
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2008

DNA Hairpin Secondary Structure Design DNA Hairpin Secondary Structure Design

Yan Zeng
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Zeng, Yan, "DNA Hairpin Secondary Structure Design" (2008). Digitized Theses. 4199.
https://ir.lib.uwo.ca/digitizedtheses/4199

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4199&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4199?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4199&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

D N A Hairpin Secondary Structure Design

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

The School of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

(Thesis format: Monograph)

by

Yan Zeng

Graduate Program
in

Computer Science

(c) Yan Zeng 2008

THE UNIVERSITY OF WESTERN ONTARIO

THE SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF E X A M IN A T IO N

Supervisor Examiners

Dr. Lila Kari Dr. Kaizhong Zhang

Dr. Mark Daley

Dr. Priti Krishna

The thesis by

Yan Zeng

entitled:

D N A Hairpin Secondary Structure Design

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date

n

Chair of the Examination Board
Dr. Hanan Lutfiyya

i

Abstract

In this thesis, we propose a bottom-up method to design single-stranded DNA se­

quences that form consecutive hairpin structures. This work was inspired by the

hairpin-based DNA multi-state machine proposed by Takahashi et al. in 2004. They

have successfully achieved this DNA multiple-hairpin structure in a laboratory exper­

iment and proposed two possible applications. The first one is to construct a random

access memory (RAM) by using the DNA machines as the access address for the

data. The second one is to solve the maximum independent set problem (MISP). It is

interesting thus to investigate how to design DNA sequences which form consecutive

hairpin structures as mentioned above. We propose a bottom-up approach to con­

struct consecutive hairpin structures, grounded on a so-called bond-free property, and

several combinatorial constraints. A software is implemented to study the behavior

of our bottom-up approach. We also calculate the maximal number of sequences that

correctly fold into the desired multiple-hairpin structure. This calculation provides an

estimation for the size of the memory that can be constructed using Takahashi et aVs

method. Lastly, by selecting suitable parameters, we successfully construct a set of

sequences that can fold in to the desirable multiple-hairpin structure. For example,

our software is able to generate 120 sequences that can fold into a four-hairpin struc­

ture where the length of each hairpin stem is 20, the length of each hairpin loop is

7 and the external segment is 20. We validate these sequences using the molecule

secondary structure prediction package, Vienna RNA secondary structure package.

Keywords: DNA computing, DNA secondary structure, Multiple hairpins.
iii

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor,

Dr. Lila Kari for her invaluable supervision, advice and guidance. She impressed me

with her deep knowledge in DNA computing and her confidence and ability to solve

any kind of difficulties.

During my master study, I took many excellent courses related to DNA computing

and Bioinformatics, and also some fundamental courses related to Computer Science.

I would like to thank the professors of these courses Dr. Yuri Boykov, Dr. Mark

Daley, Dr. Lila Kari, Dr. Lynda Robbins, Dr. Roberto Solis-Oba, Dr. Sheng Yu, and

Dr. Kaizhong Zhang for their dedication and time, because I really learned a lot from

these courses.

Moreover, I would like to thank Shinnosuke Seki for suggesting I study the multiple-

hairpin structures; Dr. Elena Czeizler and Dr. Eugen Czeizler for their careful proof

reading of my thesis proposal; Bo Cui for providing me valuable advice about the

thesis and his kind assistance in reading the thesis; and all other colleagues in the

Biomcomputing Laboratory.

Last but not least, I wish to thank my parents and my brother, without whose

endless support and encouragement my studies leading to the degree of Master of

Science would not have been possible.

IV

Dedication

Contents

Certificate of Examination ii

Abstract iii

Acknowledgements iv

Dedication v

Table of Contents vi

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 The Structure of DNA and RNA ... 1

1.1.1 The Structure of D N A .. 1

1.1.2 The Structure of R N A .. 3

1.2 The Objective of this Research ... 4

1.3 The Organization of the T h e s is ... 5

2 Basic Notations and Background Information 7

2.1 Preliminary Definitions... 7

2.2 Hamming Distance and Hamming B a l l .. 8

2.3 Automata T h eory ... 9

vi

3 Literature Review 13

3.1 DNA C om p u tin g .. 13

3.2 DNA Sequence D e s ig n ... 15

3.2.1 The DNA Sequence Design Problem .. 15

3.2.2 Constraints for DNA Sequences D esign 17

3.3 Approaches Related to DNA Word D e s ig n ... 18

3.3.1 The Stochastic Local Search A p p ro a ch 19

3.3.2 The Unique Subsequence A p p roa ch ... 19

3.3.3 Word-Block Construction S chem e.. 22

3.3.4 Method Using Bond-free Languages... 23

3.3.5 DNA Word Design Softw are.. 25

3.4 Hairpin Secondary Structure D esign.. 26

3.4.1 Secondary Structure Design P ro b le m .. 26

3.4.2 Methods Related to Structure Design P roblem 28

3.4.3 The Hairpin Secondary S tru ctu re .. 29

3.5 Motivation of the T h e s is ... 30

4 D N A Multiple-Hairpin Structure Design 36

4.1 Problem Statement and Solution ... 37

4.1.1 Problem Statem ent.. 37

4.1.2 Overview of Our Bottom-up A p p ro a ch 39

4.2 Generate the Bond-free Language... 42

4.2.1 Generate the Bond-free Language S® from a Set S 43

4.2.2 The Selection of the Set S ... 44

4.2.3 Calculate the Cardinality of S®(1).. 46

4.2.4 A Bond-free Language Closed under Concatenation................ 49

4.3 Construct the Segments of the Multiple-hairpin Structure................... 52

4.3.1 Construct Subsets Si and S2 from S .. 54

vii

4.3.2 Construct Sets Bs^s) and Bs2(l) .. 55

4.4 Apply Additional Combinatorial Constraints.. 56

4.5 Generate a Set of Sequences Folding into a Given Multiple-hairpin

Structure ... 58

4.6 Predict the Secondary Structures of the Result Sequences................... 60

5 Implementation and Experimental Results 64

5.1 Main Structure of the Software .. 64

5.2 Algorithms Related to Bond-free L anguages.. 68

5.2.1 Algorithm to Select Set S ... 68

5.2.2 Method to Construct the Sets Si and S2 71

5.2.3 Bond-free Languages Closed under Catenation........................... 74

5.3 Bond-free Languages: Experimental R e s u lts .. 80

5.4 Constructing a Multiple-hairpin Structure: Experiments 84

5.5 Discussions .. 91

6 Conclusions and Future Work 93

6.1 C onclusions.. 93

6.2 Future W ork .. 95

Bibliography 98

viii

Curriculum Vitae 104

List of Tables

5.1 The mapping of DNA words of length 2 to quadruple code based on

the mapping a that a(0) = A, a (l) — C, a (2) = G, and a(3) = T. . 70

5.2 The mapping of DNA words of length 2 to quadruple code based on

the mapping (3 that /3(0) = G, (3(1) = T, (3(2) — A, and (3(3) = C. . 70

5.3 Sets S, Si and S2 with parameters k = 3, d\ = 1 and ¿2 = 0........ 76

5.4 List of all the suffixes of Si, i.e., w G SU, and the corresponding words

v in Si satisfying Subfc(ttw) C S .. 77

5.5 Given a set Si, the table contains all the pairs of cur_SU and curJBE

we considered in the algorithm... 77

5.6 List of all the suffixes of S2, i.e., w G SU, and the corresponding words

v in S2 satisfying Sub*, (run) C S .. 78

5.7 Given set S2, all the pairs of cur-SU and cur-BE we considered in the

algorithm... 78

5.8 Given parameters k = 2, di = 0 and mapping a, this table gives the

size of set B(l) under various initial words and various lengths l. . . . 80

5.9 Given k = 3, ¿i = 0 and mapping a, this table gives the size of set

B(l) under various initial words and lengths l.. 81

5.10 Given k = 3, this table shows the cardinality of set B (6) under various

initial words and di... 83

5.11 Given k = 3, mapping (3 and the initial word GGG, this table shows

the words in S obtained under various d\.. 84

ix

5.12 The words in Batem and 0(Bstem) of Example Set 1 with c = 5 and d3

= 10... 85

5.13 The words in Bioop of Example Set 1... 87

5.14 The predictive results of Example Set 1.. 87

5.15 The words in Bstem and 0{Bstern) of Example Set 1 with the Hamming

constraint ¿3 = 9... 89

5.16 The predictive results of Example Set 1 with = 9................................ 89

5.17 The words in Bstem, 6(Bstem) and some of words in Bloop of Example

Set 2... 90

5.18 The predictive results of Example Set 2.. 91

x

List of Figures

1.1 The structure of a double-stranded DNA and the structure of single-

stranded RNA [38]... 2

1.2 A DNA hairpin structure... 3

2.1 The DFA M in Example 1 accepts the language L over the alphabet

{A , C, T } consisting of all the words that are ending with AC............ 10

2.2 A trie and an automaton representing the same set of words................ 12

3.1 Single-stranded DNA molecules representing vertex u, vertex v and

edge e from vertex u to vertex v that hybridize and form a partially-

double-stranded DNA molecule.. 14

3.2 Example of the undesirable hybridization.. 16

3.3 DNA Holliday junction... 20

3.4 Tree structure used to build words of length ns from shorter unique

sequences of length rib = 4 < ns. There is an arrow from node u to

node v iff Suff3(it) = Pref3(u)... 21

3.5 Hybridization of two segments with mismatches.. 24

3.6 An example of secondary structure.. 27

3.7 A Multi-state DNA Machine... 30

3.8 Opening the first hairpin.. 32

3.9 Opening the second hairpin... 32

3.10 The four hairpin structure is fully opened after applying four distinct

keys... 33
xi

3.11 Whiplash PCR simulates a state transition machine that transits from

state A to state B by transition rule A —► B .. 35

4.1 Correct multiple-hairpin structure hps(2,13, 7, 6) 38

4.2 The bottom-up approach using to design the multiple-hairpin structure. 41

4.3 Trie constructed based on set S = {A A , AC, CA, C C }........................... 43

4.4 The word ACACTC G 5® is constructed by the overlaps of words AC,

CA, AC, CT, and TC in S .. 45

4.5 The words w of length l end with the suffix su = v • e of length n = k — 1

and the words of length l—l end with suffix su' — b-v of length n = k—1

where Prefn_i(sw) = Suffn_i(su ') = v and b • v ■ e G S 47

4.6 The trie represents the set S = {A A , AC, CA, CC, CT, T C } such that

the end set is EN = {A A , AC, CA, CC, T C } and the begin set is

BE = {AA, AC, CA, CC, C T } .. 50

4.7 The 2D secondary structure of RNA molecule GGGCUAUUAGCUCAGU-

UGG and DNA molecule TTGGGCTATTAGCTCAGTTGG.......... 62

5.1 The flow chart of software.. 66

5.2 The inheritance relations of templates word, sort_set, hamming_set,

bond_free_set, se lect-su bset, t r ie , f i l t e r and check_struct. . . 67

5.3 Two kinds of overlaps between words W\ and 72

5.4 Correct DNA secondary structure with four consecutive hairpins. . . 86

5.5 The structures of the result sequences predicted by the Vienna RNA

package... 88
5.6 Some structures of the result sequences, with k — 4, d\ = 0 and ¿2= 0. 91

6.1 The new multiple-hairpin structure with five hairpins...................... 96

xii

1

Chapter 1

Introduction

1.1 The Structure of D N A and R N A

1.1.1 The Structure of DNA

Deoxyribonucleic acid (DNA) is a specific combination of nucleotides that encodes all

the genetic information instructing the functioning and developing of all the living

organisms. A single nucleotide consists of a phosphate group, a deoxyribose sugar and

a nitrogenous base such that the nitrogenous base and the phosphate group covalently

link to the 1’ and the 5’ carbon in the deoxyribose sugar, respectively. Depending on

the nitrogenous bases, adenine, guanine, cytosine and thymine, there are four types

of bases: A, G, C and T.

The consecutive nucleotides are linked to each other by the sugar-phosphate back­

bone between the 3’-hydroxyl group and the 5’-phosphate group, thus forming a

single-stranded nucleotide strand. The conformation of the DNA strand leaves a 5’-

phosphate group at one end of the strand and a 3’-hydroxyl group on the other end,

inducing thus a direction of the DNA strand, from the 5’ end to the 3’ end. Since

every DNA strand has an orientation, the strand 5’-ACCGT-3’ is different from the

strand 3’-ACCGT-5’.

DNA single strands can interact to each other due to hydrogen bonds that can form

between nucleotides. The interactions between DNA nucleotides are highly specific, A

2

and T and respectively C and G being able to bind only to each other. This is known

as the Watson-Crick complementarity. Two single-stranded DNA molecules that are

complementary and of opposite orientation bind together and twist into a double

helix structure by forming hydrogen bonds between corresponding complementary

nucleotides in the opposite strands. For instance, the DNA strand 5’-CAGT-3' is

complementary to the DNA strand S’-A C T G A and Figure 1.1 shows the structure

of a double-stranded DNA strand. A short DNA molecule which has not more than

thirty bases is called an oligonucleotide [23]. The double-stranded DNA molecules

will dehybridize, that is, the hydrogen bonds between nucleotides break apart and the

double-stranded molecules break into single-stranded molecules, if the DNA molecules

is heated. A temperature at which half of the oligonucleotides are hybridized and half

of them are dehybridized is called melting temperature.

£
The numbering
oi rtbose cartons
is me basis lor
Identification of 5'
and 3 'ends of
DNA and RNA
strands.

RNA (single-stranded)

A T

Ptiosphod*ster
linkage

5 'end

DNA (double-stranded)

5' end

3' and

Figure 1.1: The structure of a double-stranded DNA and the structure of single-

stranded RNA [38].

3

Due to the Watson-Crick complementarity, the hydrogen bonds of nucleotides can

occur within a DNA strand resulting in many kinds of secondary structures. A single

hairpin structure is a simple form of DNA secondary structure where two segments

within a single strand are complementary to each other and thus bind together; an

example is shown in Figure 1.2: the segment 5’-ACGTTTAGGT-3’ binds to the

segment 5’-ACCTAAACGT-3’. The double-stranded segment in a hairpin is called a

stem and the segment in between is called a loop, see Figure 1.2.

5 - - G - C — c 4 a
i I

3’ — A - A - T 4 T

Loop

„ G “ A
C G

s.
C

A
i !

C I

✓c
c i

J

Figure 1.2: A DNA hairpin structure.

1.1.2 The Structure of RNA

Ribonucleic acid (RNA) is another kind of nucleic acid. Although both DNA and RNA

are nucleic acids, RNA has its own specific characteristics. Concerning their chemical

structures, there are three main differences between DNA and RNA molecules: RNA

nucleotides have a different sugar group call ribose, RNA uses uracil (U) instead of

thymine, and in RNA the nucleotide U may bind to G as well as to A.

Rather than the stable double helix structure of DNA molecules, RNA molecules

are more often single-stranded. Segments within a long RNA strand may complement

each other and the RNA strand may form many complex secondary structures such

as pseudoknots, hairpin loops, bulge loops, internal loops and multiple loops.

4

1.2 The Objective of this Research

The Watson-Crick complementarity property has been intensively used in DNA com­

puting research, both for implementation of DNA-based memories, and as a compu­

tational primitive used in bio-algorithms. This thesis falls within the first category by

expending on an idea proposed by Takahashi et al. who introduced a DNA hairpin-

based RAM (Random Access Memory) in [44]. In the paper, data linked at the end

of a four consecutive hairpin DNA structure can be accessed by fully opening all

four hairpins one by one. We were intrigued by the idea of a RAM constructed by

using multiple hairpins, and investigated a bottom-up approach to generate a set of

sequences folding into such consecutive hairpin structures.

Our bottom-up approach is grounded in the “bond-free property” initially pro­

posed by Kari et al. in [26] and extended by Cui and Konstantinidis in [10]. If a

set of words satisfies the bond-free property, then any two subwords w and v of fixed

length of words in the set have the property that the Hamming distance between w

and the Watson-Crick complement of v is greater than a given positive integer d. The

Hamming distance constraint, which will be explained in more details in Section 3.2.2,

ensures that the DNA single strands represented by w and v are dissimilar to each

other. In our design, constituent parts of a hairpin (stem, loop) are constructed by

combining shorter “building blocks” , each of which belong to a set satisfying the bond-

free property. The construction ensures that the DNA folds indeed into the expected

hairpin and avoids other secondary structures. If several single hairpins are obtained,

the multiple-hairpin structure is achieved by catenating the single hairpins together.

To complement the design, combinatorial constraints such as the Hamming distance

constraint, the GC content constraint and the continuity constraint are adopted to

ensure the correctness and stability of the structures.

We develop a C +-1- program based on the bottom-up approach described above,

to generate sequences that fold into the desirable multiple-hairpin structures used

5

in [44]. In order to check the correctness of our results, we use the Vienna RNA

secondary structure package to predict the structure of our result sequences.

1.3 The Organization of the Thesis

This thesis is organized as follows. In Chapter 2, we give some basic definitions and

notations: word, language, subword, prefix, suffix, antimorphic involution, Hamming

distance, Hamming ball etc. We also include background information related to

automata and tries which will be used later to construct distinct segments (stem and

loop) of hairpins.

Chapter 3 consists of a literature review of DNA computing research and DNA

word design problem. The DNA word design problem is one of the central topics of

DNA computing research. This is because (unlike electronic data which has a fixed

address) data-encoding DNA single strands can interact with each other in either

programmed or undesirable ways. Various approaches to this problem are described

in Chapter 3. In addition, we mention relevant research on DNA/RNA secondary

structure design.

In Chapter 4, we describe the problem we address in this thesis and describe our

bottom-up approach that constructs the constituent parts of a hairpin by combining

shorter “blocks” chosen from sets satisfying the bond-free property. Bond-free lan­

guages have already been investigated in [26] and [10]. Here we improve the method

of selecting bond-free “blocks” , we use the method to produce bond-free DNA word

sets by constructing the corresponding tries, and modify the method to make sure the

concatenation of bond-free DNA words still maintains the bond-free property. Several

combinatorial constraints are then used to filter out undesirable words generated by

the tries. Finally, we discuss issues related to the Vienna RNA secondary structure

prediction package.

The main algorithms related to our bottom-up approach are presented in Chap-

6

ter 5. To test the performance and quality of our algorithm, we give experimental

results in the same chapter. Also, the way to choose the parameters is discussed in the

end of this chapter. Our result is that, by choosing suitable parameters, we success­

fully generated a set of sequences that can each form the desired consecutive hairpin

structure. For example, our software can generate 120 sequences that each fold into a

four-hairpin structure where the length of each hairpin stem is 20, the length of each

hairpin loop is 7 and the length of the external segment is 20. We validate the correct

secondary structure of our generated sequences by using the Vienna RNA package.

Finally, we present the conclusions of our approach and possible future directions

of research in Chapter 6.

7

Chapter 2

Basic Notations and Background

Information

A set of DNA sequences can be considered as a language over the DNA alphabet

{A , C, G, T }. Therefore, in this chapter, we first give some formal definitions of

language theory in Section 2.1. Furthermore, a formal definition of Hamming distance

is given in Section 2.2. Finally, background information related to automata and tries

is given in Section 2.3.

2.1 Preliminary Definitions

An alphabet £ is a finite nonempty set of symbols and a word w is a sequence of

symbols from the alphabet. The length of a word w is denoted by |tu|. For example,

the DNA alphabet is denoted by Edna = {A , C, G, T } and the sequence AACGT is

a word over the DNA alphabet; the binary alphabet is denoted by Ebinary = {0, 1}

and the sequence 1110111 is a word over the binary alphabet. Due to the polarity

of DNA molecules, by a DNA word w we denote the DNA molecule from the 5’-

end to the -3 ’ end. For instance, the DNA molecule 5’-AAGCGGT-3’ is denoted

by the word AAGCGGT and the DNA molecule 3’-AAGCGGT-5’ is denoted by the

word TGGCGAA. The word of length 0 is the empty word denoted by A. By £*, £ +

and £ fc, we denote the set of all words, the set of all words except the empty word,

8

and the set of all words of length k over the alphabet E, respectively. A language L

over the alphabet E is a subset of E* and the cardinality of L is denoted by \L\.

