
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

6-27-2023 10:00 AM

Internal Yoneda Ext Groups, Central H-spaces, and Banded Types Internal Yoneda Ext Groups, Central H-spaces, and Banded Types

Jarl Gunnar Taxerås Flaten, Western University

Supervisor: Christensen, John Daniel, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Mathematics

© Jarl Gunnar Taxerås Flaten 2023

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Geometry and Topology Commons

Recommended Citation Recommended Citation
Flaten, Jarl Gunnar Taxerås, "Internal Yoneda Ext Groups, Central H-spaces, and Banded Types" (2023).
Electronic Thesis and Dissertation Repository. 9343.
https://ir.lib.uwo.ca/etd/9343

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F9343&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/180?utm_source=ir.lib.uwo.ca%2Fetd%2F9343&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/9343?utm_source=ir.lib.uwo.ca%2Fetd%2F9343&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract
We develop topics in synthetic homotopy theory using the language of homotopy type the-

ory, and study their semantic counterparts in an ∞-topos. Specifically, we study Grothendieck
categories and Yoneda Ext groups in this setting, as well as a novel class of central H-spaces
along with their associated bands. The former are fundamental notions from homological al-
gebra that support important computations in traditional homotopy theory. We develop these
tools with the goal of supporting similar computations in our setting. In contrast, our results
about central H-spaces and bands are new, even when interpreted into the∞-topos of spaces.

In Chapter 2 we define and study Grothendieck categories in HoTT, which are abelian cate-
gories that satisfy additional axioms. The main subtlety in this development is the construction
of left-exact coproducts (the AB4 axiom) from exactness of filtered colimits (AB5) in a co-
complete abelian category. In particular, it follows that coproducts of modules over a ring are
left-exact, and this is one of our main results. Traditionally, it is easy to deduce AB4 from AB5
using that the finite subsets of a set X form a filtered category. However, the concept of “finite”
bifurcates into multiple nonequivalent concepts in our constructive setting. Instead we consider
lists of elements of X, inspired by Roswitha Harting’s construction of internal coproducts of
abelian groups in an elementary topos [Har82].

These results lay the foundation for our study of Yoneda Ext groups [Yon60, Mac63].
Chapter 3 describes our formalization of the higher Ext groups Extn

Z(B, A) of abelian groups,
and the expected (contravariant) long exact sequence. We give a novel proof of the usual six-
term exact sequence from a fibre sequence of spaces of short exact sequences (Theorem 3.4.1).
We also emphasize that our formalization can be adapted to modules over a ring, and that these
higher Ext groups are interesting even for abelian groups. In Chapter 4 we further develop the
theory of our Ext groups and relate their semantic counterparts to sheaf Ext [Gro57] in certain
∞-topos models. We also carry out a detailed study of internal injectivity and projectivity of
modules an∞-topos, and show that our Ext groups can be computed using resolutions of such
in certain cases.

The final chapter 5 is mostly independent. In it, we study generalizations of Eilenberg–Mac
Lane spaces called central H-spaces. Such H-spaces admit an astonishingly simple notion of
torsor (independently studied in [Wär23]), namely that of a banded type. The type of such
torsors form a delooping of a central H-space, analogously to how the type of torsors of a group
G form a K(G, 1). Using centrality, we define a tensor product on banded types, producing an
H-space structure which makes the type of torsors into a central H-space itself. Iterating this
procedure, we obtain arbitrary deloopings of A (and also of pointed self-maps of A) which are
in fact unique.

Keywords: homotopy type theory, homological algebra, Yoneda Ext, sheaf Ext, higher
topos theory, internal logic, H-spaces, infinite loop spaces, formalization of mathematics.

ii

Summary for Lay Audience
In homotopy theory, we study properties of shapes which are preserved by continuous de-

formations. Some of these shapes are easy to visualize, like circles, spheres, and tori. Others
are higher-dimensional (even infinite-dimensional) and therefore impossible to visualize, but
they are still important for various reasons. A basic homotopical property is how many con-
nected components a shape has, or how many holes it has—but there are also much more
sophisticated properties which give deep insight into the nature of a shape.

There are many kinds of shapes, and many ways of studying them. For instance, instead
of taking a point as the basic building block of shapes, one can take another shape as the basic
building block. Using the circle as the basic building block, drawing a circle produces a torus
(since each ”point” is replaced by a circle). In this thesis we study shapes from an internal
perspective, which encompasses many ways of studying shapes. This approach can also be
represented on a computer, meaning it can check that our proofs are correct.

This internal approach is presently being developed. We contribute to this endeavour by
developing certain computational tools, called Ext groups, which are useful for computing
properties of shapes. Roughly, Ext groups measure in how many ways two structures can be
knitted together to form a new structure. (Such a “knitted structure” is called an extension,
which is where the name Ext comes from.) In the context of shapes, they let us compute new
properties from old ones. Ext groups play an important role in traditional computations, but
have not been previously studied from the internal viewpoint.

We also introduce and study a new form of symmetry we call centrality. A shape is central
whenever there is precisely one symmetry (of a certain kind) of the shape which sends its
base point any other point. The circle, for example, is central because there is only one way of
rotating the base point to any other point without going backwards or doing a full loop. Though
a seemingly simple condition, centrality has surprising consequences.

iii

Co-Authorship Statement

This thesis comprises both independent work and joint work with several others.
Chapters 2 and 3 are the respective papers [Fla23b, Fla23a] of which I am the sole author.

The later paper is on the formalization of certain mathematics, and parts of this formalization
were done in collaboration with Dan Christensen and Jacob Ender.

The material of Chapter 4 is joint with Dan Christensen and comprises the forthcoming
paper [CF23]. I have written most of this chapter, with copious feedback from Dan. We have
both made substantial theoretical contributions to this chapter, though the idea to study Yoneda
Ext in homotopy type theory is due to Dan.

Chapter 5 is the paper [BCFR23] which is joint with Ulrik Buchholtz, Dan Christensen, and
Egbert Rijke. Large parts of this paper were written by me, and I made substantial contributions
to the main results of this paper, as well as to its conception.

iv

Acknowledgements

I am grateful to both Nima Rasekh and Raffael Stenzel for helpful discussions related
to [Fla23b] (Chapter 2) pertaining to universes and representability. I would also like to thank
the anonymous referees for valuable comments on that paper. To David Wärn, I am thankful
for a question which led to Section 4.2.6, and for sharing early drafts of his paper [Wär23] in
relation to [BCFR23] (Chapter 5).

I thank Jacob Ender for contributions to the formalization of the Baer sum of Ext groups
in Section 3.3.3, and the collaborators of the Coq-HoTT library [CH] for their careful review
of, and contributions to, the various pull requests originating from both [Fla23a] (Chapter 3)
and [BCFR23] (Chapter 5). Ali Caglayan deserves an additional thanks for his efforts in main-
taining the Coq-HoTT library, and in particular for his rapid fixes to technical issues that in-
variably crop up.

I am grateful to Ulrik Buchholtz, David Jaz Myers, and Egbert Rijke for being such lively
and stimulating collaborators, from whom I have learnt and gained a lot.

My deepest gratitude goes to my advisor, Dan Christensen, for his clear-sighted guidance
and unwavering patience. Our weekly meetings and countless discussions have been essential
to my work and progress. I am also thankful for his insightful comments on, and review of, the
various papers which comprise this thesis.

v

Contents

Abstract ii

Summary for Lay Audience iii

Co-Authorship Statement iv

Acknowlegements v

1 Introduction 1

2 Univalent categories of modules 7
2.1 Introduction . 7
2.2 Sifted and filtered precategories . 9

2.2.1 Limits and colimits of sets . 9
2.2.2 Sifted colimits . 12
2.2.3 Filtered colimits . 15

2.3 The internal AB axioms . 17
2.3.1 Grothendieck categories . 17
2.3.2 Colimits of R-modules . 19
2.3.3 AB5 implies AB4 . 21

2.4 Semantics . 25
2.4.1 Rezk (1, 1)-objects . 26
2.4.2 The universe of sets . 31
2.4.3 The universe of R-modules . 33

3 Formalising Yoneda Ext in univalent foundations 37
3.1 Introduction . 37
3.2 Preliminaries . 39

3.2.1 Homotopy type theory . 39
3.2.2 The Coq-HoTT library . 40

3.3 Yoneda Ext . 42
3.3.1 The type of short exact sequences . 42
3.3.2 Ext as a bifunctor . 45
3.3.3 The Baer sum . 47

3.4 The pullback fibre sequence . 48
3.5 The long exact sequence . 51

vi

3.5.1 The type of length-n exact sequences 51
3.5.2 The long exact sequence . 52

3.6 Conclusion . 54

4 Ext in homotopy type theory 56
4.1 Introduction . 56
4.2 Ext in HoTT . 60

4.2.1 The type of short exact sequences . 60
4.2.2 Classifying extensions and smallness of Ext1 64
4.2.3 The six-term exact sequences . 66
4.2.4 Higher Ext groups . 67
4.2.5 Computing Ext via projective resolutions 72
4.2.6 Ext of finitely presented modules over (constructive) PIDs 74
4.2.7 Ext of ZG-modules . 76

4.3 Ext in an∞-topos . 79
4.3.1 The object of short exact sequences 81
4.3.2 Comparing various notions of projectivity 83
4.3.3 Internal injectivity and sheaf Ext . 88
4.3.4 Ext over BG . 92

5 Central H-spaces and banded types 96
5.1 Introduction . 96
5.2 H-spaces and evaluation fibrations . 99

5.2.1 H-space structures . 99
5.2.2 (α, β)-extensions and Whitehead products 103
5.2.3 Evaluation fibrations . 105
5.2.4 Unique H-space structures . 107

5.3 Central types . 109
5.4 Bands and torsors . 113

5.4.1 Types banded by a central type . 114
5.4.2 Tensoring bands . 117
5.4.3 Bands and torsors . 119

5.5 Examples and non-examples . 120
5.5.1 The H-space of G-torsors . 121
5.5.2 Eilenberg–Mac Lane spaces . 123
5.5.3 Products of Eilenberg–Mac Lane spaces 124
5.5.4 Truncated types with two non-zero homotopy groups 124

Bibliography 132

Curriculum Vitae 133

vii

Chapter 1

Introduction

This thesis contributes to the field of synthetic homotopy theory by investigating and develop-
ing certain fundamental topics from traditional homological algebra and homotopy theory in
the language of homotopy type theory (HoTT). Our main motivation is two-fold: the language
of HoTT may be interpreted into any ∞-topos, and, as such, it lets us prove theorems which
hold in this generality. In addition, the formal rules of HoTT are amenable to representation on
a computer, allowing us to formalize and verify these theorems using computers. Indeed, most
of the results we present have already been formalized (see the formalization section below).

Chapters 2 through 4 concern the development of homological algebra in HoTT; more
specifically, the theory of Grothendieck abelian categories, the theory of Ext groups and their
long exact sequence, as well as related notions. Homological algebra plays a role in tra-
ditional homotopy theory similar to the one linear algebra plays in many other branches of
mathematics—i.e., as a powerful computational tool. It was first developed in the generality
used today by Grothendieck [Gro57], building on the work of many others (such as Buchs-
baum [Buc55], Cartan and Eilenberg [CE56]), so as to allow for a systematic study of derived
functors and sheaf cohomology in algebraic geometry. A tenet of Grothendieck’s approach was
to work with abelian categories that satisfy additional axioms, called the AB-axioms, which en-
able or facilitate development of the theory. Today we refer to abelian categories satisfying a
selection of these axioms as Grothendieck (abelian) categories. In Chapter 2, we develop parts
of the corresponding theory in our setting.

Since its introduction, homological algebra has become a standard tool in many branches
of mathematics, and it plays a crucial role in many computations from traditional homotopy
theory. Accordingly, we wish to build analogous tools so as to further develop synthetic ho-
motopy theory. We will see that there are obstacles which hinder this development, such as
nonconstructive aspects of the traditional approach, most notably the lack of enough injective
and projective modules (or even abelian groups) in our setting.

One interesting nonconstructive aspect features in the construction of the coproduct
⊕

x:XAx

of a family (Ax)x:X of abelian groups (or modules) indexed by a set X. Traditionally, we are
used to there being a natural monomorphism

⊕
x:XAx →

∏
x:X Ax from a coproduct to the

corresponding product. In constructive settings, however, there is in general no such natural
map, and possibly no nontrivial maps. An example where there is no nontrivial map is given
by Harting [Har82] in the Sierpı́nski topos. Her insight was to consider the set X B (2 → 1)

1

2 Chapter 1. Introduction

in this model, which (crucially) does not have decidable equality1. Indeed, for types X with
decidable equality there is a natural monomorphism from the coproduct to the product. Despite
these additional subtleties related to decidability, we construct a left-exact coproduct functor
of modules in Chapter 2, inspired Harting’s internal coproduct [Har82]. To do this, we re-
place a coproduct over X by a colimit over the type HX of (finite) lists of elements in X,
which is a filtered category. By showing that the natural map X → HX is final, we realize
a coproduct as a filtered colimit, which is left-exact. More generally, our construction shows
that AB5 (filtered colimits are exact) implies AB4 (coproducts are left-exact) in any abelian
category (Theorem 2.3.19).

We should explain what we mean by “model” in the previous paragraph, as Harting works
in a 1-topos, which is not by itself a model of HoTT. These considerations also come up below.
Any Grothendieck 1-topos E can be realized as the 0-truncated fragment of an ∞-topos X,
such as ∞-sheaves on a site presenting E. Since X is a model of HoTT, this gives a formal
connection between a (Grothendieck) 1-topos and HoTT. When we relate results in HoTT to
counterparts in a 1-topos, it is through the∞-topos X. The situation for an elementary 1-topos
is, at present, less clear. It is conjectured that any elementary ∞-topos [Ras22] is a model
of HoTT. [KL18] Even if this is shown to be the case, this still does not completely clarify
the relation to elementary 1-topos theory, as we do not know whether the latter can always be
“embedded” into the former as in the Grothendieck case just described. Nevertheless, results
about modules in an elementary 1-topos do inform and motivate the analogous development in
HoTT, if only heuristically.

A substantial part of Chapter 4 is dedicated to studying injective and projective modules
in models of HoTT. This study is important because it relates these fundamental notions in
traditional mathematics to their counterparts in (models of) HoTT. In the case of projectives,
it is well-known that sets themselves may not be projective in constructive settings, stemming
from the lack of the axiom of choice. Accordingly, free abelian groups need not be projective
(as modules), unless the generating set is. This phenomenon is also familiar to topos theorists:
in the topos of G-sets (for a nontrivial discrete group G), the abelian group Z with trivial G-
action is not projective. Indeed, the natural epimorphism ZG → Z from the group ring does
not admit a section. However, Z is internally projective in this topos—and this topos generally
admits enough internally projective modules, but not ordinary projectives. These observations
are explained by the fact that the topos of G-sets satisfies the internal axiom of choice (IAC),
but not the external version (see, e.g., [Joh77]). We give a sample computation of our Ext
groups using an internally projective resolution in Proposition 4.3.12.

The case of injective modules is also interesting. Our study of these is facilitated by the
existing literature on notions of injectivity of modules in an elementary topos. An important
result—due to Harting for abelian group objects [Har83b], and Blechschmidt for module ob-
jects [Ble18]—is that various internal and local notions of injectivity coincide with ordinary
injectivity in any localic topos, and that in general, ordinary injectivity implies internal in-
jectivity. These results imply that any sheaf topos admits enough internal injectives (since it
admits enough ordinary injectives), however this is not generally the case in the elementary
setting. In fact, Blass constructed a model of ZF in which there are no nontrivial injective

1A type X has decidable equality if the type
∏

x,y:X(x = y)∨(x , y) holds. In particular, the law of the excluded
middle implies that all sets have decidable equality.

3

abelian groups [Bla79], which gives rise to an elementary topos (with a natural numbers ob-
ject) with the same property. Harting has further studied conditions for an elementary topos to
have enough injective abelian groups [Har82]. Blass’ model indicates to us that we should not
be able to construct nontrivial injective modules in HoTT—though it is not a formal counter-
model, as we explained above.

The aforementioned results of Harting and Blechschmidt which relate various notions of
injectivity of modules in a topos rely on the fact that all of these notions are stable by base
change [Har83b]. Harting’s proof of this relies on her construction of the internal coproduct⊕

X of a family of abelian groups over an object X in a topos E [Har82], which yields a
monomorphism-preserving left adjoint to base change of abelian group objects over X:⊕

X : AbE/X ⇆ AbE : (−) × X.

Here AbE denotes the (abelian) category of abelian group objects in the elementary topos E,
and X-indexed families of such are abelian group objects in E/X. A left adjoint between abe-
lian categories which preserves monomorphisms has a right adjoint which preserves injective
objects, as is easy to verify. Thus injectivity being stable by base change is an immediate con-
sequence of

⊕
X preserving monomorphisms. The proof that both local and internal notions

of injectivity are stable as well is less direct, but also uses the internal coproduct.
By interpreting the notion of injectivity of modules from HoTT into an ∞-topos, we get

another notion which we call HoTT-injectivity. In Chapter 4, we are interested in relating
HoTT-injectivity to existing notions of injectivity (such as the ones mentioned above) in an
∞-topos. Though we also think it is a good custom to always relate semantic notions coming
from HoTT to their traditional counterparts, our main motivation for doing this is to relate our
Ext groups to Ext sheaves which are studied by algebraic geometers [Gro57].

As with any semantic notion, HoTT-injectivity is automatically stable by base change in
an∞-topos. Even though Harting showed that various notions of injectivity are stable by base
change in a 1-topos, we do not get stability of the corresponding notions in an∞-topos for free.
This is because an ∞-topos has more slices than its 0-truncated fragment, since we can base
change over objects which are not 0-truncated. The base change stability shown by Harting in a
1-topos only implies stability for base change over 0-truncated objects in an ambient∞-topos.
Nevertheless, we extend these stability results and show that internal injectivity is stable by
base change in a certain class of∞-toposes. (Specifically, in slices of∞-toposes in which sets
cover—see Theorem 4.3.25). This class suffices for many of our purposes. From this stability
result, we deduce that HoTT-injectivity coincides with internal injectivity for models in this
class. In turn, from this we deduce that our Ext groups recover sheaf Ext in these models—we
return to this point in a moment.

The technique we use to show the stability results just mentioned can be applied more
generally to any “set-theoretic” notion in an∞-topos (i.e., any notion pertaining to 0-truncated
objects), not just to internal injectivity of modules. In this generality, the technique lets one
extend base change stability results from 1-topos theory to base change stability in the the
aforementioned class of ∞-toposes. We leave it to future work to refine this technique into a
precise theorem.

Our results give a fair understanding of the semantics of injectivity of modules in HoTT,
but this does not change the fact that we do not have enough injectives (nor projectives) in

4 Chapter 1. Introduction

HoTT itself. Thus we cannot rely on resolutions in our approach to homological algebra, and
instead we need to follow and develop “resolution-free” techniques. Such techniques have been
previously studied, though they are perhaps more finicky and certainly less mainstream. An
important example is Yoneda’s resolution-free approach to Ext groups [Yon60] in an arbitrary
(pre-)abelian category, nowadays called the Yoneda Ext groups. Given two modules B and A
over a ring R (or more generally, two objects of a pre-abelian category), Yoneda defines the
n-th Ext group Extn

R(B, A) as the path components of the category of length n exact sequences

A→ E1 → · · · → En → B.

Such length n extensions may be added via the Baer sum, making this set into a group [Bae34].
As defined, these groups are large (i.e., proper classes) but can sometimes be shown to be
isomorphic to small abelian groups. If the ring R is commutative then Extn

R(B, A) inherits an
R-module structure. We stress that Extn

R(B, A) is always an ordinary abelian group; if A and B
are modules internal to some topos, then these Ext groups are not objects of the topos in any
sense. In contrast, the interpretation of the Ext groups we define below give internal analogs of
the above (i.e., module objects) when interpreted into an∞-topos

In Chapters 3 and 4 we develop Yoneda’s approach to Ext groups in our setting. The ap-
proach described above works exactly as stated for n = 1. We define the type SESR(B, A) of
short exact sequences A → E → B, and define Ext1

R(B, A) to be its set of path components.
This works because the category of short exact sequences is a groupoid, and this groupoid is
captured by the type SESR(B, A). We then show that the loop space of SESR(B, A) is isomor-
phic to the group of R-module homomorphisms B → A. (To our knowledge, this fact was
first observed in [Ret86].) As in the traditional case, our Ext groups are large—however, we
construct an equivalence of types

SESR(B, A) ≃
(
K(B, 2)→∗ K(A, 3)

)
from which it follows that Ext1

R(B, A) is isomorphic to a small group (since the right-hand side
is small). Moreover, for any short exact sequence B→ E → B′ we show that the sequence

SESR(B′, A)→ SESR(E, A)→ SESR(B, A)

where the maps are given by pulling back extensions, is a fibre sequence. The associated long
exact sequence of homotopy groups gives the usual six-term exact sequence of Ext groups.

For n > 1, the category of length n exact sequences is not a groupoid, as it was for n = 1.
To get the set of path components of these categories, we quotient out by zig-zags of arbitrary
length. This approach is simplified by observing that a general map of length n extensions can
be factored into a composite of “tensor moves” (see [Mac63, pp. 83]). This is the approach
we take, following [Mac63] to define the higher Ext groups Extn

R(B, A) in HoTT. We also
construct the usual long exact sequences associated with these, and the topic of Chapter 3
is the formalization of these results in HoTT. The long exact sequence makes Ext into a δ-
functor [Gro57], which we moreover show is universal as such, hence a right derived functor (or
right satellite) of the hom functor. Whenever R is a principal ideal domain (in the constructive
sense of [LQ15]) and B is finitely presented, we show that Extn

R(B, A) vanishes for n > 1.
However we emphasize that even for R = Z these higher Ext groups need not vanish in general.

5

This is because they recover higher Ext sheaves in certain models, which do not necessarily
vanish.

In Section 4.3.3 we show that our Ext groups recover sheaf Ext when interpreted into cer-
tain ∞-toposes. To show this, we first prove in Section 4.2.5 that our Ext groups can be com-
puted using injective (and projective) resolutions in HoTT. Being a right-derived functor, sheaf
Ext can be computed using injective resolutions, which always exist in Grothendieck toposes.
Thus, in models where ordinary injectivity implies the interpretation of injectivity from HoTT,
we deduce that our Ext groups recover sheaf Ext (Theorem 4.3.29).

The final Chapter 5 is independent of the previous chapters, except for an application of
Yoneda Ext groups in Theorem 5.5.13. In it, we introduce the new homotopy-theoretic con-
cepts of central types and their associated banded types (or bands, for short). We also develop
some general H-space theory, emphasizing in particular the moduli space of H-space structure
on an H-space.

A pointed type A is central when the evaluation fibration

evid : (A→ A)(id) −→∗ A

which evaluates a map at the base point of A is an equivalence. The domain of evid is the
component of A → A at the identity map. Intuitively, a central type is one that is equivalent
to its own “orientation-preserving symmetries” through evid. The simplest central type is the
circle S1. More generally, any Eilenberg–Mac Lane space for an abelian group is central, as can
be seen from the following characterization: a type A is central if and only if it is a connected
H-space and A→∗ A is a set (Proposition 5.3.6).

Centrality of A is a simple condition with remarkable consequences: it implies that A is
an infinite loop space (in a unique way) and that any pointed self-map of A can be infinitely
delooped (uniquely). We give concrete and curious formulas which describe these deloopings,
using the notion of a banded type. The latter are types X equipped with a band p : ∥A = X∥0,
and these form the elements of the type BAut1(A). Under the centrality assumption on A, we
show that BAut1(A) is a delooping of A. Moreover, we define a tensor product of banded types

Xp ⊗ Yq B (X∗p =BAut1(A) Yq)

making BAut1(A) into a connected H-space (Theorem 5.4.19), where X∗p is a certain dual of Xp.
By showing that pointed self-maps of A admit unique deloopings, we deduce that BAut1(A)
is also central, using the characterization mentioned above. Then we can recursively consider
bands to get arbitrary deloopings of any central type.

