whose partition function and observable values are otherwise 
divergent. Also, su9(2) spin networks1 2 naturally appear when considering a positive 
cosmological constant in loop quantum gravity.

1. When q =  1, this notion of trace reduces up to sign to the usual trace of a linear map, 
but is slightly different otherwise, cf. [10, Chapter 4].

2. These are graphs embedded in a 3-manifold, labelled by representations of suq(2). 
They are similar to but distinct from the abstract spin networks referred to above. See [4] 
for the distinction.
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The original Ponzano-Regge model [27] attempts to express the path integral for 
3-dimensional Riemannian general relativity as a sum over labelled triangulations of a 
3-manifold. The edges of the triangulation are labelled by discrete lengths, identified 
with spin labels of irreducible SU (2) representations. Each tetrahedron contributes a
6.7- symbol factor to the summand, normalized to ensure invariance of the overall sum 
under change of triangulation. Unfortunately, the Ponzano-Regge model turned out 
to be divergent. Motivated by the construction of 3-manifold invariants, Turaev and 
Viro were able to regularize the Ponzano-Regge model [1,31] by replacing the SU(2)
6.7-  symbols with their g-deformed analogs at a ROU g. The key feature of the regu
larization is the truncation of the summation to only the irreducible representations 
of su9(2) of non-zero trace, which leaves only a finite number of terms in the model’s 
partition function.

A version of the Barrett-Crane model, derived from a group field theory by 
De Pietri, Freidel, Krasnov and Rovelli [16] (DFKR for short), was also found to be 
divergent. A g-deformed version of the same model at a ROU q is similarly regularized 
(see section 3.3.2). Some numerical results for the regularized version of this model 
are given in section 3.5.2.

The argument linking g-deformation to the presence of a positive cosmological 
constant is due to Smolin [29] and is given in more refined form in [30]. It is briefly 
summarized as follows. Loop quantum gravity begins by writing the degrees of free
dom of general relativity in terms of an SU (2) connection on a spatial slice and the 
slice’s extrinsic curvature. A state in the Schrodinger picture, a wave function on 
the space of connections, can be constructed by integrating the Chern-Simons 3-form 
over the spatial slice. This state, known as the Kodama state, simultaneously satisfies 
all the canonical constraints of the theory and semiclassically approximates de Sit
ter spacetime, which is a solution of the vacuum Einstein equations with a positive 
cosmological constant. The requirement that the Kodama state also be invariant un
der large gauge transformations implies discretization of the cosmological constant, 
A ~  1/r, with r a positive integer. The coefficients of the Kodama state in the spin 
network basis are obtained by evaluating the labelled graph, associated to a basis 
state, as an abstract suq(2) spin network. Here the deformation parameter q is a 
ROU, q =  exp(z7r/r ), where the ROU parameter r is identified with the discretization 
parameter of the cosmological constant.

Given the heuristic link [4] between spin networks of loop quantum gravity and 
spin foams, it is natural to g-deform a spin foam model as an attempt to account 
for a positive cosmological constant. With this aim, Noui and Roche [23] have given
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a g-deformed version of the Lorentzian Barrett-Crane model. The possibility of q- 
deformation has been with the Riemannian Barrett-Crane model since its inception [8] 
and all the necessary ingredients have been present in the literature for some time. In 
the next section these details are collected in a form ready for numerical investigation.

3.3 Deformation of the Barrett-Crane model
' ' le t' o in ^rd?/ r s n u '  op’ wrvrl'

Consider a triangulated 4-manifold. Let A n denote the set of n-dimensional simplices 
of the triangulation. The dual 2-skeleton is formed by associating a dual vertex, edge 
and polygonal face to each 4-simplex, tetrahedron, and triangle of the triangulation, 
respectively. A spin foam  is an assignment of labels, usually called spins, to the dual 
faces of the dual 2-skeleton. Each dual edge has 4 spins incident on it, while each 
dual vertex has 10. A spin foam model assigns amplitudes A p, A p  and A y ,  that 
depend on all the incident spins, to each dual face, edge and vertex, respectively. 
The amplitude Z ( F )  assigned to a spin foam F  is the product of the amplitudes 
for individual cells of the 2-complex, while the total amplitude Zt0t assigned to a 
triangulation is obtained by summing over all spin foams based on the triangulation:

Z ( F ) =  n  AF{i) n  AE[e) n  (3.3)
f e  A2 eeA3 vgA4 F

Some models, such as those based on group field theory [16,17,24], also include a 
sum over triangulations in the definition of the total partition function.

3.3.1 Review of the undeformed model

The Riemannian Barrett-Crane model was first proposed in [8]. Its relation to the 
Crane-Yetter [15] spin foam model is analogous to the relation of the Plebanski [26] 
formulation of general relativity (GR) to 4-dimensional B F  theory with Spin(4) as the 
structure group. Both B F  theory and the Crane-Yetter model are topological and the 
latter is considered a quantization of the former [2]. In the Plebanski formulation, GR 
is a constrained version of B F  theory. Similarly, the Barrett-Crane model restricts 
the spin labels summed over in the Crane-Yetter model. With this restriction, Barrett 
and Crane hoped to produce a discrete model of quantum (Riemannian) GR.
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3.3.1.1 Dual vertex amplitude

All amplitudes are defined in terms of spin(4) spin networks. However, given the 
isomorphism spin(4) =  su(2) ©5u(2), all irreducible representations of spin(4) can be 
written as tensor products of irreducible representations of su(2). The Barrett-Crane 
model specifically limits itself to balanced representations, which are of the form j  <8>j, 
where j  is the irreducible representation of su(2) of spin j .  Since the tensor product 
corresponds to a juxtaposition of edges in a spin network, any spin(4) spin network 
may be written as an su(2) spin network where an edge labelled j  0  j  is replaced by 
two parallel edges, each labelled j .  To avoid redundancy of notation, we use a single 
j  instead of j  ® j  to label spin(4) spin network edges. We then distinguish them from 
su(2) networks by placing a bold dot at every vertex.

The Barrett-Crane vertex is an intertwiner between four balanced representa
tions:

(3.4)

The graphs on the right hand side of the definition are su(2) spin networks and the 
sum runs over all admissible labels e. The graphical notation and the conditions for 
admissibility are defined in the Appendix.

The above expression defines the Barrett-Crane vertex in a way that breaks 
rotational symmetry. However, it can be shown that the vertex is in fact rotation- 
ally symmetric. Up to normalization, this property makes the Barrett-Crane vertex 
unique [28]. The above formula defines a vertical splitting of the vertex. A ninety 
degree rotation will define an analogous horizontal splitting. Both possibilities are 
important in the derivation of the algorithm presented in section 3.4.1.

Given a 4-simplex v of a triangulation, the corresponding vertex of the dual 
2-complex is assigned the amplitude



This spin network is called the 10j-sym bol The 4-simplex v is bounded by five 
tetrahedra, which correspond to the vertices of the lOj graph. The four edges incident 
on a vertex correspond to the four faces of the corresponding tetrahedron; the spin 
labels are assigned accordingly. The edge joining two vertices corresponds to the 
face shared by corresponding tetrahedra. Evaluation of the 10j-symbol is discussed 
in section 3.4.1. While the crossing structure depicted above is immaterial in the 
undeformed case, it is essential at nontrivial values of q. It is given here for reference.
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3.3.1.2 Dual edge and face amplitudes

The original paper of Barrett and Crane did not specify dual edge and face ampli
tudes. Three different dual edge and face amplitude assignments were considered in 
a previous paper [7]. We concentrate on the same possibilities.

For the Perez-Rovelli model [25], we have

AF(f) = O -
AeW% 0 0 0 0 '

For the DFKR model [16], we have

Af V)  = O -

For the Baez-Christensen model [7],

^ f ( / )  =

A E(e)  = ---------)---------•

(3.6)

(3.7)

(3.8)

The bubble diagram, when translated into su(2) spin networks, corresponds to
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two bubbles (see Appendix)

(3-9)

and evaluates to (2j  +  l ) 2.
The so-called eye diagram simply counts the dimension of the space of 4-valent 

intertwiners, which is also the number of admissible e-edges summed over in equa
tion (3.4). In symmetric form, it is given by

J 1 +  m in{2j, s — 2 J }  if positive and s is integral, 

I 0 otherwise,
(3.10)

where s =  Ejfcifc. 3 =  mink j k, and J =  max k j k.

3.3.2 The g-deformed model

Thanks to graphical notation, the g-deformation of the spin foam amplitudes de
scribed above is straightforward, with only a few subtleties. The main distinction 
is that g-deformed graphs are actually ribbon (framed) graphs with braiding. Thus, 
any undeformed spin network has to be supplemented with information about twists 
and crossings before evaluation.

In [32], Yetter generalized the Barrett-Crane 4-vertex for a g-deformed version 
of spin(4). Since spin(4) =  su(2) © su(2), there is a two parameter family of possible 
deformations of the Lie algebra, sp ity y (4 ) =  suq(2) © s t y (2). Yetter singles out 
the one parameter family q' =  q~l , restricted to balanced representations, since it 
preserves the invariance of the Barrett-Crane vertex under rotations. This family also 
has especially simple curl and twist identities:

where the left factor of j  <8> j  corresponds to su9(2) and the right one to suç_ i(2 ), 
and the 3-vertex is the obvious juxtaposition of two suq{2) and su^_i(2) 3-vertices. 
Once this deformation is adopted, the ribbon structure can be ignored [32], so one
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only needs to specify the crossing structure for a given spin(4) spin network to obtain 
a well-defined g-evaluation.

There are three basic graphs needed to define the Barrett-Crane simplex am
plitudes: the bubble, the eye, and the lOj-symbol. The evaluation of the bubble 
graph, equation (3.9), is [2j  +  l]2, where the quantum integer [2j  -I- 1] is defined in 
the Appendix. Remarkably, the value of the eye diagram turns out not to depend 
on q and its value is still given by equation (3.10). The only exception is when q is 
a ROU with parameter r. Then, the dimension of the space of 4-valent intertwiners 

changes to

=  <

f

min <
1 +  min{2j, s -  27 } Ì

<

0\

r — 1 — max{2J, s -  2j}  J
if positive and 
s is integral,

otherwise,

(3.12)

where again s -  jk , j  =  mink j k, and J =  maxj^ jk.
The 10j-symbol is the only network with a non-planar graph. Originally, it was 

defined in terms of the 15.7-symbol from the Crane-Yetter model. This 15j-symbol 
was defined with g-deformation in mind, so its crossing and ribbon structure was fully 
specified [14, section 3]. Adapted to the lOj-graph, it can be summarized as follows: 
Consider a A-simplex. The dual 1-skeleton o f the boundary has five dual vertices and 
ten dual edges, and is the complete graph K§ on these five dual vertices. If we remove 
one o f the (non-dual) vertices from the boundary o f the A-simplex, what remains is 
homeomorphic to R 3. For any such homeomorphism, the embedding o f K§ into R3 
can be projected onto a 2-dimensional plane. The crossing structure of the 10j  graph 
is defined by such a projection. It is illustrated in equation (3.5). Although, with 
crossings, the lOj graph is no longer manifestly invariant under permutations of its 
vertices, it can be shown to be so.

3.3.3 Observables

The definition of observables in a spin foam model of quantum gravity is still open 
to interpretation (see section 6 of [7] for a brief discussion). For a fixed spin foam, 
the half-integer spin labels of its faces axe the fundamental variables of the model. 
Practically speaking, any observable of a spin foam model should be an expectation 
value of some function 0 ( F )  of the spin labels of a spin foam F,  averaged over all
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spin foams with amplitudes specified by equation (3.3):

< o >  =  £

F

Q { F ) Z ( F )

Ztot
(3.13)

■ ;r

In this paper we choose to concentrate on a few observables representative of 
the kind of quantities computable in a spin foam model. As before, fix a triangulation 
of a 4-manifold, let A 2 represent the set of its faces and let j  : A 2 —► { 0 ,1 /2 ,1 , . . . }  
be the spin labelling. We define:

J

(SJ)2(F)

A {F )

Cd{F)

1
1^21 E  u ( / ) i  i

/€  A2

E  ( U ( / ) i  -  < ^ »2 .
/€  A2

E  v w / ) i u ( / ) + i i ,
/€  A2

E
/ , / '€  A2

dist(/,// )=d

U ( /) l  U ( / ') l  -  U>2 
< ( W ) 2>

(3.14)

(3.15)

(3.16)

(3.17)

where [ft] denotes a quantum half-integer (see Appendix), | • | denotes cardinality, 
d ist(/, f ' )  denotes the distance between faces, and is a normalization factor (see 
below for the definition of distance and N¿). These observables represent average spin 
per face, variance o f spin per face, average area per face, and spin-spin correlation as 
a function of d.

The choice of observables given above is somewhat arbitrary. For instance, there 
are several subtly distinct choices for the expression for (ÔJ)2. Fortunately, they all 
yield expectation values that are nearly identical. The expression given above has the 
technical advantage of falling into the class of so-called single spin observables. These 
are observables whose expectation value can be directly obtained from the knowledge 
of probability with which spin j  occurs on any face of a spin foam. All of J, (ÔJ)2, 
and A  are single spin observables, while C^ is not.

Note that on a fixed triangulation with no other background geometry, there is 
no physical notion of distance. We can, instead, define a combinatorial analog. For 
any two faces /  and f '  of a given triangulation, let d ist(/, f ' )  be the smallest number 
of face-sharing tetrahedra that connect /  to / ' .  Given the discrete structure of our 
spacetime model, it is conceivable that this combinatorial distance, multiplied by a
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fundamental unit of length, approximates some notion of distance derived from the 
dynamical geometry of the spin foam model.

The correlation function may be thought of as analogous to a normalized 
2-point function of quantum field theory. The d-degree of face /  is the number of 
faces f '  such that d is t ( / , / ' )  =  d. If the d-degree of every face is the same, the 
normalization factor can be taken to be the number of terms in the sum (3.17), 
that is, the number of face pairs separated by distance d. This choice ensures the 
inequality \Ĉ \ <  1. If not all faces have the same d-degree, then the normalization 
factor has to be modified to

Nd =  IAj IA ,, (3.18)

where D^ is the maximum d-degree of a face, which reduces to the simpler definition 
in the case of uniform d-degree.