The Watson-Crick complementarity can be considered as a mapping 9 from EDNa

to E d n a where 9(A) = T, 0(T) = A, 9(C) = G, and 0(G) = C. Following the definitions

in [18], a morphism (antimorphism) of E* is a mapping a from E* to E* satisfying

a(uv) = a(u)a(v) (a(uv) — a(v)a(u)) where u , « £ E*. An involution 9: E —> E is a

mapping with the property that, for every w G E*, we have 9(9(w)) — w. Thus, the

Watson-Crick complementarity of DNA sequences can be formalized mathematically

by an antimorphic involution. For example, 0(ACTG) = 0(G)0(T)0(C)0(A) = CAGT.

Given a word w G E*, the prefix set of w is Pref(u;) = {u | 3u G E*,u> = uv}.

In a similar way, the suffix set of w is Suff(rc) = {u | G E*,w = vu} and the

subword set of w is Sub(tu) = {u \ 3x,v G T,*,w = xuv}. By Prefk(w) and Suffk(w),

we denote the prefix and suffix of w of length k, respectively. By Suhk(w). we denote

the set of distinct subwords of w of length k. For example, given the word w =

TCGTCGAA, Pref3(w)= TCG, Suff3(iu) = GAA, and Sub3(u;) = {TCG , CGT, GTC,

CGA, G AA}. Also, given a set S, Suhk(S), Prefk(S) and Sufffe(5') denote the set of

distinct subwords, prefixes and suffixes of length k of words in S, respectively. For

example, if S = {AAAA, ACGT, GCGC}, then Sub2(S) = (A A , AC, CG, GT, GC}.

2.2 Hamming Distance and Hamming Ball

The Hamming Distance was first introduced in the field of information theory to count

the number of bits being changed during the transmission of information through a

noisy channel [30]. It is a convenient method to measure the difference between

sequences of equal length. Given two sequences u — UiU2-..un and v? = ViV2-..vn

of length n, the Hamming distance h(u,v) of u and v is the number of positions

where the symbols are not the same, i.e., iq Uj, and 1 < i < n. For instance, if

u = AACGGT and v = GGCGGT, then h(u, v) = 2 since these two sequences are

9

different at position one and two. The Hamming distance notion can be extended to

sets. Given two sets of words of the same length, Si and S2, we say /i(Si, S2) > d, if

for any two words u G Si and v G S2 we have h(u, v) > d.

The definition of a Hamming ball is based on the Hamming distance. For a word it,

Hd(u) = {u | h(u,v) < d,Vu G £ fc and u G £ fc} denotes a set of words of certain

length k over an alphabet £ such that the Hamming distance between any words v

in the set and the word u is less than or equal to the distance d. For example, given

the DNA alphabet £ d n a = {A , C, G, T } and the word u = AAA, the Hamming

ball Hi{u) is /A (A A A) = {AAA, CAA, GAA, TAA, ACA, AGA, ATA, AAC, AAG,

AAT}. Indeed, each word in the Hamming ball is different in at most one position

from the given word u. Likewise, Hd(S) denotes the set of words such that each word

w in this set satisfies h(w,u) < d for all u G S.

2.3 Automata Theory

A finite automaton is one of the simplest abstract models of computing devices. For­

mally, a Deterministic Finite Automaton (DFA) is a quintuple M = (Q, £ , <5, s, F)

consisting of five components:

• Q is a finite set of states,

• £ is an input alphabet,

• <5 : Q x £ —> Q is the set of transition rules,

• s is the initial state, and

• F C Q is the set of final states.

Given a DFA M and an input word w = wiW2---wn, Wi G £, 1 < i < n, the DFA

reads the input word w as follows. Begin with the initial state s in the DFA and the

first symbol wi of w. If there is a transition rule 8(s,wi) = Si, then the automaton

10

transits to state Si and the current reading symbol becomes w2. The DFA will repeat

this process until it finishes reading all the symbols of the word w or no transition

rule can be applied. If the DFA is in a final state when it finishes reading the whole

word w, then the word is accepted by the DFA, otherwise, it is rejected by the DFA.

Here we present an example of how an automaton works.

E xam ple 1 Consider a DFA M = (Q, E, 5, s, F) where Q = {so, si, s2},

E = {A ,C ,T } , s — So, F = { « 2} ; and the set of transition rules is:

{ 5(s0,A) = si, 5(s0,C) = s0, S(s0,T) = s0, 5(si,A) = s0, S(si,C) = s2, 6(su T) =

s 0 ; ^ (s 2) A) = So? d(s2,C) = So, S (s 2 , T) = So }•

The language L accepted by the DFA M , depicted in Figure 2.1, consists of all

the words over the alphabet {A , C, T } ending with AC. Given a word w= ACTAC,

A,T

Figure 2.1: The DFA M in Example 1 accepts the language L over the alphabet

{A , C, T } consisting of all the words that are ending with AC.

then w can be accepted by the “derivation” : SoACTAC h SiCTAC h S2TAC h SoAC

h SiC h s2. In contrast, given the input word w = ACAT, w cannot be accepted

since s0ACAT h siCAT h s2AT h soT F s0, i.e., the automaton finishes reading the

word and stops at the state s0 which is not a final state.

The tree-like data structure trie, [2], is used to save a set of strings over an

alphabet. Using this tree-like structure may reduce the space needed to store strings

11

with a common prefix. Figure 2.2(a) gives an example of trie storing the set of strings

{try, trie, to, top, word}. The strings ‘try’, ‘trie’, ‘to ’ and ‘top’ have the common

prefix ‘t ’, therefore, they have a common ancestor node in the trie. A string in the

given set can be recognized by searching the corresponding trie from the root to a

leaf. For example, the string ‘word’ can be recognized by going through the edges

labeled ‘w’, ‘o ’, ‘r ’, and ‘d’. This may lead to the problem when a string in the set is

the prefix of another word in the set, such as the string ‘to ’ being the prefix of the

string ‘top’. To address this issue, a mark such as $ was added to the end of each

string.

A trie structure can also be considered as a DFA and the DFA corresponding to

the trie mentioned above is shown in Figure 2.2(b), where the root corresponds to

the start state and all the leaves correspond to terminal states.

In this thesis, we will construct tries that accept bond-free languages L with

the property that any two subwords w, v of words in L of certain length satisfy

h(w, 0(v)) > d. The bond-free languages that we construct are closed under catena­

tion.

y

(a) The trie structure represents the set of strings S={try, trie, to, top, word}.

(b) The DFA over the alphabet {t, r, y, 1, e, o, p, d} accepts the word set {try, trie,

to, top, word}.

Figure 2.2: A trie and an automaton representing the same set of words.

13

Chapter 3

Literature Review

3.1 D N A Computing

In DNA computing, computational problems are solved by applying molecular manip­

ulation techniques to information-encoding DNA molecules. The first DNA comput­

ing experiment was carried out by Leonard Adleman [1] in 1994 to solve a seven-node

instance of the Hamiltonian Path Problem.

The Hamiltonian Path Problem (HPP) determines whether there is a path that

goes through each vertex exactly once in a given graph. HPP is an NP-complete prob­

lem1 and Adleman has solved a 7-node instance of HPP by applying DNA molecular

operations [23] to the graph encoded by DNA molecules. In Adleman’s experiment,

the Hamiltonian path sought starts with vertex vin and ends with vertex vout and the

graph was encoded in the following way: each vertex V{ was encoded by a 20-base

single-stranded DNA molecule, each edge ek from vertex Vi to vertex v3 was encoded

by a 20-base singled-stranded DNA molecule such that ek = 0(Suffio(uj)Prefio(uj))

where 9 is the antimorphic involution mentioned in Section 2.1.

As an illustration in Figure 3.1, if e is an edge from vertex u to vertex v in a given

graph and vertices u and v are represented by single-stranded DNA molecules

5’-CGGTTACTTACTAACTTGGC-3’ and 5’-GCGTATAGTACCGGAATCTC-3\

1 An NP-complete problem is a particular type of NP (non-deterministic polynomial time) problem

with the property that all other NP problems can be reduced to it in polynomial time [23].

14

respectively, then edge e is represented by DNA molecule

3’-GATTGAACCGCGCATATCAT-5’.

Figure 3.1 also shows how these molecules bind to each other and form a partially-

double-stranded structure.

5'-
---Suffip(u) Prefio(v)

-3'
I I I I I I I I I I I I I I I I I I I I

3'-jGATTGAACCGjCGCATATCATj-5'
h*— Suffio(e) — — Prefio(e) —

Figure 3.1: Single-stranded DNA molecules representing vertex it, vertex v and edge e

from vertex u to vertex v that hybridize and form a partially-double-stranded DNA

molecule.

In a solution test tube, each single-stranded DNA molecule representing a node

or an edge was presented in multiple copies and they could hybridize to each other

freely in random order to form distinct paths by the ligation reaction. The result

of this step was that all possible paths in the graph were formed simultaneously. If

there were any solutions of HPP in the graph, they could then be extracted by several

molecular manipulations. The steps to weed out the incorrect candidate paths were

as follows. First, keep the paths that begin and end with vin and vout, respectively.

This step can be achieved by using polymerase chain reaction (PCR) to amplify the

DNA strands starting with vin and ending with vout. Second, keep the paths that

enter exactly n vertices where n is the total number of vertices in the graph. A

technique called gel electrophoresis was used to separate the DNA strands by length,

the length of the desirable path here being 140 = 20 x 7. Third, keep all the paths

15

that enter each vertex exactly once. By affinity purification, DNA strands containing

certain subsequences can be extracted from heterogeneous solution of DNA strands.

Therefore, the presence of vertices can be checked one by one by affinity purification.

Finally, if there are paths remaining in the solution, they are the result of the HPP,

otherwise, there is no solution path.

3.2 D N A Sequence Design

The correct solution to Adleman’s experiment was based on the assumption that all

the DNA sequences hybridize in the correct way. However, this is not always the case:

DNA sequences can bind to themselves, to other strands inaccurately, or form some

other undesirable bonds. Considering the DNA sequences used in Adleman’s experi­

ment as examples, the following hybridization may be unwelcome: If a segment in a

sequence encoding a graph node is Watson-Crick complementary to another segment

in the same sequence, then it may form a secondary structure such as Figure 3.2(a).

If segments in different sequences representing the vertices or the edges are comple­

mentary to each other, then they may hybridize together and form double-stranded

sequences such as Figure 3.2(b) and Figure 3.2(c). In both cases, the computation is

compromised since the desired Hamiltonian path may never form.

In this section, we present the DNA sequence design problem (Section 3.2.1) and

some constraints that can be used to obtain DNA sequences that are free of undesir­

able hybridizations (Section 3.2.2).

3.2.1 The DNA Sequence Design Problem

As seen in previous example, in DNA computing, obtaining the correct comput­

ing output is based on the occurrence of the precise hybridizations between DNA

molecules, and no or few occurrences of unwanted hybridizations. The undesirable

hybridizations within a set of DNA molecules interfere with the computing process.

16

A “ On

5--A--T - 9 - 9 ~9'
T — A — C — G — G - 7;

, _ a_t_ ĝ - t- g- c-Q-A-6-c- a-5'

(a) Undesirable bond of one DNA strand (b) Undesirable bond between two strands

-G — G - T - C — A-C -3 ' 5 -G -C -G -T -G — T - T - A -
l l | * l i l l t l l

3 '- C - A - G - T —G—T - C - G —

(c) Undesirable bond among DNA strands

Figure 3.2: Example of the undesirable hybridization.

Hence, the DNA sequence design problem arose and became a crucial problem in

DNA computing.

The DNA sequence design problem [18] is: How to encode a given problem by using

single-stranded or double-stranded DNA that avoid most of the undesirable hybridiza­

tions and maintain the desirable hybridizations, so as to obtain the correct result by

a succession of molecular operations?

Many approaches have been proposed to tackle the DNA sequence design problem

theoretically and experimentally. As DNA sequences can be thought of as words

over the DNA alphabet, theoretical approaches have formalized the DNA sequence

design problem as the “DNA word design problem” , and properties of DNA languages

were investigated in [24], [20], that ensure that certain kinds of undesirable bonds

would not occur. Others have estimated the upper and lower bound of the size of

the DNA language with given constraints [32]. On the other hand, experimental

approaches have generated DNA sequence libraries by using computer algorithms,

and then constructing the DNA libraries in the laboratory. Mauri and Ferretti [33]

give a survey of the methods related to DNA sequences design.

17

3.2.2 Constraints for DNA Sequences Design

To cope with the DNA word design problem, a necessary step is to eliminate the

words that will form the undesirable bonds, as well as keep the words that will

form the desirable bonds. Applying combinatorial constraints to the DNA words can

reduce unwanted hybridizations. Therefore, various constraints were proposed to aid

in the word design problem. A survey of constraints was given by [39] and Tulpan

summarized these constraints in [46]. Here, we enumerate some of them.

Cl. Hamming distance constraint: This constraint is widely used in the word

design problem, by which the words in the set may be dissimilar to each other,

and then increase the correct hybridizations when apply molecule operations.

A set of words S of length k is said to satisfy the Hamming distance constraint,

if h(u,v) > d, Vu, v E S where k, d (k > d) are given positive integer

parameters. For instance, the Hamming distance of the set S = {ACGTTA,

GGTGGC, CTACAT} is larger than 5 since the Hamming distance between

any two words is 6.

C2. Reverse-complement constraint: This is also a common constraint used in the

word design problem, by which the words in a set may not hybridize to each

other. A set of words S of length k satisfies the reverse-complement constraint,

if h(u, 6(v)) > d, Vu, v E S and k, d (k > d) are given positive integer param­

eters, where 6 is the antimorphic involution mentioned in Section 2.1. Using

the same example set S mentioned above, the reverse-complement distance

of the set S is larger than 2 since the minimum distance are h(ACGTTA,

0(CTACAT)) = h(ACGTTA, ATGTAG) = 3 and h(CTACAT, 0(ACGTTA))

= h(CTACAT, TAACGT) = 3.

C3. Slide Hamming distance constraint: If the length of words in the set is fairly

long, undesirable bonds may occur within a word or between segments of two

18

words. To address this problem, the slide Hamming distance constraint was

proposed, which makes sure that any slides of words of certain length are not

similar to any other slides of words in the set.

C4. GC-content constraint: Since the hybridization between G and C has three

hydrogen bonds and there are only two hydrogen bonds when A binds to T, a

double-stranded DNA will be more stable if the number of Gs and Cs in the

strand is higher than a certain threshold. Furthermore, it is desirable to make

the GC-content of all DNA words in certain range, so that the corresponding

DNA molecules may have similar melting temperature.

C5. Continuity constraint: If one base appears in one DNA strand continuously,

the number of repetitions should be lower than a given threshold. This con­

straint prevents the unstable hybridizations of DNA strands [45].

C6. Alphabet size: As mentioned in [34], if we use the alphabet set {A , C } instead of

{A , C, G, T } for encoding information as DNA strands, this will prevent most

undesirable bonds between words in the set. Also, the self-complementary

DNA sequences in a DNA word set can be reduced if we use the three-base

alphabet {A , C, T } [5]. Therefore, it would be a practical approach to use a

subset of the DNA alphabet to design DNA words.

3.3 Approaches Related to D N A Word Design

Exhaustive search of the whole solution space of the DNA word design problem is

not computationally feasible because the solution space grows exponentially with the

length of the word. Many researchers proposed their own methods to deal with this

word design problem, and we will describe some of them in this section.

19

3.3.1 The Stochastic Local Search Approach

The stochastic:2 local search algorithm is an efficient method that tackles problems

with huge solution space. In [47], a stochastic local search approach was utilized to

design sets of sequences with combinatorial constraints which include the GC content

constraint (C4), the Hamming distance constraint (Cl) and the reverse-complement

Hamming distance constraint (C2). The algorithm starts with a random initial set

of words of fixed length. The procedure iteratively picks up two words that violate

the given constraints and modifies one symbol in either word which may let the new

word satisfy the constraints. This is done until either the set of words satisfies all the

constraints or until the iterations exceeds certain number of times.

3.3.2 The Unique Subsequence Approach

The idea of using unique short subsequences to generate longer DNA sequences with

certain desirable properties was initially proposed by Seeman in [43] and [42] to con­

struct DNA junction structures. In a junction structure, each sequence contributes to

two double helices by binding to two other sequences within the structure. Figure 3.3

shows a well-known DNA junction called DNA Holliday junction.

In order to construct a stable and correct junction, Seeman applied particular

rules to the short subsequences that he used as building blocks to create the final

DNA strands. We emphasize three of them: First of all, subsequences of certain

length could only be used at most once within the junction structure. Second, the

Watson-Crick complement of any subsequence located at a bend could not be used

inside the structure. Third, self-complementary subsequences were not allowed in any

sequences. (A self-complementary sequence is a DNA sequence s satisfying 9(s) = s .)

The unique subsequence criteria made sure that the desirable hybridizations were

2A stochastic process is a process in which the current state does not depend on the previous

states.

20

more specific, and therefore more likely to form stable and correct junction structures.

The concept of “unique subsequences” was extended by Feldkamp et al. [13] to

solve the DNA word design problem. Formally, they tried to design a set of words S

of equal length ns, with the property that any subwords of length rife < ns of words

in S can only be used at most once in S. By this criterion, the subwords of length rife

are unique in the set S, and the subwords of length n& — 1 are the common subwords.

The authors built then the set of sequences of length ns by searching a tree structure.

The tree structure had the following properties: Each vertex of the tree denoted

a unique subsequence of length rife. If there was an arrow from vertex u to vertex

v, then Suffn6_i(u) = Prefnfc_i(u). For nb = 4, Figure 3.4 shows a tree starting

with vertex TAGC. Vertex TAGC would have arrows to vertices AGCA, AGCC,

AGCG and AGCT, since TAGC has suffix AGO and the other subsequences have

it as the prefix. However, the subsequence AGCT would be forbidden because it is

self-complementary, that is 0(AGCT) = AGCT. When searching the tree, each vertex

can only be traversed once, and vertices representing the Watson-Crick complement

of the respective subsequences being used cannot be used. In the Figure 3.4, the path

shown in bold represents the sequence TAGC AC.

21

TAGC

A G C A

AGCC

AGCG

AGCT-

GCAA ...

GCAC ...
GCAG ...

GCAT -

Figure 3.4: Tree structure used to build words of length ns from shorter unique

sequences of length rib — 4 < ns. There is an arrow from node u to node v iff Suff3(/u)

= Pref3(u).

In [13], the cardinality of the word set obtained in this way was analyzed. If the

length of the subsequence is even, then the number of useful unique subsequences

is
4«b _ 4«t/2

Ausefu l(̂ h>) == 7)

and if rib is odd, then
4 «6

Anseful(^b) = ^

where 4”4 * 6 is the total number of subsequences of length rib and 4n,>/2 is the total

number of the self-complementary subsequences of length n&. Thus, an upper bound

of the cardinality of a set of length ns can be

-̂ seqsr i b) L-̂ useful iP'b)
ns - n b- 1J

When constructing the DNA sequence set, there is a trade-off between the diversity

of the subsequences and the cardinality of the set. If nb is small, the possible unique

22

subsequence candidates are very few, making the cardinality of the set of words of

length ns too small. For instance, if % = 3 and ns — 10, then Nusefui(nb) = 32 and

Nseqs(ns,nb) = Nseqs(10,3) = 5. In this example, we may only generate 5 sequences

of length 10, if we use the unique subsequence of length 3. On the other hand, if nb

is large, then the common subsequences of length nb — 1 are also long, which may

cause undesirable hybridizations. For example, if nb = 10, then the length of the

common subsequence is 9 which is long enough to allow undesirable bond within a

subsequence or between the subsequences.

3.3.3 Word-Block Construction Scheme

Reif et al. constructed a DNA library of sequences of equal length for use in DNA

computing experiments by concatenating shorter subsequences of equal length [36].

