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Abstract

The purpose o f this research was to investigate the dynamics o f induction 

charging for spherical particles assuming finite volume and surface conductivities, and 

arbitrary particle permittivity. All results, presented in this thesis, were based on 

numerical simulations on the COMSOL commercial software using the Finite Element 

Method. Simulations were performed for a conducting spherical particle with finite 

surface conductivity. The particle was resting on a ground electrode and exposed to an 

external electric field. The model was then extended to investigate multiple spherical 

particles stacked in an arbitrary pattern structure. Saturation charge and actual charging 

time constant were investigated. The rate o f charge accumulation was affected 

significantly by the particle’s volume and surface conductivities, contact area with the 

ground electrode, and electric shielding due to proximity o f stacked particles. To a less 

extent, the actual charging time was affected by particle permittivity. Furthermore, 

shielding the electric field from a given particle reduced its saturation charge 

significantly.

Keywords: Induction charge, surface conductivity, spherical particle, charging time 

constant, relaxation time constant, electric field, electric shieiding, surface charge 

density, finite element method, conductivity, permittivity.
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Chapter 1 
Introduction

1.1 Introduction
Many electrostatic applications rely on electric charging o f particles. Electrostatic 

separation, precipitation and powder coating are examples o f common processes that use 

electric charging. Among different charging mechanisms, induction charging is often 

preferred as it can be easily controlled and it doesn’t require ambient gas ionization.

In the most typical case, induction charging can be achieved by grounding an 

electrically conducting or semi-conducting object and exposing it to an electric field. 

Initially, electric charges will move inside the conducting object, as the electric current 

flows through the material, and accumulate on the conducting surface. The charges will 

only be distributed on the surface o f the conducting or semi-conducting object with a zero 

net induced charge inside. After some time the electric field o f induced charges 

completely cancels the external electric field, current flow stops and the steady-state is 

reached. The total electric charge accumulated on the particle surface is called the 

saturation charge. “For an ideal insulator induction charging is not possible since the 

charges cannot move within the material” [4].

This thesis presents the results o f investigations o f the induction charging of 

spherical particles made out o f real conductors with arbitrary permittivity and finite 

volume and surface conductivities. In practical applications, particles are arbitrary in 

shape. For analysis purposes, only spherical particles have been considered. This is
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because the charging level o f particles can be predicted analytically only for highly 

symmetrical particle shapes.

Analytical methods can be used to evaluate the charging level o f some regularly 

shaped particles, such as spheres and hemispheres [2]. Analytical results can be used to 

validate the algorithms and models for numerical simulation. The numerical models can 

then be modified to include other factors that affect the accumulation o f charge (shape, 

material properties), and to study the dynamics o f the charge build-up. The results 

presented in literature so far are valid for uniformly conductive particles only. Little 

research has been done to show the effect o f the surface conductivity, which can be 

important in some applications. In some cases, the term surface resistivity is used and is 

inversely proportional to surface conductivity. “Surface resistivity is the resistance to 

leakage current along the surface o f an insulating material. Volume resistivity is the 

resistance to leakage current through the body o f an insulating material. The higher the 

surface/volume resistivity, the lower the leakage current and the less conductive the 

material is”. [23]

In theory, ideally conducting particles, having infinite conductivities* reach 

saturation charge instantaneously [4]. However, this is not true for real conductors with 

finite volume and surface conductivities. It takes particles made o f a real conductor, a 

finite amount o f time to attain the maximum amount o f charge. This time period can be 

noted as the actual charging time constant. Surface and volume conductivities, 

permittivity, contact area with the ground and electric shielding from neighboring 

particles are all factors that will affect the actual charging time constant and value of the
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sometimes confused with the relaxation time constant that is defined by the material

properties. In fact, the previous work [4] has shown that even for a small relaxation time

constant, the actual charging time constant can be large due to the high contact resistance

between the particles and the ground. Both charging and relaxation time constants can be

applied for charging or discharging processes. To differentiate between the two; the

actual charging time constant is calculated from the numerical results, dependent on the

physical properties o f the conducting spherical particle. The relaxation time constant,

however, is dependent on material properties o f conductivity and permittivity, and is

obtained analytically. Little research work has been conducted to study the effect o f
*

surface conductivity, electric shielding and proximity effect o f other particles on the 

charging process and the actual charging time constant o f particles.

1.2 Objectives
The dynamics o f induction charging for spherical particles made o f real

conductors, with finite volume and surface conductivities and arbitrary permittivities is

investigated. The maximum induction charge attained by the spherical particle, and the

actual charging time constant are o f main interest. Simulations are done in the COMSOL

commercial software, which is based on the Finite Element Method. The models were

verified by comparing the numerical results with Felici’s analytical formulae for regular

shaped particles; spheres and hemispheres.

After verifying the simulation models, the particle volume and surface

conductivities, and permittivities were varied. The spherical particle’s contact area with

the ground was also manipulated to vary the contact resistance. The results have shown
3

maximum charge. Theoretical interpretation o f the actual charging time constant is



that the contact resistance with the ground directly affects the charging time constant of 

the particle. The main interest, however, was to investigate the effect o f surface 

conductivity on the charging process. The thickness o f surface layers was assumed as a 

small fraction o f the particle radius and the results are compared for different cases o f 

surface conductivity.

Since in practical applications, the surface conduction is normally caused by a 

very thin moisture surface layer, the numeric models were modified to simulate particle 

charging assuming infinitely thin surface layers. Volume and surface conductivities were 

chosen to have values reported in practical applications. Agglomerations o f spherical 

particles were also studied using three dimensional transient COMSOL models. The 

electric shielding and proximity effects were investigated for a pattern o f multiple 

spherical particles. Particles in close proximity with others experience a smaller electric 

field, and, therefore, accumulate less charge. The arrangement o f particles was varied to 

study the effect o f the electric shielding on the spherical particle’s saturation charge and 

actual charging time constant.
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Chapter 2 
Literature Review

A literature review was conducted on the induction charging o f ideally conducting 

and semi-conducting particles o f regular and irregular shapes. Other charging techniques 

such as corona charging were also reviewed. The research also included particle 

behaviour in the electric field, the charging time constant and the effect o f surface 

conduction on the charging dynamics. It is shown that extensive research was conducted 

for charging o f regularly shaped particles; however, surface conduction was usually 

neglected.

2.1 Analytical and experimental work on the induction 
charging of regularly and irregularly shaped particles

The analytical work was mainly focused on regularly shaped, ideally conducting 

and semi-conducting particles, as more complicated shapes require numeric tools.

Lebedev and Skal’skaya [3] performed analytical calculations for a conducting 

sphere. The sphere was resting in a parallel plate capacitor and exposed to a uniform 

electric field. The sphere’s radius was assumed much smaller than the distance between 

the parallel plates. The results showed that the charge magnitude for a conducting sphere 

o f radius a was G.S6ns0E0az.

Felici [2] calculated analytically the magnitude o f induction charge on conducting 

regularly shaped particles. The particles were exposed to a uniform electric field while 

resting on a grounded plane. He showed that the charge magnitude for a conducting

5



However, more complicated cases, assuming irregularly shaped particles, require 

numeric tools; the electric field needs to be calculated first and then the particle’s charge 

can be evaluated. The analytical formulae can be used to validate such numeric models.

Yu [4] presented numerical simulations o f induction charging for both regularly 

shaped conducting particles (sphere, hemisphere and ellipsoid) and irregularly shaped 

particles modelled by spheres with cosine shaped perturbations on the surface. The 

simulations were performed using the commercial software COMSOL based on the 

Finite Element Method. The conducting particle was resting on a grounded electrode and 

exposed to a uniform electric field. The results showed that a sphere may attain more 

induction charge than an ellipsoid. For irregularly shaped particles, it was shown that for 

some level o f roughness on the surface o f the particle, more charge was accumulated 

when compared with a smooth sphere. Yu also investigated the dynamics o f induction 

charging o f these conducting particles. The surface conduction o f the particles was 

neglected, but different contact areas o f the particles with the grounded electrode were 

studied. The effect o f particle contact area, conductivity, and permittivity on the charging 

dynamics and time constant were investigated. It was shown that an increase in the 

permittivity and/or conductivity resulted in a faster charging process. Furthermore, 

increasing the contact area o f the particle with the ground decreased the contact 

resistance, and thereby allowed a faster charging process. The actual charging time 

constant (calculated from numerical results) was compared with the relaxation time 

constant for the material. It was shown that there is no direct relation between the

sphere o f radius a  was equal to 6.56ns0E0a2 and 3 ns0E0a 2 for a hemisphere. The

induction charge was also estimated for an ellipsoid, a semi-ellipsoid and a semi-cylinder.
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Wu et al. [5] investigated die free levitation o f particles in an electric field due to 

the charge induced on the particles by the external field. The electric field strength and 

particle’s size were shown to directiy affect the induction charge. The experiment 

consisted o f collecting the levitated particles in a filter contained in a Faraday pail. The 

Charge to mass ratio (Q/M) was then measured for the samples in the filter. The particle 

size and shape were measured for spherical and non-spherical particles. For different 

field strengths, the charge per particle was calculated by combining the results o f the 

charge-to-mass ratio (Q/M), and the particle’s surface and volume mean diameters. The 

results showed that spherical particles (highest volume to surface area ratio) were the 

hardest to levitate. Non-spherical particles with a surface diameter greater than the 

volume diameter, accumulated more charge because o f a larger surface area. 

Furthermore, it was shown that increased electric field strength resulted in an increase in 

the levitated particle size as larger particles require a stronger electric field to levitate. 

The charge per particle was compared for spherical and non-spherical particles. The 

results were in good agreement with theoretical prediction. It was shown that the 

induction charge for the particle was directly affected by the electric field strength and 

the particle’s size, shape and resistivity.

Wu et al. [6] further investigated the effect o f the electric field strength on the 

induction charge o f free levitating fine particles. The dynamics o f the induction charging, 

charging time, and charge magnitude were shown to be directly affected by the electric 

field strength and particle size. Wu presented a charging model to show the effect o f the

charging time constant and relaxation time constant, but there is a strong effect o f the

particle’s contact resistance on the charging time.
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electric field strength and the levitation process o f semi-conductive particles. Different 

models for various particle size and field strengths were tested. The motion o f the 

particles upon levitation was measured by a high-speed digital imaging system. The 

magnitude o f the induction charge o f each particle was calculated. The results showed 

that the charge accumulated by semi-conductive particles was directly affected by the 

electric field strength: for low electric fields, particles achieved saturation charge prior to 

liftoff; for higher electric fields, the same particles experienced enough force to levitate 

before reaching their saturation charge.

Changrag et al. [7] also investigated the motion o f conductive particles when 

exposed to a high electrostatic field. They modelled a spherical conductive particle 

placed in silicone oil to simulate an impurity particle in liquefied plastic. A high-speed 

camera was used to observe the motion o f the sphere. When exposed to a high 

electrostatic field, the sphere would settle on the lower electrode, then move upward and 

settle on the upper electrode, before moving back downward. The results showed that the 

settling time on the electrodes was longer than the predicted charge exchange time; a 

result o f the liquid flow induced by the particle motion. The sphere’s velocity decelerated 

when moving from one electrode to another because o f the damping action o f the silicone 

oil layer between the particle and the electrode. The velocity obtained from simulation 

was different from the theoretical prediction. Furthermore, the results showed that charge 

accumulated by the sphere could be only half o f the estimated theoretical induction 

charge.
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To a less extent, some experimental work was done for different patterns of 

particle agglomerations. The effect o f having an assembly o f particles on a given 

particle’s accumulated charge was studied.

Dascalescu et al. [8] evaluated die induction charge acquired by cylindrical 

conductive bodies and the electric force acting on them. Real conductors were simulated 

as cylinders with various shapes and sizes in contact with a plate electrode and exposed 

to a non-uniform electric field. Surface charge was evaluated using the Boundary 

Element Method. The model was extended to form a pattern o f conducting and insulating 

particles. The results showed that the proximity o f other bodies reduced the induction 

charge acquired by the particle, as well as the electric force acting on it.

An alternative method to induction charging is corona charging. However, corona 

charging involves high voltages, typically in the order o f 10-100 kV. On the other hand, 

induction charging was a preferred method for many industrial applications that involved 

lower voltages o f less than a few kilovolts.

Inculet and Castle [9] constructed a spray unit to inject large volumes o f ionic 

space charge using induction charging. The experimental unit was made o f a flat spray 

sandwiched between two large size induction plane electrodes, which were surrounded by 

an air curtain to prevent the fine droplets from landing on the electrodes. The charge to 

mass ratio o f the spray droplets were in the order o f 4 mC/kg and the ionic charge 

densities in the order o f 2 mC/m3. The results showed that the large induction electrodes 

generated excellent induction charging.
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2.2 Analytical and experimental work on the effect of surface 
conduction

The majority o f discussed publications related to induction charging of regularly 

and irregularly shaped particles have neglected surface conduction. However, this effect 

can be an essential factor in the dynamics o f charging o f particles. Real conductors with 

finite conductivities will take a finite amount o f time to accumulate maximum charge. 