We also prove some results about H-spaces in Section 5.2, all of which are new in our set-
ting, and some of which are new even in traditional H-space theory. For simplicity, we discuss
our results in the case of a pointed, connected type A. A useful observation underlying our
considerations is that H-space structures on A correspond to pointed sections of the evaluation
fibration evid above. It is not hard to prove that any such section in fact trivializes this fibration,
and from this to deduce an equivalence of types (Theorem 5.2.27)

HSpace(A) ≃ (A ∧ A→∗ A),

where the left-hand side is the type of H-space structures on A. The formula above generalizes
a classical formula of [AC63] and [Cop59] which gives a bijection on path components. As

6 Chapter 1. Introduction

an application, we see that the space of H-space structures on any n-sphere which is itself an
H-space is equivalent to Ω2nSn. In particular, HSpace(S3) ≃ Ω6S3, generalizing a theorem
of [Jam57] which says that homotopy classes of H-space structures on the 3-sphere biject with
π6S

3 (which is isomorphic to Z/12, classically).
Furthermore, we relate H-space structures to Whitehead products via the notion of an (α, β)-

extension, due to [Whi46]. Roughly, such an extension is a map f : A × B → C which
restricts to a given map α ∨ β : A ∨ B → C along the wedge inclusion. A useful obser-
vation is that (idA, idA)-extensions correspond to H-space structures on A, which implies that
any H-space admits all (α, β)-extensions. It follows that all Whitehead products vanish on an
H-space (Corollary 5.2.17), which in turn implies that no even spheres admit an H-space struc-
ture (Proposition 5.2.18) since [ι2n, ι2n] = 2 by [Bru16]. Lastly, we give an elementary proof
that the homotopy groups of H-spaces stabilize one step earlier than usual (Proposition 5.2.19).

Above, we have attempted to give a cohesive account of the content of this thesis. Each of
the chapters begins with a more detailed introduction and discussion of relevant background
material, which the reader may consult to get a more in-depth overview of the thesis.

Formalization. Many of our results have been formalized using the Coq library for homo-
topy type theory [CH], and most of these have already been integrated into this library. We list
the relevant pull requests (which also include some material not discussed in this thesis):

• projective types and the axiom of choice (#1393);

• theory related to object classifiers and fibre sequences (#1524);

• theory of Yoneda Ext (#1534, #1646, #1663 by J. Ender, #1712, #1718);

• H-space theory (#1697, #1701).

The formalization of the long exact sequence of Yoneda Ext groups currently resides in the
repository Yoneda-Ext, and the formalization results related to banded types is at central-types.
In total, these results constitute over 11,000 lines of Coq code.

https://github.com/HoTT/Coq-HoTT/pull/1393
https://github.com/HoTT/Coq-HoTT/pull/1524
https://github.com/HoTT/Coq-HoTT/pull/1534
https://github.com/HoTT/Coq-HoTT/pull/1646
https://github.com/HoTT/Coq-HoTT/pull/1663
https://github.com/HoTT/Coq-HoTT/pull/1712
https://github.com/HoTT/Coq-HoTT/pull/1718
https://github.com/HoTT/Coq-HoTT/pull/1697
https://github.com/HoTT/Coq-HoTT/pull/1701
https://github.com/jarlg/Yoneda-Ext
https://github.com/jarlg/central-types

Chapter 2

Univalent categories of modules

Abstract. We show that categories of modules over a ring in Homotopy Type Theory (HoTT)
satisfy the internal versions of the AB axioms from homological algebra. The main subtlety
lies in proving AB4, which is that coproducts indexed by arbitrary sets are left-exact. To prove
this, we replace a set X with the strict category of lists of elements in X. From showing that
the latter is filtered, we deduce left-exactness of the coproduct. More generally, we show
that exactness of filtered colimits (AB5) implies AB4 for any abelian category in HoTT. Our
approach is heavily inspired by Roswitha Harting’s construction of the internal coproduct of
abelian groups in an elementary topos with a natural numbers object [Har82].

To state the AB axioms we define and study filtered (and sifted) precategories in HoTT. A
key result needed is that filtered colimits commute with finite limits of sets. This is a familiar
classical result, but has not previously been checked in our setting.

Finally, we interpret our most central results into an∞-toposX. Given a ring R in τ≤0(X)—
i.e., an ordinary sheaf of rings—we show that the internal category of R-modules in X repre-
sents the presheaf which sends an object X ∈ X to the category of (X×R)-modules in X/X.
In general, our results yield a product-preserving left adjoint to base change of modules over
X. When X is 0-truncated, this left adjoint is the internal coproduct. By an internalization
procedure, we deduce left-exactness of the internal coproduct as an ordinary functor from its
internal left-exactness coming from HoTT.

2.1 Introduction

We study categories of modules over a ring in Homotopy Type Theory (HoTT). Our main
result is that these satisfy the (internal) axioms AB3 through AB5 and have a generator, i.e.,
they are Grothendieck categories. By working in HoTT our results hold in any (Grothendieck)
∞-topos [Shu19], and conjecturally in any elementary ∞-topos [KL18, Ras22, Shu17]. This
work is part of, and motivated by, the development of homological algebra in HoTT and the
resulting notions in an∞-topos, which we discuss in Section 2.4.

In ordinary homological algebra, it is common knowledge that the category of modules
over a ring is Grothendieck and satisfies AB4. However, the question is more subtle in a
constructive setting such as ours. For example, the category of abelian groups in the type
theory of [CS07] is only preabelian (see their Section 4.1 for a discussion). Fortunately for

7

8 Chapter 2. Univalent categories of modules

us, R-Mod is abelian in HoTT, and this has already been formalized for R ≡ Z in the file
CategoryTheory/categories/abgrs.v of the [UniMath] library.

The main subtlety in verifying that R-Mod is Grothendieck is the existence of coproducts
over an arbitrary set X. When assuming the law of the excluded middle, we are accustomed to
having a natural monomorphism

⊕
x:X A(x) → Πx:XA(x) from an arbitrary coproduct of mod-

ules to the corresponding product. Indeed, one often defines the coproduct to be the “finitely
supported” elements within the product. While the coproduct

⊕
x:X A(x) still always exists in

a constructive setting, it is harder to define, and in contrast to the classical setting there may be
no non-trivial maps (let alone monomorphisms) of the form

⊕
x:X A(x) → Πx:XA(x)! This is

further discussed in Section 2.3.1.

When Grothendieck first introduced the AB axioms, he remarked that AB4 follows from
AB5 [Gro57, p. 129]. This is the second point which is a bit more subtle in our setting, and
we prove this in Section 2.3.3. In fact, we prove a bit more: the AB5 axiom implies that the
coproduct functor

⊕
X is left-exact for arbitrary sets X (Theorem 2.3.19). Our result is analo-

gous to, and inspired by, the internal coproduct of a family of abelian groups in an elementary
topos (with N) as constructed by Roswitha Harting in [Har82]. Her main result is that the inter-
nal coproduct, indexed by an arbitrary object, is left-exact (hence preserves monomorphisms).
After Proposition 3.7 in [Ble18], Ingo Blechschmidt remarks that the internal coproduct exists
and preserves monomorphisms for families of modules as well. Our work in Section 2.3.3 si-
multaneously translates and generalizes these results by constructing type-indexed colimits in
arbitrary abelian categories in HoTT. We then recover the analogue of Harting’s result: when
the indexing type is a set, the colimit specializes to the coproduct and is left-exact. In general,
however, the colimit fails to be left-exact (Example 2.3.9).

The original construction of the internal coproduct of abelian groups was carried out in the
internal language of an elementary topos. This internal language was not well-developed at
the time, and the paper [Har82]—which is entirely dedicated to this construction—weighs in
at over 60 pages. In contrast, by working in HoTT our generalized construction goes through
in just over 2 pages (Section 2.3.3).

The usual proof that AB5 implies AB4 replaces a discrete indexing category X (for a co-
product) by a filtered category (the finite subsets of X) and uses the fact that moving from one
to the other does not change the colimit of a diagram. However, in a constructive setting neither
the Bishop-finite nor the (ordered) finite subsets of X form filtered categories unless X is decid-
able. Harting’s insight was to work with the category HX of lists of elements in X instead. In
Section 2.3.3 we define HX as a precategory associated to a 1-type X in HoTT, then we show
that HX is always sifted, and moreover filtered if X is a set. In Section 2.2, we develop the
necessary theory of sifted and filtered colimits.

In Section 2.4 we interpret our most central results into a higher topos X equipped with
a ring object R. Specifically, we show that the internal category of R-modules resulting from
interpretation represents the presheaf sending an X ∈ X to the category of (X×R)-modules over
X (Theorem 2.4.17). We repackage internal categories as Rezk (1, 1)-objects (Definition 2.4.1),
which are 2-restricted versions of 0-truncated complete Segal objects. Rezk (1, 1)-objects are
easily seen to represent presheaves of categories, which is their main utility for us.

We also interpret type-indexed colimits of modules, which specialize to coproducts when

https://github.com/UniMath/UniMath/blob/19ab34a285ea74282e82f5d25046326296d2c3a1/UniMath/CategoryTheory/categories/abgrs.v

2.2. Sifted and filtered precategories 9

the indexing type is a set. For an object X ∈ X, we get an adjunction

colimX : (X×R)-Mod⇆ R-Mod : X × (−)

where the left adjoint preserves products (Theorem 2.4.18). If X is a set, then the left adjoint is
left-exact. To deduce (external) left-exactness from internal left-exactness (resulting from in-
terpretation) we use an internalization procedure (Definition 2.4.7) that applies more generally,
and may be of independent interest.

Conventions. We use the conventions and notation of [Uni13]. Our terminology for category
theory mirrors that of [Uni13, Chapter 9] and [AKS15], in particular we leave the “univalent”
implicit when saying category (except in this paper’s title). When we consider abelian cate-
gories we do assume these are univalent. If D and C are precategories, we denote the functor
precategory using exponential notation: C D . For a functor F : C D and a morphism δ : d → d′

in D , we write Fδ : F(d)→ F(d′) for the morphism in C obtained by applying F. If moreover
η : G ⇒ G′ is a natural transformation of functors with domain C , then we will write ηF for
the restriction of η along F.

When we say something is a “property of X”, we mean it in the formal sense of being a
proposition. The standard n-element set is denoted Fin(n). Section 2.4 has its own section on
notation.

2.2 Sifted and filtered precategories
We define sifted and filtered precategories, then prove that sifted (resp. filtered) colimits of sets
commute with finite products (resp. finite limits). In fact, we prove the stronger fact that filtered
colimits commute with finitely generated limits (Definition 2.2.14). This generalization lets us,
for example, compute the fixed points of a filtered colimit of G-sets as the filtered colimit of
the fixed points, for a finitely generated group G (Corollary 2.2.19).

These are classical results in category theory, and the usual proofs go through in our context
with some added care, which is what we supply. The work builds on Chapters 9 and 10 of the
HoTT Book [Uni13].

Before we begin, we would like to emphasize that developing 1-category theory in HoTT
is unproblematic, as opposed to∞-category theory. We do not know how, or whether it is even
possible, to represent current approaches to the latter in HoTT. Nevertheless, we may speak
about ∞-groupoids and functors between them, namely: an ∞-groupoid is simply a type, and
a functor is simply a function. In particular, if X is a type and C is a category, then a function
X → C is a functor from this point of view, and there is an obvious category C X.

2.2.1 Limits and colimits of sets
We start by defining limits and colimits indexed by precategories. When the codomain is a
category, we show that the (co)limit of a functor is invariant under replacing the domain with
its Rezk completion (Lemma 2.2.3). For limits and colimits of sets, we show that the classical
descriptions remain valid in our setting (Proposition 2.2.4). Lastly, when the indexing category

10 Chapter 2. Univalent categories of modules

is a groupoid (i.e., a 1-type; see [Uni13, Example 9.1.16]), we show that the limit and colimit
are given respectively by the Π- and Σ-type of the underlying family (Proposition 2.2.6).

Definition 2.2.1. Let D : D → C be a functor between precategories. A limit of D is an object
limD D of C representing the functor C D (constD (−),D) : C op → Set. Dually, a colimit of D
is an object colimD D of C representing the functor C D (D, constD (−)).

When C is a category, Theorem 9.5.9 in [Uni13] implies that the type of (co)limits of a
functor D is a mere proposition. Thus if a (co)limit exists, it is unique.

Remark 2.2.2. Consider a functor D : D → C . The data of a limit of D consists of an
object limD D : C along with a natural isomorphism δ : C D (constD (−),D) ≃ C (−, limD D)
witnessing representability. When we say that an object c : C “is the limit of D”, we mean that
such a representability witness is specified. Of course, by the Yoneda lemma, such a witness
consists exactly of an element in C D (constD (c),D) defining a universal cocone on D. The dual
story applies to colimits.

Given a functor D : D → C from a precategory to a category, we may factor D uniquely
via the Rezk completion D̂ as follows (see [Uni13, Chapter 9.9] for details):

D

C

D̂

ηD

D

D̂

In particular, we have a natural comparison map limD̂ D̂ −→ limD D induced from ηD by
precomposition, and dually for the colimit. The following lemma implies that that these com-
parison maps are isomorphisms, meaning we can freely move between the (co)limit of D and
D̂.

Lemma 2.2.3. Let D : D → C be a functor from a precategory to a category. The two
following restriction maps are natural bijections in c : C ,

η∗D : C D̂ (constD̂ (c), D̂) −→ C D (constD (c),D),

η∗D : C D̂ (D̂, constD̂ (c)) −→ C D (D, constD (c)).

Consequently, the (co)limits of D and D̂ coincide, if either exists.

Proof. The functor ηD : D → D̂ is a weak equivalence [Uni13, Theorem 9.9.5], thus mapping
into C induces an isomorphism η∗D : C D̂ → C D by [Uni13, Theorem 9.9.4]. Clearly, for every
c : C , we have that constD̂ (c) ◦ ηD = constD (c) and D̂ ◦ ηD = D by definition. The maps in
question are actions of η∗D : C D̂ → C D on specific hom-sets, which are (natural) bijections by
full faithfullness. □

The usual descriptions of limits and colimits of sets are valid in HoTT.

Proposition 2.2.4. Let D be a small category, and D : D → Set a functor.

2.2. Sifted and filtered precategories 11

1. The limit of D exists, and is given by the set

limD D = {x : ΠD D | Πd,d′:DΠδ:d→d′Dδ(xd) = xd′}

equipped with the natural projections (limD D→ D(d))d:D forming a universal cocone.

2. The colimit of D also exists, and is given by the set-quotient of ΣD D by the relation

(d, x) ∼ (d′, x′) B ∥Σδ:d→d′Dδ(x) = x′∥−1

equipped with the natural quotient maps (D(d) → ΣD D/∼)d:D forming a universal co-
cone.

Proof. The description of the limit (1) results from computing limD D via products and equal-
izers:

limD D Πd,d′:DΠδ:d→d′D(d) Πd:D D(d)

From the explicit descriptions of products and equalizers in Set, we conclude. Dually, the
description of colimits (2) is obtained by writing colimD D via coproducts and coequalizers
and using their respective descriptions as Σ-types and quotients in Set. □

For indexing categories which are groupoids, both limits and colimits have a simpler de-
scription, given in Proposition 2.2.6. To show this we use the following lemma, which tells
us that for functors from a groupoid into a category, we can choose to simply work with the
underlying map of types.

Lemma 2.2.5. Let G be a groupoid, and C a category. The forgetful map U : C G → (G → C)
which forgets functoriality is an equivalence. The inverse V sends a map f : G → C to the
functor V(f) acting as f on objects, and which sends a path γ : g =G g′ to idtoisoG (ap f (γ)).

Proof. First of all the reader should convince themselves that the proposed definition of the
inverse V indeed constructs a functor V(f) from a general map of types f : G → C . It is
then clear that V is a section of the forgetful map U, so it remains to show that any functor
F : G → C is equal to the functor induced from its map on the underlying types.

Clearly forgetting functoriality of F and then inducing functoriality produces the same
map on the underlying types, by definition. Consider a general map idtoisoG (γ) : g → g′

in G , where γ : g =G g′. This is general since G is a groupoid. We need to show that
FidtoisoG (γ) = idtoisoG (apF(γ)) as morphisms F(g) → F(g′) in C . But this follows by path
induction on γ. □

Similar in spirit to Lemma 2.2.3, the following proposition says that a (co)limit of sets is
invariant under the change of perspective afforded by the previous lemma.

Proposition 2.2.6. Suppose G is a groupoid, and let D : G → Set be a functor. The natural
maps limG D→ ΠG D and ∥ΣG D∥0 → colimD D are bijections.

12 Chapter 2. Univalent categories of modules

Proof. First we consider the limit. A family d : ΠG D lies in the limit if and only if the
proposition

Πg,g′:GΠ f :G (g,g′) D f (dg) = dg′

holds. Since G is a groupoid, we can identify G (g, g′) with g =G g′. The above then immedi-
ately follows by path induction, meaning the predicate defining the limit is a tautology.

Similarly, we will show that the equivalence relation defining the colimit is trivial so that
the set-quotient on ΣG D is simply given by set-truncation. Suppose (g0, d0) ∼ (g1, d1) for the
colimit relation defined in Proposition 2.2.4. By definition there merely exists some f : g0 →

g1 such that D f (d0) = d1. We wish to deduce that (g0, d0) = (g1, d1). Since this is a proposition,
we may assume f actually exists. As before, we identify f with a path g0 =G g1, using that G is
a groupoid. Then the existence of the path D f (d0) = d1 implies exactly that (g0, d0) = (g1, d1),
by characterization of paths in Σ-types. In conclusion, the colimit relation ∼ is just equality,
hence the set-quotient colimG D is simply ∥ΣG D∥0. □

2.2.2 Sifted colimits

We define sifted precategories and prove that sifted colimits commute with finite products in
Set. In [ARV10], sifted categories are defined to have this property. We will instead take the
equivalent condition of Theorem 2.15 from loc. cit. as our definition, which is a simpler con-
dition to check. To us, the main interest is that sifted colimits of algebraic structures (such as
groups, abelian groups, and modules) may be computed on the underlying sets—see Corol-
lary 2.2.12.

Definition 2.2.7. Let C be precategory.

1. Let c and c′ be objects of C and let n : N. A zig-zag from c to c′ of length n is
inductively defined as a path c =C c′ when n ≡ 0, and for n ≥ 1 a sequence

c c2 c′ ,

c1 · · ·

where “· · ·” signifies a length n − 1 zig-zag from c2 to c′ (hence just a path if n ≡ 1);

2. The precategory C is connected if it is merely inhabited (i.e., the proposition ∥C ∥−1

holds) and for every two objects in C there merely exists a zig-zag connecting them;

3. Let C ′ be a precategory. A functor F : C ′ → C between precategories is final if for
every c : C , the slice precategory c/F is connected.

Being connected is a property of a precategory, and consequently being final is a property
of a functor. In [ARV10], a functor is said to be final if restriction along it preserves colimits.
We have instead taken the equivalent condition (3) of Lemma 2.13 in loc. cit. as our definition,
from which we prove this fact:

2.2. Sifted and filtered precategories 13

Proposition 2.2.8. Let F : C ′ → C and G : C → D be functors between precategories. If F
is final, then restriction along F is a natural bijection between functors D → Set as follows:

F∗ : DC (G, constC (d)) −→ DC ′(GF, constC ′(d))

naturally in d : D . Consequently, the colimit of G coincides with the colimit of GF, if either
exists.

Proof. Let d : D . First of all, it is straightforward to check that F∗ defines a natural transfor-
mation as stated. To prove that it is a natural isomorphism, we show that each component is a
bijection.

Injectivity: Suppose η, η′ : G ⇒ constC (d) are such that ηF = η
′
F . We want to show that

ηc = η
′
c for all c : C , which is a proposition. Let c : C , and pick a morphism f : c → F(c′)

using that c/F is merely inhabited and the fact that we’re proving a proposition. But then, by
naturality of η and η′, we have

ηc = ηF(c′) ◦G f = η
′
F(c′) ◦G f = η

′
c

where the middle equation comes from ηF = η
′
F . Hence F∗ is injective.

Surjectivity: Consider a natural transformation ν : GF ⇒ constC ′(d). For c : C , define the
function

ϕ : c/F −→ (G(c)→ d)
f 7−→ νc′ ◦G f ,

where f : c → F(c′). For f , f ′ : c/F, one can easily show (using naturality of ν) that
ϕ(f) = ϕ(f ′) by induction over the length of a zig-zag from f to f ′. Consequently, im(ϕ)
is a proposition and we may therefore factor ϕ via its propositional truncation, producing
ptrϕ : ∥c/F∥−1→ im(ϕ) → (G(c) → d). (This argument also appears in [KECA17, Theo-
rem 5.4], which may be consulted for details.) Thus we get a map g : G(c) → d using the fact
that c/F is merely inhabited. Doing this for all c : C gets us a transformation η : Πc:C G(c)→ d
which, by construction, satisfies ηF = ν.

It remains to prove that η is natural. Let g : c0 → c1 be a morphism in C . We need to show
that ηc0 = ηc1 ◦ Gg, which is a proposition. By finality of F, we may choose f0 : c0 → F(c′0)
and f1 : c1 → F(c′1) to obtain the following diagram:

G(c0) GF(c′0)

... d

G(c1) GF(c′1)

Gg

G f0

νc′0

G f1 νc′1

where the outer diagram is the one we wish to show commutes. Since c0/F is connected, the
two maps f0 and f1 ◦ g are connected by a zig-zag which, after applying G, produces the dotted
lines above. The left square then commutes by definition of a zig-zag, and the triangles on the
right commute by naturality of ν. Inducting over the length of the zig-zag, we conclude that η
is natural, as desired. □

14 Chapter 2. Univalent categories of modules

Definition 2.2.9. A precategory S is sifted if it is merely inhabited and ∆S : S → S ×S
is final.

There are various equivalent classical definitions of siftedness (see, e.g., [AR01, Theo-
rem 1.6]). We chose the one above to make the connection with final functors immediate, and
to facilitate the proof of the following:

Lemma 2.2.10. If a precategory C is merely inhabited and has binary coproducts, then C is
sifted.

Proof. Suppose C is merely inhabited and has binary coproducts. Then for every (c0, c1) : C 2,
the slice precategory (c0, c1)/∆C has an initial object given by the coproduct. Then we are
done, since any category with initial object is connected (by zig-zags of length at most 2). □

This is one direction of [ARV10, Theorem 2.15].

Proposition 2.2.11. Sifted colimits of sets commute with finite products.

Proof. Let S be a sifted precategory. The claim that colimits over S commute with empty
products follows from S being merely inhabited. Consider two functors G,H : S → Set,
then we have the following natural bijections:

colims:S
(
Gs × Hs

)
≃ colim(s,t):S×S Gs × Ht (Prop. 2.2.8 applied to ∆S)
≃ colims:S colimt:S Gs × Ht

≃ colims:S
(
Gs × colimt:S Ht

)
(Gs × − is cocontinuous)

≃ colims:S Gs × colimt:S Ht (− × colimt:S Ht is cocontinuous)

where the second step can be checked directly. The product bifunctor × preserves colimits in
each variable, being a left adjoint. □

We deduce that sifted colimits of groups and modules can be computed on the underlying
sets. This is true more generally for any algebraic theory [ARV10, Proposition 2.5], but we
only state and prove the case that we require.

Corollary 2.2.12. Let A be the category of groups or of R-modules (for a ring R). The forgetful
functor U : A → Set creates sifted colimits.

Proof. We first consider the case when A is the category of groups. Let S be a sifted precat-
egory and let G : S → A be a diagram. The previous proposition implies that the functor
colimS : SetS → Set preserves finite products. It follows that it preserves group objects.
Since a group object in SetS is simply an object-wise group object, we get a natural group
structure on colims:S U(Gs). To show that this group is the colimit of G, we need to construct
a universal cocone

(
Gs → colims:S U(Gs)

)
s:S in A .

The multiplication map on colims:S U(Gs) is induced from all the multiplication maps Gs ×

Gs → Gs using functoriality of the colimit and that colimS preserves binary products. Thus
the natural maps is : Gs → colims:S U(Gs) are group homomorphisms (not just maps), giving
a cocone of the desired form. For any other cocone (fs : Gs → H)s:S in A , we get an
induced map f : colims:S U(Gs) → UH of sets. Since fs(−) ·H fs(−) = fs(− ·Gs −) for any

2.2. Sifted and filtered precategories 15

s : S , uniqueness of maps out of colimits gives that f (−) · f (−) = f (− · −), i.e., f is a group
homomorphism. This means that (is : Gs → colims:S U(Gs))s:S is a universal cocone under G
in A , as desired.

