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Abstract

Newton iteration is a versatile tool. In this thesis, we investigate its applications to the 
computation of power series solutions of first-order non-linear differential equations.

To speed-up such computations, we first focus on improving polynomial multi
plication and its variants: plain multiplication, transposed multiplication and short 
multiplication, for Karatsuba’s algorithm and its generalizations. Instead of rewriting 
code for different multiplication algorithms, a general approach is designed to output 
computer-generated code based on multiplication graph representations.

Next, we investigate the existing Newton iteration algorithms for differential equa
tion solving problems. To improve their efficiency, we recall how one can reduce the 
amount of useless computations by using transposed multiplication and short mul
tiplication. We provide an optimized code generator that applies these techniques 
automatically to a given differential equation.

K eyw ords: Differential Equation, Newton Iteration, Plain Multiplication, Trans
posed Multiplication, Short Multiplication, Automatic Code Generation.
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Chapter 1 

Introduction

1.1 Motivation

Symbolic computation is a process using computer systems to manipulate mathe
matical equations and expressions in symbolic form. It is widely used for symbolic 
integration or differentiation, substitution of one expression into another, simplifica
tion of an expression, etc.

In this thesis, we focus on one classical application of symbolic computation: 
computing symbolic solutions to differential equations, by means of Newton itera
tion. Solving differential equations symbolically is not a new topic: some computer 
algebra systems, such as Maple, already have built-in functions to solve this problem. 
Similarly, using Newton iteration for this task is now a standard idea.

This thesis contributes to an aspect of this problem which has attracted little 
attention up to now: the design of high-performance implementations, in the par
ticular case of first-order non-linear differential equations, with coefficients in rings 
such as Z /pZ . As an intermediate step, we study various algorithms for polynomial 
multiplication and related problems, under the high-performance viewpoint as well.

One of the main contributions of this thesis is the focus on code generation tech
niques. Rather than implementing C code from scratch by ourselves, we wrote Java 
programs that generate high-performance C implementations for our two main prob
lems, polynomial multiplication and Newton iteration for differential equations. We 
expect that the experience acquired here can be applied to several other problems.
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1.2 Background

One of the key ideas in the design of fast algorithms in computer algebra is to reduce 
complex problems to a few well-studied basic questions.

The algorithms described in this thesis illustrate this rule. The main operation 
we will consider is polynomial multiplication, with coefficients in a ring R. To fix 
notation, we will write the input polynomials as

A =  ao +  cl\X +  • ■ • +  an-ix n *, B =  bo +  b\x +  • • ■ +  bm-ix m 1;

note that the number of terms of A (resp. B) is at most n (resp. m). In many 
situations, we will actually have n — m. Our first objective is to compute the m +n—1 
coefficients of the product

The naive algorithm uses 0{mn) ring operations to compute all coefficients of C, 
for an output of length m +  n — 1. This is far from optimal, especially when n = m. 
Several techniques are known to reduce this cost, using the idea of divide-and-conquer. 
split the problem into several parts, process them recursively, and recombine the 
partial results to obtain the desired output.

A well-known algorithm applying this idea is known as Karatsuba’s multiplica
tion [22]. It will be studied in detail in Chapter 3; we illustrate here the main idea of 
this trick by a simple example. Assume n =  m =  2k for some k G N and rewrite A, 
B in the form

with A0, Ai, B0, Bi e  A [a:] of degrees less than n/2. If we follow the naive method, 
we are led to write

C — AB  — Cq +  Cix +  • • • +  cm_|_n_2x‘,m+n—2

with
Ci =

j+k=i, 0<j<n, 0<k<m

A =  Ao +  Axxnl2, B =  Bo +  BlXn/2,

AB  — AqBq +  (AqB i +  A\Bo)xn̂ 2 +  AiB\xn.

Karatsuba’s trick amounts to rewrite the product as

AB  =  AqBq +  ((Aq +  A i)(Bq +  Bi) — AqBq — A\B\)xn̂ 2 +  A\B\xn.
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The number of polynomial multiplications of degree less than n/2 has been reduced 
from four to three. Applying this idea recursively gives a complexity 0 (n log2̂ 3)) for 
multiplication.

In fact, several such algorithms exist, with different complexities. As a con
sequence, it is customary to use the notation M(n) to denote the complexity of 
one’s favorite algorithm for polynomial multiplication: the naive algorithm has 
M(n) =  0 (n 2); Karatsuba’s has M(n) =  0 (n log2̂ 3̂ ); a generalization of it by Toom [38] 
has M(n) =  0(n}og3̂ ) ,  and some other algorithms not described in this thesis have 
M(n) = 0(n log (n )) or M(n) = 0(n log(n) loglog(n)), using Fast Fourier Transform 
(FFT) [33, 11]. As of now, no algorithm of linear complexity is known.

Many higher level algorithms are built on top of multiplication, using techniques 
such as Newton iteration or divide-and-conquer.

• The former idea, Newton iteration, is the key to algorithms for differential 
equations presented later, among many others. As a general rule, an algorithm 
based on Newton iteration usually has cost 0(M (n)) for an output of length n 
(this is indeed the case for differential equations).

• Divide-and-conquer techniques are used in other families of algorithms, such as 
fast Euclidean algorithm or evaluation and interpolation algorithms. Usually, 
such algorithms have costs 0(M (n) log(n)) or 0(M (n)), depending on M.

As was said before, our focus will be on Newton iteration techniques; we will not 
discuss algorithms such as fast Euclidean algorithm of fast evaluation /  interpolation.

1.3 Related work

In accordance with the general remarks of the last section, it turns out that in most 
fast algorithms for polynomials or power series, the main computation is multipli
cation. This is also the key to our research: since we pursue high performance, 
improving the multiplication becomes the first task.

Polynomial multiplication has been the subject of a large body of work; as of now, 
several libraries (NTL [35], FLINT [20], modpn [24, 14, 25]) or computer algebra 
systems (Magma [4]) provide implementations of algorithms such as Karatsuba’s or 
the FFT.

Compared to previous work such as Li et.al. [24] and Filatei et.al. [14], this thesis 
focuses on the family of so-called “divide-and-conquer” algorithms, that generalize
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Karatsuba’s, as opposed to the FFT. Besides, while we reuse insights of NTL [35], Li 
et.al. [24], Filatei et.al. [14] for e.g. fast computations modulo a prime number p, we 
have not put our focus (yet) on a systematic exploration of optimization techniques 
such as cache-friendliness or parallelism.

Our goal was to build a platform with which one can generate automatically effi
cient implementation of several variants of polynomial multiplication, such as trans
posed products or short products. These two concepts are studied in detail later on. 
For the moment, we simply point out that are known to speed-up various forms of 
Newton iteration; the former idea (transposed multiplication) was studied in Hanrot, 
et.al. [17], and the latter (short multiplication) in Mulders [28] and Hanrot, et.al.

[19]-

After polynomial multiplication, fast algorithms to solve differential equations 
are the second significant focus in our research. Software packages such as [21] by 
Jorba, et.al. , already exist to treat such problems, but from the point of view of 
numerical integration. Though the context is different, the article [21] introduced 
a useful discussion about automatic differentiation and code generation issues, and 
partly motivated our study.

In the symbolic world, a main reference regarding the computation of power se
ries solution of differential equations is Brent and Kung’s paper [9]: the approach 
introduced in that paper is still used today, and is the basis of our work. To com
pute n terms of the solution, this algorithm uses 0(M (n)) operations: it is as fast as 
multiplication, up to a constant factor.

The paper Bostan, et.al. [7] describes an application of Brent and Kung’s result 
to a problem from cryptology: this question boils down to finding a power series 
solution of an equation of the form

(x6 +  x4 +  l ) / ' ( x ) 2 =  1 +  75 /(x )4 +  16 /(x )6, /(0 )  -  0, / '(0 )  =  1.

One remarkable feature is that the problem treated in [7] requires to solve this equa
tion over a finite field. For instance, with coefficients in Z/101Z (i.e., taken modulo 
101), the first few terms of the solution are

/  =  x +  68x5 +  66x7 +  60x9 +  84xn +  • • • .

Another noteworthy fact is that the application in the paper of Bostan, et.al. [7]
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needs to compute a few hundreds coefficients of / ,  say about 500. Finally, high- 
performance is crucial for real-world applications.

These remarks have determined the context of our study: high-performance com
putations with coefficients modulo a prime number (even though floating point coeffi
cients will be supported as well). Besides, they motivated our interest for divide-and- 
conquer univariant multiplication algorithms such as Karatsuba’s, which can outper
form FFT for moderate degrees, such as 100 to 500. Similarly to multiplication, our 
goal is to automatically generate efficient code.

Let us briefly mention other related results. Brent and Rung focused on first- 
order equations, and this was sufficient to deal with the problem of [7]. More recent 
results are in the papers of van der Hoeven [39] and Bostan,eia/. [5], which focus in 
particular on higher order equations. Though some of the techniques developed here 
will apply in that context, we do not discuss such extensions.

Recasting differential equations as fixed point problems makes it possible to obtain 
compact and efficient code. This idea was introduced by Watt [44], with algorithms of 
cost 0 (n 2); van der Hoeven [39] used a similar idea in conjunction with fast “relaxed 
multiplication” to obtain a cost of 0(M(n) log(n)) or 0(M(n)), depending on the 
assumptions we make on M. It would be interesting to compare experimental results 
obtained in that approach to ours.

Finally, one should mention the work of the Spiral group on efficient code gener
ation for numerical FFT computations by Puschel, et.al. [29]. This work served as 
an inspiration for our own code generation techniques. We hope to adapt the code 
optimization techniques introduced in [29] to our context in the future.

1.4 Results

The main results of this thesis are the following.

Code generation for polynomial multiplication. We already mentioned that 
there exist families of divide-and-conquer multiplication algorithms that generalize 
Karatsuba’s. Besides, several variants of each of these algorithms are used in Newton 
iteration algorithms, such as transposed product or short product.

We propose to free the programmer from the tedious work on writing code for all 
such variants. Indeed, it is well-known that these divide-and-conquer algorithms can 
be specified by graphical representations. We provide a Java platform that uses this 
representation as input and generates C code for operations such as plain, transposed
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or short products for any given divide-and-conquer algorithm. As of now, our code 
generator supports double and unsigned long data types.

The output code is aimed towards high-performance. While several directions for 
optimization remain to be explored, the results are already very encouraging, as we 
outperform most other libraries or systems for degrees up to 1000.

Removing redundancies in Newton iteration. Avoiding the computation or 
re-computation of useless coefficients is a key to improve the performance of Newton 
iteration; however, the Newton iteration for differential equations in Brent’s paper [9] 
pays little attention to these issues. This question has been the subject of many 
later papers [32, 2, 18, 41], but they all focus on FFT multiplication, and on the 
applications of Newton iteration to other questions, such as inverses or exponentials.

We revisited Brent and Kung’s algorithm and paid extra effort to eliminate re
dundant computations, by means of transposed or short products, or by eliminating 
useless nested loops. The gain is a constant, but significant, factor in running time. 
We focused on the technically simplest case of equations of the first order: this case 
already reveals many interesting problems, and is sufficient to cover many applica
tions, such as the one from Bostan, et.al. [7] mentioned before. It is expected that 
many of our results extend to higher order.

Fast evaluation for Newton iteration. The work described in the previous para
graph addresses a large part of the operations done within Newton iteration algo
rithms; yet, some parts can still be improved.

When we solve an equation such as G(x, / ' ,  / )  =  0, we need to evaluate G and its 
derivatives at (x, f , f ) ,  where /  is the current approximation to the solution. Our last 
question is to improve this evaluation. Here as well, techniques such as transposed 
product and short product can be used to accelerate the operation. As for polynomial 
multiplication, our aim is to automatize this process.

Given a representation of the equation G(x, / ' ,  / )  as an expression tree (or rather, 
as a directed acyclic graph), we show how to automatically perform such optimiza
tions. We focus on the multiplication nodes, which have most effect on the cost. Then, 
we determine what coefficients are needed for future computations, what coefficients 
are unnecessary, and what kind of multiplication should be used: beyond transposed 
and short product, we are led to introduce more variants, such as “short-long product” 
or “quarter product” .

As before, we provide a Java platform that takes as input an expression that
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computes G, builds the corresponding directed acyclic graph, and outputs C code to 
use within Newton iteration.

1.5 Outline

In Chapter 2, we provide an overview of the graphical data structures related to this 
research: graph representations for linear expressions and for polynomial expressions.

Chapter 3 and 4 focus on polynomial multiplication. In Chapter 3, we review the 
background knowledge about fast algorithms for plain multiplication, and its variants: 
transposed multiplication and short multiplication; we write down general forms of 
transposed and short multiplication algorithms. In Chapter 4, we present our work 
on code generation for polynomial multiplication and give the results of experiments 
made using our multiplication code.

In Chapters 5, 6 and 7, we focus on improving the Newton iteration for solving 
the differential equations G (x , / ,  f )  =  0. Chapter 5 introduces the current fast 
algorithms to solve differential equations and explains basic functions. In Chapter 6, 
we show how to remove redundancies in the main loop of Newton’s iteration, using 
the variants of polynomial multiplication showed in Chapter 3. Chapter 7 shows how 
to apply this idea within the evaluation of the function G, to reduce the amount of 
unnecessary computations. We demonstrate another code generator that deals with 
this problem.
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Chapter 2

Graphical data structures

In this chapter, we present two useful data structures: one to perform linear opera
tions, to be used in Chapters 3 and 4, and the other to evaluate polynomial expres
sions, used in Chapter 7. The underlying objects are graphs in both cases, but the 
ways we use them are different. In all this chapter, we fix a coefficient ring R ; all 
computations will involve coefficients in R.

Note that the material presented here is well-known: see [10] by Biirgisser et.al. 
for linear graphs and [1] by Aho et.al. for graphs computing polynomial expressions.

2.1 Graphs for linear expressions

This section describes a computational model for doing the following kind of opera
tions: given ao,.. •, Q-k-i, we want to compute some linear combinations

/ o  =  To,o^o +  ■ • ' +  To,fc-i<2fc-i

ft- i  —  T ^ - i , o a o  +  • • • +

In other words, we want to compute the matrix-vector product

fo

1
• • 

o © To,fc-i a0

fi- 1 1 <"*5, 1 ►-* © Ofe-l

This will be done using linear graphs.
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Definition. Linear graphs are graphic representation for the computation of linear 
operations as above. A linear graph is a quintuple Q =  (V, E, / ,  O, A) consisting of

• a directed acyclic graph (V,E),

• a weight function A which assigns a weight A(e) E R to each edge e,

• an ordering (A0, • • • , Ak-i )  of the input vertices, I,

• an ordering (F0, • • • , Fg-i) of the output vertices, O.

A linear graph can be used to compute “linear combinations of its inputs” . Starting 
from the input nodes, each further vertex is assigned a value, obtained by following 
the flow from inputs to outputs. Going from a vertex v to a vertex v' along an edge e, 
the value at v is multiplied by the weight A(e); the value at the vertex v' is obtained 
by summing the contributions of all incoming edges.

One sees that the values obtained at each vertex are linear combinations of the 
values oo , . . . ,  a^-i given at the inputs Ao, • • • , Ak- i. In particular, let / 0, . . . ,  ft-\ be 
the values computed by the output nodes Fq, ■ ■ • , Fg-\. Each fa can thus be written

fi — Lifido + ■ ■ ■ +  Li<k-idk-1,

for some constants LitJ, so that we have

fo

1
tr* 0 0 Lo,k-l ÜQ

fi -1 T f - 1,0 • ■ Lt-\tk-i dk- 1

Thus, we say that the linear graph Q computes the matrix

Lo,o ■ ■ ■ -Lo,fc-i

Lt-i,o ■ • • L¿-i:k-i

Example. Figure 2.1 gives an example with input nodes Ao, A\, A2 and output 
nodes F0, Fi, F2. The values a0) ai, «2 are input to the nodes A0, Ai, A2; the values 
fo, fi, /2 are output by the nodes F0, Flt F2. It is not hard to check that the linear
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graph Go of the figure computes the following matrix-vector product:

/o' \  1 3 ao

h = 1 1 0 a i

_h. 0 2 2 Q2_

Another issue we should point out: several linear graphs can compute the same 
families of outputs. If we modify Figure 2.1 by adding one “tmp” node, we obtain 
Figure 2.2.