This finite time period noted as the actual charging time constant is directly affected by 

surface conduction. The effect o f surface conduction was studied in a few papers related 

to charge dissipation in liquid tanks and industrial applications.

Adamiak [10] presented a numerical algorithm for simulation o f the electric field 

generated by charged fluid in partially filled cylindrical tanks. The fluid was uniformly 

charged to a certain level; the charge was then dissipated due to volume and surface 

conduction. The rate o f charge dissipation was calculated by solving in time domain, the 

current continuity and the electric field equations. The Finite Element Method was used 

as a numerical tool. The results o f simulation show die effect o f the surface conduction 

on the process dynamics: for a high surface conductivity, charge relaxation was much „ 

faster. The algorithm presented in {10] could be extended to simulate various conductive 

bodies and study the effect o f volume and surface conduction on the charging and 

relaxation dynamics.

Pazda et al. [11] presented a model o f partially filled conducting cylindrical 

vessels to investigate the relaxation time and the effect o f surface conduction. It was 

shown that for a high surface conductivity the relaxation time for the electric field in the
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vapour space was smaller than the charge relaxation time o f the liquid; a direct effect of 

surface conduction on the decay o f the electric field.

Pazda et al. [12] also presented a general solution for the relaxation of 

electrostatic charge from an insulating liquid in a columnar vessel o f arbitrary cross 

section. Analytical estimation could be derived for the charge relaxation time o f the 

vessel. Calculation o f the electric field distribution and electrostatic potential for the 

transient model was also possible. Firstly, estimation o f the relaxation time was 

conducted for regularly shaped tanks - in this case cylindrical ones. The model was then 

extended for irregular geometries. Unknown geometric factors were estimated by 

reference to known solutions for regular geometries, such as rectangular and cylindrical 

tanks. The charge relaxation time for the vessel could then be evaluated using all known 

factors.

Matsubara et al. [13] investigated the transient decay o f surface potential in an 

upright cylindrical vessel containing charged liquid with a central fill pipe. Analytical 

and numerical calculations were done assuming a constant ohmic resistivity. Surface 

conduction was also assumed, to investigate its effect on the decay o f surface charge. The 

transient problem was solved analytically for the ideal case o f the fill pipe extending fully 

to the vessel bottom. The results showed that for a larger fill pipe, the relaxation rate for 

the surface potential was modestly faster. For a more practical case when the fill pipe 

does not reach to the vessel bottom, this problem Was studied numerically. The results 

showed that as long as the fill pipe is submerged in die charged liquid, the relaxation 

process was negligibly affected. Moreover, charge relaxation was accelerated by higher
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surface conduction. However, upon raising the fill pipe above the liquid’s surface level, 

the relaxation rate o f the surface potential was dramatically slowed.

Robinson [14] investigated the effect o f surface conductivity in industrial 

applications resulting from electrostatic charges due to particle contamination. Problems 

included particle contamination from attracting dust, sheets that stick to each other and 

electrical discharges resulting in damage to electrical components. To overcome these 

problems, the surface conductivity o f the insulating sheets was increased by coating the 

surface with a conductive layer. Higher surface conduction resulted in faster dissipation 

o f charge. The charge relaxation time was directly dependent on both surface 

conductivity and geometry. However, charge relaxation was slower, when the distance to 

the grounded plane decreased, because the tangential electric field needed to drive 

surface current became smaller.

2.3 Simulation of regularly shaped particles using other 
charging techniques

Adamiak [15] presented a numerical algorithm to simulate the charging dynamics 

o f high-resistivity spherical particles by the ionic bombardment in an electric field. The 

algorithm was based on solving the Poisson equation, governing the electric field 

distribution, and the differential equation expressing the charge conservation law. The 

Poisson equation was solved by the Finite Element Method, while the conservation 

equation was solved by the Finite Volume Method. The simulation results showed that 

saturation charge and charging rate could be predicted for highly conductive particles. 

However, for high-resistivity particles the solution was more complicated and the
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charging time constant was significantly shorter than the relaxation time constant. The 

technique used to simulate the dynamics o f the process could also be extended for the 

case o f induction charging.

Dascalescu et al. [16] evaluated the charge acquired by spheres o f various 

dielectric constants placed on the surface o f a plate electrode. This was an example for 

the electro-separation o f mixed granular solids. A numerical analysis o f the electric field 

led to the evaluation o f the charge acquired by spheres on the surface o f the electrode. In 

addition, experiments were carried out for laboratory set-ups with various types o f corona 

electrodes. An electrometer was used to measure the charge acquired by calibrated 

spheres o f polyamide o f 3 mm diameter, when subjected to the positive or negative 

corona discharge generated between the corona electrode and a metallic rotating roll 

electrode o f 150 mm diameter, connected to the ground. The experimental data were in 

good agreement with the theoretical predictions; higher applied voltages resulted in an 

increased corona charging for the particle. However, the results showed that above a 

threshold voltage o f 15kV se lf discharge o f the particle was observed. Furthermore, the 

charging efficiency was shown to be directly dependent on the type o f corona electrode 

used.
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Chapter 3
The Dynamics of Induction Charging of Particles with 

Finite Volume and Surface Conductivities

3.1 Introduction

3.1.1 Background Theory

In electrostatic fields, the relation between the electric field E and electrostatic 

potential can be described as [1]:

E == -V<P (3-1)

In the differential form the electric displacement D is governed by Gauss’ law as:

V -D = p (3_2)

where p is the space charge density. Equation (3-2) provides an easy way to calculate the 

electric fields in symmetric situations.

The absolute permittivity o f a material can be described as:

e =  £0sr (3-3)

where e is the absolute permittivity o f the material, s0 is the permittivity o f vacuum and

£r is the relative permittivity. In linear and isotropic media, the electric displacement D

and electric field intensity E are parallel:

D = sE — £0 srE (3-4)

14



Poisson’s equation can be derived from equations (3-1), (3-2) and (3-4) as 

follows:

=  (3-5)
E

For a space charge density o f zero, equation (3-5) becomes Laplace’s equation:

V2<#* =  0

(3-6)

At a boundary separating two different media, the tangential component o f the 

electric field (E2t and f it)  and the normal component o f the electric displacement (£>2n 

and Din)  must satisfy the continuity equations:

Bit ~ Eit (3-7)

&2n n — Ps (3-8)

where ps is the surface charge density at the interface between the two media. The media 

at both sides o f an interface can be conducting, semi-conducting or dielectric. Tangential 

components o f the electric field are shown to be continuous from equation (3-7),'whereas 

a discontinuity is shown in die normal electric displacement component from equation (3- 

8). Equation (3-8) can be used to calculate the surface charge density and the total charge 

by:

In ds (3-9)
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Furthermore, Poisson’s and Laplace’s equations satisfying boundary conditions at the 

interface between two different media can be used to determine the distribution o f the 

electric field in the entire domain and surface charge density at all interfaces.

3.1.2 Induction charging of a conducting or semi-conducting particle

Induction charging can occur for conducting and semi-conducting materials. In 

the most typical case, the charged object is grounded and faces a charged electrode, so it 

is exposed to an electric field. Initially charges move inside the conductor, so that an 

electric current flows through the material and charges accumulate on the conductor 

surface. After a certain period o f time, the charges will only be present at the conducting 

surface and the net induced charge inside the material will be zero. Figure 3.1(a) shows a 

case o f a real conductor, represented by a spherical particle, with a surface conducting 

layer. This representation forms the basis o f the simulations done in this thesis. When the 

particle is exposed to an electric field directed downwards, positive charges are induced 

on the lower part o f the sphere and negative charges on the upper part. The positive 

charges on the lower part o f the sphere attract negative charges from the ground 

electrode, creating a current from this electrode into the particle. Since the negative 

charges on the upper part o f the sphere can move freely, the particle acquires more 

negative charge. After a certain period o f time, negative charges accumulate on the 

surface o f the particle as shown in Figure 3.1(b), with a magnitude and distribution that 

produces zero field and thus zero net induced charge inside the conductor.
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Figure 3.1(a) Induction charging o f a conducting particle -  polarization charge.

Vo
-H- + + + -4- + + + 4-4- + + + + + + + + 4- + + + + + + + + + 4--4-4--H-

/

Figure 3.1(b) Induction charging o f a conducting particle -  net induced charge.
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The relationship between the current density /  and the surface charge density ps is given 
as:

/  =  <rE (3-10)

Ps = 0 „  dt
(3-11)

where /„ is the normal component o f the current density, a  is the volume conductivity of 

the particle and E is the electric field present inside the particle.

In some electrostatic applications, surface conduction is important as it directly 

affects the charging dynamics o f a given material. For the induction charging of a real 

conductor, represented by a spherical particle, both volume and surface conductivities are 

defined. In general, for a volume with a surface layer, surface conductivity can be defined 

using the equation o f a resistance as:

l _  1 
a ad asa

(3-12)

where R is the resistance o f the material, l is the length of the layer, a the width o f the 

layer, d the thickness o f the layer, a volume conductivity o f the material and a3 surface 

conductivity o f the surface layer as shown in Figure 3.2.
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Volume Surface

Figure 3.2 Volume and surface conductivities for the material and surface layer.

Based on equation (3-12) the equation for surface conductivity is seen to be:

as — ad (3-13)

Surface conductivity is calculated per square o f the surface layer. Surface conductance 

can then be calculated by multiplying surface conductivity by total number o f squares in 

the surface layer.

The charging process o f the particle can be described in terms o f the time it takes 

for the charge to reach its saturation value. This is directly affected by the volume and 

surface conductivities. The charge as a function o f time can be expressed as:

e(o=<?3(i-e-t/Tp)
(3-14)
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where Qa is the saturation charge o f the material and rc the actual charging time constant. 

For t — xc equation (3-14) reduces to:

Qs( 1 -  1 /e ) =  0.632Qs (3-15)

Therefore, the actual charging time constant can be defined as the time after which the 

particle would accumulate 63.2% o f its saturation charge. Saturation time tsa is also 

sometimes defined as:

lsa ~  c (3-16)

The particle can be considered to have reached saturation when it accumulates 99.3% of
>

its predicted saturation charge. The charging time constant rc can also be described 

analytically in terms o f resistance R and capacitance C as [17]:

re =RC (3-17)

Equation (3-17) is often used in circuit models to define the charging time constant across 

an RC circuit. The discharging time constant Td is also equal to RC. For a discharging 

process o f the particle, the loss o f charge can be described as:

<?(0=<?oe"r/Ti (3-18)

where zd is the actual discharge time constant. The discharge time constant is sometimes 

confused with the relaxation time constant which is a property o f the bulk material that 

depends upon the conductor permittivity and conductivity parameters as:

20



Tr  =  s /o  (3-19)

where rr is the relaxation time constant, e the particle permittivity and a the particle’s

volume conductivity.

For a conducting spherical particle in contact with a grounded electrode, it was 

noticed by Yu [4] that the actual charging time constant tc is dirèctly affected by the 

geometry and the contact resistance o f the particle with the grounded electrode. The 

relaxation time constant xr however, was shown to be independent o f the particle’s 

geometry or contact resistance (3-19); depending only on the material’s permittivity and 

conductivity. Therefore, there is no direct relation between the relaxation time constant 

and the actual charging time constant for this situation.

3.2 Mathematical and Equivalent Circuit Models

3.2.1 Mathematical Model

The model analyzed in this chapter is a spherical particle with a surface 

conducting layer as shown in Figure 3.3.
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Integrationcurves

a, 6,

Figure 3.3 Conducting spherical particle with a finite conducting surface layer resting 
on a grounded electrode and exposed to an external electric field.

The inner sphere represents the bulk particle with a radius a = 1.5mm and the

outer sphere (radius b) represents the surface layer of the particle with varying

thicknesses. Initially, the radius o f the outer sphere was b = 1.65mm, corresponding to

10% o f the particle radius. This radius was reduced in further simulations to study the

effect o f surface conductivity. The integration curves, shown surrounding die outer and

inner spheres, were used for calculation o f surface charge density at each interface. For

the inner sphere (Region 1), the finite volume conductivity and permittivity were defined

as at and sv  respectively. For the outer sphere, i.e. the surface layer o f the particle

(Region 2), these parameters were defined as a2 and s2, respectively. For the air region

(Region 3), the parameters were assigned as a3 and e3, respectively. However, for the air

region a3 is zero as the ambient gas is non-conductive, and £3 =  £0 =  8.854 X  10 ~12

F/m. Figure 3.4 shows the three media described in this model.
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Figure 3.4 Definition o f regions and integration surfaces for spherical particle with
conducting surface layer.