Now we consider the case when A is the category of R-modules for a ring R. It is straight-
forward to check that colimits of R-modules may be computed on the underlying abelian
groups, as in classical algebra. Thus we need only consider the case when R ≡ Z. But if
G is a diagram of abelian groups in the argument above, then colims:S U(Gs) is also abelian,
because colimS : SetS → Set also preserves abelian group objects. But then we are done
since colims:S U(Gs) has the required universal property. □

2.2.3 Filtered colimits
Filtered colimits of sets have particularly nice descriptions, and it is well known that they
commute with finite limits, classically. Less known is that fact that filtered colimits actually
commute with finitely generated limits (Definition 2.2.14). We start with the relevant defini-
tions.

Definition 2.2.13. A precategory F is filtered if the following propositions all hold:

1. F is merely inhabited;

2. for any two objects c, c′ : F there merely exists an upper bound c→ c′′ ← c′;

3. for any two arrows f , g : c→ c′ there merely exists some h : c′ → c′′ such that h f = hg.

By definition, filteredness is a property of a precategory. It is straightforward to prove,
by induction, that any finite family of objects in a filtered category merely admits an upper
bound. Similarly, any finite number of parallel arrows merely admit a (not necessarily univer-
sal) coequalizing arrow. Here, by “finite” we mean Bishop-finite, i.e., a type X for which there
merely exists a natural number n : N and an equivalence Fin(n) ≃ X, where Fin(n) denotes the
standard n-element set.

More generally, filtered categories admit cones under finitely generated diagrams.

Definition 2.2.14. A precategory D is finitely generated if the underlying type of objects
is Bishop-finite, and there exists a family of morphisms Φ : Πi:ID(si, ti) in D indexed by a
Bishop-finite set I, such that every morphism in D merely factors as follows:

Πm,m′:DΠg:m→m′∥Σn:NΣ j:Fin(n)→I g = Φ j(n−1) · · ·Φ j(0)∥−1

where Fin(n) denotes the standard n-element set.

Observe that a finitely generated precategory is automatically a strict category, since Bishop-
finite types are necessarily sets.

Proposition 2.2.15. Let F and D be filtered and finitely generated categories, respectively.
Any functor D : D → F merely admits a cocone.

Proof. Lemma 2.13.2 of [Bor94] readily generalizes to the case when D is finitely generated.
□

16 Chapter 2. Univalent categories of modules

Using this proposition, we can easily show that filteredness implies siftedness:

Lemma 2.2.16. Filtered precategories are sifted.

Proof. Suppose F is a filtered precategory. To see that F is sifted, we need to show that the
slice precategory (c0, c1)/∆F is connected for any c0, c1 : F . An object of this slice is precisely
an upper bound c0 → c ← c1, so the slice is merely inhabited since F is filtered. To see that
the slice is connected, let c and c′ be upper bounds of c0 and c1. We may form the following
diagram:

c0

c c′

c1 .

A cocone of this diagram merely exists, by the previous proposition. This cocone exhibits a
zig-zag of length one connecting c and c′. □

Theorem 2.2.17. Let F and D be filtered and finitely generated categories, respectively, and
consider a functor D : F ×D → Set. The natural map colimF limD D→ limD colimF D is a
bijection.

Proof. For finite categories D the proof of [Bor94, Theorem 2.13.4] goes through since every
application of the axiom of choice is used for a finite indexing set, which is valid in HoTT
(see, e.g., Spaces.Finite.finite choice). The generalization to D being finitely gener-
ated only requires straightforward modifications using Proposition 2.2.15 in the last part of
Borceux’ argument. □

Remark 2.2.18. That filtered colimits commute with finite limits has been formalized in [math-
lib] in the file category theory/limits/filtered colimit commutes finite.lean.
Their proof follows that of Theorem 2.13.4 in [Bor94], as we did, however they freely employ
classical reasoning (as Borceux does) in their formalization. In particular, they begin their
proofs by assuming the law of the excluded middle (using the classical tactic) and employ
the full axiom of choice (using some to choose elements of merely inhabited sets) in the same
places as Borceux. (In fact, in more places than Borceux, if you read his proof constructively.)
Our contribution is simply the observation that, with our constructive definitions of limits and
colimits of sets, the proof does not require the law of the excluded middle and each application
of the axiom of choice is in fact an application of finite choice, which is valid for us.

We say that a group G is finitely generated if there exist a Bishop-finite generating set.
Recall that a G-set X is simply a map X : BG → Set (see, e.g., [Bez+23, Section 4.7]), and the
fixed points of X are given by ΠBGX. As an application of our development thus far, we have
the following:

Corollary 2.2.19. Let G be a finitely generated group, and let X : F → (BG → Set) be a
filtered diagram of G-sets. The fixed points of the colimit is the colimit of the fixed points:

ΠBG colimF X ≃ colimx:F ΠBGX(x).

https://github.com/HoTT/Coq-HoTT/blob/5803f83cfa5121224692999e586d3f0c602d6209/theories/Spaces/Finite/Finite.v#L209
https://github.com/leanprover-community/mathlib/blob/b3538bfa228ce7182c78d4e6c2bf5585aad7d21d/src/category_theory/limits/filtered_colimit_commutes_finite_limit.lean#L45
https://leanprover-community.github.io/mathlib_docs/tactics.html#classical
https://leanprover-community.github.io/mathlib_docs/init/classical.html#classical.some

2.3. The internal AB axioms 17

Proof. The category BG is the Rezk completion of the strict category B′G which has a sin-
gle object with G as its endomorphisms. If G is a finitely generated group, then B′G is a
finitely generated category in the sense of Definition 2.2.14. By Proposition 2.2.6 we have
that ΠBG(−) = limBG(−), and by Lemma 2.2.3 we can change the limits to be over B′G. We
conclude by the previous theorem, since B′G is finitely generated and F is filtered. □

2.3 The internal AB axioms
The goal of this section is to show that for a ring R in HoTT, the category of R-modules satisfies
the axioms AB3 through AB5 and has a generator—meaning it is a Grothendieck category
(Definition 2.3.3). Formally, a Grothendieck category is only assumed to satisfy AB3 and AB5,
but we show that AB4 follows from AB5 (Theorem 2.3.19). It is straightforward to check that
R-Mod is an abelian category in HoTT, and indeed this has already been formalized for R ≡ Z
in the file CategoryTheory/categories/abgrs.v of the [UniMath] library. (Some work
towards the general case can be found in the file modules.v in the same directory.) Moreover,
R being a generator is simply a restatement of function extensionality. What remains is to show
that R-Mod satisfies the axioms AB3 through AB5.

We wish to treat families A : X → A in an abelian category A indexed by an arbitrary type
X. As pointed out at the beginning of Section 2.2, we think of these as functors from an ∞-
groupoid into a category. Since A is a category, its underlying type is 1-truncated, and so we
may factor any such family A through the 1-truncation of X. One checks that the 1-truncation
map |−|1 : X → ∥X∥1 induces an equivalence of categories by precomposition:

|−|∗1 : A ∥X∥1 → A X.

It follows, by an argument similar to the one in Lemma 2.2.3, that the limit (resp. colimit) of a
functor A : X → A coincides with the limit (resp. colimit) of the 1-truncation |A|1 : ∥X∥1 →
A . (Limits and colimits of functors from an ∞-groupoid into a category are defined in the
obvious way.) Thus when we discuss limits and colimits of such a family A, we may assume
that X is a 1-type without loss of generality.

2.3.1 Grothendieck categories
We define Grothendieck abelian categories in homotopy type theory, assuming the reader is
familiar with additive and abelian precategories. The traditional definitions of the latter can be
directly translated into our setting, as has already been done in [UniMath] under the names-
pace CategoryTheory/Abelian. Be aware that by abelian category we do mean that it is a
(univalent) category. While much of our discussion likely works for abelian precategories as
well, we are particularly interested in discussing families of objects and their (co)limits, which
is most naturally done for categories.

Definition 2.3.1. Let A be an additive category, and X a set. For a family A : X → A , the
coproduct of A (if it exists) is the colimit of A, denoted

⊕
x:X A(x). Dually, the product of A

(if it exists) is the limit of A, denoted Πx:XA(x). If no confusion will arise, we often leave the
variable x : X implicit.

https://github.com/UniMath/UniMath/blob/19ab34a285ea74282e82f5d25046326296d2c3a1/UniMath/CategoryTheory/categories/abgrs.v
https://github.com/UniMath/UniMath/blob/19ab34a285ea74282e82f5d25046326296d2c3a1/UniMath/CategoryTheory/categories/modules.v
https://github.com/UniMath/UniMath/blob/19ab34a285ea74282e82f5d25046326296d2c3a1/UniMath/CategoryTheory/Abelian.v

18 Chapter 2. Univalent categories of modules

Suppose A is an additive category. Then, by definition, finite products and coproducts
in A coincide, and we call these biproducts. The word finite here means “finitely iterated,”
i.e. pairwise biproducts carried out a finite number of times. If X is a decidable set, and A :
X → A is a family, then there is always a comparison map m :

⊕
X A → ΠXA which is

a monomorphism. This is straightforward to prove in HoTT (and was shown for families of
modules in an elementary topos with N in [Tav85]). Of course, if X is the standard n-element
set Fin(n) for some n : N, then the map m is an isomorphism. We deduce the following, since
m being an isomorphism is a proposition:

Lemma 2.3.2. Let A be an additive category, and X a Bishop-finite type. For any family
A : X → A , the natural map m :

⊕
X A→ ΠXA is an isomorphism.

It may come as a surprise that no such monomorphism m need exist in general. In fact,
Harting demonstrates in [Har82, Remark 2.1] that there might be no non-trivial map like m.
Her example is in the Sierpiński 1-topos, which is the 0-truncated fragment of the Sierpiński∞-
topos (see Proposition 2.4.13). The latter is a model of HoTT, and Harting’s example therefore
shows that it is impossible for us to construct a non-zero map

⊕
X A → ΠXA for a general set

X. The example also demonstrates that the construction of arbitrary coproducts is tricky; for
example, one cannot carve out

⊕
X A from ΠXA as those families with “finite support.” We

will have more to say about models of HoTT in Section 2.4 below. For more details about the
Sierpiński∞-topos specifically, we recommend [Shu15, Section 8].

Definition 2.3.3. For an abelian category A we consider the following axioms.

(AB3) for any small set X and family A : X → A , the coproduct
⊕

X A exists in A ;

Assuming A satisfies AB3, we get a coproduct functor
⊕

X : A X → A . It also fol-
lows that A is cocomplete (since it always has coequalizers). Thus, assuming AB3, we may
additionally ask for:

(AB4) for any small set X, the functor
⊕

X : A X → A preserves monomorphisms;

(AB5) for any small filtered precategory F , the functor colimF : A F → A preserves finite
limits.

A generator of A is an object G : A such that for any two morphisms f , f ′ : A→ B, we have

(Πg:G→A f g = f ′g)→ (f = f ′).

When A has a specified generator and satisfies AB3 and AB5, then A is a Grothendieck
category.

We note that monomorphisms in A X are object-wise monomorphisms (i.e., families of
such). The axiom AB5 implies that the colimit functor colimF is exact for filtered precategories
F . In the next section we show that R-Mod is Grothendieck for any ring R.

2.3. The internal AB axioms 19

2.3.2 Colimits of R-modules
We consider a 1-type X as a category and construct an adjunction:

colimX : R-ModX ⇆ R-Mod : constX.

When X is a set, the colimit is the coproduct of an X-indexed family of modules. In contrast,
when R ≡ Z and X is pointed and connected, R-ModX is the category of π1(X)-modules (Defi-
nition 2.3.7). We will see that the functor colimX computes the coinvariants of a π1(X)-module.
Dually, the functor limX computes the invariants.

As in classical algebra, the forgetful functor U : R-Mod → Ab creates limits and colimits.
Thus by constructing colimX for families of abelian groups, we extend it to families of modules
via U. Moreover, the category of abelian groups is equivalent to the category of pointed, 1-
connected 2-types [BvDR18, Theorem 5.1] through the functor K(−, 2) (whose inverse is Ω2).
The latter category is cocomplete, so we can transfer colimits across this equivalence. We now
give an explicit account of this procedure.

Proposition 2.3.4. Let X be a 1-type. We have an adjunction colimX : AbX ⇆ Ab : constX.

Proof. We start by constructing the functor colimX. Let A : X → Ab. Via [BvDR18, The-
orem 5.1], we may instead consider the corresponding family x 7→ K(A(x), 2) of pointed, 1-
connected 2-types. The colimit of this family among types is then ΣXK(A, 2) by Lemma 2.2.5,
whereas the colimit among pointed types is the pushout

X ΣXK(A, 2)

1
∨

X K(A, 2) ,

pt

⌜

called the indexed wedge. Thus the colimit of K(A, 2) among pointed 2-types is ∥
∨

X K(A, 2)∥2
by [Uni13, Section 7.4]. Moreover, by Theorem 7.3.9 in [Uni13] we have that

∥ΣXK(A, 2)∥1 ≃ ∥Σx:X∥K(A(x), 2)∥1∥1 ≃ X

using that K(A(x), 2) is 1-connected for all x : X, and that X is a 1-type. From this we deduce
that 1-truncating the pushout square above produces

X X

1 1

id

⌜

since pushouts commute with truncation. In particular,
∨

X K(A, 2) is 1-connected. Finally,
since ∥

∨
X K(A, 2)∥2 has the desired universal property among pointed 2-types, it certainly has

it among pointed, 1-connected 2-types, being one itself. Now we apply Ω2, the inverse of
K(−, 2), and move the truncation to the outermost level, to define our functor on objects:

colimX(A) B π2

∨
X

K(A, 2)

 .
As defined, colimX is a composite of the functors, hence is itself a functor. □

20 Chapter 2. Univalent categories of modules

Corollary 2.3.5. Let R be a ring. The category R-Mod is complete and cocomplete.

Proof. We reduce to R ≡ Z since the forgetful functor creates both limits and colimits. For
limits, note that Ab has small products given simply by the Π-type associated to a family X →
Ab indexed by a set. Since Ab has equalizers, it is complete. Dually, Proposition 2.3.4 produces
small coproducts by letting X be a set. Since Ab has coequalizers, it is cocomplete. □

Theorem 2.3.6. The category R-Mod is Grothendieck.

Proof. That R is a generator is an immediate consequence of function extensionality. By the
previous corollary, R-Mod is cocomplete and therefore satisfies AB3. The axiom AB5 follows
from Theorem 2.2.17, since products of modules are computed on the underlying sets, and the
forgetful functor R-Mod→ Set creates sifted (hence filtered) colimits by Corollary 2.2.12. □

At this point, it is not obvious that R-Mod satisfies AB4. This will be a consequence
of Theorem 2.3.19 in the next section. For the remainder of this section, we discuss colimX

when X is the classifying space of a group.

Definition 2.3.7. Let G be a group. A family A : BG → Ab is a G-module. The invariants of
A comprise the abelian group AG B limBG A, and the coinvariants comprise the abelian group
AG B colimBG A.

Using the fact that limits of abelian groups may be computed on the underlying sets, along
with the concrete description of limits in Proposition 2.2.4, we see that AG = {a : A | Πg:G ga =
a}, which is the usual definition of the invariants. Writing colimBG A as a coequalizer produces

⊕
g:G A A AG

a7→ga

a7→a

from which we see that AG is the quotient of A by the subgroup ⟨a − ga | g : G⟩, which is the
usual definition of the coinvariants.

We now relate some of Harting’s considerations about coproducts to our colimits, which are
their higher analogs. To that end, we consider the group G B Z/2 in the remark and example
below. A G-module is then an abelian group equipped with an automorphism which squares to
the identity.

Remark 2.3.8. After Definition 2.3.1, we discussed Harting’s counterexample to the existence
of a monomorphism

⊕
X A→ ΠXA when X is a set. Of course, this also means that there is in

general no monomorphism colimX A → limX A when X is not necessarily a set, but it is much
easier to produce a counterexample to this. For example, if we consider the G-module Z given
by the negation automorphism n 7→ −n, then the coinvariants are ZG = Z/2 but the invariants
are ZG = 0. Of course, there are no monomorphisms Z/2→ 0.

In [Har82], Harting carried out her specific construction of the internal coproduct of abe-
lian groups so as to prove that the resulting coproduct functor was left-exact (in particular, it
preserves monomorphisms). For us, the internal coproduct is colimX for a set X. Here we
demonstrate that colimX generally fails to be left-exact when X is not a set.

2.3. The internal AB axioms 21

Example 2.3.9. Consider the G-module Z equipped with the negation automorphism n 7→ −n,
and the G-module Z×Z equipped with the “swap” automorphism (a, b) 7→ (b, a). We have a G-
equivariant monomorphism 1 7→ (−1, 1) : Z→ Z×Zwhich fails to induce a monomorphism on
the coinvariants. Explicitly, the respective coinvariants are ZG = Z/2 and (Z × Z)G = Z. There
are of course no non-trivial homomorphisms Z/2 → Z, and certainly no monomorphisms.
Consequently the functor colimB(Z/2), which computes the coinvariants, is not left-exact.

2.3.3 AB5 implies AB4
We prove that AB4 follows from AB5 for any abelian category, as is familiar in ordinary
homological algebra. The classical proof proceeds by replacing a discrete indexing category
X (for a coproduct) by a filtered category (the finite subsets of X) sharing the same colimit,
then applying AB5. However, in a constructive setting neither the category of Bishop-finite
subsets of X, nor the category of ordered finite subsets of X, form filtered categories unless X
is decidable. For this reason we will work with lists of elements in X, i.e. general maps of the
form Fin(n)→ X as opposed to only the injections.

We wish to point out that this is how Harting constructs the internal coproduct of abe-
lian groups in an elementary topos (with N) in [Har82], though she does not phrase things in
terms of the AB axioms. While the goal of this construction is to realize a coproduct as a
filtered colimit, we find it interesting to observe that Harting’s “set-theoretic” description read-
ily generalizes to untruncated indexing types, as well as abelian categories A . Specifically,
given a family A : X → A indexed by an arbitrary type X, we replace A by a sifted diagram
GA : HX → A sharing the same colimit (if it exists). If X is a set, so the colimit is the
coproduct, then

⊕
x:X A(x) will be a filtered colimit, as desired.

Our first objective is to define the precategory HX of lists of elements in any 1-type X. In
general HX will be sifted, and even filtered when X is a set. The latter situation is essentially
the one studied in [JW78, pp. 177–178]. Throughout this section, let X be a 1-type (unless
otherwise stated), and let A be an abelian category. We implicitly identify Xn and Fin(n)→ X
where Fin(n) is the standard n-element set.

Definition 2.3.10. The 1-type HX B Σn:NXn becomes a precategory as follows. Given two
elements (n, x), (m, y) : Σn:NXn, a morphism is a commuting triangle (with specified witness of
commutativity):

(n, x)→ (m, y) B Σ f :Fin(n)→Fin(m) (x =Xn y ◦ f).

Since X is a 1-type, so is Xn, and this hom-type is therefore a set, as required for being a
precategory. Identity morphisms are given by identity maps and reflexivity paths. Composing
morphisms is done by pasting triangles. Specifically, given morphisms (f , p) : (n, x) → (m, y)
and (g, q) : (m, y)→ (l, z) in HX, then their composite is

(g, q) ◦ (f , p) B
(
g ◦ f , p � (q ◦ f)

)
,

where we view q as a homotopy Πi:Fin(m)yi = zg(i) via function extensionality. Associativity of
composition follows from associativity of function composition and path composition. Clearly
the identity maps form left- and right-units for the composition operation, meaning we have
defined a precategory structure on HX.

22 Chapter 2. Univalent categories of modules

We observe the following lemma (using Lemma 2.2.10), which in general fails for the
precategories of Bishop-finite or finite ordered subsets of X.

Lemma 2.3.11. The precategory HX has binary coproducts. In particular, it is sifted.

The next proposition is [JW78, Lemma 4.4] translated to our setting. (The precise relation
being that a presheaf is flat if and only if its category of elements or “total category” is filtered;
see also [JW78, Proposition 1.3].) Note that Σn:NXn is a set if X is, and HX is then a strict
category. In this situation, when discussing morphisms in HX we may omit references to the
commutativity witnesses.

Proposition 2.3.12. If X is a set, then HX is filtered.

Proof. Clearly HX is merely inhabited, and coproducts yield upper bounds. It remains to verify
that for any two parallel arrows f , g : (n, x) → (m, y) in HX, there merely exists a an arrow
h : (m, y)→ (l, z) making the following diagram commute:

Fin(n) Fin(m) Fin(l)

X

f

g

x

h

y
z

In fact, such a morphism h exists (not just merely). We may take Fin(l) to be the coequalizer of
f and g, which is a finite set because the relation induced by f and g on Fin(m) is decidable and
the quotient of a finite set by a decidable relation is itself finite. The induced map z : Fin(l)→ X
follows from the universal property of this coequalizer among sets. □

The following example demonstrates that HX may fail to be filtered when X is not a set.

Example 2.3.13. Let X B K(Z/2, 1) with base point x0 : X. Consider the two parallel arrows
in HX:

Fin(1) Fin(1) Fin(1) Fin(1)

X X

id

x0

reflx0

x0 x0

id

σ
x0

where σ : ΩX is the non-trivial element under the identification ΩX ≃ Z/2. If we had an upper
bound h : (1, x0) → (l, z) for these two arrows, then we would obtain an element p : ΩX such
that reflx0

� p = σ � p. This would imply that reflx0 = σ, which is absurd.

Now we show how to replace diagrams X → A by diagrams HX → A .

Construction 2.3.14. We build a functor G : A X → A HX. For a family A : X → A , define

GA(n, x) B
⊕

i:Fin(n)A(xi).

For a morphism (f , p) : (n, x) → (m, y) in HX, we have the path p : Πi:Fin(n)xi = y f (i) which
induces a morphism Ap :

⊕
i:Fin(n) A(xi) →

⊕
i:Fin(n) A(y f (i)) by transport and functoriality of

biproducts. Define GA(f ,p) :
⊕

i:Fin(n) A(xi)→
⊕

j:Fin(m) A(y j) as the composite:⊕
i:Fin(n)A(xi)

Ap
−−→
⊕

i:Fin(n)A(y f (i))
∼
−−→
⊕

j:Fin(m)

⊕
i:fib f (j)A(y f (i)) −→

⊕
j:Fin(m)A(y j),

2.3. The internal AB axioms 23

where the middle map simply arranges the biproduct using that Fin(n) is the sum of the fibres
of f , and the last map sums over the fibres of f . This sum is well-defined since it is finite:
any function between finite types has decidable fibres, and a decidable subset of a finite type is
finite, hence fib f (j) is finite for all j : Fin(m). We will write ∇ for the composite of the two last
maps above. Checking that GA defines a functor is straightforward.

Lastly, the obvious functor hX : X → HX defined by hX(x) B (1, x) makes the following
diagram commute:

X

A .

HX

hX

A

GA

The following is the analog of [Har82, Proposition 2.5] in our setting.

Lemma 2.3.15. The functor G : A X → A HX preserves limits.

Proof. Let A : D → A X be a diagram whose limit exists. For all (n, x) : HX, we have

G(limd:D Ad)(n, x) ≡
⊕

j:Fin(n) limd:D Ad(x j) = limd:D
⊕

j:Fin(n) Ad(x j) ≡ limd:D GAd(n, x)

using that limits in functor categories are computed object-wise, and that
⊕

Fin(n) preserves
limits. □

Before the next proposition, we require a lemma:

Lemma 2.3.16. Let n be a natural number, and let A : X → A . Consider an object M : A
along with a family η : Πx:XA(x) → M. For any path p : x = x′ in Xn, the following diagram
commutes: ⊕

i:Fin(n) A(xi)

M⊕
i:Fin(n) A(x′i)

⊕
i ηxi

Ap

⊕
i ηx′i

Proof. By path induction on p. □

Now we prove that passing between A and GA leaves the colimit unchanged (if it exists).