The choice of the ^-dependent expression \j'|, instead of simply using the half
integer j ,  is motivated in section 3.5.1. For some q, the argument of the square root 
in A (F)  may be negative or even complex. In that case, a branch choice will have to 
be made. Luckily, if q =  1, q is a ROU, or q is real, the expression under the square 
root is always non-negative.

3.4 Numerical simulation

The key development that made possible numerical simulation of variations of the 
(undeformed) Barrett-Crane model [6,7] is the development by Christensen and Egan 
of a fast algorithm for evaluating lOj-symbols [13]. In this section, we show how this 
algorithm generalizes to the ^-deformed case and discuss numerical evaluation of 
observables for the previously described spin foam models.

3.4.1 The q-deformation of the fast 10j  algorithm

The derivation of the Christensen-Egan algorithm given in [13] is contingent on the 
possibility of splitting the Barrett-Crane 4-vertex as in equation (3.4) and on the 
recoupling identity, equation (3.43) of the Appendix. Both identities still hold in the 
g-deformed case. The validity of the 4-vertex splitting was proved by Yetter [32] and 
the recoupling identity is a standard part of suq(2) representation theory.

The only remaining detail of the algorithm’s generalization is the crossing struc
ture of the 10j  graph, which was established in section 3.3.2. However, its only con
sequence is an extra factor from the twist implicit in the bubble diagram of section 4
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Figure 3.1: In reference to [13], (a) corresponds to equation (1), (b) corresponds to 
equation (2), while (c) and (d) correspond to the “ladder” and “bubble” diagrams 
of section 4, respectively. The illustrated twist introduces the explicitly g-dependent 
factor into equation (3.20).

of [13], cf. equation (3.50) o f the Appendix. We will not reproduce the derivation 
of the algorithm here. However, the way in which the twist arises is schematically 
illustrated in figure 3.1. Note that the triviality of the twist for Yetter’s balanced rep
resentations, equation (3.11), does not apply here since the twist occurs separately in 
distinct svLq (2) networks.

The algorithm itself can be summarized in the following form:

{10j} = ( - ) 2S £  </.tr[M4M3M2MiMo]. (3.19)
mi,m2

The lOj-symbol depends on the ten spins (i =  1,2, k — 0, . . . , 4 )  specified in 
equation (3.5). The overall prefactor depends on the total spin S =  and the
per-term prefactor is

0 =  ( - ) mi - m2[2m i +  l][2m 2 +  l ]gmi(mi + 1) - m2(m2+l).  (3.20)

The exponents of (—) and q are always integers. The M *. are matrices (not all of 
the same size) of dimensions compatible with the five-fold product and trace. Their
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matrix elements are

(M k) lk+1 _  
lk

(T i)ltk+1 =

[2ik +  i}{n )\ k+ \ T 2)\k+x

& (h ,k -lth + l> h ,k ) ÛÜ2,k+h ) ’

Tet

1------
gCN~

}k + 1 32,k-l 3l,k_

K h , k < k + v m )

(3.21)

(3.22)

The quantum integers [n], as well as the theta 0(a, b, c) and tetrahedral Tet[* • •] su9(2) 
spin networks are defined in the Appendix.

The quantities l*. and mi are spin labels (half-integers). They are constrained 
by admissibility conditions (parity conditions and triangle inequalities). The parity 
of each index is determined by the conditions

h  =  3l,k +  32,k =  3\,k-\ +  32,k-2> (3-23)

mi — lk +  32,k—1> (3.24)

for i =  1,2 and A; =  0 , . . . ,  4, where =  denotes equivalence mod 1 and the second 
subscript of j  is taken mod 5. Summation bounds are determined by the trian
gle inequalities, which must be checked for each trivalent vertex introduced in the 
derivation of the algorithm. They boil down to

1bz(jl,k*h ,k ii2 ,k -l) ^  ^  Jl,k +.72,*: +.72,jfc-l» (3.25)

-  h,k-2\  <  lk <  3 l,k -l  +  32,k-2> (3-26)

\jl,k ~  32,k\ < k  <  J l , k + h , f o  (3-27)

\ m -J 2 ,k -l\  < lk <  m i + 3 2 , k - h  (3-28)

for i =  1,2 and k — 0 , . . . ,  4, where we have used the notation

lb3(a, b, c) =  2 m ax{a, 6, c } — (a -f 6 -t- c). (3.29)

When q =  exp(z7r/r) is a ROU, extra inequalities must be taken into account to
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exclude summation over reducible representations. These are

m  >  ii,fc +  j 2,k +  h ,k - i  -  (r -  2), (3.30)

mi <  ub3 (ji'k. j 2,k> h ,k -l) +  (r -  2). (3.31)

¿Jfc <  (r — 2) — (Jl,k +  32,k)t (3.32)

Ik̂  (r  _  2) -  O l,k -l  +  h,k-2)> (3.33)

(3.34)

where now
ub3(a, b, c) =  2 min{a, b, c } — (a +  b +  c).

If any of the parity constraints or inequalities cannot be satisfied, the lOj-symbol 
evaluates to zero.

This algorithm has been implemented and tested in the q =  1 and ROU 
cases, for both j  and r up to several hundreds. Unfortunately, for generic q, when 
Q  =  max{|g|, |g|- 1 }  >  1, the quantum integers grow exponentially as \[n]\ ~  Qn. 
Such a rapid growth makes the sums involved in this algorithm numerically unsta
ble. It is still possible to use this algorithm with Q close to 1 or symbolically, using 
rational functions of q instead of limited precision floating point numbers. Symbolic 
computation is, however, significantly slower (by up to a factor of 106) than its float
ing point counterpart. The software library spinnet which implements these and 
other spin network evaluations is available from the authors and will be described in 
a future publication.

3.4.2 Positivity and statistical methods

The sums involved in evaluating expectation values of observables, as in equation (3.13), 
are very high-dimensional. For instance, a minimal triangulation of the 4-sphere (seen 
as the boundary of a 5-simplex) contains 20 faces. Hence, any brute force evalua
tion of an expectation value, even on such a small lattice, involves a sum over the 
20-dimensional space of half-integer spin labels.

Fortunately, in the undeformed case, the total amplitude Z ( F ) for a closed spin 
foam is never negative3 [5]. The proof for the q =  1 case generalizes to the ROU 
case. One need only realize two facts. The first is that, in the ROU case, quantum 
integers are non-negative. The second is that, for q a ROU, an su^_i(2) spin network

3. We expect the same thing to hold in Lorentzian signature [5,12].
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evaluates to the complex conjugate of the corresponding suq{2) spin network. The 
disjoint union of any two such spin networks evaluates to their product, the absolute 
value squared of either of them, and hence is non-negative. Then, the same positivity 
result follows as from equation (1) of [5]. This positivity allows us to treat Z( F)  as 
a statistical distribution and use Monte Carlo methods to extract expectation values 
with much greater efficiency than brute force summation.

The main tool for evaluating expectation values is the Metropolis algorithm [20, 
22]. The algorithm consists of a walk on the space of spin labellings. Each step is 
randomly picked from a set of elementary moves and is either accepted or rejected 
based on the relative amplitudes of spin foam configurations before and after the 
move. An expectation value is extracted as the average of the observable over the 
configurations constituting the walk. Elementary moves for spin foam simulations are 
discussed in the next section.

A Metropolis-like algorithm is possible even if individual spin foam amplitudes 
Z ( F )  are negative or even complex. However, if the total partition function Zt0t sums 
to zero, then the expectation values in equation (3.13) become ill defined. Moreover, 
in numerical simulations, if Zt0t is even close to zero, expectation value estimates may 
exhibit great loss of precision and slow convergence. In the path-integral Monte Carlo 
literature, this situation is known as the sign problem [11]. Still, the sign problem 
need not occur or, depending on the severity of the problem, there may be ways of 
effectively dealing with it.

Independent Metropolis runs can be thought of as providing independent es
timates of a given expectation value. Thus, the error in the computed value of an 
observable can be estimated through the standard deviation of the results of many 
independent simulation runs [19].

3.4.3 Elementary moves for spin foams

The choice of elementary moves for spin foam simulations must satisfy several criteria. 
Theoretically, the most important one is ergodicity. That is, any spin foam must 
be able to transform into any other one through a sequence of elementary moves 
which avoid configurations with zero-amplitude. Practically, it is important that 
these moves usually preserve admissibility. A  spin foam F  is called admissible if the 
associated amplitude Z{ F)  is non-zero. If, starting with an admissible spin foam, 
most elementary moves produce an inadmissible spin foam, the simulation will spend 
a lot of time rejecting such moves without any practical benefit.



As before, consider a fixed triangulation of a compact 4-manifold. The parity 
conditions (3.23) imposed on the

h ,k  +  h tk =  +  J2,k-2, 0 <   ̂ <  4,
\

when taken together with the total spin foam amplitude (3.3), provide strong con
straints on admissible spin foams. One can show that a move that changes spin labels 
by ± 1 /2  (mod 1) on each face of a closed surface in the dual 2-skeleton preserves the 
parity constraint. Essentially, the problem of finding a set of ergodic moves for the 
space of admissible spin foams boils down to finding a basis for the space of closed
2- chains with integer coefficients on the dual 2-skeleton. We take as the elementary 
moves the moves that change the spin labels by ± 1 /2  on the boundaries of the dual
3- cells of the dual 3-complex; the dual 3-cells correspond to the edges of the trian
gulation. If the manifold has non-trivial mod 2 homology in dimension 2, additional 
moves would be necessary for ergodicity, but for the examples we consider the moves 
above suffice. From a practical point of view, extra moves might improve the simu
lation’s equilibration time. For instance, in the ROU case, parity preserving moves 
that change the spins from 0 to (r — 2 )/2  or (r -  3) /2 were introduced, since spins 
close to either admissible extreme may have large amplitudes. This property of the 
Perez-Rovelli and Baez-Christensen models is illustrated in the following section.

Unfortunately, the inequalities constraining spin labels do not have a similar 
geometric interpretation and cannot be used to easily restrict the set of elementary 
moves in advance.
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3.5 Results

Using methods described in the previous section, we ran simulations of the three 
variations of the Barrett-Crane model described in section 3.3 and obtained expecta
tion values for observables listed in section 3.3.3. While previous work [7] performed 
simulations only on the minimal triangulation of the 4-sphere, which we will refer 
to simply as the minimal triangulation, we have extended the same techniques to 
arbitrary triangulations of closed manifolds.

3.5.1 Discontinuity of the r —► oo limit

The most striking result we can report is a discontinuity in the transition to the limit 
r —> oo, where r, a positive integer, is the ROU parameter with q =  exp(z7r/r). As
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Figure 3.2: (a) Single spin distribution and single bubble amplitude for the Baez- 
Christensen model. The distribution was obtained from 109 steps of Metropolis sim
ulation on a triangulation with 202 faces (cf. section 3.5.3). (b) Some single spin 
observables as functions of j ,  with r =  50.

r —> oo, the deformation parameter q tends to its classical value 1. If we interpret 
the cosmological constant as inversely proportional to r, A ~  1 /r, this limit also 
corresponds to A —♦ 0, through positive values. For a fixed spin foam, the amplitudes 
and observables we study tend continuously to their undeformed values as r —► oo. 
However, we find that observable expectation values do not tend to their undeformed 
values in the same limit, that is, ( 0 ) r ( 0 ) 9=1 as r —> oo.

The discontinuity is most simply illustrated with the single spin distribution, 
that is the probability of finding spin j  at any spin foam face. This probability can 
be estimated from the histogram of all spin labels that have occurred during a Monte 
Carlo simulation. The points in figure 3.2(a) show the single spin distributions for the 
Baez-Christensen model with r =  50 and q — 1. The curves show the corresponding 
single bubble amplitude. It is the amplitude Z(Fj) of a spin foam Fj with all spin 
labels zero, except for the boundary of an elementary dual 3-cell, whose faces are all 
labelled with spin j .  The amplitudes and distributions are normalized as probability 
distributions so their sums over j  yield 1. The similarity between the points and 
the continuous curves is consistent with the hypothesis that spin foams with isolated 
bubbles dominate the partition function sum. The behavior of the single spin dis
tribution for the Perez-Rovelli model is very similar, except that its peaks are much 
more pronounced.

Note that the undeformed single spin distribution has a single peak at j  — 0, 
while the r =  50 case has two peaks, one at j  =  0 and the other at j  — (r — 2)/2 , the 
largest non-trace 0 irreducible representation. The bimodal nature of the single spin 
distribution has an important impact on the large r behavior of observable expectation
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Figure 3.3: Observables for the Baez-Christensen (BCh) and Perez-Rovelli (PR) mod
els as functions of the ROU parameter r. For large r, observables do not in general 
tend to their undeformed, q =  1, values; arrows show the deviation. Some observables 
were scaled to fit on the graph. Data is from Metropolis simulations on the minimal 
triangulation.

values, as is most easily seen with single spin observables (section 3.3.3). For instance, 
if we consider the average, j ,  of the half-integers j ,  the large j  peak would dominate 
the expectation value and (j)  would diverge linearly in r, as r —> oo. On the other 
hand, since J is the average of the quantum half-integers [ j ] ,  (J) at least approaches 
a constant in the same limit. This is illustrated in figure 3.2(b).

However, as shown in figure 3.3, this limit is not the same as the undeformed 
expectation value. At the same time, as can be seen from the plot of the Perez- 
Rovelli average area in the same figure, there are some observables whose large r 
limits are at least very close to the undeformed values. The area observable summand 
Aj =  v T m T T I T  is exactly zero at both j  =  0 and j  — (r — 2)/2 , while the spin 
observable summand Jj =  [j] is zero at j  =  0 but still positive at j  =  (r — 2)/2, 
figure 3.2(b). The large j  peak of the Perez-Rovelli model is very narrow and thus 
the expectation value of a single spin observable is strongly influenced by its value at 
j  =  ( r - 2 ) / 2 .  —

The data for larger triangulations is qualitatively similar.
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Figure 3.4: Single spin distributions and single bubble amplitudes for the DFKR 
model. The distributions were obtained from 109 steps of Metropolis simulation on 
the minimal triangulation and on a triangulation with 202 faces (cf. section 3.5.3).