The spherical particle was in contact with a grounded electrode and faced a 

positively charged electrode at a distance o f 0.1m, as shown in Figure 3.3. The voltage 

applied to the charged electrode was 50 kV and, therefore, created a downward electric 

field o f 0.5MV/m. Both spheres representing the particle and surface layer had finite 

volume conductivities and permittivities. The electric potential distribution is governed 

by Laplace’s equation (3-6).

From equation (3-8) the boundary conditions can now be described for the three 

media as:

Dn 3 (outer) — D„2(““ *>0 = PS2 (3-20)

Dn2(oumr) — Dnl(mn*r) = psl (3-21)
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where ps2 is the surface charge density on the outer sphere and psl is the surface charge 

density on the inner sphere. Consequently, the saturation charge at each surface can be 

calculated by:

(3-22)

Qsi
- B

P sl (3-23)

3.2.2 Equivalent circuit for the conducting spherical particle
The equivalent circuit model for the conducting spherical particle is discussed to

investigate the relations between the actual charging time constant and the material 

relaxation time constant. To simplify analysis, the equivalent circuit for a conducting

spherical particle without a surface layer is shown in Figures 3.5 (a) and (b).

Vo

Figure 3.5 (a) Conducting spherical particle 
without a surface layer

£ = 0

Figure 3.5 (b) Equivalent circuit for 
conducting spherical particle 
without a surface layer
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The capacitance Ca represents the air gap between the particle and the upper 

electrode. The circuit represents the spherical particle with actual material

properties: real conductivity and permittivity. Time constant rt = R1C1 is analogous to 

the relaxation time constant z r and depends on material properties.

The R2C2 circuit represents the contact area between spherical particle and the 

grounded electrode. Time constant t2 = i?2C2 depends on the contact area and particle 

conductivity.

At time t =  0, the upper electrode as shown in Figure 3.5(a) is charged. In the 

equivalent circuit, the source voltage is connected to capacitor Ca, and circuits RXCX and 

RZCZ as shown in Figure 3.5(b). The source voltage V(t) can be expressed in terms o f a 

unit step function u ( t)  as:

The currents / r (£), / C1( t)  and /C2( t)  across Ca, Cx and Cz respectively can be expressed

V (0  =  V0u(t) (3-24)

as:

(3-25)

(3-26)

(3-27)
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and C2where Va(t), Vt {€) and V2(t)  are the voltages across capacitors Ca, Cx 

respectively, and are functions o f F (t) . From equation (3-24) it is shown that the source 

voltage has a step function, and therefore the derivative o f this step function results in an 

impulse function S(t), showing a discontinuity in the currents across the capacitors from 

t  =  0“ to t = 0+.

The voltage Vt (t) in terms o f JT( t)  for the parallel R ^  circuit can be expressed

as [17]:

^ (t) = Oi(o) -  b i W  e ~t/RlCl + hCW i (3_28)

where (0) is the initial voltage across Cv  Similarly, the voltage V2 (i) is given by:

F2(t) =  (F2(0 ) -  Ir (t}R2) + IT(t)R2 (3-29)

where F2(0 ) is the initial voltage across C2. The impulse function o f /T( t)  would explain 

the discontinuity o f the capacitor voltages Vx (t) and V2 ( t)  from t =  0~ to t — 0 +. When 

compared to the particle charging model, this agrees with the theoretical prediction; as 

soon as the upper electrode is charged, a voltage appears between the upper surface o f the 

particle and the ground plate.

Charge accumulation for the particle is compared for different instances o f time, 

to verify the circuit results with the theoretical predictions for the particle charging 

model. Firstly, the voltages from equations (3-28) and (3-29) are not sufficient for 

calculation at time t  =  0+ because the voltage would be the unknown initial condition.

Therefore, the capacitor voltages Va (t), and V2 (t) are calculated assuming the
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capacitive voltage divider method. To simplify analysis, the voltage drop between the 

upper part o f the particle and the grounded electrode is expressed as Ka ( t)  where 

V12 ( t)  =  Vt  (t) +  V2 ( t)  in the circuit. Consequently, the charge between the upper part of 

the particle and the grounded electrode is QiZ (t) and the equivalent capacitance for C2 

and C2 is C12. The charge in the air gap between the upper part o f the particle and the 

upper electrode is expressed as Qa ( t) having a voltage drop Va(t). Assuming a capacitive 

voltage divider, Va(t) and ^12 ( 0  can be calculated at t  = 0+:

(3-30)

^ u (0 +) =  r  ‘  v9 c a -t-c12
(3-31)

Consequently Qa(t) and Q12 ( t)  can be calculated at t  =  0+:

<3.(0*)
c a“1“L12

(3-32)

■ 3 1 2 (0 * )= ,.“. “  V,
12

(3-33)

The charge Qp(t) accumulated on the particle is given by:

QP( 0  = QaO) -Q iz iO (3-34)

It was shown from equations (3-32) and (3-33) that Qa(0 +) = 

<?p(0 +) =  0 from equation (3-34). For the particle model, at t -

Qtz (0+)- Therefore 

0+, charge has not
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accumulated on the surface o f the particle yet which is in excellent agreement with the 

analytical result (<?p(0 +) =  0).

The current / r (oo) is zero (current across capacitor at steady state). Therefore, 

V12 (oo) = 0, and Qu  (oo) = 0 which indicates that there is no charge inside the conductor. 

Substituting in equation (3-34), Qp(po) = Qa(o6) ; which means all the charge is

accumulated on the particle surface at steady state. The behaviour o f the circuit agrees 

with theoretical predictions o f the charge build up for the spherical particle model.

From this equivalent circuit, two time constants can be identified. To a first 

approximation the actual charging time constant (rc) will be a function o f r L and r 2. 

Assuming xe = r t  + r 2 because R-̂ C\ and i?2C2 are in series:

r t is primarily dependent on the material properties, analogous to r r ; 

t2 is primarily dependent on the contact resistance and particle geometry;

> If r 2 = 0 that is zero contact resistance (infinitely large contact area); tc—► Tr

>  If t2 »  xt that is having a large contact resistance (very small contact area); tc—>

t2-

> If  Tj and t2 are o f the same order; assumption that r c = Tt + r 2.

Therefore, only for the case where zero contact resistance exists, the actual 

charging time constant will approach the material relaxation time constant, which are 

often misinterpreted to be the same. These conclusions also agree with the research work 

conducted by Yu [4]. Even for a small material relaxation time constant, the actual
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charging time constant can be large due to high contact resistance between the particle 

and the ground (small contact area).

For the spherical particle with a surface layer, the model and equivalent circuit 

can be represented as shown in Figures 3.6 (a), (b) and (c).

Vo

Figure 3.6(a) Conducting spherical particle with surface layer.
t  =  0

Figure 3.6(c) Simplified equivalent
Figure 3.6(b) Equivalent circuit for conducting circuit,

spherical particle with surface 
layer.
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The circuit parameters are:

Ca : The air gap between the particle and the upper electrode.

jRj Cj: The particle with actual material properties: real conductivity and permittivity.

/?3C3: The surface layer o f the particle with conductivity and permittivity

R2C2: The contact area between the particle and the grounded electrode.

RACA: The contact area between the surface layer and the grounded electrode.

RUq Ciaq: The equivalent circuit o f R1C1 / /  ¿?3C3.

R2eq C2aq: The equivalent circuit o f R2C2 / /  RACA.

The RC circuits representing the surface layer and its contact area with the ground

are assumed to be in parallel with the bulk particle and its contact area with the ground. 

This is because the path o f the current entering the contact point would be either through 

the bulk material or through the surface layer.

When compared to previous analysis for the particle without a surface layer, the 

nature o f the circuit and the analysis for the time constants do not change upon adding a 

surface layer; only the values o f the RC circuits would be affected. In this case, time 

constant r t  =  Rimq C2aq depends on material properties o f the bulk particle and its surface 

layer. t2 =  Rlaq C2tq depends on contact areas o f the bulk particle and surface layer with 

the grounded electrode.
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3.3 Simulation Model

The model was investigated using the COMSOL commercial software Version 

3.2 [20]. This software is based on the Finite Element Method arid is a convenient 

numerical tool to solve partial differential equations over a continuous and finite domain. 

The Finite Element Method [19] requires that the entire domain is discretized into some 

number o f small elements. These elements are defined by nodes and the set o f equations 

is formulated for all nodal values o f an unknown solution.

The geometry o f this model is fairly simple. The two electrodes are represented 

with a rectangle o f width 0.5m and height 0.1m. The lower electrode was grounded, 

while the upper electrode was supplied with 50 kV. For the transient case, the voltage 

supplied was represented as V = 50,000 * (t > 0). The vertical sides o f the rectangle were 

set as electric insulators.

Initially, two concentric spheres are drawn with respective radii o f 1.65mm and

1.5mm (radii values are varied in later simulations as the outer radius is reduced to

achieve a reduced layer thickness). Figure 3.7 illustrates the representation o f the model.

Two-dimensional models with axial symmetry were created in COMSOL. Therefore, it

was sufficient to model the two concentric spheres as semi-spheres with symmetry axis

on the z-axis. The outer sphere represents the surface layer with finite thickness (d) and

the inner sphere represents the particle itself. The spherical particle had varying contact

areas with the grounded electrode. For most cases, a finite small contact area of
«

0.039mm2 with the ground was specified, and compared with a point contact and several
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larger contact areas. The volume conductivities, permittivities, and surface layer 

thickness were also varied to compare the results for different cases.

Figure 3.7 Geometric model o f the conducting spherical particle in COMSOL

To integrate the surface charge density and calculate the charge magnitude, 

artificial surfaces (integration curves) were drawn surrounding the outer and inner 

spheres as shown in Figure 3.7. The artificial curves have radii o f length ±0.02mm from 

the actual curves. This is done to evaluate the normal component o f the electric 

displacement vectors, to get the surface charge dehsity as described by equations (3-20) 

and (3-21) and shown in Figure 3.4. Direct integration o f these equations can be done on 

COMSOL using equations (3-22) and (3-23) to calculate the charge magnitude.
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Finally, upon modelling the geometry o f the problem and defining all parameters, 

the whole domain was meshed. Fine triangular discretizations were produced in the 

surface conducting layer, which is required for accurate results. The mesh pattern was 

refined for many trials and the simulation results were tested for accuracy. The refined 

pattern shown in Figure 3.8 achieved accurate results and was chosen for the simulations, 

as further refining o f this pattern resulted in less than 0.001% error.

Figure 3.8 Fine discretization in the surface layer o f the particle 

The simulations were conducted in the transient mode to study the dynamics of 

the charging process. The total charge accumulated by the particle, surface charge 

densities on the outer and inner spheres, and the charging time constant were calculated.

3.4 Model Verification

The first step in this process was to validate the simulation model by comparing 

the value o f saturation charge o f the spherical particle calculated by COMSOL, with the 

analytical results calculated from Felici’s formula [2]. For this purpose, a verification of
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the induction charge for both a sphere having a point contact with the grounded electrode 

and a hemisphere was performed, and the results are shown in Table 3.1. The initial 

values used for particle radius, volume conductivity and permittivity were similar to 

parameters chosen by Yu [4]. This allowed further verification and comparison to 

previous work performed on simulation o f spherical particles without a surface layer.

Table 3.1 Comparison between the saturation charge from analytical and 
numerical solutions

Particle
Shape

Felici’s 
Formulae [2]

Induction 
Charge |fi|(pC) 

(Felici)

Induction
Charge
l<2l(pC)

(COMSOL)

Percentage 
Difference (%)

Hemisphere 
(a=1.5mm, 
b= 1.65m)

3 neQE0bz 113.5922 113.5921 -0.0001%

Sphere 
(o= 1.5mm, 
b= 1.65m)

6.56H£QEQb2 248.388 249.1 0.29%

The results show a very small error between the analytical and numerical values for both 

shapes. This small error range, 0.0001 for a hemisphere and 0.3% for a sphere, was 

identical to previous work performed by Yu [4]. In this situation, the 10% outer layer 

thickness was assumed identical to the interior by setting the outer and inner 

conductivities to be equal (a± = az = InS/m) and the relative permittivity sr= 3.

. Figures 3.9 and 3.10 show the induction charge build up for both shapes, to 

verify the resultant saturation charge as described in Table 3.1 earlier. The rate o f the 

charge build up will be discussed in detail in further simulations.
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Figure 3.9 Induction charge Q versus time t for the hemisphere with 10% 
surface layer thickness assuming -  o2 = InS/m and sr= 3.