Here, a library is a collection of physical DNA molecules. The subsequences of equal

length were assigned multiple times to design the DNA sequences rather than using

the unique subsequences mentioned in the previous subsection. In this design method,

the alphabet {A , C, T) was used instead of the ordinary four-base DNA alphabet,

which can reduce the chances of unwanted hybridizations.

This method consisted of several steps. Firstly, a set of words S of equal length

over the three-base alphabet was generated, satisfying the GC-content constraint (C4).

Here, Reif et al. chose the length of the sequences as 4. Since there was no symbol G

in the alphabet, the authors fixed the number of bases C in each word w in the sets

of DNA words. Secondly, the words generated in the previous step were assigned to

distinct sets which were called “blocks” in [36], and all the blocks satisfied the Ham­

ming distance constraint (C l): Each word w could only be assigned to one block,

and the Hamming distance between any two blocks was larger than a given thresh­

old. Finally, all the blocks were arranged in a particular order such that each DNA

sequence used in the final DNA library was a concatenation of words selected orderly

from each block. For example, if words were assigned to n blocks, and each block

23

had m words, a word could be denoted by icy where i denotes the index of block

that the word is in, and j denotes the index of the word in the block. Thus, a DNA

sequence in the final library could be represented by Wi!miW2,m2--wn,mn- When the

words were concatenated, new short words could be created at the adjacency places

and they may cause undesirable bonds. Reif et al. implemented additional algorithms

to handle this problem.

Compared to the unique subword approach, the Word-Block construction scheme

can construct a much larger DNA library. If there are n blocks and m words in each

block, then the cardinality of the DNA library S is |Sj = mn. For example, if n = 10

and m = 4, there will be 410 sequences in the DNA library.

3.3.4 Method Using Bond-free Languages

Another issue related to the DNA word design problem is that undesirable bonds may

occur even when sequences are only partially Watson-Crick complementary to each

other. Figure 3.5(a) shows that sequence 5’-TACATGCCT-3’ may hybridize to the se­

quence 5’-CGGCCTGGT-3’ although bases at position 1, 2, 5 and 9 are mismatched.

Figure 3.5(b) shows another example. The hybridization may occur between two

segments 5’-ACAAGCC-3’ and 5’-GGCGTGT-3’ within a single-stranded sequence

with one mismatch in the middle of the segments. According to this observation, it is

therefore desirable to design DNA words based on the subwords with good properties,

such as the bond-free property which will be mentioned in this subsection.

The notion of bond-free language was defined by [26] to deal with this type of

undesired imperfect bond. A language L is a (9, H^k)-bond-free language, if any two

subwords u and v of length k of words w 6 L satisfy the Hamming distance con­

straint h(u, 9{v)) > d, where 6 denotes an antimorphic involution (the mathematical

formalization of Watson-Crick complementarity, defined in Section 2.1), k denotes

the length of the subwords, and d denotes the Hamming distance. By choosing ap­

propriate parameters d and k, any two subwords will not bind to each other. Thus

24

;V A
5 ^ T -A -C -A -T -G -0 -0 '

* * ! * 1
C“ C“ G“ G~C-~5'

s
/

J3^

o
-{—G—T—G— y

5'—T - A - C - A - A - g - C - P

a) Hybridization between two sequences. (b) Hybridization within a sequence.

Figure 3.5: Hybridization of two segments with mismatches.

the bond-free language which is made up by words whose subwords of length k sat­

isfy this constraint will avoid the imperfect segment hybridization situations shown

in Figure 3.5. This is because, for an imperfect hybridization to occur between seg­

ments u and v, the matched bonds have to “outnumber” the mismatched bonds. By

imposing h(u, 0(v j) > d, we ensure that u and 9{v) differ by sufficiently many bases

so that a hybridization is impossible.

To describe the relation between the subword set and the final DNA language,

the subword closure operation 0 was proposed in [26]. Given a set S which contains

only the words of length k, the subword closure S® of S' is a language which contains

all the words of length larger than or equal to k, such that for each word w in the

language S®, Subfc(u ;)C S. For example, given S = {AAT, ATG, TGC, GCA}, word

w = AATGC G S® since all the subwords AAT, ATG and TGC are from S, but the

word w — AATTG S® since the subwords ATT and TTG are not in the set S.

Generally, we are seeking a DNA language consisting of words of equal length,

say l. Also, since concatenating information-encoding DNA strands is often needed

during biocomputation, a desirable property of a DNA language is that it be closed

under concatenation. Using the (9, -iG^-bond-free language 5® as an example, if

the language S'® is not closed under concatenation, then for w, v G S®, some of the

words of length k in Subk(wv) might not be in S, and a segment may hybridize to the

segment at the joint of w and v. Keeping the focus on these two considerations, Cui

and Konstantinidis [10] proposed a method to generate a bond-free language of words

25

of fixed length that is closed under concatenation. This method will be mentioned

later in Section 4.2 and the details of the method are described in [9].

3.3.5 DNA Word Design Software

Various software packages related to DNA word design were proposed, such as design

a set of words for a specific DNA computing algorithm, design a set of words that

satisfies certain constraints, and design a set of words that may fold into a specific

structure.

The unique subsequence approach proposed in [13] and described in Section 3.3.2

was implemented as a software package called DNASequenceGenerator. The authors

also considered other criteria such as the GC content constraint, and melting temper­

ature, when constructing the sequences. An extension of this work, DNASequence-

Compiler [12] was introduced to study and construct sequences with the property that

the concatenation of sequences still maintain the “unique subsequences” property.

A component of the software Nucleic Acid Computing Simulation Toolkit (NACST)

called NACST/Seq [29] introduced a non-dominated sorting genetic algorithm(NSGA)

which aimed at generating a good set of sequences meeting multiple constraints.

Based on the theoretical properties of DNA words studied by Hussini et al. [18], and

Jonoska et al. [20], CODEGEN [28] was implemented to generate a DNA word set

with certain properties and to test whether a given set of DNA words satisfies these

properties.

Another main approach to DNA sequences design is used in DNA nanotechnology.

Uniquimer [49] was a software with graphic interfaces to design DNA sequences for

DNA self-assembly. Iimura et al. [19] implemented a system to construct specific 4 x 4

tiles. Not only did they use the GC content constraint and the melting temperature

constraint to design the sequences, they also evaluated the sequences based on the

free energy. Free energy is a widely used criterium in the sequence design problem.

If a DNA sequence can theoretically fold into several possible secondary structures,

26

in practice it will fold as to minimize a thermodynamic parameter called “Gibbs free

energy” . In the system, a hill-climbing algorithm was adopted to maximize the free

energy of sequences that did not need to hybridize, and minimize the free energy of

sequences that were expected to hybridize.

3.4 Hairpin Secondary Structure Design

In the following, we first introduce the DNA/RNA folding problem (Given a DNA/RNA

sequence, what is the secondary structure that it will form?) and some of its solu­

tions, and then we describe the inverse folding problem (Given a secondary structure,

find a RNA sequence that will fold into that structure.) in Section 3.4.1. Several ap­

proaches to solve the inverse folding problem are introduced in Section 3.4.2. Finally,

in Section 3.4.3, we describe the formal definition of a single hairpin structure and

the hairpin frame.

3.4.1 Secondary Structure Design Problem

An unstable single-stranded RNA or DNA sequence will hybridize to itself if two of

its segments are Watson-Crick complementary to each other and form a more sta­

ble structure. A complex pseudoknot-free3 secondary structure may contain many

kinds of simple secondary structures, for example, hairpin loop, multiple loop, inter­

nal loop, bulge, and external bases, see Figure 3.6. RNA molecules are more often

single stranded and unstable single-stranded RNA sequences may fold into complex

secondary structures to reduce their free energy. This raised the RNA secondary

structure prediction problem which also known as the folding problem.

Mfold [50] and RNAfold in Vienna RNA Package [17] were proposed by Zuker and

Hofacker et al, respectively, to predict the secondary structure of a given DNA/RNA

sequence. The main method was to fold the given sequence into a structure with

3Pseudoknot is a specific RNA structure [37] that we do not consider in this thesis.

27

Figure 3.6: An example of secondary structure.

minimum free energy, since a structure with lower free energy will be more stable

and immobile. To address this problem, dynamic programming was implemented to

assign substructures to the given sequence to optimize the free energy. The process

was based on the assumption that the energy of the whole structure was built up by

the energy of small substructures [17] such as stems, hairpin loops, bulges, internal

loops, multiple loops, external bases, etc. The thermodynamic parameters of small

substructures were collected in experiments at a temperature of 37°C. Regarding

the DNA word design problem, these two software packages can be used to predict

whether given DNA words will form any secondary structures.

On the other hand, the research in self assembly and the interest in the molecular

machine design gave rise to the inverse folding problem. Given a secondary structure,

the problem is to find a RNA sequence that will fold into the target structure. Several

approaches have been presented and there are some common techniques adopted by

28

these approaches [17], [3], and [6]. First of all, minimum free energy is used as a

criterion to evaluate the sequences. If a sequence has the lowest free energy value when

it folds into a given structure, then this sequence is the best sequence. Secondly, the

whole solution space of the problem is exponential relative to the length of the given

structure, so it is difficult and unpractical to check every solution sequence. With this

in mind, the stochastic local search is a general technique used to find a solution. Also,

the energy of the whole structure is added up by the energy of the substructures [17]

and it is easier and more efficient to optimize the substructures and then combine

them together to build the final structure, so most of the algorithms try to design

sequences of substructures and then link them together. In the following section, we

will introduce some of these approaches to solve the inverse folding problem.

3.4.2 Methods Related to Structure Design Problem

The inverse RNA folding problem was investigated in [17] and a heuristic algorithm

was implemented as a function called RNAinverse in the Vienna RNA package. Given

a complicated secondary structure, RNAinverse began the process with an initial

sequence and iteratively optimized the substructures by mutating an unpaired base

or a base pair. Since the sequence is measured by its free energy, if a mutation reduces

the free energy of the substructure, then the mutation will be maintained, otherwise

the mutation will be discarded. Afterwards, all the optimal subsequences are linked

to form the objective secondary structure.

In [3], the author introduced RNA Secondary Structure Designer (RNA-SSD).

Although the basic method was analogous to RNAinverse, RNA-SSD put more effort

into designing the initial sequence. Three observations were applied to the initial

sequence. Generally, the original sequence was assigned according to the unpaired

bases and the paired bases. If a base would hybridize to another base in the given

structure, then the pair was assigned at the same time. Furthermore, a certain

GC content was imposed on the paired bases to make the structure more stable.

29

Conversely, if a base was an unpaired base such as a base at the loop structure, then

the base was assigned to make sure it would not bind to other base in the loop.

Finally, the unique subsequence concept mentioned in [42] was also applied to the

initial sequence.

INFO-RNA, introduced in [6], is a new approach to solve the folding problem,

based on two steps. In the initial step, dynamic programming was used to calculate

the minimum free energy of bases folding into the given complex structure. This step

can generate a sequence with minimum free energy based on the specific structure,

but the sequence can also fold into other structures which have even lower free energy.

In order to obtain a better sequence, INFO-RNA introduced stochastic local searching

algorithm in the second step. In this step, they obtained the sequence by mutating

the initial sequence by one base if it is an unpaired base or two bases if they are a

base pair.

3.4.3 The Hairpin Secondary Structure

A single hairpin structure is a simple form of DNA (or RNA) secondary structure

where two segments within a single strand are complementary to each other and thus

binding together; an example is shown in Figure 1.2. The authors in [27] proposed a

formal definition of all the hairpin with stem length at least k, where k is a positive

integer:

hp(9, k) = { xvy9(v)z \ x, z, v € £*, y £ £ + , and |u| > k }.

In a hairpin hp(9,k), v and 9{v) are complementary to each other and they are of

length at least k. Take Figure 1.2 as an example: v — ACGTTTAGGT will bind to

9(v) = ACCTAAACGT, since they are Watson-Crick complementary to each other.

To model multiple-hairpin structures, in [25], a hairpin frame was defined by:

u = x 1v1yi9(v1)ziX2V2y29(v2)z2...xnvnyn9(vn)zn.

30

where vu y¿, 9(vi), Zi G E*. For each segment XiViyi9{vi)zl, Vi is complementary to

0(vi) and form a single hairpin. Therefore, u has n single hairpins and u is a hp-frame

of degree n. Note that other formal definitions of hairpin structures and hairpin

frames have been proposed in the literature, for example by using trajectories [11].

3.5 Motivation of the Thesis

Using the above notations, we can denote by

u — xviyi9(vi)v2y2Q{v2)v3y3Q(v3)vm9(v4) (3.1)

a four-consecutive-equal-size-hairpin structure where x, viy yi, 9{vì) G E^NA, \x\ =

Hairpins

key I
9 •
Q(X)

y<

• è
L 0

• - f

t - f «k
è -#
è -0

V*
1^#

? ?# il

•#
0(v3)

• v* 4~#e(v2) v>* Jk e(v.)

S'

4-4
4-4
4-4 è-*?

* *
é *

1 *
II
m 4

y* y«

Figure 3.7: A Multi-state DNA Machine.

31

\vi\ = \9(vi)\ = s and \yi\ — l (1 < i < 4). This, structure was designed and used

in [48] to serve as a multi-state machine, see Figure 3.7.

For a single hairpin structure, the folded and unfolded structure can be considered

as two different states. Hence, a consecutive hairpin structure, i.e., a structure con­

taining several consecutive equal-size hairpins, can work as a multi-state machine. In

order to make the hairpins unfold, additional single stranded DNA sequences are used

as the keys to open each hairpin structure. A key can open the hairpin by branch

migration, a process by which an unpaired region of a strand displaces one strand

from a double-helix by forming the same base pairs as the complement of strand being

replaced, provided the new structure which is more energetically favourable.

The process of opening all four hairpins of u is as follows: The key 9{vi)9(x) is

used to open the first hairpin xviyi9(vi). Here the key 9(vi)9(x) is a linear DNA

sequence whose first part, 9(vi), is complementary to the stem portion v1 in the

first hairpin, and the second part, 9(x), is complementary to the external segment x.

Figure 3.8 shows how the key 9(vi)9(x) opens the first hairpin xviy\9{vi). The part

6{x) of the key will first anneal to the external segment x, see Figure 3.8(a). Thus,

by branch migration, the part 9{vi) o f the key will hybridize to the stem V\ and force

the double-stranded stem to dehybridize into two single-stranded segments. Finally,

the first hairpin is fully opened, see Figure 3.8(b).

To open the second hairpin, the key 9{v2)vi is used and the process is similar to the

previous one, see Figure 3.9. The opening of the first hairpin makes the segment 6(vi)

single stranded, therefore, it behaves similarly to the external segment x. The part

Vi of the key will anneal to the segment 9(vi) of the stem, see Figure 3.9(a), and then

force the double stranded stem to dehybridize into two single stranded segments. At

the same time, the part 9(v2) of the key will hybridize to the stem v2. Thus, the

second hairpin is opened, see Figure 3.9(b).

By the same token, the third and forth hairpin can be opened orderly by applying

keys 9(v3)v2 and 9(v4)v .̂ After applying all four keys, the multiple-hairpin structure

•TX\ V,uo^s
••6'S

ajtud.d

(<0

..0-0,

rh
m

t
0#è 45

f \ •
0$ è 0 0 m0

* J 0
•> 0 lA 9.»

(*A)6 *✓ * * ^

'** («AieI - _

(>a ÌB

v\ » *> •
•-•• •

* 0 -0 * *
0 -0
0—0 •-•
0 -0 vV» V’({AÌ0 0—0 'A V*

*****/* *

V ;
*Á

«<«

•-*

<*# *-* *

(‘A}0 J~% ‘A

#“•
*-•os #

» :
V * * '

‘A

— «
f

(«i

»* ^
l̂ 0

f ■%
è fml**

« «9
•-*

f è * _V 0
1 # ■0—0 0

•w * 0 -0
0-0

0
0

(>>e •-*
*o

0-0 0
0 ('Aie

•-•

>̂9 **"*

< * »-*
f~# * ^

* 0-0 *
#-* ♦' *

V .
»»V *#

•-*
-

(tA>e*-* **

0- .-# ¿T* - # •
J*

¡K

*
#
$ $'

vA

stísdJ«H

■Tiidi^ isXy a t$
vuadO •■«'£

SlXV̂ Ä
(«)

> * •
*

* #

(<ü

-K

l :

< • * "#~* ‘A
0-0
-«

w «a

V ,

'* * >

* #
~

('Aie

< !*
* « *~*

**-# *
•-# •
#-<* *
#-* «

(«Aie*'

y®
*è

(<ie

(vAie

~ *

* " : • k -k ♦ V̂ ie
• * J * * ^ 0 - 0 * •
• (»Aie m' \ 0 - 0 • • » i

-•

II
I

,\
*

)

V
**

- 0 X * 0 -0 » ’ •
* 0 -0

-0 0 -é 0 ^ 0
-0 0 -0 V «-• 0 -0
-*• (*Aie * “*• sa ^ i ö V *—• * - « s^*

^ • V
• *•

•-*
*-•

D •>-•»•
* é ~ èA

^ 1,1 •
• -• # ♦9 4 ? 4U«

è
>

'• 0
,í

ik

'm 0

33

is fully opened and Figure 3.10 shows this result.

Hairpins -P * ”*_
• «. *

• .

• s i
f t *

V1 * - •

•/•>

P v,)

* - *

X

°C * J
■ - V2

6 (Vs)
•

V

* - «

to
• - »

* > #

4

f y. 'l4 •
• 63 * 4M

•-* Vt 0{ Vs)

*-•
s

0(v.) u •-*
•-* V2 0(V.) V*

ft*. A

8(v.)

y- #

Figure 3.10: The four hairpin structure is fully opened after applying four distinct

keys.

Using the methods proposed in [48], the authors in [22] succeeded to effectively

construct a DNA sequence with four consecutive hairpins. Moreover, in [44], two

applications of the multi-state machine were proposed. The multi-state machine can

work as an address section of the memory and each hairpin can represent a bit. The

data linked to the address can be reached by opening all the hairpins sequentially. It

is clear that a hairpin in the structure (except the first hairpin) can be opened only

if the hairpin on its left is open, since the key needs to hybridize to a single stranded

segment for the branch migration. Therefore, by this conformation, a distinct address

can be obtained by just changing the order of the single hairpins. If the structure is

changed by introducing “spacers” x2, xz, x4 between hairpins:

v! = XiViyiQ(vi)x2V2y20{v2)xzvzyz6(vz)x4yAyi9{vA),
where xh vh yu 9(vi) € ^ NA, \xt\ = \vi\ = \0(vi)\ = s and |r/j| = l(1 < i < 4). In

34

the new conformation, each single hairpin XiVipiQ^Vi) has a segment xi to which the

corresponding key may hybridize to allow branch migration. Thus, the hairpins can be

opened independently by applying the corresponding key. By this new conformation,

the machine can be used to solve the Maximum Independent Set Problem (MISP) [44].

There are many other applications of the hairpin structures. For example, in [4],

the authors propose a “smart drug” wherein the main computation component is

single hairpin structure with a sticky end. The stem of the hairpin encodes the

“diagnostic rules” and the loop encodes the “drug” to be released.

Furthermore, Sakamoto et al. [40] used Whiplash PCR (W PCR) to solve some

NP-complete problems such as CNF-SAT, the vertex cover problem, the direct sum

cover problem and HPP. The basic idea is to use WPCR to simulate a state transition

machine by iteratively forming hairpin structures. The machine consists of a single

stranded DNA molecule of the form

5' - stopper0(s'l)0(si)...stopper9(s'm)6(sTn)...stopper6(s'n)6(sn)sj sk...sm - S'

where state transition rules 9(s'i)9(si) are encoded at the 5' end separated by stopper

rule block 1 rule block 2 .
5'm I M I = » ----------1------ V
stopper ^

¿ A

stopper

1 x

^ stopper g

(HC b A _ ------------
liiimn TifrnnWmif* 1--------- 1--------- tr̂r̂M

t A

_____J_____ |CQ

:1

m l
^m mm------------ \ i n

" a c " b a [b]

Figure 3.11: Whiplash PCR simulates a state transition machine that transits from

state A to state B by transition rule A —> B.