Figure 2.2: The linear graph Gi

The graphs Go and Gi compute the same matrix. However, in Gi , we add an extra 
node for storing the result a0 +  ai as a temporary value, which will be reused to 
compute /o and fa. With the “tmp” node, Figure 2.2 performs 3 additions, while 
Figure 2.1 has 4. Since Figure 2.2 has fewer operations, we think of it as a “better” 
graph. For this example, it is easy to find the “better” one; finding the “better” 
graph in a general situation is however a hard problem, that we will not discuss.

Cost. To measure the number of operations attached to a linear graph, we define a 
notion of cost. The number

c(G) := \ ee E \  A(e) ^  ±1| +  \E\ -  \V\ +  k

is called the cost of G■ Here is the idea behind this definition.

• Along the edges, each multiplication by a constant different from ±1 costs one 
operation: this gives |e € E | A(e) ^  ±1| operations in total.
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• If the input of a vertex v consists of s edges e\,...  ,es, computing the value at 
v (after performing the multiplications on the edges) uses s — 1 additions; this 
gives in total

^ 2  (i(v) ~  1)
v vertex, v not an input

operations, where i(v) is the number of edges entering v. This sum equals 
\E\-(\V\-n) =  \E\-\V\+n.

Transposition. We will pay a special attention to the computation of transposed 
operations. To do so, we introduce here the transposition principle. This principle 
asserts that an algorithm performing a matrix-vector product can be transposed, pro
ducing an algorithm that computes the transposed matrix-vector product. Further, 
the transposed algorithm has almost the same complexity as the original one.

Using the linear graph model, the transposition principle is easy to prove. If 
Q =  (V, E, I, O, A) is a linear graph that computes a matrix

To,o • • • To,fc-i 

Li-i,o • ■ • Li-

we define the transposed graph

Q* =  (V,Et, I t,O t,\t) (2.1)

of Q by El :=  { ( w ,v ) | (v,w) G E}, P =  O, Ol =  / ,  and At(w,v) := A(v,w) for 
every (v , w) G E. In other words, Ql results from Q by reversing the arrows without 
changing the weights. Thus Ql computes n linear combinations of / q, ■ • • , fj_1; it is 
proved in [10, Th. 13.10] that these combinations are given by

ao Lop Li-ifi fo

Uk-1 T o , f c - i  • • • Le-itk-i ft- 1

In other words, Ql computes the transpose of the matrix of Q. To finish to establish 
the transposition principle, it remains to consider cost issues. One can prove that the 
cost c{Ql) is given by

c{gl) =  c(Q) -  k + £,
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so the two costs are the same, up to a difference of k — i.
If we are in cases where the cost of multiplication weights much more than addi

tion, we can only consider the number of multiplication in the complexity analysis. 
Then, the costs of computing Q and Qt are the same.

Exam ple. We are given the graph Q of Figure 2.3, with k =  3, i  =  2; the darkened 
nodes are output nodes. It computes the matrix

6 2 
3 4 .
0 5

Figure 2.3: A graph Q that computes the original linear combination

The transposed linear graph Ql is in Figure 2.4. If is obtained by reversing the 
arrows without changing the weights from Q\ note that the position of output nodes 
(darkened) has changed.

Figure 2.4: The graph Q1 that computes the transposed linear combination 

One verifies that Q4 computes the matrix

6 3 O'
2 4 5 '

which is the transpose of the original one. Let us then compare the costs of Q and
Qt-

• Q computes: / 0 =  6a0 +  2ai, f\ =  3ao +  4ai, / 2 =  5ai 5 mul-|- 2 add
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•  Q( computes: ao =  6/o +  3 /i, a i =  2/o +  4 /i +  5 /2  5 mul+ 3 add

Counting the number of operations, the cost of Q is 7, and that of Q1 is 8. The 
difference between them is 1, which is k — i  as claimed above.

2.2 Graphs for polynomial expressions

For the differential equation algorithm of Chapter 7, we will have to evaluate a poly
nomial G (x,t,u), and its derivatives, at x ,t =  / ,  u =  / ' ,  for a given polynomial /  in 
R[x). The polynomial G will be given to us as directed acyclic graph, whose input 
vertices are t and u, with vertex labelled by arithmetic operations [1].

Definition. We give here a definition adapted to our needs. A non-linear graph 
Q =  (V, E, p) consists of a directed acyclic graph (V, E ), with two input vertices, and 
of a labelling p which assigns a label p(y) to each vertex v in the graph, such that

• there is one input labelled t and the other one is labelled u ;

• for a vertex v with two parents vi,v2, p(v) is either (+,v\,v2), ( x ,U;l, u2), 
{ - , v u v2), ( - , v 2,vi)]

• for a vertex v with one parent V\, p(v) is either (+, Vi, a(x)), (—,vi,a(x)), 
(—, a(x),Vi), (x ,a (x ),v  1), where a(x) is a polynomial with coefficients in R, or 

A2 (the square operation).

One can assign inductively a polynomial Pv in R[x, t, u) to each vertex v of Q\ the 
input vertices are assigned respectively t and u] then, a product node is assigned the 
product of the polynomials at the parent nodes, etc. Then, we say that Q computes 
the polynomials assigned to the output nodes.

As a convention, we let L be the number of multiplication nodes in the graph, 
either of the form (x ,u i ,u2) or A2 (we count squares as normal multiplications).

On the example of Figure 2.5, the very top node Vo is the output of the graph; t 
and u are inputs; internal nodes are operators, (x , 5,u) means multiplying u by the 
constant 5. Here, the root computes t2 — bu + u2. The number of multiplications is 
L =  2.

Differentiation. We will have to compute not only the value of G at x, t =  / ,  u =  
/ ' ,  but also the values of the derivatives dG/du and dG/dt at x ,t =  f,u  = f .
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Figure 2.5: A standard graph that computes a polynomial expression

To compute the derivatives, we apply automatic differentiation techniques [30]: we 
construct an extended graph Q' that computes not only G but also dG/du and dG/dt.

In Q' each node is replaced by a triple C, dC/du, dC/dt, plus maybe a few extra 
nodes. To perform this construction, we simply apply the rules for differentiating 
sums, products, etc. For instance, for a multiplication node, which computes a prod
uct C (x,u ,t) =  A (x,u ,t)B (x,u ,t), there are two situations:

• A and B  are the same polynomials: we rewrite it as C (x,u ,t) =  A (x,u ,t)2, so
that

dC nJtdA
du ~ 2A du

dC nAdA
m = 2 A m -

• A and B  are different polynomials; then

d C _ _ d B  dA dC dA
du du ^ du ’ dt dt dt

remark that 4 multiplications are performed to compute both derivatives of C.

For an addition node, which computes C (x,u ,t) =  A (x,u ,t) +  B(x,u,t), we get its 
derivatives directly from

d C _ d A  dB dC __dA  dB_ 
du du ^ d u ’ dt d t ^ d t

The same process is extended easily for all kinds of operations introduced before.
As before, we let L be the number of multiplication nodes in the original graph Q. 

Since we do not generate extra multiplications from computing derivatives of addition 
or subtraction nodes, and since we generate at most 4 multiplications through the 
differentiation of a multiplication, the number of multiplication nodes in the new 
graph Q' is at most L +  AL =  5L.
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To give an example, we start by simplifying Figure 2.5 to obtain Figure 2.6, by 
keeping only the node indices and operator notations.

Figure 2.6: A simplified graph for a polynomial expression

Through traversing the graph from bottom to up and applying the automatic 
differentiation rules it, we compute Vo, dV0/du and dV0/dt, which is shown as Figure

Figure 2.7: A graph for a polynomial expression and its derivatives

In Figure 2.7, each node from Figure 2.6 splits into three nodes. Take the leaf u 
for example: we get three nodes instead of one, u, du/du and du/dt. Their values 
are u, 1 and 0. We also list the result in Table 2.1.

I



node operator G Gu Gt

li (input) N /A u 1 0
t (input) N /A t 0 1

va x5 5 u 5 0
V3 A2 t'2 0 21

V2 A2 u2 2u 0
Vi — t2 — 5 u - 5 21

Vo (output) + t2 +  u2 — 5 u 2u — 5 21

Table 2.1: Triple value set for tree nodes
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Chapter 3

Polynomial multiplication

In this chapter, we describe a key ingredient of this thesis, polynomial multiplication. 
We introduce three “forms” of multiplication and present several algorithms with 
their complexity, but we do not consider implementation issues for the moment. 

Recall that on input

A =  a,Q +  aiX +  • • ■ +  an—ixn *, B — bo +  b\x +  • • • +  6n_\xn *, 

our first objective is to compute the 2n — 1 coefficients of the product

C  =  AB  =  Co +  C\X +  ■ ■ • +  c2„_2z 2n 2,

with
Q ^  ̂ djbk- (3-1)

j+k=i, 0<j<n, 0<k<n

This operation will be called plain multiplication. Some useful variants of it will be 
considered as well:

• the transposed multiplication, or transposed product, defined in Section 3.2;

• the short multiplication, or short product, where only the coefficients 
Co,. . . ,  cn- 1 are computed.

All algorithms for the plain multiplication given here are well-known. The contri
bution of this chapter is to present general descriptions of the transposed and short 
multiplication. While it was known before that a transposed multiplication algorithm 
could in theory be designed from any plain multiplication algorithm [17, 6], no explicit 
description of the general process appears. Similarly, for the short multiplication, no 
description of a general algorithm appears, only a study of the simplest case [28, 19].
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The following notation will be useful: the remainder of the Euclidean division of 
a polynomial A by a polynomial B will be denoted by A mod B, and the quotient 
will be denoted by A div B\ later on, a similar notation will be used for quotient and 
remainder for integer division.

A useful particular case is when B has the form xn. Then A mod xn is obtained 
by discarding all monomials of A of degree greater than or equal to n; A div xn 
is obtained by discarding all monomials of degree less than n, and by dividing all 
remaining ones by xn.

As was said in the introduction, we use M(n) to denote the cost of the plain multi
plication: we will see here algorithms having M(n) =  0 (n log2̂ ) ,  M(n) =  0 (n log3̂ ) ,  
etc. The cost of the other operations mentioned above will be expressed similarly: we 
will see that the transposed multiplication has cost M(n) +  0(n) ;  the cost of the short 
multiplication will be denoted m(n). These notations are summarized in Table 3.1: 
the middle column gives the mathematical formula to denote a given operation, and 
the last column recalls corresponding complexity notation.

operation notation complexity notation

multiplication A,B>-> AB M(n)
for deg(A) <  n, deg (B) < n

transposed multiplication A ,B  AB1 M(n) +  0(n)
for deg(A) < 2n — 1, deg(£?) < n

short multiplication A ,B  i—» AB  mod xn m (n)
for deg(A) <  n, deg(£?) < n

Table 3.1: Notation for various kinds of multiplications

3.1 Plain multiplication

In this section, we review several algorithms for the plain multiplication of polyno
mials.

The naive algorithm. The schoolbook method, or naive method for computing 
a product C =  AB  takes a quadratic number of operations. The naive algorithm 
simply computes the coefficients c* of Equation (3.1) one after the other. The total 
cost is 0 (n 2); in other words, for the naive method, we have M(n) =  0 (n 2).
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Karatsuba’s algorithm. The first algorithm with a better complexity is due to 
Karatsuba. It uses a divide-and-conquer approach:

• devise an algorithm performing 3 multiplications instead of 4 for the case of 
polynomials of degree 1;

• apply it recursively.

To deal with polynomials of degree 1 such as A =  a0 +  a\X and B =  b0 +  bix, we 
rewrite their product as

AB  — a0b0 +  ((a0 +  &i){bo +  bi) — — d\b\)x +  d\bix2. (3-2)

This leads to Algorithm 1.

Algorithm 1 Karatsuba's multiplication in degree less than 2 

Input: A =  do +  dix and B =  60 +  h x  
Output: C =  AB.

1: compute No =  a0b0, Ni =  (a0 +  di)(b0 +  bi) and N2 =  d\bi 
2: return N0 +  (Ni — N0 — N2)x +  N2x2.

To apply this idea recursively, given A and B of degrees less than n, we now write

h =  |_(n +  1)/2J, h '=  n — h, A = A0 +  Aixh, B =  Bq +  BiXh. (3.3)

The choice of h (which is approximately equal to nf 2) implies

deg(A0) <  h, deg(Ai) < h! < h, deg (Bo) < h, deg(Bi) < h! < h.

Formula (3.2) still holds, and gives

AB =  AqBq +  ((Ao +  A\)(Bq +  B\) — AoBo — AiB\)xh +  A\B\x2h.

This gives the recursive Algorithm 2. The algorithm performs 3 recursive calls in size 
at most (n +  l) /2 ,  plus a number of extra operations (additions, subtractions) that is 
linear in n; we deduce using the Master theorem [12] that its complexity is 0 (n log2̂ 3̂ ). 
In other words, for the Karatsuba method, we have M (n) =
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Algorithm 2 KaraMul(A, B, n), Karatsuba's multiplication

Input: A ,B ,n , with deg(A) < n and deg(£) < n, where h and h! satisfy Eq.(3.3) 
Output: C  =  AB 

1: if 77. =  1 then 
2: return AB
3: end if
4: A — Aq +  Aix^1 ,B =  Bq +  B\X^
5: No = KaraMul(Ao,B0,h)
6: Ni = KaraMul (Ao + Ai, Bq -\- Bi, h)
7: N2 =  KaraMul (Ai, B\, h!)
8: return N0 +  (Ni — N0 — N2)xh +  N2x2h. * •

Note the following easy points, which will help us generalize this algorithm.

• The polynomials A0, B0 and (A0 +  Ai), (B0 +  B\) have degree less than h; the 
polynomials Ai, Bi have degree less than h!.

• The polynomials N0 and Ni have degree less than 2h — 1, the polynomial N2 
has degree less than 2h' — 1.

• The polynomials C0 = N0, Ci = Nr — N0 — N2 and C2 =  N2 have degrees less 
than respectively 2h — 1, h +  h! — 1 and 2h! — 1.

• For h =  1, the computation of N0 +  (Ni — N0 — N2)x +  N2x2 requires only the 
computation of N\ — N0 — N2. In general, some extra additions are needed due 
to the overlaps between N0, (N± — N0 — N2)xh and N2x 2h.

Divide-and-conquer algorithms. It is possible to generalize Karatsuba’s idea. 
We will call divide-and-conquer algorithm of parameters (k, £) a multiplication algo
rithm that does the following:

• devise an algorithm performing i  multiplications for polynomials with degree 
less than k;

• apply it recursively.

We must explain more precisely the operations we allow for the case of polynomials 
with degree less than k, and how we perform the recursive calls.

First, we impose that on input polynomials A and B with degree less than k, the 
algorithm proceeds as follows.
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Algorithm 3 Multiplication in degree less than k

Input: A =  ao +  • • • +  ak- ix k_1 and B =  b0 +  ■ ■ ■ +  bk̂ iXk~x, with the parameters

( M ) .

Output: C =  AB.
1: compute linear combinations Lq, . . . ,  Lg-i of ao,. . . ,  ak_i 
2: compute linear combinations Mo,. . . ,  M^_i of bo, . . . ,  bk- i  
3: compute N0 =  L0M0, ■■■ , A^-i =
4: recover the coefficients of C  as linear combinations of No,. . . ,  Ne-i

To specify such an algorithm, one needs to give explicitly all required linear com
binations. For instance, Karatsuba’s algorithm has parameters (2,3), with

• Lq =  ao, Li =  a0 +  ax, L2 =  a\

• Mo =  60, Mi =  bo +  ¿>1, M2 =  f>i

• Co =  No, Ci =  N\ — No — N2, C2 =  N2.

For the recursive calls, given A and B with degree less than n, we let

h — [n f , h' — n — (k — l)h, (3.4)
k

so that h is approximately n/k. Precisely, if n has the form n =  qk, we have h = b! =  
q\ if n has the form qk +  r, with 1 < r < k, we have h = q +  1 and h' = q + r + 1 — k. 
We want h1 >  0; this will be the case as soon as q > k — 2, so that n > (k — l )2 is 
sufficient. Then, we always have 0 < h' < h.

Now, we can write

A =  A0 +  AlXh +  ■ ■ • +  Ak^ k~1)h, B =  Bo +  BlXh +  ■ ■ • +  Bk̂ k~^h

and
C =  Co + ClXh +  • • ■ +  C2k-2X{2k- 2)h.