Figure 3.10 Induction charge Q versus time t for the sphere with 10% surface 
layer thickness assuming crt -  a2 = InS/m and sr= 3 (a point 
contact with grounded electrode).

3.5 Spherical particle with a 4.27% surface layer thickness
Having the simulation model verified, the surface layer thickness was decreased 

to 4.27% o f the particle radius, as this was the lowest thickness that can be achieved with
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the geometric limitations o f the COMSOL software. As a result, the particle had an inner 

radius a = 1.5mm and an outer radius b = 1.564mm.

3.5.1 Spherical particles with different contact areas

The simulations were conducted for a spherical particle having a surface layer 

thickness o f 4.27% of the particle radius with a constant relative permittivity £r= 3 in 

both layers. Two cases were compared with different conductivities o f the particle and its 

surface layer. In the first case, the outer conductivity was chosen to be greater than the 

inner conductivity (a2 > fli) with ff2 = InS/m and = O.lnS/m. For the second case, the

outer conductivity was chosen to be less than the inner conductivity (o2 < with a2 = 

0. InS/m and a2 = InS/m. Five different contact areas were assumed: a point contact, 

0.039mm2, 0.13mm2, 0.61mm2 and 7.68mm2 (hemisphere). The contact area between the 

particle and the ground creates a finite resistance that slows the charging process. An 

ideal point contact would create infinite resistance and the particle would never be 

charged. However, in numerical models, a point contact will be represented as a small, 

but unknown, finite contact area due to discretization of the domain. For this reason, a 

small finite contact area is usually preferred over a point contact in numerical models.

The simulation results for the different contact areas were compared, assuming 

different conductivities. The plots for the induction charge Q op the outer surface o f the 

particle as a function o f time t for the different contact areas are shown in Figures 3.11 

and 3.12. The hemisphere plot is excluded from the graph because o f a scaling issue and 

is represented in the tables that follow.
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Figure 3.11 The induction charge Q on the outer surface versus time t for the particle 
with 4.27% surface layer thickness assuming a2 = InS/m and ax 
0.1 nS/m (a2 > o^) for different contact areas between the particle and the 
ground.

Figure 3.12 The induction charge Q on the outer surface versus time t for the particle 
with 4.27% surface layer thickness assuming a2 = 0. InS/m and ox =
InS/m (ff2 < Oj) for different contact areas between the particle and the 
ground.
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Table 3.2 Charging dynamics for the particles with different contact areas 
assuming trz >  <rx

Contact Area

Saturation
Charge
<?s(pC)

Actual
Charging Time 
Constant Tf (s)

Relaxation Time 
Constant Tr(s)

(*r =  * i/* i)

* J xr

S1=0
(Point Contact) -223.84 19.5 0.266 73.31

S2=0.039mm2 -223.52 2.42 0.266 9.10

S3=0.13mm2 -222.71 1.6 0.266 6.02

S4=0.61mm2 -218.67 0.9 0.266 3.38

S5=7.68mm2
(Hemisphere) -102.06 0.07 0.266 0.26

Table 3.3 Charging dynamics for the particles with different contact areas 
assuming tr2 <  o x

Contact Area

Saturation
Charge
ds(P Q

Actual
Charging Time 
Constant tc(s)

Relaxation Time 
Constant Tr(s) 
(xr =  /a x)

XJ'*T

S1=0
(Point Contact) -223.84 175 0.0266 6578.95

S2=0.039mm2 -223.52 4.9 0.0266 184.21

S3=0.13mm2 -222.71 1.9 0.0266 71.43

S4=0.61mm2 -218.67 0.65 0.0266 24.44

S5=7.68mm2
(Hemisphere) -102.06 0.09 0.0266 3.38
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From Tables 3.2 and 3.3 it can be seen that the sphere with a point contact takes 

the longest time to reach saturation, as the actual charging time constant is the highest 

when compared to the particles with finite contact areas. The material relaxation time 

constant is calculated analytically for the bulk particle. In all cases where the contact area 

increases, the actual charging time constant tc and the ratio o f the actual charging time 

constant to the material relaxation time constant ( fc/ r r ) decrease. This is also shown in

Figures 3.11 and 3.12 as the charge accumulation is fastest for particles having the largest 

contact areas. The results show that a smaller contact area results in an increased 

resistance at the contact with the ground, which slows the charging process.

For the case o f a point contact, rc was shown to be much greater than rr 

(tc » Tr ). This is due to the high resistance between the particle and the grounded 

electrode. The saturation charge for the particle with a point contact was shown to be - 

223.84pC which agrees with the result obtained by Felici’s formula for the spherical 

particle (-223.17pC) with a 0.3% error difference. The hemisphere has the fastest 

charging time with a saturation charge o f -102.06pC which also agrees with the analytical 

formula by Felici for the hemisphere (-102.59pC) with an error difference o f0.009%.

The results o f the actual charging time constants when compared with the material 

relaxation time constant agree with the time constants’ predictions from the equivalent 

circuitry model discussed in an earlier section. For a particle with point contact (very 

high contact resistance), the actual charging time constant is affected mainly by the 

contact area rather than material properties. For a hemi-sphere (large contact area i.e.
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small contact resistance) the actual charging time constant is affected mainly by the 

material properties in this case the real conductivity o f the particle.

Tables 3.2 and 3.3 also show that \QS\ decreases from a value o f 223.84pC to 

102.06pC as the contact area increases. This is because the surface area o f the sphere is 

decreasing as the contact area increases. For all cases where ct2 > c*, the actual charging 

times are faster than those for a2 < at , assuming the same contact areas. An outer 

conductivity that is greater than an inner conductivity (a2 > a±), results in a larger current 

flow and, therefore, faster accumulation o f charge. From all the cases studied, the actual 

charging time constant is shown to be geometry related as it is dependent on the contact 

area with the ground, and particle’s inner and outer conductivities.

3.5.2 Conductivity effect of the particle and its surface layer

Firstly, a small finite contact area was chosen for the spherical particle because an 

ideal point contact does not exist in practical applications. Moreover, a point contact in 

numerical models actually means a very small, but undefined, contact area. The results 

presented in the previous section also showed that a particle having a point contact with 

the grounded plate was charged very slowly, when compared to particles with finite 

contact areas. For this reason, simulations were performed on particles with a known and 

small finite contact area with the grounded plate; in this case a 0.039mm2 contact area 

was chosen.
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Charge accumulation on the outer surface of the particle

Two cases are considered, the first model having a2 > ax where az = InS/m and

= 0. InS/m; the second model having a2 < ax, where az = 0. InS/m and = InS/m. 

Both cases have an identical relative permittivity o f £r  = 3. Figure 3.13 shows the results 

o f the simulation for the charge build up on the outer surface o f the spherical particle.

Figure 3.13 Induction charge Q on the outer surface versus time t for the 
particle with 4.27% surface layer thickness assuming different 
conductivities and er = 3 (0.039mm2 contact area with the ground).

The results are summarized in Table 3.4, which shows the effect o f varying 

conductivity o f the conducting surface layer and the inner sphere (er2 and ax).

Table 3.4 Charging dynamics for particles with different conductivities

Sphere with 
0.039mm2 contact 

area

Saturation 
Charge 
QA PC)

Actual
Charging Time 
Constant r^fs)

Relaxation
Time

Constant Tr(s) 
(Tr =  £x/ o t)

Tc /r r

a2 > ax (a2=lnS/m , 
oi=0. InS/m) -223.52 2.42 0.266 9.10

a2 < at (<x2=0.InS/m , 
<7t=InS/m) -223.52 4.9 0.0266 184.21
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From Table 3.4 it can be seen that the actual charging time for the particle with a 

more conductive outer surface (o2 > at) is faster than that o f the particle with a less 

conductive outer surface (a2 < at). This can also be seen in Figure 3.13 as the particle 

having a2 > at  reaches saturation much faster than the particle with az < av  In both 

cases, the particle reaches the same saturation value. For comparison purposes the 

conductivity values have been held consistent with those described earlier, and the 

relative permittivity value was set to 3.0 in both cases.

For a fixed finite contact area in both simulations, it is shown that the actual 

charging time constant is affected by the conductivities o f the bulk particle and its surface 

layer. Therefore as shown in the previous section, the actual charging time for the particle 

is not only geometry related (dependent on contact area) but also material related 

(dependent on inner and outer conductivities in this case). For example, the ratio rc/rr 

increases from 9.10 to 184.21 when changing from a high surface conductive layer to a 

less surface conductive one.

Charge accumulation on surface o f the inner sphere

The same model was used to calculate the charge accumulation on die outer 

surface o f Region 1, which is the surface o f the inner sphere as shown in the adjacent 

figure. Again two cases were considered, the first model having a2 > ol5 where o2 = 

InS/m and ax = O.lnS/m; the second model having a2 < <xt , where a2 = O.lnS/m and ax 

= InS/m. Both cases have a fixed relative permittivity of sr = 3. Figures 3.14 and 3.15
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show the results o f the simulation for the charge build up on the inner surface o f the 

sphere.

t( s )

Figure 3.14 Charge Q on the outer surface o f Region 1 versus time t for the
particle with 4.27% surface layer thickness assuming a2 = InS/m, 
ot -  O.lnS/m and sr = 3 (0.039mm2 contact area with the ground).

0 .InS/m, ax = InS/m  and eT = 3 (0.039mm2 contact area with the 
ground).
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From Figures 3.14 and 3.15 it can be seen that at first, some charge builds up on 

the outer surface o f Region 1, and then it disappears. This can be explained as follows: at 

first an electric field exists inside the particle, resulting in the charge accumulation on the 

outer surface o f Region 1. The charge would continue to move until a net zero electric 

field is produced within the particle. When this stage is reached, the charge accumulated 

on the inner surface between the particle and the surface layer dissipates. The difference 

in the polarity o f the accumulated charge can be seen from Figures 3.14 and 3.15, and can 

be further explained referring to Figures 3.16 (a) and (b) explaining the case where c2 <

Vo
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

At first, charges migrate inside the inner sphere 
and surface charge would generate on the surface 

of the inner sphere only. However, for a2 <  <JX 
charge migration is slow in the surface layer;

therefore the surface layer remains

Figure 3.16 (a) Particle with a conducting surface layer exposed to an external
electric field assuming a2 < crt  (Initial state upon exposure to 
electric field).
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V o
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +

Figure 3.16 (b) Particle with a conducting surface layer exposed to an external
electric field assuming a2 < (Charge migration after some time).

A positive voltage is applied on the upper electrode, whereas the lower electrode 

is grounded. At first the negative charges are attracted to the upper inner sphere, and 

positive charges to the lower inner sphere as shown in Figure 3.16 (a). For a2 < ffl5 as 

shown in Figure 3.16 (b) the inner sphere is more conductive than the surface layer, and 

charge migration to the surface layer would be slow. The electric field at the lower part o f 

the surface layer is smaller than that o f the upper part due to negative charges from the 

ground plate; therefore migration o f charges at lower part is slower. The net effect is the 

following: decay o f the original positive charge on the lower part o f the inner sphere is 

slower than decay o f the negative charge on the upper part o f the sphere; therefore net 

positive charge is present at the surface o f the inner sphere.
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When the particle reaches steady state the electric field inside is zero and, 

therefore, a net induced charge would only be distributed on the outer surface o f Region 2 

(surface layer o f particle) and there is no charge on the inner sphere.

As for the case where a2 > al5 shown in Figure 3.14, the negative charges would 

flow at first on the surface layer due to the high conductivity o f this surface. The result is 

a net negative charge on the inner surface.

An illustration to show the effect o f having a larger contact area o f 0.13mm2 is 

shown in Figure 3.17.

Figure 3.17 Charge Q on the inner surface versus time t for the particle with
4.27% surface layer thickness assuming a2 = O.lnS/m, ax = InS/m
and sr = 3 (0.13mm2 contact area with the ground).

When comparing Figure 3.17 (0.13mm2 contact area with grounded electrode) to 

Figure 3.15 (0.039mm2 contact area with grounded electrode), it can be seen that the 

charge build up and decay on the surface o f the inner sphere is faster for larger contact
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areas. For the larger contact area, resistance into the lower part o f the sphere is smaller 

and, therefore, the negative charges are easily attracted to the lower inner sphere. As a 

conclusion, the contact area has been shown to affect directly the contact resistance 

between the spherical particle and ground plate, and therefore the charge on the inner 

surface.