35

sequences and the current state sm is encoded at the 3’ end of the sequence. Fig­

ure 3.11 gives an example. If the current state is A and there is a transition rule

A —» B (encoded as 0(B)0(A) and presented as *B*A in Figure 3.11), then the pro­

cess of state transition is as follows: First, the current state A hybridizes to the state

0(A) in a transition rule 0(B)6(A) and forms a hairpin structure. Second, by PCR,

nucleotides which form the DNA strand B are added to the 3’ end of the sequence.

Therefore, the machine transits from state A to state B. Third, the hairpin structure

is unfolded and becomes a single stranded sequence.

36

Chapter 4

DNA Multiple-Hairpin Structure

Design

As described previously in Section 3.4.2, various methods were used to design DNA

sequences that form given structures. The primary approach was using stochastic,

local search to find one solution sequence that will fold into the given structure. Here

we want to investigate the possibility to generate a set of sequences which will fold into

the particular multiple-hairpin structure described in [48]. Our approach is mainly

based on the bond-free property [26].

In this chapter, we first state the problem of this thesis, and then we give a

general idea of our bottom-up approach in Section 4.1. In Section 4.2, we describe a

method to generate a bond-free language B(l) of words of equal length l closed under

concatenation, that is, the reverse-complement Hamming distance between any two

subwords w and v of length k of words in (B (l))* is larger than d. In Section 4.3, we

describe a method to generate two bond-free languages Bs1(s) and Bs2(l) such that

(Bsx (s))*, (Bs2(l))* and the concatenation Bs1 (s)-Bs2(l) are also bond-free languages.

Furthermore, in Section 4.4, we describe a filtration procedure by which we can weed

out the undesirable sequences in the sets Bs1 (s) and Bs2(l) and obtain the sets Bstem

and Bi00p, respectively. In Section 4.5, we explain the way we arrange the sequences

in Bstem and Bioop to construct the multiple-hairpin structure, and give an estimation

for the number of the sequences that can be constructed. Finally, in Section 4.6, we

37

introduce the Vienna RNA Package by which we can predict the structures of the

result sequences of our bottom-up approach.

4.1 Problem Statement and Solution

In order to clarify the problem we want to solve, we give a formal statement of the

consecutive hairpin structure design problem in Section 4.1.1. and a further discussion

of the problem is given in the same section. Thus, we describe the bottom-up approach

to solve this problem in Section 4.1.2.

4.1.1 Problem Statement

The DNA multiple-hairpin structure design problem can be described as follows.

P rob lem Statem ent: Given a multiple-hairpin structure,

hps(n, s, l, 9) = {xv1yi9(v1)...vnyn9(vn) \ x, vu 9{vi) 6 57, yt € £ ' and 1 < i < n}

(4.1)

where 9 is an antimorphic involution, can we find a set of DNA sequences that will fold

into this particular structure correctly? Furthermore, for given parameters n, s and l,

what is the cardinality of the set of sequences that form this particular structure ?

Figure 4.1 shows a multiple-hairpin structure in hps(2, 13, 7, 9) which contains an

external segment and 2 hairpin structures. In the remainder of this thesis, for each

multiple-hairpin structure, the external segment x will denote the single-stranded

segment at the 5’ end; for each single hairpin structure, the loop yi and the stem

Vi and 9{vt) are the single-stranded segment and the double-stranded segments, re­

spectively. An example of the external segment, loop and stem are highlighted in

Figure 4.1.

As mentioned above, Figure 4.1 shows a correct multiple-hairpin structure hps{2,

13, 7, 9). Based on the observation of this multiple-hairpin structure, we emphasize

38

Multi-Hairpin
Structure

&

r é * .

O

... • \ \ V V». Si

\ V \
«

\ Jfc \\
\

\

* - • i
«-®6{k)

External segment

X V \N\ V\ •\\

4 « - è :

§ ;

/ f c & \
/ s * \

Loop

/ / / // /* /
Stem

/ iL T f
\

Figure 4.1: Correct multiple-hairpin structure hps(2,13,7,0).

four kinds of fundamental unwelcome bonds related to the structure:

Ul: Any two segments of continuously unpaired bases bind to each other. For

example, in Figure 4.1 such undesirable bonds would include U\ binding to

within the external segment, or u\ in the external segment binding to w in

the first loop.

U2: Any segments of continuously unpaired bases binds to any segments of stems u*.

This may include two situations: (a) Any segments of unpaired bases in the

external segment binds to any segments of any stems Vi and any two segments

in the stems Vi and Vj bind to each other, (b) For each single hairpin structure

ViUiO(vi), any segments in the loop yt binds to any segments in the stem v*.

For example, in Figure 4.1 such undesirable bonds would include U\ from the

external segment binding to Si from V\ of the first stem, s\ from V\ of the first

39

stem binding to s4 from v2 of the second stem (a), or w from the first loop

binding to sx from v\ of the first stem (b).

U3: For each single hairpin structure Vi'yid(vi), any segments of unpaired bases in

the loop i/i binds to any segments of the stem 0(vi). For example, in Figure 4.1,

such undesirable bonds include w from the loop binding to 9(s2) from 9(v 1)

of the first stem.

U4: Any segments of the external segment binds to any segment of stems 9(vi) and

any segments of stems binds to any segments of stems 9(vj). For example, in

Figure 4.1, such undesirable bonds include u\ or u2 from the external segment

binding to 9{s2) from 6*(ui) of the first stem, or Si from Vi of the first stem

binding to 9(s^) from 9(v2) of the second stem.

Before describing in detail the bottom-up method we propose, we give some obser­

vations on the multiple-hairpin structure. Obviously, the sequences of a stem, both Vi

and 9(vi), should be considered together, i.e., if either the sequence or 9(vi) is fixed,

the other sequence can be obtained by Watson-Crick complementarity. Therefore, in

the thesis, we will only consider the design of sequences vt of the stem and obtain the

complement by using the antimorphic involution.

4.1.2 Overview of Our Bottom-up Approach

Many approaches proposed to design a sequence that may fold into a specific structure

are based on the evaluation of the free energy. In contrast to these approaches, we

investigate a bottom-up approach to design sequences that may fold into a consecutive

hairpin structure based only on the combinatorial constraints, especially the bond-free

property.

It is straightforward to observe that the problem is difficult to solve by exhaustive

search. Instead, our approach adapts the idea of Seeman et al. [43] that uses small

40

pieces of single-stranded DNA sequences with good properties to construct the DNA

sequences which will form the desirable complex secondary structure. A drawback of

Seeman’s method is that the size of the structure is very dependent on the cardinality

of the subword set. As noted in Section 3.3.2, the unique subsequence approach can

only generate 5 DNA words of length 10 if the length of the subword is 3. Instead of

using each subword word at most once, we attempt to use the subwords with good

properties multiple times to construct the multiple-hairpin secondary structure.

Since U1 - U4 represent the undesirable bonds between small segments in the

structure, in the remainder of this paper, we call a subsequence of length k in the

structure a block. In Figure 4.1, for example, segments iq, u2, si, w, 0(s2)5 9(s3) and

,s4 are blocks of length k = 4. To avoid the undesirable bonds U1 - U4 observed,

we employ both the reverse-complement Hamming distance constraint (C2) and the

Hamming distance constraint (C l). The undesirable bonds U1 and U2 can be reduced

by applying the reverse-complement Hamming distance constraint to any two blocks

u and v in the multiple-hairpin structure, i.e., h(u,6(v)) > d\. Furthermore, if we

apply the Hamming distance constraint to any two blocks u and v in the loop yi and

the stem respectively, that is h(u, v) > <¿2, then the undesirable bond U3 can be

reduced. A similar approach deals with U4, in fact, since the length of the stems and

the external segment are identical, we will generate the corresponding blocks together.

Due to this consideration, we will drop U4 and instead apply the Hamming distance

constraint only to the whole sequences of the stems Uj and the external segment x.

We now present our new bottom-up approach of constructing DNA sequences for

the multiple-hairpin structure.

Initially, a set of words S of length k is constructed such that h(u, 6(v)) > di and

u, v G S, k > di, see Figure 4.2 a). We want all the blocks in the structure to be from

the set S. By choosing proper parameters k and d\, we will generate a proper set S

and prevent the undesirable bonds U1 and U2.

In the second step, two sets Si and S2 are constructed such that Si C S, S2 Q S

a)

b)

c)

Figure 4.2: The bottom-up approach using to design the multiple-hairpin structure.

and Sif)S 2 = 0, as well as H(Si, S2) > d2, see Figure 4.2 a). The blocks in the stems

and the loops will be from the sets Si and S2, respectively. By choosing a proper

parameter d2, the blocks in stems will be distinct from those in the loops. Therefore,

we can prevent the undesirable bond U3 by which the blocks in the loop bind to

blocks in 6{vi) of the stem.

In the third step, a set of words Bstem of length s and a set of words Bioop o f length l

are constructed that all the blocks in Bstem and Bioop are from Si and S2, respectively,

see Figure 4.2 b). Furthermore, the blocks in (Bstem)*, (Bioop)* and Bstem■ Bioop should

all be in S. By selecting a sequence vi: from Bstem and a sequence yi from Bioopi a single

42

hairpin structure can be obtained by concatenating Vi to y4 and then to 9{vi). Since

the length of the stem and external segment are equal to s, the external segment x can

also be selected from Bstem. In order to avoid U4 and other undesirable sequences,

before obtaining the sets Bstem and Bioop, we apply the combinatorial constraints to

the stem set BSl(s) of words of length s and the loop set Bb,2(1) of words of length l

to weed out undesirable sequences.

Finally, the external segment and all the single hairpin structures will be concate­

nated together to form the multiple-hairpin structure, see Figure 4.2 c).

While the general idea above is simple, many details related to the implementation

of this method need to be addressed. In the following sections, we will mention several

major problems and our proposed solutions.

4.2 Generate the Bond-free Language

One of the main problem in the previous algorithm is how to construct Bstem and Bioop

starting with the blocks from Si and S2, respectively. We will use for this purpose a

method (Section 4.2.1) that, given a set S of words of length fc, outputs a set S'® of

words of length l that is a (6, W i^-bond-free language. This method will be used to

generate the set S f of words of length s, S f (s), and the set S f of words of length L

S®(1), such that Bstem C S f (s) and Bloop C S f(l).

In Section 4.2.2 we propose a refined method to select the set S by which we

can generate a fair large set S®(1). In order to evaluate the cardinality of S®(1)

without generating all the words in S®(1), we describe the method of calculating the

cardinality of S®(1) in Section 4.2.3.

Since the sets Bstem and Bioop are concatenated to form the multiple-hairpin struc­

ture, we describe the method to construct the set B(l) C ' S®(1) of words of cer­

tain length l which is closed under concatenation in Section 4.2.4. Furthermore, the

method of calculating the cardinality of the set B (l) is provided in the same section.

43

(a)
Figure 4.3: Trie constructed based on set S = {A A , AC, CA, CC}.

4.2.1 Generate the Bond-free Language S® from a Set S

As mentioned in Section 3.3.4, a language L is (9, H^k)~bond-free if any two sub­

words u and v of length k of words in L satisfy h(u, 9(v)) > d. The authors of [26]

gave a method to construct a bond-free language starting from a set of words of equal

length. Given a set S of words of length k, then S'0 is (9, H^k)-bond-free if and only

if it satisfies

0 (S)n H d(S) = Q (4.2)

where 9 is the antimorphic involution, ® is the subword closure operation mentioned

in Section 3.3.4. Equation (4.2) implies that h(u,9(v)) > d, |u| = |u| = k for all

u,v G S.

Given a set of words S that meets the constraint of Equation (4.2), the bond-

free language S'0 can be obtained by searching the corresponding automaton, [9],

constructed based on the set S.

The automaton accepting S0 is mainly a trie, defined as in Section 2.3. The

way to construct the automaton that accepts S'0 is as follows: Initially, build a trie

according to the set S and set all the leaves as the final states. Here, a path from

44

the root to a leaf corresponds to a word in the set S. For instance, given the set

S = {A A , AC, CA, CC} satisfying 9(S) D Hi(S) = 0, the trie corresponding to S

is shown in Figure 4.3(a). Secondly, iteratively add an edge from leaf u to leaf v if

Sufffc-i('u) = Preffe_i(n) and label it with the last symbol in leaf v. For the second

step, we can find eight pairs of leaves (u, v) satisfying Sufffc_i(M) = Prefi_1(?;) in the

trie in Figure 4.3(a) and all the pairs (u, v) are (AA, AA), (AA, AC), (AC, CA),

(AC, CC), (CA, AA), (CA, AC), (CC, CA) and (CC, CC). Then we can add eight

new edges and the result is shown in Figure 4.3(b).

To obtain a word of length l > k from this automaton, we simply follow a path

from the start state to a final state which goes through l edges.

Grail [35] introduced by Raymond and Wood is a C + + library to construct and

manipulate automata. In [9], Cui implemented an algorithm to construct the trie

mentioned above by applying functions in Grail. We included this algorithm from

Cui’s thesis to construct tries, needed in our construction.

4.2.2 The Selection of the Set S

The main problem described here is to find a set S of words of certain length k

that satisfies the equation (4.2). Given parameters k and d which are the length of

the words and the reverse-complement Hamming distance between any two words,

respectively, we need to find a subset S of words over the whole solution space of size

4fc, such that 9(S) fl Hd(S) — 0. Although the way to select a good word set S is still

not completely solved, Equation (4.2) gives us a clue: whenever a word w is selected

into the set S, the reverse-complement of words located in the Hamming ball Hd{w)

centred at w should not be in the set S. Cui, [9], adopted this idea to heuristically

obtain the set S. The process picked a word w in the solution space, and removed

all the words u that satisfied h(9(w), u) < d in the solution space. If given an initial

word initial, all the words were sorted in the alphabetical order, the basic step could

be applied recursively from the word tCmitiai to the last word, and from the first word

45

to the word before word înitial- After this procedure, the remaining words were the

words in S.

Using the method mentioned above, we can produce a good set of words. Here

are some observations about the set S generated by the method. According to the

experimental data from [9], the words in the set S are dependent on the given start

word and the order in which we check the solution space. One way to improve the

result is to change the way we check the solution space.

By observation, we have got the following relations between S® and S. If the

word w is in S®, then Subfc(ro)C S. Also, a word w € S'® can be achieved by the

overlap of words in the set S. For example, given the set S = {A A , AC, CA, CC, CT,

T C }, the word w = ACACTC G S® is achieved by the consecutive overlaps of words

AC, CA, AC, CT and TC in S, see Figure 4.4. If there are no overlaps of words in

the set S which cannot be used to construct longer words, then S® is only a finite set.

For example, if S — {ACC, GGT, GAT}, then S® = S. Based on these observations,

if we check the words in the solution space according to the overlapping property

rather than the alphabetical order, the result set S has better properties since the

cardinality of subword closure of S, [S'®!, is larger than the previous experimental

data in [9]. The experiment data of the new method will be shown in Chapter 5.

ACACTC
AC

CA
AC

CT
TC

Figure 4.4: The word ACACTC € S'® is constructed by the overlaps of words AC,

CA, AC, CT, and TC in S.

46

4.2.3 Calculate the Cardinality of S®(1)

Following [10], we use S®(1) to denote all the words of length l in the set S®. The

cardinality of the set S® of words of a certain length /, |5®(Z)|, is one of the funda­

mental properties according to which we evaluate the set S®. If it is too small, it is

difficult to construct a suitable DNA word set. On the other hand, if the cardinality

|S®(Z)| is fairly large, we can select a subset of S®(1) with good properties by applying

the combinatorial constraints such as the Hamming distance constraint (C l), the GC

content constraint (C4), the continuity constraint (C5) and etc. Another reason to

calculate the cardinality of S®(1) will be mentioned in the next subsection.

The cardinality |5'®(Z)| can be calculated by searching the whole trie, but the

process is very time consuming. We adopt the recursion algorithm from [9] to calculate

the cardinality of S®(1) without generating the set S®(1). Given a set of words S of

length k, a word w £ S®(1) can be presented in the form w = a1a2...a/-raa/_„+i...a/_ia/

ending with the suffix su = Suffn(rt;) = a/_n+i...aj_1a; of length n — k — 1. Here, two

situations are considered: First, the length of the words in S®(1) is longer than the

length of the words in S, i.e., I > k. If we consider all the words of length l ending

with a particular suffix su = v • e = a*_n+i...a/_iaz of length n = k — 1 (v £ £*,

e £ £), then these words can only come from the set of words S®(1 — 1) of length l — 1

ending with the suffixes su' = b • v =az_„az_n+i...az_2a/_i (v £ £*, b £ £) such that

Suffn_i(su ') = Prefre_i(su) = v = aj_„+i...az_2az-i and b ■ v ■ e £ S, see Figure 4.5.

Since we consider the suffixes of length n = k — 1, and all the subwords of length k of

words w £ S®(1) should be in S, then the overlap of su' = b ■ v and su = v ■ e should

be in S, that is, b ■ v • e £ S. Second, if the length of the words in S®(1) is equal to

the length of words in S, i.e., I = k, then the words in S®(1) ending with a particular

suffix su of length n = k — 1 are the words in S ending with the suffix su.

Let us consider the set of words of length k — 3 and n = 2, S — {AGG, GGG,

TGG, GAG, GAT, GGA, GGT, TGT, GTA, GTG, TTG, GTT, T T T }, as an exam­

ple. All the distinct suffixes su of length n = 2 are GG, AG, AT, GA, GT, TA, TG,

47

1-1

b

W = 0id2 . . . Icfc-nclWf
k____

s t
V

___A .
e

V n
. St-i3.i

“V
su

Figure 4.5: The words w of length l end with the suffix su = v • e of length n = k — 1

and the words of length l — 1 end with suffix su' = b • v of length n = k — 1 where

Prefn_i(sii) = SufTn_ i(s i /) = v and b • v • e € S.

and TT. Let Sfu(l) denote the set of words of length l ending with suffix su. Then

we may obtain the set of words of length l (l > k) ending with suffix su as follows:

S§aV) = [SfG(i - 1) • G] U [SgG(f - 1) • G] U [£?„((- 1) • G],

S laW = S§A(l - 1) • G,

SItW = SSJl - 1) • T,

SgAl) = S ?G(i

S§r(0 = [S|o(i - 1)' T] U [S?0(i - 1) • T],

S?A(l) = S&.(Z - 1) ■ A,

5®0 (Z) = [Sgj,(Z - 1) • G] U [S?r(Z - 1) • G], and

S®T(l) = [S|r(Z - 1) • T] U [S&,(Z - 1) • T],

Thus, the set of words of length l (l = k) ending with suffix su are as follows:

S fG(Z) = {AGG, GGG, TG G },

S%a (l) = {G A G },

5 f T(i) = {G A T },

S§A(l) = {G G A },

S/.jU'i = {G G T, T G T },

48

S & (0 - {G T A },

S$G(l) = {G TG , T T G }, and

S®T(l) = {G T T , T T T }.

If we want to produce the set of words of length l — 4 ending with suffix su = GG,

SqG(1)i then we may need three sets of words of length l = 3 ending with suffixes

AG, GG, and TG, respectively. We can consider these three suffixes as su' such that

Suff2(su') = Pref2(su) = v = G and the overlap of su' and su is the word in S, that is,

AGG, GGG and TGG, respectively. Therefore, 5|G(4) = [5|g (3)-G]U[S'|g (3)- G] U

[S®g (3)-G] = [{G A G } • G\ U [{AGG, GGG, TG G }-G]U [{G TG , T T G } • G] = {GAGG,

AGGG, GGGG, TGGG, GTGG, TTG G }.

Therefore, given a set of words S of equal length k, the set S’0 of length l (l > k)

ending with a particular suffix su = v • e of length n = k — 1 is

= U - 1) • e,
suf€E

where set E is the set of all the distinct suffixes su1 = b • v of length n = k — 1 in S

such that Pref„_i (su) = Suffn_i(su /) = v and the overlap of su' and su are in S , i.e.,

b ■ v • e € S, and 6, e € £ , v G £*.