Proposition 2.3.17. Let A : X → A . Restriction along the functor hX : X → HX is an
isomorphism

h∗X : A HX(GA, constHX(M))→ A X(A, constX(M))

which is natural in M : A . Consequently, the colimits of A and GA coincide, when they exist.

Proof. We construct an explicit inverse e to h∗X. Let M : A , and let η : A ⇒ constX(M) be
a natural transformation, i.e. a family η : Πx:XA(x) → M. Given such a family η, we extend

24 Chapter 2. Univalent categories of modules

it to a natural transformation e(η) : GA ⇒ constHX(M) using the biproduct, as follows. For
(n, x) : HX, let

e(η)(n,x) B
⊕

i ηxi :
⊕

i:Fin(n) A(xi) −→ M.

Thus we have defined a transformation e(η), and now we check naturality.
Let (f , p) : (n, x)→ (m, y) be a morphism in HX. Our task is to verify that outer triangle in

the following diagram commutes:

⊕
i:Fin(n) A(xi)

⊕
i:Fin(n) A(y f (i))

⊕
j:Fin(m) A(y j)

M
⊕

i ηxi

Ap ∇

⊕
j ηx j

where the dashed line is
⊕

i:Fin(n) ηy f (i) . The inner-left triangle commutes by Lemma 2.3.16.
That the inner-right triangle commutes can be immediately checked on each component i :
Fin(n). Thus we conclude that e(η) is a natural transformation.

From the construction it is clear that h∗X ◦ e = id. For the other equality, let ν : GA ⇒
constHX(M) be a natural transformation. Given some (n, x) : HX, then for any i : Fin(n) we
have the morphism in HX on the left, whose filler is the reflexivity path:

Fin(1) A(xi)

X M

Fin(n)
⊕

j:Fin(n) A(x j)

i

xi
ν(1,xi)

GAi

x ν(n,x)

The vertical arrow in the right triangle is the inclusion, which is also given by functoriality of
GA. The right triangle commutes by naturality of ν. By the universal property of the n-fold
biproduct, we have that ν(n,x) =

⊕
i:Fin(n) ν(1,xi). This means that ν = e(h∗X(ν)), and consequently

id = e ◦ h∗X. □

The proposition tells us that the following diagram commutes, whenever A is cocomplete:

A HX

A X A .

colimHXG

colimX

From this we deduce the following results.

Corollary 2.3.18. The functor colimX : R-ModX
→ R-Mod preserves finite products.

Proof. By Lemma 2.3.15 we know that G preserves limits, so we need only argue that colimHX

preserves finite products. Since products of modules are given by products of the underlying
sets, and sifted colimits of modules can be computed on the underlying sets by Corollary 2.2.12,
this follows from Proposition 2.2.11 since HX is sifted (Lemma 2.3.11). □

2.4. Semantics 25

Theorem 2.3.19. Suppose A is an abelian category satisfying AB3 and AB5. For any set X,
the functor

⊕
X : A X → A is left-exact. In particular, A satisfies AB4.

Proof. The assumption that A satisfies AB5 means that the functor colimHX is exact, because
HX is filtered when X is a set by Proposition 2.3.12. Since G preserves limits by Lemma 2.3.15,
we conclude from the diagram above that colimX (i.e.

⊕
X) is left-exact. □

2.4 Semantics
We interpret the most central results from the previous sections into an ∞-topos X, as made
possible by recent developments on the semantics of homotopy type theory [KL21, LS20,
Shu19, dBoe20]. Specifically, we work out the interpretation of categories of modules (Theo-
rem 2.4.17) and colimits of modules indexed by an object (Theorem 2.4.18).

Until now we have studied categories of abelian groups and modules, as well as abstract
abelian categories in HoTT. Semantically, these yield structures in our chosen∞-topos X. For
example, we will see that the “internal category” Ab obtained by interpretation represents—in
the sense of Definition 2.4.3—the presheaf

X 7−→ AbX/κX : Xop −→ Cat

which sends an object X ∈ X to the ordinary category of (relatively κ-compact) abelian groups
objects in the 1-topos τ≤0(X/κX). We often refer to structures in this slice over X just as
structures over X, e.g., “abelian groups over X.”

We will work and interpret our results directly into the ∞-topos X, justified by the fol-
lowing considerations. Any (Grothendieck) ∞-topos X can be presented by a type-theoretic
model topos M according to [Shu19]. Assuming an inaccessible cardinal κ, the latter admits
a univalent universe for relatively κ-presentable fibrations [Shu19, Definition 4.7] supporting
the interpretation of HoTT.1 Constructions in M present constructions in X, and we are inter-
ested in studying our results in the latter. Moreover, Stenzel [Ste23] proves that the univalent
universe in M presents an object classifier Ũκ

→ U
κ [Lur09, Section 6.1.6] for relatively

κ-compact morphisms2 in X. This means that the universe Uκ represents the presheaf which
maps an object X ∈ X to the ∞-groupoid (X/κX)≃ of relatively κ-compact maps into X. This
makes precise the nature of the univalent universe in X corresponding to the one from HoTT,
and we will not need to refer to M from here on. We mention that [Ver19] gives another exam-
ple of working out the interpretation of material in HoTT directly into an ∞-topos. However,
our case is simpler because we mainly work with truncated objects.

We will require a small fragment of the theory of complete Segal objects [Ras18] inX (also
called internal∞-categories [Mar21] or Rezk objects [RV22]). As our model of the (large)∞-
category Cat∞ of ∞-categories, we choose the ∞-category of complete Segal spaces. Though
our arguments will clearly be model-independent, certain constructions require a choice, and
this is a convenient one for our purposes.

1Modulo certain classes of higher inductive types, which we do not use.
2The difference in terminology (κ-presentable vs. κ-compact) is unfortunate. As we work in the∞-setting, we

will employ Lurie’s terminology, i.e. “κ-compact” [Lur09, Definition 6.1.6.4], when necessary.

26 Chapter 2. Univalent categories of modules

Notation. We write Xκ for the sub-∞-category of κ-compact objects in X, and for an object
X ∈ X we form the slice X/κX of relatively κ-compact morphisms into X. The 1-topos of 0-
truncated objects in X is τ≤0(X). The functor (−)≃ : Cat∞ → S picks out the∞-groupoid core
of an∞-category, and S is the∞-category of spaces (also called∞-groupoids). For complete
Segal spaces, the functor (−)≃ simply picks out the zeroth space. The classifier for κ-compact
morphisms in X presented by Shulman’s univalent universe will be written Ũ → U, leaving
κ implicit. No confusion will arise as no other universes will be around. Internal homs are
written using exponential notation YX.

Notions in X resulting from interpretation will be denoted in typewriter font. For exam-
ple we will be considering the universe Set which classifies κ-compact 0-truncated objects
(Lemma 2.4.11). In particular, we leave the κ implicit in the notation of the universe of sets (or
of abelian groups, or of R-modules).

The 1-category ∆≤2 is the full subcategory of the simplex category ∆ on the objects [0], [1],
and [2]. The ∞-category of (∞-)functors ∆op

≤2 → X consists of 2-restricted simplicial objects
in X, and is denoted X∆≤2 for short. We explain how we view 1-categories as∞-categories just
below. The standard n-simplex is the usual simplicial space ∆n : ∆op → S and its 2-restriction
is ∆n

≤2 : ∆op
≤2 → S . There is also a standard n-simplex ∆n in X, whose 2-restriction we denote

∆n
≤2 : ∆op

≤2 → X.

2.4.1 Rezk (1, 1)-objects
The first goal of this section is to repackage the internal categories in X obtained by interpre-
tation into structures which conveniently represent presheaves of 1-categories. We begin by
explaining how we associate 1-categories to ∞-categories akin to X. An ordinary category C
is incarnated as a simplicial space through its classifying diagram D(C) [Rez01, Section 3.5]:

D(C) :=
(
· · · (C[2])≃ (C[1])≃ C≃

).
.
.

.

.

.

(2.1)

where we used (−)≃ to denote the Kan complex obtained from the groupoid core of a 1-
category, and [n] denotes the usual poset with n + 1 elements. This classifying diagram is
a complete Segal space, and there is a Quillen adjunction h : Cat∞ ⇆ Cat : D which exhibits
Cat as precisely the 1-truncated complete Segal spaces [CL20, Theorem 5.11]. The left adjoint
h is the fundamental category functor. We view ordinary 1-categories as ∞-categories via this
construction, and by identifying Cat with its image under the embedding D, we may speak
about presheaves of 1-categories on X.

We will argue that precategories and categories in HoTT interpret to the following struc-
tures.

Definition 2.4.1. A Segal (1, 1)-object in X is a 2-restricted simplicial object C : ∆op
≤2 → X

satisfying the three following conditions:

(truncation) the structure map (dom, cod) : C1 → C0 × C0 is 0-truncated in X;

(Segal condition) the natural map C2 → C1 ×C0 C1 is an equivalence;

2.4. Semantics 27

(associativity) there is a witness that the following two composites agree:

C1 ×C0 C1 ×C0 C1 C1 ×C0 C1 C1
id×◦

◦×id

◦

where ◦ : C1 ×C0 C1
∼
−→ C2

δ2
1
−→ C1.

If moreover the square below below is a pullback, then C is a Rezk (1, 1)-object:

C0 C1 ×C0 C1 ×C0 C1

C0 × C0 C1 × C1

(id,id,id)

∆ (f ,g,h)7→(f g,gh)

id× id

(2.2)

The Segal (or Rezk) (1, 1)-object C is locally small if the structure map is relatively κ-compact.

We emphasize that the truncation condition on the structure maps implies that there is at
most one witness of associativity (i.e., it is a property).

It is straightforward to interpret Definition 9.1.1 from [Uni13] to see what the the data
of a precategory in X consists of. We allow the underlying type of a precategory to be any
object of X, not necessarily classified byU. Our next lemma gives a precise relation between
precategories in X and the structures just defined.

Lemma 2.4.2. Precategories in X correspond to locally small Segal (1, 1)-objects, and cate-
gories to locally small Rezk (1, 1)-objects.

Here, by “correspond” we mean that from one structure one can construct the other, and
vice-versa. In particular, we may apply results about (pre)categories in HoTT to (Segal) Rezk
(1,1)-objects in X. However, we are not constructing an equivalence of spaces (or objects) of
such structures (though there may well be one).

Proof. Given a precategory C, we define a 2-restricted simplicial object C• as follows. Let
C0 B C, and write (dom, cod) : C1 → C0×C0 for the total space of the hom C(−,−) : C×C→ Set
with its projection. The identity maps id : Πc:CC(c, c) give a section C0 → C1 of both dom and
cod. Now let C2 B Σa,b,c:C0Σ f :C(a,b)Σg:C(b,c)Σh:C(a,c)g f = h be the object of commuting triangles
in C. Then C• is a 2-restricted simplicial object in X with face maps given by projections,
and degeneracies induced by id. Clearly C• satisfies the truncation condition, and is associative
(since the precategory C is). In HoTT, it is easy to show that the map (f , g) 7→ (f , g, g f , reflg f)
is inverse to the natural map C2 → C1 ×C0 C1, thus we conclude that C• is a Segal (1, 1)-object.
It is locally small by construction.

It is similarly straightforward to produce a precategory from a locally small Segal (1, 1)-
object. Under this correspondence, univalence of a precategory is equivalent to the square (2.2)
being a pullback, so we conclude that categories correspond to Rezk (1, 1)-objects. □

Now we explain in what sense Rezk (1, 1)-objects represent presheaves of ordinary cate-
gories. It is clear that to recover the fundamental category of a classifying diagram it suffices to
recover the lower three simplicial levels. This leads us to the following notion of representabil-
ity.

28 Chapter 2. Univalent categories of modules

Definition 2.4.3. Let C : Xop → Cat be a presheaf of 1-categories on X. A Rezk (1, 1)-object
C : ∆op

≤2 → X represents C if there is a specified natural equivalence η : X(−, C•) ≃ i∗2C of
functors Xop → S∆≤2 , where i∗2 is the restriction along the inclusion ∆≤2 → ∆.

We will use this notion of representability when working out the semantics of the category
of sets and categories of modules in the next sections. The reader who is mainly interested in
those representability results (e.g. Theorem 2.4.17) may skip ahead to the next section. The
remaining parts of this section are only needed for Theorem 2.4.18.

Any statement about (pre)categories in HoTT yields a statement about locally small (Segal)
Rezk (1, 1)-objects by translating across the correspondence of Lemma 2.4.2. For example, one
can check that products of (pre)categories correspond to object-wise products of (Segal) Rezk
(1, 1)-objects. Our next statement is that functor precategories interpret to the internal hom of
Segal (1, 1)-objects.

If F,G : C → D are two functors between (pre)categories in HoTT, then we can represent
natural transformations F ⇒ G as functors η : C×[1]→ D such that η|C×{0}= F and η|C×{1}= G.
Here [n] denotes the usual precategory (poset) in HoTT with n + 1 elements. The precategory
[n] interprets to the Segal (1, 1)-object ∆n

≤2 which is the 2-restriction of the standard n-simplex
∆n : ∆op → X in X.

We have the following:

Lemma 2.4.4. Let C andD be locally small Segal (1, 1)-objects in X.

1. the object of functors Fun(C,D) obtained by interpretation represents the presheaf

X 7−→ (X/X)∆≤2(X × C, X ×D) : Xop −→ S

where the base change functor X × (−) is applied object-wise;

2. the Segal (1, 1)-object Fun(C,D)• obtained by interpreting the functor category is equiv-
alent to

Fun(C × ∆2
≤2,D) Fun(C × ∆1

≤2,D) Fun(C × ∆0
≤2,D)

where the degeneracy and face maps come from the ∆n
≤2’s. If D is Rezk, then so is

Fun(C,D)•.

Proof. It is straightforward to see that functors between precategories in HoTT interpret to
simplicial maps between the corresponding Segal (1, 1)-objects. Then (1) follows by stability
of interpretation across base change.

By representing natural transformations as functors, we see that Fun(C × ∆1
≤2,D) is the

total space of the map Fun(C,D)2 → Set which sends two functors to the set of natural
transformations between them. Thus we get the first and second levels of (2). Finally, the
third level is naturally equivalent to Fun(∆2

≤2, Fun(C,D)•) in HoTT, and the latter is clearly
equivalent to the space of commuting triangles in Fun(C,D). These equivalences assemble to
a simplicial map, so we are done. □

2.4. Semantics 29

We note that by combining part (1) and (2) of the lemma, we get a formula for the presheaf
represented by Fun(C,D)•.

When working with Segal and Rezk (1, 1)-objects we may use category-theoretical lan-
guage as long as the relevant interpretation has been worked out, or is apparent from the con-
text. We also note that we can take X to be the ∞-topos S of spaces, and in this case we will
use the terminology Segal and Rezk (1, 1)-spaces for emphasis.

Our next proposition asserts that functor categories interpret to the internal hom inX∆≤2 . To
prove this, we require a lemma. First recall the terminal geometric morphismX(1,−) : X → S
(with left adjoint ℓ) associated to any ∞-topos. Applying this adjunction object-wise, we get
an induced adjunction

ℓ∗ : S∆≤2 ⇆ X∆≤2 : X(1,−).

The left-exactness of ℓ∗ implies that it preserves Segal and Rezk (1, 1)-objects. Moreover,
since ℓ∗ preserves finite limits and colimits, it preserves the standard n-simplex so that we have
ℓ∗(∆n

≤2) = ∆n
≤2.

Lemma 2.4.5. Let C,D ∈ X∆≤2 . For X ∈ X and n ∈ {0, 1, 2}, we have natural equivalences

X(X,DC)n ≃ (X/X)∆≤2(X × C × ∆
n
≤2, X ×D) .

Proof. By stability of the internal hom across base change, we can assume X = 1. We then
have:

X∆≤2(C × ∆
n
≤2,D) ≃ X∆≤2(∆

n
≤2,D

C) ≃ S∆≤2(∆
n
≤2,X(1,DC)) ≃ X(1,DC)n

where the first equivalence is by cartesian-closedness of X∆≤2 , the second equivalence comes
from the adjunction ℓ∗ ⊣ X(1,−) and that ℓ∗(∆n

≤2) = ∆n
≤2. The last equivalence is by the Yoneda

lemma. □

Proposition 2.4.6. Let C and D be locally small Segal (1, 1)-objects in X. The 2-restricted
simplicial objectsDCand Fun(C,D)• in X are naturally equivalent.

Proof. By the Yoneda lemma, it suffices to show that the represented functors X(−,DC) and
X(−, Fun(C,D))• of the form Xop → S∆≤2 are naturally equivalent. This follows by combining
the two previous lemmas. □

The proposition implies that the internal hom between Segal (1, 1)-objects is itself a Segal
(1, 1)-object, and even Rezk if the codomain is.

If C is a Rezk (1, 1)-object in X, then the internal limit of a functor F : D → C in X∆≤2

defines a global point limDF ∈ X(1,C0), if the internal limit exists. Of course, so does the
limit of an external functor G : D → X(1,C) in S∆≤2 . We now explain how such external
functors D→ X(1,C) can be internalized to functors in X∆≤2 , and we prove that this procedure
does not change the limit or colimit.

Definition 2.4.7. Let C be a Rezk (1, 1)-object in X, and D a Rezk (1, 1)-space. The internal-
ization of a functor A : D → X(1,C) is its transpose A : ℓ∗(D) → C across the adjunction
ℓ∗ ⊣ X(1,−).

30 Chapter 2. Univalent categories of modules

To show that internalization of a functor does not change its (co)limit, we require a lemma.
The reader may find it interesting to compare it with [Joh77, Example 2.39].

Lemma 2.4.8. Let C be a Rezk (1, 1)-object in X, and D a Rezk (1, 1)-space. The Rezk (1, 1)-
spaces X(1,Cℓ∗(D)) and X(1,C)D are naturally equivalent.

Proof. Using Lemma 2.4.5 and the adjunction ℓ∗ ⊣ X(1,−), for n ∈ {0, 1, 2} we have:

X(1,Cℓ∗(D))n ≃ X∆≤2(ℓ∗(D) × ∆n
≤2,C) ≃ S∆≤2(D × ∆

n
≤2,X(1,C)) ≃ (X(1,C)D)n

where the second equivalence uses that ℓ∗ preserves products (being left exact), then transposes
across the adjunction. The third equivalence is Lemma 2.4.5 applied to Rezk (1, 1)-spaces.
Using basic properties of adjunctions, one can check that these equivalences assemble to a
simplicial map. □

The category of sets in HoTT interprets to a Rezk (1, 1)-object Set• which features in
the next proposition, and is the main topic of study in the next section. For the following
proof, we only use that X(1, Set•) has a terminal object and therefore a global sections functor
Γ : X(1, Set•) → τ≤0(S). Observe that if C is a Rezk (1, 1)-object in X, then the Rezk
(1, 1)-space X(1,C) is “enriched” over X(1, Set•). A study of this “enrichment” is beyond the
scope of this work, and our convention will be to implicitly apply Γ so that the hom functor
X(1,C)(−,−) lands in τ≤0(S).

Proposition 2.4.9. Let C be a locally small Rezk (1, 1)-object in X, and let A : D → X(1,C)
be a functor between Rezk (1, 1)-spaces. If the internal limit limℓ∗(D)A in C exists, so does the
limit of A and we have a canonical isomorphism limℓ∗(D)A ≃ limD A in X(1,C).

Proof. Suppose the internal limit of A in C exists, meaning we have a natural equivalence of
functors Cop → Set•

C(−, limℓ∗(D)A) ≃ Cℓ∗(D)(constℓ∗(D)(−), A).

Applying X(1,−), we get an equivalence between certain functors X(1,C)op → X(1, Set•),
and by further post-composing with the global sections map Γ : X(1, Set•)→ τ≤0(S), we get
an equivalence

X(1,C)(−, limℓ∗(D)A) ≃ X(1,Cℓ∗(D))(constℓ∗(D)(−), A) (2.3)

between functors X(1,C)op → τ≤0(S). We have an equivalence X(1,Cℓ∗(D)) ≃ X(1,C)D by the
previous lemma, which sends constℓ∗(D) to constD and A to A. On hom-spaces, this means we
have:

X(1,Cℓ∗(D))(constℓ∗(D)(−), A) ≃ X(1,C)D(constD(−), A). (2.4)

Combining the equivalences (2.3) and (2.4), we see that limℓ∗(D)A is the limit of A, as desired.
□

The proposition and its proof dualises to colimits, but we will only need it for limits.

2.4. Semantics 31

2.4.2 The universe of sets

We show that the Rezk (1, 1)-object Set• produced by interpretation represents the presheaf
τ≤0(X/κ(−)) : Xop → Cat in the sense of Definition 2.4.3. First we show a lemma that proves
useful for these kinds of representability results.

The universe U is an object classifier for relatively κ-compact morphisms [Ste23] in the
sense of [Lur09, Section 6.1.6] and therefore represents (in the usual sense) the presheaf
(X/κ(−))≃ : Xop → S . We will be interested in types which classify certain structures in X.
For example, given a ring R ∈ τ≤0(Xκ), we will see that there is a map R-mod-str : Set→U
which classifies R-modules in Xκ, meaning that the mapping space X

(
X,ΣA:SetR-mod-str(A)

)
is the groupoid of R-modules in (X/κX) (Theorem 2.4.17). The following lemma gives a de-
scription of these mapping spaces for general type families.

Lemma 2.4.10. Let P : Z → U be a type family in X, and X ∈ X. The outer square in the
following diagram is a pullback:

X(X,Σz:ZP(z)) X(X, Ũ) (X/κX)≃∗ S∗

X(X,Z) X(X,U) (X/κX)≃ S

∼

X(X,P) ∼ Γ≃

where the functor Γ≃ is the restriction of the global points functor Γ : (X/κX)→ S to the core,
and (X/κX)∗ is the∞-category of relatively κ-compact maps into X equipped with a section.

Proof. The right square is manifestly a pullback, and so is the left square since X(X,−) pre-
serves limits. The middle square is a pullback because Ũ classifies pointed objects. By pull-
back pasting we conclude that the outer square is a pullback. □

Recall that Set is defined as the total space of the map is-0-type : U → U sending
an object A to the proposition that the diagonal map A → A × A is an embedding (i.e., (−1)-
truncated). By [Lur09, Lemma 5.5.6.15], this proposition holds (i.e., has a global point) if
and only if A is 0-truncated (i.e., that X(B, A) is a 0-truncated space for all B ∈ X [Lur09,
Definition 5.5.6.1]). We now show that the universe Set of sets classifies 0-truncated objects:

Lemma 2.4.11. The object Set represents the presheaf of spaces τ≤0(X/κ(−))≃.

Proof. By applying the previous lemma to the type family is-0-type : U → U, we see that
X(1, Set) is the sub-∞-groupoid of X(1,U) on those objects A : U for which is-0-type(A)
holds. Since is-0-type(A) holds if and only if A is 0-truncated, X(1, Set) is equivalent to the
groupoid of 0-truncated objects in Xκ.

For general X, we always have that families X → Set correspond to families X → X × Set
over X. Base change stability of the universe implies that X × Set is a universe of sets in X/X.
Thus we reduce to the case X = 1 just treated by pulling back over X, using that an arrow
f : Y → X is 0-truncated as a map if and only if it is 0-truncated as an object of X/X [Lur09,
Remark 5.5.6.12]. □

32 Chapter 2. Univalent categories of modules

Our next goal is to understand the presheaf represented by Set when equipped with its
categorical structure. Applying [Ras21, Theorem 4.4] to the the universal map p : Ũ → U
yields a complete Segal object N(p) in X which represents (in the usual sense) the presheaf
(X/κ(−)) : Xop → Cat∞. The 2-restriction of N(p) is equivalent to the following 2-restricted
simplicial objectU• in X:

∑
X,Y,Z:U YX × ZY ∑

X,Y:U YX U .

To be explicit, we know that the function types modelled by the universe interpret to the in-
ternal hom in X, so the first simplicial level is simply the type-theoretic notation for Rasekh’s
description of N(p)1, and the second level is given by the Segal condition. Accordingly, for the
Rezk (1, 1)-object Set•, the object of morphisms is simply given by internal homs in X:

Set1 := ΣX,Y:SetYX → Set × Set.

The following provides the semantics of the category of sets in HoTT.

Proposition 2.4.12. The Rezk (1, 1)-object Set• represents the presheaf

τ≤0(X/κ(−)) : Xop −→ Cat

in the sense of Definition 2.4.3.