3.5.3 The effect of particle permittivity

To investigate the effect o f the particle permittivity on the charging dynamics, the 

particle with a 4.27% surface layer was used. Two cases were simulated: the first case 

having a2 > at where a2 = InS/m and ax = O.lnS/m; the second case having a 2 < ax 

where a2 = 0. InS/m and ax = InS/m. The contact area of the particle with the grounded 

electrode was 0.039mm2. For the surface layer o f the particle (Region 2), the relative 

permittivity er2 was set to 3 in all cases. For the inner sphere representing the bulk 

particle (Region 1), the relative permittivity srl was set to 3 and 10 to study cases of 

increasing the particle’s permittivity. Figures 3.18 and 3.19 show the simulation results 

for <x2 > and az < respectively with different permittivities.
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Figure 3.18 Induction charge Q on the outer surface versus time t for the
particle with 4.27% surface layer thickness assuming a2 > cr± and 
different permittivities (0.039mm2 contact area with ground).

Figure 3.19 Induction charge Q on the outer surface versus time t for the
particle with 4.27% surface layer thickness assuming a2 < and 
different permittivities (0.039mm2 contact area with ground).
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Table 3.5 Charging dynamics for particles with different conductivities and 
permittivities

Relative
Permittivity

(*rt)

Conductivity 
a  (nS/m)

Saturation
Charge
QApC)

Actual
Charging

Time
Constant

M *)

Relaxation
Time

Constant
M s)

C*v =  « i /« i )

% /* r

3
a 2 > a t

(«2=1,
oi=0.1)

-223.52 2.42 0.266 9.10

10
a 2 > a x

(°2=1>
«1=0-1)

-223.52 2.38 0.885 2.69

3 («¿=0.1,
« i= i)

-223.52 4.9 0.0266 184.2

10
a 2 < o i
(«2=0.1,

° i= l)
-223.52 4.6 0.0885 51.98

From Table 3.5 it can be seen that in all cases the particle reaches the same 

saturation charge, however, at slightly different charging rates. For the first case, where 

c2 > ax the particle having a relative permittivity (er l = 10) accumulates charge slightly 

faster than a particle having (er l  = 3). As shown in Figures 3.18 and 3.19, except for the 

initial stage, the curves almost coincide, resulting in a very small difference in the actual 

charging time constant when varying the inner permittivity from 3 to 10. This is also the 

case when the inner conductivity is set to be larger than the outer conductivity. The actual 

charging time constant shows a slightly bigger difference, but still the two graphs appear 

to almost coincide.
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The ratio Tc/ r r decreases with the increase o f the relative permittivity. As the 

results show, the permittivity seems to be less effective than the conductivity o f the 

particle and its surface layer. Referring to Table 3.5 for identical permittivities, 

decreasing the conductivity by a factor o f 10 shows that the actual charging time constant 

increases from 2.42 seconds to 4.9 seconds and from 2.38 seconds to 4.6 seconds. 

However, decreasing the relative permittivity from 10 to 3 for identical conductivities 

shows that the actual charging time constant increases slightly from 2.38 seconds to 2.42 

seconds and from 4.6 seconds to 4.9 seconds. Therefore, the actual charging time 

constant is more affected by conductivity o f the spherical particle than by its permittivity, 

and is not directly proportional to the particle’s permittivity.

3.6 Spherical particle with a 1% surface layer thickness

Further decreasing the surface layer thickness with separate calculation of the 

charge accumulation on the outer and inner surfaces o f the particle (Region 2 and Region 

1, respectively) was not possible due to geometric limitations on COMSOL. However, 

when considering only the total charge on the spherical particle, the geometrical model 

was simpler and modeling a further decrease in the surface layer thickness was possible. 

The model simulated is a spherical particle with a finite contact area o f 0.039mm2 and a 

1% surface layer thickness. The plots for the total charge Q as a function o f time t for 

different combinations a2 and at  are shown in Figure 3.20. In the first case it was 

assumed that az > ax where a2 = InS/m and ax = O.lnS/m; in the second case it was
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assumed that az < where o2 = O.lnS/m and o l = InS/m. The relative permittivity for 

both simulations was kept constant at 3.

Figure 3.20 The total charge Q versus time t for the particle o f 1% surface layer 
thickness with a 0.039mm2 contact area with the ground, relative 
permittivity = 3 and varying conductivities.

Table 3.6 Charging dynamics for particle with different conductivities, relative 
permittivity = 3 and 1% surface layer thickness

Sphere with 
0.039mm2 

contact area 
and 1% layer 

thickness

Saturation 
C haise 
<?.(PC)

Actual
Charging Time 
Constant rc(s)

Relaxation 
Time Constant

t, ( s)
(Tr =  s j o ^

° i > a i  
(ff2=InS/m,
^ = 0. InS/m)

-223.52 5.84 0.266 21.95

02 < Oi 
(ff2=0. InS/m, 

0j=InS/m)
-223.52 2.4 0.0266 90.23
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From Table 3.6 it can be seen that unlike the previous cases, where the spherical 

particle accumulates charge faster with a more conductive surface layer, the sphere with a 

thin 1% surface layer behaves in the opposite fashion: the charging process is slower for 

a2 > av  This shows the effect o f the surface layer thickness on the actual charging time 

constant, as a more conductive inner sphere (a2 < at ) will accumulate charge faster than a 

sphere with a more conductive outer surface (az > az). This is because, the effective 

surface area is much thinner when using a 1% thickness, and the inner conductivity (0*) 

is the main factor affecting the contact resistance and thus the actual charging time 

constant.

From Figure 3.20 it can be seen that the charge accumulation is faster for the case 

where c2 < a .̂ The results from Table 3.6 show the actual charging time constant 

increases from 2.4 seconds to 5.84 seconds when decreasing a2 by a factor o f 10. The 

ratio Tc/x r increases when increasing ax because the material relaxation time constant of 

the bulk particle drops from 0.266 to 0.0266 seconds. As a conclusion, the actual 

charging time constant is not only directly affected by the sphere’s contact area with the 

ground, and the conductivity values, but also significantly depends on the surface layer 

thickness.

3.6.1 The effect of surface layer thickness

In the previous section, the significant effect o f the surface layer thickness on the 

charge accumulation has been shown. Further results in this section are provided to 

investigate the effect o f different surface layer thicknesses on the dynamics o f charge
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accumulation by the spherical particle. The model used has a contact area o f 0.039mm2 

with the ground, and a constant relative permittivity o f 3. Table 3.7 and Figure 3.21 show 

the actual charging time constants for different surface layer thicknesses when compared 

to different conductivity ratios o f 0.01, 0.1, 0.5, 2 ,10 , and 100 respectively. a2 is fixed at 

InS/m and cx is varied to achieve the mentioned ratios.

Table 3.7 The actual charging time constant versus conductivity ratios for 
different surface layer thicknesses

0.01 0.1 0.5 2 10 100
x^fs) 10% Layer 0.67 0.73 0.87 1.16 1.58 1.82
rc(s) 4.27% Layer 0.41 0.49 0.75 1.38 2.42 3.2
tc(s) 1% Layer 0.142 0.25 0.71 2.12 5.84 11.62

Figure 3.21 The charging time constant for different conductivity ratios and varying 
surface layer thicknesses for a particle with a 0.039mm2 contact area.
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From Table 3.7 and Figure 3.21 it can be seen that for a conductivity ratio < 

1, the charging time constant r c increases as the surface layer thickness increases. In this 

case, a less conducting outer surface layer would result in a slower charging process. 

When > 1, the results show that rc decreases as the surface layer thickness 

increases, thus the particle accumulates charge faster with a thicker more conductive 

outer surface layer.

The results also show that for each layer thickness, rc increases as the ratio oz!ax 

increases. The highest increase in the actual charging time constant was shown for the 

thinnest surface layer o f 1%. This also demonstrates the importance o f the surface layer 

thickness on the actual charging time as a thin surface layer results in a smaller effective 

surface area that directly affects resistance for the charging current. Thinner surface 

layers would result in a decreased surface conductivity. This in turn will lead to a slower 

charging process. However, the inner conductivity ax in this case, will have a greater 

effect, as the surface area is much larger when the surface layer is very thin, and thus a 

highly conductive inner sphere would result in a much faster charge accumulation 

process.

3.6.2 Actual charging versus discharging time constant

Theoretically, the actual charging time constant should be equal to the actual 

discharging time constant, t c —rd, as they are directly affected by the electric field,

which is identical in both cases. The model used in this section is the spherical particle
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with a 4.27% surface layer thickness, assuming particle’s relative permittivity equal to 3, 

a2 = InS/m, and ax = O.lnS/m. The spherical particle has a contact area of 0.039mm2 

with the grounded electrode. The purpose o f this simulation is to verify the above 

intuitive hypothesis by the numerical simulation o f the discharging process. Figure 3.22 

shows die results when the particle is first charged until the saturation is reached and then 

it is discharged, assuming that the external electric field has been removed.

Figure 3.22 Charging versus discharging for a particle with 4.27% layer thickness,
constant permittivity and conductivity ratio, and a 0.039mm2 contact area 
with the ground.

As expected, the actual charging and discharging time constants are equal, with 

tc =  = 2.42 seconds as shown from Table 3.7 in the previous section. Figure 3.22

shows that both the exponential increase (charging) and exponential decrease 

(discharging) are horizontally symmetric. These results show that for the particle exposed
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to a uniform electric field, the discharging process is the exact reverse o f the charging 

process, assuming the field has been removed upon discharging.

3.7 Summary

A model for investigating the dynamics o f induction charging for particles with 

finite conducting surface layer has been developed. Two-dimensional modelling using 

COMSOL commercial software was used to geometrically represent two concentric 

spheres: an inner sphere representing the bulk particle and an outer sphere representing 

the surface layer. The first step was to verify the model’s validity and accuracy. The 

results o f saturation charge obtained for a sphere with a point contact and a hemisphere 

were validated with analytical calculations from Felici’s formulae [2] o f a sphere and a 

hemisphere. The results were proven to be valid and accurate. Following this, the process 

was simulated for different surface layer thicknesses, volume conductivities and 

permittivities to compare saturation charge and actual charging time constants. The 

conclusions can be summarized as follows.

The spherical particle with a finite contact area with the grounded electrode was 

modelled. For a fixed surface layer thickness and permittivity, an outer volume 

conductivity greater than an inner volume conductivity (cr2 > at) resulted in a faster 

charging process. The surface charge density on the outer sphere, where all the charge 

resides, showed that volume conductivity had a direct effect on the actual charging time 

constant. Increasing az would significantly decrease the actual charging time and results 

in faster accumulation o f charge. Saturation charge is independent o f the volume
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conductivity, as the particle accumulates the same amount o f charge after some period of 

time, regardless o f conductivity changes. Surface charge density for the inner sphere 

(outer surface o f Region 1) was shown to disappear after a short period of time. 

Theoretically, all charges reside on the surface o f a conductor with no charge inside the 

particle when the charge saturates.

For a finite contact area with the ground, finite surface layer thickness and fixed 

volume conductivities, accumulation o f charge was only slightly faster for particles with 

higher permittivity. Upon varying both volume conductivities and the permittivity o f the 

particle, it was shown that the volume conductivity had a much greater effect than 

permittivity on the actual charging time constant. Particles having <r2 > ai showed faster 

accumulation o f charge even with a decreased permittivity.

The effect o f varying contact areas with the ground was also studied. Particles 

with point contact with the ground showed very slow charging process when compared to 

particles with finite contact areas. Increasing the contact area however resulted in a 

smaller contact resistance with the grounded electrode. This in turn led to a faster charge 

flow, and, therefore, the charging process was faster. The hemisphere was shown to have 

the fastest charging, because it has the largest contact area with the ground. When 

compared to the relaxation time constant which depends on the bulk material properties, 

the actual charging time constant was significantly greater. As the contact area o f the 

particle with the ground gets smaller the actual charging time constant increases. This has 

shown that the charging rate is related directly to the contact area o f the particle with the 

ground.
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The surface layer was created in this model geometrically by adding a concentric 

second sphere. It was also necessary to introduce three other spherical surfaces for the 

charge integration. All these factors created a geometric limitation in the COMSOL 

software that restricted modeling very thin layer thicknesses; a 1% surface layer thickness 

was the minimum that could be achieved. Upon studying the effect o f the surface layer 

thickness several findings were shown. For particles with az > ax, decreasing the surface 

layer thickness resulted in a slower accumulation o f charge. This was due to surface 

conductivity which is directly proportional to the outer volume conductivity (ff2) and the 

surface layer thickness. As the surface layer thickness and surface conductivity had a 

critical effect on the actual charging time constant, alternative ways o f modelling the 

surface layer were investigated to get very thin surface layers. This will be discussed in 

the next chapter.