Let us consider the second case, if l = k, then

s f M = s „

where Ssu is the set o f words in S that end with su. Furthermore, 5® of length l is

S®(0 = U
sueEsu

where set Esu is the set of all the distinct suffixes of length n in S.

As a result, we can calculate the cardinality of S®(1) by the following method:

First, we find out set Esu = S u ffix (£) that contains all distinct suffixes su of length

n — k — 1 in set S'. In the second step, we select the suffix set E of length n = k — 1

49

for each su € Esu (su = v • e) such that Preb_2(s«) = SuRk-zisu') (su' = b ■ v € E)

and b ■ v ■ e G S, b, e 6 £ , v G E*. Third, we can calculate the cardinality of S®(1) by

|S®(()| =
^2Su€Esu l ŝul if Z A:

Y1su<£Esu Y ŝu'eE — -*■)! if l > k
(4.3)

Here, we can calculate the cardinality of S®(1) of the example set as follows:

If l — 3, then \Sg g \ — 3? I'S'agI = 1, \Sa t \ — b I-S'gaI = b \Sg t \ = 2, \ST A \ = 1,

\ST G \ = 2, \St t \ = 2, and |5®(3)| = 13.

If i = 4, then |S|G(Z)| = 6, \SfG(l)\ = 1, |SfT(OI = b |5|a (0I = 3, \S®T(l)\ = 5,

\S®A(l)\ - 2, |5^(Z)| = 4, \S®T(l)\ = 4, and |S®(4)| = 26.

4.2.4 A Bond-free Language Closed under Concatenation

Give the example set S = {A A , AC, CA, CC}, the concatenations of the words in S®

are still in language S®, but this is not always the case. Here is a counterexample.

Given the set S = {A A , AC, CA, CC, CT, T C } such that 9(S) fl H0(S) = 0, both

words ACCT and TCAC are the words in S®. However, the word ACCTTCAC,

which is the concatenation of the words ACCT and TCAC, is not a word in S® since

the subword TT is not in the set S.

To tackle this problem, the authors of [9] and [10] proposed a method to generate

a language B C S® which is closed under concatenation, i.e., B* C S®. Here is the

method to construct language B in [10]:

B = S® C BE ■ £* n £* • EN (4.4)

where BE C S, EN C S and Suborn;) C S if u G EN and v e BE. Also,

B(l) = S ® (l)n B (4.5)

is a subset of B such that all the words are of length l. Equation (4.4) is based on

the idea that only a subset of words concatenating to each other are still maintaining

50

Figure 4.6: The trie represents the set S = {A A , AC, CA, CC, CT, T C } such that

the end set is EN = {A A , AC, CA, CC, T C } and the begin set is BE = {A A , AC,

CA, CC, C T }

the subword closure property. The method described in [10] is to select a subset

EN C S and a subset BE C S such that all the words in the language B end

with and start with words in E N and BE, respectively. The words that violate the

concatenation closure property are caused by the new subwords at the connecting

place, so all the words in EN can concatenate to all the words in BE and still remain

in set 5®. Regarding the counterexample that the word ACCTTCAC ^ S'®, if we

choose EN = {A A , AC, CA, CC, T C } as the end set and BE — {A A , AC, CA,

CC, C T } as the begin set, then a word w = uv is in S® where u € EN and v € BE.

Since the language B should be closed under concatenation, the corresponding trie

should be modified to satisfy this property. The new method to construct the trie,

which is a little bit different from the one mentioned before is described as follows:

Firstly, we only generate the trie structure based on the begin set BE, and the words

in the set S but not in BE will be the isolated vertices in the graph. Also, we mark

51

all vertices representing the words in the end set EN as the final states. Figure 4.6(a)

shows the result of the first step, using the set S = {A A , AC, CA, CC, CT, TC }.

The second step is the same as previously, in which we draw an arrow from vertex

it to vertex v and label it with the last symbol in v if Sufffc_i(it) = Preffc_i(u) and it, v

represent words in set S. The final trie corresponding to the example is shown in

Figure 4.6(b).

Furthermore, the way to calculate the cardinality of 5®(Z) should be modified.

Again, we use set S = {A A , AC, CA, CC, CT, T C } as an example. All the distinct

suffixes sit = v • e of length n = 1 in S are A, C and T, i.e., Esu — {A , C, T }. In this

example, the length of words in S is k = 2 and the length of the suffix is n = k — 1

= 1, therefore, sit = e where v is empty, i.e., v = A. We can obtain Sfu(l) of length l

(.I > k) of each sit € Esu as follows:

S®(l) = [Sf(l - 1) • C\ U [Sg(Z - 1) • C\ U [S®(Z - 1) • C\ and

S®(1) = S $ (l - 1) - T .

All the words in B are starting with words in B E , so let BESU denote the set

of distinct words in BE ending with suffix su of length k — 1. If BE — {AA, AC,

CA, CC, C T}, then the set of words of length l (l = k) ending with suffix sit are as

follows:

S®(1) = BE a = {A A , CA},

S%{1) = BEC = {AC, CC}, and

Sf(l) = BEt = {C T }.

Since the words in the set B are ending with words in set EN, let set ENau denote

the set of all the distinct suffixes of length k — 1 in the set EN. If EN = {AA, AC,

CA, CC, T C }, then ENau = {A , C }. Therefore, the cardinality of 13(1) is

1-8(01 =
^ sueENsu \BESU\ if l — k

^2su£ENsu Y ŝu'eE l^ '(^ “ 1)1 if l > k
(4.6)

52

For each particular su € ENSU (su = v ■ e, v <G E*, and e € E), the set E is the set

of all the distinct suffixes su' = b • v (b € E and v G E*) of length k — 1 in S such

that Preffc_2(sw) = Suffi._2(stt/) and b-v • e € S. To clearly state the method, we give

some examples of \B(l)\ with n — 1 and k = 2.

If l = 2, then \BEA\ = 2, \BEC\ = 2, \BET\ = 1, and \B{2)\ = \BEA\ + \BEC\ = 4.

If l = 3, then |Sf (3)| = 4, (3)| = 5, \S®(3)\ = 2, and

|S(3)| = |SJ(3)| + |S®(3)|=9.

If i = 4, then |Sf(4)| = 9, |5g(4)| = 11, |Sf(4)| = 5, and

|B(4)| = |S®(4)| + |S®(4)| = 20.

The example mentioned above is to calculate |-B(Z)| based on the given set BE

and set EN. But there are many ways to choose the set BE and the set EN .

A straightforward method to select the sets BE and EN is to evaluate them by

\B(l)\. [10] gave two guidelines on how to choose the sets BE and EN. Guideline 1

states that the words assigned to EN are based on the suffixes of length k — 1, that

is, for each assignment, a set whose words all end with the same suffix of length k — 1

will be assigned to EN. For each distinct suffix u of length k — 1, there is a subset

Bu of words in S such that Subfc(u • Bu) C S. Different suffixes u may have different

sets Bu. This property leads to Guideline 2: all the distinct suffixes u are sorted by

the cardinality of sets Bus and the words are assigned to EN based on this order.

For each assignment of words to EN, BE is obtained by the intersection of sets Bus.

4.3 Construct the Segments of the Multiple-hairpin

Structure

In this section, we first investigate the constructions of Si and S2 in Section 4.3.1 and

then introduce a method to construct the languages Bs1{s) and Bs2(l) that satisfy

three additional properties in Section 4.3.2.

53

As previously stated, if we choose proper parameters k and c?x, we can produce

a set of words S satisfying 9(S) D Hdl (S) = 0 and therefore forbid undesirable hy­

bridizations U1 and U2. Generally, researchers are more interested in designing DNA

secondary structures with regular and special substructures. In our problem, the de­

sirable DNA structure (4.1) mainly consist of single-hairpin structures (Viyi9(vi)) of

equal size. For each single hairpin structure, an expected subsequence will fold into

the structure v^Oivi) without any shift hybridization. To prevent the shift hybridiza­

tion U3, we can design the stem and the loop separately and make them dissimilar to

each other. Here, we introduce a step to assign the words of S to two distinct subsets

Si and S2 such that

h(Si,S2) > d 2. (4.7)

By choosing a suitable parameter d2, h(u,v) > d2 (u £ Si, v € S2 and |u| = |w| = k),

we can ensure that any subwords of length k of words in Sf and S f respectively are

at a distance larger than d2. If we obtain both sets Si and S2, then they can be used

to construct the stems and the loops, respectively. Therefore, any blocks in the stems

will be at least d2 + 1 bases different from the blocks in the loops.

If we take two words w of length s and v of length l from S f and Sf, respectively,

to construct the stem and loop in a single hairpin structure, the concatenation wv is

still (9, Hdltk)-bond-free. In addition, it is desirable if the catenation of two words in

the same set S f is still (9, ifyfy-bond-free. Taking into account these considerations,

given Si and S2, we will construct the languages Bs1 and Bs2 such that:

PI: For each Si C S where * = 1 or 2 , F fy C S f.

P2: For each Si C S where * = 1 or 2, (Bst)* Q S®.

P3: BSl • BS2 C S'®.

By property PI, the language (i = 1, 2) is (9-Hduk)-bond-ivee. Since Si C S

and 9(S) fl Hdl (S) = 0, if words x and y are any two words in Si, then x ,y e S, thus,

54

h(x, 6{y)) > d\. Also, B,s{ is a subset of the subword closure of St, i.e., Bs{ C S f and

all the subwords of length k are from Si, i.e., S u b != Si. If the language Bst
satisfies P2, then the language (Bs.)* is also (^-i/^^j-bond-free. This property is

straightforward since Subk(Bsi) ^ S and 9(S) H Hdl (S) = 0. Property P3 can ensure

the concatenation of BSl to B$2, BSlBs2, is (0-Hdj fc)-bond-free. By Bst(l), we denote

a subset of Bst that contains all the words of length l, that is Bs^l) = -Rs* fl Ez.

Therefore, in Section 4.3.1, we describe the constructions of Si and S2, and then

in Section 4.3.2, we introduce a method to construct the languages Bs1 (s) and Bs2(l)

that satisfy all three properties PI - P3.

4.3.1 Construct Subsets S\ and S2 from S

When we try to assign the words in S to either Si or S2, we make two observations.

(1) Given parameter d2, if there are subsets Si and S2 satisfying h(Si, S2) > (¿2 (4-7),

then Si U S2 Q S. That is, not all the words of S can be assigned to either Si or S2

and still satisfy the Hamming distance constraint. (2) Based on the way we assign

the words in S, distinct results can be achieved.

Regarding to the first observation, here is an example. Given the set S = {GGG,

TGG, AGG, GTG, TTG, GAG, GGT, TGT, GTT, TTT, GAT, GGA, GTA} where

k = 3 and d\ = 1, then the subsets can be Si = {TG G , AGG, GTG, GAG} and

S2 = {G G T, TTT, G G A } and h(Su S2) > 1. All other words (GGG, TTG, TGT,

GTT, GAT, and GTA) in S can be put in neither 5*1 nor S2, otherwise, the condition

h(Si, S2) > 1 will fail.

For the second observation, we give an example to assign the words in S solely

based on the Hamming distance constraint. That is, we assign the first word to Si

and iteratively assign word w to S2 if h(Si,w) > 1, otherwise to Si. Thus, we may

obtain Si = {GGG, TGG, AGG, GTG, TTG, GAG, GGT, TGT, GTT, TTT, GAT,

GGA, GTA} and S2 = 0. This assignment is unsuitable, since one of the subsets is

empty.

55

Based on the observations and properties PI - P3, we obtain three insights of the

assignment. First, the initial several words w assigned to Si and S2, respectively, are

important since sets Si and S2 should satisfy H(Si, S2) > d2. The sets Si and S2 are

related to each other, if the initial several words are assigned improperly, it is difficult

to assign the words remaining in the set S to these two sets. Also, sets Bsl and Bg2

that their subwords of length k are from Si and S2, respectively, should closed under

concatenation. We have already evaluated S and have the suitable EN and BE of

S, therefore, when we assign the first several words, it is better to assign the words

in EN and BE. Secondly, by the same token of Section 4.2.2, we select the subsets

mainly based on the overlapping property and the Hamming constraint. If assign the

word only based on the Hamming distance constraint, it is very easy to obtain a set Si

such that Bst(l) is empty. Finally, we may want to assign more words to Si, because

Si is used to construct the words in stems and the stability of the multiple-hairpin

structure depends mainly on the stable and correct base pairings.

4.3.2 Construct Sets B s^s) and Bs2(l)

In this subsection, we will introduce the main method to construct set Bs^s) and

Bs2(l) that satisfy properties PI, P2 and P3. These two sets will be used to construct

the stem and the loop, respectively. If these two languages satisfy properties PI - P3,

then Bs1(s) and Bs2(l) are (0-ffy^fy-bond-free language. Furthermore, all languages

(BSl(s))*, (Bs2(l))* and BSl{s) ■ BS2{1) are (0 -# dl)fe)-bond-free.

Sets Bs1(s) and Bs2(l) satisfying properties PI and P2 can be obtained by modi­

fying the method used to generate the language B(l) reported in Section 4.2.4. This

method is based on the condition

B(l) = S® H BE • E* fl £* • EN n El

where EN C S, BE C S and Subk{EN • BE) C S. Thus, analogous to B(l), we may

56

construct Bg^k) where *= 1 or 2 by

BSi{k) = s f n B E - z * n z * - E N n z li

where EN C Si, BE C Si and Sub^EW • BE) C S. In the same manner, we may

find subsets EN and BE of St such that Prefi(tc) £ BE and SuSk(w)e EN if w is

a word in BgXk)- In addition, if words w £ EN and u £ BE, then any subwords of

length k of wu are in S instead of S',. By this, the constraint is less strict and more

words may be assigned to sets EN and BE.

Using the method mentioned above, we can produce Bg1 (s) and Bs2 (l) that satisfy

properties PI and P2. In order to satisfy property P3, that Bs1 (s) • Bg2(l) C <5®,

we may refine the end set of Bg1(s) and the begin set of B$2 (/). By ENX and BE2,

we denote the end set of Bg1(s) and the begin set of Bs2(l), respectively. If word

w € Bs1(s), then the suffix of w of length k should be in set EN\. Also, if v £ Bg2{l),

then the prefix of v of length k should be in set BE2. Therefore, we only need to

check the subword closure of EN\ ■ BE2, i.e., Subfc(AAri • BE2) C S. We want to

retain most of the words in ENX to preserve the cardinality of Bg2 (s). The method

we used is straightforward: we find subsets BE'2 C BE2 and EN[C EN\ such that

Subk(EN[• BE'2) C S and \EN[\ is maximal. The detailed algorithm will be shown

in Section 5.2.3.

4.4 Apply Additional Combinatorial Constraints

In this section, we mention additional constraints such as the Hamming distance

constraint, the GC content constraint, the continuity constraint that use to weed out

the undesirable sequences in the sets Bs1(s) and Bg2(l) in order to obtain the sets

Bstem and Bioop, respectively.

In Grail [35], the function enumerate can find out a subset of words of distinct

lengths accepted by an automaton. By the modification of this function, [9], we can

57

generate all the words of certain length accepted by an automaton. Generally, not all

the words accepted by an automaton are useful for the DNA secondary structure de­

sign. For distinct segments of the structure, we mention several kinds of unacceptable

words and the corresponding constraints mentioned in Section 3.2.2 to forbid them.

Firstly, words of certain length accepted by the automaton may be too similar

to each other, which reduces the chances of correct hybridization. Let us use the

set S ~ {A A , AC, CA, CC} as an example. The set of words of length 7 accepted

by the corresponding automaton contains words ACACCAA and CCACCAA that

differ by one base only. To address this problem, we can apply constraint C l, the

Hamming distance constraint, when we select the words to construct the secondary

structure. That is, when we put a new word into the desirable word set, we always

make sure the Hamming distance between the new word and the word set is above

certain threshold d3.

Secondly, the number of bases G and C in the words generated by the automaton

are widely different from each other and this may effect the melting temperature of

the DNA molecules and increase the difficulty to control the molecular operations.

For example, the automaton corresponding to S accepts words AAAAAAA and CCC-

CCCC. The word AAAAAAA contains no base G or C but word CCCCCCC contains

only the base C. Therefore, when we select the desirable words, we will make sure

that the GC content of the words is within a certain range from GCiower to GCupper.

This is constraint C4 mentioned in Section 3.2.2.

Thirdly, if a DNA word provided to construct the stem has a long contiguous

segments of the same base, it is unacceptable since it may make the structure unstable.

Using the same example mentioned, the words AAAAAAA and CCCCCCC have

contiguous stretches of A and C, respectively. This problem can be solved if we

apply the continuity constraint (C5) to remove all the words containing a segment of

consecutive single bases of length larger than certain parameter c.

Finally, we may apply a constraint to sequences constructing the loops, that the

58

first and the last base of the sequences cannot be Watson-Crick complementary pair.

This constraint is adopted because these two bases link to the stems and it is sure

that they will bind to each other if they are Watson-Crick complementary to each

other. We called this constraint C7.

To summarize, the unwelcome words generated by the automaton can be filtered

out by applying the combinatorial constraints. As mentioned in 3.2.2, many kinds

of constraints were proposed, however, we just adopt some of them to filter out

undesirable sequences. For the stem and the loop, we may use different combinatorial

constraints. A more strict combinatorial constraints would be applied to the stem to

produce Bstem, since the sequences in the stem will decide the final structure that the

whole sequence folds into. We implemented an algorithm to filter out all the words

that violated the constraints. The main process is straightforward. Constraints that

are only related to each particular word may be checked first, such as constraints

C4, C5 and C6. Constraint C l will only be checked if the word satisfied all the other

given constraints. This process will apply to the words generated by the automaton

in a certain order. Finally, we can obtain a set of words accepted by the automaton

corresponding to the given set S such that all of them satisfy the given combinatorial

constraints.

4.5 Generate a Set of Sequences Folding into a

Given Multiple-hairpin Structure

After the filtration procedure described in Section 4.4, we may obtain a subset Bstem of

_BSl(s) and a subset Bioop of Bg2(l) satisfying the respective combinatorial constraints.

In this section, we describe the method by which we generate the multiple-hairpin

structure from the sets Bstem and Bioop.

59

The required DNA multiple-hairpin structure is of the form (4.1):

hps{n,s,l,9) = {xv1yl9(vi)...vnyn0(vn) \ x ,vu 9{vi) G £ s , yt G £* and 1 < i < n}.

In the structure, the length of the external base segment |x| and the stems |u,| and

|0(ui)| are identical and equal to s. In [48], the authors constructed a four hairpin

structure and the length of the stem s and the loop l are equal to 20 and 7, respectively.

In this paper, we will mainly construct structures similar to the one in [48], that is, the

number of hairpin n is 4, the length of stem s is 20 and the length of loop segment l

is 7. The general idea to construct the sequence folding into the multiple-hairpin

structure is to assign words in the set Bstem to the external segment and each stem,

and assign words in the set Bioop to each loop.

By the observation of the structure predicted by the Vienna RNA package [17],

only some of words obtained this way will fold into the required multiple-hairpin

structures. Furthermore, if we assign a word in Bstem multiple times, the resulting

sequence can easily fold into other secondary structures. This is because a stable

structure is based on the stability of the paired bases. If we assign a word in Bstem

multiple times to distinct stems in the same multiple-hairpin structure, then each stem

may have multiple choice of complements which will form prefect hybridizations. In

order to address this issue, we will assign distinct words in the set Bstem to each stem

and the external segment. On the other hand, if we assign the words in Bioop to loop

segments multiple times within a multiple-hairpin structure, it seems the sequence

will still fold into the desirable DNA secondary structure. Therefore, the words in

Bioop may be assigned multiple times if the set B[oop does not have enough words.