Proof. Let X ∈ X. We need to produce a natural equivalence η : X(X, Set•) ≃ i∗2(τ≤0(X/κX))
of 2-restricted simplicial spaces. By Lemma 2.4.11, we get a natural equivalence of the zeroth
levels. Since the global points of the internal hom give the external hom, Lemma 2.4.10 tells
us that X(X, Set1) is naturally equivalent to the groupoid of arrows in τ≤0(X/κX). These two
equivalences clearly assemble to an equivalence of 1-restricted simplicial objects, whereby we
get an induced equivalence of the second simplicial levels via the Segal condition. The latter
equivalence automatically respects the face maps δ2

0 and δ2
2 as well as the degeneracies. It

remains to check that it respects the composition map δ2
1. But this follows from the fact that

function types interpret to the internal hom in X. □

Before making analogous considerations for the universe of modules, we make these results
more concrete by relating them to classical 1-topos theory. These considerations are certainly
well-known.

By definition, any ∞-topos X is an accessible, left-exact localization of an ∞-category
of ∞-presheaves on some site. The following proposition shows that the associated 1-topos
τ≤0(X) of 0-truncated sheaves consists precisely of those sheaves which take values in sets.
Thus if C is an ordinary 1-category (with a site structure), then τ≤0(X) is the ordinary 1-topos
of sheaves of sets on C. (We also note that the proof works for general truncation levels, but
we only use the case n = 0.)

Proposition 2.4.13. Let L : Psh∞(C)⇆ X : i be an accessible, left-exact localization for some
site C. A sheaf X ∈ X is 0-truncated if and only if X(c) is 0-truncated for all c ∈ C.

2.4. Semantics 33

Proof. The statement for presheaves is shown on the nLab.3 Let X : Cop → S be a sheaf
(i.e., an element of X) and suppose X lands in τ≤0(S). Thus i(X) is a 0-truncated presheaf.
By [Lur09, Proposition 5.5.2.28], L preserves truncated objects, and so X ≃ L(i(X)) is 0-
truncated.

Conversely, suppose X is 0-truncated. Then the space X(Y, X) is 0-truncated for all Y ∈ X.
For any c ∈ C, the Yoneda lemma and the adjunction L ⊣ i gives us equivalences

X(c) ≃ Psh∞(C)
(
C(−, c), i(X)

)
≃ X
(
LC(−, c), X

)
.

Thus the leftmost side is 0-truncated, since the rightmost side is. □

2.4.3 The universe of R-modules
Let R be a ring object in τ≤0(X), i.e., a sheaf of rings. We show that the Rezk (1, 1)-object
R-Mod• of R-modules in X represents the presheaf sending an object X ∈ X to the ordinary
category of modules over the ring X × R in the 1-topos τ≤0(X/κX) (Theorem 2.4.17).

The key ingredient we used to prove that Set classifies 0-truncated objects was that the
predicate is-0-type(A) has a global point if and only if A is a 0-truncated object. Similarly,
to say what R-Mod classifies we need to understand the global points of R-mod-str(A).

Lemma 2.4.14. Let R be a ring object in τ≤0(X). For all A ∈ τ≤0(X), global points of the object
R-mod-str(A) biject with R-module structures on the object A in X.

Proof. It is well-known that the global points of A, AA, AA×A, and AR×A biject respectively with
the set of points of A, the set of endomorphisms of A, the set of binary operations on A, and
set of maps R × A → A in τ≤0(X). One can check the global points functor Γ sends the limit
diagram carving out the subobject R-mod-str(A) of internal R-module structures on A to the
limit diagram carving out the (external) set of R-module structures on A from inside the set

ΓA × Γ(AA) × Γ(AA×A) × Γ(AR×A).

Since Γ preserves limits, we are done. □

For a ring R ∈ τ≤0(Xκ) and an object X ∈ X, recall that X×R ∈ τ≤0(X/κX) is a ring over X.
We now show that R-Mod classifies R-modules in Xκ.

Proposition 2.4.15. Let R be a ring in τ≤0(Xκ). The object R-Mod represents the space-valued
presheaf

X 7−→ (X×R)-Mod≃ : Xop −→ S .

Proof. First of all, for any X ∈ X, base change stability of the universe gives a natural equiva-
lence (X×R)-Mod ≃ X×R-Mod over X. From this we deduce the following natural equivalences:

X(X,R-Mod) ≃ X/X(idX, X × R-Mod) ≃ X/X(idX, (X×R)-Mod).

By working with the rightmost space, we reduce to the case X = 1.
As defined, R-Mod is the total space of R-mod-str. Combining Lemmas 2.4.14 and 2.4.10,

we see that X(1,R-Mod) is naturally equivalent to the groupoid of R-modules in Xκ. □

3See Proposition 4.2 at n-truncated object of an (∞, 1)-category (rev. 78) on the nLab.

https://ncatlab.org/nlab/revision/n-truncated+object+of+an+(infinity,1)-category/78#GeneralPropsTruncation

34 Chapter 2. Univalent categories of modules

We recall how internal objects of homomorphisms in X are constructed. Given an abelian
group object A in τ≤0(X), we write +A : A × A→ A for the addition map.

Definition 2.4.16. 1. Let A and B be abelian group objects in τ≤0(X). The object of group
homomorphisms Ab(A, B) is the following equalizer in X:

Ab(A, B) BA BA×A.
f 7−→ f+B f

f 7−→ f◦(+A)

2. Let R be a ring in τ≤0(X), and let A and B be two R-modules. Write αX : R × X → X
for the R-action on an R-module X. The object of R-module morphisms R-Mod(A, B)
is the following equalizer in X:

R-Mod(A, B) Ab(A, B) BR×A.
f 7−→ f◦αA

f 7−→αB(idR × f)

It is not hard to see, using an argument similar to the proof of Lemma 2.4.14, that the global
points of R-Mod(A, B) are actual R-module homomorphisms from A to B. In addition, the
object R-Mod(A, B) coming from interpretation is equivalent to R-Mod(A, B), since it interprets
to the same equalizer.

Theorem 2.4.17. Let R be a ring in τ≤0(Xκ). The Rezk (1, 1)-object R-Mod• represents the
presheaf

X 7−→ (X×R)-Mod : Xop −→ Cat

in the sense of Definition 2.4.3.

Proof. Let X ∈ X. By our definition of representability, we need to produce a natural equiv-
alence η : X(X,R-Mod•) ≃ i∗2(X×R)-Mod of 2-restricted simplicial spaces. Proposition 2.4.15
gets us η0.

For the first level, recall that R-Mod1 is the total space of R-Mod(−,−) : R-Mod2 → Ab in
X. By our discussion just above, applying X(X,−) to this family recovers the internal hom of
(X×R)-modules restricted to the groupoid core: Since the global points of the internal hom of
modules recovers the external hom of modules, Lemma 2.4.10 gives a natural equivalence of
spaces

η1 : X(X,R-Mod1) ≃ ((X×R)-Mod[1])≃.

By construction, this equivalence respects the two projection maps sending a homomorphism
to its domain and codomain. We also need to check that η1 respects the degeneracy map

id : X(X,R-Mod) −→ X(X,R-Mod1)

which picks out the identity. This follows from the corresponding fact for sets, since id here
is induced by the degeneracy X(X, Set) → X(X, Set1) and equality of R-module homomor-
phisms can be checked on the underlying maps. We conclude that η0 and η1 assemble to a map
of 1-restricted simplicial spaces.

For the second level, we have a candidate equivalence for η2 : X(X,R-Mod2)→ (R-Mod[2])≃

given by η1 ×η0 η1 using the Segal condition and that X(X,−) preserves limits. By construction

2.4. Semantics 35

η2 respects the two face maps δ2
0 and δ2

2, since these are just pullback projections. In addition,
η2 respects the two degeneracy maps since these are induced by id above, and η1 respects id.
Finally, we need to check that η2 respects composition. But composition of R-module homo-
morphisms is defined by composing the underlying maps, and since we can check equality
of R-module homomorphisms on the underlying maps, this follows from the corresponding
statement for sets.

We conclude that η defines a natural equivalence of 2-restricted simplicial objects. □

Finally, we explain the semantics of Theorem 2.3.19 and Corollary 2.3.18 for module cat-
egories. To any object X in X (more generally, any morphism) we have the usual sequence of
adjoints

ΣX ⊣ X × (−) ⊣ ΠX.

The right adjoints automatically lift to categories of modules, being left-exact. By the internal
cocompleteness of categories of modules, we have a corresponding leftmost adjoint colimX.
By Corollary 2.3.18, colimX preserves internal products, and Theorem 2.3.19 implies that it is
internally left-exact whenever X is 0-truncated. On global points, we deduce the following:

Theorem 2.4.18. Let R be a ring object in τ≤0(Xκ), and let X ∈ X. We have an adjunction:

colimX : (X×R)-Mod⇆ R-Mod : X × (−)

where colimX preserves finite products. If X is 0-truncated, then
⊕

X ≡ colimX is left-exact.

We emphasize that this is an external statement about ordinary categories, and left-exact-
ness refers to preservation of finite limits in the usual (external) sense.

Proof. From Theorem 2.3.19 we get an adjunction between Rezk (1, 1)-objects in X

colimX : R-ModX ⇆ R-Mod : constX,

which yields an adjunction on global points. Using the previous theorem and that constX

corresponds to base change on global points, we obtain the desired adjunction colimX ⊣ X×(−).
We now argue that colimX preserves finite products. For any (external) natural number n,

the product of an n-element family A : n → (X×R)-Mod can be computed as the (internal)
limit of the internalization A : ℓ∗(n) → R-ModX, by Proposition 2.4.9. The object ℓ∗(n) is the
standard n-element set in X, which is internally finite (indeed, equivalent to the object Fin(n)).
Hence colimX preserves the (internal) limit of A by Corollary 2.3.18. From this we deduce a
sequence of equivalences

limi:n colimX A(i) ≃ limi:ℓ∗(n)colimXA(i) ≃ colimXlimℓ∗(n)A ≃ colimX limn A

where the first and third equivalences use Proposition 2.4.9 for limits, and that colimX is given
by colimX on global points (as shown at the beginning of this proof). Thus colimX preserves
finite products.

Now suppose that X is a set. To see that
⊕

X is left-exact it suffices to show that it equaliz-
ers, since we already know that it preserves finite products. Applying ℓ∗ to an equalizer diagram
in (X×R)-Mod produces an internal equalizer diagram in R-ModX. The claim then follows by
an argument similar to the one above, using that colimX respects internal equalizers when X is
a set by Theorem 2.3.19. □

36 Chapter 2. Univalent categories of modules

We end by discussing the relation of this theorem to [Har82, Theorem 2.7].

Remark 2.4.19. Harting’s construction of the left-exact coproduct applies to any elementary
1-topos with N. The 1-topos τ≤0(Xκ) is, in particular, an elementary topos, hence Theorem 2.7
of loc. cit. implies the 0-truncated and R ≡ Z case of our theorem above. (The case for general
R is covered by [Ble18, Proposition 3.7] for modules.) Conversely, a Grothendieck 1-topos
Sh0(C) is equivalent to the 0-truncated fragment of the ∞-topos Sh∞(C) of ∞-sheaves on the
same site (see Proposition 2.4.13). Consequently, we recover Harting’s theorem for Sh0(C) by
applying our theorem to Sh∞(C).

In [Har82], the construction of the internal coproduct of abelian groups occupies almost
60 pages. The length is largely due to the at the time underdeveloped state of the internal lan-
guage of an elementary 1-topos. However, once the construction was complete, left-exactness
followed by general results in [Joh77]. By contrast, our generalized construction is essentially
contained in Section 2.3.3, which weighs in at just over 2 pages. The analogues of the general
results of [Joh77] in our setting (or at least the parts we needed) are embodied by Proposi-
tion 2.4.9 and the theory about filtered colimits that we developed in Section 2.2.3.

Chapter 3

Formalising Yoneda Ext in univalent
foundations

Abstract. Ext groups are fundamental objects from homological algebra which underlie im-
portant computations in homotopy theory. We formalise the theory of Yoneda Ext [Yon54]
in homotopy type theory (HoTT) using the Coq-HoTT library [CH]. This is an approach to
Ext which does not require projective or injective resolutions, though it produces large abe-
lian groups. Using univalence, we show how these Ext groups can be naturally represented
in HoTT. We give a novel proof and formalisation of the usual six-term exact sequence via a
fibre sequence of 1-types (or groupoids), along with an application. In addition, we discuss
our formalisation of the contravariant long exact sequence of Ext, an important computational
tool. Along the way we implement and explain the Baer sum of extensions and how Ext is a
bifunctor.

3.1 Introduction

The field of homotopy type theory (HoTT) lies at the intersection of type theory and algebraic
topology, and serves as a bridge to transfer tools and insights from one domain to the other.
In one direction, the formalism of type theory has proven to be a powerful language for rea-
soning about some of the highly coherent structures occurring in branches of modern algebraic
topology. Several of these structures are “natively supported” by HoTT, and we can reason
about them much more directly than in classical set-based approaches. This makes HoTT an
ideal language in which to formalise results and structures from algebraic topology. Moreover,
theorems in HoTT are valid in any ∞-topos, not just for ordinary spaces. Details about the
interpretation of our constructions into an∞-topos, and the relation of our Ext groups to sheaf
Ext, are covered in Section 4.3.

We present a formalisation of Ext groups in HoTT following the approach Yoneda devel-
oped in [Yon54, Yon60]. Ext groups are fundamental objects in homological algebra, and they
permeate computations in homotopy theory. For example, the universal coefficient theorem
relates Ext groups and cohomology, and features in the classical proof that π5(S 3) ≃ Z/2.
Much of our formalisation has already been accepted into the Coq-HoTT library under the
Algebra.AbSES namespace, though we have also contributed to other parts of the library

37

https://github.com/HoTT/Coq-HoTT/tree/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES

38 Chapter 3. Formalising Yoneda Ext in univalent foundations

throughout this project. The long exact sequence, along with a few other results we need, are
currently in a separate repository named Yoneda-Ext. We supply links to formalised state-
ments using a trailing ♢-sign throughout.

In ordinary mathematics, Ext groups of modules over a ring are usually defined using pro-
jective (or injective) resolutions. This is possible because the axiom of choice implies the exis-
tence of such projective resolutions, and Ext groups are independent of any particular choice of
resolution. (Similarly, categories of sheaves of modules always admit injective resolutions.) In
our setting, however, even abelian groups fail to admit projective resolutions. This stems from
the fact that some sets fail to be projective, which may be familiar to those working construc-
tively or internally to a topos. Accordingly, to define Ext groups in homotopy type theory we
cannot rely on resolutions. Fortunately, Yoneda [Yon54, Yon60] gave such a general approach,
whose theory is detailed in [Mac63], our main reference. A drawback of this approach is that
it produces large abelian groups, as we explain in Section 3.3.1.

We build upon the Coq-HoTT library [CH], which contains sophisticated homotopy-theore-
tic results, but which is presently lacking in terms of “basic” algebra. For this reason, we have
opted to simply develop Ext groups of abelian groups, instead of for modules over a ring or in
a more general setup. Nevertheless, it is clear that everything we do could have been done over
an arbitrary ring, given a well-developed library of module theory. Moreover, we emphasise
that higher Ext groups in HoTT are interesting even for abelian groups. While in classical
mathematics such Ext groups of abelian groups are trivial in dimension 2 and up, in HoTT they
may be nontrivial in all dimensions! This is because there are models of HoTT in which these
Ext groups are nontrivial—this is explained in Section 4.3.

In Section 3.3 we explain how univalence lets us naturally represent Yoneda’s approach to
Ext in HoTT. We construct the type AbSES(B, A) of short exact sequences between two abelian
groups A and B, and define Ext1(B, A) to be the set of path-components of AbSES(B, A). This
definition is justified by characterising the paths in AbSES(B, A), which crucially uses univa-
lence. We also show that the loop space of AbSES(B, A) is isomorphic to the group Hom(B, A)
of group homomorphisms, and that Ext1(P, A) vanishes whenever P is projective, in a sense
we define. These results all play a role in the subsequent sections.

The main content of Section 3.4 is a proof and formalisation of the following:

Theorem 3.4.1. Let A
i
−→ E

p
−→ B be a short exact sequence of abelian groups. For any abelian

group G, pullback yields a fibre sequence: AbSES(B,G)
p∗
−→ AbSES(E,G)

i∗
−→ AbSES(A,G).♢

We give a novel, direct proof of this result which requires managing considerable amounts
of coherence. The formalisation is done for abelian groups, but the proof applies to modules
over a general ring. Its formalisation benefited from the WildCat library of Coq-HoTT (see
Section 3.2.2), which makes it convenient to work with types equipped with an imposed no-
tion of paths. This allows us to work with path data in AbSES(B, A) with better computational
properties than actual paths, but which correspond to paths via the aforementioned character-
isation. From the fibre sequence of the theorem we deduce the usual six-term exact sequence
(Proposition 3.4.7), which we then use to compute Ext groups of cyclic groups:

Ext1(Z/n, A) � A/n

https://github.com/jarlg/Yoneda-Ext
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L390

3.2. Preliminaries 39

for any nonzero n : N and abelian group A (Corollary 3.4.9).♢ The six-term exact sequence,
along with this corollary, have already been applied in [BCFR23] (Theorem 5.5.13). We also
discuss how Ext1 becomes a bifunctor into abelian groups using the Baer sum.

Finally, in Section 3.5 we define Extn for any n : N and discuss our formalisation of the
long exact sequence, in which the connecting maps are given by splicing:♢

Theorem 3.5.5. Let A
i
−→ E

p
−→ B be a short exact sequence of abelian groups. For any abelian

group G, there is a long exact sequence by pulling back:♢ ♢ ♢

· · ·
i∗
−→ Extn(A,G)

−⊚ E
−−−→ Extn+1(B,G)

p∗
−→ Extn+1(E,G)

i∗
−→ · · · .

At present, we have only formalised this long exact sequence of pointed sets. It remains to
construct the Baer sum making Extn into an abelian group for n > 1, however once this is done
then we automatically get a long exact sequence of abelian groups. Our proof follows that of
Theorem 5.1 in [Mac63], which is originally due to Stephen Schanuel.

Notation and conventions. We use typewriter font for concepts which are defined in the
code, such as AbSES and Ext. In contrast, when we use normal mathematical font, such as
Extn(B, A), we mean the classical notion. For mathematical statements we prefer to stay close
to mathematical notation by writing for example Extn(B, A) for what means Ext n B A in
Coq. The symbol ♢ is used to refer to relevant parts of the code.

Our terminology mirrors that of [Uni13]; in particular we say ‘path types’ for what are also
called ‘identity types’ or ‘equality types’. We write U* for the universe of pointed types, and
pt for the base point of a pointed type. The ≡-symbol is for definitional equality.

3.2 Preliminaries

3.2.1 Homotopy type theory
We briefly explain the formal setup of homotopy type theory along with some basic notions
that we need. For a thorough introduction to HoTT, the reader may consult [Uni13, Rij23].

Homotopy type theory (HoTT) extends Martin–Löf type theory (MLTT) with the univa-
lence axiom and often various higher inductive types (HITs). Of the latter, we simply need
propositional truncation and set truncation, which we explain in more detail below.

The univalence axiom characterises the identity types of universes. In ordinary MLTT,
there is always a function

idtoequiv :
∏

X,Y:U

(X = Y)→ (X ≃ Y)

defined by sending the reflexivity path on a type X to the identity self-equivalence on X, using
the induction principle of path types. The univalence axiom asserts that idtoequiv is an
equivalence for all X and Y . In HoTT, the first thing we often do after defining a new type is to
characterise its path types. The univalence axiom does this for the universe.

https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v#L222
httphttps://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L10
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L15
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L47
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L94

40 Chapter 3. Formalising Yoneda Ext in univalent foundations

From univalence, a general structure identity principle [Uni13, Chapter 9.8] follows which
characterises paths between structured types, such as groups and other algebraic structures. In
the case of groups, univalence implies that paths between groups correspond to group isomor-
phisms. Similarly, paths between modules correspond to module isomorphisms.

Propositions, sets, and groupoids. In HoTT there is a hierarchy of n-truncated types (or
n-types, for short) for any integer n ≥ −2. In general, a type X is an (n + 1)-type when all the
path types x0 =X x1 are n-types. The recursion starts at −2, when the condition is just that the
map X → 1 is an equivalence, and in this case X is contractible.

We only deal with the bottom four levels of this hierarchy: contractible types, proposi-
tions ((−1)-types), sets (0-types) and 1-types. A type X is a proposition when any two points
in X are equal (but there may not be any points). A type X is a set when the path types x0 =X x1

are all propositions—this amounts to there being “at most” one path between x0 and x1. Lastly,
a type X is a 1-type when its path types are sets—in particular, for any x : X, the loop space
ΩX B (x =X x) is a set which is a group under path composition. (We leave base points
implicit when taking loop spaces.)

There are truncation operations which create a proposition or a set from a given type X.
We denote by ∥X∥ the propositional truncation, and by π0X the set truncation (or set of path-
components) of X. In Coq-HoTT, the corresponding notation is merely X and Tr 0 X. The
map tr : X → π0X sends a point to its connected component. When we say that a type X
merely holds, then we mean that its propositional truncation ∥X∥ holds.

3.2.2 The Coq-HoTT library

The Coq-HoTT library [CH] is an open-source repository of formalised mathematics in ho-
motopy type theory using Coq. It is particularly aimed at developing synthetic homotopy
theory, and includes theory about spheres, loop spaces, classifying spaces, modalities, “wild
∞-categories,” and basic results about abelian groups, to mention a few things. The library is
part of the Coq Platform and is available through the standard opam package repositories.

Below we explain some of the main features of this library, and of Coq itself, which are
important for the present work.

Universes and cumulativity. We assume basic familiarity with universes and universe levels
in Coq, and in particular that they are cumulative: a type X : Type@{u} can be resized to live
in Type@{v} under the constraint u ≤ v. (Here u and v are universe levels.) Resizing is done
implicitly by Coq.

In the Coq-HoTT library, we additionally make most of our structures cumulative. This
essentially means that resizing commutes with the formation of a data structure—i.e., it does
not matter whether you resize the inputs to the data structure or whether you resize the resulting
data structure. As an example, consider the data structure prodwhich forms the product of two
types in a common (for simplicity) universe level. Suppose we have two universe levels u and
v with the constraint u < v. Given X Y : Type@{u}, we can form the product at level u
and then resize, or first resize and then form the product. By making prod a cumulative data

3.2. Preliminaries 41

structure, the two results agree (with implicit resizing):

prod@{u} X Y ≡ prod@{v} X Y.

Cumulativity of data structures is an essential Coq feature which facilitates the kind of
formalisation we do in this paper. For example, it lets us resize groups and homomorphisms.
It also lets us reduce the number of universes in some of our definitions via the following trick:
instead of having separate universes for different inputs, we can often use a single universe
(which represents the maximum) and leverage cumulativity.

We also make use of universe constraints since our constructions move between various
universe levels. The constraints both document and verify the mathematical intent.

The WildCat library. The WildCat namespace contains the development of “wild ∞-cate-
gories,” functors between such, and related things. This library was spearheaded by Ali Cag-
layan, tslil clingman, Floris van Doorn, Morgan Opie, Mike Shulman, and Emily Riehl. The
concepts generalise those appearing in [vDoo18, Section 4.3.1], and are not currently present
in the literature. We explain the basics of this library which are especially relevant for our
formalisation.

Starting from the notion of graph♢—a type A with a binary operation (or correspondence)
Hom intoU—the notion of a 0-functor♢ is that of a homomorphism of graphs:

Class IsGraph (A : Type) := { Hom : A -> A -> Type }.

Class Is0Functor {A B : Type} ‘{IsGraph A} ‘{IsGraph B} (F : A -> B)

:= { fmap : forall {a b : A} (f : Hom a b), Hom (F a) (F b) }.

We will often use the notation Hom in this text, leaving the graph structure implicit.
From here one could go ahead and define categories by defining a composition operation

and using the identity types of the type Hom(a, b) to express the various laws a category needs
to satisfy, such as associativity of composition. A more flexible approach is to instead al-
low Hom(a, b) to itself be a graph, making A into a 2-graph.♢ This is the approach taken by
WildCat, and this flexibility is important for our formalisation.