Discharging o f the particles was also simulated and compared to the charging 

process. The results showed that both the charging and discharging graphs were 

horizontally symmetric showing that the actual charging and discharging time constants 

are equal, for particles exposed to a uniform electric field.
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Chapter 4
Dynamics of Induction Charging of Multiple Particle

Agglomerations

4.1 Introduction

In the previous chapter, the dynamics o f induction charging for spherical particles 

was studied using two-dimensional models in the COMSOL commercial software. The 

surface layer o f the particle was represented by an outer sphere, and geometric limitations 

o f the COMSOL software prevented reducing the surface layer thickness below some 

critical value. The surface layer with the thickness equal to 4.27% o f the particle radius 

was the least achievable limit to investigate accumulation of the surface charge densities 

on both the outer sphere (the surface layer), and the inner sphere (the bulk particle). A 1% 

surface layer thickness was achieved upon simplifying the geometry o f the model, by 

removing the inner artificial integration surfaces and calculating the total charge on the 

surface o f the particle only.

The results presented in Chapter 3 showed that the surface conductivity, which is 

directly related to the surface layer thickness and volume conductivity, has a major effect 

on the actual charging time constant o f the spherical particle. An alternative way of 

representing the surface layer o f the particle is to reduce the thickness o f the layer to a 

very low value and use a lumped model o f this layer. In this technique there is no 

theoretical limit on the layer thickness; for example particles with about a 20 A moisture 

layer thickness can be simulated. This option is also available in COMSOL.

59



Only single spherical particles were simulated in the previous chapter. In 

electrostatic applications, particles are typically stacked in an arbitrary array. Upon 

exposure to the electric field, electric shielding can occur due to the proximity o f other 

particles. Electric shielding can be the result o f contact surfaces o f multiple particles, 

shielding the electric field from other particles in a certain pattern. This can greatly 

reduce the saturation charge o f the particles from the value of a single particle. The actual 

charging time constant and charging process dynamics will also be affected, as a particle 

loses charge in favour o f other particles that are in contact with it. In this chapter, three- 

dimensional modelling is introduced for the simulations conducted, to model charging of 

multiple spherical particles in various patterns having very thin surface layer thicknesses.

4.2 Mathematical Model

The mathematical model used for the basic single spherical particle was the same 

as described in Chapter 3 for two-dimensional modelling. However, the surface 

conducting layer with finite thickness doesn’t need to be defined; it is incorporated using 

an Electric Shielding boundary condition, available in COMSOL, specifying all the 

parameters o f surface layer: thickness (d), volume conductivity (<r2) and permittivity (s2)- 

Figuré 4.1 illustrates the geometrical representation for the model.
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Figure 4.1 Conducting spherical particle with surface layer represented as an electric 
shield, resting on a grounded electrode and exposed to an external electric field.

The distance between the charging electrodes was also reduced to 0.01m which 

for the particle sizes studied would have no effect on the results, and enhances memory 

efficiency when using three-dimensional modelling. The DC voltage applied on the upper 

electrode in this case was 5kV, so that the same electric field magnitude o f 0.5MV/m was 

produced as the previous chapter. Firstly, the particle was modelled as a stand-alone 

sphere with a radius o f 1.564mm and the surface layer thickness was varied for different 

simulations. For most simulations, the surface layer thickness was chosen to be 20 A with 

values o f surface conductivity reported in practical applications upon exposure of 

particles to moisture. Surface conductivity can be effectively altered by absorption of
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moisture on the surface o f the particles [21] [22]. Therefore a moisture layer was 

simulated to investigate its effect on the dynamics o f the charging process for the 

particles. The outer volume conductivity, <r2, was varied with the surface layer thickness, 

d, to compare different values o f the surface conductivity, as. The permittivity value o f 

the surface layer, e 2, was assumed to be constant with £r2 = 3. According to Gauss’ law, 

the total charge accumulated on the spherical particle will be equal to the integral o f the 

normal electric displacement Dn at the surface:

Qs = jjps ds = jj Dn ds (4_1)

where ps is the surface charge density, Dn the normal component o f electric displacement 

and Qr the total saturation charge. The charging time constant tc was evaluated using 

equation (3-15).

4.3 Simulation Model

The simulation model was created using three-dimensional modelling on the 

COMSOL commercial software. Two electrodes were represented by horizontal 

rectangles o f 0.05m square and a separation o f 0.01m. The lower electrode was grounded, 

while the upper electrode was supplied with 5 kV, which generates the same electric field 

magnitude o f 0.5 MV/m as the previous chapter. For the transient case, the voltage 

supplied was represented as V = 5000 * (t > 0). The vertical sides o f the rectangle were 

set as electric insulators.
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Initially, a single spherical particle with 1.564mm radius was modelled as shown 

in Figure 4.1. The particle had a 0.039mm2 contact area with the grounded electrode. The 

surface layer for the particle was represented as an electric shielding boundary condition 

on COMSOL. Initially, the surface layer thickness, electrical conductivity and 

permittivity o f the particle were varied for different cases, The air region surrounding the 

particle is non-conductive (% = 0) with permittivity e3 =  e0 — 8.854 X 10“ 12 F/m. The 

surface layer is defined by three finite parameters: electrical conductivity (<r2), 

permittivity (f2) and thickness (d). The particle’s volume conductivity (fft ) and 

permittivity (£*) are also defined. To integrate the surface charge density and calculate

the total charge magnitude, an artificial spherical surface, concentric with the particle, 

was drawn.

The model was then extended to simulate multiple spherical particle 

agglomerations. Different patterns o f particles were modelled. Surface layer thickness 

was set constant at 20 A, all particles were identical and have point contact with each 

other. The contact area o f the particles with the ground is constant, and set to 0.039mm2 

in all cases.

Finally, upon modelling the geometry o f the problem and defining all parameters, 

the whole domain was meshed using tetrahedral discretizations on COMSOL for three- 

dimensional modelling.

The simulations were conducted in the transient mode analysis to study the 

dynamics o f the charging process. The total charge accumulated by the particle and actual 

charging time constant were calculated for the different simulations.
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4.4 Model Verification

The first step in this part was to verify the accuracy o f the new three-dimensional 

model, by comparing the results with those obtained from the equivalent two-dimensional 

model that was previously investigated and verified. In order to achieve this, the charge 

build-up for both the two-dimensional and three-dimensional models was compared. The 

results shown in Table 4.1 and Figure 4.2 were conducted for a particle with a 1.564mm 

radius and 0.01564mm surface layer, i.e. 1% o f the radius. Inner and outer conductivities 

(<r2 and Oj) were set to O.lnS/m and InS/m, respectively. The equivalent surface

conductivity (cs) was 1.564x1 O'14 S/square. The relative permittivity o f the particle (£r ) 

was set to 3. The particle had a finite contact area o f 0.039mm2 with the grounded 

electrode. The results o f calculations for the saturation charge agree with the two- 

dimensional simulations with error o f 0.001%.

Table 4.1 Comparison between the results o f the 2D and 3D models for a single 
spherical particle with 0.039mm2 contact area

Particle Shape
Induction 

Charge 0(pC ) 
(2D Model)

Induction Charge
Q (P Q  

(3D Model)

Percentage
Difference

(% )
Sphere (a  = 1.564mm, 

d =  0.01564mm) -223.510 -223.513 0.001%
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Figure 4.2 Induction charge Q versus time t for the particle having 1% surface layer 
thickness assuming at = O.lnS/m, a2 = InS/m, sr = 3.

The charge build up for both the two-dimensional and three-dimensional models 

(Figure 4.2) is almost identical, with the maximum error at t = 10s equal to 1.53%. The 

results have proven that the three-dimensional model was valid. Following this, a very 

thin surface layer was simulated to investigate the effect o f the surface conductivity. 

Different particle arrays were also simulated to investigate the effect o f electric shielding 

on the charge build up and saturation charge.

4.5 Single spherical particle in three-dimensional modelling

A single 3D spherical particle was simulated. In all cases, the radius o f the sphere 

was set to 1.564mm assuming a contact area o f 0.039mm2 with the ground electrode. By 

defining the surface layer thickness (d) and its conductivity (er2), the equivalent surface 

conductivity (<xs) can be obtained.
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In the previous chapter, a limitation on the surface layer thickness equal to 1% of 

the particle radius was caused by the internal restrictions o f COMSOL. By implementing 

the new method o f specifying the thickness as a parameter in three-dimensional 

modelling, negligibly thin surface layers could be achieved. Simulations were conducted 

assuming surface layer thicknesses o f 4.27%, 1% and 1 O'8 % o f the particle radius. The 

parameters were set as: ax = O.lnS/m, a2 = InS/m and £r = 3. The plots o f the induction 

charge Q as a function o f time t for the particles with increasing surface layer thicknesses 

are shown in Figure 4.3.

Figure 4.3 Induction charge Q versus time t for the particle having different surface 
layer thicknesses assuming at  = 0 .InS/m, az = InS/m, and sr = 3.

Further simulations were done to study the effect of the 10‘8% surface layer when 

varying the conductivity ratios between the particle and its surface layer. Table 4.2 

summarizes the results showing the actual charging time constants for two different 

ratios.
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Table 4.2 Actual charging time constants for varying conductivity ratios

<r2 / o i 10 100
r e(s) 4.27%  Layer 2.4 3.2
Tc(s) 1%  L ayer 5.75 11.5
Tr (s) 10"®% Layer 14.3 114.6

It can be seen from Figure 4.3 and Table 4.2, when the surface layer thickness is 

decreased and keeping the conductivity ratio o f o2/|0i> l, the charge accumulation on the 

particle was slower. These results were presented in the previous chapter, but in this 

section they are confirmed for a very thin surface layer. The results also show that after 

decreasing the surface layer thickness (as decreases for fixed volume conductivity), the 

actual charging time constant (tc) has increased. A significant increase in rc for o2lav =

o
100 was shown for the particle having 10 % surface layer thickness, with a value of 

114.6 seconds. It can be concluded that surface conductivity affects the actual charging 

time constant significantly; a decreased surface conductivity resulted in a slow charging 

process.

\

Further simulations were conducted using practical values o f surface layer 

thickness to investigate this effect. The surface layer thickness was set to 20 A. The outer 

volume conductivity (tr2) was set to 0.005S/m, which is between the tap water 

conductivity o f 0.01 S/m and fresh water conductivity o f 0.001 S/m. This would represent 

moisture layer parameters. Surface conductivity as was then calculated to be 10'11 

S/square. The particle’s relative permittivity was set to sr= 3. The plot for the induction 

charge Q versus time t is shown in Figure 4.4 and the results summarized in Table 4.3.
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Figure 4.4 Induction charge Q versus time t for the particle with er2 = 0.005S/m, ax -  
O.lnS/m, sr = 3, d = 20 A and os = 10‘n  S/square.

Table 4.3 Chaining dynamics of particle with 20 A surface layer thickness and 
10'11 S/square surface conductivity.

Particle Shape
Saturation

Charge
QÁP Q

Actual Charging 
Time Constant 

Tr(ms)

Relaxation Time 
Constant Tr(s)
(Tr =

Particle with 20 
A Surface Layer 
Thickness (as= 
10‘u S/square)

-223.51 20 0.266 0.08

From Table 4.3 it can be seen that for a thin layer o f 20 A, with a surface 

conduction o f 10'11 S/square, the charging time constant (tc) was 20ms. When compared 

to previous results, it is clearly shown that a higher surface conductivity results in a much 

faster charge build up. Saturation charge for the spherical particle was -223.5lpC as 

verified earlier. The relaxation time constant (xr ) o f the bulk particle was calculated to be

0.266 seconds, with xc(xT o f 0.08. It can be seen that xr is significantly greater than xc In 

this case the current that flows to charge the particle passes almost entirely through the
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thin surface layer due to its higher effective conductivity. In other words the particle 

properties are effectively shielded by the presence o f the outer conductive layer.

From Figure 4.4 it can be seen that charge accumulation is very fast. When 

compared to the previous cases o f lower surface conductivity, the induction charge 

increases much more rapidly. Two factors directly affect surface conductivity and will 

affect charge build up: surface layer thickness (d), and outer volume conductivity (<r2). 

To investigate the relation between aa, a2, and d where <rs = <r2d, a simulation was done 

for particles with different surface layer thickness d and adjusted a2 to get the same 

surface conductivity. Permittivity and inner volume conductivity were fixed: sr - 3 ,  a1 = 

O.lnS/m for all cases. Figure 4.5 shows the results for the simulation.

Figure 4.5 Induction charge Q versus time t for particles with varying a2 and d, and 
fixed as .
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From Figure 4.5 for particles with the same surface conductivity, regardless o f the 

layer thickness and outer volume conductivity, it is shown that all curves coincide and die 

charging process is the same. xc was equal to 20ms for all cases, assuming as -  10'11 

S/square. It is shown that as = a2d is in excellent agreement with the simulation results 

and the charging dynamics for the particle are directly affected by its surface 

conductivity.