3.5.2 Regularization of the DFKR model

As expected, the ROU deformation of the DFKR model yields a finite partition func
tion and finite expectation values. For instance, its single spin distribution for r =  40 
is illustrated in figure 3.4. The divergence of the amplitude for large spins in the 
undeformed, q =  1, case makes numerical simulation impossible without an artificial 
spin cutoff. Thus, we do not have an undeformed analog of the single spin distribu
tion. For the minimal triangulation, the ROU spin distribution deviates slightly from 
the single bubble amplitude close to the boundaries of admissible j .  For the larger 
triangulation, the deviation is much more pronounced and is not restricted to the 
edges. This suggests that there are other significant contributions to the partition 
function besides single bubble spin foams.

Note the large weight associated with spins around j  =  r/4. Around this value 
of j , both the area Aj =  y/[j] |_j  + l l  and the spin Jj =  [j] attain their maximal 
values and are proportional to r. Thus, it is natural to expect their expectation values 
to grow linearly in r, which is consistent with the divergent nature of the undeformed 
DFKR model. This is precisely the behavior shown in figure 3.5. On the minimal 
triangulation, the best linear fits for the average spin expectation value and for the
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Figure 3.5: Observables for the DFKR model: area (A),  average spin (J),  spin stan
dard deviation y<((<5J)2). Metropolis simulation, minimal triangulation. Error bars 
are smaller than the data points.

square root of the average spin variance are

(J)r =  0.146 r -  0.064, (3.35)

( ( « J » ) 1'*  =  0.014 r +  0.187. (3.36)

For larger triangulations, the dependence of these observables is also approximately 
linear in r, with only slight variation in the effective slope.

3.5.3 Spin-spin correlation

The ability to work with larger lattices allows us to explore a broader range of observ
ables. One of them is the spin-spin correlation function Cd defined in section 3.3.3. 
In general (Co) =  1 and (C^) —> 0 for large d. The decay of the correlation shows how 
quickly the spin labels on different spin foam faces become independent. A positive 
value of (Crf) indicates that, on average, any two faces distance d apart both have 
spins above (or both below) the mean (J ). On the other hand, a negative value of 
(Cd) indicates that, on average, any two faces distance d apart have one spin above 
and one below the mean (J).
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Figure 3.6: Spin-spin correlation functions for the Baez-Christensen (BCh), Perez- 
Rovelli (PR) and DFKR models, on the minimal triangulation (6 vertices, 15 edges, 
20 faces, 15 tetrahedra, and 6 4-simplices) as well as a larger triangulation (23 vertices, 
103 edges, 202 faces, 200 tetrahedra, and 80 4-simplices). ROU parameter r =  10.

A small triangulation limits the maximum distance between faces. For example, 
the minimal triangulation has maximum distance d — 3. Larger triangulations of 
the 4-sphere were obtained by refining the minimal one by applying Pachner moves 
randomly and uniformly over the whole triangulation. We restricted the Pachner 
moves to those that did not decrease the number of simplices.

The largest triangulation we have used has maximum distance d — 6. Its 
correlations for different models are shown in figure 3.6 along with those from the 
minimal triangulation. Correlation functions for different values of ROU parameter 
r (including the q =  1 case) and other triangulations are qualitatively similar.

Notice the small negative dip for small values of d for the Perez-Rovelli and 
Baez-Christensen models. As discussed in previous sections, the partition functions 
of these models are dominated by spin foams with isolated bubbles. The correlation 
data is consistent with this hypothesis. The values of the spins assigned to faces of 
the bubble will be strongly correlated, while the values of the spins on two faces, one 
of which lies on the bubble and the other does not, should be strongly anti-correlated. 
Since a given face usually has fewer nearest neighbors that lie on the same bubble than 
that do not, on average, the short distance correlation is expected to be negative. At 
slightly larger distances, the correlation function turns positive again. This indicates
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that on a larger triangulations, spin foams with several isolated bubbles contribute 
strongly to the partition function. Although, with so few data points, it is difficult 
to extrapolate the behavior of the correlation function to larger triangulations and 
distances, its features are qualitatively similar to that of a condensed fluid, where theN
density-density correlation function exhibits oscillations on the scale of the molecular 

dimensions.
Note that the behavior of the DFKR correlation function is significantly differ

ent from the other two. This is also consistent with the already observed fact that its 
partition function has strong contributions from other than single or isolated bubble 
spin foams.

3.6 Conclusion

We have numerically investigated the behavior of physical observables for the Perez- 
Rovelli, DFKR, and Baez-Christensen versions of the Barrett-Crane spin foam model. 
Each version assigns different dual edge and face amplitudes to a spin foam, and these 
choices greatly affect the behavior of the resulting model. The behavior of the models 
was also greatly affected by g-deformation.

The limiting behavior of observables was found to be discontinuous in the limit 
of large ROU parameter r, i.e., q =  exp(z7r/r) close to its undeformed value of 1. 
This result is at odds with the physical interpretation of the relation A ~  1 /r  be
tween the cosmological constant A and the ROU parameter. Finally, the behavior 
o f the examined physical observables, especially of the spin-spin correlation func
tion, indicates the dominance of isolated bubble spin foams in the Perez-Rovelli and 
Baez-Christensen partition functions, while less so for the the DFKR one.

Some questions raised by these results deserve attention. For instance, it is 
not known whether the same q —>► 1 limit behavior will be observed when q is taken 
through non-ROU values. While calculations with max{|ç|, |g|- 1 } >  1 are numeri
cally unstable, they should still be possible for |g| ~  1.

Another important project is to perform a more extensive study of the effects 
o f triangulation size in order to better understand the semi-classical limit.

Finally, all of this work should also be carried out for the Lorentzian models, 
which are physically much more interesting but computationally much more difficult.

These and other questions will be the subject of future investigations.
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3.A  Spin network notation and conventions

Quantum integers are a g-deformation of integers. For an integer n, the corresponding 
quantum integer is denoted by [n] and is given by

an -  n~n
M  =  n L  • (3-37)q - q  1

In the limit q —* 1, we recover the regular integers, [n] —► n. Note that [n] is invariant 
under the transformation q t—> g- 1 . When q =  exp(z7r/r) is a root of unity (ROU), 
for some integer r >  1, an equivalent definition is

sin(n7r/r) 
sin(7r/r)

This expression is non-negative in the range 0 <  n <  r. Quantum factorials are 
defined as

[n]! =  [1][2] • • • [n]. (3.39)

In many cases, g-deformed spin network evaluations can be obtained from their unde
formed counterparts by simply replacing factorials with quantum factorials. For con
venience, when dealing with half-integral spins, we also define quantum half-integers 
as

l / l  =  (3-40)

when j  is a half-integer.
Abstract suq{2) spin networks can be approached from two different directions. 

They can represent contractions and compositions of sug(2)-invariant tensors and 
intertwiners [10]. At the same time, they can represent traces of tangles evaluated 
according to the rules of the Kauffman bracket [18]. Either way, the computations 
turn out to be the same. We present here formulas for the evaluation of a few spin 
networks of interest.
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The single bubble network evaluates to what is sometimes called the superdi

mension of the spin- j  representation:

0 - H * e y  +  i]. (3-4i)

(As in the rest of the paper, the spin labels are half-integers.)
Up to a constant, there is a unique 3-valent vertex (corresponding to the 

Clebsch-Gordan intertwiner) whose normalization is fixed up to sign by the value 
of the 9-network:

( - ) 5[s +  l]![s — 2a]![s -  26]![s -  2c]! 
[2a]! [26]! [2c]!

(3.42)

where s =  a +  6 +  c. The 0-network is non-vanishing, together with the three-vertex 
itself, if and only if s is an integer and the triangle inequalities are satisfied: a <  6 +  c, 
b <  c +  a, and c <  a +  b. In addition, when q is a ROU, one extra inequality must be 
satisfied: s <  r — 2. The triple (a, 6, c) of spin labels is called admissible if 9(a, 6, c) 

is non-zero.
The recoupling identity gives the transformation between different bases for the 

linear space of 4-valent tangles (or intertwiners):

(—)2e[2e +  l]T et
a

c

b e 
d f

9(a, d, e ) 0(c, 6, e)
(3.43)

where the sum is over all admissible labels e and the value of the tetrahedral network 
is

b e 
d f

I !  ^  R S [S +  1]! (3.44)

e



56

where

V. =  l i f e  -  Oil! 
i j

o>\ — { cl +  d e)

£\ =  [2A]\[2B]\[2CH[2D]\[2E\\{2F}\ (3.45)

b\ =  (6 d +  e +  / ) (3.46)

02 =  (5 +  c +  e) h  =  {a +  c +  e +  f ) (3.47)

a3 =  (a +  5 +  / ) &3 =  (a -4- b +  c +  d) (3.48)

04 =  (c +  d +  / ) m  =  max{a^} M  =  m in{6j } . (3.49)

Due to parity constraints, the â , bj, m, M , and S' are all integers.
Since the three-vertex is unique up to scale, its composition with with a braiding 

applied to two incoming legs yields a multiplicative factor:

a

^_^a+6-c^a(a+l)+6(6+l)-c(c+l)

b

c

(3.50)

Note that the above braiding factor is not invariant under the transformation q i-> 
<7- 1 , while the bubble, tetrahedral and 0-networks are all invariant under this trans
formation, by virtue of their expressions in terms of quantum integers.

y
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Chapter 4
Evaluation of new spin foam vertex

amplitudes

4.1 Introduction

Spin foam models are an attempt to produce a theory of quantum gravity starting 
from a discrete, path integral-like approach. They were first defined a decade ago 
[4,8]. More recently, we have seen significant progress toward extraction of their 
semiclassical behavior and its favorable comparison to the expected weak field limit 
o f gravity, starting with Rovelli and collaborators’ calculation of the graviton prop
agator [25,29]. Unfortunately, further calculations have revealed that the standard 
spin foam model due to Barrett and Crane produced incorrect results for some of 
the propagator matrix elements [1,2]. This result has motivated several proposals 
to replace the Barrett-Crane (BC) spin foam vertex amplitude [8] for quantum grav
ity. The first proposal, by Engle, Pereira and Rovelli (EPR) [16,17], aimed also 
to identify the spin foam boundary state space with that of loop quantum gravity 
spin networks; this model is also referred to as the “flipped” vertex model. Another 
proposal, by Livine and Speziale [23,24], used SU (2)-coherent states to define the 
spin foam amplitudes and reproduced the EPR proposal up to an edge normalization 
factor. Finally, a paper by Freidel and Krasnov [18], suggested that the EPR model 
corresponds to a topological theory related to gravity and proposed a generalization 
thereof corresponding to gravity itself (the FK model). The present paper, along with 
most previous work, concerns only the Riemannian signature models of gravity.

Section 4.2 briefly introduces spin foam models and presents the three models 
described above in a unified framework. Section 4.3 describes an efficient algorithm for 
numerical evaluation of vertex amplitudes of the new models, extending the existing 
Christensen-Egan algorithm for the BC model. In section 4.4, the different spin foam 
models are compared at the level of effective vertex amplitudes. Finally, section 4.5 
briefly discusses the results of section 4.4 and future work.
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The new spin foam models of gravity may be presented in a way similar to the 
original BC model. Following Freidel and Krasnov [18], we define them within a 
unified framework. See also the more recent paper [14].

The starting point is B F  theory. It is a 4-dimensional field theory with two 
fields: a gauge connection 1-form A  and an auxiliary 2-form B. The action is given

by ' r S =  ti[B  A F], (4.1)

where F  =  dA is the curvature of the connection. If the gauge group is taken to be 
Spin{4), the double cover of 5 0 (4 )  and a constraint is imposed, ensuring simplicity1 
of the B  2-form, this theory becomes equivalent to the Plebanski formulation of 
general relativity in Riemannian signature [8].

B F  theory is in a sense topological. Particularly, its underlying manifold may 
be freely changed from a smooth one to a discretized (piecewise linear) one. Moreover, 
for B F  theory, quantization and discretization commute [3]. Spin foam models aim 
to reproduce gravity by heuristically imposing simplicity constraints on B F  theory 
after the discretization and quantization steps have been performed [5]. The con
nection between spin foams and gravity is motivated by results from loop quantum 
gravity [28].

Consider B F  theory defined on a simplicial complex, also referred to as a trian

gulation. It is convenient to introduce the dual 2-complex. Each 4-simplex is identified 
with a dual vertex, each tetrahedron is identified with a dual edge, and each triangle 
is identified with a dual face. Discretizing the A  and B  fields and integrating out 
the B  field, the theory’s path integral yields the following expression for its partition 
function:

Z = “ f d A d B e iS ” =  f d s H ^ S / ) - (4.2)

where the connection A  has been replaced by group elements g associated to every 
dual edge, and g* represents the holonomy around a dual face. This form of the 
partition function manifestly shows that only flat geometries (with trivial holonomies) 
contribute to the B F  theory path integral. See [26] for details.

The ¿-functions can be expanded in terms of gauge group characters and the 
group integrations can be performed at each dual edge. What remains is a discrete

1. Simplicity means that there exists a 1-form e such that B =  e A e.
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sum of the form

Z  =  ' Z U A f ( F ' ) I [ M F ) U A ^ F ) ,  (4.3)
F  f  e v

where F  ranges over all spin foams, while / ,  e, and v range respectively over dual 
faces, dual edges, and dual vertices. In this context, a spin foam is a labelling of 
the dual faces of the triangulation by irreducible representations of the gauge group. 
These representation labels come from the character expansion described above. This 
definition of spin foams will have to be augmented with extra labels for the purpose 
of introducing the new models.

Irreducible representations of Spin(4) =  SU (2) x SU (2) are labelled by a pair 
of integers j  =  ( j ~ } j + ), where each j  is a spin, corresponding to an irreducible 
representation of SU (2). Hence forth, all representation labels will be referred to as 
spins, unless otherwise specified.