Class Is2Graph (A : Type) ‘{IsGraph A}

:= { isgraph_hom : forall (a b : A), IsGraph (Hom a b) }.

For a 2-graph A, a category structure can then be defined in a straightforward manner using
isgraph_hom to express the various laws that need to hold. This structure is bundled into a
class called Is1Cat.♢ For example, associativity is expressed as follows, using the notation
$== as a shorthand for the 2-graph structure and $o for composition:

cat_assoc : forall (a b c d : A)

(f : Hom a b) (g : Hom b c) (h : Hom c d),

(h $o g) $o f $== h $o (g $o f);

If all the morphisms in A are invertible, then A is a groupoid.♢ Finally, for the notion of a
1-functor between categories we also express the laws using the 2-graph structure.♢

Class Is1Functor {A B : Type} ‘{Is1Cat A} ‘{Is1Cat B}

(F : A -> B) ‘{!Is0Functor F} := {

https://github.com/HoTT/Coq-HoTT/tree/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L9
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L84
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L89
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L95
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L367
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Core.v#L252

42 Chapter 3. Formalising Yoneda Ext in univalent foundations

fmap_id : forall a, fmap F (Id a) $== Id (F a);

fmap_comp : forall a b c (f : Hom a b) (g : Hom b c),

fmap F (g $o f) $== fmap F g $o fmap F f;

fmap2 : forall a b (f g : Hom a b),

(f $== g) -> (fmap F f $== fmap F g) }.

The terms fmap_id and fmap_comp express that the functor F respects identities and com-
position, as usual. If we had used identity types instead of a 2-graph structure, so that f $== g
simply meant f = g, then Fwould automatically respect equality between morphisms, making
fmap2 redundant. However, in the more general 2-graph setup, this needs to be included as a
law.

The adjective “wild” is used for the sort of categories just defined to indicate that they do
not capture all the coherence needed to represent ∞-categories, only the 1-categorical struc-
ture. However, in our usage we will only encounter genuine 1-categories and groupoids. In
particular, any type X defines a groupoid via its identity types♢, and if X is a 1-type then this
groupoid structure captures everything about X. This enables us to impose our own notion of
paths, which we call path data below, for certain types of interest.

3.3 Yoneda Ext

As mentioned in the introduction, we will follow Yoneda’s approach to Ext groups [Yon54,
Yon60], which does not require projective (or injective) resolutions, though it produces large
groups. This approach and related theory is explained in [Mac63], which is our main reference.
At present, the Coq-HoTT library—with which this work has been formalised—does not con-
tain much theory related to modules over a general ring (nor the theory of abelian categories,
or anything of the sort). We therefore only formalise and state our results for abelian groups.
It is clear, however, that everything we say could be done for modules over a general ring.

For the classically-minded reader, let us also emphasise that in homotopy type theory the
category of abelian groups does not have global dimension 1, so that the higher Ext groups we
define in Section 3.5 do not necessarily vanish.

3.3.1 The type of short exact sequences

Given two abelian groups A and B, Yoneda defines a group Ext1(B, A) by considering the large

set (or class) of all short exact sequences A
i
−→ E

p
−→ B and taking a quotient by a certain

equivalence relation. The sequence being exact means that i is injective, p is surjective, that
p ◦ i = 0, and that the image of i is equal to the kernel of p. We usually simply write E for
the short exact sequence A → E → B when no confusion can arise. The equivalence relation
which Yoneda quotients out by is defined as “E ∼ F if and only if there exists an isomorphism
E � F which respects the maps from A and to B.” Equivalently, but more topologically, one
can consider the groupoid of short exact sequences A → E → B and define Ext1(B, A) to be
the set of path-components of this groupoid—see, e.g., [Mac63, Chapter III] for details about
both of these descriptions.

https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Paths.v#L7

3.3. Yoneda Ext 43

In homotopy type theory, given two abelian groups A and B we form the type of short
exact sequences from A to B as the Σ-type over all abelian groups E equipped with an injection
inclusionE : A→ E, a surjection projectionE : E → B, and a witness that these two maps
form an exact complex. We represent this data as the following record-type:♢

Record AbSES@{u v | u < v} (B A : AbGroup@{u}) : Type@{v} := {

middle : AbGroup@{u};

inclusion : Hom A middle;

projection : Hom middle B;

isembedding_inclusion : IsEmbedding inclusion;

issurjection_projection : IsSurjection projection;

isexact_inclusion_projection

: IsExact (Tr (-1)) inclusion projection;

}.

Note that AbSES(B, A) denotes short exact sequences from A to B. The abelian group
middle plays the role of E in the prose above. Here, the condition that projectionE ◦

inclusionE = 0 is baked into the IsExact field, which also expresses exactness.1 We have
included universe annotations which express that E lives in the same universe u as the abelian
groups A and B. Accordingly, the resulting type AbSES(B, A) lives in a universe v which is
strictly greater than u, as in Yoneda’s construction above. The type AbSES(B, A) is pointed by
the trivial short exact sequence♢ A→ A ⊕ B→ B.

We now define Ext1(B, A) as the set-truncation of the type of short exact sequences.♢

Definition Ext (B A : AbGroup) := Tr 0 (AbSES B A).

In Section 3.3.3 we make the set Ext1(B, A) into an abelian group via the Baer sum. These
abelian groups, and their higher variants defined in Section 3.5, are our main objects of study.

Whenever we define a new type in homotopy type theory, the first thing we often do is
to characterise its path types. Theorem 7.3.12 of [Uni13] characterises paths in truncations,
yielding (

|E|0 =Ext1 |F|0
)
≃ ∥E = F∥

for any E, F : AbSES(B, A). As such, it suffices to understand paths in AbSES(B, A). These
are in turn characterised by Theorem 2.7.2 of loc. cit., which characterises paths in general Σ-
types, combined with the fact that paths in AbGroup are isomorphisms. In our case, the result
is that paths between short exact sequences correspond to isomorphisms between the middles
making the appropriate triangles commute. We refer to this data as path data, and bundle it
into a separate type (where * denotes products of types):♢

Definition abses_path_data_iso {B A : AbGroup} (E F : AbSES B A)

:= {phi : Iso E F & (phi $o inclusion E == inclusion F)

* (projection E == projection F $o phi)}.

Here Iso forms the type of isomorphisms between two groups. From our discussion above,
for any E, F : AbSES(B, A), we get an equivalence of types♢

(E =AbSES(B,A) F) ≃ abses_path_data_iso(E, F).

1The term Tr (-1) can safely be ignored; it expresses that the induced map from A to the kernel of
projectionE is (−1)-connected, which here just means it is a surjection.

https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L19
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L60
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Ext.v#L21
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L80
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L104

44 Chapter 3. Formalising Yoneda Ext in univalent foundations

However, a bit more can be said: the short five lemma♢ implies that if we replace Iso by
Hom above, then it still follows that phi is an isomorphism. We define abses_path_data♢

as abses_path_data_iso above, but with Hom in place of Iso. It is convenient to have both
types around: it is easier to construct an element of abses_path_data; however we will see
situations later on where it is convenient to keep track of a specific inverse to the underlying
map, which abses_path_data_iso lets us do.

Definition 3.3.1. The correspondence abses_path_data_iso makes the type AbSES(B, A)
into a graph with a corresponding category structure. For the 2-graph structure, we assert that
two path data are equal just when their underlying maps are homotopic.♢

This definition is justified by the preceding discussion, which yields:

Lemma 3.3.2. For any E, F : AbSES(B, A), there are equivalences of types♢

(E = F) ≃ abses_path_data_iso(E, F) ≃ abses_path_data(E, F).

Though elementary, this lemma has an interesting consequence. This statement appears as
the n, i = 1 case of [Ret86, Theorem 1].

Proposition 3.3.3. The loop space of AbSES(B, A) is naturally isomorphic to Hom(B, A).♢

Proof. It suffices, by the previous lemma, to give an isomorphism between Hom(B, A) and
abses_path_data(A⊕ B, A⊕ B). One can easily check that a map ϕ : A⊕ B→ A⊕ B subject
to the constraints of path data, is uniquely determined by the composite♢

B→ A ⊕ B
ϕ
−→ A ⊕ B→ A.

Moreover, this association defines a group isomorphism—details are in the formalisation.♢ □

To formalise the previous proposition, we first developed basic theory about biproducts of
abelian groups which now live in Algebra.AbGroups.Biproduct.

In ordinary homological algebra, an abelian group P is projective if for any homomorphism
f : P → B and epimorphism p : A → B, there exists a lift l : P → A such that f = e ◦ l.
It is well-known that Ext1(P, A) always vanishes when P is projective, and that this property
characterises projectivity. In our setting, we define an abelian group P to be projective if for
any homomorphism f and epimorphism p as above, there merely exists a lift l such that f = l◦l.
The propositional truncation makes this into a property of an abelian group, and not a structure.
In Coq, we express this as a type-class:♢

Class IsAbProjective (P : AbGroup) : Type :=

isabprojective : forall (A B : AbGroup),

forall (f : Hom P B), forall (e : Hom A B),

IsSurjection e -> merely (exists l : P $-> A, f == e $o l).

As in the classical case, projectives are characterised by the vanishing of Ext:

Proposition 3.3.4. An abelian group P is projective if and only if Ext1(P, A) = 0 for all A.♢

https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L146
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L184
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Core.v#L286
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L209
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L481
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Core.v#L446
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/Lemmas.v#L28
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbGroups/AbProjective.v#L19
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Ext.v#L118

3.3. Yoneda Ext 45

From the induction principle of Z it follows that Z is projective♢ in the sense we defined
above. Consequently Ext1(Z, A) = 0 for any abelian group A, and we will use this later on.

Remark 3.3.5. There is a subtle point related to projectivity that merits discussion. Our def-
inition of projectivity only requires the lift l to merely exist (a property), but one could have
asked for actual existence (a structure). There is no concept of “mere existence” in ordinary
mathematics, and when translating concepts into HoTT we have to carefully choose to make
something a structure or a property. In this case, our definition of projectivity is justified by
Proposition 3.3.4. If we had made projectivity a structure, then not even Z would be projective,
which we need it to be.

3.3.2 Ext as a bifunctor
Some of the important structure of Ext1 is captured by the fact that it defines a bifunctor
Ext1(−,−) : Abop

× Ab → Ab. This means that Ext1(−,−) is a functor in each variable and
that the following “bifunctor law” holds:

Ext1(f ,−) ◦ Ext1(−, g) = Ext1(−, g) ◦ Ext1(f ,−). (3.1)

We added a basic implementation of bifunctors to the WildCat library for our purposes,
asserting the bifunctor law using the 2-graph structure:♢

Class IsBifunctor {A B C : Type} ‘{IsGraph A, IsGraph B, Is1Cat C}

(F : A -> B -> C) := {

bifunctor_isfunctor_10 : forall a, Is0Functor (F a);

bifunctor_isfunctor_01 : forall b, Is0Functor (fun a => F a b);

bifunctor_isbifunctor :

forall a0 a1 (f : Hom a0 a1), forall b0 b1 (g : Hom b0 b1),

fmap (F _) g $o fmap (flip F _) f

$== fmap (flip F _) f $o fmap (F _) g }.

Here flip is the map which reverses the order of arguments of a binary function. We note that
in order to state the bifunctor law, we only require F to be a 0-functor in each variable. As such
we only include those instances in this class.

The bifunctor instance of Ext1 will come from a bifunctor instance of AbSES, so we work
with the latter. First of all, AbSES : AbGroupop → AbGroup → Type becomes a 0-functor in
each variable by pulling back and pushing out, respectively.

Lemma 3.3.6. Let g : B′ → B be a homomorphism of abelian groups. For any short exact
sequence A → E → B, we have a short exact sequence A → g∗(E) → B′.♢ Moreover, if E is
trivial, then so is the short exact sequence g∗(E).♢

Dually, one can push out a short exact sequence A → E → B along a map f : A → A′ to
get a short exact sequence A′ → f∗(A)→ B.♢

We supply careful proofs that pushout and pullback respect composition of pointed maps♢

and homotopies between maps,♢ and that pushing out along the identity map gives the pointed
identity map.♢ These identities could be shown with shorter proofs, however in Section 3.4 we
will have to prove coherences involving the paths constructed here, and these coherences are

https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbGroups/Cyclic.v#L56
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/WildCat/Bifunctor.v#L7
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L12
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L208
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pushout.v#L12
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L280
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L387
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L237

46 Chapter 3. Formalising Yoneda Ext in univalent foundations

simpler to solve when phrased in terms of path data. In any case, these proofs make AbSES into
a 1-functor in each variable.♢♢

For the bifunctor law we make use of the following proposition, which is remarkably useful
for showing that a given extension is a pullback of another one.

Proposition 3.3.7. Suppose given the following diagram with short exact rows:

A E′ B′

A E B .

α g

If α = id then the top row is equal to the pullback of the bottom row along g.♢

Proof. Since the right square commutes, we get a map E′ → g∗(E) by the universal property
of the pullback. This map respects the inclusions and projections, and therefore defines a path
by Lemma 3.3.2. □

There is a dual statement for pushouts in which the rightmost map must be the identity.♢

Corollary 3.3.8. Any diagram with short exact rows as follows yields a path f∗(E) = g∗(F).♢

A E B′

A′ F B .

f g

The corollary lets us swiftly show bifunctoriality:

Proposition 3.3.9. The binary map AbSES : AbGroupop → AbGroup→U is a bifunctor.♢

Proof. Consider a short exact sequence A→ E → B and two homomorphisms f : A→ A′ and
g : B′ → B. There is an obvious diagram with short exact rows:

A g∗(E) B′

A′ f∗(E) B .

f g

which by the previous corollary yields a path f∗(g∗(E)) = g∗(f∗(E)), as required. □

Remark 3.3.10. The results from Section 3.3.3 will show that AbSES is an H-space.♢ Combin-
ing this with Lemma 5.2.7♢, we deduce that AbSES is a bifunctor into pointed types. This does
not play a role in the rest of this paper, however.

https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L493
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pushout.v#L443
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pullback.v#L91
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Pushout.v#L124
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/BaerSum.v#L28
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/BaerSum.v#L223
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/BaerSum.v#L214
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Homotopy/HSpace/Core.v#L138

3.3. Yoneda Ext 47

3.3.3 The Baer sum
The Baer sum is a binary operation on Ext1(B, A) which makes it into an abelian group. Given
two extensions E, F : Ext1(B, A) their Baer sum is defined as

E + F B ∆∗∇∗(E ⊕ F)

where E ⊕ F is the point-wise direct sum, ∇(a, b) B a0 + a1 : A ⊕ A → A is the codiagonal
map, and ∆(b) B (b, b) : B→ B ⊕ B is the diagonal map.

Together with Dan Christensen and Jacob Ender, we have implemented the Baer sum in
Algebra.AbSES.BaerSum. We define this operation on the level of short exact sequences and
then descend the operation to the set Ext1 by truncation-recursion.♢

Definition abses_baer_sum ‘{Univalence} {B A : AbGroup}

: AbSES B A -> ABSES B A AbSES B A := fun E F =>

abses_pullback ab_diagonal

(abses_pushout ab_codiagonal (abses_direct_sum E F)).

Definition baer_sum ‘{Univalence} {B A : AbGroup}

: Ext B A -> Ext B A -> Ext B A.

Proof.

intros E F; strip_truncations.

exact (tr (abses_baer_sum E F)).

Defined.

Above, the strip_truncations tactic is a helper for doing truncation-recursion; it lets us
assume that both E and F are elements of AbSES(B, A) in order to map into the set Ext1(B, A).
We then simply form the Baer sum of E and F on the level of short exact sequences before
applying tr to the result.

The formalisation that the Baer sum makes Ext1(B, A) into an abelian group closely follows
the “second proof” of [Mac63, Theorem III.2.1].

Theorem 3.3.11. The set Ext1(B, A) is an abelian group under the Baer sum operation.♢

The proof can be done entirely by chaining together equations once the bifunctoriality of
Ext1 has been established along with its interaction with direct sums. To illustrate this, we
prove that pushouts respect the Baer sum:

Proposition 3.3.12. Let α : A → A′ be a homomorphism of abelian groups. For any abelian
group B, pushout defines a group homomorphism α∗ : Ext1(B, A)→ Ext1(B, A′).♢

Proof. Using bifunctoriality of Ext1 and naturality of ⊕, we have:

α∗(E + F) = ∆∗(α∗∇∗(E ⊕ F)) = ∆∗(∇∗(α∗ ⊕ α∗)∗(E ⊕ F))
= ∆∗(∇∗(α∗E ⊕ α∗F)) ≡ α∗E + α∗F. □

Similarly, pullback defines a group homomorphism as well.♢ These results make Ext1 into
a bifunctor valued in abelian groups.♢

https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/BaerSum.v
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/BaerSum.v#L11
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/Ext.v#L50
https://github.com/HoTT/Coq-HoTT/blob/3062f0a152dca5b58323bffb9fceab4188d96bb1/theories/Algebra/AbSES/BaerSum.v#L236
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/BaerSum.v#L251
https://github.com/HoTT/Coq-HoTT/blob/56427d24c185e19deae6cf8af0ad80924276ae3f/theories/Algebra/AbSES/Ext.v#L83

48 Chapter 3. Formalising Yoneda Ext in univalent foundations

3.4 The pullback fibre sequence
The main goal of this section is to explain and prove the following mathematical result, and to
discuss its formalisation♢ along with some applications.

Theorem 3.4.1. Let A
i
−→ E

p
−→ B be a short exact sequence of abelian groups. For any abelian

group G, pullback yields a fibre sequence: AbSES(B,G)
p∗
−→ AbSES(E,G)

i∗
−→ AbSES(A,G).♢

In Section 4.2.3, we give a different proof of this statement via an equivalence between
AbSES(B, A) and pointed maps between Eilenberg–Mac Lane spaces. However, this different
proof seems to only work over Z whereas our proof here works for a general ring (though it
has only been formalised for Z).

A sequence of pointed maps F
i
−→ E

p
−→ B is a fibre sequence if p ◦ i is pointed-homotopic

to the constant map, and the induced map F → fibp is an equivalence. Any fibre sequence
induces a long exact sequence of homotopy groups [Uni13, Theorem 8.4.6]:

· · · → πn(F)→ πn(E)→ πn(B)→ · · · → π0(F)→ π0(E)→ π0(B).

In the situation of our theorem, it is immediate from functoriality and exactness of E that
i∗ ◦ p∗ is constant. Therefore our goal is to show that the induced map c : AbSES(B,G)→ fibi∗

is an equivalence.2 We will do this by first constructing a section of c, and then a contraction
of the fibres of c to the values of this section. A key part of the formalisation is to work with
path data instead of actual paths, since the former has better computational properties. We will
simply use E = F to denote path data, and refer to it as such, in this section.

Lemma 3.4.2. Let G → F → E be a short exact sequence. Given path data p : i∗(F) = pt,
we construct a short exact sequence G → F/A→ B.♢

Proof. The path data p means that the sequence i∗(F) splits. Thus we can form the cokernel
F/A as in the diagram:

i∗(F) A

G F E

F/A B .

⌟
i

j

p

The two maps G → F/A → B are given by composition and the universal property of the
cokernel, respectively. It is clear that this forms a complex and that the second map is an
epimorphism, since it factors one. To see that the map G → F/A is an injection, suppose
g : G is sent to 0 : F/A. Then j(g) is in the image of some a : A by A → F. But the map
i∗(F) → F is an injection, being the pullback of one, and so using the path data we get an
equality (g, 0) = (0, a) in G ⊕ A. Of course, this implies that g = 0, as required.

Exactness of G → F/A→ B follows from a straightforward diagram chase. □

2The map c is called cxfib in the code.

https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L390
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L62

3.4. The pullback fibre sequence 49

The diagram above exhibits F as the pullback of F/A along p∗, yielding:

Lemma 3.4.3. We have path data q : p∗(F/A) = F.♢

Thus we have given a preimage F/A of F under p∗. To show that the fibre of c is inhabited
we will show that c(F/A) = (F, p), which is a path in fibi∗ . We express all of this in terms of
path data, and such a path in fibi∗ then corresponds to path data q : p∗(F/A) = F which makes
the following triangle commute:♢

i∗p∗(F/A) i∗(F)

G ⊕ A

i∗(q)

p
(3.2)

where the rightmost map comes from i∗p∗ being trivial. The key reason we have formulated
things in terms of path data is so that the maps in the triangle above simply compute, because
they have all been concretely constructed.

In the following, c refers to the map which lands in fibi∗ expressed in terms of path data.♢

Lemma 3.4.4. We have q : c(F/A) = (F, p) in fibi∗ .♢

Proof. The previous lemma already yields path data q : p∗(F/A) = F, thus it remains to show
that the triangle in Eq. (3.2) commutes. The way the maps have been constructed, it’s easiest
to show this after flipping the triangle so that it starts at G ⊕ A and ends at i∗p∗(F/A). (This is
fine since all the maps are isomorphisms.) Thus we are comparing two maps out of a biproduct
into a pullback. To check whether they are equal, we can check it on each inclusion of the
biproduct and after projecting out of the pullback. In each of these cases one obtains diagrams
which commute, but checking this is somewhat involved. Fortunately, by our having carefully
crafted the path data involved, the maps simply compute and Coq is able to reduce the goal to
a simple computation. □

Combining the three previous lemmas, we get a section of c : AbSES(B,G) → fibi∗ . To
conclude that c is an equivalence, we contract each fibre over some (F, p) to (F/A, q).

Lemma 3.4.5. Suppose G → Y → B is a short exact sequence, and let q′ : c(Y) = (F, p) in
fibi∗ . Then (F/A, q) = (Y, q′) in the fibre of c over (F, p).♢

Proof. Under our assumptions, we have the composite map ϕ : G ⊕ A → i∗p∗(Y) → p∗(Y)♢

which by a diagram chase can be seen to be the inclusion G → p∗(Y) on one component, and
(0, p) : A→ p∗(Y) on the other.♢. Consequently, the composite pr1 ◦ϕ◦inA : A→ Y is trivial.
By the universal property of the cokernel, we get an induced map F/A → Y . Once again, by
our careful construction of all the maps involved, it is straightforward to simply compute that
this map defines path data F/A = Y and moreover that this path lifts to a path in the fibre of
c. There is a coherence between three paths in AbSES(A,G) which is trivially satisfied, since
AbSES(A,G) is a 1-type. □

The final lemma implies that the fibres of c are contractible, which means that c is an
equivalence and concludes the proof of Theorem 3.4.1. We now turn our attention to two
applications of this theorem. The first application requires a lemma.

https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L135
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L233
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L150
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L255
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L362
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L285
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/PullbackFiberSequence.v#L325

50 Chapter 3. Formalising Yoneda Ext in univalent foundations

Lemma 3.4.6. Let g : B′ → B be a homomorphism of abelian groups. For any A, the following
diagram commutes, where the vertical isomorphisms are all given by Proposition 3.3.3:♢

Ω AbSES(B, A) Ω AbSES(B′, A)

Hom(B, A) Hom(B′, A) .

∼

Ω(g∗)

∼

ϕ7→ϕ◦g

(3.3)

Proof. Let p : A⊕ B = A⊕ B be an element of the upper left corner, seen as path data. By path
induction, one can easily show that the action of Ω(g∗) on paths is given by pulling back the
path data. (Formally, one first proves this for paths with free endpoints, then you can specialise
to loops.) This means that the following diagram commutes

B′ A ⊕ B′ A ⊕ B′ A

B′ A ⊕ B A ⊕ B A

Ω(g∗)(p)

id⊕g id⊕g

(0,g) p

where we have used the functions underlying the path data p and Ω(g∗)(p), and the unlabeled
arrows are the natural ones into or out of a biproduct. The composites of the top and bot-
tom rows above are the results of sending p around the top-right and bottom-left corners of
Diagram 3.3, respectively. Since this latter diagram commutes, so does Diagram 3.3. □

Proposition 3.4.7 ([Mac63, Theorem III.3.4]). We have an exact sequence of abelian groups:♢

0 Hom(B,G) Hom(E,G) Hom(A,G)

Ext1(B,G) Ext1(E,G) Ext1(A,G) .

p∗ i∗

p∗ i∗

Proof. This sequence comes from the long exact sequence of homotopy groups [Uni13, Theo-
rem 8.4.6] associated to the fibre sequence of Theorem 3.4.1, using Proposition 3.3.3 and the
previous lemma to identify Ω AbSES(−,G) with Hom(−,G). □

Remark 3.4.8. The connecting map Hom(A,G) → Ext1(B,G) in the sequence above is given
by ϕ 7→ ϕ∗E. Showing this from the fibre sequence is somewhat tedious; we have a proof on
paper, but not yet a formalisation. Instead, we have formalised a direct proof that the map just
stated yields exactness of the sequence.♢♢

We apply the six-term exact sequence to compute Ext groups of cyclic groups:

Corollary 3.4.9 ([Mac63, Proposition III.1.1]). For any n > 0 and abelian group A, we have♢

Ext1(Z/n, A) � A/n.