Thus, Aq, . . . ,  2 and B0, . . . ,  Bk̂ 2 have degrees less than h and Ak~\ and Bk- 1
have degree less than h1. The polynomials Co,. . . ,  C2k-A have degrees less than 2h — l, 
C2k- 3 has degree less than h +  bl — 1 and C2k-2  has degree less than 2h' — 1.

In Algorithm 4 below, if A =  a0 +  a\X +  • • • +  an_irrn-1 and p, q are integers, we 
use the notation slice(A,p, q) to denote the “slice” of A of length q starting at index
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p, that is, the polynomial

ap +  ap+ix H------- h ap+q- Xxq 1

This extra notation may seem slightly unnecessary here, but it will turn out useful 
for the transposed multiplication algorithm of the next section.

Next, we compute the linear combinations Lj of A0,. . . ,A k -X and Mi of 
B0, . . . ,  Bk-i- To handle the recursive calls, we need bounds e* and fi such that

deg (Li) < d  and deg (Mi) < fi

holds: we simply take ej =  h if Lj ^ Bk-1, and ej =  h' if Li =  B^-i, the same 
construction holds for fi (recall that for Karatsuba, this was mentioned in the remarks 
following Algorithm 2). For simplicity, we will assume here that e* =  fi holds for all 
i, though this is not necessarily the case.

Algorithm 4 Mul(A, B, n) Divide-and-conquer multiplication algorithm 

Input: A ,B ,n , with deg(A) <  n and deg(B) <  n, where h and bl satisfy Eq.(3.4), 
with the parameters (k, £)

Output: C =  AB  
1: if n < (k — l)2 then
2: return AB naive multiplication
3: end if
4: for % — 0 to k — 2 do 
5: Ai — slice(A, ih, h)
6: end for
7: Ak- 1  =  slice(A, (k — 1 )h, h!)
8: for i =  0 to k — 2 do 
9: Bi =  slice(L?, ih, h)

10: end for
11: Bk- 1  =  slice(£, (k — l)h, h')
12: compute the linear combinations Lq, . . . ,  L^_i of Ao, ■ ■ ■, Ak-1 

13: compute the linear combinations M o , . . . ,  Mi-\ of B o , , Bk- 1  
14: for i= 0 to l  — 1 do 
15: Ni =  Mul(Li, Mi, ef)
16: end for
17: recover Co,. . . ,  C2k- 2  as linear combinations of N0, . . . ,  Ne-i 
18: return C =  C0 +  Cxxh +  • • • +  C2k- 2X{2k~2)h■



23

Let T(n) be the number of operations performed in size n. For n < (k — l )2, we 
have T(n) =  0 (n 2); for n > (k — l ) 2, we have the recurrence

T(n) =  (£ -  l)T(h) +  T{ti) +  An +  ¡i, (3.5)

where A and (i are constants that depend on the number of operations we do at steps 
steps 12, 13 and 18. Using the Master theorem, one deduces that a divide-and-conquer 
algorithm of parameters (k,£) has complexity 0(n l°ëk(-^). It is crucial to observe that 
the constant hidden in the 0 () is proportional to the number of operations used to 
compute all linear combinations taking place at steps 12, 13 and 18: the easier these 
combinations are to compute, the faster the algorithm.

Example. We can recast the naive algorithm as a divide-and-conquer algorithm, in 
many possible ways. For instance, with parameters (2,4) we can compute the product 
of polynomials A =  ao -f a\x and B =  bo +  b\x as

• Lq =  do, L\ =  ao, L2 =  fli, L3 =  a,\

• Mq =  bo, Mi =  ¿>1, M2 =  bo, L3 =  bi

• Co = Nq, Ci =  Ni +  N2, C2 — IV3.

Of course, we recover the cost 0 (n 2), so this remark is not very interesting.
Some more useful divide-and-conquer algorithms are obtained as generalizations 

of Karatsuba’s algorithm. To devise them, we start by observing that the linear 
combinations computed within Karatsuba’s algorithm are

L0 =  clq — yl(0), L\ =  cto +  dl — y4.(l), L2 =  d\ =  j4(oo)

and
Mq =  bo =  B(0), Mi =  bo +  bi =  B ( 1), M2 =  b 1 =  B(oo),

where yl(oo) and B (00) are short-hand notations to denote the coefficients of A and 
B of maximal degree. Hence, Karatsuba’s algorithm amounts to:

• evaluate A and B at 0,1, 00,

• multiply the values pairwise,

• recover C =  AB  from its values at 0 ,1 ,00.
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Making this remark enables us to present Toom’s family of divide-and-conquer algo
rithms, of parameters (k, 2k- 1 )  for any k > 2 . The algorithm in size k chooses 2k- 1  
pairwise distinct evaluation points X\,. . . ,  x2fc-i- Then, to multiply polynomials A 
and B with degree less than k, the algorithm proceeds as follows:

• evaluate A and B at x l t , x2fc-1!

• multiply the values pairwise,

• recover C  =  AB  from its values at aq,. . . ,  x2/c-i by interpolation.

Since C has degree at most 2k — 2, the last step is well-defined. By what was said 
above, this algorithm gives a complexity M(n) =  O(nlogk(2k~l'>); this gets better as k 
gets larger.

However, one rarely sees implementations going beyond the simplest case k =  2. 
Indeed, the constant factors hidden in the 0 ()  are a severe limiting factor. Con
cretely, as for Karatsuba’s algorithm, one should first choose Xi, . . . ,  x2k-i such that 
evaluation and interpolation are easy. For instance, with k =  3, a usual choice is 
0,1, —1, 2, oo. For this latter case, we can give the explicit values of all linear combi
nations that are performed. Since k =  3, we write

A =  Oo -t- d\X T  a2x2, B =  bo b\X b2x2

and, since 2k — 1 =  5, we have

C =  AB  =  c0 +  c\x + c2x 2 +  C3X3 +  c4x4.

Then, the operations used to compute C are the following:

• Lq =  Oo> L\ =  a0 +  ai +  a2, L2 — clq — a,\ -\- a2, L3 =  olq -\- 2ai +  4a2 and L4 =  <x2

• Mo — bo, Mi =  bo +  b\ +  b2, M2 =  bo — bi +  b2, M3 =  bo +  2bi +  4b2 and M4 =  b2

• Co = Nq, Ci =  —\{Nq) +  N\ — ^N2 — N3 +  2 N4 , c2 =  \{N2 — N\) — N4 , C3 =  
i{N 0 -  Ni) -  ¡(N 2 -  N3) -  2N4 , c4 =  N4.

Once x i , . . . ,  x2k-i are fixed, it remains to find a way to compute all needed linear 
combinations efficiently, by detecting common sub-expressions, etc. This problem 
was already mentioned in Section 2.1, with more details in [3]; it is not discussed in 
this thesis.
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Graphical representation. In the implementation described in Chapter 4, we 
will use graphical representations: since a multiplication algorithm involves 3 steps 
of linear combinations, the graphs are naturally split into 3 parts. In Figure 3.1, we 
give the full graph of Karatsuba’s multiplication; the dash-line represents multiplying 
Li by Mi to get Nt. In Figure 3.2, we give Toom’s algorithm with k =  3; we do not 
display the combinations applied to B, since they are the same as those applied to A.

Figure 3.1: Karatsuba Multiplication

FFT multiplication. We conclude this subsection by a remark regarding multi
plication using the Fast Fourier Transform [43] (FFT). This family of algorithms 
is known to yield algorithms with a better complexity of either 0 (nlog(n)) or 
0 (n log(n ) loglog(n)), depending on the properties of the coefficient ring. On the 
other hand, for moderate degrees (a few hundreds), it is expected that the divide- 
and-conquer methods can be competitive, due to the simpler form of the algorithms.

FFT algorithms do not belong to our family of divide-and-conquer algorithms. In 
degree n , polynomial multiplication by FFT involves computing with roots of unity 
of order 2fc, with 2k ~  n, such as exp(2i7r /2fc) if we work with complex coefficients. 
Such algorithms, which handle more and more complex linear combinations as the 
degree grows, will not enter our study.

Previous work. The content of this subsection is standard. Karatsuba’s and 
Toom’s algorithms appeared in [6] by Bostan et.al. and [17] by Hanrot et.al. . 
Our formalism of divide-and-conquer algorithms goes back to the 1970’s as well; an 
extensive reference is from Winograd [45].
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Figure 3.2: Toom Multiplication

3.2 Transposed multiplication

If we keep the polynomial A fixed, the multiplication operation

B »-► AB

is linear, and it makes sense to speak of its transposed map. We illustrate it by a 
simple example first.

Transposed product in degree less than 2. Given two polynomials A =  ao+a-ix 
and B =  b0 +  bix, the result of the multiplication of A by B  is

C  — AB  =  -b (dobi ~l~ dibo)x -j- uiCLix̂ .



27

As we said before, we keep A  fixed, and we assume that B  varies. One sees that the 
coefficients of C — AB  are given by the matrix-vector product M v :

a 0 0 ' U ao bo
Qi Û0 ,v = Vo

J >1
==>■ Mv = dibo +  dobi

_ 0 ai . dibi

Let now M t be the transposed matrix of M; then, for a vector w, M lw is obtained 
as follows:

p Co p 1
ao ai 0 1 rf doCo +  aiCi
0

,w = Cl M  w —
do ai _ doC\ +  aiC2

. C2 .

To understand the interest of this computation, we extend M l to a larger matrix N, 
defined by adjoining a top and a bottom row:

ai 0 0
_  Oo Ol 0

0 ao «i
0 0 a0

Multiplying N  by the vector w now gives

aic0
a 0 Co +  O iC iNw =
a0ci + a\C2

a0c2

The extended product Nw is the vector of coefficients of CA, with

C  =  Co +  C\x +  C2X2 and A =  a\ +  a0x.

The transposed product M tw computes only the middle of Nw, which represents the 
middle coefficients of CA. We will show applications of this remark in Chapter 6.

Transposed product in general. Let us still assume that the polynomial A is 
fixed, now with deg(A) < n. We consider the operation B  1—>■ C — AB, with deg(i?) < 
n as well; then, deg(C) < 2n — 1.
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The transposed multiplication takes a polynomial C of degree less than 2n — 1 and 
returns a polynomial B  of degree less than n. Proceeding as in the previous example, 
by writing down the matrix of the operation, we see that the output B is obtained 
as follows: let

D =  do +  d\X +  • ■ ■ +  dzn-2x n̂ 2 

be the product CA, where A is the reversed polynomial

A =  an-1 +  • • ■ +  aox11 1.

Then B is the middle part of D , consisting of coefficients of degree n — 1 to 2n — 2:

B = dn-1 +  • ■ • +  d2n—2̂ " 1-

Applications of this remark will be made in Chapter 6. As announced in the intro
duction, we will use the short-hand notation B = CAt.

Since A is fixed, the operation B AB  is linear, so we can use the transposition 
principle to estimate the complexity of its transpose: the results of Section 2.1 show 
that one can compute the transposed product CA1 using M(n) +  0 (n ) operations.
If we use the naive algorithm for the direct product, the naive transposed algorithm !
amounts to compute each coefficient of B as

i
n—1 ^

bi = '^2ajCi+j, (3.6) '
i=o \

for i =  0 , . . . ,  n — 1. It remains to give explicit algorithms for the divide-and-conquer 
approach. t

Example: Transposed Karatsuba multiplication. We show here how to con
cretely devise a transposed multiplication algorithm, first in the case of Karatsuba’s 
multiplication.

We start with polynomials of degree less than 2. As before, let A =  a0 +  a\X.
The graphical representation of Karatsuba’s multiplication was given in Figure 3.1.
Following the rules given in Section 2.1, we deduce that we need to reverse all edges 
concerning B, but that all the edges concerning A remain the same; the output C 
becomes an input. The representation of the transposed graph is in Figure 3.3, and 
gives Algorithm 5,

In higher degree, we apply this approach recursively. Let h and h! be as in Equa-

28 ;

■
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Figure 3.3: Transposed Karatsuba Multiplication

A lg o r ith m  5 Transposed Karatsuba in degree less than 2

Input: A =  a0 +  axx , C  = c0 + cxx + c2x2 
Output: B =  CA* *
1: L0 = a0, L\ = ao +  ax, L2 =  ax 
2: iV0 = c0 -  ex, iVx = ci, N2 — c2 — Ci 

3: M 0 = LoNo, Mx = LXNX, M2 =  L2N2 
4: re tu rn  (M 0 + Mx) + (M 2 + Mx)x

tion (3.3). Writing the algorithm is straightforward, after we remember the following 
points.

• The degrees of Co, Ci and C2 are bounded by 2h — 1, h +  hi — 1, 2h' — 1. We 
can thus define Co, Ci and C2 formally using the “slice” notation introduced 
before: C0 =  slice(C, 0, 2 h — 1), which means we split C and copy the terms 
from degree 0 to 2h — 2 to obtain C0. Similarly, Ci =  slice(C, h, h + h! — 1) and 
C2 =  slice(C, 2h, 2 h! — 1).

• In the direct algorithm N0 and Nx have degrees less than 2h — 1 and N2 has de
gree less than 2h! — 1. We enforce the same degree constraints in the transposed 
algorithm, by applying truncation.

Transposed version of divide-and-conquer algorithms. Following the exam
ple of Karatsuba’s algorithm, it is possible to give a general form for transposed 
divide-and-conquer algorithms: the operations for A remain the same, whereas those 
regarding B  and C are reversed. We directly give the recursive version in Algorithm 7.

Previous work. Most of the content of this subsection is already known, though 
not widely so. The example of the transposed product is discussed in detail in [45];



A lgorithm  6 TranKaraMul(A, C, n) Transposed Karatsuba multiplication 

Input: A, C, n, with deg(A) <  n and deg(C) < 2n — 1 
O utput: B =  CA4 

1: if  n =  1 then 
2: return AC
3: end if
4: h =  [_(n +  1)/2_|, h! =  n — h
5: A  =  slice(A 0, h), Ai =  slice(A h, h!)
6: Co =  slice(C, 0 ,2h — 1), C\ =  slice(C, h, h +  b! — 1), C<i =  slice(C', 2h, 2h! — 1) 
7: Lq =  A), Ti =  A  +  Ai, L2 =  Aj
8: N0 =  Co — Ci mod A  =  C\ mod x2h~l , N2 =  C2 — C\ mod x2h'~l
9: Mq = TranKaraMul(L0, No, h)

10: M\ = TranKaraMul(Li, Ni, h)
11: M 2 = TranKaraMul(L2, N2, h')
12: return (Mo +  Mi) +  (M2 +  M i)xh

it was rediscovered independently in [17], which also studied in detail its applications 
to Newton iteration. Transposed multiplication was also studied in [6]. As far as 
divide-and-conquer algorithms are concerned, the above previous works contained 
descriptions of a recursive transposed Karatsuba algorithm; a general algorithm such 
as Algorithm 7 has not appeared before.

3.3 Short multiplication

The last variant of polynomial multiplication we consider here is the short multipli
cation or short product. As before, we consider as input polynomials

A — o0 T ciiX T ■ ■ • T  an—iXn \ B — bo T bix T ■ ■ • +  ixn

we are interested here in computing the truncated, or short, product

C =  AB  mod xn =  cq +  • • ■ +  cn_ ixn~l .

Of course, it would be sufficient to compute the full product AB  and discard all terms 
of degree at least n. The question we consider here is thus how to compute C directly 
without computing any useless terms.

If we use the naive product, it is clear that such savings are possible: one simply 
does not compute the unneeded coefficients, which saves a factor of 2. However, for 
divide-and-conquer algorithms, it is less obvious to see what savings are possible,
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Algorithm 7 TranMul(A, C, n)Transposed multiplication

Input: A, C, n, with deg(A) <  n and deg(C) <  2n — 1, where the parameters (k, £). 
Output: B  =  CAt 

1: if n <  (k — 1) then
2: return CAt naive transposed multiplication using (3.6)
3: end if
4: h =  [(n +  k — l)/k\, h' =  n — (k — 1 )h 
5: for i= 0 to k — 2 do 
6: Ai =  slice(A, ih, h)
7: end for
8: Ak~i =  slice(A, (k — 1 )h, h!)
9: for i= 0  to 2k — 4 do 

10: Ci — slic e(C, ih , 2 h — 1)
11: end for
12: C 2fc_3 =  slice(C, (2k — 3)h, h +  h' — 1)
13: C2k- 2  =  slice(C, (2/c — 2)h, 2hi — 1)
14: compute the linear combinations Lo, o f  A0, . . .  , Ak~i 
15: compute the transposed linear combinations N0, . . . ,  of C0, . . . ,  C2k-2 , with 

iVt truncated modulo x 2ei~l 
16: for ¿=0  to l  — 1 do  
17: Mi =  TranMul(Lj, N t,ei)
18: end for
19: compute the transposed linear combinations B 0, . . . ,  B k -i  of M 0, . . . ,
20: return B0 +  • • • +  Bk-\x^k~^h

since the coefficients in the result are obtained as linear combinations of a whole set 
of intermediate products. It turns out that a divide-and-conquer approach is possible 
here too, but using a different division pattern, using the idea of decimation [42], 
introduced now.