For pure B F  theory, face amplitudes are determined by the character expansion 
of (5-functions and are given by the dimension of the irrep j  labelling a given face

A f(F )  =  d im j f  =  { j f  + 1 )0 +  + 1 ) . (4.4)

Edge and vertex amplitudes are determined by evaluating the group integrals in 
equation (4.2). The basic identities we use are

/  d9 - - O O O O -  =

J

/<>»' OOOO

I As Yttt

(4.5)

The above graphical notation requires some explanation. See [26] and the Appendix of 
[11] (also chapter 2 of this thesis) for full details. Briefly, a vertical strand represents 
a matrix element of a particular representation of the gauge group. Most of the 
representation and basis labels have been omitted for conciseness. Instead, some spins 
will be marked as collective labels with an asterisk. Their expanded meaning should 
be clear from context. Concatenation of strands corresponds to matrix multiplication, 
or equivalently to contracting basis indices of matrix elements. Juxtaposition of 
strands corresponds to the Kronecker product of the associated matrix elements, or
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equivalently to the tensor product o f the given representations. The blank and primed 
circles convey whether it is the group element g or g' that is taken in the given 
representation. The horizontal dotted line represents the triangulation tetrahedron 
dual to the dual edge to which the given group element is associated.

The first equality in (4.5) follows directly from the normalization of the Haar 
group measure, its invariance under translations and the multiplicative property of 
representation matrix elements. In this context, group integration is also known to 
produce a projection operator onto the space of intertwiners among the representa
tions given by the four strands. The last equality in (4.5) illustrates this identity 
by expanding this projector in a basis of normalized intertwiners; the bracketed spin 
network provides correct normalization in the denominator of the expression. The 
summation over the new intertwiner basis labels i and i' make up the sums over dual 
edge labels (part of the summation over spin foams), part of the sum over spin foams 
in (4.3). Performing the same group integration and intertwiner expansion over all 
dual edges of the triangulation, we can read off the edge and vertex amplitudes of 
equation (4.3).

Thus, for discrete B F  theory, writing all tensor contractions in terms of spin 
networks we find these amplitudes to be

The topology of the contraction graph corresponding to A v above follows directly 
from the adjacency structure of the dual 2-complex. We shall refer to this graph as 
the pent graph; it will appear in the vertex amplitude definition of each spin foam 
model discussed later in this section. Both the edge and vertex amplitudes, A e and 
A v , appear with full spin labelling. For conciseness, most of the spin labels will be 
suppressed or represented schematically, as in equation (4.5), in the rest of the paper.

Starting from this basic setup, new models may be obtained by modifying the 
partition function directly, by changing amplitudes at the level of equation (4.3), or 
at an intermediate level, by modifying the integrand in equation (4.5). We present 
the new models following the last approach.
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4.2.1 Gravity, Barrett-Crane and new models

The Barrett-Crane (BC) model starts with the quantized B F  theory path inte
gral (4.3) and imposes restrictions on the spin foam summation in equation (4.3). 
These restrictions heuristically correspond to imposing the simplicity constraints on 
the B  field [8]. The restriction is twofold. First, the Spin(4) representations are 
restricted to balanced ones j  =  ( j , j ) ,  where j~  =  j + =  j .  Second, the intertwiner 
summation and edge weights of equation (4.5) are modified such that the z-sums 
contain only a single term corresponding to the so-called BC 4-valent intertwiner.

The BC model amplitudes are given in section 4.2.2.1. The evaluation of this 
vertex amplitude is discussed in several papers [6,7,12,21], where variations on the 
face and edge amplitudes have also been considered.

I l i a ' l l '  C O * M  )Tl ( j l  i \ I ■ • **( ‘• ' ‘ i  ) J  » < . S / /  ) 1 T T * f ’ *
Recently, shortcomings of the BC model have been identified by several authors. 

Specifically, while this vertex amplitude correctly reproduced the asymptotic behavior 
of some graviton propagator matrix elements, it does not do so for all of them [1,2, 29]. 
Modified spin foam models, referred to here as new models, have been subsequently 
proposed with the hope of overcoming these difficulties. The model proposed by 
Engle, Pereira, and Rovelli (EPR) [16,17] and by Livine and Speziale [23,24] had 
the common motivation of identifying its boundary state space with the space of 
spin network states of loop quantum gravity. The model proposed by Freidel and 
Krasnov (FK) [18] was derived in a similar fashion, but made different choices while 
imposing the simplicity constraints. As a result, the FK model’s boundary state 
space is different from that of the EPR one. More recently, Conrady and Freidel have 
discussed in more detail the boundary state space of the FK model [14].

4.2.2 Model framework

The BC, EPR, and FK models may be presented within the same framework, fol
lowing [18]. We briefly present this framework and how each model is realized in 
it.

The first step, compared to B F  theory, as above, is to restrict the Spin(4) 
representations to balanced ones, j  =  (j, j ) .

Consider a single strand from the double integral in equation (4.5). It depicts 
the product of two linear operators, corresponding to group elements g and g', in 
the Spin(4) irrep j .  One could always insert the identity operator between g and g' 
without changing anything. On the other hand, inserting a different linear operator 
in the same place will produce different results. Keeping with the goal of identifying
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the ¿-intertwiners in (4.5) with the SU (2) intertwiners in loop quantum gravity spin 
networks, instead of inserting an arbitrary linear operator, we insert only an arbitrary 
SU (2) intertwiner, in the following sense.

Because of the decomposition Spin(4) =  SU (2) x SU (2), a balanced irrep of 
Spin(4) can be written as the tensor product of two copies of an SU (2) irrep, j  =  
j  <s> j .  Seen as a tensor product of two SU (2) reps, using Clebsch-Gordan rules, it 
can be decomposed into a direct sum of SU{2) representations 0, 2, . . . ,  2j .  This 
decomposition is not unique, since one is possible for each diagonal 5C/(2)-subgroup 
of Spin(4). However, each such choice is equivalent because of the group integrals 
surrounding the operator insertion; ultimately, spin foam amplitudes are independent 
of the choice. By inserting an SU (2) intertwiner, j  <g> j  —► j  ® j } between g and g\ 
we essentially insert a linear combination of projections onto the SU (2) irreducible 
invariant subspaces:

(4.7)

where the Cjk are arbitrary weight factors, the trivalent vertex corresponds to the 
Clebsch-Gordan tensor. The extra coefficients are necessary, in our choice of normal
ization, for the Clebsch-Gordan decomposition of the j  ® j  representation. The spin 
network conventions and normalizations used in this paper are those of [10,20]. Their 
relation to SU (2)-tensor contractions is presented in detail in the Appendix of [11] 
(also chapter 2 of this thesis). Note that the intermediate spin2 is always even and

I ' • }

so can be written as 2k for integer k.

Consider just a single Clebsch-Gordan projector insertion for each of the strands 
in (4.5), as show in (4.7), and concentrate only on the part of that equation below 
the dotted line. The same calculation will have to be done above the dotted line, 
that is on both sides of each tetrahedron in the triangulation. The Spin(4) group 
integral can be written as an integral over two copies of SU (2), where g =  (p- ,p + ). 
The matrix elements of g in a balanced representation j  will be an outer product of * l

2. The notation of this paper differs from reference [18], as Freidel and Krasnov use 
half-integral spins, while we use integral twice-spins to label SU(2) irreps. In the present 
notation, their j  becomes j/2, but their k does coincide numerically with our k. Also, their
l corresponds to i introduced in equation (4.8).
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matrix elements of g and g+ in representation j  (circles with -  and + , respectively):

2k*

<n> /T K  A l \  ¿ >
r ' f  r  r

(4.8)

Summations over the intertwiners again follow directly from the property that 
group integration is equivalent to projection onto the space of intertwiners between 
the four j  representations (j-spins). The extra summation over the i intertwiners can 
be inserted because the Clebsch-Gordan projectors map each pair of intertwiners 
into the subspace of intertwiners between the four 2k representations (k-spins). These 
intertwiners can be conveniently parametrized, as depicted, by an even integer 2i (i- 
spins)3.

The open spin networks at the bottom of the right hand side of (4.8) join with 
other similar spin networks and form left (—) and right (+ ) pent networks, which 
will contribute to the corresponding vertex amplitude. These are spin networks with 
topology shown in (4.13), obtained by substitution of i~  and i+ intertwiners into the 
pent graph of equation (4.6). The open spin network at the top of the same expression 
joins with its mirror image above the dotted line and contributes to the corresponding 
edge amplitude. With the exception of the tripetal spin network4 located at the center 
of the diagram on the right of (4.8), all spin networks appearing so far have known 
evaluations. They have come up in the evaluation of the BC vertex amplitude and 
have been explicitly computed using recoupling techniques from [10,20]. The tripetal 
spin network will be evaluated in section 4.3.

To completely define each of the three models under consideration, it remains 
only to specify the dual 2-skeleton spin foam labelling and the weight factors Cjk

3. It should be noted that reference [16] uses half-integral spins, while we use integral
twice-spins to label SU(2) irreps. However, Engle, Pereira and Rovelli’s definitions for i- 
and j-spins numerically coincide with ours.

4. This spin network was first introduced in equation (5) o f [16].
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in (4.7). The face, edge and vertex amplitudes are then specified by the preceding 
construction (see section 4.3 for an important caveat). Most generally, in this frame
work, the spin foams summed over in the partition function (4.3) assign a j -spin to 
each dual faces, an ¿-spin to each dual edges, and a fc-spin to each dual edge-dual face 
pair. However, the number of labels may be reduced in special cases.

While this presentation is convenient for computational purposes, it hides some 
of the motivation from the derivation of these models. More physical insight for each 
model can be found in the original references.

4.2.2.1 BC model

In the Barrett-Crane model, the faces of the dual 2-complex are labelled by j-spins. 
The choice of intertwiner insertion weights are Cj^ =  0 (k ±  0), and Cjq — 1),
which is the value of the j -loop spin network. Each dual edge is shared by 4 dual 
faces, while each dual vertex is shared by 10 dual faces. The preceding construction 
specifies the following dual face, edge and vertex amplitudes:

A f(F )  =  ( j f  + 1)2, A e(F ) =  1, (4.9a)

Here the spin arguments are determined by the dual faces sharing the given cell of the 
2-skeleton. Specifically, the vertex amplitude depends on 10 spins, hence its name, 
the BC lOj-symbol. It is important to note that different edge and face amplitudes 
have been proposed for the BC model as well [7,15,27].
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4.2.2.2 EPR model

In the Engle-Pereira-Rovelli model, the dual faces are labelled by j-spins, and dual 
edges are labelled by z-spins [cf. (4.8)]. The weights are %  =  i  and Cjk =  0 for 
k ^  j .  Each dual edge is shared by 4 dual faces, while each dual vertex is shared 
by 10 dual faces and 5 dual edges. The preceding construction specifies the following 
dual face, edge and vertex amplitudes:

Af(F)  =  ( j f  + 1)2- M F )  = ------------ — --------- , (4.10a)
© ©

(4.10b)

(4.10c)

Here the spin arguments are determined by the dual faces and edges sharing the given 
cell of the 2-skeleton. Specifically, the vertex amplitude depends on the 10 j -spins 
from the dual faces sharing it, as well as the 5 z-spins from the incident dual edges, 
hence it may be called the EPR 15ji-symbol. The same vertex amplitude was derived 
in [16] and [24], although the former reference was not specific about face and edge 
amplitudes.
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In the Freidel-Krasnov model, the dual faces are again labelled by spins, denoted j , 
and dual edges are also labelled by intertwiners, denoted i, and finally each dual edge- 
face pair contributes an independent spin, denoted k [cf. (4.8)]. The weight factor is 
more complex than for the other two models and is given by

r  IU + 1)!]2
3k (j-  k)\(j + fc + 1)!’ (4.11)

Each dual edge is shared by 4 dual faces, while each dual vertex is shared by 10 dual 
faces and 5 dual edges, as well as 20 individual dual edge-face pairs. The preceding 
construction specifies the following dual face, edge and vertex amplitudes:

A ;{ F )  =  { j }  +  l ) \  Ae {F ) =
0 2  i.

U c
O 2k,

ifk f- •, (4.12a)
< 3  <=> 2fc* ,2 ie /:>« < E 5 } } ,2 k f

(4.12b)

(4.12c)

Here the spin arguments are determined by the dual faces and edges sharing the given 
cell of the 2-skeleton. Specifically, the vertex amplitude depends on the 10 j-spins 
from the dual faces sharing it, as well as the 5 ¿-spins from the incident dual edges, 
and on the 20 fc-spins from the dual edge-face pairs sharing it. Thus it may be called
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the FK 35j-symbol. Setting all fc-spins, and necessarily all ¿-spins, to 0, this model 
exactly reproduces the BC spin foam amplitudes. Also, setting all A;-spins equal 
to the corresponding j-spins exactly reproduces the EPR vertex amplitude A V{F ). 
However, in that case, the EPR edge amplitude A e(F ) is reproduced with the extra 

factor n  fD eiU f +  l )0 2/(2  i f  +  !)!•

4.3 Evaluating new vertex amplitudes

The second group integration identity in (4.5) requires a choice of basis in the space of 
intertwiners between four Spin(4) representations. This choice is arbitrary; however, 
some choices axe more convenient than others. For example, the normalization factor 
in (4.5) is simplest when the ¿'-basis is the same as the ¿-basis. On the other hand, 
the choice of intertwiner basis in the EPR model, equation (4.10c), is made such that 
when the intertwiner networks are substituted into the vertex amplitude pent graph, 
equation (4.6), the amplitude is resolved as a sum over 15j-symbols with the following 
topology:

(4.13)

A similar choice is made for the BC and FK models, equations (4.9b) and (4.12c). 
This topology is required for the numerical algorithm described in section 4.3.2.

Unfortunately, the requirements of simple edge normalization factors and the 
above topology requirement for each vertex amplitude are not always compatible. For 
example, they are not compatible for the minimal triangulation of the 4-sphere. With 
the current formulation of the vertex amplitude evaluation algorithm, preference must 
be given to the topology requirement. A  similar issue, referred to as “edge splitting,” 
was encountered for spin foams on a cubic lattice in [11] (also chapter 2 of this thesis).

Throughout this paper, we have, assumed that the topology and simplicity of 
dual edge normalization requirements can be simultaneously satisfied. This assump
tion is justified in the case of a single 4-simplex, and other simple arrangements of a 
small number of 4-simplices. If this assumption is not justified, then the dual edge 
amplitudes given in the previous section will have to be modified, with the important



exception of the BC model. The edge normalization requirement for the BC model 
is trivial.
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4.3.1 Tripetal network evaluation

The tripetal spin network, defined in equation (4.8), is evaluated as follows. It is first 
written as a contraction of two trivalent networks, along the strands labelled z- , z+ 
and 2 z.