Proof. The short exact sequence Z
n
−→ Z→ Z/n yields a six-term exact sequence

· · · → Hom(Z, A)
n∗
−→ Hom(Z, A)→ Ext1(Z/n, A)→ Ext1(Z, A)→ · · ·

in which the term Ext1(Z, A) vanishes since Z is projective.♢♢ This means that the homo-
morphism Hom(Z, A) → Ext1(Z/n, A) is the cokernel of the preceding one. By identifying
Hom(Z, A) with A, the claim follows. □

https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/Lemmas.v#L104
https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v
https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v#L77
https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v#L134
https://github.com/HoTT/Coq-HoTT/blob/832aef3e6fff0f5b953ed170522e1a3d6288a4bb/theories/Algebra/AbSES/SixTerm.v#L222
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbSES/Ext.v#L118
https://github.com/HoTT/Coq-HoTT/blob/56629c19010a7d7155b22aad4525f9b2ac1bd584/theories/Algebra/AbGroups/Cyclic.v#L56

3.5. The long exact sequence 51

3.5 The long exact sequence
We describe our formalisation of the higher Ext groups Extn(B, A) and their contravariant long
exact sequence, which largely follows [Mac63, Chapter III.5]. The covariant version can be
constructed from the arguments in [Mit65, Chapter VII.5], but we have not formalised this.
The Baer sum is not yet formalised for Extn (n > 1), so we only have a long exact sequence
of pointed sets. Nevertheless, exactness for pointed sets and abelian groups coincide, so we
automatically get a long exact sequence of the latter once we have the higher Baer sum.

The formalisation of this section is in the separate repository Yoneda-Ext, whose README
file explains how to set up and build the code related to this chapter. There are also comments
in the code which explain details beyond what we cover here.

3.5.1 The type of length-n exact sequences
We start by defining a type ESn which we will equip with an equivalence relation by which
Extn will be the quotient. These constructions will yield functors, which we explain.

The type ESn(B, A) of length-n exact sequences is recursively defined as:♢

Fixpoint ES (n : nat) : AbGroupˆop -> AbGroup -> Type

:= match n with

| 0%nat => fun B A => Hom B A

| 1%nat => fun B A => AbSES B A

| S n => fun B A => exists M, (ES n M A) * (AbSES B M)

end.

Thus ES0(B, A) is definitionally Hom(B, A), and ES1(B, A) is definitionally AbSES(B, A). One
could also have started the induction at n ≡ 1 instead of n ≡ 2, but it is convenient to have this
definitional equality at level n ≡ 1. The functoriality of ESn is inherited from AbSES and defined
in the obvious way by pulling back and pushing out. For n > 0, an element of ESn+1(B, A) is
denoted by (F, E)M, with the obvious meaning. The type ESn(B, A)♢ is pointed by recursion,
using the trivial abelian group in the place of M in the inductive step.

Definition 3.5.1. The splice operation is defined as♢

F ⊚ E B (F, E)B : ESn(B, A)→ AbSES(C, B)→ ESn+1(C, A).

By induction one can define a general splicing operation in which the second parameter can
have arbitrary length♢, but we only need the restricted version above.

Now we equip ESn(B, A) with a relation.

Definition 3.5.2. We define a relation es_zig : ESn(B, A) → ESn(B, A) → U recursively as
follows. For n = 0, 1, es_zig is the identity type. For n ≥ 2, a relation between two elements
(F, E)M and (Y, X)N consists of a homomorphism f : Hom(M,N) along with a path f∗(E) = X
and a relation es_zig(F, f ∗(Y)) (using functoriality of ESn).♢

The relation es_zig generates an equivalence relation es_eqrel♢ (denoted ∼ in the code)
whose propositional truncation is es_meqrel♢. The functoriality of ESn respects all of these
relations.♢ ♢ Basic results on equivalence relations are contained in EquivalenceRelation.v.

https://github.com/jarlg/Yoneda-Ext
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L16
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L32
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L144
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L166
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L186
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L224
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L253
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L264
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/ES.v#L289
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/EquivalenceRelation.v

52 Chapter 3. Formalising Yoneda Ext in univalent foundations

We emphasise that equivalence relation es_eqrel is not equivalent to the identity type of
ESn. Rather, it is an approximation of the identity type of the classifying space of the category
ESn (which we do not know if one can construct in HoTT). See, e.g., [Mac63, Chapter III.5]
for related discussion.

Definition 3.5.3. The pointed set Extn(B, A) is the quotient of ESn(B, A) by the equivalence
relation es_meqrel.♢

The splice operation descends to this quotient.♢ By pushing out♢ and pulling back♢ ex-
tensions, Extn becomes a functor in each variable as well. Moreover, we have equalities
f ∗(F)⊚ E = F ⊚ f∗(E) whenever this expression makes sense, by the definition of es_zig.♢

Remark 3.5.4. The definition of Extn+1(B, A) is, more conceptually, the (n + 1)-fold tensor
product of functors Extn+1(B, A) = Extn(−, A)⊗ Ext1(B,−) (see, e.g., [GV83b, Theorem 9.20]
or [Yon60, Eq. 4.3.4]). In our setup, this is a tensor product of Set-valued functors, which
can be made into an abelian group by a construction similar to the Baer sum of Section 3.3.3
(though we have not yet formalised this). Alternatively, one could define Extn+1(B, A) as the
(n + 1)-fold tensor product of functors into abelian groups. [GV83a, Lemma 2.1] implies that
these two definitions coincide. We have chosen the present approach because we do not know
of a direct construction of the long exact sequence for the latter approach.

3.5.2 The long exact sequence
We now begin working towards the long exact sequence, following the proof of [Mac63, The-
orem XII.5.1]. As explained at the beginning of this section, we have only formalised the long
exact sequence of pointed sets—however, exactness for pointed sets is the same as for abelian
groups. Let us first recall the statement:

Theorem 3.5.5. Let A
i
−→ E

p
−→ B be a short exact sequence of abelian groups. For any abelian

group G, there is a long exact sequence by pulling back:♢ ♢ ♢

· · ·
i∗
−→ Extn(A,G)

−⊚ E
−−−→ Extn+1(B,G)

p∗
−→ Extn+1(E,G)

i∗
−→ · · · .

The proof in [Mac63] first discusses the six-term exact sequence, which we proved as
Proposition 3.4.7. It then reduces the question to exactness at the domain of the connecting
map (Lemma XII.5.2, loc. cit.), and proves exactness at that spot using Lemmas XII.5.3,
XII.5.4, and XII.5.5. We will show the three latter lemmas, then directly prove exactness at the
other spots, essentially “in-lining” Lemma XII.5.2.

The various constructions we need to do are simpler to carry out on the level of ESn as
opposed to Extn. For this reason we work and formulate things in terms of the former, and
then deduce the desired statement for the latter.

Before attacking Lemma XII.5.3, we show the following:

Lemma 3.5.6. Consider two pairs of short exact sequences which can be spliced:

(A
l
−→ Y

s
−→ B′, B′

k
−→ X

r
−→ C), (A

j
−→ F

q
−→ B, B

i
−→ E

p
−→ C).

For any element of es_zig(Y ⊚ X, F ⊚ E), we have induced maps fibs∗(X) → fibq∗(E)♢ and
fibi∗(F)→ fibk∗(Y)♢.

https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L15
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L96
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L80
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L65
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/HigherExt.v#L140
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L15
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L47
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/LES.v#L94
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L45
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L82

3.5. The long exact sequence 53

Proof. We only describe the first map since the second is analogous. The zig from Y ⊚ X to
F ⊚ E gives a homomorphism f : B′ → B along with two paths f ∗(F) = Y and f∗(X) = E. Let
G : fibs∗(X); by path induction we may assume q∗(G) ≡ X. The path f ∗(F) = Y means we have
a commuting diagram:

A Y B′

A F B .

l s

ϕ f

j q

Thus ϕ∗(G) defines an element of fibq∗(E) by q∗(ϕ∗(G)) = f∗(s∗(G)) ≡ f∗(X) = E. □

Lemma 3.5.7 ([Mac63, Lemma XII.5.3]). Given two short exact sequences A
j
−→ F

q
−→ B and

B
i
−→ E

p
−→ C, the following types are logically equivalent:♢

1. fibi∗(F);

2. fibq∗(E);

3. es_eqrel(pt, F ⊚ E).

Proof. The logical equivalence of between (1) and (2) is as described in [Mac63].♢ Moreover,
the implication (2) to (3) is clear by the definition of es_zig. We need to show that (3) implies
(1), and we proceed by induction on the length of the zig-zag.

In the base case we have an actual equality pt = F ⊚ E, in which case (1) clearly holds. For

the inductive step, suppose we have two short exact sequences A
l
−→ Y

s
−→ B′ and B′

k
−→ X

r
−→ C

such that Y ⊚ X is related to pt by a length n zig-zag, and we have either zig or a zag relating
Y ⊚ X to F ⊚ E. If we have a zig, then we use the induction hypothesis to get an element of
fibs∗(X) to which we apply the map fibs∗(X)→ fibq∗(E) from the previous lemma. This suffices
since (1) and (2) are logically equivalent.

If we have a zag, then the previous lemma gives a map fibk∗(Y) → fibi∗(F), so we are done
by the induction hypothesis. □

We reformulate condition (2) in a manner that generalises to ESn.♢

Definition es_ii_family ‘{Univalence} {n : nat} {C B A : AbGroup}

: ES n.+1 B A -> ES 1 C B -> Type

:= fun E F => { alpha : { B’ : AbGroup & B’ $-> B }

& (es_eqrel pt (es_pullback alpha.2 E))

* (hfiber (abses_pushout alpha.2) F) }.

Lemma 3.5.8 ([Mac63, Lemma XII.5.4]). In the situation of the previous lemma, the types
fibq∗(E) and es_ii_family(F, E) are logically equivalent.♢

Mac Lane appeals to the six-term exact sequence to prove this lemma, but we give a direct
construction. In order to show Lemma XII.5.3, we prove a higher analogue of Lemma 3.5.6.
This analogue is phrased in terms of the “relation fibre” rfiber, which takes the fibre of a
point with respect to a relation.

https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L173
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L131
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L214
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L221

54 Chapter 3. Formalising Yoneda Ext in univalent foundations

Lemma 3.5.9. Let n > 0 and consider Y : ESn(B′, A), F : ESn(B, A), and two short exact
sequences B′

k
−→ X → C and B

i
−→ E → C. Given es_zig(Y ⊚ X, F ⊚ E), we have maps

rfiberi∗(F)→ rfiberk∗(Y)♢ and es_ii_family(Y, X)→ es_ii_family(F, E)♢.

Lemma 3.5.10 ([Mac63, Lemma XII.5.5]). Let n > 0, F : ESn(B, A), and E : ES1(C, B). The
following types are equivalent:♢

1. fibi∗(E);

2. es_ii_family(F, E);

3. es_eqrel(pt, F ⊚ E).

Proof. We first prove an auxiliary lemma which shows that if the three statements are equiv-
alent for a given n, then (1) and (2) are equivalent for n + 1. The base case for this lemma
is simply Lemma 3.5.7. For the inductive step, our auxiliary lemma gives us that (1) and (2)
are equivalent. It is easy to show that (2) always implies (3), so it remains to show that (3)
implies either (1) or (2). For this we induct on the length of a zig-zag, and use the equivalence
of (1) and (2) along with the previous lemma, similarly (at least in structure) to the proof of
Lemma 3.5.7. □

Afterwards, we reformulate this lemma in terms of Extn.♢ With this lemma at hand, and
using similar methods to the ones presented here, we follow the proof of [Mac63, Lemma 5.2]
to deduce exactness of the long sequence of Theorem 3.5.5.

3.6 Conclusion
We have presented a formalisation of the theory of Yoneda Ext in the novel setting of homotopy
type theory, starting from the basic definition of a short exact sequence and arriving at the
(contravariant) long exact sequence, with various related results along the way. At present, the
long exact sequence is one of pointed sets, and we leave it to future work to formalise the Baer
sum on Extn for n > 1, which would promote this into a long exact sequence of abelian groups.
(The notion of exact sequence coincides for abelian groups and pointed sets.)

For pragmatic reasons we have worked with abelian groups, though it is clear that every-
thing we have done could be applied to general modules. Even so, the higher Ext groups of
abelian groups do not necessarily vanish in HoTT (see Proposition 4.3.12), so these are already
interesting. There are various more general approaches that we would like to consider in the
future, such as working with pure exact sequences (in which the classes of monomorphisms
and epimorphisms are appropriately replaced) in an abelian category.

Many of our results have been contributed to the Coq-HoTT library [CH] under the names-
pace Algebra.AbSES, which currently weighs in at about 2900 lines of code (whitespace and
comments included). This excludes the various contributions made to other parts of the library;
the precise contributions may be seen through the pull requests #1534, #1646, #1663, #1712,
#1718, and #1738. In addition, the code for the long exact sequence currently weighs in at
about 1350 lines in the separate Yoneda-Ext repository.

https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L285
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L266
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L375
https://github.com/jarlg/Yoneda-Ext/blob/0d8bfe8e168bbdf325e805d7268e826e889189f0/XII_5.v#L505
https://github.com/HoTT/Coq-HoTT/pull/1534
https://github.com/HoTT/Coq-HoTT/pull/1646
https://github.com/HoTT/Coq-HoTT/pull/1663
https://github.com/HoTT/Coq-HoTT/pull/1712
https://github.com/HoTT/Coq-HoTT/pull/1718
https://github.com/HoTT/Coq-HoTT/pull/1738
https://github.com/jarlg/Yoneda-Ext

3.6. Conclusion 55

The formalisation covers a substantial part of chapters III.1-3, III.5, and XII.5 of [Mac63],
but also extends beyond the classical theory. In particular, our proof of Theorem 3.4.1 is new
even for classical Yoneda Ext (though the theorem is known). This theorem presented the
most challenging part of this formalisation, as it required managing considerable amounts of
coherence. The other challenging part was the long exact sequence, whose proof involves an
intricate induction and numerous constructions. By formalising these theorems we have not
only established their correctness but also contributed evidence of the feasibility of dealing
with sophisticated mathematical structures in a proof assistant like Coq.

Chapter 4

Ext in homotopy type theory

Abstract. We develop the theory of Yoneda Ext groups [Yon54] over a ring in homotopy type
theory (HoTT) and describe their interpretation into an∞-topos. This is an abstract approach to
Ext groups which does not require projective or injective resolutions. While it produces group
objects that are a priori large, we show that the Ext1 groups are equivalent to small groups,
leaving open the question of whether the higher Ext groups are essentially small as well. We
also show that the Ext1 groups take on the usual form as a product of cyclic groups whenever
the input modules are finitely presented and the ring is a PID (in the constructive sense).

When interpreted into an ∞-topos of sheaves on a 1-category, our Ext groups recover
(and give a resolution-free approach to) sheaf Ext groups, which arise in algebraic geome-
try [Gro57]. (These are also called “local” Ext groups.) We may therefore interpret results
about Ext from HoTT and apply them to sheaf Ext. To show this, we prove that injectivity of
modules in HoTT interprets to internal injectivity in these models. It follows, for example, that
sheaf Ext can be computed using resolutions which are projective or injective in the sense of
HoTT, when they exist, and we give an example of this in the projective case. We also dis-
cuss the relation between internal ZG-modules (for a 0-truncated group object G) and abelian
groups in the slice over BG, and study the interpretation of our Ext groups in both settings.

4.1 Introduction

We begin the study of homological algebra in homotopy type theory (HoTT) by developing the
theory of Ext groups of modules over a ring R. Ext groups are important algebraic invariants,
and also have many applications in homotopy theory. Classically, Ext groups are ingredients
in the universal coefficient theorem for cohomology, and we hope to use the results here to
obtain a universal coefficient spectral sequence in homotopy type theory. In addition, the re-
sults discussed here were used in [BCFR23] to show that certain types must be products of
Eilenberg–Mac Lane spaces (Theorem 5.5.13).

One cannot assume that there are enough injective or projective modules in HoTT, so we
define our Ext groups to be Yoneda Ext groups. These were first defined in [Yon54, Yon60],
and are also described in [Mac63]. In this approach, given modules A and B over a ring
R, the n-th Ext group Extn

R(B, A) is defined as the set of path components of the space (or
groupoid) of length-n exact sequences A→ E1 → E2 → · · · En → B of R-modules. For n = 1,

56

4.1. Introduction 57

this definition can be elegantly carried out in HoTT, by virtue of univalence. Specifically, we
define SESR(B, A) to be the type of short exact sequences from A to B (Definition 4.2.2). Using
univalence, we see that paths in SESR(B, A) correspond to isomorphisms between short exact
sequences, so our type is capturing the correct notion. We define (Definition 4.2.5)

Ext1R(B, A) B ∥SESR(B, A)∥0.

The definition of Extn
R for n > 1 is more difficult in HoTT, because we do not know how to

correctly represent the type of length-n exact sequences. Instead we define ExtnR(B, A) to be the
set-quotient of a certain type ESn

R equipped with a relation (Definition 4.2.20). This approach
is described in [Mac63], and has been formalized in HoTT in [Fla23a] (Section 3.5.1). We
show that these types are abelian groups through an operation known as the Baer sum [Bae34].

One aspect of these resolution-free definitions of Ext groups is that they produce types
lying in a larger universe. We show that for n = 1, our Ext groups are essentially small:

Theorem 4.2.12. Let B and A be abelian groups. We have a natural equivalence

SESZ(B, A) ≃
(
K(B, 2)→∗ K(A, 3)

)
.

In particular, SESZ(B, A) and Ext1Z(B, A) are equivalent to small types.

Here →∗ denotes the type of pointed maps. This result easily implies that SESR(B, A) is
essentially small for modules over a general ring R (Corollary 4.2.13). However, we don’t
know whether the higher Ext groups are essentially small in general. From this theorem, we
also deduce the usual six-term exact sequences of Ext groups from a fibre sequence, in the
special case R ≡ Z (Propositions 4.2.16 and 4.2.17).

The usual long exact sequences also exist, and the contravariant one has been formalized for
Z in [Fla23a] (Theorem 3.5.5). Using these, we show in Proposition 4.2.28 that our Ext groups
can be computed using projective (and injective) resolutions, whenever one is at hand. It fol-
lows that our Ext groups yield right-derived functors of the hom-functor of modules whenever
one has enough projectives or injectives. More generally, we show:

Theorem 4.2.24. The large δ-functor {ExtnR(−, A)}n:N is universal, for any R-module A.

The definition of a universal δ-functor is recalled in Definition 4.2.21.
We stress that the higher Ext groups ExtnZ(B, A) need not vanish for n > 1 in our set-

ting. Indeed, there are models of HoTT in which these are non-trivial, as we discuss below.
Nevertheless, we show that these Ext groups do vanish whenever R is a (constructive) PID
and the module B is finitely presented (Corollary 4.2.36). Moreover, when A is also finitely
presented, then we get the usual description of Ext1R(B, A) as a product of cyclic groups (Propo-
sition 4.2.33).

For a (0-truncated) group G, it is well-known that HoTT lets one work G-equivariantly by
working in the context of the classifying type BG. In an∞-topos this corresponds to working in
the slice over the object BG. We study our constructions from this perspective in Section 4.2.7,
which later lets us work out concrete examples of the interpretation of our Ext groups in Sec-
tion 4.3.4. An abelian group “in the context of BG” is simply a map BG → Ab. Since the
type of modules is 1-truncated, it is equivalent to replace BG with a pointed, connected type X

58 Chapter 4. Ext in homotopy type theory

(and G by π1(X)). To emphasize that our proofs do not require any truncation assumptions, we
choose to work with such an X. We show that the category X → Ab is equivalent to the category
of Zπ1(X)-modules (Proposition 4.2.39), where Zπ1(X) is the usual group ring. When working
in the context of X, we carry out operations pointwise. Thus given B, A : X → Ab, we form the
“ΩX-equivariant” type of short exact sequences x 7→ SESZ(Bx, Ax) : X → U . Of course, we
can also consider the type SESZπ1(X)(B, A) of short exact sequences of Zπ1(X)-modules. These
are related:

Theorem 4.2.41. For any B, A : X → Ab, we have an equivalence∏
x:X

SESZ(Bx, Ax) ≃ SESZπ1(X)(Bpt, Apt).

Here Bpt and Apt are the Zπ1(X)-modules corresponding to the families B and A. We
deduce the usual formula relating Ext1 and cohomology with local coefficients:

Corollary 4.2.42. For any M : X → Ab, we have a group isomorphism

H1(X; M) ≃ Ext1Zπ1(X)(Z,Mpt),

where the left-hand side is the cohomology of X with local coefficients in M, and Z on the right
has trivial Zπ1(X)-action.

In Section 4.3, we interpret our main results and constructions from HoTT into an∞-topos
X. Given a ring R in an∞-topos, it was shown in Theorem 2.4.17 that the interpretation of the
category of (“small”) R-modules from HoTT yields an internal category in X which represents
the presheaf sending an object X ∈ X to the category of (X×R)-modules in the sliceX/X. (Here
(X×R) is a ring object in this slice.) Building on this, in Section 4.3.1 we show that the object
of short exact sequences SESR(B, A) between two modules A and B inX represents the presheaf

X 7−→ SES(X×R)(X × B, X × A) : Xop −→ S ,

where SES(X×R) denotes the (1-truncated) space of short exact sequences between (“small”)
(X×R)-modules. From this description we show how to recover the classical Ext groups in
Corollary 4.3.4.

An interesting result is that in certain ∞-toposes, the interpretation of our Ext groups re-
cover sheaf Ext (Definition 4.3.28), which has been studied in algebraic geometry [Gro57].
The precise theorem is:

Theorem 4.3.29. Suppose sets cover in X. For any X ∈ X, ring R ∈ X/X and R-module B,
the functor Extn

R(B,−) : R-Mod → AbX/X is naturally isomorphic to the sheaf Ext functor
Extn

R(B,−).

The meaning of “sets cover” is that any object admits an effective epimorphism from a 0-
truncated object (Definition 4.3.21). Sets cover in any∞-topos of∞-sheaves on a 1-category.

Sheaf Ext is traditionally defined using injective resolutions (which always exist in these
models), however our definition does not rely on the existence of enough injectives. To prove
this theorem we show that injectivity in HoTT interprets to internal injectivity in these ∞-
toposes (Corollary 4.3.27), which in turn follows from showing that internal injectivity is stable

4.1. Introduction 59

by base change in these models. Our proof of stability uses (and partly generalizes) results
of Roswitha Harting [Har83b, Theorem 1.1] (for abelian groups) and Blechschmidt [Ble18,
Proposition 3.7] (for modules) which show that internal injectivity of modules is stable by base
change in any elementary 1-topos. In addition, [Ble18, Theorem 3.8] shows that (externally)
injective modules are always internally injective, which means that our Ext groups can be
computed using the same resolutions used for sheaf Ext.

We also study various notions of projectivity of modules in X, namely the usual (exter-
nal) projectivity, internal projectivity, and the notion of projectivity from HoTT. In order to
understand the relation between these notions, we provide examples which demonstrate that
neither of external and internal projectivity imply the other (Examples 4.3.15 and 4.3.41). The
example of an internal projective module that is not externally projective is an adaptation of
an argument by Todd Trimble. Moreover, we show that free modules on internally projective
objects satisfy the notion of projectivity of modules from HoTT (Proposition 4.3.8). Using this
fact, we demonstrate that our higher Ext groups need not vanish even over Z by computing a
nontrivial Ext2Z. There are also known computations of sheaf Ext which demonstrate this.