Given k >  2, n >  0 and i in { 0 ,1, ■ ■ ■ , n +  k — 1}, we define

hi =  [(n +  k — 1 — i)/k\. (3.7)

Then, if we consider a polynomial

A =  a0 +  aix H------- h o„_ ix " _1

as above, we will denote by A* =  decimation(A, i. hi) the polynomial

Ai — ai T O'j+feS' T • ■ • T 1 >
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which keeps one of every k coefficients of A, starting from Oj. The definition of hi is 
such that i +  (hi — 1 )k < n — 1, whereas the next index i +  hik is >  n, so it is useless 
in Ai. Thus, we have

A =  A0(xk) H------- \-xk lAk_i(xk).

Example: Karatsuba multiplication. Let us show how to use this idea on the 
easiest meaningful example, Karatsuba multiplication for polynomials of degree less 
than 4. Consider

A =  o0 +  aix +  a2x 2 +  a3x3 and B = b0 +  bix +  b2x2 +  b3x3.

The short product of A and B  is

C  =  AB  mod x4 =  Cq +  C\X +  c2x 2 +  c3x3.

Define now

A0 =  a0 +  a2x, A-i =  ax +  a3x, B0 =  b0 +  b2x, Bx =  bi +  b3x,

so that
A =  A0 (x2) + xA i(x2), B =  Bo(x2) +  x B i {x 2)\ 

Aq,A\,Bq, B i are the decimations introduced above. Let also

Co — AqBq, Ci — AqBi +  A\Boi C2 — A\B\.

This implies

C =  AB  mod x4 =  Cq{x2) +  xC\{x2) +  x2C2(x2) mod x4.

To compute a product of the form xlCi(xk) mod xn, it is enough to compute C\ mod 
xhi, with hi =  [(n +  k — 1 — i)/k\ as in Equation (3.7), since this gives us all the 
coefficients that we need. Here with n = 4 and k =  2, this means that we only need 
to compute recursively

C0 mod x2, Ci mod x2, C2 mod x.
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To compute them, we use Karatsuba’s formula. If we did not compute modulo powers 
of x, we would compute

N0 — AqBq, Ni — (Ao +  A\)(Bo +  B\), N2 — A\B\

and
Co =  No, C ^ N i - N o -  N2, C2 =  N2.

Because we do compute modulo these powers of x , we see that we need N0 mod x2, 
Ni mod x2, but also N2 mod x2, since it is used in C\. This gives us the truncation 
degrees we need to use in the recursive call.

The general case. Following the previous idea, we can use any divide-and-conquer 
algorithm to perform short multiplications. Using an algorithm of parameters (k,£), 
and given A and B with degree < n, we write

A = A0(xk) +  • • • +  xk~lAk_l{xk), B = B0(xk) +  • • ■ +  xk~l Bk-\{xk).

If we define C* =  Xlr+s=i ArBs, we see that

C =  AB mod xn =  Co{xk) ----- +  x 2k~2C2k~2(xk) mod xn.

As said before, it is enough to compute each Ci mod xhi, with hi =  [_(n +  k — 1 — 
i)/k\. To obtain them, recall that our divide-and-conquer algorithm computes some 
products No, . . . ,  A^_x. By inspecting the linear combinations we perform to obtain 
C o,. . . ,  C2k- 2 from N0, . . . ,  Ng-i, we can deduce integers gi such that N{ should be 
computed modulo x9i: gi =  hio, where i0 is the largest index such that Ni contributes 
to Cio. Using this remark, we obtain Algorithm 8.
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Algorithm 8 ShortMul(A, B, n) Short multiplication algorithm

Input: A, B,n, with deg(A) < n, deg(B) < n, with h and hi satisfy Eq.(3.7), with 
the parameters (k,£).

Output: C =  AB  mod xn 
1: if n =  1 then 
2: return AB
3: end if
4: for i=0 to k — 2 do 
5: Ai =  decimation(A, i, hi)
6: end for
7: for i=0 to k — 2 do 
8: Bi =  decimation(.B, i, hi)
9: end for

10: compute the linear combinations Lq, . . . ,  Le-i of Aq, . . . ,  Ak-1 
11: compute the linear combinations Mo, . . . ,  Mg-i of Bo, . . . ,  B^-i 
12: for ¿=0 to £ — 1 do
13: Ni = ShortMul(Lj mod x9i,Mi mod x9i,gi)
14: end for
15: compute the linear combinations Co, . . . ,  C2fc-2 of N0, . . . ,  A^_i, truncating Ci 

modulo xhi
16: return C =  C0 {xk) + xC ^x1*) +  • • • +  x2k~2C2k- 2(xk)

Analyzing the complexity of short product algorithms is difficult. The Master 
theorem shows that starting from a divide-and-conquer algorithm of parameters (k, £), 
the complexity is 0 (n logk̂ ) . This cost is thus the same as that of a plain product, up 
to the constant factor in the 0().  Besides, the 0()  notation only gives an upper bound, 
whereas we would need sharper inequalities to compare short and plain products.

For Karatsuba’s multiplication, Hanrot and Zimmermann [19] proved that the 
ratio between the number of multiplications in a short product and in a plain product 
varies between 3/5 and 1; however, this does not count additions. Moreover, if we 
introduce a threshold such as 16 under which we use the naive short product, this 
conclusion does not hold anymore: the number of multiplications is reduced by 10% 
to 40%.

To summarize, we will not quantify the gain brought by using short products, 
since this kind of analysis is very complex. The cost of short product in degree less 
than n will be written m(n), and we will remember that m(n) <  M(n).
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Previous work. The idea of short product goes back to Mulders [28], and was 
studied in detail by Hanrot and Zimmermann in [19]. Mulders’ algorithm proceeds 
differently, by cutting the polynomial into non-equal slices; the length of the slices 
determines the complexity. That algorithm was limited to Karatsuba multiplication.

Hanrot and Zimmermann introduced a variant using the idea of decimation, and 
gave details for Karatsuba multiplication. They mention briefly an extension to Toom 
multiplication, but do not indicate that this approach can be applied in all generality, 
and how to do it, as we do.
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Chapter 4

Code generation

In this chapter, we describe our work on code generation for polynomial multiplica
tion. We only consider divide-and-conquer algorithms, with the convention of Sec
tion 3.1; recall that this includes algorithms such as Karatsuba’s or Toom’s, but not 
Fast Fourier Transform algorithms (that case is developed by Li et.al. and Filatei 
et.al. in detail in [24, 14]). Some effort is put on producing optimized code, but no 
attention was paid to write cache-friendly code or exploit parallelism.

4.1 Coefficient arithmetic

Our focus is on coefficient types that can be represented using machine data types; 
namely, we consider the following:

• polynomials with double coefficients;

• polynomials with coefficients in Z /pZ, where p is an integer (typically a prime) 
that fits in a machine word; these will be called modular coefficients.

In the latter case, since our implementations are all done on 64 bit platforms (Intel 
Core2 or AMD 64), long machine words can hold up to 64 bits. We will actually 
slightly reduce this bound, for reasons explained in the latter sections.

While the double case is widely used in numerical analysis, the modular case is 
a basic ingredient for symbolic computation, and we showed in the introduction an 
application that required it. The 64 bit limit is not a very strong restriction: multiple 
precision integers arithmetic can be implemented on top of 64 bit arithmetic, using 
the Chinese remainder theorem. This aspect is developed in [24]; we will not develop 
it here, and limit ourselves to the 64 bit case.
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4.1.1 Double coefficients

To support this coefficient type, very little implementation effort is needed: we plainly 
use the double type in our code, with operations +, —, *, /.

Due to cancellations, operations on double’s do not satisfy the ring axioms of 
associativity or distributivity. Hence, formally, double coefficients do not enter in 
our framework. Nevertheless, we decided to support this type for our multiplication 
implementations, for the following reasons:

• We want to compare the running times between double and modular coeffi
cients. Such comparisons have already been performed for linear algebra algo
rithms [13]; while the underlying techniques were different, they showed that 
modular operations can be almost as efficient as the operations with double. 
We want to see if this conclusion carries over to polynomial operations.

• We want to measure experimentally to what extent divide-and-conquer algo
rithms suffer from precision loss. Theoretical analyses are pessimistic, and we 
wish to test whether this is indeed the case in practice.

Contrary to the examples given in [24, 14], we did not dedicate efforts to write 
SSE2 code by ourselves. We left this task to the compiler.

4.1.2 Modular arithmetic

Given a positive integer p, modular arithmetic modulo p means that we maintain all 
results reduced modulo p:

• the set of values we handle is Z/pZ — {0 , . . .  ,p — 1};

• addition, subtraction and multiplication are done as integer operations, but the 
result is reduced to the range (0 , . . .  ,p — 1} by means of Euclidean division;

• inversion of m modulo p is possible only if m and p have no common factor; 
if so, the inverse of m modulo p is found by means of the extended Euclidean 
algorithm.

The remainder of an integer a through Euclidean division by the integer p will be 
written a mod p.

To represent the elements {0 , . . .  , p — 1}, we use the unsigned long integer data 
type. Then, our main focus is on the operations +, — and * (inversions and divisions



play a less important role in our code). The straightforward approach to implementing 
these operations modulo p consists in applying first the corresponding operation as 
integers, then performing the reduction modulo p.

There is one drawback, however: in C, reduction of an unsigned long a modulo 
p can be implemented using the expression a%p. As it turns out, this instruction 
is practically very slow (about one order of magnitude slower than multiplication), 
so alternative solutions are needed, since performance is an issue. We present the 
solutions we used for the various operations we need to perform.

Modular addition. For additions, simple tests would seem to be sufficient. Indeed, 
to compute the modular addition a +  b mod p, the algorithm could be implemented 
as in Algorithm 9.

Algorithm 9 Modular addition 

Input: p and a, b in { 0 , . . . ,  p — 1} 
Output: c =  a +  b mod p 

1: c =  a +  b 
2: if c > p  then 
3: C =  C — p

4: end if 
5: return c

This avoids the call to the reduction operator, but introduces a conditional state
ment. Again, since performance is an issue, we wish to avoid branchings, since they 
can affect the CPU instruction prediction. On our platforms, the construction of Al
gorithm 10 below is a more efficient workaround; it is taken from the library [35], and 
adapted to 64 bit integer representation. Here, we need to switch from pseudo-code 
to actual C language.

Algorithm 10 Efficient modular addition

Input: unsigned long p, unsigned long a, unsigned long b, 
with 0 <  a, b < p

Output: unsigned long c, with c =  a +  b mod p 
1: unsigned long c=a+b 
2: long d=c-p 
3: long e=d+(d»63)& p 
4: return (unsigned long) e

Let us justify this procedure. We know that c =  a +  b is always in { 0 , . . . ,  2p — 2}, 
so that d =  c — p is in { — p , ... ,p — 2}. Using the sign bit of d as a mask, we see that
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the signed integer d »  63 is either — 1 if d < 0, or 0 if d >  0. Thus, the logical and 
(id »  63)&n is either p if d < 0, or 0 if d > 0. As a consequence, the output is always 
in { 0, . . .  ,p — 1}, as needed.

M odular subtraction. Subtractions follow the same pattern as additions. To 
compute a — b mod n, the algorithm could be implemented as follows:

A lgorithm  11 Modular subtraction 

Input: p and o, b in { 0 , . . . ,  p — 1} 
O utput: a — b mod p 

1: c =  a — b 
2: if c < 0 then 
3: c =  C +  p
4: end if 
5: return c

Here, c =  a — b is always in { —(p — 1) , . . .  ,p — 1}, so that at most one addition of 
p is needed; this proves correctness. As before, however, we want to avoid the test; 
we use a method similar to the one for addition, given in Algorithm 12. Again, we 
use C syntax.

A lgorithm  12 Efficient modular subtraction

Input: unsigned long p, unsigned long a, unsigned long b, 
with 0 <  a, b <  p

O utput: unsigned long c, with c =  a — b mod p 
1: unsigned long c=a-b 
2: long d=c+(c>>63)&p 
3: return (unsigned long) d

Here, c =  a — b is always in { — (p — 1) , . . .  ,p — 1}, and c 63 =  —1 if c < 0 and 
0 otherwise. Thus, as before, (c 63)hp is either p if c <  0, or 0 if c > 0. As a 
consequence, the output is always in { 0, . . .  ,p — 1}, as needed.

M odular m ultiplication by small constants. We will see in the next paragraphs 
that modular multiplication is a complex operation. Hence, when multiplications by 
small constants are needed, some adapted code can be used with profit. For instance, 
the computation of 2a mod p is just the addition of a with itself, so the addition code
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can be used; besides, in this case, in Algorithm 10, the addition c =  a +  a can be 
replaced by c =  a <C 1.

As another example, the computation of 4a mod p can be done as follows: first, 
a is multiplied by 4 as an integer through the instruction c =  a <C 2. Now, c is in 
{ 0 , . . . ,  4p — 4}; the reduction of c modulo p can be done using a generalization of 
the previous examples. We write the code using tests in Algorithm 13; as we did 
previously, one can deduce test-free code using bit signs as masks.

Algorithm 13 Modular multiplication by 4

Input: p and a in {0,.  
Output: 4a mod p

1: c =  4a

■■,P~ 1}

2: d = C — 2p 
3: if d < 0 then

d  is in { —2p, ...., 2p -  4}

4: d  =  d +  2p 
5: end if

d  is in { 0, . . . ., 2p -  1}

6: c" =  d - p  
7: if c" < 0 then

c" is in { — p , . .. , p -  1}

8: c" =  c" +  p 
9: end if 

10: return c".

d' is in { 0,. • • ,P -  1}

In our multiplication code, we use such adapted multiplication operations when 
we perform the 3 linear combinations, for multiplication by powers of 2 and by 3.

Modular multiplication in general. The general case of modular multiplication 
a,b t-* ab mod p is a delicate operation. First, a and b are multiplied as long integers; 
then, the result c =  ab must be reduced modulo p. Remark that if p is 64 bits 
long, c can be 128 bit long: we will discuss how to handle integers of such size. 
Then, as before, we wish to avoid the modulo operator %: following [26], we will use 
Montgomery multiplication to solve this issue.

Previous implementations [35, 24, 14, 13] rely on computations using double 
coefficients as intermediate results. Indeed, the Euclidean division of c by n can be 
written as

c =  qp +  r,

where r € { 0 , . . .  ,p — 1} is the remainder we want. Using double coefficients, one 
can compute c/p in floating point representation. Truncating to the nearest integer 
gives an integer q' close to q; knowing it, one can recover r, up to dtp. However, on
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a 64 bit machine, as explained by Giorgi [15], this approach restricts p to be at most 
252.

As in [26], our implementation uses integer operations. However, our modulus p 
is now allowed to be 64 bit long. To handle 128-bit long products, we use a data type 
specific to the gcc compiler, __uintl28_t, which encodes 128 bit unsigned integers. 
As the machine instruction level, the multiplication of two unsigned long arguments 
into a __uintl28_t result is handled by means of a single multiplication; the result is 
stored in two 64 bit registers. Thus, there is no need for us to write assembly code; 
the assembly code obtained this way shows satisfactory performance.

To describe modular reduction, we will assume that p is an even number. Our so
lution uses Montgomery multiplication [27], which allows for operations using integers 
only. Our explanations below are dedicated to 64 bit integers, though the algorithm 
carries over to arbitrary length.

Montgomery’s algorithm does not compute the remainder c mod p , but c/264 mod 
p; we will explain in the next section our workaround. Montgomery’s algorithm 
precomputes the number p1 =  — 1/p mod 264.