In brief, we assign the words to the structure as follows: For each segment of

length s, we may pick an unused word in Bstem. For each segment of length l, we

may pick a word in Bioop. Since we are interested in the number of sequences that

will fold into the given multiple-hairpin structure, we give the upper bound of the

sequences we can generate. If the number of single hairpins in the multiple-hairpin

60

structure is n, the cardinality of set Bstem(s) is m (m > n) and the cardinality of the

Bi00p is at least 2, then we can generate

yjl\
P(m, n + 1) = m(m — 1)(m — 2)...(m — n) = ------------- —7 (4.8)v (m — n — 1)!

sequences of the form (4.1). For example, if there are 5 words in set Bstem and the

structure we require is a four-hairpin structure, then we may have = 5! = 120

sequences which are expected to fold into the four hairpin structure; if there are 20

words in set Bstem and then we may have (20—4—1)! = 1860480 sequences. If we

produce a large Bstem and an acceptable Bioop, we may generate a huge number of

sequences. According to our consideration, all the sequences are candidates that may

form the desirable multiple-hairpin structure. However, it is not sure whether all

of them will fold into the required DNA structures in a laboratory experiment. In

order to check the performance of the sequences, we will use the molecule structure

prediction software to foresee the two dimensional structures of the sequence as seen

in the following section.

4.6 Predict the Secondary Structures of the Result

Sequences

Vienna RNA Package is used to foresee the secondary structure of the result sequences

we generated. In this section, we describe several problems we encounter when using

the package, and our solutions.

Both software packages, Mfold and Vienna RNA Package, can be used to pre­

dict the secondary structure of single DNA/RNA sequences by folding the sequence

into a structure with minimum free energy, and their accuracy is dependent on the

thermodynamic parameters used in the experiment. The Vienna RNA Package re­

ported firstly in [17] is implemented in the programming language C which can be

easily included in our program, so we used this package to predict the secondary

61

structure of the DNA sequences we generated. As a general rule, the folding result

is presented by using brackets and dots, where a pair of brackets denotes a base

pair and the dot denotes an unpaired base. For example, the secondary structure

of the RNA molecule UUGGGCUAUUAGCUCAGUUGG with minimum free energy

-S.OOkcal/mol1 at temperature 37°C can be represented by

UUGGGCUAUUAGCUCAGUUGG

((((((..........))))))

where the segment UUGGGC binds to the segment GCUCAG, forming base pairs,

and others are unpaired bases. Although the notation is very easy to understand, it

is not intuitive for the user to figure out the real secondary structure. To address

this issue, the Vienna RNA package included a method to produce a pictorial repre­

sentation of the two dimensional secondary structure of the folding result. The two

dimensional structure of the example RNA molecule is shown in Figure 4.7(a). Since

both of them are useful, we included both methods to present the sequence folding

result in our software.

As described in Section 3.4.1, the prediction of secondary structure is based on

calculating the minimal free energy and the energy data is collected by experiments.

The secondary structure prediction is primarily used to foresee the RNA structure

and only the RNA thermodynamic parameters were provided by the Vienna RNA

Package. To cope with this problem, we adopt the DNA energy parameters provided

by Santalucia in [41], now it is included in the Mfold package. If we change all bases

U to T in the previous RNA molecule example, then we may obtain DNA molecule

TTGGGCTATTAGCTCAGTTGG. Based on the parameters provided by Santalucia,

we have the DNA secondary structure with minimum free energy -1.72kcal/mol at

temperature 37°C. The structure is shown as follows:

1kcal/mol: kilo-calorie (a unit of energy) per mole (a unit of amount of substance).

62

Figure 4.7: The 2D secondary structure of RNA molecule GGGCUAU-

UAGCUCAGUUGG and DNA molecule TTGGGCTATTAGCTCAGTTGG.

TTGGGCTATTAGCTCAGTTGG

. ((((((. . .))))))

and the two dimensional structure is shown in Figure 4.7(b). It is clear that the

thermodynamic parameters of RNA and DNA are different and we may want to use

DNA thermodynamic parameters to predict the secondary structure of our result

DNA sequences.

However, we encountered two problems when we used the DNA energy data.

First o f all, Vienna RNA package and Mfold used two different data formats to

display their energy parameters, so we implemented an algorithm to convert the

data format in Mfold to the one in Vienna RNA package. Secondly, the secondary

structure of DNA/RN A molecular depends on several environment conditions such

as temperature and ionic conditions. Generally, all the thermodynamic parameters

are measured at temperature T = 37°C and the ionic conditions are Na+ = 1.0m

and M g++ = 0.0m. By applying these environment conditions, the result of Vienna

RNA package is consistent to Mfold. If use a temperature other than 37°C, then

the resulting minimum free energy may be different from the one in Mfold since the

calculation of the energy parameters is different between Vienna RNA package and

63

Mfold package. Therefore, we will evaluate our data mainly at temperature 37°C.

Furthermore, we forbid all possibility of nucleotide G hybridize to nucleotide T,

and vice versa. As mentioned in Section 1.1.2, RNA has four kinds of bases and

the nucleotide will form the non-Watson-Crick complementarity by which U may

bind to A as well as G. In this paper, we follow the general idea of Watson-Crick

complementarity which is 0(A) = T, 0(C) = G, 0(G) = C, and 0(T) = A. Also all the

equations we used are based on the Watson-Crick complementarity. Therefore, the

method we used cannot prevent the undesirable bond between G and T. Regarding

this issue, we change the default parameter of the Vienna RNA package in such

way that it forbids any nucleotides G binding to nucleotides T and vice versa, when

predicting the secondary structure of a given sequence.

64

Chapter 5

Implementation and Experimental

Results

In Chapter 4 , we have described our bottom-up approach and the details of problems

we want to address. In order to validate our approach, we implemented a software

which we briefly describe in Section 5.1. Our bottom-up approach is mainly based on

the bond-free property, therefore, we describe the the main algorithm related to the

bond-free languages in Section 5.2.

The bond-free languages B(l) closed under concatenation have already been in­

vestigated in [9]. Here we improve the method to generate the set S by which we can

produce larger bond-free languages B(l). The experimental results of constructing

the bond-free languages are given in Section 5.3. The experimental results of our

bottom-up approach to construct the consecutive hairpin structure is given in Sec­

tion 5.4. Finally, in Section 5.5, we discuss the way to select the parameters used in

our bottom-up approach.

5.1 Main Structure of the Software

A C + + software is implemented to study and characterise the behavior of this ap­

proach. The whole procedure of our software can be divided into five steps.

First, a set of words S of equal length over the DNA alphabet satisfying the bond-

65

free property, that is, h(w,0(v)) > d\. Vw,v G S, is selected by providing parameters

k and d\. By parameters k and we denote the length of the words in S and the

reverse-complement Hamming distance of any two words in this set, respectively.

In the second step, we put the words into two subsets Si and S2 such that Ham­

ming distance between these sets is larger than a parameter d2.

In the third step, we construct two (0 -//^ ^-bond-free languages Bsx (s) and Bs2(l)

from Si and S2> respectively. That is, all subwords of length k of words in the language

B s t are from the set Si (i = 1, 2). Both languages B s t (s) and B s2{1) are closed under

concatenation and the concatenation of Bs1{s) and Bg2(l) is also (0 -# ^ ^-bond-free.

By this step, we may prevent the words at the jointed place from violating the bond-

free property.

In the fourth step, we apply combinatorial constraints to these two languages

Bs^s) and Bs2(l) to filter out undesirable words and obtain two sets of words Bstem

and Bioop.

Finally, a single hairpin structure is obtained by the concatenation of three words

v G Bstern, y G Bioop and #(w), and the consecutive hairpin structure is obtained by

concatenating the external segment and the single hairpin structures. Furthermore,

in the final step, the software package Vienna RNA is included to evaluate the real

structure of the sequences we generated.

To clearly state the process of our software, Figure 5.1 shows the flow chart of

this bottom-up approach. In the flow chart, we consider several conditions to make

sure the sets we generate are working properly. For example, we evaluate the set S

by calculating the cardinality of the language B mentioned in Section 4.2.4. If the

cardinality of language B of words of certain length n is too small, then the algorithm

will terminate.

The main algorithms carried out in our software consist of templates word, sort_set,

hamming-set, bond_free_set, se lect-su b set, t r ie , f i l t e r and check_struct. All

the templates are developed according to sets with particular properties and the

66

Figure 5.1: The flow chart of software.

67

elementary processes are the operations on the words. Hence, the templates are im­

plemented by using inheritance and the respective relations are shown in Figure 5.2.

Figure 5.2: The inheritance relations of templates word, sort_set, hamming-set,

bond_free_set, select_subset, t r ie , f i l t e r and check_struct.

The basic template word contains all fundamental operations on words. For ex­

ample, obtaining the antimorphic involution image of a given word, obtaining the

subword of a DNA word of certain length, the conversion between indexes and DNA

words, getting the Hamming distance between two words of equal length, the test of

equality of two words, the test of equality of two subwords, and etc. The template

hamming-set is a function to generate the set S of words of fixed length k that satis­

fies 6(S) fl Hd1(S) = 0. Since all the sets S, Si and S? should be sorted in a certain

order to construct the trie, algorithm Radix sort is adopted in the template sort_set

to sort the sets. The template bond_free_set is the main algorithm to construct the

concatenation closure of a bond-free language, such as the set B , Bs1 or Bs2 of words

of certain length. In the template t r ie , we construct a trie to generate bond-free

languages such that their end sets EN and begin sets BE are decided in the template

68

bond_free_set. The template se lect-su bset is the algorithm to assign words of S

to sets Si and S2 that satisfy H(Si, S2) > d2. Since we produce sets Si and S2 based

on the evaluation of S, the template se lect-su bset is a derive class of the template

bond_free_set. In the template f i l t e r , the combinatorial constraints which consist

of the Hamming distance constraint (C l), the GC content constraint (C4), the conti­

nuity constraint (C5) and the end constraint (C7), are implemented to filter out the

undesirable words of a given set.

In addition, we include and modify several templates from the library Grail to help

the construction of automata in the template t r ie : they are the templates array,

String, l i s t , set, in st, sta te , and fm. Finally, when we evaluate the behavior

of our result in the template check_struct, we involve several classes in the Vienna

RNA Package version 1.7.1 and the DNA thermodynamic parameters measured by

SantaLucia [41].

5.2 Algorithms Related to Bond-free Languages

In this section, we will report the algorithms we have implemented that relate to bond-

free languages. We first describe the algorithm to select the set S in Section 5.2.1.

Secondly, the algorithm constructing the sets Si and S2 is reported in Section 5.2.2.

Finally, in Section 5.2.3, we introduce the algorithm of constructing the bond-free

languages Bg1 and Bs2 which are closed under catenation, and also Bsx ■ Bg2 is bond-

free.

5.2.1 Algorithm to Select Set S

We implement an improved algorithm to select a set S satisfying equation (4.2), based
on the overlapping property mentioned in Section 4.2.2. If the word length is k and
the alphabet is E, then the size of the solution space is |£|fe. Whenever we put a

word w into the set S , we remove all the words u in the solution space such that

69

h(w,9(u)) < d\. The main process is to put a word w into S and then iteratively put
word v into the set S if its prefix of length A:—1 is the same as the suffix of the previous
word put into S, i.e., Sufffc-i(w) = Preffc_i(u). This process will continue until all the
words are checked. The details of the algorithm are shown in the following:

Algorithm: Generate a set S such that 9(S) Pi Ha^S) — 0
Input: E - the alphabet set;
k - the length of words;
di - the Hamming distance h(w, 9(v)) > di, and w,v G S; and
initial - the index of an initial word.
Output: A set of words S satisfying 9{S) D (S') = 0.

Procedure:

1 for i = 0 to |E|fc — 1 > Mark all the words as YES

2 do w[i] = YES

3 i — initial
4 while i < |E|fc > Check the solution space from initial to |E|fe — 1

5 do if w[i] = YES

6 then w[i\ = CHECK and

w\j\ = NO such that h(w[i\, 9(w\j})) ^ di
7 current = i

8 while find Suffjk_i(tc[current]) = Preffc_i(u;[j])

9 do if w[j] = YES

10 then w\j\ — CHECK and
iu[i] = NO such that h(w[j], 9(w[l])) ^ d\

11 current — j

12 else i+ +

13 * = 0
14 while i < initial > Check the solution space from 0 to initial — 1

15 do 5 - 12

16 return all the words such that w[i\ = CHECK

70

When we implement this algorithm, we use a mapping from Equad = {0, 1, 2, 3} to

EDna = {A , C, G, T } in the obvious way. Using this method, each DNA word can

be represented by an index. For example, if a denotes a mapping from T,qua(i to Edna

such that a(0) = A, a (l) = C, a (2) = G, and o;(3) = T, then all the DNA words of

length 2 can be represented by the indexes shown in Table 5.1. Given the mapping (3:

Index I n d e x 4 w ord Index In d e x 4 word Index I n d e x 4 word Index In d e x 4 w ord

0 00 A A 4 10 C A 8 21 G A 12 30 T A

1 01 A C 5 11 C C 9 22 G C 13 31 T C

2 02 A G 6 12 C G 10 23 G G 14 32 T G

3 03 A T 7 13 C T 11 24 G T 15 33 X T

Table 5.1: The mapping of DNA words of length 2 to quadruple code based on the

mapping a that <a(0) = A, a (l) = C, a(2) = G, and a(3) = T.

Equad —> Edna defined by /?(0) = G, (3(1) = T, (3(2) = A, and (3(3) = C, all the DNA

words of length 2 can be represented by the indexes in quadruple alphabet shown in

Table 5.2.

Index 4 DNA word Index 4 DNA word Index 4 DNA word Index 4 DNA word

00 GG 10 TG 21 AG 30 CG

01 GT 11 T T 22 AT 31 CT

02 GA 12 TA 23 AA 32 CA

03 GC 13 TG 24 AC 33 CC

Table 5.2: The mapping of DNA words of length 2 to quadruple code based on the

mapping ¡3 that fi(0) = G, ¡3(1) = T, (3(2) = A, and /?(3) = C.

According to the experimental results, this algorithm is independent from the way

we define the mapping, but the desirable result is dependent on the way we define

the mapping. Here is an example. Given parameters k = 3 and d\ = 1, the set S

71

obtained by our algorithm based on mappings a and ¡3 are {AAA, CAA, GAA, ACA,

CCA, AGA, AAC, CAC, ACC, CCC, AGC, A AG, ACG} and {GGG, TGG, AGG,

GTG, TTG, GAG, GGT, TGT, GTT, TTT, GAT, GGA, GTA}, respectively. If we

choose the first set, then the ratio of the base A versus the other bases is high in the

set S®. On the other hand, if we pick the second set, then the ratio of the base G

versus the other bases is high in the set S®. The ratio of GC may affect the result of

hybridization, so we will choose a suitable mapping when testing the result.

5.2.2 Method to Construct the Sets Si and S2

According to our observations, it is difficult to find an optimal and simple algorithm

to construct two sets Si and S2 such that /¿(Si, S2) > d2 and Si C S, S2 C S. The

sequences that will fold into the correct multiple-hairpin structure depend on the

stable folding of the stems, so we are more interested in getting sets Si and S2 that

can make Bs1 fairly large. Furthermore, according to Section 4.3, Si and S2 are used

to construct Bs1(s) and Bg2{l) that satisfy properties PI - P3. Therefore, when we

construct Si and S2, we may select words that ensure these properties. As discussed

in Section 4.3.1, simple algorithm cannot produce proper subsets Si and S2 satisfying

/¿(Si, S2) > d2 and properties PI - P3.

The way to producing sets Si and S2 is not quite clear, we get the way to produce

the words by a “trial and error” method. Our method of producing sets Si and S2 is

based on the observations of the data we obtained in the experiment. The observations

are shown as follows.

First, it is better to select words based on both the Hamming distance constraint

and the overlapping property. Given words wi and w2l if Prefjt_i(rci) = Sufffc_i(tu2),

then the overlap segment of W\ and w2 is at the beginning of w\, see Figure 5.3(a); On

the other hand, if Sufffc-i(tiq) = Pref/C__i(tc2), then the overlap segment of uq and w2

is at the end of uq, see Figure 5.3(b) . In the method, we select words from S to Si

and S2 iteratively by checking the overlapping property and the Hamming distance

72

Wi = a , Q k -z Q k -lB k Wi — di3z ... 3k-idk
I »•* I I

W2 = cfe ... d k - ld k 3 tu - lW2 = 3o3/

(a) The overlap region is at the beginning

of Wi-

(b) The overlap region is at the ending

of w 1.

Figure 5.3: Two kinds of overlaps between words wi and w2

constraint. This process will continue until it exceeds a certain number of times.

Second, at the initial state, the words assigned to sets Si and S2, respectively,

are important since the following words are selected if they have segments that can

overlap with the word already selected, and moreover, satisfy the Hamming distance

constraint. Also, the sets Si and S2 are used to construct the stems and the loops

which should satisfy properties PI - P3. When we produce S, we also evaluate the

cardinality of B (l) of words of length l and obtain the best end set EN and the best

begin set BE which can produce large B(l). Therefore, the words initially selected

into Si and S2 are from these two sets.

Finally, the unused words in the set S will be checked to see whether they can be

selected to either the set Si or the set S2. By this step, we ensure we use most of

the words in S to construct the sets Si and S2. The main method to produce sets Si

and S2 is as follows:

73

Algorithm:Generate sets -Si and -S2 such that i f (Si, S2) > d2 and Si, -S2 C S.

Input: S - the set satisfying 9(S) Pi H^iS) = 0;

size - the cardinality of S';

k - the length of words in S;

d2 - the Hamming distance that h(w,v) > d2 and w G Si, v G S2;

AiV - the end set of S; and

BE - the start set of S.

Output: Subsets Si and S2 of S satisfying i f (Si, S2) > de­

procedure.

Initially select several words into Si and S2, respectively

for n <— 0 to MAX t> MAX is a parameter indicating the number of times.

do Overlap(S, Si, S2, either) and Overlap(S, S2, Si, end)

for i 0 to si2:e — 1

do if S[i] £ Si and A(S[z], S2) > d2

then Si = Si U S[i]

if S[i] £ S2 and h(S\i], Si) > d2

then S2 = S2 U S[i]

By the following algorithm Overlap(S/ , O, type), we can easily assign a word

in S' to set I such that both the Hamming distance constraint H (I, O) > d2, and the

overlapping property are satisfied. Here, S ' can be the end set EN , the start set BE

and set S.

74

A lgorithm : Overlap(S', I, 0 , type): Assign a word S'[z] G 5 ' to set I such that

h(I, O) > d2 and S"[z] overlaps with one of the word I[j] £ I of certain type.

Input: S' - a subset of S';

I - a subset of S;

O - a subset of S; and

type - the overlapping type (begin, end and either).

P rocedure:

i f (type = begin)

then find a word 5"[z] G S' such that <S"[z] ^ I, h(S'[i], O) > d2

and Prefk-i(I[j}) = Sufffc_i(S"[z]).

if (type = end)

then find a word S"[z] G S' such that S'[i] £ / , h(S'[i\, O) > d2

and Sufffc_ i(/[j]) = Preffc_i(S'[z]).

if (type = either)

then find a word S'[z] G S' such that S' [z] ^ I, h(S'[i\, O) > d2 and either

Preffc_i(/[j]) = Sufffe-^S'fz]) or Sufffe-^J^]) = Preffc_i(S'[z]).

if the word S'[z] is found

then I = IU S'[i]

5.2.3 Bond-free Languages Closed under Catenation

As mentioned in Section 4.3, we need to produce two bond-free languages Bs1 and

Bs2 that satisfy properties PI - P3. In order to generate bond-free languages Bs1 and

Bs2 that satisfy both properties PI and P2, we modified the algorithm reported in [9]

to construct bond-free languages which are closed under concatenation. Given a set S

satisfying 0(<S) (S) = 0 (4.2) and a set S' C S, the main idea to generate a bond-

free language Bs' which is closed under concatenation is to find subsets EN C S'

and BE C S' such that Subk(EN • BE) C S and all the words in Bs> can only have

prefixes p G BE, and suffixes s G EN.