(4.14)

Each of these trivalent networks must be proportional to the unique SU (2) 3-valent 
intertwiner. The proportionality constant is computed explicitly through recoupling:

2 i 2 »

( _ ) è o + i ' - n)A n

1-----

1___ ---
--1 3f j 2k! 2k n

i n 2k i+ n 2 kf i~ i+ 2i

6 {i~ ,n ,2 k ) 6 (i+ ,n ,2k ') 9 (i~ ,i+ ,2i)
t

(4.15)

(4.16)

(4.17)

The first equality recouples the crossing strands through the auxiliary spin n. Other 
steps correspond to collapsing triangles to 3-valent vertices. The square brackets 
denote the evaluation of a tetrahedral spin network, while 9 and A  denote the eval
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uations of the theta-like and loop spin networks seen in (4.7) and elsewhere. For full 
details, see [20] and the Appendix of [21].

After this simplification, the tripetal network is proportional to the theta net
work, where we write the left copy of the above coefficient as and the right

copy as Q i-i+ i

(4.18)

The network on the right hand side of the above equation is equal to the theta 
network up to sign, which is specified in (4.19a). Both P and depend on
many spins. The displayed indices are those that will be important in section 4.3.2.

To obtain the final formulas for each vertex e of the pent graph, we make 
appropriate substitutions into the above expression, from each half of the tripetal 
network. We replace i and ^  by ie and i f  respectively. In the P  coefficient, the spin 
k becomes k^ e, while k' becomes A^e. At the same time, the spin j  becomes 
while j '  becomes J2,e- Similarly, in Q, the spin k becomes k\ e_ 2, k' becomes k\ e_ v  
j  becomes j2,e-2 and /  becomes The final formula for the tripetal network
is p e  Qe

p e  _ /  \Tj(if>+i£—2ie) ie i t  ie i t
0(ie ,2 ie ) ’

(4.19a)

P t . + =  Y )( - ) ^ ijhe+j2’^ np]Anp
6 e Up

2^2, e 2^l,e np j  l,e 3l,e J2,e J2,e J2,e j\,e

ie i f  ‘¿ie ie rip 2 k?l e np 2fc2,e
Q(npJl,e,h,e) 0{ie ,np,2k^e) 8(i^,np,2k^e)

(4.19b)
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<3* + =  V ( - ) 3« 2,e -2+ il ,e - l -n 9)A
*e le nq

2^ l,e -l 2^2,e-2 nQ 32,e-2 J2,e-2 Jlye - l h ,e -2

ie i t ie nQ 2fc2,e-2. nq 2fcl ,e - l .
® (n ? ii2 ,e -2 .il,e -l)  6(ie ,n q,2k% e_ 2

(4.19c)

Notation for the j -  and fc-spins is explained in the next section.

4.3.2 Numerical algorithm

The results of the previous section can be used to extend the Christensen-Egan (CE) 
algorithm [12,21] to evaluate the new vertex amplitude.

First, we set up some notation. Most generically, the new vertex is a function 
of 10 spins j c,e> 5 intertwiner spins ie , and 20 more auxiliary spins k*e . The index e 
refers to a particular vertex of the pent graph in (4.6) (corresponding to a particular 
dual edge incident on the given dual vertex). The c subscript corresponds to either 
the inner (star) or outer (pentagon) 5-cycle of the pent graph, with j C)e denoting the 
graph edge belonging to cycle c and emanating anticlockwise from vertex e. The x 
superscript indicates whether the corresponding fc-spin belongs to the P - or to the 
Q-side of the pent vertex e. The e index is always taken mod 5.

Consider the formulas5 (19)—(22) from [21]. They completely describe the eval
uation of the BC vertex amplitude. We now explicitly write out the evaluation of the 
new vertex amplitude A v, using current conventions:

¿ „  =  ( - ) S Y  0tr[M 4M 3M 2M iM o], (4.20)
m“ ,m+

where S =  e 3c,e and the per-term multiplicative factor is

<j> =  ( - ) 2 ( m" - m+)(m -  +  1 )(m + +  1). (4.21)

The rows and columns of the matrices Me are indexed by pairs of integers i =  (i- , 2+ ).
1 / c rv < * f l '  1 f t  *.* • \  1 * i v \  * \  r* • 4 m i------------------------------------------------------- --------

5. Note, that reference [21] uses half-integral spins, while the current paper uses integer 
twice-spins to label SU(2) irreps, following [20].
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Their components axe

(Me)! '+1 =  J£_ + JV«L iV;+ (7 l ) ’i+1(T^)‘ {+1,
c le *e ze *e le

(4.22)

where i?e__ h was defined in (4.19), while

N e+ = le
'e 6(i?,jl,e,j2,eMie,j2 ,e-2 . J l,e -l)  ’

(4.23)

and

( 7 l ) ‘e±+1 =

*e Jl,e J2,e-1

»?+! TO± 12,e
S(i*+1,m ± ,J2,e)

(4.24)

T  is taken directly from equation (22) of [21].
For an implementation of the above algorithm, it is important to compute the 

precise range of the m ± summations, the size of each M e matrix, that is, the allowed 
ranges of the i f  spins, and the ranges of the nP)q summations in the definitions of 
P  and Q in (4.19). Whenever the arguments of either the theta or tetrahedral spin 
networks fail to satisfy certain conditions, these networks evaluate to zero. Therefore, 
the m ± , i f , and nP)q ranges are taken to be the largest such that all necessary 
conditions are satisfied. These conditions are

and

6(a, 6, c) : tri(a, 6, c),

a b e 
c d f

: tr i(c ,d ,/ ) ,  tri(a, 6, / ) ,  tri(a ,d ,e), tri(c, 6, e),

(4.25)

(4.26)

where the abbreviation stands for the triangle inequality and parity constraint

tri(a, 6, c) : a <  b +  c, b < c +  a, c <  a +  6, and a +  b +  c =  0 (mod 2). (4.27)

It can be shown that these conditions, once collected from equations (4.19), (4.23) 
and (4.24), are sufficient to make all summations involved in the algorithm finite. The 
linearity of the triangle inequalities also implies that the upper bound on all sums 
grows lineaxly with the magnitude of the input z-, j - t and fc-spins. However, it is 
important for an efficient implementation to obtain the tightest possible bounds on



each of the summation indices.
The most computationally intensive steps in the algorithm are filling the ma

trices in (4.22) and computing their product-trace in (4.20). The efficiency of the 
evaluation algorithm can be expressed in terms of the magnitudes of input spins. 
Suppose that the j c,e, and k f e spins are roughly of magnitude j .  Then, various
triangle inequalities restrict the m ±  and i f  summations to ranges of size 0 ( j ) .  The 
ie =  ( i f , i ~ )  double index then spans a range of size 0 ( j 2). The R , N  and T  matri
ces take respectively 0 ( i72+1+1), 0 ( j l ) and 0 ( j 2+1) time, yielding an overall 0 ( j 4) 
estimate. The each tetrahedral network may be evaluated in O(j )  time, which can 
be improved to 0 (1 ) time using recurrence relations [30] or hashing techniques. With 
such improvements, the R  and T  filling times reduce to O (j2+1+0) and O ( j2+0), low
ering the overall estimate to 0 ( j 3). Although, in practice, matrix filling contributes 
significantly to the algorithms run time complexity, we will show that the product- 
trace operation dominates the evaluation in the large j  limit. In order to compute the 
trace, we need to accumulate 0 ( j 2) diagonal matrix elements of the five-fold matrix 
product. Naively, each matrix product takes 0 ( j 2+2+2) =  0 ( j 6) operations. How
ever, the structure of the M e matrices shown in (4.22) allows a simplification. Each of 
the R  and N  multiplications takes O ( j2+2'l_0) =  0 ( j 4) operations, since the matrices 
are diagonal, while the T  multiplications take 0 ( j 2+2+1) =  0 ( j 5) operations, since 
each involves only one of i “  or i f . The matrix products are performed serially, so the 
asymptotic complexity of the trace-product is thus 0 ( j 5) and, including the outer 
m ±  sums, the vertex amplitude evaluation has asymptotic complexity of 0 ( j 7) [cf. 
the Christensen-Egan algorithm for the Barrett-Crane vertex [12], whose asymptotic 
complexity is 0(j^)\.

For sim plicity, we consider only spin inputs where each of the j Ce» H  and sets

4.4 Comparison with Barrett-Crane vertex

One of the motivations for constructing new vertex amplitudes is the recently discov
ered inadequacy of the BC model in reproducing semiclassical graviton propagator 
behavior in the large spin limit. Some of the propagator matrix elements show the 
expected behavior, while others do not [1,2,29]. Thus, it is important to identify 
where the new vertex models differ from the BC one and whether they have better 
semiclassical limits.

The comparison should ultimately be done at the level of physical observables 
computed within each model. An important class of observables, already mentioned 
above, are matrix elements of the graviton propagator. However, their calculation
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requires a contraction of the vertex amplitude with an appropriately chosen bound
ary state. This contraction introduces a large number of extra summations, which, if 
implemented naively, make the calculation prohibitively expensive. A further gener
alization of the evaluation algorithm is necessary to make the implementation com
putationally efficient [22] (chapter 5 of this thesis).

A simpler comparison can be done at the level of amplitudes and can already 
reveal important behaviors of the new vertices. One complication is the difference 
in the spin argument structures: the BC vertex has 10 spin arguments, the EPR 
vertex has 15 spin arguments, while the FK vertex has a total of 35 independent 
spin arguments. This complication may be overcome by fixing the 10 common j -  
spin arguments and maximizing the vertex amplitude over the remaining spins. This 
effective vertex amplitude can be substituted into the partition function (4.3) where 
the summation is then performed over spin foams which only assign j -spin labels 
to the dual 2-complex. This simplification allows the comparison of amplitudes for 
individual spin foams.

It is important to note that the amplitudes in (4.3) have contributions from 
faces and edges as well as vertices. The face amplitudes are the same for all models 
and are easily factored out. The edge amplitudes, on the other hand, also differ from 
model to model and thus must be included in the amplitude comparison. To make 
the comparison on a vertex by vertex basis, the edge amplitudes are split between 
the vertices they connect as follows:

A f ( j )  ~  m axA w( j , M ) , / j J  \Ae(j,k,i)\ . (4.28)
t}k y eD v

For simplicity, we consider only spin inputs where each of the j c,e, ¿e and k%e sets 
o f spins have equal values, respectively denoted by j , z, and k. Our assumption is 
that vertex amplitudes for these spin inputs behave generically. Small scale numerical 
tests support this assumption. Otherwise, maximizing the expression in (4.28) over 
a larger z, /¡-parameter space quickly becomes impractical.

For the EPR model, we found that the maximum allowed value z =  2j  maxi
mizes the amplitude. This behavior is illustrated in figure 4.1 for j  =  30.

For the FK model, we found that, for fixed j  and k , the amplitude is again 
maximized by the extreme value z =  2k. See figure 4.2 for the case j  =  30 and 
k =  15. While keeping z at the dominant value 2k, for fixed j ,  the amplitude is 
maximized by k =  1, although k =  0 dominates slightly for very small values of j .  
This k dependence is illustrated in figure 4.3 for the case j  =  30.
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Figure 4.1: Effective EPR vertex amplitude: all j  =  30, all i equal, satisfying 0 <  i <  
2j .

Figure 4.2: Effective FK vertex amplitude: all j  =  30, all k =  15, alH equal, satisfying 
0 < i < 2 k .
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Figure 4.3: Effective FK vertex amplitude: all j  =  30, all i =  2k, all k equal, satisfying 
0 <  k <  j .

4.4.1 Amplitude asymptotics

Spin foam quantization is similar in spirit to the discretized path integral approach 
to gravity. As such, the spin foam vertex amplitude is often compared to the gravi
tational path integral amplitude:

A v{j)  ~  exp[i5fl], (4.29)

which .means that we are moat likelv seeing ofilv th< 'V’vrriDt ! m  Notewhere 5^  is the Regge action for gravity evaluated on a discrete geometry described
by the spins j  in the large spin limit. For the BC vertex, this view has turned out to
be overly simplistic. The relation predicted by careful asymptotic analysis is

A v{j )  ~  D ( j )  +  #i(j')[exp(t SR) +  exp (-iS B )] +  • • • , (4.30)

where D(j ) and n(j )  are non-oscillating functions decaying as 7~2 and j “ 9/ 2 respec- 
tively, with (•••) representing higher order terms. The dominant asymptotic D (j ) ,  
understood to be due to the contribution of degenerate geometries, masks the desired 
Regge action amplitude [6,9,19].

A  natural question is whether the new vertices share the same asymptotic be
havior. Numerical evaluation of the BC vertex is only sensitive to the dominant
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Figure 4.4: Large j  behavior of the effective vertex amplitudes for the BC, EPR and 
FK models.

asymptotic contribution D (j ) .  The subdominant oscillating Regge action term would 
become important only if D (j )  is subtracted or if the vertex amplitude is averaged 
against another oscillatory function, in phase with one of the Regge action terms, as 
done in the graviton propagator calculations [13,29]. While analytical asymptotics 
for the EPR and FK vertices are still missing, we can straightforwardly compare the 
numerical asymptotics of the dominant effective vertex amplitudes of all three models. 
This comparison is made in figure 4.4. For all models, the data shows no oscillations, 
which means that we are most likely seeing only the D (j )  asymptotic term. Note 
that the power laws shown in the figure will change if, for whatever reason, the edge 
amplitudes given in section 4.2 are modified by j-dependent factors.

4.5 Conclusion and Outlook

We have presented three spin foam models in a unified framework: the standard 
Barrett-Crane (BC) model and two more recent proposals, the Engle-Pereira-Rovelli 
(EPR) and Freidel-Krasnov (FK) models. Their vertex amplitudes were simplified 
using spin network recoupling techniques. A fast numerical evaluation algorithm 
for the new vertex amplitudes was developed by extending the Christensen-Egan
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algorithm for the BC model.
Despite the different spin argument structure, we have extracted effective vertex 

amplitudes that can be directly compared from model to model. Figure 4.4 shows a 
comparison of their asymptotics. It is clear that the dominant asymptotic behavior 
of the new vertex amplitudes is non-oscillatory and displays power-law decay very 
similar to the BC model. The same figure shows the estimated power-law exponents. 
It seems likely that analytical asymptotics will reveal structure similar to (4.30).