Algorithm 14 Montgomery multiplication

Input: p,p', o, b with a,b in {0 , . . .  ,p — 1} and p' =  —1/p mod 264 
Output: a5/264 modp 

1: c =  ab
2: q =  (c mod 264)p' mod 264
3: t =  (c +  pq)/264
4: if t >  p then
5: t =  t — p
6: end if
7: return t

We refer to the original article for the correctness proof. Here, we rather insist 
on the key advantages of this algorithm: it replaces computations modulo p, which 
are difficult, by computations modulo 264, which are easy to implement in C. The 
implementation in [26] uses special tricks for special forms of p. We do not use such 
tricks; we follow the above pseudo-code, so that each modular multiplication performs 
3 long integers multiplications.

Division by constants. Some algorithms, such as Toom’s, require multiplication 
by constants such as 1/2 or 1/3 that are not integers. When the data type is double, 
we simply use a double approximation. When the data type is unsigned long, a
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constant such as 1/3 will be replaced by its image modulo p, which is obtained by 
applying the extended Euclidean algorithm with 3 and p.

As for multiplication, however, faster solutions are available for special constants, 
such as 1/2. Suppose indeed that we want to compute a/2 mod p, where p is odd. 
Let us write p =  2k +  1; then, k =  —1/2 modulo p, so that —k =  1/2 mod p. Let us 
then write a0 =  a mod 2 and ai =  a div 2, so that a =  2ai +  a0. This implies that 
a /2 =  ai +  a0/2. Thus, if a0 =  0, a/2 =  ai mod p and if a0 =  1, a/2 =  ax — k mod p. 
Thus, we have replaced the division by 2 modulo p by a shift and an addition.

4.2 Polynomial arithmetic

In this section, we describe our code generation techniques for polynomial arithmetic. 
We saw in Chapter 3 that a divide-and-conquer algorithm of parameters (k,£) for 
polynomial multiplication is specified by the operations it performs for the case of 
polynomials with k terms. This itself can be described by three linear graphs, that 
describe the three series of linear combinations the algorithm performs.

We developed a Java program that generates C code for such algorithms. Ad
jacency matrices are stored in directories with names such as kara, toom, etc. On 
input such a triple of adjacency matrices, the code generator produces C code for the 
following operations:

• plain multiplication

• transposed multiplication

• short multiplication

• square (given A of degree < n, compute A2)

• short square (given A of degree <  n, compute A2 mod xn);

the two latter are specialized versions of previous ones, expected to be slightly faster 
(e.g., we avoid computing twice the same linear combinations, etc). The data type 
used for all these operations can be chosen to be either double or unsigned long.

Suppose for instance that we consider the Karatsuba algorithm; the code generator 
reads the corresponding three adjacency matrices in a directory called kara. The three 
input files matrices are

5 5 6
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CN 2

CO

00 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 -1 1 -1 0 0 0 0

0 0 1 0 0 0 0

In each case, the first numbers are the number of vertices in the graph, the number 
of inputs and the number of outputs of the graph.

Given these matrices, for a chosen multiplication type, and for a chosen data 
type, our code generator creates several files. We give an overview of this process for 
the case of plain multiplication, with unsigned long data type (all other cases are 
processed similarly). Concretely, the following output will be produced:

• a file kara_unsigned_long.c containing the top-level function: this function 
allocates temporary memory to be used as a workspace in the recursive calls, 
precomputes some constants if needed (more explanations are given below), 
performs a scaling on one of the arguments (more explanations are given below), 
and calls the recursive function.

• a file kara_unsigned_long_rec. c containing the main recursive function; this 
function performs the first two linear combinations, the necessary recursive calls 
and the final linear combinations.

• files kara_unsigned_longl. c, kara_unsigned_long2 .c  and kara_unsi- 
gned_long3. c; each of them contains a function that performs the correspond
ing linear combination (respectively first, second and third one).

We continue with describing these files in more detail.

Top level function. The following shows the source code produced for the top- 
level function (the layout was rearranged to fit this page, and #include’s have been 
removed). For this function, little optimization effort is needed, since it is rather 
simple.

void  kara_unsigned_long(unsigned long *  r e s t r i c t   C,
const unsigned long *  r e s t r i c t   A,
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const unsigned long * _restrict_ B,
const unsigned long ip, const unsigned long jp,

const unsigned long p, int N){
int i;
unsigned long *tmp_A=(unsigned long *) malloc(N*sizeof(unsigned long)); 
for(i=0; i<N; i++)

tmp_A[i] = mul_montgomery(p, ip, A[i], jp); 
int 1 = (long) (4*N*2/((double)1));
unsigned long *wk = (unsigned long *) malloc(l*sizeof(unsigned long)); 
kara_unsigned_long_rec(C, tmp_A, B, wk, ip, p, N); 
free(wk); 
free(tmp_A);

>

The integer N is such that deg(A) < N  and deg(J3) < N. The pointer wk points to 
a temporary workspace that will be used by the recursive function; the amount of 
space needed is determined by the code generator during the code generation.

The case of unsigned long coefficients requires extra operations compared to 
double coefficients:

• Remember that after all linear combinations are done, the entries of A should 
be multiplied by those of B. However, as said in Section 4.1.2, we use Mont
gomery’s algorithm for the multiplication, so that the result we obtain will be 
A B j 264 mod p. To solve this, we create a temporary array tmp-A which stores 
a copy of A, where all elements are premultiplied by 264 mod p. There is one 
last difficult point: since multiplication by 264 mod p will be done with Mont
gomery’s algorithm, we actually precompute the value f  =  2128 mod p. Thus, 
the Montgomery product of f  by A[i] computes

A[i]j'/2 64 mod p =  A[ï]2128/ 264 mod p =  A[i]264 mod p.

• Another task, not needed in the case of Karatsuba multiplication, is the pre- 
computation of constants. Suppose indeed that the linear combinations involve 
multiplication by numbers such as 1/3. Since p is not known at compile-time, 
the top-level function will have to compute the inverse of 1/3 modulo p; then, 
it will pass it as extra arguments to the recursive calls.
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Recursive function. The following shows the source code produced for the recur
sive function. One sees three recursive calls, the three linear combinations, as well as 
the final addition mentioned in Section 3. When the length N  is less than a certain 
threshold (17), we switch to the classical multiplication.

void kara_unsigned_long_rec(unsigned long* _restrict_ C,
const unsigned long * _restrict__ A,
const unsigned long * _restrict__ B,

unsigned long * _restrict_ wk,
const unsigned long ip, const unsigned long p, int N){ 

int i, j; 
if (N<17){
mul_unsigned_long(C, A, B, ip, p, N); 
return;

}
const int h = (N+(2-l))/2; 
const int g = 2*h-l; 
const int r = N-h*2; 
const int lengthGO=h + r*0;

const int lengthM2=g + r*2;
kara_unsigned_longl_all(wk + h*0, A, A + h, h+r*l, ip, p, r); 
kara_unsigned_long2_all(wk + h*l, B, B + h, h+r*l, ip, p, r); 
unsigned long * new_wk = wk+h*4;
kara_unsigned_long_rec(C, A, B, new_wk, ip, p, lengthGO); 
kara_unsigned_long_rec(wk + h*2, wk + h*0, wk + h*l, new_wk, ip, p,

lengthGl);
kara_unsigned_long_rec(C + h*2, A + h, B + h, new_wk, ip, p,

lengthG2);
kara_unsigned_long3_all(wk + h*0, C, wk + h*2, C + h*2, g+r*2, ip,

p, r);
for (i=2*h*0+lengthM0; i<h*2 && i<2*N-l; i++)

C[i]=0;
for (i=2*h*l+lengthM2; i<h*4 && i<2*N-l; i++)

C[i]=0;
add_in_place_unsigned_long(C + h*l, wk + h*0, ip, p, lengthMl);

}



46

Some variables are defined (such as lengthM2, which stores a length), but not used; 
this is not a problem. One another hand, some optimization efforts are needed, 
in particular to avoid using too much temporary memory. We use the following 
allocation algorithm.

• When an output of the linear combinations is actually a copy of an input, we 
do not perform any operation: we simply reuse the input instead, in all other 
operations. Here for instance, the first linear combination

Lq — do, L\ — cio +  Oi, L 2 =  ai

only computes one “real” output L\. The corresponding function will only 
perform the addition.

• The intermediate results are stored in temporary memory, in successive slots of 
length either h =  [(N +  1)/2J or 2h — 1, starting from the address given by the 
pointer wk.

When one can determine that an memory area can be reused, we reuse it: here, 
after the recursive calls to the multiplication function, the first 2h entries of the 
workspace have become useless; we reuse them for the last linear combination.

• We can thus determine at code generation how much workspace will be needed 
in a single call to the function kara_unsigned_long_rec in length iV; here, it is 
at most 4/i <  2N. The total amount for length N  takes into account all levels 
of the recursion: here, it is at most

N N
2N +  2— +  2— +  • • • <  4iV.

2 4 ~

In general, if the call in length N  uses rN  memory space, the overall amount 
will be

N N k
r N + r j + r ¥  + - - - - rNr ^ i -

This is the quantity which is used by the top-level function.

Linear combinations. We generate three linear combination functions; each of 
them has to perform one linear combination of polynomials. This is rather straight
forward, as long as we are careful with the fact that not all polynomials may have 
the same length. Thus, there are to steps:
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• the main loop, which goes up to the minimal length of the polynomials involved: 
for the first addition in Karatsuba, one polynomial has length h and the other 
h! < h, so the main loop will go up to h

• a fix-up step, where we finish by taking care of the length differences: this step 
concerns at most k coefficients (which is 2 for Karatsuba).

The key part to optimize is the main loop. Here is the code generated for the 
Karatsuba case, for the first linear combination. This operation is simply an addition, 
so our code generator uses Algorithm 10 for modular addition.

void kara_unsigned_longl(unsigned long * __restrict_ bl,
const unsigned long * __restrict_ aO,
const unsigned long * __restrict__ al,

const unsigned long ip, const unsigned long p, int N){
int i;
long __s_tmp; 
for(i=0; i<N; i++){
_s_tmp = (long)(aO[i]) + (long)(al[i]) -p;
bl[i] = _s_tmp + ((__s_tmp»63)&p);

>
}

To optimize for speed, we implemented the option of unrolling these loops manu
ally:

• we write specialized functions kara_unsigned_longl_l up to kara_unsi- 
gned_longl_16 (assuming we unroll up to length 16), each of which dealing 
with fixed-length arguments;

• then, the function in length N  follows the following pattern:

— while N >  16, we call kara_unsigned_longl_16 and let N = N — 16

-  when we reach N < 16, call the corresponding function kara_unsi- 
gned_longl_N

Naive algorithm. Finally, we implemented the naive algorithm for the case of 
degrees up to 16. Our code for this case is generated automatically as well, so as to 
unroll loops: we found that the compiler we used was not doing a very good job by 
itself (due probably to the structure of the two nested loops of the naive algorithm).
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For the naive algorithm, we do not perform modular reduction after each step: we 
first compute the whole result without any reduction, and apply the reduction in the 
end. In degree < n, this reduces the number of reductions from n2 to n. However, 
this slightly reduces the possible size of the modulus: only 60-bit modulus can now 
be used.

4.3 Experimental results

This section gives the results of experiments made using our code. The experimen
tation platform is a Intel Core2 Duo CPU T7300 with 4Gb RAM; since the CPU 
clock speed can fluctuate, it was set to 800Mhz. Two compilers were used, gcc (the 
default choice) and icc ;  all parts of the code handling 128 bit integers were compiled 
with gcc, since ic c  does not support this type. The timings are in seconds, for 500 
repetitions of the same computation.

Our experiments use Karatsuba’s and Toom’s multiplication algorithms; for Toom, 
we took k =  3, with evaluation points 0,1, —1, 2, oo. We also use another less well- 
known algorithm of parameters (3,6) due to Winograd:

• Lq = GO) L\ =  Oo + al, ¿2 = Uo + a2> ^ 3  — al + 02) L4 =  Oi, L5 = CI2

• Mo = b o , M i = bo + 61, M2 = 60 + 2̂1 M? = ¿>1 -(- ¿>2, M4 = b i , M5 = 62

• No =  LqMq, . . . ,  IV5 =  L5M5

•  Co =  No, Ci =  N1 — N0 — N4, C2 =  N2 — N0+N4 — N5, C3 =  N3 — N4—N5, C4 =  N$

The complexity of Karatsuba’s algorithm is 0 (n log2U)) ~  0 (n 159); that of Toom’s 
algorithm is O(nlog3̂ )  ~  0 (n 1A7). The complexity of Winograd’s algorithm is 
0 (n logA6)), so it should be slower than Karatsuba’s and Toom’s. However, the sim
ple structure of the linear combinations suggested that it would be worthwhile to 
experiment with it.

For Karatsuba’s and Winograd’s algorithms, the linear combinations are easy 
to perform. More work is needed to find a short instruction sequence for Toom’s 
algorithm. We mainly used an optimized form due to [3]; we will also give timings 
obtained with a more naive version.

Comparison between divide-and-conquer algorithms. We show in Figure 4.1 
a comparison between the algorithms of Karatsuba, Toom and Winograd, for plain
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multiplication, using unsigned long data types (other types of multiplication behave 
similarly). As predicted, Winograd’s algorithm does not perform very well. More

Karatsuba
Toom

Winograd

degree

Figure 4.1: Comparison between divide-and-conquer algorithms

surprisingly, Toom’s algorithm is competitive with Karatsuba’s for small degrees; it 
takes the lead for degrees around 1000.

Com parison between data types. We show in Figure 4.2 a comparison between 
computations using unsigned long and double data types; we use Karatsuba’s algo
rithm, for plain multiplication. As expected, operations with double coefficients are 
faster, but only by a factor of about 2, so that the modular arithmetic is close to being 
as fast as floating-point one. Again, we stress that the main reason we implemented 
a version for double coefficients of our code was specifically to perform this kind of 
comparison.

C om parison between m ultiplication types. Figure 4.3 gives a comparison be
tween plain, transposed, square, short and short square multiplications. We use 
unsigned long data types and Karatsuba’s algorithm; the results obtained with the 
other multiplication algorithms are similar. These graphs show that the transposed 
algorithms are slightly faster than their plain counterpart; the reasons are unclear 
to us as of now. The time for a short product is about 60% to 70% that of a plain 
product, similarly to what was observed in [19]. Finally, the square product and the 
short square are faster than their non-square counterparts, but not spectacularly so.
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unsigned long 
double

Figure 4.2: Comparison between data types

plain 
transposed 

square 
short 

short square

Figure 4.3: Comparison between multiplication types

Com parison between com pilers. We show in Figure 4.4 a comparison between 
the timings obtained by gcc and ic c  for the plain multiplication, using Karatsuba’s 
algorithm and double data types (recall that for the unsigned long data type, ic c  
does not support 128 bit integers). As it turns out, there is a slight advantage for 
icc,  by up to 7% at best.
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Com parison between loop  unrolling strategies. Next, we give in Figure 4.5 a 
comparison between computations using manual loop unrolling or letting the compiler 
do it for us. We use Karatsuba’s algorithms, for plain multiplication, with unsigned 
long data type. As was to be expected, the compiler does a good job at unrolling 
the simple loops used in divide-and-conquer algorithms; we observe no significant 
difference in the timings (the curves completely overlap).

unrolling 
no unrolling

Figure 4.5: Comparison between loop unrolling strategies
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C om parison between linear graphs. To understand the cost of the linear com
binations, we show in Figure 4.6 a comparison between two ways of writing the third 
linear graph used in Toom’s algorithm: the “optimized” one is the one we used by 
default, due to Bodrato et.al. [3]; the “naive” one is given in Figure 3.2 of Chapter 3. 
The graphs differ in the number of operations performed (the optimized one performs 
only one division by 3, whereas the naive one has one division by 3 and one division 
by 6). We use plain multiplication, with unsigned long data type. The advantage 
of using the optimized graph clearly appears.

degree

optimized graph 
naive graph

Figure 4.6: Comparison between linear graphs

Com parison with other systems. We compared our implementation with the 
fastest software known to us. For primes of size 64 bit, the library NTL [35] and the 
computer algebra system Magma [4] are available. NTL uses two representations for 
modular computations, l_zz for small primes and ZZ for larger ones. However, the 
primes we use in our benchmarks are too large for the l_zz type, which is limited to 
52 bit. Thus, Figure 4.7 gives running times for Magma and for the ZZ data type in 
NTL. On the degree range we consider, our implementation is by far the fastest.