75

The selection of EN and BE from a set 5" C <5 is based on two Guidelines
described in Section 4.2.4, originally from [10]. Given words = WiW2---Wk £ EN
and v = V\V2—Vk £ BE of length k, it is easy to know that both words w and v
are in S. Therefore, when we check whether all the subwords of length k of the

word wv = wiW2---WkVi...Vk~iVk are in S, we only need to check whether all the
subwords of length k of the word Sufffc_i(ry)Prefr_i(n) = w2...WkVi...Vk~i are in S.
This observation led to the first guideline, the words are assigned to EN based on
suffixes of length k — 1, that is, whenever we assign a word w £ S' to EN, we also
assign the words u £ S' to EN that have the same suffix of length k — 1 as w.
Furthermore, a pair of EN and BE is evaluated based on the cardinality of the set

Bs> of words of certain length. The algorithm is as follows:

Algorithm: Generate a pair of subsets EN and BE of S' which can generate a large

set Bs' of words of certain length satisfying properties PI and P2.

Input: S - the set satisfies 9{S) fl Hdl(S) = 0;
S' - a subset of S'; and
k - the length of the words.
Procedure:

Find a set SU which contains all distinct suffixes of length k — 1 in S'
for each SU[i\ £ SU

do find the corresponding BEi C S' such that Sub/c(S't/[i] • BEi) C S
Sort SU according to the cardinality of BEi in descending order

cur.SU = 0, cur.BE = S', and i = 0
while i < |5C/|

do cur.SU — cur.SU U {<S,t/[z]}
cur.BE = curSBE fl BEi
if cur.SU and cur.BE can generate larger |i?s/| of words of certain length

then best.SU = cur.SU and best.BE = cur.BE
i++

Find the set EN which contains all the words in S' such that Subu{EN) — best.SU
BE — bestJUE

76

In this algorithm, the method to evaluate the cardinality of the set Bs> of words of

certain length is described in Section 4.2.4.

In order to make the algorithm more clear, we give example sets S, Si and S2

and show how to construct the pairs of EN and BE of Si and S2, respectively, that

satisfy properties PI and P2. The example sets S, S± and S2 are given in Table 5.3

with parameters k = 3, d\ = 1 and d2 = 0. With these parameters, any two words

w,v € S satisfy h(w, 9(v)) > 1 and any two words w € Si, v € S2 satisfy h(w, v) > 0.

Set All the words in the set

s {G G G , GGT, GGA, G TG , G TT, GTA, GAG, GAT, TGG, TG T, TTG, TT T, A G G }

Si {G G G , TGG, AGG, G TG , GAG, GGT, GAT, G G A }

S2 {T T G , TG T, G TT, T T T , G TA}

Table 5.3: Sets S, Si and S2 with parameters k = 3, di = 1 and d2 = 0.

We first consider the begin set EN and the end set EN of Si. Firstly, we obtain

the set of all distinct suffixes of length k — 1 of Si‘. SU = {GG , TG, AG, GT, AT,

G A }. Secondly, we sort the words in the set SU according to the number of words in

Si that it can concatenate to, and moreover, the bond-free property is maintained.

That is, for a word w € SU, we calculate the number of words v € Si such that

Subfc('uw) C S. Table 5.4 lists each word w € SU and the words v 6 Si such that

Subfc(uw)C S. Finally, the pair of sets EN and BE axe selected by evaluating the

cardinality of Bŝ îl). We list all curSU tried by the algorithm and the respective

BE in Table 5.5. By comparing the values of |Bs1(5)|, we may have best-SU = {GG,

T G } and BE = {GGG, TGG, GTG, GAG, GGT, GAT, G GA}. Thus, EN = {GGG,

TGG, AGG, G TG } is obtained by bestJUU. By this process, we finally obtain the

end set EN = {GGG, TGG, AGG, G TG } and the begin set BE = {GGG, TGG,

GTG, GAG, GGT, GAT, G G A} of Si and the corresponding language Bg1 satisfies

77

w V Size

GG GGG TGG AGG GTG GAG GGT GAT GGA 8

TG GGG TGG GTG GAG GGT GAT GGA 7

AG GGG GTG GAG GGT GAT GGA 6

GT GGG TGG GTG GGT GGA 5

GA GGG GGT GGA 3

AT 0

Table 5.4: List of all the suffixes of Si, i.e., w G SU, and the corresponding words v

in Si satisfying Sub^wv) C S.

properties PI and P2.

cur-SU c u r-B E 1 ^ (5) !

{G G } {G G G , TGG , AGG, GTG, GAG, GGT, GAT, G G A } 7

{G G , T G } {G G G , TG G , G TG , GAG, GGT, GAT, G G A } 8

{G G , TG, A G } {G G G , GTG, GAG, GGT, GAT, G G A } 7

{G G , TG, AG, G T } {G G G , G TG , G GT, G G A } 8

{G G , TG, AG, G T, G A } {G G G , G GT, G G A } 7

Table 5.5: Given a set Si, the table contains all the pairs of cur.SU and cur-BE we

considered in the algorithm.

By the same token, we can generate the begin set BE and the end set EN of

S2 = {T T G , TGT, GTT, TTT, GTA} as follows: Firstly, the set of all distinct

suffixes of length A: — 1 is SU = {T G , GT, TT, TA}. Secondly, the set SU is sorted

according to the number of words in S2 that it can concatenate to, maintaining the

bond-free property. Table 5.6 sorts words w G SU by the number of words v e S2

such that Subfc(u;u) C S. Finally, set EN and BE are selected by evaluating the

cardinality of Bs2(l) and all the cur.SU tested are listed in Table 5.7. By comparing

78

w V Size

TG TTG T G T G TT T T T GTA 5

G T TTG T G T G TT T T T GTA 5

T T TTG T G T G TT T T T GTA 5

TA 0

Table 5.6: List of all the suffixes of S2, i.e., w € SU, and the corresponding words v

in S2 satisfying Subfc(u>u) C S.

the values of Bs2(l) where l = 5, we obtain the best.SU = {TG , GT, T T } and

BE = {T T G , TGT, GTT, TTT, GTA}. Based on best.SU, EN is obtained as

{T T G , TGT, GTT, T T T }.

c u rS U c u r-B E \BSl(5)\

{T G } {T T G , T G T , G TT, T T T , G TA} 3

{T G , G T } {T T G , TG T, G TT, T T T , GTA} 5

{T G , GT, T T } {T T G , TG T, G TT, T T T , G TA} 9

Table 5.7: Given set S2, all the pairs of cur.SU and cur.BE we considered in the

algorithm.

The example shown above is the way to construct a pair of sets EN and BE

which satisfy properties PI and P2. To meet property P3, we will modify the end set

ENi of Si and the begin set BE2 of S2. The algorithm is shown as follows:

79

Algorithm:

Input: S - the set satisfies $(S) PI = 0;

EN\ - the best end set of <Si; and

BE2 - the best begin set of S2.

Output: Sets EN[C EN\ and BE'2 C BE2 such that Subk(EN[■ BE2)C S and

\EN[| is maximal.

for each BE2[i] £ BE

do find set cur-ENi C EN\ such that Subk(cur-ENi ■ BE2[i\) C S

Find i such that \cur-EN{\ is the maximum

if the maximal number is 0, that is, Vru £ ENi, v £ BE2, Sub*, (urn) £ S

then return ERROR

EN[= 0 and BE2 = 0

for j <— 0 to |EWi| — 1

do if Subfc(E A i[j] • BE2[i\)C S

then EN[= EN[U {E N ^j}}

for j <— 0 to \BE2\ — 1

do if Subk{EN[■ BE2[j})C S

then BE2 = BE'2 U {B E 2[j]}

Using this algorithm, we can ensure that the concatenation of EN[and BE2

satisfies the bond-free property, and the cardinality of \EN[\ is maximal. Using the

previous sets S, Si and S2 as an example, the end set of Si is ENi = {GGG, TGG,

AGG, G TG } and the begin set of S2 is BE2 = {TTG , TGT, GTT, TTT, GTA}.

The algorithm first finds a word w £ BE2 and a corresponding subset EN[C ENi

such that Subk(EN[• w) C S and \EN[\ is the maximum. Then, we obtain the word

w =T T G and EN[= {GG G, TGG, AGG, G TG }. Secondly, according to EN[, all

the words v in BE2 are selected to BE2 such that Suhft(EN[• v) C S. In our the

example, BE2 = {T T G , TGT, GTT, TTT, GTA}. Therefore, EN[= ENX and

BE2 — BE2, that is, all the words u £ ENi and v £ BE2 satisfy Sub^wv) C S.

80

5.3 Bond-free Languages: Experimental Results

In Section 5.2, we introduced the algorithm to select the set S. Using the same

method mentioned in [10], we evaluate the set S by the cardinality of B(l) which is

a set of words of length l and satisfies (B(l))* C 5®.

Since the cardinality of B(l) depends on the length k of words in the set S', the

reverse-complement Hamming distance di between words in the set S, and the initial

word we chose to construct the set S, we first fix k and d\ to evaluate the relationship

between the initial word and \B(l)|. Table 5.8 gives the cardinality of B under various

initial words and lengths l, when k = 2 and di = 0. Table 5.9 gives the cardinality

w\l 4 5 6 w\l 4 5 6 w\l 4 5 6 w\l 4 5 6

A A 20 45 101 CA 20 45 101 GA 20 45 101 TA 20 45 101

AC 20 45 101 CC 20 45 101 GC 20 45 101 TC 20 45 101

AG 20 45 101 CG 20 45 101 GG 20 45 101 TG 2 4 7

AT 20 45 101 CT 20 45 101 GT 6 10 19 T T 6 10 19

Table 5.8: Given parameters k = 2, d\ = 0 and mapping a, this table gives the size

of set B(l) under various initial words and various lengths l.

of B under various initial words and lengths l, when the parameters are k = 3 and

di = 0.

81

w\l 4 5 6 w\l 4 5 6 w\l 4 5 6 w\l 4 5 6

A A A 41 117 335 CAA 48 128 384 G A A 38 110 311 TAA 48 128 384

AAC 41 117 335 CAC 48 128 384 GAC 38 110 311 TAC 48 128 384

AAG 41 117 335 CAG 48 128 384 GAG 38 110 311 TAG 40 113 323

AAT 41 117 335 CAT 48 128 384 GAT 38 110 311 TAT 38 101 284

ACA 41 117 335 CCA 48 128 384 G CA 40 113 323 TCA 48 128 384

ACC 41 117 335 CCC 48 128 384 GCC 40 113 323 TCC 48 128 384

ACG 41 117 335 CCG 48 128 384 GCG 40 113 323 TCG 28 76 204

ACT 41 117 335 CCT 48 128 384 GCT 28 76 204 TC T 35 94 258

AGA 40 113 323 CGA 48 128 384 G GA 40 113 323 T G A 40 113 323

AGC 40 113 323 CGC 48 128 384 GGC 40 113 323 TGC 28 76 204

AGG 40 113 323 CGG 40 113 323 GGG 40 113 323 TGG 22 60 166

AGT 40 113 323 CGT 28 76 204 G GT 25 67 181 TG T 18 44 109

ATA 48 128 384 CTA 48 128 384 GTA 40 113 323 TTA 38 105 291

ATC 48 128 384 CTC 48 128 384 GTC 24 64 173 TTC 28 78 216

ATG 40 113 323 CTG 36 98 277 GTG 18 46 124 TTG 21 60 161

ATT 38 101 284 CTT 35 95 267 G T T 23 61 165 T T T 26 69 185

Table 5.9: Given k = 3, di = 0 and mapping a, this table gives the size of set B(l)

under various initial words and lengths l.

82

Several observations are in order regarding the resulting set B(l). With fixed

parameters k and d\, distinct initial words may result in the same cardinality of

B(l). This may be because the set S is selected mainly according to the overlapping

property, rather than the alphabetical order. Furthermore, it is not clear how to

assign the initial word which will always generate the largest set B(l). However,'by

checking the data, we find that if we fix the initial word with index 0 (If we use the

mapping (3, then the initial word with index 0 is GG...G), we will usually generate a

fairly large set B(l). Hence, we just fix the initial words with index 0.

Then we fix A; and the length l of words in B(l) to check the relationship between d\

and \B(l)\. In Table 5.10, we fix parameters A; to 3 and l to 6, then test \B(l)\ under

various initial words and parameters d\. When d\ increases, \B(l)\ will decrease and

even become empty. This is easy to understand since the increase of d\ will make

the reverse-complement Hamming distance constraint more strict and the number of

words satisfying the constraint will be reduced. Thus, the cardinality of B(l) will

decrease.

83

w\d\ 0 1 2 w\di 0 1 2 w\di 0 1 2 w\dx 0 1 2

A A A 335 68 64 CAA 384 68 64 G AA 311 68 64 TAA 384 68 1

A A C 335 68 64 CAC 384 68 64 GAC 311 68 1 TAC 384 64 1

A A G 335 68 64 CAG 384 68 1 GAG 311 68 64 TAG 323 6 1

AAT 335 68 1 CAT 384 64 1 GAT 311 6 0 TAT 284 9 1

ACA 335 64 64 CCA 384 64 64 G CA 323 68 1 TCA 384 64 1

ACC 335 64 64 CCC 384 64 64 GCC 323 68 1 TCC 384 64 1

ACG 335 64 0 CCG 384 64 1 GCG 323 1 1 TCG 204 64 1

ACT 335 68 1 CCT 384 64 1 GCT 204 1 1 TCT 258 1 1

AG A 323 20 64 CGA 384 68 1 GGA 323 68 64 TG A 323 6 1

AGC 323 20 0 CGC 384 20 1 GGC 323 68 1 TGC 204 1 1

AGG 323 20 64 CGG 323 68 1 GGG 323 68 64 TGG 166 64 1

AG T 323 1 1 CGT 204 1 1 G GT 181 1 1 TG T 109 6 1

ATA 384 64 0 CTA 384 64 1 GTA 323 1 1 TTA 291 13 1

ATC 384 64 1 CTC 384 64 1 GTC 173 1 1 TTC 216 13 1

ATG 323 1 1 CTG 277 1 1 GTG 124 64 1 TTG 161 1 1

ATT 284 13 1 C TT 267 13 1 G TT 165 1 1 T T T 185 6 1

Table 5.10: Given k = 3, this table shows the cardinality of set B {6) under various

initial words and d\.

84

Since we are interested in finding proper parameters k and d\ for constructing the

multiple-hairpin structure, we check the cardinality of B(l) as well as the words in

the set S. Let k = 3 and the index of the initial word be 0 (by using the mapping /?,

the initial word is GGG). Varying the parameter d\, we may achieve distinct sets S,

see Table 5.11.

di s

0 {G G G , GGT, GGA, GGC, G TG , G TT, GTA, GTC, GAG, GAT, G AA, GCG, GCT, TGG,

TG T, T G A , TGC, TTG , T T T , TTA, TAG, TAT, TCG, AGG, AG T, AGA, ATG, ATT,

A AG, CGG, CGT, C TG }

1 {G G G , G GT, GGA, GTG, G TT , GTA, GAG, GAT, TGG, TG T, TTG , TT T, AG G }

2 {G G G , G GT, GTG, G TT, TGG , T G T , TTG , T T T }

Table 5.11: Given k — 3, mapping (3 and the initial word GGG, this table shows the

words in S obtained under various d\.

Given words w,v G S, we have that h(w, 0(v j) > d\. By observing Table 5.11, we

see that if the parameter di is too strict, that is, d\ is close to k, the set S will only

contain half of the DNA alphabet. When k = 3 and d\ = 2, S only contains the DNA

bases G and T. Also, when parameter k = 4 and d\ = 3, S will only contains bases G

and T. In order to maintain the DNA alphabet, when selecting di, we will choose d\

not larger than half of k. Therefore, if k = 3, dx equal to 0 and 1 are acceptable. If

k = 4, di equal to 0, 1 and 2 are acceptable.

5.4 Constructing a Multiple-hairpin Structure: Ex­

periments

In this section, we provide and evaluate several example sets of sequences that are

expected to fold into a four-consecutive-hairpin structure. Herein we always set the

85

length s of the stem and the external segment to 20, and the length l of loop to 7.

In order to maintain a higher GC-ratio, when we select the set S , we always use the

mapping ¡3 mentioned in Section 5.2.1. Furthermore, all the initial words considered

here are GG...G.

Example Set 1: Given parameters k = 3, dx = 1, (¿2 = 0, we obtain S = {GGG,

TGG, AGG, GTG, TTG, GAG, GGT, TGT, GTT, TTT, GAT, GGA, GTA}, Sx = {

GGG, TGG, AGG, GTG, GAG, GGT, GAT, G G A } and S2 = (TTG , TGT, GTT,

TTT, GTA}. For these sets 0(S) n HX(S) = 0 and H(SU S2) > 0.

For the sequences to be used to construct stems and the external segment, we apply

the following additional combinatorial constraints: GC-content is ranging between

GCiower = 50% and GCupper = 80%, the continuity constraint c = 5 (there are not 5

consecutive same letter in any stems) and the Hamming distance constraint d3 — 10

(the Hamming distance between any two stems is larger than 10). Thus, we produce

Bstem of size 5. The words are shown in Table 5.12. For the sequences to be used to

Index i Vi 0(vi)

0 G AG G AG G AG GAG GAG G AGG G CCC TCCTCCTCCTCCTCCTC

1 G AG G G AG G AGG AGG AG GAG G CCTCCTCCTCCTCCTCCCTC

2 G G AG G AG G G AG G AG G AG G TG CACCTCCTCCTCCCTCCTCC

3 G G G AG G AG G TG G G TG G G TG G CCACCCACCCACCTCCTCCC

4 TG G G TG G TG G G TG G TG G G TG CACCCACCACCCACCACCCA

Table 5.12: The words in Bstem and 9(Bstem) of Example Set 1 with c — 5 and d3 =
10.

construct the loops, we apply the continuity constraint c = 5 and the end constraint.

Thus, we obtain Bioop of size 9. The words are shown in Table 5.13. These sets of

sequences can be used to construct the four-hairpin DNA structure and the expected

four hairpin structure is shown in Figure 5.4.

86

Figure 5.4: Correct DNA secondary structure with four consecutive hairpins.

87

Index i Vi Index i Vi Index i Vi

0 G TTG TTG 3 T G T T G T T 6 TT G T T TG

1 G TT G T TT 4 T G T T T G T 7 T T TG T TG

2 G TT T G TT 5 T T G T T G T 8 T T T G T T T

Table 5.13: The words in Bioop of Example Set 1.

To conveniently denote the assignment of words to structure, we use the form

(index i , index2 , indexn+i) where indexa indicates the words in Bstern and Bioop.

To ease the process of the assignment, the last index in the form indicates the sequence

assigned to the external segment. For example, by (0, 1, 2, 3, 4), we denote the

sequence V4v0y00(vo)viy-id(vi)v2y2d(v2)v3y3d(v3) where Vi and yt are from Table 5.12

and Table 5.13, respectively.

By the method reported in Section 4.5, we can generate (¿zjjLi); = 5! = 120

sequences. The structures of all 120 sequences are predicted by Vienna RNA pack­

age [17] included in our software. The structures that the sequences fold into are

close to or exactly the desired structure. If we evaluate the structures by the number

of mismatches between the desirable structure and the structure of our sequences,

we obtain the result in Table 5.14. Here, 16 sequences fold into the result structure

correctly and 92 sequences fold into the desirable structure with only 2 mismatches.

of mismatches 0 2 6 8

of sequences 16 92 8 4

Table 5.14: The predictive results of Example Set 1.

In Figure 5.5, we give all distinct number of mismatches we obtained when we

predict the structures. The worst cases of this example contain 8 wrong folding

positions and they are assignments (4, 0, 2, 1, 3), (4, 0, 3, 1, 2), (4, 1, 2, 0, 3) and

(4, 1, 3, 0 2). By our observation, all of them have the same structures, therefore, we

88

Figure 5.5: The structures of the result sequences predicted by the Vienna RNA

package.

89

give the folding result of Assignment (4, 0, 2, 1, 3) as example, see in Figure 5.5(d).

Even in the worst case, we still produce the four-hairpin structure and the undesirable

bonds we emphasized are not shown in the structure. Therefore, we believe all 120

sequences can fold into the given four-hairpin structure.