A generalization of the vertex evaluation algorithm to efficiently incorporate 
contraction with a spin-factored boundary state will be presented elsewhere [22] 
(chapter 5 of this thesis). This improvement simplifies numerical investigation of 
the graviton propagator and other observables in these models.
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Chapter 5
Evaluation of new spin foam vertex 

amplitudes with boundary states

5.1 Introduction

Spin foam models are an attempt to produce a theory of quantum gravity starting 
from a discrete, path integral-like approach. For the last decade, the standard spin 
foam model has been the one due to Barrett and Crane [8]. More recently, some 
shortcomings of the Barrett-Crane (BC) model have been identified [2,3] and alter
native models were proposed. Two leading alternatives are the Engle-Pereira-Rovelli 
(EPR) model (also referred to as the “flipped” vertex model) [15,16] and the Freidel- 
Krasnov (FK) model [14,17]. Here, as in much of the spin foam literature, we only 
discuss gravity in Riemannian signature.

Having been defined, the new models must be tested to see whether their semi- 
classical behavior is an improvement over the BC model. So far, two test problems 
have been proposed: semiclassical wave packet propagation [22], and evaluation of the 
graviton 2-point function [9,13,24]. Both problems require the computation of large 
sums, where the spin foam vertex amplitude is contracted with a suitably defined 
boundary state. These computations, while important for extracting the physical 
content of the new spin foam models, have so far not been tractable.

In a previous paper [19] (chapter 4 of this thesis), the author has described an 
efficient numerical algorithm, based on the existing Christensen-Egan (CE) algorithm 
for the BC model, to evaluate the new spin foam vertex amplitudes. This algorithm 
was used to examine their asymptotic behavior. The present paper extends this 
algorithm to allow efficient contraction of the vertex amplitude with a large class of 
boundary states (so-called factored boundary states).

Application of this algorithm to the wave packet propagation problem shows 
that, under fairly general conditions, the shape of the propagated wave packet does 
not agree with the expected semiclassical result, unlike hypothesized in [22].
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Section 5.2 reviews the two proposed calculations that require the introduction 
of boundary states. Also, the class of factored boundary states is defined. Section 5.3 
describes the appropriate CE algorithm generalizations. Section 5.4 shows the results 
o f applying the algorithms of section 5.3 to the problems of section 5.2. Finally, 
section 5.5 concludes with a discussion of the results and future work.

5.2 Spin foams with boundary states

Spin foam models in general axe described in [4,5] and especially from a computational 
perspective in [6,7,20] and [19] (chapter 4 of this thesis). Briefly, a spin foam model 
o f gravity starts with a triangulated 4-manifold (possibly with boundary). Its dual 
2-complex consists of cells dual to simplices of the triangulation: a dual vertex for 
each 4-simplex, a dual edge for each tetrahedron, and a dual face for each triangle. A 
labelling of the dual 2-complex by spins constitutes a spin foam. The labelling of the 
dual 2-complex depends on the model, but at a minimum includes an integer label 
for each dual face, called a spin1. Besides specifying this labelling, a spin foam model 
also assigns an amplitude to a given spin foam. This amplitude for a spin foam F  
takes the form

A(F) = U ^ m M F ) U M F ) ,  (5.1)
f  e V

where / ,  e, and v range respectively over dual faces, dual edges, and dual vertices. 
Each of the amplitudes A f ( F ), A e(F ), A V( F ) may depend on its own label and on 
the labels of adjacent dual cells.

The BC model assigns integer labels only to dual faces (j-spins). The EPR 
model also assigns integer labels to dual edges (i-spins). The FK model additionally 
assigns integers to each dual edge-dual face pair (k -spins)1 2.

The partition function for a spin foam model is defined to be

Z ~ ^ A { F ) ,  (5.2)
F

1. Most of the time these integers identify representations of SU{2), hence the name 
spin. Technically, they are twice-spins, since they do not take on half-integral values

2. It should be noted that the current paper uses integral twice-spins to label SU(2) 
irreps, following [18], while the original references for the EPR [15] and FK [17] models 
use half-integral spins. However, the i and j  labels of [15] coincide numerically with the 
current notation, while the Z, j  and k labels of [17] coincide respectively with i, j/2, and k 
in current notation.



84

where the summation ranges over all spin foams F.  The expectation value of an 
observable O is calculated according to the formula

(O)  =  i ' Z O ( F ) M F ) .  (5.3)
F

If the underlying triangulated manifold is closed, then corresponding spin foams 
are also said to be closed. Similarly, if the underlying manifold has a boundary, the 
spin foams are said to be open and also have a boundary. Any open spin foam Fq  can 
be decomposed into Fq  =  F  U Fq , where Fq  labels only cells dual to the boundary, 
while F  labels only cells dual to triangulation simplices in the interior. For an open 
spin foam Fq , its amplitude may be naturally generalized to

A (F0 ) =  A (F ,F B ) * ( F B ), (5.4)

where the bulk amplitude A(F,  F q ) is the usual amplitude defined according to (5.1), 
and ^  is referred to as the boundary state, which may be fixed separately from the 
bulk amplitude. The partition function and observables are then written as

5 1  A (F ,F B ) 9 ( F B ), and 
f ,f b

( 0 ) i  =  ¿  E  0 { F , F B
f ,f b

(5.5)
As an illustration, an open spin foam model with a boundary state may arise 

if we split a closed spin foam model in two parts and average over one of them. 
Suppose a close triangulated manifold can be decomposed into two bulk pieces and 
the codimension-1 boundary between them. Any closed spin foam Fq  can then be 
decomposed as Fq  =  F  U Fq  U F ' , where Fq  corresponds to the boundary, F  to the 
interior of the piece we are interested in and F'  to the interior of the other piece. The 
partition function may be rewritten as follows:

Z  =  Y , A { F , f b )A{Fb )A {F ' ,F b ) 
Fc

=  5 3  A (F ,F b )A(Fb ) J 2 M F ' , F b ) =  5 3  A (F ,FB) * ( F B ), (5.6)
F,FB F' F F b

where \k(Fg) has been defined by averaging over all spin foams F ' . This example is 
very similar to the separation of a large system into a subsystem and the environment 
in quantum statistical mechanics.
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Figure 5.1: The pent graph, summarizing the indexing scheme for ¿-, j - ,  and A;-spins.

The simplest example of a triangulation with boundary is a single 4-simplex, 
with the five tetrahedra forming its boundary. The 2-complex dual to the interior 
consists of a single dual vertex, corresponding to the 4-simplex itself. The dual 2- 
complex of the boundary consists of five dual edges, dual to the tetrahedra, and of ten 
dual faces, dual to the triangular faces of the tetrahedra. The problems described in 
sections 5.2.1 and 5.2.2, have previously only been considered for a single 4-simplex. 
This paper restricts attention to the same case.

The algorithms that will be described in section 5.3 are applicable only to a 
restricted class of states, factored states. Such a state must factor in a specific way 
with respect to the spins it depends on. The various spin labels of the dual complex of 
the 4-simplex and the corresponding notation are summarized in figure 5.1, referred 
to as the pent graph. The vertices of the pent graph correspond to the five boundary 
tetrahedra of the 4-simplex, while the ten edges connecting them correspond to its 
triangles. This graph is labelled by 35 spins, ie , j c>e, and k%e. The e subscript 
numbers the vertices of the pent graph; it is always taken mod 5. The spin j c,e labels 
the graph edge joining vertices e and e -I- c. The superscript x  stands for either p or 
q\ kĉ e labells the vertex-edge pair e and (c, e), while k^e labells the pair e +  c and 
(c, e). Again, all vertex indices are taken mod 5.

The class of factored states is somewhat different for each model. However, it 
contains at least all of the following:

*(*b)=n ̂,e0c,4) n Mie) n w
c,e e x j ,e

where the products range over all i-, j -, and k-spins. Spins not part of a particular 
model may be dropped from the product. The -0s are arbitrary functions with finite 
support. For each model, the class of factored states is enlarged, as factors of ^ { F q )
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may be allowed to depend on specific clusters of spins, instead of only individual ones. 
The details will be elaborated in section 5.3.

Nearly all previous work on the problems described in sections 5.2.1 and 5.2.2 
have been considered only for factored boundary states. While this class of states is 
restrictive, its limitations may be overcome. Note that the expectation value (O)^  
in equation (5.5) is equal to the ratio of two quantities that are both linear in the 
boundary state Vi/. The numerical algorithm computes this numerator and denomi
nator separately. Since any boundary state ^  can be approximated by linear combi
nations of factored states with finite support, so can (O )yj> be approximated for any 
boundary state 4'.

5.2.1 Semiclassical wave packets

The problem presented in this section was introduced in [22]. Consider a single 4- 
simplex. As shown in the preceding section, it is described by a spin foam with a single 
dual vertex and z-, j - } and fc-spins labelling cells dual to its boundary. An arbitrary 
functional ^ ( F q ) depending on these boundary spins, in general, corresponds to a 
statistical quantum state, that is, a density matrix.

This is analogous to the single point particle, where an arbitrary density matrix 
p(xf ,Xi )  =  (xf,tf\p\xi} ti) can be described in terms of its matrix elements between 
eigenstates of the Heisenberg position operator at different times3, x(ti)\xi,ti) =  
Xi\xi,ti) and x(t f)\xf,  t f )  =  xj\Xf , t f ) .  The density matrix is pure only if it can be 
factored, p(xf ,Xj )  — where ijj{x,t) denotes the time evolution of
a given wave function.

Similarly, we can split the boundary of the 4-simplex into two pieces4, the initial 
(—) and the final (+ ). Then, for a pure boundary state, we should be able to write

* { F B ) =  * + ( F + y * - ( F ^ ) ,  (5.8)

where F b  respectively depend only on spins labelling the dual complex of the corre- 
sponding piece of the boundary.

3. In this representation, the functional p(x/, Xi) is not necessarily symmetric, p(zj, Xf) ^
p(Xf,Xi)*.

4. Technically speaking, this decomposition is unique only in Lorentzian signature. In 
Riemannian signature, different choices of the decomposition should correspond to different 
possible Wick rotations.
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The relationship of the two boundary state factors 'f ' i ( F g )  is constrained in 
two ways. On the one hand (in the limit of h —> 0), the amplitude should be peaked on 
those geometries that correspond to the boundary of a classical 4-geometry satisfying 
Einstein’s equations. On the other hand, \£+ should be a time-evolved, “future” 
version of the “past” \I/_, which can be expressed as

< M F + ) =  E  ¿ ( f . J 'W M J Ç ) ,  (5-9)

W b

where the summation over the boundary spin foams keeps Fg fixed and varies
Reference [22] has proposed an expression for \I/(Fg), in the context of the 

EPR model, which should reproduce a flat regular 4-simplex. This state has gaussian 
dependence on individual spins and hence is factorable in a convenient way. The 
problem is then to compute ^ + (F g )  both from (5.8) and from (5.9), and to compare 
the two. Agreement is interpreted as evidence of a correct semiclassical limit for the 
EPR model.

A concrete expression for the proposed \£(Fg) is

V(F b ) =  N  IJ V'c.eO'c.e) > 0'c,e})> with
c,e e

^c,e(jc,e) =  e~ r^ c ,e -jo )2^ j c , e i 

V'efej { jc ,e }) —
2 ie +  1

0(2ze, 2 j i )e, 2 j2,e)^(2ïe, 2 ji ,e- l ,  2 j2>e-2 )
e~ 'êô(i~it i2+i%ie

(5.10)

(5.11)

(5.12)

where AT is a normalization factor, jo  determines the size of the regular 4-simplex and 
cos 0  =  —1/4. The parameter r  controls the size of quantum fluctuations about the 
classical values of j .

The wave packet propagation geometry given in [22] fixes t =  0 in the state (5.11), 
freezing all j-spins to the background value jg. Effectively, only the dependence of 
^ (F g )  on the ¿-spins was considered. A  single vertex of the 4-simplex is labelled 
as “past” , while the remaining four as “future” . The four “future” vertices form a 
tetrahedron, whose dual is labelled by an ¿-spin. This labelled dual edge constitutes 
F g , while the remaining four dual edges labelled by ¿-spins constitute F g . This 
propagation geometry will be referred to as EPR 4~1 propagation.

An immediate generalization, feasible with the algorithm described in sec
tion 5.3, is to relax the r  =  0 limitation. The choice of r should be consistent
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with the parameters used in the graviton propagator calculations. Thus, following5 
[13], we let the wave packet width depend on the background spin,

r  =  4jo/a, (5.13)

with a  is a positive parameter.
Further, a uniform methodology should be constructed for each of the three 

models. As only j-spins axe common among the models, we propose the following 
wave packet propagation geometry. One possibility is to propagate wave packets 
from one of the j-spins to the remaining nine. This configuration corresponds to 
fixing a single triangle (defined by three vertices of a 4-simplex) in the “past” , while 
relegating the other nine triangles (containing at least one of the two remaining 4- 
simplex vertices) to the “future” . Thus, the single j-labelled face dual to the “past” 
triangle will constitute while the rest of the boundary spin foam will constitute 
F g , including all i- and k-spins, if any. This propagation geometry will be referred 
to as 1-9 propagation.

Another alternative is to assign a vertex of the 4-simplex to the “future” , to
gether with the six triangles sharing sharing it. The remaining four triangles are 
relegated to the “past” . Thus, F g  consists of the six j-labelled faces dual to the 
“future” triangles, with the rest of the boundary spin foam constituting F g . This 
propagation geometry will be referred to as propagation. There are numerous 
other possibilities. However, the two described above are sufficient to illustrate an 
application of the numerical algorithms and to show the qualitative behavior to be 
expected from propagated wave packets.

The boundary state (5.10) is valid only for the EPR model. For the BC model, 
we simply drop the factors:

n F B ) =  N U i > c M .  (5.14)
c,e

And for the FK model we must add extra ip^e factors for each k-spin:

* (F b ) ~  N  ^c,e(.7c,e) {jc ,e })  ^c,e(^c,e>^c,e)- (5.15)
c,e e x,c,e

5. It should be noted that reference [13] uses half-integral spins, while we use integral 
twice-spins to label SU(2) irreps. A j  label from Christensen, Livine and Speziale corre
sponds numerically to j /2  in current notation.
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Because the fc-spins are closely geometrically associated with j-spins, we use the same 
gaussian state parameters:

(kx 7 ) -  J  2k*'e + 1 C  , x e ~ V ó (k* e~jo)2+iek* e (5 16) I’ c ^ J c e )  ~  W 9{jc<etjc e< 2kx e) hc,ekZee - (5.16)

O' +  1)! ( j  +  1)!
jk  0  -  k)'. 0  +  k +  1)!