If one wants to consider smaller primes, other libraries come into play, in Fig
ure 4.8. In addition to the l_zz data type in NTL, we can now make comparisons 
with the libraries modpn [25] and FLINT [20], which are limited to 32 bit primes as of 
now. Remark that modpn is oriented towards FFT multiplication, so that it supports
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Figure 4.7: Comparison with other systems

only special values of p called “FFT primes” . As expected, it performs better than 
our code (FFT is faster when applicable), but our code is quite close.

flint 
ntl Izz 

modpn 
Toom

Figure 4.8: Comparison with other systems, 32 bit primes

A ccuracy  o f  double com putations. The last question we consider is whether 
it makes sense to use such fast algorithms with double coefficients. We show in 
Figure 4.9 the relative error for a fairly typical example of the applications wre have in
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mind, the product e2, where e =  ^ ¿= oxV*' is a truncation of the exponential power 
series. We show here the relative error on the coefficients up to degree 150, for the 
algorithms described up to now. Toom’s algorithm performs very badly; Winograd’s 
comes second, and Karatsuba’s relative errors are smaller, though too large to make 
this practical. By comparison, we also show' the relative error obtained using the naive 
algorithm: it is almost zero. Our results confirm previous ones: double coefficients 
are not well-suited to most divide-and-conquer algorithms.

Karatsuba 
W i nograd 

Toom  
Naive

Figure 4.9: Relative error of double computations



Chapter 5

Newton iteration for differential 
equations

5.1 Introduction

This chapter reviews several uses of Newton iteration, with the aim of computing 
solutions of differential equations as power series. As intermediate steps, we present 
a sequence of applications of Newton iteration:

• computing inverses of power series,

• computing exponentials of power series,

• computing solution of first order linear differential equations,

• and finally computing solutions of first order non-linear differential equations.

We focus on the simplest case of equations of the first order: higher order equations 
are dealt with using more involved algorithms [39, 5]. The contents of this chapter 
are well-known; references are given within the text.

Power series. A power series is an infinite “formal” sum of the type

¿>0

with coefficients fi in a ring R. The set of all such power series is written A[[x]]. 
Since /  is an infinite object, we can only handle truncations of it on a computer, as



the finite sums
/  mod xn =

0 < i < n

remark that the notation /  mod xn extends the one used for polynomials up to now.
Power series can be added, multiplied, etc. Since the truncations /  mod xn are 

actually polynomials, we can use the fast algorithms seen before to multiply them. 
In particular, truncated multiplication

f  =  gh mod xn =  (g mod xn)(h mod xn) mod xn

can be done using the short multiplication of Chapter 3.

Operations on power series. A major difference between power series and poly
nomials is that power series can be inverted. If the constant coefficient / 0 is not zero, 
there exists a power series g such that fg  — l\ for instance, with /  =  1 — x, g is given
by

g =  l-\-x + x2 + x3 +  x4 +  -- -

More generally, one can compute other functions of /  such as the exponential of /

f2 s3
exP (/ ) =  1 +  / “b -b H----- ,

assuming that / 0 =  0 and that 1, 2 ,3 ,4 ,... can be inverted in R. If R is a finite field 
Z /pZ , with p a prime number, we cannot compute infinitely many terms of exp(/), 
since p =  0 in R. However, it still makes sense to compute the first p terms of exp( / )  
in this case.

Even more generally, one can compute power series solutions of differential equa
tions: for instance, the exponential of /  is a solution of

y' =  fv-

More complex differential equations can be considered. In this chapter, we treat 
differential equations of the form

G (x , f ’J )  =  0,

for which we compute power series solutions /  mod xn, given suitable initial condi-
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tions. For instance, given the differential equation over Z/101Z

(x6 +  x4 +  l ) f ' (x ) 2 =  1 +  75f(x ) 4 +  16 /(x )6, /(0 )  =  0, / '(0 )  =  1,

we compute the solution /

f  =  x +  68a;5 +  66a;7 +  60a;9 +  84a;11 mod x 12.

This section present some previously known algorithms to perform the above compu
tations, using a symbolic form of Newton iteration. The following paragraph provides 
a simple, yet fundamental, argument to show that such algorithms feature running 
times of the form 0(m (n)), with the notation of Chapter 3.

A  useful property of the functions M and m. We defined in Chapter 3 some 
functions M and m such that polynomials of degree less than n can be multiplied 
in M(n) operations (resp. multiplied modulo xn). To understand the running-time 
properties of Newton’s iteration, we will use the following simple lemma on these 
functions.

Lemma 1. Suppose that a > 1 is such that

M(n) <  —M(2n) and m(n) <  —m(2n) 
a a

and let (5 =  a/(a — 1). Then, for k > 0,

M(l) +  M(2) +  • ■ • +  M(2fc) < pM(2k)

and
m(l) +  m(2) +  • • • +  m(2fc) <  /3m(2fc).

Proof. For M, one successively obtains

M(2fe- 1) <  iM (2 fc), M(2fc_2) < —t-M(2^), . . .  M(2fc' /l) <  ^-M (2fc).
a a1 ah

Summing over all h shows

M(l) +  M(2) +  • • ■ +  M(2fc) <  (1 +  -  +  -1  +  • ■ • )M(2fc),
a a*

and the sum on the right is bounded by /3M(2fe). The proof for m is similar. □
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Remarks:

• This lemma shows that the sum of the costs M(^), where Ei =  2* for i =  0 , . . . ,  k, 
is bounded by (3 times the cost of the last step M(t^) =  M(2fc). We detailed the 
proof to show the basic idea used to obtain this result.

In the further sections, we apply a slightly stronger result, to the case where 
Ei are not necessarily powers of 2. The idea remains similar, but the proof 
becomes more technical: we will rely on Exercise 9.6 in [43], which justifies the 
same result in the general case.

• For M(n) of the form M(n) =  cne, with e > 1, we can take a =  2e; this gives 
for instance a =  3 and ¡3 =  3/2 for Karatsuba multiplication. The same holds 
for m.

In all this chapter, the functions M and m and a, (3 are fixed, once and for all. For 
the moment, the operation count is naive: the next chapters will show what savings 
are possible.

5.2 Newton iteration in numerical analysis

In numerical analysis, Newton’s method is an approximation of zeros of a differen
tiable function P  : R —> R [8]. The idea of this method is to linearize the equation, 
as illustrated in Figure 5.1:

• We start with an initial value xn, which is reasonably close to the true root x.

• The function is approximated by its tangent line. One computes the ^-intercept 
of this tangent line, which is the point xn+i.

• xn+\ will typically be a better approximation to the function’s root x than the 
initial value xn, and the method can be iterated.

From the current approximation xn, we can derive the formula for the next approxi
mation xn+i. We know from the definition of the derivative at a given point that it 
is the slope of a tangent at that point:

Hence,

p , _  A y  =  i W - 0
A x xn -  xn+i

P(xn)
p'(xny

(5.1)

%n+1 — %n (5.2)



59

Figure 5.1: Newton’s Iteration

As an example, consider the function P  : x i—> x 2 — 2, and let x0 =  2. The iteration is

x l - 2
Xn+l Xn

2xr

the first terms are
X0 = 2
Xi = 1.5
x2 = 1.416666666666666666
X3 = 1.4142156862745098039
X4 = 1.4142135623746899106
x5 = 1.4142135623730950488

The limit is \/2; we have indicated in bold face the correct digits of each approximate 
root. One sees that the number of correct digits approximately doubles at each 
iteration.

In the following sections, we will show how to use Newton iteration to perform 
symbolic computations. Instead of computing with floating-point numbers, we use 
formal power series-, in this context, we will observe the same phenomenon of doubling 
the number of correct coefficients.

5.3 Power series inverse

Let R be our ring of coefficients, and let

/  = 53 ̂  and 9 = 53 9iX%
i> 0 ¿ > 0
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be in R[[a:]], such that / 0 =  1 and g = 1/f. Given the coefficients of / ,  the coefficients 
go, gi, . ■ ■ of g can be computed by the formula:

9o ~ 7 o

The cost to compute g0 =  l / / o , . . .  ,gn using this formula is 0 (n 2). To do better, we 
use Newton iteration. Indeed, g is a solution of

P(g) - o, with P(S) = i-f.

Suppose that we only know g =  g mod xe. Applying Formula (5.2), and after simpli
fications, one deduces that

G =  g (2  -  fg) mod x2e

satisfies G =  g mod x21, see [43], For t  =  1, one lets g =  l / / 0. Then, applying the 
previous formula for £ =  1, 2 , . . . ,  we obtain inverses of /  modulo x2 ,x4 ,x8, . . . .  This 
result is classical; the idea appears in work of Sieveking [37] and Rung [23].

If we want 1/f modulo xn, where n is a power of 2, we obtain it directly in this [
manner. If we want 1/f modulo xn, where n is not a power of 2, we can compute <
it modulo xn>, where n' is the smallest power of greater than or equal to n, and 1
reduce the final result modulo xn. However, this approach computes too many terms.
Rather than computing unnecessary terms, the standard workaround [43, Ex. 9.6] is 
to compute the sequence 1/f mod x£i, where the sequence (A)i>o is defined backward 1
as follows. Starting from r =  [log2(n )], we let l r =  n; assuming U is defined, we let 1

• ¿t_i =  ti/2 if ¿i is even

• li-i =  (£{ +  l )/2  if ti is odd,

so that in both cases G <  2£t_1; and we choose the smallest that satisfies this 
property. One can prove that in this case, ¿i is given by the formula A =  [n /2r~r|.
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Algorithm 15 lnverse(f, n)
Input: /  in jR[[x]], n, /  such that coeff(/, 0) ^  0.
Output: g =  l / / m o d x Tl

1 t  =  1, i =  1, r =  |"log2(n)]
2 while £ < n do
3 if £ =  1 then
4 g =  l /c o e f f ( / ,0)
5 else
6 t =  fg  mod x2i short product, m{2£)
7 u =  2 — t 0 (£)
8 g =  gt mod x 21 short product, m(2£)
9 end if

10 £ =  \n/2r- ^ , i  =  i +  1
11 end while
12 return g mod xn

Lem m a 2. The cost of Algorithm 15 is 2/?m(n) +  0(n).

Proof. From Lemma 1, we easily obtain the result if n is a power of 2. The more 
general statement of the lemma is proved in [43, Ex. 9.6]. □

5.4 Exponential

The next task is to compute exponentials of power series. More precisely, given /  in 
Z?[[x]], we want to compute the “exponential-integral” of / ,  defined by

p 2

g =  exp (F ) =  1 +  F  +  '^r +  ^ r  +  '- ->

where F =  f  f  is the integral of /  with constant coefficient equal to zero. We mention 
a naive algorithm, then develop the fast version. Both algorithms use the fact that

g'/g =  f-
Rewriting the last equality as g’ =  fg, is it possible to compute the coefficients of 

g one after another, for a total cost of 0 (n2) to compute the first n of them: this is 
the naive algorithm.

The fast algorithm uses Newton iteration, in an indirect way. Assuming that we 
know only g =  g mod xe, we look for the next approximation G =  g mod x2i in the
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form G =  g(l +  h) mod x2i; h is to be determined, with h =  0 mod rr2̂ . The condition 
G'/G = f  mod x2i~x gives

9-  +  - ^ - r  =  f  mod x2' - 1.
9  l +  h

Taking this equality modulo x 2i~l. we obtain

— +  h! =  f  mod x2t~l ,
9

since
= — h + h2 — h? +  ■■■) =  h' mod x2e~l .

This gives h! modulo x 2̂ 1, then h modulo x2i by integration, and finally G. As in 
the previous section, when the target precision n is not a power of 2, one should avoid 
computing modulo x ,x 2,x 4 ,x 8, , but use the successive precisions o, with by 
r =  flog2(n)] and ti =  |’n /2r_l].

Algorithm 16 Exponential(f, n)

Input: /  in i?[[x]], n 
Output: g =  exp ( f  f )  mod xn 

1: £ =  1, i =  1, r =  [log2(n)l 
2: while £ < n do 
3: if % — 1 then
4: g = l
5: else
6: let g — g( 1 +  / ( /  — ^-)) mod x2i 2(¡3 +  l)m(2£) +  0(£)
7: end if
8: £ =  [n /2r_l] , i =  i +  1
9: end while 

10: return g mod xn

Lem m a 3. The cost of Algorithm 16 is 2/3(/3 +  l)m(n) +  0(n).

Proof. Lemma 2 shows that the inverse computation l/g mod at step 6 takes 
time 2/3m{2£) +  0 {l)\ one does two extra multiplications modulo x2t, for a total of 
2(P +  l)rr\(2£) +  0{£). We finish the proof using Lemma 1 in the case where n is a 
power of 2, and [43, Ex. 9.6] in general. □
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Brent [8] first proved that power series exponentials could be computed in time 
0(m (n)) using Newton iteration, and the computation of logarithms as an interme
diate step. The presentation we give here is from Schonhage [31] and avoids the use 
of logarithms.

5.5 First order linear differential equations

Let now a, b, c be in i?[x], with o(0) 7̂  0, and let 7 be in R. We want to find the first 
n terms of the power series /  such that

a f  +  bf =  c and / ( 0) =  7 .

As in the previous examples, it is possible to write a naive algorithm that computes 
the coefficients of /  one after the other; the cost to obtain n coefficients is 0(n2). Is 
is however possible to do better, using the following idea, due to Brent and Kung [9]. 
Let

b c
d =  -  mod xn~\ e = -  mod xn_1, j  =  exp( f  d) mod xn.

Then /  satisfies the relation

/  =
7 +  f e j

j
mod xn.

Using the fast algorithms in the previous sections, /  mod xn can thus be computed 
in time 0(m (n)). Precisely, we have the following bound.

Lem m a 4. The cost of computing f  mod xn is 2(f3 +  1)(/? +  2)m(n) +  0(n).

Proof. Computing d and e takes time 2((3 +  l)m(n) +  0(n); computing j  takes time 
2f3{f3 +  l)m(n) +  0{n). Computing ej takes time m(n); multiplying 7 +  f e j  by l/j 
takes time (2/3 +  l)m (n) +  0(n). Simplifying the sum of costs gives the bound in the 
lemma. □

5.6 First order non-linear differential equations

Let finally G (x,t,u ) be a polynomial in variables x ,i, u, and let 7,77 in R. We want 
to compute /  G -R[[:c]] such that

G (x, f , / )  =  0 7(0) = 7 ,  / '( 0 )  =  ?j; (5.3)



64

we will assume that 7 and rj are such that a solution exists. The following algorithm 
works by linearization; one can see it as a form of Newton iteration adapted to this 
problem. This algorithm is due to Brent and Rung [9].

Let /  be the solution of the previous equation. For t  >  0, suppose that we 
know /  =  /  mod xe; we look for a solution F  with higher precision under the form 
F =  f  +  h, where h is to be determined, such that h =  0 mod xe. The equation

G (x J lJ )  =  G ( x , f  +  h ',f +  h) =  0

is converted by Taylor expansion to the linearized equation 

dG(x, f )  , , d G (x ,f ’ , f )
du

-h' +
dt

-h =  —G(x, f , / )  mod x21—2 (5.4)

since all terms such as h'2, hh!, h2, .. .  are zero modulo x2i 2. Therefore, we can apply 
the algorithm of the previous paragraph to compute h. Writing first

=  d G (x J 'J )  
du

mod x2e 2,
O G jxJ 'J )

dt
mod x2i 2 J

c = —G ( x , f , f )  mod x2t 2

and next

d =  — mod x2e 2, e =  -  mod x 21-2
a

j  — exp ( f  d) mod x2l-\

we obtain
h = &  m od x2W ,

J
and thus F  =  /  +  h is known modulo x2i~x. This time, starting from /  mod x2, we 
obtain solutions modulo x2, x3, x5, . . . ,  that is, xe for £ of the form 2k +  1.

For n arbitrary, we will compute the sequence /  mod x i%. where now, (^¿>0 is 
defined backward as follows. Starting from r =  flog2(n)], we let lr =  n; assuming t% 
is defined, we let

• U- 1 =  (£i +  l )/2  if ti is odd,

• li- 1 =  ii/2 +  1 if ti is even.

The last value is £0 =  2; in all cases, we have either ti =  2^_i — 1 or ti =  2^_i — 2. 
Since we do not know a closed-form formula for these ti, we assume to simplify the 
pseudo-code that they are given to us as input. Then, Algorithm 17 gives all the
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steps necessary to obtain /  mod xn; we use a function Eva I to evaluate G and its 
derivatives at x, / ' ,  / .