4.6 Multiple particle agglomerations

Multiple particle arrays were simulated to investigate the charging dynamics in 

agglomerations o f particles, and the effect o f electric shielding on the particles’ actual 

charging time constant and saturation charge. All particles were assumed to be spherical 

with a radius o f 1.564mm, a surface layer o f thickness d = 20 Â and surface conductivity 

os = 10'11 S/square, which corresponds to 0.005 S/m volume conductivity in the outer

layer. Permittivity and inner volume conductivity were fixed: eT = 3, = 0.1nS/m for all

cases. The multiple particle agglomerations consisted o f five spheres, thirteen spheres 

and twenty one spheres aligned horizontally. In order to further investigate shielding of 

the particles, a group o f five spheres on top o f five other identical spheres was 

investigated.

4.6.1 Agglomeration of thirteen particle pattern

The geometric representation o f the thirteen-particle agglomeration is shown in 

Figure 4.6. All particles are placed flat on the ground electrode with a symmetrical
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arrangement, so that only four particles (numbered as 1, 2, 3 and 4) represent distinct

cases.

Figure 4.6 Thirteen-particle agglomeration

The charging dynamics were investigated for particles 1-4, and the results 

summarized in Figure 4.7 and Table 4.4.

Figure 4.7 Induction charge Q versus time t for the particles 1-4 compared with a
stand alone particle assuming o2 = 0.005S/m, ot = O.lnS/m, sr = 3, d = 20
A and as = 10'11 S/square.
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Table 4.4 Charging dynamics o f particles in thirteen particles agglomeration

Particle
Saturation 

Charge <?,(pC)

Actual Charging 
Time Constant 

Tff(ms)

Relaxation Time 
Constant r r(s) 
(xr =  ej<rx)

1 -97.07 12.5 0.266 0.05

2 -101.03 12.7 0.266 0.05

3 -186.33 18.3 0.266 0.07

4 -150.08 16.3 0.266 0.06

Stand-Alone
Particle -223.51 20 0.266 0.08

From Figure 4.7 and Table 4.4 it can be seen that Particle 1, located at the center 

o f the pattern, had a saturation charge Qs = -97.07pC, the smallest among the surrounding 

particles. The shielding o f the particle is clearly shown geometrically in Figure 4.6. The 

saturation charges calculated for the other particles are larger when the particle is close to 

the edge o f the array. Particle 3 surrounded from only one side was found to have the 

highest saturation charge o f Qs = -150.08pC. When compared to a stand-alone particle, as 

discussed in the earlier section, it can be seen that particles in contact with each other 

have a reduced saturation charge due to shielding o f the electric field.

The actual charging time constants o f all four particles in the pattern increase with 

reduced shielding, but differences are not very large. Particle 3 with the weakest 

shielding effect has the slowest accumulation o f charge with a charging time constant r c
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= 18.3ms. This is a surprising effect, as the less shielded particles have a higher saturation 

charge, so it would be intuitively expected that the charging time constant would be 

higher. A stand-alone particle with no shielding has xc -  20ms. The results have also 

shown that xc «  xr for all particles. The ratio xc/x r increases with weaker shielding of

the particles. Therefore, the actual charging time constant and saturation charge were 

found to be directly affected by shielding o f the particles, caused by proximity of other 

particles. Further geometric models will be investigated for different particle patterns to 

investigate the electric shielding effect on the charging dynamics of the particles.

4.6.2 Five-over-Five particle pattern

The geometric representation of a five-over-five particle pattern is shown in 

Figure 4.8. The results are presented for the particles 1, 2, 3 and 4 only, due to the 

symmetric arrangement in the pattern. The results were summarized in Figures 4.9 and 

4.10, and Table 4.5.

Figure 4.8 Five-over-five particle pattern
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Figure 4.10 Induction charge Q versus time t for particles 2 and 4 assuming a2 = 
0.005S/m, ffj = O.lnS/m, er = 3, d = 20 A and as = 10"n S/square.
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Table 4.5 Charging dynamics of particles in five-over-five particle pattern

Particle

Saturation
Charge
<?,(PQ

Actual Charging 
Time Constant 

Tr(ms)

Relaxation Time 
Constant t r(s)
(Tr =  s j t r ^

*CA r

1 -126.77 42.4 0.266 0.16

3 -310.98 53.6 0.266 0.20

As it can be seen from Figure 4.9 and Table 4.5, Particle 3 is not shielded by other 

particles and reaches the highest saturation charge Qs = -310.98pC. The actual charging 

time constant rc was also the largest for Particle 3, even though it acquires more charge 

than Particle 1. t c f r r increases with less shielding o f the particles, as tc increases. It can 

also be noted that Particle 3 has a saturation charge Qg greater than that o f a stand-alone 

particle. This was due to elevation o f Particles 1 and 3, which would be exposed to a 

stronger electric field.

Particles 2 and 4, shielded from the top by Particles 1 and 3, are exposed to a

smaller electric field. From Figure 4.10 it can be seen that the charge accumulates in the

beginning then decays. As the current initially flows from die ground plate to the lower

particle, the charge builds up. The electric field directed downward from the upper

electrode is mainly blocked shielding Particles 2 and 4. The shielded particles are still

exposed to some electric field, and this is shown as they accumulate some charge. The

loss o f charge noticed in Figure 4.10, is the result o f charges moving from the lower

shielded particles to the upper residing ones, i.e. Particles 2 and 4 lose charge in favour of
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1 and 3. Moreover, Particle 2, shielded from all sides, is seen to lose charge almost 

entirely upon saturation.

It can be concluded, that the particles in the top layer acquire more charge than 

those in contact with the grounded electrode, because of exposure to a stronger electric 

field. Particles in the lower layer experience much weaker electric field, because they are 

shielded by the electric charge accumulated in the top layer. In the first phase, the charge 

increases rather quickly, because the upper layer is not charged yet. However, the charge 

accumulation in the upper layer decreases the electric field in the area below, reducing 

the electric charge of Particles 2 and 4.

4.6.3 Increased electric shielding on the central particle

To further investigate the effect of shielding a spherical particle, multiple particle 

agglomerations were modelled, and the results were compared for the central particle, 

which will be the most shielded. The saturation charge, charging dynamics and the actual 

charging time constant for different cases were compared. Figures 4.11(a), 4.11(b) and 

4.11(c) show three different geometric models that were investigated.

Figure 4.11 (a) Five-particle agglomeration

Figure 4.11 (b) Thirteen-particle agglomeration
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Figure 4.12 Induction charge Q versus time t for the central particles in different
particle patterns assuming a2 = 0.005S/m, a± = O.lnS/m, sr = 3, d = 20 A

and a5 = 10'11 S/square.
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Table 4.6 Charging dynamics o f central particles in different particle
agglomerations

Particle

Saturation
Charge
QÀPC)

Actual Charging 
Time Constant 

Tc(ms)

Relaxation Time 
Constant Tr(s) 
(xr =  s j a j

Central Particle in 
5-particle 

agglomeration
-106.22 12.8 0.266

t
0.0481

Central Particle in 
13-particle 

agglomeration
-97.07 12.5 0.266 0.047

Central Particle in 
21-particle 

agglomeration
-96.46 12.4 0.266 0.0466

From Figure 4.12 and Table 4.6, it can be seen that when compared to the 

saturation charge o f a stand-alone particle (-223.5 lpC) all shielded particles had a smaller 

saturation charge; because o f exposure to weaker electric field as explained in the earlier 

sections. The saturation charge o f the central particle in the five-particle agglomeration 

model was the highest with -106.22pC. As the number o f the surrounding particles 

increases, the saturation charge o f the central particle decreases. In the first model, four 

particles surround the centered sphere and it was noted that the central particle had the 

highest saturation charge and highest actual charging time constant xc among the other 

models, rcfxr decreased when increasing the number o f surrounding particles, due to an 

increase in xe.
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It was also shown that increasing the number o f surrounding particles from twelve 

(13-particle agglomeration) to twenty (21-particle agglomeration) will not affect the 

saturation charge of the central particle. This is shown in Figure 4.12 where the increase 

in saturation charge Qs and charging time constant r c of the central particle changes only 

slightly. Therefore, it can be concluded that a particle surrounded by other particles will 

have a lower saturation charge and actual charging time constant up to a certain point 

where increased shielding (adding more surrounding particles) on the central particle will 

have no more effect on its saturation charge and charging process.

4.6.4 Charging versus discharging process

For the different models simulated, a few cases of charging and discharging of the 

particles were simulated. Theoretically, for a uniform electric field, the actual charging 

and discharging time constants should be equal. The discharging process was simulated 

for the thirteen-particle agglomeration model shown in Figure 4.6 and the five-over-five 

particle agglomeration model of Figure 4.8. Figures 4.13, 4.14, 4.15 and 4.16 show the 

results of the simulations.

Figure 4.13 Charging versus discharging for Particle 1
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Figure 4.14 Charging versus discharging for Particle 2

t(ms)

Figure 4.15 Charging versus discharging for Particle 3

Figure 4.16 Charging versus discharging for Particle 2
8 0



As expected, the results shown in Figures 4.13 -  4.16 show that r c = rd; the 

charging and discharging curves were horizontally symmetric. The charging process is 

identical to the discharging process, where the particles are fully charged and no external 

field exists. The results from the previous chapter showed the effect of the particle’s 

contact area with the ground and resulting contact resistance, which directly affects the 

actual charging time constant rc. The relaxation time constant r r is often misinterpreted

as the discharging time constant rd . The results from the simulations showed that the 

actual charging and discharging numerical results are similar, yet different from the 

analytical relaxation time constant ( r r = f/cr), which is directly affected by particle’s 

properties rather than geometry.

4.7 The effect o f the mesh pattern

For most of the simulations performed for this thesis, the spherical particles had a 

finite contact area with the grounded electrode. This was due to discretization on the 

COMSOL software, at the contact area between the particle and the ground, as explained 

in the previous chapter. Theoretically, a point contact is effectively treated by COMSOL 

as a small finite contact area, because upon discretizing the geometrical interface, discrete 

finite elements are constructed. To understand the effect of the discretization pattern 

(mesh pattern), two spherical particles in a vertical array were created in two-dimensional 

axial symmetric modelling. Two mesh patterns were compared, a normal refined mesh 

with very small elements formed at the contact area with the ground (Figures 4.17(a) and 

4.17(b)), and a coarse mesh pattern with coarse elements formed at the contact area
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(Figures 4.18(a) and 4.18(b)). Particle 2 had a point contact with the grounded electrode, 

and a point contact with Particle 1.
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The model consisted o f two spherical particles o f identical radius a = 1.564mm, 

assuming az = InS/m, = O.lnS/m, et = 3, and 1% surface layer thickness. The point

contact is discretized into small finite elements upon meshing the domain. The results of 

simulation are shown in Figures 4.19,4.20 and Table 4.7.
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Figure 4.19 Induction charge Q versus time t for Particle 1 in a refined and coarse 
mesh pattern

Figure 4.20 Induction charge Q versus time t for Particle 2 in a refined and coarse 
mesh pattern
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Table 4.7 Charging dynamics for the particles in a two particle vertical 
arrangement for refined and coarse mesh patterns

Particle
Saturation 

Charge Q,(pC)

Actual
Charging

Time
Constant re(s)

Relaxation 
Time Constant 

M S)
C*v =  ®iM)

*c/*r

Particle 1 
(Refined Mesh) -457.8 39.6 0.266 148.87

Particle 1 
(Coarse Mesh) -457.92 28.3 0.266 106.39

Particle 2 
(Refined Mesh) -86.71 30.1 0.266 113.16

Particle 2 
(Coarse Mesh) -86.66 14.4 0.266 54.14

It can be seen from Table 4.7, that the saturation charge for the particles having a 

refined mesh is only slightly smaller than that for the case o f a coarse mesh. Particle 1 

elevated on top o f particle 2 was shown to have a high saturation charge o f -457.8pC for 

a refined mesh and -457.92pC for a coarse mesh. As particle 1 is closer to the

upper charged electrode, a resulting high saturation charge would be expected. Particle 2 

shielded by particle 1 would be exposed to a smaller electric field and its saturation 

charge is reduced. The results are in perfect agreement with previous simulations 

conducted for multiple particle agglomerations: elevated particles accumulate more 

charge, and shielded particles have a reduced saturation charge depending on the 

intensity o f the electric shielding.