(5.17)

The square root factor includes the FK model edge normalization, as does (5.12) for 
the EPR model.

5.2.2 Graviton propagator

The graviton propagator is well defined in the perturbative quantization of gravity. 
It is computed as the 2-point function Gpvp(J{x ,y )  =  {0\hpi/(x)hfXT(y)\0)i where |0) 
is the Minkowski vacuum, and hpu(x) is the metric perturbation. General relativity 
requires that, in harmonic gauge [25], the decay rate of the 2-point function, for 
large separation between points x  and y, is the same as for the Newtonian force 
of gravitational attraction: inverse distance squared. The framework for computing 
the equivalent of the graviton propagator in the spin foam formalism was elaborated 
in [9,21,23,24]. The quantum area spectrum is A  =  ¿ p ( j  + 1), with j  a dual face spin 
foam label and ip  the Plank length. Dimensional arguments then give the expected 
decay of the propagator as 0 (1 /.?), with j  being the typical size for the chosen spin 
foam boundary state.

The expected asymptotic behavior of the graviton propagator has been checked 
for the BC model both analytically and numerically [13,21,24]. Unfortunately, the 
expected behavior was only reproduced for certain tensor components of GPvpa{x, V), 
but not for others [2,3]. This negative result has prompted the introduction of EPR 
and FK spin foam models as alternatives to the BC model. The challenge is to com
pute the graviton propagator for the new models and check that it has the expected 
asymptotic behavior.

Following [13], we show the computational set up for the BC model and then 
extend it to other models. Consider again a single 4-simplex with boundary and the 
corresponding spin foam. We associate the area A  =  ¿?>(j +  1) to each triangle, 
depending on the j-spin labelling its dual. The goal is to compute the correlation
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between observables depending on the triangle areas [cf. (5.5)]:

^  =  4 -  E  FB)hce(FB)hde,(F B m F B), (5.18)
F,Fb

where ce and c V  index the specific j c,e and j j j  spins taking part in the correlation. 
Again following [13], the boundary state6 is a semiclassical gaussian state peaked 
around a flat 4-simplex, whose scale is set by j$:

* ( f f c )  =  n  e“ 4 (jc'‘ “ Jo)2+,ejc'e, (5.19)
c,e

where cos 0  =  - 1  /4 , and jo  sets the scale for the background geometry, as in the 
previous section. The observables measure the fluctuation of areas squared:

hce{F s) =
Uc,e + 1)2 -  Oo + 1)2

(jo +  l ) 2
(5.20)

Note that the product '¡''(Fg) =  hce(F e )^ (F j5) has exactly the same factorizability 
properties as 'F (Fg). This property allows both the numerator and denominator 
in (5.18) to be computed on the same footing.

Again, an important task here is the generalization of this calculation to the 
EPR and FK models. This generalization essentially requires the specification of a 
boundary state that describes a semiclassical state peaked around the flat regular 4- 
simplex. Since this is the same requirement used in picking out the boundary states 
in the section on wave packet propagation, simply choose the same ones. That is, 
the BC, EPR and FK boundary states are specified, respectively, by equations (5.14), 
(5.10), and (5.15).

5.3 Numerical algorithms

We will start by reviewing the spin foam vertex evaluation algorithms with fixed 
boundary spins. The dual face and edge amplitudes, A f  and Ae, are trivial to com
pute. The difficulty lies in evaluating the dual vertex amplitude Av, which is where 
we will concentrate. All algorithms described in this section are extensions of the

6. We incorporate the “measure” discussed in [13] into the boundary state and pick the 
trivial case k =  0.
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original CE algorithm for the BC model [12] and all fall into the same product-trace 
pattern:

M { i c , ' , i e ,kZ e}) =  ( - ) S Y  0  tr [M4 M3 M2 Aij AfoJ, (5.21)
m~,m+

where (—)^ is an overall sign factor, depends only on and M e are matrices of 
compatible dimensions, collectively depending on all the spins. Each of these elements 
may be specified separately in any incarnation of this algorithm. In all cases presented 
below, we have

4> =  ( _ )2  +  l ) (m + +  1). (5.22)

However, the M e matrices will be redefined for each variation of the algorithm. The 
notation for various boundary spins is summarized with the pent graph in figure 5.1.

The run time complexity of a generalized CE algorithm may be estimated as 
follows. Suppose that the spin arguments to A v in (5.21) are of average magnitude 
j .  Then, generally, the dimensions of the matrices M e scale as a power of say, each 
matrix is 0 ( j d) x 0 ( j d), for some integer d. The run time will be dominated by filling 
the M e matrices and by the product-trace operation.

The product-trace may be implemented as follows: each of the 0 ( j d) standard 
basis vectors is subjected to matrix-vector multiplies by the M e and appropriate 
elements of the result vectors are accumulated into the trace. If the M e are dense, 
then the cost of a matrix-vector multiply is 0 ( j 2d). However, we shall see below 
that this complexity may be reduced by decomposing each Me into sparse factors. 
Hence, we will parametrize the matrix-vector multiply complexity as 0 ( j D ), with D  
no greater than 2d, and the product-trace complexity as 0 ( j d+D).

The upper bound on the time needed to fill an 0 ( j d) x 0 { j d) matrix M e is 
0 ( j 2d+f ) ,  if each matrix element is computed in O (jf )  time. Sparse factorization 
improves this estimate as well, which we will parametrize as 0 ( j F+f ) ,  where F  does 
not exceed 2d. In all cases we have examined, d +  D > F  +  / ,  which implies that the 
product-trace operation dominates matrix filling in run time for large spins. More 
detailed discussions of possible optimizations for matrix filling can be found in [20] 
and [19] (chapter 4 of this thesis). Below, we will give the best known value of /  for 
each algorithm.

Finally, the outer m ±  sums in (5.21) also span ranges of size O (j). There
fore, the run time complexity of a generalized CE algorithm may be expressed as 
0 ( j 2+d+D).
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The matrix elements of the M e (computed in the following sections), will con
tain spin network evaluations that require certain inequality and parity constraints 
on their arguments. Solving these constraints yields precise matrix dimensions and 
bounds for any intermediate summations. The details are described in section 3.2 
of [19] (chapter 4 of this thesis). It can be shown that all matrix dimensions as well 
as intermediate summation bounds are finite. However, for that to be true in the 
presence of a boundary state, it is crucial that each factor of the boundary state (5.7) 
has finite support.

5.3.1 BC vertex

For the BC model, the vertex amplitude is only a function of the j-spins. As a slight 
abuse of notation, we will use the symbols ie as indices (also referred to as spins, 
and directly analogous to the i f  indices introduced for the other models) of the M e 

matrices:

(ie +  1)

m t 1 =

ie 32,e m ie 32,e ™ +

> + l 32,e-\ 3l,e_ }e+ \ 3 2 ,e -l  Jl,e_

ie 0C?2,e-l.*e+l> .71,e ) 8(32,e,*e, jl (̂j2,e. *e+l> ™  ) 0(j2,e.*e+l.
(5.23)

The sign factor from (5.21) is given by S =  Z )c,e jc,e- The ranges of the ie and m 
spins are specified by triangle inequalities and parity constraints satisfied by various 
spins. For a detailed derivation and for notation, see the original reference [12], and 
also [20] (chapter 3 of this thesis) and its Appendix7.

The structure of the M e matrices will become increasingly important and will 
grow in sophistication in the algorithms presented below. Hence, it is convenient to 
introduce a graphical notation to represent this structure. In this simplest case we 
have:

M P =  *«+i (5.24)

Each strand represents an index. The incoming and outgoing strands correspond to 
the ie and ie+ 1 indices of M e and are labelled as such. The product-trace operation 
in (5.21) is effected by concatenating appropriately labelled strands. Further features 
of the notation will be elaborated as they are introduced.

7. Note however, that these references use half-integral spins, while the present paper 
uses integer twice-spins.
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Each matrix M e is dense and of size 0 ( j )  x  0 ( j ) .  According to the discussion at
the beginning of this section, we have d =  1, D  =  2, /  =  0, F  =  2, and 2 +  d +  D  =  5. 
Hence, we recover the well known 0 ( j 5) run time complexity of the original CE 
algorithm.
\ r i (J A  f Q

5.3.2 New vertices

For the EPR model, the amplitude is a function of both i- and j-spins, while the FK 
model is also a function of fc-spins. Here, we give the explicit FK formula, with the 
EPR version obtained by setting k^e =  jc,e• The matrix elements of Me are

(5.25)

where

*e Jl,e J 2 ,e-l

» i f  1 m ± J2.e
0 (if+ v m ± , j 2,e)

le

(5.26)

(5.27)

(5.28)



94 \

and

Q e_ .+ =  y ; ( - )3 W 2 ,e-2 + ji ,e - i - " 9 )A n
tg  2g '  J

2* l ,e - l  * 2^2,e-2 n9
»+

J2,e~2 J 2,e-2 J l,e -1  

i e n 9 2^2,e-2.

J l,e-1  7 l ,e - l  J2,e—2
»+ nr 2^ l,e -l_

Ofaqi 32,e—2? j l , e — l )  0 [ie ,U q ,2 k  \ e—2) t n qi ,e—l)
(5.29)

For a detailed derivation and for bounds on the various summations, see [19] (chapter 4 
of this thesis).

The matrix elements of M e are indexed by the pairs (¿¿T,^) and (i~+1,i^+1). 
In graphical notation, M e has the following structured factorization.

(5.30)

where P e stands for the entire bracketed term in (5.25). Unmarked vertices in the 
above diagram essentially correspond to Kronecker deltas. The notation is saying 
that both P e and Qe+1 are diagonal matrices acting on the space of vectors indexed 
by (ie t i t )  or (¿~+1,i^+1). On the other hand, the T| matrices are block diagonal, 
acting separately on the — and +  indices.

The dimension of each M e is 0 ( j 2) x 0 ( j 2 * *), implying d =  2. However, each M e 

decomposes into sparse (diagonal or block diagonal) factors. The filling complexity 
parameters for the largest of these factors, P  and Q, are /  =  1, F  — 2, and F  +  f  — 3. 
Also, the cost of a matrix-vector multiply is parametrized by £> =  2 +  1 =  3, giving
2 +  d +  D  =  7. Therefore, the run time complexity of evaluating an EPR or FK vertex
amplitude is 0 ( j 7), as originally pointed out in [19] (chapter 4 of this thesis). This
estimate compares favorably to simply treating M e as a dense 0 ( j 2) x 0 ( j 2) matrix, 
which would imply an overall 0 ( j 8) run time complexity.

Contracting a boundary state, as described in section 5.2, with the vertex am
plitude (5.21) gives the following partition function

Z y — &c,e})^((.7c,e> ^c.e})^
{jc ,e4e^c,e}

(5.31)
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A naive approach to the problem of computing Z g> would wrap an algorithm to 
compute A v (as described so far in this section) in as many outer sums as there are 
spins in {jc,e, ^c,e}- Namely, for the BC model, this would produce a calculation 
of run time complexity 0 ( j 5+1°) =  0 ( j 15), with 10 outer spin sums. The EPR 
model would yield 0 ( j 7+15) =  0 ( j 22), with 15 outer spin sums, and the FK model 
0 ( j 7+35) _  0(^42^ with 35 outer spin sums. Clearly, with the naive approach, these 
problems become intractable. Fortunately, when dealing with a factored state (as 
defined tentatively in section 5.2 and more precisely in the following sections), these 
summations may be absorbed into a redefinition of the M e matrices, producing again 
a generalized CE algorithm:

Z * =  ^ 2  (5.32)
m~,m+

where 0 is still defined by equation (5.22) and the sign factor is necessarily absorbed 
into the M e. This approach is described in the next two sections.

It is important to note that the dimensions of the Me matrices may be strongly 
impacted by the presence of a finitely supported boundary state. It is convenient for 
our purposes to keep the assumption that, even in the presence of a boundary state, 
the summation range for each spin is still of order 0 ( j ) .  The run time complexity will 
be analyzed only for this case. However, the same analysis can be easily performed 
in other cases, where some of the spin summation ranges are significantly different.