A lgorithm  17 DEnaive(G(x, t, u), (¿¡)j>0, 11,7 ,77)
Input: G(x,t,u),(£i)i>0,n,"/,r)
O utput: the solution /  of Eq.(5.3) modulo xn

1 % =  0, t  =  £0, f  =  7 +  rjx
2 while £i+i < n do
3 a =  Eva\(dG/du, x, / ' ,  / )  mod xn~2
4 h =  Eval(dG/dt, x, / ' ,  / )  mod x2e~2
5 c =  — Eval(G, x, / ' ,  / )  mod x2l~2 5Lm(2^) +  0(M£)
6 u =  lnverse(a, 2£ — 2) 2ftm(2£) +  0 (£)
7 d = ub mod x2t~2 m(2£)
8 e =  uc mod x2i~2 m(2£)
9 j  =  Exponential^, 2£ — 1) 2 ft(ft +  l)m (2£) +  0 (£)

10 k =  Inverse '̂, 2£ — 1) 2ftm(2£) +  0 (i)
11 v = f  ej mod x 2t~ 1 m(2£)
12 h =  kv mod x2t~l m(2£)
13 f  =  f  +  h, £ =  £i+u i =  i +  1
14 end while
15 return /  mod xn

To estimate the complexity of this algorithm, we suppose that we are given G 
through a graph as in Section 2.2, and that this graph performs L multiplications 
and M  other operations. Then, we have the following bound.

Lem m a 5. The cost of computing f  mod xn is (2ft(ft+l)(ft+2)+5ftL)m(n)+0(Mn).

Proof. For a fixed i, the cost of all steps is given within the algorithm; for simplicity, 
all costs are expressed using vn(2£), though slightly better bounds such as m(2£ — 1) 
could be used. The proof for the total cost is similar to the ones seen before. □

Thus, the algorithm indeed has a cost of 0(m (n)), but the constant 2¡3(ft+ 1)(ft +  
2) +  5ftL in front of the m(n) is quite large. The next chapters show how to lower 
this cost.
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Chapter 6

Improving Newton iteration

In this chapter, we introduce a first series of improvements to Newton iteration. 
We focus here on the main loop of Algorithm 17, and we postpone the question 
of evaluating G and its derivatives at steps 3, 4 and 5 to the next chapter. As 
intermediate steps, we re-examine all algorithms introduced in the previous chapter.

The algorithms of that chapter are already almost optimal, in the sense that they 
have complexity (9(m(n)): the improvements we give are in the constant factors. 
Some of these ideas were known before (using the middle product for power series 
inversion) and some are new; more precise comments are given within the following 
sections.

We start this section by introducing several new variants of polynomial multipli
cation: all of them can be achieved using a plain multiplication algorithm, but the 
algorithms we describe here have better complexity, by a constant factor. Turning 
to Newton iteration itself, our key idea will be to avoid computing or recomputing 
useless quantities, using these new variants of polynomial multiplication.

In particular, we will focus on how to update computations: if a and A are two 
polynomials, with deg(a) < n and deg(A) < 2n, and if a =  A mod xn, we say that A 
is an update of a in degree 2n. This means that we have

a =  a0 +  ■■■ +  an-\Xn *, A =  ao +  • • • +  \xn 1 +  anxn +  • • • +  a2n- ix 2n 1.

In this kind of situation, the polynomial before update is in lower case, and the 
polynomial after update is in upper case.
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6.1 Some variants of polynomial multiplication

Chapter 3 introduced plain, transposed and short polynomial multiplications; we 
showed how to obtain fast implementations of all of them using divide-and-conquer 
algorithms. We show here how to build further variants on top of the previous ones.

Middle product(s). Given A and C with deg(A) < n and deg(C) <  2n, consider 
the product

D =  CA  =  do T d\x +  ■ • • +  d3n_2X3n 2.

Two quite similar notions of middle product can be defined. The first one considers 
the computation of the coefficients

dn-l + • • ■ + d,2n-2Zn 1. (6.1)

This operation is similar to the transposed product, up to the reversing of one poly
nomial. Indeed, in Section 3.2, we pointed out that the former polynomial is just the 
transposed product of C =  C mod x2n~l and of

A — Qn—i +  • • • +  üQXn

the truncation of C  is necessary, since the transposed product specifications require 
an argument of degree less than 2n — 1. The cost is thus that of the transposed 
product, that is, M(n) +  0(n).

Algorithm 18 MiddleProduct(A, C, n)

Input: A, C, n, with deg(A) < n and deg(C) < 2n.
Output: The polynomial dn_\ +  • • ■ +  d2n- 2Xn_1 of Equation (6.1)

1: A — an— i +  • • ■ +  Q()Xn *
2: C =  C mod x2n—1 
3: return CAl

The second, similar form of middle product is concerned with the computation of 
the coefficients (note the shift by 1 unit)

dn +  • ■ ■ +  d2n-\Xn 1. (b-2)

It is solved quite similarly, up to modifying the definition of C , writing now C =  
C div x.
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Algorithm 19 MiddleProduct_2(A, C, n)

Input: A, C, n, with deg(A) <  n and deg(C) < 2n.
Output: The polynomial dn + ■ ■ ■ + d2n-\xn~ 1 of Equation (6.2) 

l : A =  an_i +  • • ■ +  a,QXn 1 
2: C =  C div X 

3. return CA*

The following remark justifies the interest of this discussion, say for the second 
form we just introduced. The naive way to compute the middle part of the product 
D =  AC  consists in first computing D, then discarding the unwanted coefficients. 
Because C has twice as many coefficients as A, the good way of computing D =  
AC  is to write C =  Co +  C\Xn, and compute ACq +  xn(ACi mod xn). This costs 
M(n) +  m(n) +  0 (n ) operations. Our previous discussion shows how to reduce the 
cost to M(n) +  0 (n), saving a factor of 2.

The middle product was introduced under this name by Hanrot, Quercia and 
Zimmermann [17], with the objective of improving several forms of Newton iteration 
(see the next section). However, the use of transposed algorithms for computing 
middle coefficients of products was already mentioned in e.g. [45].

Quarter multiplication. Given A and B, with deg(A) < 2n and deg(B) < 2n, 
we want to compute C  =  (AB mod x2n) div xn, that is, the coefficients of degrees 
{ n , . . . ,  2n — 1} of AB. Since AB  has degree up to An — 2, our output represents 
about a quarter of the coefficients of AB , hence the name. Algorithm 20 shows how 
to perform this task. We write B =  B0 +  BiXn (so B0 = b). We only need to compute 
the useful parts:

• the middle part of AB0, by a middle product of the second type;

• the lower part of ABi, by a short product.

Algorithm 20 QuarterProduct(A, B, n)

Input: A, B, n, with deg(A) < 2n and deg(B) <  2n. 
Output: C =  (AB  mod x2n) div xn

1: write B =  B0 +  Bixn
2: r =  MiddleProduct_2(B0, A, n) M(n) +  0(n )
3: v =  AB\ mod xn~l m(n)
4: return r +  v 0 (n)
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The algorithm is illustrated in Figure 6.1. Its cost of is M(n) +  m(n) +  0(n). This 
result should be compared to the cost of applying a short product, which is in this 
case m(2n). As far as we know, this trick did not appear before; a related idea for 
so-called “relaxed multiplication” is in [40].

'w m r n m ,

Figure 6.1: Quarter product

We point out the following application. Suppose that we have computed a short 
product c — ab mod xn, where deg(o) < n and deg(6) < n. Given updates A and B of 
a and b in degree 2n, the previous algorithm enables us to compute C =  AB  mod x2n 
without recomputing c. We will denote this operation by UpdateShort(c, A, B, n); its 
cost is M(n) +  m(n) +  0 (n), as before.

Long-short multiplication. Given A and B, with deg(A) < n and deg(S) < 2n, 
we want to compute C  =  AB  mod x2n. Remark the difference with the middle 
product: here, we are interested in all coefficients up to 2n. This is done by writing 
B =  B0 +  Bixn, with deg(Ro) < n and deg(I?i) < n\ then

AB  mod x2n =  ABq +  xn(AB\ mod xn).

This gives Algorithm 21.

Algorithm 21 LongShortProduct(A, B, n)
Input: A, B,n  with deg(A) <  n and deg(B) < 2n 
Output: C  =  AB  mod x2n

1: write B =  Bq +  B\Xn
2 : let Go =  ABq M (n)
3: let Ci =  ABi mod xn m(n)
4: return Cq +  xnC\ O(n)
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The cost is M(n) +  m(n) +  0 (n ), whereas the naive approach consists in pretending 
that A has degree 2n, for a cost of M(2n). The algorithm is illustrated in Figure 21.

Reverse short multiplication. Given A and B, with deg(A) < n and deg(R) < n, 
we want to compute C =  AB div xn, that is, the coefficients of degrees {n , . . . ,  2n—2} 
of AB. This is done by applying a short product to the reverse of the polynomials A 
and B , defined by

A =  an-i  +  • ■ • +  clqX71 1

and
B =  i +  ■ • • +  b0xn 1.

Let further C =  AB  mod xn 1. One easily proves that if we write C =  Co +  • ■ • +  
cn_2£n- 2, we have

C — Cn _  2 +  • ■ ■ +  CqX 71 2. (6.3)

This gives Algorithm 22.

Algorithm 22 ReverseShortProduct(A, B,n)
Input: A, B, n, with deg(A) < n and deg(R) < n 
Output: C =  AB  div xn

l: A = ani H--------b a0xn_1
2: B =  bni +  • • • +  boxn 1
3: 5  = AB  mod xn~l
4: return cn_2 + ----- b c0xn~ 2 as in (6.3).

m(n)

The cost is m(n — 1), but we rather use m(n) to match the other notation. The 
naive approach multiplies A and B and extracts C from the result, for a cost of M(n).

6.2 Updating a power series inverse

Recall Newton’s iteration for power series inverse in Section 5.3: knowing the inverse 
g =  1/ /  mod xn, we compute t =  fg  mod x2n, followed by u =  2 — t and finally 
update g to G =  gu mod x2n.

By construction, the product fg  mod x2n has the form 1 +  xnr, with deg(r) < n, 
so that u =  2 — t — 1 — xnr. Thus, it is enough to compute the higher part r of t 
using a middle product. Then, G will be given by

G — gu mod x2n =  g -  xn{rg mod xn).
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Since the first n terms of G are known from the last step, it is thus sufficient to 
compute v =  rg mod xn by a short product. This is illustrated on Figure 6.2.

known useful

Figure 6.2: Updating inverse

Algorithm 23 Updatelnv(g,f, n)
Input: / ,  g, n, with deg(/) < 2n, deg(^) < n and g =  1 / /  mod xn. 
Output: G =  1 / /  mod x2n 

1: r =  MiddleProduct_2((7, / ,  n) M(n) +  0(n)
2: v =  rg mod xn m(n)
3: G = g -  xnv O(n)
4: return G

Algorithm 23 uses M(n) +  m(n) +  0(n) operations. This trick is well-known; it is 
described in detail in [17] for a general multiplication algorithm, but appeared before 
in [36] for the case of FFT multiplication.

6.3 Updating an exponential

In the Newton iteration for exponential of the previous chapter, we recomputed the 
inverse of g at each step. From one step to the next one, g is updated; so, its 
inverse should be updated as well, instead of completely recomputed. The updating 
function for exponential should now take f , g  =  exp( f  F ) mod xn and also the inverse 
h =  1/g mod xn as input; it will output an updated version G =  exp( f  f )  mod x2n 
and its inverse H  =  1/G mod x 2n. Recall that the original algorithm computes

G =  3(1 +  / ( /  -  mod i 2” .
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We detail the computations as

u — f ------mod x ,2n —1 fu , G = g +  vG mod x2n.

We would like to use the inverse h =  1/g mod xn to compute u, but this would 
require updating it to 1 fg  mod :r2n_1, because the operations are done modulo x2n_1. 
To solve this issue, we rewrite

Q* S
u =  f ------mod x2" “ 1 =  -  mod x2n_1, with s — g f  — g' mod x2n~l .

9 9

By assumption, s is zero modulo xn~l , so we can write it as s — xn~H. Then,

xn~H ■ t
-  mod x2n 1 = --------mod x2n 1 =  xn 1 x ( -  mod xn) =  xn 1 x (th mod xn).
9 9 9 ’  ’

By construction, t consists of the coefficients of fg  — g' of degrees n — 1, . . . ,  2n. Since 
deg(g') < n — 1, only the coefficients of fg  are used, so we can compute t by the 
middle product between /  and g.

Figure 6.3: Updating exponential
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A lgorithm  24 UpdateExp(g, h, f, n)
Input: g, h, / ,  n, with deg(/) < 2n, deg(<?) < n and deg(h) < 

g =  exp (J f ) mod xn and h = \/g mod xn.
O utput: G =  exp( f  f ) mod x2n and H =  1/G mod x2n

n

1: t =  MiddleProduct(<7, / ,  n) M(n) + 0(n )
2: u — xn~l (th mod xn) m(n) +  0 (n)
3: v =  f  u 0 (n)
4: G =  g +  (vg mod x2n) m (n)
5: H =  Updatelnv(/q G, n) 
6: return G, H

M(n) +  m(n) +  0(n)

Algorithm 24 uses 2M(n) +  3m(n) +  0 (n ) operations. The only non-obvious point 
is step 4, where we claim that we can compute vg mod x2n in time m(n). This is 
because v =  0 mod xn, so we can write it in the form v = xnw, whence vg mod x2n =  
xn(wg mod xn).

The idea using middle products for improving exponential computations is not 
new. The approach we present here appears in [18], with a complexity analysis 
specific to FFT multiplication.

6.4 Updating solutions to differential equations

To follow the ideas of the previous sections in the case of differential equations, we 
need to look closer where useless computations are done. In this section, we reuse all 
the notation of Algorithm 17.

The first main remark is that most computations can be done at precision l  — 1 
instead of 2i  — 2.

• c =  0 modulo xe~x, so we can write it c =  xe~lc.

• Thus at step 8, e =  xe_1e, with e =  cu mod xl~l.

• Thus at step 11, ej mod x2l~ 2 — xE~l (ej mod xf_1).

• Thus, v =  f  ej mod x2£~ 1 has the form v =  x£v.

• Thus at step 12, h =  xi (kv mod

• This shows that it is actually enough to compute a,b,u, d, j ,k  modulo xf:~1; 
however, c is still needed modulo x2e~2, since we need c.
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The second improvement consists in updating all products, inverses and exponen
tials, not recompute them: in particular, this will avoid nested loops in the inverse 
and exponential computations.

Thus, we present hereafter a function that updates the solution / ,  as well as 
a, b, u, d, j , k. In view of Algorithm 17, we have either £ of the form 2 f  — 1, or of the 
form 2 f  — 2, for some integer f . Thus, we take as input /  modulo xl and a, b, u, d, j, k 
modulo xl'~l . We update /  modulo x2i~l and a, b, u, d,j, k modulo xl~l . To update 
a and b, the algorithm uses a function UpdateEval that computes at once

A =  ^ ( z ,  / ' , / )  mod x '-1 , B  =  mod x ‘ ~\ C = G{:r: f  f )  mod 2
(6,4)

The optimizations we can bring for this task depend on the function G: this is the 
topic of the next chapter.

A lgorithm  25 DEupdate(G(x, t, u), f, a, b, u, d, j, k, £, (!)
Input: the solution /  of Eq.(5.3) modulo x?

a, b, u, d, j , k as above, of degree less than (' —1
O utput: the solution F  of Eq.(5.3) modulo x2i~l

A, B, U, D, J, K  as above, of degree less than £ — 1
1: A ,B ,C  =  UpdateEval(G, / ,  / ' ,  a ,b , ( -  1) Lm(2£) +  4Lm(£) + 0(M£)
2: U =  Updatelnv(u, A, £' — 1) M (f) +  m (f) +  0 ( f )
3: D =  UpdateShort(d, U, B,C — 1) M(£') +  m(e') + 0 (£')
4: C =  C div X
5: E — UC mod xe~' m {£) +  0 {£')
6: J,K  =  UpdateExp(ji, k, D, £! — 1) 2M (f) +  3m (f) +  0 ( f )
7: V =  f  xl~xEJ mod x* - 1 m(£) +  0 {£)
8: H =  K V  mod x21' 1 
9: F =  F +  H

10: return F ,A ,B ,U ,D ,J ,K

m(£) +  0 {£)

The cost of all steps in this algorithm follows from the previous sections, except 
for the evaluation at step 1. For that step, as before, we assume that we are given G 
through a DAG that performs L multiplications and M  other operations; then, the 
cost reported in the first step is explained in the next chapter.