If we change the Hamming distance constraint to d3 = 9, then, we obtain a new set

Bstemi see Table 5.15. We may obtain |Bstern| = 7 and we can generate 2520 sequences

Index i v% 0{v%)

0 G AG G AG G AG GAG GAG G AGG G CCCTCCTCCTCCTCCTCCTC

1 G AGG GAG G AGG AGG AG GAG G CCTCCTCCTCCTCCTCCCTC

2 G AGG GG AG GAG GAG G AGG G G CCC CTCCTCCTCCTCCCCTC

3 G GAG G AG G G G AG G G G TG G TG CACCACCCCTCCCCTCCTCC

4 G G G AG G G TG G TG G G TG G TG G CCACCACCCACCACCCTCCC

5 TG G A G G TG G TG G G A G G G G TG CACCCCTCCCACCACCTCCA

6 TG G G G TG G TG G G TG G G A G G G CCCTCCCACCCACCACCCCA

Table 5.15: The words in Bstem and 9(Bstem) of Example Set 1 with the Hamming

constraint d3 = 9.

and the corresponding result is shown in Table 5.16. By checking the result images,

all the sequences are folding into the structures that avoid the undesirable bonds

U1 - U4.

of mismatches 0 2 4 6 8

of sequences 144 1332 720 216 108

Table 5.16: The predictive results of Example Set 1 with d3 = 9.

E xam ple Set 2: Given parameters k — 4, d\ = 0, d2 = 0, the sets S, Si and S2

satisfy 6(S) D Hq(S) — 0 and H(Si, S2) > 0. Here we apply other constraints to the

90

stems set as follows: the GC-content is ranging between 50% and 80%, the continu­

ity constraint c = 5 and the Hamming distance constraint d3 = 11. We list all the

sequences of Bstem and part of the sequences of Bioop in Table 5.17. By evaluating

Index i Vi 6{vi) Vi

0 AAAG AG AG AG AG AG AG AG G G C C C TC TC TC TC TC TC TC TTT AGATAGA

1 AAAG AG CG G AG AG AG AG AG G C C TC TC TC TC TC C G C TC TTT AGATAGG

2 AAG AGAG AGAG AG CGG AG AG C TC TC C G C TC TC TC TC TC TT AG ATTG A

3 AAG AGCG G AGCG G AGC GTG G CCAC GC TC CGC TC CGC TC TT AGATTGG

4 AATGG G GCG G GCTG GG CTG G CCAGCCCAGCCCGCCCCATT AG ATTTG

5 AG AGCG G GC TG GG CTG GG AG CTCCCAGCCCAG CCCG CTCT AGGATAG

6 ATGG G CGG G CTGG GAG CG TG CACGCTCCCAGCCCGCCCAT AGGATTG

7 G AGCG G AGTG GG CTGG G GAG CTCCCCAGCCCACTCCGCTC AGGTAGA

8 G G AG C G TG G GC TG GG CTG GG CCCAGCCCAGCCCACGCTCC AGGTAGG

9 G GCGGAGAGCGGAGCGGAGG CCTCCGCTCCGCTCTCCGCC AGGTGTA

10 G TC GTG GG CG AGC GG AGTG G CCACTCCGCTCGCCCACGAC AG GTG TG

Table 5.17: The words in Bstem, Q(Bstern) and some of words in Bioop of Example

Set 2.

the number of mismatches between the desirable structures and the structure of our

sequences, we obtain the result in Table 5.18. When the number of mismatches is

less than 6, all the result sequences will not contain any undesirable bonds. When

the number of mismatches is larger than or equal to 6, the undesirable bond U1 may

happen in external segments. The predicting structures when the number of of mis­

matches equals to 12 and 14 are given in Figure 5.6.

91

of mismatches 0 2 4 6 8 10 12 14

of sequences 1200 13024 5819 11305 18254 5358 449 31

Table 5.18: The predictive results of Example Set 2.

Figure 5.6: Some structures of the result sequences, with k = 4, di = 0 and d2= 0.

5.5 Discussions

In the previous section, we give successful examples of our proposed bottom-up ap­

proach. Here, we further discuss the selection of the parameters. In the bottom-up

approach, the main parameters are the length of the block k in the set S, the reverse-

complement Hamming distance d\ between any two blocks in the structure, and the

Hamming distance d2 between sets S\ and S2.

The parameter k should not be too large. Since our method is based on operations

on word sets of length k, this is a time consuming process if the length of the block

k is too large. As discussed in Section 5.3, if the reverse-complement Hamming

distance d\ is too large, the number of distinct bases will be too small. Therefore,

92

it may be reasonable to set the reverse-complement Hamming distance d\ not larger

than half of k. On the other hand, when d\ is too small such as k = 4 and d\ = 0

mentioned in the previous section, this may not prevent the undesirable bonds of

blocks in the external segment x. For the parameter d2, we just make sure words

in Si are different from the words in S2, since this may work well to prevent the

undesirable bonds inside single hairpins.

93

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we have presented a bottom-up approach to construct a specific DNA

secondary structure namely a consecutive-hairpin structure. As described in Sec­

tion 3.5, by applying distinct keys, each hairpin in the multiple-hairpin structure

can be opened one after another. Therefore, this multiple-hairpin structure can be

used as the address segment of a memory wherein the data can be accessed by fully

opening all the single hairpins. By our approach, we construct a set of sequences

that fold in the initial state of the address segment of such a memory. For example,

our software is able to generate 120 sequences that can each fold into a four-hairpin

structure where the length of each hairpin stem is 20, the length of each hairpin loop

is 7 and the length of each external segment is 20. All sequences have been verified

by using the Vienna package.

Our method is different from other secondary structure design methods that con­

struct a sequence mainly based on the evaluation of the free energy. By using the

bottom-up approach, we use combinatorial constraints to construct the sequences such

as the Hamming distance constraint (Cl), the reverse-complement constraint (C2),

the GC-content constraint (C4) and the continuity constraint (C5). Specifically, we

consider the bond-free property defined [26]. By our approach, blocks of length k

in the desirable structure are constructed first. These shorter blocks are then used

94

to construct the external segment x, the loop yi and the stem Vi that avoid the

undesirable bonds U1 and U2 mentioned in Section 4.1.

We construct the block set S by considering the reverse-complement constraint,

i.e., h(w,0(v)) > di, Vu>, v G S. To avoid the undesirable hybridizations of blocks

within a single hairpin structure, we construct two subsets Si and S2 from S by

considering the Hamming distance constraint, i.e., h(Si, S2) > d2. To make sure the

concatenations of the external segment x, the stems and the loops yi such as xu,

and Viyi are still bond free, we construct special bond-free languages which are closed

under concatenation. By using the software package Grail, we can generate the stem

set 5 s j(s) and the loop set Bs2(l) by constructing the corresponding automata of Si

and S2. To avoid the undesirable bonds between the stems or between the loops,

we apply the combinatorial constraints mentioned in Section 3.2.2 to filter out the

undesirable sequences. Finally, the consecutive hairpin structure is obtained by the

concatenations of the segments x, yi and 6{vi). By the implementation of our

bottom-up approach, we successfully construct the set of sequences that fold into the

multiple-hairpin structure and several examples are given in Section 5.4.

Compared with the existing algorithm [9] that generates bond-free languages, our

algorithm has an improved method of selecting the set S (Section 5.2.1) which can

generate a larger bond-free language B(l) closed under concatenation. This is a

crucial for our approach since set S is the fundamental set which is used to construct

the sets Si and S2 (Section 5.2.2) such that H(S i ,S2) > d2 and Si,S2 C S. In

addition, recall that the optimal result [9] constructed a bond-free language that

is closed under catenation. Here, we expand that result to satisfy a more complex

constraint: the construction of two separate bond-free language Bs^s) and Bs2(l)

such that all (Bs1(s))*, (Bs2(l))* and Bs1(s) • Bs2(l) are still bond-free.

Finally, the original method proposed by Uejima and Hagiya [48] to construct the

consecutive hairpin structure is primarily based on the evaluation of the free energy

using a “trial and error” method. This method will result in a sequences that folds into

95

the consecutive hairpin structure and experiment result shows that this structure can

indeed work as a multi-state machine. However, the method used by [48] to generate

the multiple-hairpin structure seems problem specific, and it is also not clear whether

it would scale-up. Our approach has the advantage that by changing the parameters,

we can easily generate sequences suitable for a large variety of possible uses.

6.2 Future Work

In the following, we propose some possible improvements of our algorithms as well as

a new application of our bottom-up approach.

In this thesis, our implementation of the bottom-up approach is focused on con­

struct the sequence that will fold into the multiple-hairpin structure of the form

hps(n, s, l, 9) = { xv1y19(v1)...vnyn9(vn) | x, 9(vi) 6 E s , yi G T,1 and 1 < i < n }

In the structure, the loop is a short segment and the stem and the external segment

are longer segments. Therefore, when we construct the words of the sets Si and S2

which will be the blocks in the stems and the loop, respectively, we prefer to assign

more words to £1 to ensure the stability of base pairs in the stem. If the goal was

another secondary structure, the way we implement the bottom-up approach may be

thus very different.

By our bottom-up approach, we have successfully constructed the initial structure

of the multi-state machine. Further effort is needed to make sure that the resulting

multiple-hairpin structures can be opened one by one by applying distinct keys. A

possible approach is to include the GC content constraint when we select the set S.

Also, when we filter out the undesirable sequences in the set Bs1(s), it is good idea to

maintain a word u* if it has lower free energy when it forms double-stranded segment.

The software of the bottom-up approach we implemented does not include a graph­

ical interface. Due to the large amount of data, it would be more convenient to eval­

uate both the sequences and the corresponding structures in a graphical interface.

96

In [44], the authors also propose another multiple-hairpin structure of the form

v! = x 1v1yid(v1)x2v2y20{v2)...xnvnyn9(vn),

which is the concatenations of substructures XiViyi9(vi). Figure 6.1 shows an example

Figure 6.1: The new multiple-hairpin structure with five hairpins.

of this multiple-hairpin structure with 5 substructures XiViyi6{vi). This structure

is very similar to the one we investigated, with the exception that segments Xi are

inserted between each neighbor hairpin structures. By our bottom-up approach, these

segments Xi can also be selected from Bstern. Using the algorithm we implemented,

(Bstern)* is (#, -Hdi,fc)-bond-free, so the concatenation of the segment xi and the stem

Vi still satisfies the bond-free property. In this new application, it would be interesting

97

to investigate how large a structure we can construct, that is, what is the maximal

number n of the substructures XìVìUì9(vì) we can construct.

98

Bibliography

[1] L. M. Adleman, Molecular computation of solutions to combinatorial problems,

Science 266 (1994), no. 5187, 1021-1024.

[2] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data structures and algorithms,

Addison-Wesley, 1983.

[3] M. Andronescu, A. P. Fejes, F. Hutter, H. H. Hoods, and A. Condon, A new

algorithm for RNA secondary structure design, Journal of Molecular Biology 336

(2004), 607-624.

[4] Y. Benenson, B. Gil, U. Ben-Dor, R. Adar, and E. Shapiro, An autonomous

molecular computer for logical control of gene expression, Nature 429 (2004),

423-429.

[5] S. Brenner, S. R. Williams, E. H. Vermaas, T. Storck, K. Moon, C. McCol­

lum, J. Mao, S. Luo, J. J. Kirchner, S. Eletr, R. B. DuBridge, T. Burcham,

and G. Albrecht, In vitro cloning of complex mixtures of DNA on microbeads:

Physical separation of differentially expressed cDNAs, Proceedings of the Na­

tional Academy of Sciences of the United States of America 97 (2000), no. 4,

1665-1670.

[6] A. Busch and R. Backofen, INFO-RNA - a fast approach to inverse RNA folding,

Bioinformatics 22 (2006), no. 15, 1823-1831.

99

[7] A. Carbone and N. A. Pierce (eds.), DNA Computing, 11th International Work­

shop on DNA Computing, DNA11, London, ON, Canada, June 6-9, 2005, Re­

vised Selected Papers, LNCS, voi. 3892, Springer, 2006.

[8] J. Chen and J. H. Reif (eds.), DNA Computing, 9th International Workshop on

DNA-Based Computers, DNA9, Madison, WI, USA, June 1-3, 2003, LNSC, voi.

2943, Springer, 2004.

[9] B. Cui, Encoding methods for DNA languages defined via the subword closure op­

eration, Master’s thesis, Saint Mary’s University, Halifax, Nova Scotia, Canada,

May 2007.

[10] B. Cui and S. Konstantinidis, DNA coding using the subword closure operation,

in Garzon and Yan [15], pp. 284-289.

[11] M. Domaratzki, Hairpin structures defined by DNA trajectories, in Mao and

Yokomori [31], pp. 182-194.

[12] U. Feldkamp, H. Rauhe, and W. Banzhaf, Software tools for DNA sequence

design, Genetic Programming and Evolvable Machines 4 (2003), no. 2, 153-171.

[13] U. Feldkamp, S. Saghafi, W. Banzhaf, and H. Rauhe, DNASequenceGenerator:

A program for the construction of DNA sequences, in Jonoska and Seeman [21],

pp. 23-32.

[14] C. Ferretti, G. Mauri, and C. Zandron (eds.), DNA Computing, 10th Interna­

tional Workshop on DNA Computing, DNA 10, Milan, Italy, June 7-10, 2004,

Revised Selected Papers, LNCS, voi. 3384, Springer, 2005.

[15] M. H. Garzon and H. Yan (eds.), DNA Computing, 13th International Meeting

on DNA Computing, DNA 13, Memphis, TN, USA, June 4-8, 2007, Revised

Selected Papers, LNCS, voi. 4848, Springer, 2008.

100

[16] M. Hagiya and A. Ohuchi (eds.), DNA Computing, 8th International Workshop

on DNA-Based Computers, DNA8, Sapporo, Japan, June 10-13, 2002, Revised

Papers, LNCS, vol. 2568, Springer, 2003.

[17] I. L. Hofacker, W. Fontana, P. F. Stadler, L. S. Bonhoeffer, M. Tacker, and

P. Schuster, Fast folding and comparison of RNA secondary structures, Monat­

shefte für Chemie (Chemical Monthly) 125 (1994), 167-188.

[18] S. Hussini, L. Kari, and S. Konstantinidis, Coding properties of DNA languages,

in Jonoska and Seeman [21], pp. 57-69.

[19] N. Iimura, M. Yamamoto, F. Tanaka, and A. Ohuchi, Sequence design support

system for 4 x 4 DNA tiles, in Garzon and Yan [15], pp. 140-145.

[20] N. Jonoska and K. Mahalingam, Languages of DNA based code words, in Chen

and Reif [8], pp. 61-73.

[21] N. Jonoska and N. C. Seeman (eds.), DNA Computing, 7th International Work­

shop on DNA-Based Computers, DNA7, Tampa, FL, USA, June 10-13, 2001,

Revised Papers, LNCS, vol. 2340, Springer, 2002.

[22] A. Kameda, M. Yamamoto, H. Uejima, M. Hagiya, K. Sakamoto, and A. Ohuchi,

Conformational addressing using the hairpin structure of single-strand DNA, in

Chen and Reif [8], pp. 219-224.

[23] L. Kari, DNA computing: The arrival of biological mathematics, The Mathemat­

ical Intelligencer 19 (1997), no. 2, 9-22.

[24] L. Kari, R. Kitto, and G. Thierrin, Codes, involutions, and DNA encodings, For­

mal and Natural Computing (W. Brauer, H. Ehrig, J. Karhumäki, and A. Salo-

maa, eds.), LNCS, vol. 2300, Springer, 2002, pp. 376-393.

101

[25] L. Kari, S. Konstantinidis, E. Losseva, P. Sosik, and G. Thierrin, Hairpin struc­

tures in DNA words, in Carbone and Pierce [7], pp. 158-170.

[26] L. Rari, S. Konstantinidis, and P. Sosik, Bond-free languages: Formalizations,

maximality and construction methods, in Ferretti et al. [14], pp. 169-181.

[27] L. Kari, S. Konstantinidis, P. Sosik, and G. Thierrin, On hairpin-free words and

languages, Developments in Language Theory (C. De Felice and A. Restivo, eds.),

LNCS, voi. 3572, Springer, 2005, pp. 296-307.

[28] D. E. Kephart and J. Lefevre, CODEGEN: the generation and testing of DNA

code words, Evolutionary Computation, 2004. CEC2004. Congress on., voi. 2,

June 2004, pp. 1865-1873.

[29] D. Kim, S. Shin, I. Lee, and B. Zhang, NACST/Seq: A sequence design system

with multiobjective optimization, in Hagiya and Ohuchi [16], pp. 242-251.

[30] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting codes,

North-Holland, 1977.

[31] C. Mao and T. Yokomori (eds.), DNA Computing, 12th International Meeting

on DNA Computing, DNA 12, Seoul, Korea, June 5-9, 2006, Revised Selected

Papers, LNCS, voi. 4287, Springer, 2006.

[32] A. Marathe, A. Condon, and R. M. Corn, On combinatorial DNA word design,

Journal of Computational Biology 8 (2001), no. 3, 201-219.

[33] G. Mauri and C. Ferretti, Word design for molecular computing: A survey, in

Chen and Reif [8], pp. 37-47.

[34] K. U. Mir, A restricted genetic alphabet for DNA computing, DNA2, American

Mathematical Society, 1996.

102

[35] D. Raymond and D. Wood, Grail: A C++ library for automata and expressions,

Journal of Symbolic Computation 17 (1994), 341-350.

[36] J. H. Reif, T. H. LaBean, M. Pirrung, V. S. Rana, B. Guo, C. Kingsford, and

G. S. Wickham, Experimental construction of very large scale DNA databases

with associative search capability, in Jonoska and Seeman [21], pp. 231-247.

[37] E. Rivas and S. R. Eddy, A dynamic programming algorithm for RNA structure

prediction including pseudoknots, Journal of Molecular Biology 285 (1999), 2053-

2068.

[38] D. Sadava, H. C. Heller, G. H. Orians, W. K. Purves, and D. Hillis, Life: The

science of biology, 8th ed., W. H. Freeman, 2008.

[39] J. Sager and D. Stefanovic, Designing nucleotide sequences for computation: A

survey of constraints, in Carbone and Pierce [7], pp. 275-289.

[40] K. Sakamoto, D. Kiga, K. Komiya, H. Gouzu, S. Yokoyama, S. Ikeda,

H. Sugiyama, and M. Hagiya, State transitions by molecules, BioSystems 52

(1999), 81-91.

[41] J. SantaLucia, A unified view of polymer, dumbbell, and oligonucleotide DNA

nearest-neighbor thermodynamics, Proceedings of the National Academy of Sci­

ences of the United States of America 95 (1998), no. 4, 1460-1465.

[42] N. C. Seeman, Design of sequences for nucleic acid structure engineering, Journal

of Biomolecular structure & Dynamics 8 (1990), no. 3, 573-581.

[43] N. C. Seeman and N. R. Kallenbach, Design of immobile nucleic acid junctions,

Biophysical Journal 44 (1983), 201-209.

[44] N. Takahashi, A. Kameda, M. Yamamoto, and A. Ohuchi, Aqueous computing

with DNA hairpin-based RAM, in Ferretti et al. [14], pp. 355-364.

103

[45] F. Tanaka, M. Nakatsugawa, M. Yamamoto, T. Shiba, and A. Ohuchi, Developing

support system for sequence design in DNA computing, in Jonoska and Seeman

[21], pp. 129-137.

[46] D. C. Tulpan, Effective heuristic methods for DNA strand design, Ph.D. the­

sis, The University of British Columbia, Vancouver, British Columbia, Canada,

October 2006.

[47] D. C. Tulpan, H. H. Hoos, and A. Condon, Stochastic local search algorithms for

DNA word design, in Hagiya and Ohuchi [16], pp. 229-241.

[48] H. Uejima and M. Hagiya, Secondary structure design of multi-state DNA ma­

chines based on sequential structure transitions, in Chen and Reif [8], pp. 74-85.

[49] B. Wei, Z. Wang, and Y. Mi, Uniquimer: A de novo DNA sequence generation

computer software for DNA self-assembly, in Mao and Yokomori [31], pp. 266-

273.

[50] M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction,

Nucleic Acids Research 31 (2003), no. 13, 3406-3415.

	DNA Hairpin Secondary Structure Design
	Recommended Citation

	tmp.1691000009.pdf.7RV4I