5.3.3 BC vertex with boundary states

For the BC model, consider a factored boundary state of the form

^ ({jc ,e })  =  J^0c,eC?c,e)- 
c,e

(5.33)
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The dependence of the matrices given in (5.23) on { j c,e} allows us to obtain the 
form (5.32) with the following redefinition:

(M e) f ,e'e+i -
(ie +  l )^ 2 ,e - l0 '2 ,e - l )

9 (j2,e , 0(32,e, Vf-1, ™ + )

ie 32,e m ie h ,e  ™+
} e + 1 32,e-\

------1
r-H > + l 32,e-\ 31,e_

3l,e
0(j2,e— 1 > *e+l> 3l,e) 9(j2,e, 31,e)

(5.34)

Graphically, we represent the above equation as

(5.35)

where M grig corresponds to the right hand side of equation (5.23) and 'ip refer to the 
appropriate factors of the boundary state (5.33). The tadpole ip shows an internal 
summation over j\ e necessary to form the matrix elements of M e. It is shown here 
to highlight the location of the extra summation insertion and the possible relation of 
V>l?e to other spins. Note that, without any modification to the evaluation algorithm, 
we can generalize the notion of factored boundary states to include factors of the 

form lK ii,e»J2,e»j2,e -l)-
Notice that in this case M e is dense and of size 0 ( j 2) x 0 ( j 2). Hence, the 

algorithm’s runtime complexity is 0 ( j 8), as d =  2, D  =  2 +  2, and 2 +  d +  D  =  8, 
while the filling parameters are /  =  1 and F  =  4. Interestingly enough, the tets8 
satisfy an identity which allows us to decompose M e into sparse factors speeding up 
both the product-trace and matrix filling, thus reducing the run time complexity to 
0 ( j 7). This identity is known as the Biedenharn-Elliot identity [10,18]:

'a B C 'a ' B' &
a b c a b c

6(a , b, c) E M

C  B ’ 
B  C

s A'C'
b C  A

s B ' A' 
c A B

6 (s ,A ,A ')  9 {s ,B ,B ')  9(s, C, C ')
(5.36)

8. The tets are the 2 x 3  arrays in square brackets, also called tetrahedral networks.
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The product of two tets in equation (5.34) can be rewritten using this identity as

ie 72,e m ie 72,e

_ie+l 72,e-l i
t-H _ie+l 72,e-l 71,e

0C?2,e—1> ie+l>7l,e)

Se ra+ 72,e Se ie m + Se 72,e ie

_ie+l 72,e m " _72,e-l rn~ ie 71, e ie 72,e

se 0{se,ie, ie) 0(se, 72,e, 72,e) 0(se, , m + )

Hence, we can factor M e as follows:

(Me)
j 2,e'e+l _  (¿e +  1) Tfe ,e-l(72,e-l)
72,e—l le 0(72,0 *e+l> ™>~) 0(h,e, *c+li m +)

se m -1" 72,e

> + l  .72,e m ~J [72,e-l ™  *e _

0(se,ie,ie)

Graphically, this rewriting can be show to be a factorization:

se

Vd,e(7l,e)^Se

^(72.e,ie,7l.e)
se>7l,e

ra+ Se 72,e ie

ie _7l,e ie 72,e_

72, e) 0(se,ra “ ,m + )

le+ l  — A,

M e =  72, e f t

ie

72,e-l

71,e

where the factors are given explicitly by

«e rn+  j 2,e 

*e+l 72,e m ~(A]2'e\le+l — _____
0(72,e> *e+l> m~) 0(72,e,*e+l.TO+) ’

(V'-BeSe) i ' e =  E

Se 72,e ie 

V’l .e O 'l .e )^  |.7l,e *e A e

^ 0(72 ,e ,*e ,7 l,e ) 0(se,72,e.72,e)71,e

S e  « e  

72,e—1 ie
(’ e +  1 )e (s e , ie , ie )e (s e ,m - ,m + )

(5.37)

(5.38)

(5.39)

(5.40)

(5.41)

(5.42)
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The decomposition is not completely unique; some of the terms may be distributed 
differently among the factors. However, in this factorization, the dependence of V>i,e 
can only be generalized to (.7i,e>.72,e)-

Thus Me is clearly decomposed into sparse factors, as each of A e, Be and Ce is\ - - \ ' j 1 , 7 1 *  - I
dense in some indices, but diagonal in others. Computing the run time complexity, 
we get 0 ( j 7), as d =  2, £> =  2 +  1, and 2 +  d +  D  =  7, while /  =  0, F  — 3 and 
F  +  /  =  3 for filling either A  or C. Note that the matrices Be contracted with the 
'ipl^ factors do not depend on m ± . Hence, their computation can be done outside 
the m ±  summation loops and becomes completely subdominant.

Curiously, the most practically efficient implementation of the algorithm de
scribed in this section, as carried out by Christensen [11], turns out to be a hybrid 
o f 0 ( j 8) and 0 ( j 7) versions. The factorization (5.39) greatly speeds up the matrix 
filling step, while the simplicity of the dense version of the product-trace operation is 
still advantageous for all inputs tried to date (up to jo  =  10).

5.3.4 New vertices with boundary states

For the EPR and FK models, consider respectively

^K{ic,e>*e}) =  JJ^ c,c(ic ,c) f j  ^eije) (5.43)
c,e ie

and

*(O c,e, *e. k*e}) =  J I  ipc,e(jc,e) ^e(*e) I f  ̂ ,c,e{kc,e)’ (5-44)
c,e ie c,e

Again, we shall only discuss the FK model explicitly, as the EPR model can be directly 
obtained by dropping /c-dependent xps and substituting k =  j  everywhere else.

Essentially, we want to compute the quantity Z y  from equation (5.31) with 
a suitably factorable boundary state ^  and the vertex amplitude specified by equa
tion (5.25). This expression for Z y  can be cast into the form (5.32) with the following
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redefinition of M e, given directly in graphical form:

=

‘e+l 
32,e

*e+l

Vl-1

32,e-l

ie (5.45)

where T  denotes a product of T  and N  from equations (5.26) and (5.27). Writing out 
this factorization of Me with all indices shown explicitly, while straight forward, is 
cumbersome and not particularly enlightening. It should now be clear that, for this 
factorization of the M e, individual factors of the boundary state may depend on clus

ters of spins of the form (ieJ\,e ,h ,e ,  *i,e ’ ^ e) as well as (¿e+ i, j\,e , J2 ,e-l»^ i)e> fc2 ,e -l) ’ 
which are compatible with possible factorizations of the boundary states proposed in 
sections 5.2.1 and 5.2.2.

Each M e is o f size 0 ( j 4) x 0 ( j 4), hence d =  4. However, because of the sparse
ness of the T, P, and Q factors, each matrix-vector multiply takes 0 ( j Q) operations, 
since D  — 4 -I- 2 for P  and Q multiplies and, equivalently in terms of complexity, 
D  =  5 H-1 for each T  multiply. These numbers are identical for both EPR and FK 
models. On the other hand, filling the P  and Q  matrices for the EPR model does not 
involve summations over fc-spins. Thus, the EPR filling complexity is parametrized 
by /  =  1, F  =  5, and F  +  f  =  6, while the FK filling complexity is parametrized by 
/  =  3, F  =  5, and F  +  /  =  8. The overall runtime complexity of the algorithm is 
OC?'12), 2 + d + D  =  12, both for the EPR and FK models. By conventional standards, 
this algorithm has a very high polynomial complexity exponent. However, it is still 
a substantial improvement over the naive 0 ( j 22) or 0 ( j 42) estimates found earlier.

5.4 Applications of the algorithms

The algorithms described in the preceding sections have already been implemented 
and applied in several contexts. Alesci, Bianchi, Magliaro and Perini [1] have used 
one variation to extend the original wave packet propagation calculations of [22], 
both to larger input spins and to different kinds of observables (although still keeping 
the j-spins frozen). Also, a highly optimized version of the algorithm presented in- 
section 5.3.3 has been implemented by Christensen [11] and used to extract next- 
to-leading-order asymptotics information from the BC graviton propagator (cf. sec
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tion 5.2.2), as a followup to [13]. While the method used in [13] is capable of handling 
higher input spins, the advantage of the new algorithm is much greater precision, 
which is better suited for subdominant asymptotics analysis.

Here, we apply the new algorithms to the problem of wave packet propaga
tion described in section 5.2.1. We have already established that the boundary states 
proposed in that section are factored states compatible with the new algorithms. How
ever, being gaussian, they do not have finite support. Fortunately, strong gaussian 
decay allows us to impose a finite cutoff while maintaining acceptable precision. The 
cutoff chosen for all computations presented below was 2.8 standard deviations about 
the mean. As a consequence, the range of each spin sum involved in the computation 
is still of order 0 ( j ), as assumed by our run time complexity estimates.

First, we can show the effect of introducing a non-zero r  in (5.11) and comparing 
with the calculations of [22], which kept r  =  0, freezing all j-spins at the background 
value jo- According to equation (5.13), the size of r  is inversely proportional to 
the parameter a. Figure 5.2 compares the reference wave packet 0  [cf. (5.12)] with 
several propagated wave packets 0 (each with a different value of a) depending on the 
single fixed ¿-spin. The wave packets have been normalized such that their absolute 
values squared sum to 1. The wave packet with the largest value of a  is essentially 
identical to the one obtained with all j-spins frozen at jo- In that case, as shown 
previously in [22], the reference state 0  resembles the propagated wave packet in 
shape and mean. Unfortunately, as the width of the gaussian factors associated to 
j-spins increases (a decreases), the propagated wave packet quickly departs from 0  
in both shape and mean. Notably, the mean shifts to a significantly higher value of i.

Second, we can compare the wave packets propagated by the three different 
models in the 1-9 geometry. Figure 5.3 shows the reference wave packets 0  [cf. (5.11)] 
and propagated wave packets 0, depending on the fixed j-spin and for two choices 
of a. These wave packets are also normalized. The BC wave packets appear to be 
pathological. They are completely dominated by zero spin. The EPR and FK wave 
packets do have a peak-like shape, however the mean and width of these peaks differ 
significantly from each other and the reference gaussian state.

Lastly, we compare the wave packets propagated by the three different models 
in the 4-6 geometry. In general, the propagated wave packet will depend on the four 
fixed j-spins. Unfortunately, it is impractical to either compute or display functions 
on a 4-dimensional domain. Thus, all calculations have been done with the four 
fixed j-spins set equal. Figure 5.4 shows the reference wave packet 0  [cf. (5.11)] and 
propagated wave packets 0, depending on the common value of the fixed j-spins for
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i

Figure 5.2: EPR 4-1 propagated (</>) and reference (V>) wave packets, with jo  =  3.

j j

Figure 5.3: 1-9 propagated and reference wave packets for different models, with 
J O  =  4 .
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j j

Figure 5.4: 4-6 propagated and reference wave packets for different models, with 
J O  =  4 .

two choices of a. These wave packets are again normalized. As is clearly seen from 
the figure, the propagated wave packets have in general very little similarity with the 
reference one. More pathological behavior is observed in the FK and BC models, 
the latter at a  =  1/2, since none of these curves resemble a well formed gaussian 
wave packet. In all cases, the propagated wave packet has little in common with the 
reference one.

5.5 Conclusion and Outlook

We have discussed open spin foam models with boundary states. Two prominent 
examples fitting into this framework that have appeared in the literature are the 
problems of semiclassical wave packet propagation (in the context of the EPR model) 
and computation of the graviton propagator matrix elements (in the context of the 
BC model). In section 5.2, we have extended both problems to each of the BC, 
EPR, and FK models. At the same time,, we have proposed a uniform methodology 
for comparing results among the three models, despite their different spin argument 
structures.

A family of efficient numerical algorithms, capable of attacking these problems, 
has been constructed and implemented. The run time complexity of these algorithms
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has been analyzed and shown to be orders of magnitude superior to more naive ap
proaches. Reference [22] had put forward the hypothesis that semiclassical wave 
packets, propagated using the EPR dual vertex amplitude, approximate a certain 
reference gaussian shape, which was demonstrated under somewhat restrictive condi
tions. An application of the numerical algorithms described above allowed a broader 
investigation of this question. The results indicate that this hypothesis does not hold 
under more general conditions, neither for the EPR nor for the other models.

These algorithms have also already been implemented and applied by other au
thors, as discussed in section 5.4. While, several wave packet propagation geometries 
have been examined, there are many other ones. Is any one of them theoretically 
preferrable to the others? Another immediate possibility for further investigation is 
the computation of the graviton propagator matrix elements in the EPR and FK 
models.
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Chapter 6
Conclusion and Outlook

All computations described in this thesis were done using the spinnet software library 
designed and implemented by the author, in collaboration with Dan Christensen. This 
library includes routines for evaluating simple spin networks, which are the building 
blocks of more complicated algorithms. These spin networks can be computed in 
either classical or g-deformed form. They can also be computed in real or complex 
floating point form, in rational form, or even in symbolic form. The library also 
implements the spin foam vertex amplitude algorithms described above, some highly 
optimized. And it includes code to manage 4-dimensional triangulations and to sta
tistically evaluate corresponding spin foam partition functions. The library is written 
in C with Python bindings. The code is freely available upon request.

Section 1.1 provided a focused historical overview of the quantum gravity liter
ature leading up to spin foam models. As a useful reference for the rest of the thesis, 
section 1.2, section 1.3, and chapter 2 summarized some mathematical background 
and notation used in the definition of spin foam models and in the evaluation of spin 
networks.

In chapter 3, we have computed physical observables of variations of the BC 
spin foam model defined on non-trivial triangulations and incorporating a positive 
cosmological constant via ^-deformation. The calculations indicate that observables 
exhibit discontinuous behavior in the limit of zero cosmological constant (with the 
limit passing through primitive roots of unity ^-deformations). These results provide 
the first data concerning the long standing problem of incorporating and investigating 
the effects of a cosmological constant in spin foams. The observed behavior is seem
ingly at odds with the expected one, based on classical considerations, and deserves 
further examination. Also, the computed single spin distribution suggests that the 
spin foam partition function, for the Perez-Rovelli and Baez-Christensen variations 
of the BC model, is dominated by so-called isolated bubble spin foams.

In chapter 4, we have described spin foam vertex evaluation algorithms for 
so-called new models. The efficiency of these algorithms, for the first time, allows 
an exploration of these amplitudes’ large spin asymptotics. These asymptotics were
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compared to that of the standard BC model. All models show polynomial decay in 
their effective single vertex amplitudes. The presence of an oscillating exponentiated 
Regge action in the leading asymptotic term, as inspired by the Ponzano-Regge model, 
is not found. However, such a term may still be found in subdominant contributions, 
as in the BC mbdel.

Chapter 5 extended these algorithms to include the evaluation of spin foam ver
tex amplitudes contracted with factored boundary states. These algorithms are sig
nificantly more efficient than methods previously used to investigate the wave packet 
propagation problem for the EPR model. The formulation of this problem as well 
as of the graviton propagator calculation were extended to also encompass the BC 
and FK models. The wave packet propagation calculations were, for the first time, 
compared across the three models. The results do not strictly confirm hypotheses 
previously put forward regarding the semiclassical limit of the new vertices and call 
for their further investigation.

The graviton propagator calculations are another important test of the expected 
semiclassical behavior and should be addressed in future work. Other interesting phys
ical observables should also be identified and studied. Another avenue of investigation 
is the application of the tools developed for ^-deformed spin networks in chapter 3 to 
incorporate a cosmological constant into the formulation of the new models.

Finally, it is entirely possible that yet other and more sophisticated spin foam 
models will be proposed in the future. It is important to increase the flexibility and 
power of the computational tools available to lower the barrier to their thorough 
investigation. One possible direction is to develop an algorithm to automatically 
evaluate any trivalent spin network, which would simplify the task of section 4.3.1. 
Another is to develop an automatic optimizer to find the optimal order and number 
of summation loops necessary to evaluate complicated spin networks like vertex am
plitudes. Such an optimizer would automate the construction of algorithms like the 
ones described in sections 4.3.2 and 5.3.
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