From Figures 4.19 and 4.20 it is shown that charge accumulation was slower for a 

refined mesh. An equivalent finite contact area to a point contact, introduced by the
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COMSOL software, is larger for a coarse discretization and smaller for a fine 

discretization. This would show that for a smaller contact area with the ground (as in the 

case o f the refined mesh with finer discretizations), the contact resistance increases 

causing a slower charge accumulation process. This was proven in the previous chapter 

when comparing the results for different contact areas between spherical particles and the 

ground: decreased contact areas resulted in high contact resistances and therefore slower 

charging processes. In this section, a direct relation with the mesh pattern was shown, and 

a conclusion can be deducted: a finite contact area with the ground should be chosen for 

the particle instead o f a point contact, became the point contact is identified by 

COMSOL upon discretizing the domain as an unknown finite contact area, depending on 

the size o f the discretizations used.

4.8 Summary

To investigate the dynamics o f induction charging for spherical particles made out 

o f real conductors in different particle arrangements, and assuming finite volume and 

surface conductivities, a few different models have been tested. Simulations were 

conducted using the COMSOL Transient Analysis model ill three-dimensional space. 

Surface layers o f the particles were modelled using an equivalent approximation instead 

o f a finite thickness model as done before. This was useful in achieving very thin surface 

layers. Firstly, the validity and accuracy o f a single spherical particle was confirmed by 

comparing the results to the previously verified two-dimensional models. Following this, 

it was possible to investigate multiple particle agglomerations in different configurations. 

The conclusions can be summarized as follows:
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decreasing the thickness o f the surface layer. Comparing a very thin surface layer to 

previous 1% and 4.27% surface layer thicknesses, it was shown that xc would increase 

when decreasing the thickness o f the layer i.e. a slower charge build up. This can be 

explained by the effect o f surface conductivity, which is directly proportional to surface 

layer thickness and outer volume conductivity where as = a2d . Therefore, decreasing the 

surface conductivity would result in a slower charging process for the particles.

Adjusting the parameters o f the surface layer to represent actual applications, a 

surface layer o f 20 A thickness was introduced. Practical conductivity values were 

chosen. The results o f the simulations showed a fast charging process in the milliseconds 

when compared to previous results in the tens o f seconds range. This was due to a high 

surface conductivity o f tile particle.

After selecting the parameters o f the surface layer, multiple particle 

agglomerations in various patterns were investigated. A thirteen-particle pattern aligned 

horizontally was modelled at first. For all shielded particles, the saturation charge 

decreased as compared with a single unshielded particle. The strongest shielding effect 

can be observed for a central sphere that had the smallest saturation charge. Electric 

shielding would result from the close proximity o f the particles, blocking mostly the 

electric field from the lower part o f the particles. For a single layer configuration, the 

presence o f adjacent particles reduces the electric field both on the upper and even more 

on the lower hemi-sphere. The upper hemisphere o f the spherical particle would have a

For a spherical particle with o2 > av  accumulation o f charge was slower when
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higher charge accumulation than the lower hemisphere and therefore the total charge 

accumulation would be smaller than that o f an unshielded particle.

To Anther study the effect o f electric shielding on the saturation charge, and 

charging dynamics, a  two-layer particle pattern was also created, using a five-over-five 

particle arrangement. Results showed that the elevated particles in the top layer had 

higher saturation charge because they are exposed to a stronger electric field, and charges 

are transferred from the shielded particles to the elevated ones. As before, accumulation 

o f charge was faster for particles with less shielding. For those particles in contact with 

the grounded electrode, the charging is not monotonic. Firstly, a fast accumulation of 

charge was noticed; then the total charge decreased. The electric current flows from the 

ground electrode to the upper particle layer and as it passed through the lower particle 

layer, transient accumulation o f charge occurs. Moreover, not all the electric field would 

be shielded from the lower particles and, therefore, a small accumulation o f charge can be 

noticed. It was noticed that the central particle in the lower layer is shielded from all sides 

and had lost most charge upon saturation. This shows the effect o f shielding and complies 

with theoretical interpretations.

Various models were constructed to calculate the saturation charge o f the central 

particle in multi-particle configurations. The particles were aligned horizontally with no 

shielding from the upper layer. Agglomerations with increasing number o f particles were 

compared (five, thirteen and twenty-one particle patterns). The results showed that 

saturation charge for a central sphere would decrease upon adding more surrounding
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particles, but up to a certain point where adding more particles would have little or no 

effect on die saturation charge or the actual charging time constant o f the central particle.

The discharging process was also simulated. The results obtained from COMSOL 

simulation showed an excellent agreement with theoretical prediction: both the actual 

charging and discharging time constants were equal for the particles in all the cases 

modelled.

Finally, it was o f interest to investigate the effect o f the mesh pattern. As 

COMSOL would create finite elements at the contact areas, a point contact would be 

equivalent to a small finite surface area. Spherical particles having a point contact with 

the ground were simulated with varying mesh patterns. When a coarse mesh pattern was 

created, the equivalent contact area with the ground increased and a faster charging 

process was observed. As verified previously, a larger contact area resulted in smaller 

contact resistance with the ground and, therefore, a faster charging process. The coarse 

mesh for a point contact model resulted in a larger equivalent contact area than that o f a 

fine mesh pattern. This resulted in a faster charging process for a coarse mesh. The 

results proved that a finite contact area should be considered for modelling instead o f a 

point contact as the actual charging time constant is directly affected by the contact area 

o f the particle with the ground.
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Chapter 5
Conclusions and Suggestions for Future W ork 

5.1 Conclusions

In this thesis, the dynamics o f induction charging for spherical particles were 

investigated. Particles with , finite surface and volume conductivities, and arbitrary 

permittivity were simulated in the COMSOL commercial software using the Finite 

Element Method. Firstly, a single spherical particle exposed to a uniform electric field 

was modelled in two-dimensional space. The validity o f the model was verified by 

comparing die numerical simulation results with Felici’s analytical formulae [2] for 

regular shaped particles. The actual charging time constant was then compared to the 

material’s relaxation time constant, for different cases o f conductivity, permittivity, 

particle’s contact resistance with ground and surface layer thickness. The model was then 

extended in three-dimensional space to include multiple spherical particles stacked in 

different particle agglomerations. Surface conductivity was specified as an Electric 

Shielding boundary condition in COMSOL, instead o f assuming a finite thickness o f the 

surface layer, to overcome geometric limitations o f this software. The particle’s 

saturation charge, actual charging time constant and charging dynamics were compared 

for different patterns o f particle agglomerations. The results can be summarized as 

follows:
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For the single spherical particle with finite surface layer thickness:

1. Validity o f the model was tested by comparing numerical results (saturation 

charge) for regularly shaped particles (sphere and hemisphere) with Felici’s 

analytical formulae [2]. The results o f comparison showed 0.29% error for sphere, 

and -0.0001% error for hemisphere. Excellent agreement between numerical and 

analytical results can be concluded.

2. The spherical particle model with increasing contact areas was simulated. The 

results showed that increasing the contact area between the particle and the 

grounded electrode (less contact resistance) would significantly shorten the 

charging time. Charge accumulation on the particle’s surface was fastest for a 

hemisphere having the largest contact area; slowest for a particle with 

theoretically point contact, having actually finite, but smallest contact area. It was 

shown that even for a small material relaxation time constant, the actual charging 

time constant can be significantly large for particles with small contact areas (high 

contact resistance).

3. For a small finite contact area o f 0.039mm2 with the grounded electrode, and 

fixed permittivity; outer conductivity a2 for the surface area, and inner 

conductivity for the particle were varied. When a2 > Oi, charge accumulation 

on the particle’s surface was faster. Increasing a2 implied an increase in surface 

conductivity (os = az d), while keeping the surface layer thickness d constant. 

The results showed a faster charging time for a high surface conductive layer.
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4. For the same case o f varying the conductivities, increasing the particle’s 

permittivity (£t) showed a faster charging time. However, the effect o f increasing 

permittivity was negligible when compared to increasing either o f the surface or 

volume conductivities. The results showed that even for an increased permittivity, 

particles with less conductive surface layers had a slow charging process. 

Therefore, it was concluded that the particle’s volume or surface conductivity had 

a more significant effect on the actual charging time constant than its permittivity.

5. For a small finite contact area o f 0.039mm2 with the grounded electrode and fixed 

permittivity, the ratio o f outer to inner conductivity (a2^ax) and surface layer

thickness (d) were varied. For >1) ,  decreasing the surface layer thickness

from 10% to 1% showed a slower charging time for the particle. In contrast, for 

<T2/<Ji < 1, decreasing the surface layer thickness from 10% to 1% showed a faster 

charging process, although to a less extent, due to a high inner conductivity. It 

was concluded that particles with thick surface layers would accumulate charge 

faster, a result o f high surface conductivity.

6. A discharging simulation for the spherical particle exposed to a uniform electric 

field was performed. Regardless o f conductivity, permittivity, contact area and 

surface conductivity, the results showed that the actual charging and discharging 

time constants were equal, yet different from the material’s relaxation time 

constant. A conclusion can be formulated that the actual time constant (charging 

and discharging) are geometry related and directly dependent on the particle’s

92



surface and volume conductivities; unlike the analytical relaxation time which is 

dependent only on the bulk m aterial’s properties (t r — sxfa J .

For the single spherical particle assuming surface conductivity as a boundary 

parameter (Electric Shielding) with defined thickness, conductivity and permittivity and 

fixed finite contact area (using three-dimensional modelling), the following can be 

concluded:

1. Validity o f the new three-dimensional model was tested, and the results compared 

with previously verified results o f the two-dimensional model. The comparison 

showed 0.001% error for saturation charge and almost identical charging curves. 

Excellent agreement with previous results was concluded.

2. Decreasing the surface layer thickness below 1% keeping fixed conductivity 

values showed a  slower charging process. The conclusion was the same as before: 

decreasing the surface layer thickness would make the charging time slower.

3. The spherical particle was then simulated with practical values o f surface layer 

thickness and conductivity. Assuming a higher surface conductivity with very thin 

surface layer thickness (20 A), the charging process was much faster than 

previous cases o f finite surface layers 10%, 4.27% and 1%. Even though the 20 A 

surface layer was very thin, a very high outer conductivity o f the surface layer 

(0.005 S/m compared to previous cases o f 10'9 S/m) resulted in a much higher 

surface conductivity, and, therefore, a faster charging process than the previous 

cases.
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For multiple particle agglomerations with constant surface and volume conductivities, 

permittivity, and contact area the results can be summarized as follows:

4. In the thirteen-particle agglomeration, particles that are closely surrounded by 

other particles, experience more shielding o f the electric field. The results showed 

a decreased saturation charge for the shielded particles, and a decreased charging 

time as less charge would be accumulated

5. In the five-over-five particle pattern, elevated particles showed a high saturation 

charge and lower shielded particles lost charge in favour o f the upper particles. It 

was concluded that a close proximity o f particles for a given particle would 

significantly decrease its saturation charge.

6. When the number o f particles was increased from five to thirteen, a significant 

decrease in saturation charge was observed for the central particle in the pattern. 

The number o f particles in agglomeration was then increased from thirteen to 

twenty-one particles; a negligible decrease in saturation charge for the central 

particle was noticed upon the second increase. It was concluded that shielding the 

electric field by adding more surrounding particles would decrease the central 

particle’s saturation charge up to a point where adding more surrounding particles 

would have no further effect on its charging dynamics or maximum induced 

charge.

7. Discharging for the multiple particle agglomeration showed that the actual 

charging and discharging time constants are equal.
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8. Finally, the effect o f a spherical particle’s point contact with the grounded 

electrode was shown, for different mesh patterns simulated in two-dimensional 

space. A coarse mesh pattern created large elements causing larger equivalent 

contact area instead o f its theoretical point contact; a refined mesh created smaller 

elements. For larger elements, faster charging time was shown due to less contact 

resistance. It was concluded that a theoretical point contact cannot be created in 

COMSOL, because it would result in having an unknown finite contact area with 

the ground depending on the discretization mesh pattern used. Therefore, 

choosing a small finite contact area would be die best approach, as simulated in 

all previous cases.

5.2 Suggestions for Future Work

A few suggestions can be advised for future work:

The simulation model, using COMSOL’s “electric shielding” boundary condition 

was used to simulate negligibly thin surface layer thicknesses and practical surface 

conductivity values for regularly shaped particles; the spherical particle in this thesis. In 

practical applications, not only are the particles stacked in arbitrary configurations, but 

also have irregular shapes. Irregularly shaped particles, having multiple contact areas 

with the grounded electrode, can be simulated using the surface layer model advised in 

this thesis. Therefore, analysis would also include particle shape, and multiple contact 

areas to study their effect on the actual charging time and maximum induced charged.
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It was shown that the actual charging time constant relies directly on the particle’s 

geometry and conductivity, and is not related to the analytical relaxation time constant. A 

quantitative relationship is still to be investigated.

Finally, charging and discharging simulation models can further be investigated 

for particles having initial space charge density exposed to a non-uniform electric field.
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