To give an overall estimate on the costs, we let a and ¡3 be as in the introduction 
of Chapter 5. Summing all terms and using the inequalities

M(n) < — M(2n) and m(n) <  —m(2n), 
a a
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we obtain that the total cost of the previous algorithm is

4 tM(21?) +  (L +  ^ ± 1  +  - i )m (2*) +  0(M t).  
a i a a*

As in Lemma 5, we deduce the cost of computing f  mod xn starting from the initial 
conditions /  =  7 -f rjx mod x2.

Lemma 6. The cost of computing /  mod xn is

^ M (2 n ) +  P(L +  ^ ± 1  +  - l )m(2 n) +  0(n).
Or a cr

For example, for Karatsuba, we have a =  3 and ¡3 =  3/2. Then, the bound of 
Lemma 5 becomes (7.5L +  26.25)m(n) + 0 (M n ),  whereas we obtained here the much 
better estimate

0.666.. .  M(ra) +  (3.5L +  2.333... )m(n) +  0{Mn).

6.5 Experimental results

We conclude this chapter with two series of experimental results: computations of 
inverses and exponentials; the case of differential equations is left to the next chapter. 
In both cases, we compare the “naive” version of Newton iteration presented in the 
previous chapter to the “fast” one given here.

The following experiments use the polynomial multiplication code presented in 
Chapter 4; the experimentation machine is the same. For these experiments, we use 
Karatsuba’s multiplication; the results obtained with Toom’s algorithm are similar.

We start with inverses. Figure 6.4 compares timings for the direct implementation 
of Newton’s iteration of Section 5.3 to the one using middle and short products given 
in Section 6.2 of this chapter: the latter behaves much better, as predicted. Besides, 
we give as a reference the cost of one multiplication, which turns out to be higher 
than that of inversion. Indeed, analysing the algorithm of Section 6.2 shows that the 
overall cost to compute an inverse using that algorithm is M (n)/2 +  m(n)/2 +  0(n). 
This matches the behavior we observe.

We continue with exponentials. Figure 6.5 compares timings for the direct im
plementation of Newton’s iteration of Section 5.4 to the one using middle and short 
products given in Section 6.3 of this chapter. As before, we give as a reference the
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fast inverse 
naive inverse 

mul

cost of one multiplication; now, the algorithm of Section 6.3 has an overall cost of 
M(n) +  3m(n)/2 +  O(n). Again, this matches the behavior we observe.

fast exponential 
naive exponential 

mul

Figure 6.5: Power series exponential
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Chapter 7

Evaluation techniques for Newton 
iteration

The final part of this thesis describes our code generation techniques for the evalua
tion of the function G and its derivatives. In the first section, we describe the input 
and output of our code generator; the second section describes the optimization tech
niques we use to reduce the amount of unnecessary computations. We conclude with 
experimental results.

To the best of our knowledge, the ideas presented here are new.

7.1 Overview of the code generator

In this section, we consider the following example: G(x, / ' ,  f )  =  0, with

G(x, t, u) — (1 +  x +  x2)u2 — (2 +  x)ut2 — t2 +  5u +  3.

Recall that to solve the above differential equation, Algorithm 25 is given a solution 
/  at precision l  and computes

F)G f)C
A = — { x , f , f )  modar*“ 1, B =  —  (x, / ' ,  / )  mod xe~l , C = G(x, / ' ,  / )  mod x2l~2.

The polynomial C is computed by the graph Q given in Figure 7.1 (the extra tags 
such as N, 2N  are explained in the next section). The series A and B are obtained 
by evaluating derivatives of G\ these derivatives are computed by a graph Q' which 
is obtained by automatic differentiation (Section 2.2). Since Q' is more complicated 
than Q, we only show Q here.
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Figure 7.1: The graph G that computes G

We wrote in Java a code generator, which takes as input the graph G, represented 
by its adjacency matrix, and the labels of the nodes. It performs automatic differen
tiation to get the graph Q' for A and B, and outputs C code that evaluates A, B,C. 
As for multiplication, we support either unsigned long (i.e., modular) or double 
coefficients; we explain the modular case (remark the suffix unsigned_long for all 
functions typed for unsigned long arguments).

Some important optimizations are performed at this level: they will be explained 
in the next section. Here, we show a few sample lines and explain the main steps of 
our C code.

• Workspace allocation.

We allocate the memory which will be used as the workspace (for temporary 
results) at the beginning of the evaluation function. The size of the workspace 
is determined by the Java code; for the moment, little efforts were spent to 
reduce this size.

• Initialization.

We initialize constants and polynomials given in the graph G'■ polyO =  3,
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polyl =  5, poly2 =  2 +  x, poly3 =  1 +  x +  x 2. They will be passed as 
arguments to the functions, when we reach the node containing these value. 
Some pre-multiplications are performed at this level; they are explained below.

• Evaluation.

We evaluate C, A, B by following the graph Q'.

• Cleaning.

We free all the memory for the workspace and given constants and polynomials.

void G_unsigned_long(unsigned long * _restrict_ C,
unsigned long * _restrict_ A,
unsigned long * _restrict_ B,
const unsigned long *  restrict  t,
const unsigned long *  restrict  u,
const unsigned long p, const unsigned long ip, 
const unsigned long jp, int N){

/*------------ Workspace allocation ------------*/
unsigned long *wk=(unsigned long *) malloc(30*N*sizeof(unsigned long));

/*--------------- Initialization ---------------*/
unsigned long *polyO=(unsigned long *)malloc(l*sizeof(unsigned long));
unsigned long *polyO_pre=(unsigned long *)malloc(l*sizeof(unsigned long));

polyO[0]=3;
poly0_pre[0]=mulredcred(p, ip, jp, 3);

/*----------------Evaluation C ----------------*/
mul_plain_unsigned_long(wk+N*0, u, u, p, ip, N);
constant_mul_unsigned_long(wk+N*2, wk+N*0, poly3_pre, 3,
1*N, 2*N, 0*N, 2*N, p, ip);

constant_add_unsigned_long(C, wk+N*16, polyO, 1, 1*N, 2,
1*N, 2*N, p, ip);

/* * /Evaluation A
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zero_unsigned_long(wk+N*18, p, ip, N); 
add_unsigned_long(wk+N*19, t, t, p, ip, 0*N, 1*N);

sub_unsigned_long(A, wk+N*22, wk+N*23, p, ip, 0*N, 1*N);

/*----------------Evaluation B ----------------*/
add_unsigned_long(wk+N*24, u, u, p, ip, 0*N, 1*N); 
constant_mul_unsigned_long(wk+N*25, wk+N*24, poly3_pre, 3, 
0*N, 1*N, 0*N, 1*N, p, ip);

add_unsigned_long(B, wk+N*27, wk+N*29, p, ip, 0*N, 1*N);

/*---------- workspace, polys free ------------*/
free(wk); 
free(polyO); 
free(polyO_pre);

}

This code can be compiled, using the multiplication code of Chapter 4 (or 
any other multiplication functions that support the same functionalities: prod
uct, middle product, short product), and used directly in our implementation of 
Algorithm 25. We use wrapper functions such as mul_plain_unsigned_long or 
mul_short_long_unsigned_long, which implement the variants of polynomial multi
plication introduced in Section 6.1.

We also use use functions such as constant_mul_unsigned_long for multiplica
tions by constant polynomials, which implement the naive algorithm (since our op
timized multiplication functions assume that both arguments have the same length). 
The constant polynomials polyO, . . .  are defined in the beginning of the function, in 
two possible versions:

• polyO holds all coefficients as unsigned long (or double if this is the data type 
we use), for use in additions;

• if the data type is unsigned long, polyCLpre precomputes the product of this 
polynomial by 264 modulo p, as in Chapter 4, for use in multiplications; other
wise it just copies polyO.



81

7.2 Precision issues in the evaluation

It remains to determine what precise variant of polynomial multiplication one should 
use for each multiplication we have to perform. We saw in the previous chapter that 
middle and short product were quite useful to avoid computing useless quantities. 
We will discuss here how to extend these ideas to the problem of evaluating G and 
its derivatives.

Recall that for a given integer £, Algorithm 25 requires to perform the following 
evaluations:

• A = dG/dt(x, / ' ,  / )  mod xl~l ,

• B = dG/du(x, / ' ,  / )  mod xe_1,

• C =  G(x, f, f )  mod x2£~2.

More precisely, for C, we only need the l  — l coefficients of degrees { t  — 1, . . . ,  2£ — 3}. 
Besides, remember that we know a =  A mod xe'~l and b = B mod x£'~l, with either 
t  =  2?  -  1 or i  =  2t' -  2.

The polynomials dG/dt and dG/du are given by a graph Q’ obtained from the 
graph Ç of G through the differentiation process of Section 2.2; in particular, we 
compute the required coefficients of A, B, C at once, to share computations. Following 
the notation of the previous chapter, we assume that the graph Q for G performs L 
multiplications; then, the graph Q' performs 4L extra multiplications, for a total 
of 5L.

Turning the graph into co; they are explained below.de. To compute 
A, B , C, we substitute t — f  and u = f  in Q' and follow the path from the in
puts to the outputs, performing the operations labelling the vertices along the way; 
one safe way to compute A, B, C is to do all operations modulo x2i~2. Formally, we 
assign to each vertex v of the graph a polynomial pv, such that:

• if v is the leaf with label t, pv =  / ' ;

• if v is the leaf with label u, pv — / ;

• if v has two parents i q  and V2 and label ( + ,  f i ,  V2) ,  P v  =  pVl +T u 2>

• if v has two parents v\ and V2 and label (x , v\, V2), pv = pvlPv2 m°d  x2£~2]

• etc.
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However, this process gives more than what is needed:

• the coefficients of A and B of degrees £ — 1, . . . ,  21 — 3 are computed but not 
needed;

• the coefficients of C  of degrees 0, . . . , £  — 2 are computed but not needed either.; 
they are explained below.

We are going to show how to reduce the amount of coefficients we compute for all 
intermediate results.

To do so, we assign two quantities to each vertex v of Q', a low degree £v and a high 
degree hv, such that computing only the coefficients of pv in degrees {£v, . . . ,  hv — 1} 
will be sufficient to obtain a correct output. As of now, our code supports £v and hv 
of the form 0, £ — 1 or 2£ — 2.

Assigning low- and high-degrees. The high-degrees are assigned by traversing 
the graph from inputs to outputs:

• both leaves t and u have high-degree £ — 1 (since they have degree less than

¿ - i ) ;

• the high-degree of any vertex used only to compute A or B is £ — 1, since we 
need only £ —l terms for A and B]

• the high-degree of a product used to compute C is 2£ — 2 (except when it is the 
product by a constant, where we keep the high-degree of the argument);

• the high-degree of a sum or difference used to compute C is the maximum of 
the high-degrees of the arguments.

The low-degrees are assigned by traversing the graph from outputs to inputs:

• the output C has low-degree £ — 1; the outputs A and B have low-degrees 0;

• the two arguments of a product have low-degree 0 (except when it is the product 
by a constant, where we keep the low-degree of the result);

• the two arguments of a sum or a difference have the same low-degree as the 
result.
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There is a possible issue in the assignment of low-degrees, since a given vertex can 
be used as argument for several operations: in this case, we keep the lowest of the 
low-degrees prescribed by the above rules. The extra tags such as N, 2N  in Figure 7.1 
are the low- and high-degrees of all vertices, for the original graph Q (remember, we 
display only Q here, not Q').

Applying the appropriate functions. Once the low- and high-degrees of all 
vertices are known, we can determine how to perform the operations at the vertices 
using this information. Additions and subtractions do not create any difficulties, 
and have a cumulative cost of 0 (£); the delicate question is to determine how to 
perform multiplications. We will use here all variants of multiplication introduced in 
Section 6.1.

Parts of the answer are easy. If the result vertex v has high-degree t — 1, we can 
either perform an update of a short product, or simply recompute all of it, in output 
length £ — 1 The cost is M(^') +  m{£') +  0(£') with the first solution, and m(^) with 
the second solution. Remark that at least 4L of the multiplications in the graph Ç 
fall into this case.

If the result vertex v has high-degree 21 — 2, more cases arise. Remark that 
our rules for computing low-degrees imply that in any case, the input vertices have 
low-degree 0.

Suppose first that v has low-degree 0; that is, we want all coefficients of pv from 
degree 0 to 2i  — 3. We do this as follows.

1. Both input vertices have high-degree i  — 1: plain multiplication, with inputs of 
degree £ — 1.

2. Both input vertices have high-degree 21 — 2: short multiplication modulo x2e~2.

3. One input has high-degree £ — 1 and the other high-degree 2t — 2: short-long 
multiplication.

Suppose now that v has low-degree £ — 1; that is, we want all coefficients of pv 
from degree £ — 1 to 2£ — 3. We do this as follows.

1. Both input vertices have high-degree £—l\ reverse short product in degree l — 1

2. Both input vertices have high-degree 2£ — 2\ quarter product in degree 2̂  — 2.

3. One input has high-degreë £ — 1 and the other high-degree 2£ — 3: short-long 
product.
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The costs of these operations vary, but none of them goes above m(2£), so the total 
is at most Lm(2^).

Thus, giving a precise estimate on the cost of the evaluation is impossible a priori, 
but in any case, the cost is no more than Lm(2£) +  ALm(£) +  0 (M £); this remark 
completes the proof of the cost estimate of the last chapter.

7.3 Experimental results

We conclude this chapter with experimental results. Our contributions in the last 
two chapters are improvements of Newton iteration for differential equations. Thus, 
for our experiments, we found that the most useful test was to compare two versions 
of Newton iteration: the “naive” implementation of Newton’s iteration, and our “im
proved” one obtained by applying the optimizations described in this chapter and the 
previous one.

The experiments use the polynomial multiplication code presented in Chapter 4; 
the experimentation machine is the same. We used Karatsuba’s multiplication; the 
results obtained with Toom’s algorithm are similar. The timings are in seconds, for 
500 repetitions of the same computation.

As in the previous chapter, the results show that all the optimizations presented 
here save a large constant factor in running time. For purposes of comparison, we 
give as well the time necessary for a single polynomial multiplication.

Example. We solve G(x, f ' , f )  =  0 given at the beginning of this chapter:

G (x,t , u) =  (1 +  x +  x2)u2 — (2 +  x)ut2 — t2 +  5u +  3,

with initial conditions /(0 )  =  1 and /'(0 )  =  —2. The comparison of running time is 
shown in Figure 7.2.

Example. We revisit the differential equation in Section 1.3,

(x6 +  X 4 +  l ) f ( x )2 =  1 +  7 5 /(x )4 +  1 6 /(x )6,

with initial conditions /(0 )  =  0 and /'(0 )  =  1. Recall that this equation was intro
duced by Bostan et.al. [7]; our desire to prove a high-performance implementation 
for this equation was one of the starting points of this work. The experimental result
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degree

Figure 7.2: Solving a non-linear differential equation (Example 1)

in Figure 7.3 shows that we were successful. Here, the time for solving the equation 
is about 5 times that of multiplication.
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Figure 7.3: Solving a non-linear differential equation (Example 2)



86

Conclusion

This thesis demonstrated that code generation techniques can lead to high- 
performance implementations of low-level algorithms, such as polynomial multipli
cations, and higher-level ones, such as Newton iteration.

As to polynomial multiplication, more work is needed to assess whether e.g. our 
implementations are sufficiently cache-friendly, and if not, improve on such aspects. 
Besides, further families graphs should be considered, such as those involving \f—i  
in [45], over finite fields which contain a square root of —1.

As to Newton iteration, the main direction we want to explore is to determine 
whether the evaluation techniques of Chapter 7 can be reused in other contexts. A 
natural application would be Newton iteration for polynomial equations. The sim
plest versions of it amount to compute power series solutions of one or several poly
nomial equations; more advanced ones involve Newton iteration for e.g. geometric 
resolutions [16] or triangular representations [34], The paper [25] presents a high- 
performance C implementation of the latter, which could possibly take advantage 
from our insights.
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