Finally, in Section 4.3.4 we study the theory developed throughout Section 4.3 in some
concrete situations. In particular, we relate our Ext groups of abelian groups in a slice X/BG to
Ext groups of abelian groups in the base X (Proposition 4.3.35), and deduce a vanishing result
(Corollary 4.3.37). We also generalize another result of Harting (Proposition 4.3.38), and
discuss the connection between our Ext groups in the slice S /BG and ordinary Ext groups of
ZG-modules (Example 4.3.42).

Open questions. We list some outstanding questions.

1. In HoTT, is the abelian group ExtnR(B, A) equivalent to a small type for n ≥ 2? Is it
independent of the universe for n ≥ 2? (The case n = 1 is answered by Theorem 4.2.12.)

2. In HoTT, are injectivity and projectivity (Definitions 4.2.25 and 4.2.27) independent of
the universe?

3. In an ∞-topos, do HoTT-injectivity and HoTT-projectivity only depend on the 1-topos
of 0-truncated objects? Do they agree with internal injectivity and internal projectivity?
These would follow from proving that internal injectivity and internal projectivity are
pullback stable

4. Does the interpretation of ExtnR(B, A) into an ∞-topos depend only on the 1-topos of
0-truncated objects? (For ∞-toposes in which sets cover, this is answered by Theo-
rem 4.3.29.)

Notation and conventions. Our setting is Martin-Löf type theory with higher inductive types
(HITs) and a hierarchy of univalent universes, as in the HoTT Book [Uni13], whose notation
we generally follow. All of our groups, rings and modules are assumed to be sets. We writeU
for a fixed universe, and U∗ for the universe of pointed types. Section 4.3 has its own section
on notation.

60 Chapter 4. Ext in homotopy type theory

4.2 Ext in HoTT
In this section, we develop the theory of Yoneda Ext groups in HoTT. Many of the results
we show have classical analogues, in which case our contribution is the verification that these
results hold in our setting as well. Nevertheless, our proofs and definitions make use of univa-
lence and truncations, and we make constructive considerations (particularly in Section 4.2.6),
all of which do not feature in the traditional theory.

Let R be a ring throughout this entire section.

4.2.1 The type of short exact sequences
Fix two left R-modules A and B throughout this section. Below we define the type SESR(B, A)
whose elements are short exact sequences

0→ A
i
−→ E

p
−→ B→ 0

in R-Mod. The type SESR(B, A) is a 1-type, and we define the set Ext1R(B, A) of extensions to
be its set-truncation. By characterising paths in SESR(B, A), we will show that an extension is
trivial if and only if it is merely split.

A homomorphism of R-modules is an epimorphism (resp. a monomorphism) if and
only if its underlying function is surjective (resp. an embedding). We write EpiR(E, B) and
MonoR(A, E) for the set of R-module epimorphisms and monomorphisms, respectively.

Definition 4.2.1. Let A
i
−→ E

p
−→ B be two composable homomorphisms in R-Mod. Whenever

the composite p ◦ i is trivial, there is a unique induced map i′ : A → ker(p). If i′ is an
epimorphism, then i and p are exact:

IsExact(i, p) B
∑

h:
∏

a:A p(i(a))=0

IsEpi(i′).

Definition 4.2.2. The type of short exact sequences from A to B is:

SESR(B, A) B
∑

E:R-Mod

∑
i:MonoR(A,E)

∑
p:EpiR(E,B)

IsExact(i, p).

Given a short exact sequence E : SESR(B, A) we write iE : A ↪→ E and pE : E ↠ B
for the inclusion and projection maps. The type is pointed by the split short exact sequence

A
inA
−−→ A ⊕ B

prB
−−→ B.

As defined, SESR quantifies over R-Mod and is therefore a large type. It is moreover a 1-
type, since R-Mod is and the fibre of the outermost sigma is a set. This mirrors the classical fact
that the category of module extensions of B by A—whose maps are homomorphisms E → E′

making the relevant triangles commute—is a groupoid. The following proposition strengthens
this connection:

Proposition 4.2.3. For any two short exact sequences E and F from A to B, we have

(E =SESR(B,A) F) ≃
∑

ϕ:R-Mod(E,F)

(ϕ ◦ i = j) ∧ (p = q ◦ ϕ).

4.2. Ext in HoTT 61

Proof. It follows from the characterization of paths in Σ-types and transport in function types
that

(E =SESR(B,A) F) ≃
∑
ϕ:E�F

(ϕ ◦ i = j) ∧ (p = q ◦ ϕ),

where E � F denotes R-module isomorphisms. The stated equivalence now follows from the
short five lemma. □

This lets us compute the loop space of SESR(B, A) as in [Ret86].

Corollary 4.2.4. We have a natural isomorphism (̂−) : ΩSESR(B, A) ≃ R-Mod(B, A) of groups.

Proof. By the previous proposition, a path A⊕B =SESR A⊕B corresponds to a homomorphism
ϕ : A ⊕ B → A ⊕ B which respects inA and prB. Thus we get an R-module homomorphism
ϕ̂ : B→ A as the composite

ϕ̂ : B A ⊕ B A ⊕ B A.
inB ϕ prA

Conversely, for any homomorphism f : B→ A, we can define the homomorphism

(a, b) 7→ (a + f (b), b) : A ⊕ B→ A ⊕ B

which respects inA and prB. These associations are easily shown to be mutually inverse, yield-
ing a bijection ΩSESR(B, A) ≃ R-Mod(B, A). To see that it’s an isomorphism of groups, con-
sider a composite path ϕ ·ψ. The associated R-module homomorphism A⊕ B→ A⊕ B is given
by the composite

(a, b) 7−→ (a + ϕ̂(b), b) 7−→ (a + ϕ̂(b) + ψ̂(b), b).

Hence ϕ̂ · ψ = ϕ̂ + ψ̂, as required. □

In [Mac63], Mac Lane produces the set (underlying the abelian group) of extensions by
applying π0 to the groupoid of short exact sequences. We now do the corresponding thing:

Definition 4.2.5. The set of extensions of B by A is Ext1R(B, A) B ∥SESR(B, A)∥0.

The following proposition characterizes trivial extensions.

Proposition 4.2.6. Let E be a short exact sequence from A to B. Then E is trivial in Ext1R(B, A)
if and only if p merely splits, i.e., the following proposition holds:∥∥∥∥ ∑

s:R-Mod(B,E)

p ◦ s = idB

∥∥∥∥.
Proof. First of all, by the characterisation of paths in truncations [Uni13, Theorem 7.3.12] we
have (

|E|0 =Ext1R(B,A) 0
)
≃ ∥E =SESR(B,A) A ⊕ B∥.

Forgetting about truncations, the right-hand side holds if and only if p splits, by the usual
argument. This in turn implies the statement on the truncations. □

62 Chapter 4. Ext in homotopy type theory

We conclude this section by showing that Ext1R defines a bifunctor which lands in abelian
groups. This is also shown in Section 3.3.2, but we give a different proof.

Definition 4.2.7. Let A→ E → B be a short exact sequence of R-modules.

(i) For f : A → A′, the pushout f∗(E) of E along f is the short exact sequence defined by
the dashed maps below:

A E B .

A′ f∗(E)

f

⌜

Here the curved arrow is defined to make the triangle commute and to be zero on A′.

(ii) For g : B′ → B, the pullback g∗(E) of E along g is the short exact sequence defined by
the dashed maps below:

g∗(E) B′

A E B .

⌟
g

Here the curved arrow is defined to make the triangle commute and to be zero into B′.

For any R-module M, these operations define maps

f∗ : SESR(M, A)→ SESR(M, A′) and g∗ : SESR(B,M)→ SESR(B′,M).

The pushout and pullback operations commute, in the sense that f∗g∗(E) = g∗ f∗(E) when-
ever this expression makes sense (see Proposition 3.3.9). This means Ext1R(−,−) is a bifunctor
into Set. Before making this bifunctor land in Ab, we also need to detect pushouts (and pull-
backs) of short exact sequences, in the following sense.

Lemma 4.2.8. Suppose given a diagram

A E B

A′ F B

α β

with short exact rows. If β = idB, then there is a path α∗(E) = F of short exact sequences. □

The dual statement for pullbacks requires the leftmost vertical map to be the identity. For a
proof, the reader may consult Proposition 3.3.7 or Lemmas III.1.2 and III.1.4 in [Mac63].

That Ext1R(B, A) is an abelian group follows from the following proposition.

Proposition 4.2.9. The contravariant functor Ext1R(−, A) takes arbitrary coproducts to prod-
ucts, and the covariant functor Ext1R(B,−) preserves finite products.

4.2. Ext in HoTT 63

Proof. We first show that Ext1R(−, A) takes arbitrary coproducts to products. To that end, let X
be a set and consider a family B : X → R-Mod. Theorem 2.3.19 produces an exact coproduct
functor

⊕
X : R-ModX

→ R-Mod. We construct a natural bijection

ϕ : Ext1R(
⊕

x:X

Bx, A) −→
∏
x:X

Ext1R(Bx, A)

for any R-module A, as follows. Since we are defining maps between sets, we may pick repre-
sentatives of extensions. Given a short exact sequence A −→ E −→

⊕
x:X Bx, define Ex to be

the result of pulling back E along the natural map Bx →
⊕

X B for x : X. A map in the inverse
direction is given as follows. A family (A → Fx → Bx)x:X of short exact sequences yields a
short exact sequence ⊕

X

A→
⊕

x:X

Fx →
⊕

x:X

Bx

by exactness of
⊕

X, which by pushing out along ∇ :
⊕

X A → A yields an element of
Ext1R(

⊕
X B, A).

Starting from a short exact sequence A → E →
⊕

X B, the following diagram exhibits the
bottom row as the pushout of the top row by Lemma 4.2.8, showing that ϕ is a section:⊕

X A
⊕

x:X Ex
⊕

x:X Bx

A E
⊕

x:X Bx .

∇

Here the middle vertical arrow is induced from the maps (Ex → E)x:X coming from the defini-
tion of Ex as a pullback.

Similarly, for any family F B (A → Fx → Bx)x:X, the following diagram exhibits the top
row as the pullback of the bottom row along By →

⊕
X B, for any y : X, since the composite

of the left vertical maps is the identity on A:

A Fy By

⊕
X A

⊕
x:X Fx

⊕
x:X Bx

A ∇∗
⊕

x:X Fx
⊕

x:X Bx .

∇

Here the maps from the top row to the middle row are given by the inclusion of the y-summand.
This shows that ϕ is a retraction, hence a bijection.

To show that Ext1R(B,−) preserves finite products, it suffices to check that it preserves
the empty product and binary products. The former is clear, so we proceed to handle bi-
nary products. Pushing out along the two projections of A0 ⊕ A1 yields a homomorphism
Ext1R(B, A0 ⊕ A1)→ Ext1R(B, A0) × Ext1R(B, A1). To get a map in the opposite direction, we take
the biproduct of the given extensions (using that biproducts are exact) and then pull back along
∆ : B→ B ⊕ B. Showing that these two maps are inverses is straightforward. □

64 Chapter 4. Ext in homotopy type theory

Corollary 4.2.10. Let A and B be R-modules. The set Ext1R(B, A) is naturally an abelian group.

Proof. We have just shown that the functor Ext1R(B,−) : R-Mod → Set preserves finite prod-
ucts. It follows that it preserves group objects. But any R-module is itself an abelian group
object in R-Mod (in a unique way), so we are done. □

The binary operation on Ext1R(B, A) is called the Baer sum. A concrete description of this
operation, which has been formalized in joint work with Jacob Ender, is discussed in Sec-
tion 3.3.3. We also mention that if the ring R is commutative, then Ext1R(B, A) is naturally an
R-module.

We also record the following lemma for later use.

Lemma 4.2.11. Let f : A→ A′ and g : B′ → B be isomorphisms of R-modules. For any short

exact sequence A
i
−→ E

p
−→ B, we have g∗ f∗(E) = (A′

i◦ f −1

−−−→ E
g−1◦p
−−−−→ B′). □

4.2.2 Classifying extensions and smallness of Ext1

We remarked after Definition 4.2.2 that SESR is a large type, and consequently Ext1R is a large
abelian group. This is not surprising, since our definition mirrors that of the external Yoneda
Ext groups in an abelian category, and examples of abelian categories are known where these
are proper classes. However, our Ext1R groups turn out to be equivalent to small types.

Recall that [BvDR18, Theorem 5.1] produces the following equivalence of categories for
n ≥ 2:

K(−, n) : Ab ≃ { pointed, (n−1)-connected n-types } : Ωn,

under which short exact sequences and fibre sequences correspond.

Theorem 4.2.12. Let B and A be abelian groups. We have a natural equivalence

SESZ(B, A) ≃
(
K(B, 2)→∗ K(A, 3)

)
.

In particular, SESZ(B, A) and Ext1Z(B, A) are equivalent to small types.

We mention that the right-hand side of the equivalence above is moreover equivalent to(
K(B, n) →∗ K(A, n + 1)

)
for n ≥ 2, since Ω is an equivalence in this range. (See [BvDR18,

Theorem 6.7], with their n = 0 and their k equal to our n. Their F is our Ω.) The right-hand
side is also equivalent to

(
K(B, n)→∗ BAut(K(A, n))

)
, since K(A, n+1) is the 1-connected cover

of BAut(K(A, n)) ([Shu14] and Proposition 5.5.9).

Proof. We define maps in both directions and show that they are mutual inverses. To go from
left to right, we apply K(−, 3) to a short exact sequence A → E → B to get a fibre sequence,
then we negate the maps and take the fibre:

K(B, 2) K(A, 3) K(E, 3) K(B, 3) .
−K(i,3) −K(p,3)

The fibre is naturally equivalent to K(B, 2), as displayed, since the three rightmost terms form
a fibre sequence. This process yields a map from left to right.

4.2. Ext in HoTT 65

Conversely, given a map f : K(B, 2)→∗ K(A, 3), we get a fibre sequence

K(A, 2) −→ F −→ K(B, 2)
f
−−→ K(A, 3),

where F is a pointed, 1-connected 2-type. Taking loop spaces twice yields a short exact se-
quence A→ Ω2F → B of abelian groups.

We first consider the composite starting and ending at SESZ(B, A). Starting with a short
exact sequence A→ E → B, we apply K(−, 3), negate the maps and take three fibres, producing
the sequence

K(A, 2) K(E, 2) K(B, 2) .
K(i,2) K(p,2)

Here we have used that taking three fibres negates maps, by [Uni13, Lemma 8.4.4]. We then
apply Ω2, which yields the original short exact sequence, since Ω2 ◦ K(−, 2) is the identity.

For the composite starting and ending at
(
K(B, 2)→∗ K(A, 3)

)
, we will use that the map

Ω :
(
K(B, 3)→∗ K(A, 4)

)
−→
(
K(B, 2)→∗ K(A, 3)

)
is an equivalence. Write B for the inverse. This equivalence implies that any pointed map
ϕ : K(B, 2)→∗ K(A, 3) fits into the following fibre sequence:

K(B, 2) K(A, 3) fib−Bϕ K(B, 3) K(A, 4) .
ϕ −Bϕ

Applying Ω3 to the middle three terms produces the short exact sequence associated to ϕ, but
with the maps negated. Since Ω3 is an equivalence and commutes with negation of maps,
this means that the middle three terms are equal to K(−, 3) applied to the short exact sequence
associated to ϕ with the maps negated. It immediately follows that the composite starting and
ending at

(
K(B, 2) →∗ K(A, 3)

)
is equal to the identity as well, so the maps we defined are

mutual inverses.
It is straightforward to check that the map from right to left is natural in both B and A. □

Theorem 4.2.12 is about abelian extensions of abelian groups. Results similar to Theo-
rem 4.2.12, but for central extensions, appear in [BvDR18, Mye20, NSS14, Sco20], where one
takes n = 1.

Corollary 4.2.13. Let B and A be R-modules. Then both SESR(B, A) and Ext1R(B, A) are equiv-
alent to small types.

Proof. Let U : R-Mod→ Ab denote the forgetful functor. The fibre fibu(E) of the induced map
u : SESR(B, A) → SESZ(UB,UA) over an extension E (of abelian groups) is small, since it is
contained in the set of R-module structures on E. Thus SESR(B, A) ≃

∑
E:SESZ(UB,UA) fibu(E),

where the latter is equivalent to a small type. □

Remark 4.2.14. Classically, one argument that the external Ext group Ext1
R(B, A) is small is

that the underlying set of any extension E of A by B is isomorphic to the product set A × B.
However, this can fail in models of HoTT, such as in the Sierpiński ∞-topos, as we show in
Remark 4.3.14. If we allow more general situations, smallness of external Ext can also fail.
For example, [Wof16] describes a locally small abelian category in which the external Yoneda

66 Chapter 4. Ext in homotopy type theory

Ext group Ext1
Z(Z,Z) can be a proper class for a certain object Z. We believe that this category

can arise as the category of abelian group objects in an elementary∞-topos of G-spaces, where
G is the free abelian group on a proper class of generators, and for each object, all but a set
of generators are required to act trivially. In this setting, Z is the interpretation of the integers,
and so the interpretation of our Ext1Z(Z,Z) is zero, since the integers are projective in the sense
of HoTT (see Definition 4.2.25 and Proposition 4.2.26). This illustrates that it is somewhat
surprising that the interpretation of Ext1R(B, A) is small in every model of HoTT.

Remark 4.2.15. It follows from the equivalence SESZ(B, A) ≃ (K(B, 2) →∗ K(A, 3)) in The-
orem 4.2.12 that SESZ(B, A) is independent of the choice of universe containing A and B.
Therefore, the same holds for Ext1Z(B, A). The argument in the proof of Corollary 4.2.13 shows
that these statements are also true when Z is replaced by a general ring R, since the set of
R-module structures on an abelian group E is independent of the choice of universe.

4.2.3 The six-term exact sequences

For A → E → B a short exact sequence of R-module and M another R-module, there are
covariant and contravariant six-term exact sequences of abelian groups

0 R-Mod(M, A) R-Mod(M, E) R-Mod(M, B)

Ext1R(M, A) Ext1R(M, E) Ext1R(M, B) ,

i∗ p∗

i∗ p∗

and

Ext1R(A,M) Ext1R(E,M) Ext1R(B,M)

R-Mod(A,M) R-Mod(E,M) R-Mod(M, B) 0.

i∗ p∗

i∗ p∗

These can be proved following Theorem 3.2 of [Mac63], and the contravariant version has
been formalized in Proposition 3.4.7 for R ≡ Z. These can be proved following Theorem 3.2
of [Mac63], and the contravariant version has been formalized in Section 3.4. Here we find it
interesting to give different arguments in the special case where R ≡ Z.

Proposition 4.2.16. Let A
i
−→ E

p
−→ B : Ab be a short exact sequence, and M : Ab. Then

SESZ(M, A)
i∗
−→ SESZ(M, E)

p∗
−→ SESZ(M, B)

is a fibre sequence, where the maps are given by pushing out.

Proof. Applying K(−, 3) to the given short exact sequence produces a fibre sequence

K(A, 3)→ K(E, 3)→ K(B, 3).

4.2. Ext in HoTT 67

Since (Z →∗ −) preserves fibre sequences for any pointed type Z, we can apply (K(M, 2)→∗ −)
to obtain a fibre sequence(

K(M, 2)→∗ K(A, 3)
)
→
(
K(M, 2)→∗ K(E, 3)

)
→
(
K(M, 2)→∗ K(B, 3)

)
,

where the maps are given by post-composition. Theorem 4.2.12 then gives the desired fibre
sequence, since naturality means that post-composition corresponds to pushout of short exact
sequences. □

Using Corollary 4.2.4, one can show that the long exact sequence of homotopy groups
associated to the fibre sequence above recovers the usual covariant six-term exact sequence of
Ext groups mentioned at the beginning of this section.

We now give the dual result, which can similarly be shown to produce the contravariant
six-term exact sequence of Ext groups. The construction of the following fibre sequence is
more difficult, because we need to map out of a fibre sequence (not into, as in the previous
proposition).

Proposition 4.2.17. Let A
i
−→ E

p
−→ B : Ab be a short exact sequence, and M : Ab. Then

SESZ(A,M)
i∗
←− SESZ(E,M)

p∗
←− SESZ(B,M)

is a fibre sequence, where the maps are given by pulling back.

Proof. Applying K(−, 2) to the given short exact sequence produces a fibre sequence

K(A, 2)→ K(E, 2)→ K(B, 2).

Let C be the cofibre of the left map, which comes with a natural map C → K(B, 2). Since
(− →∗ Z) sends cofibre sequences to fibre sequences for any Z, we can apply (− →∗ K(M, 3))
to obtain a fibre sequence(

K(A, 2)→∗ K(M, 3)
)
←
(
K(E, 2)→∗ K(M, 3)

)
←
(
C →∗ K(M, 3)

)
.

We claim that
(
C →∗ K(M, 3)

)
≃
(
K(B, 2) →∗ K(M, 3)

)
, from which the statement follows,

as in the proof of the previous result. Since K(M, 3) is a 3-type, it suffices to prove that
∥C∥3 ≃ ∥K(B, 2)∥3, and for this it suffices to show that the map C → K(B, 2) is 3-connected,
using [Uni13, Lemma 7.5.14]. The map C → K(B, 2) is the cogap map associated to the map
K(E, 2) → K(B, 2) and the base point inclusion 1 → K(B, 2). Since K(B, 2) is connected, it
suffices to check the connectivity of the fibre of this map over the base point. By [Rij17, The-
orem 2.2], this fibre is the join K(A, 2) ∗ ΩK(B, 2) of the fibres, which is (1+0+2)-connected,
as required. (This fact about connectivities of joins is proved in [CH, Join.v]. It also follows
from [CS20, Corollary 2.32], since the join is the suspension of the smash product.) □

4.2.4 Higher Ext groups
The definition of higher Ext groups from [Mac63, Chapter XII] or [Yon54, pp. 216] can be
translated to HoTT and has already been formalized (for R ≡ Z, but the arguments work for a

68 Chapter 4. Ext in homotopy type theory

general ring) in Section 3.5 along with the contravariant long exact sequence. An account of
the covariant long exact sequence that can be carried out in our setting may be found in [Mit65,
Chapter VII.5]. We first discuss the definition of ExtnR, referring the reader to Section 3.5.1 for
further details. The long exact sequence of Ext groups (Theorem 3.5.5) makes the collection{
ExtnR(−, A)

}
n:N into a (large) δ-functor, for any A. In Theorem 4.2.24, we show that this δ-

functor is universal, as expected.

Definition 4.2.18. Let B and A be R-modules. The type ESn
R(B, A) is inductively defined to be

ESn
R(B, A) B

R-Mod(B, A) if n ≡ 0,

SESR(B, A) if n ≡ 1,∑
C:R-Mod

ESm
R (C, A) × SESR(B,C) if n ≡ m + 1,m > 0.

There is an evident splicing operation ⊚ : ESm
R (C, A) × SESR(B,C) → ESm+1

R (B, A) for any
C : R-Mod, which is given by pushing out along a map when m ≡ 0. For m ≥ 1, we use ⊚ as a
type constructor.

Our splicing operation is written in diagrammatic order, as in [Mac63]. An element of ESn
R

consists of n short exact sequences which can be spliced in succession from left to right. It
is straightforward to define a more general splicing operation where the right factor can have
arbitrary length.

Definition 4.2.19. Let n : N. For E, F : ESn
R(B, A) define a relation inductively by E{ F B

E = F if n ≡ 0, 1;∑
β:R-Mod(C,C′)

(E0{ β∗(F0)) × (β∗(E1) = F1) if n > 1, E ≡ (C, E0, E1), F ≡ (C′, F0, F1).

We now define higher Ext groups as the set-quotient of ESn
R by this relation.

Definition 4.2.20. Let B and A be R-modules. For n : N, define the set of length-n extensions
of B by A to be

ExtnR(B, A) B

R-Mod(B, A) if n ≡ 0,

Ext1R(B, A) if n ≡ 1,

∥ESn
R(B, A)/{∥0 if n > 1.

The splicing operation respects the relation { and thus passes to the quotient ExtnR. The
same is true for pushouts and pullbacks of length-n exact sequences, which makes ExtnR into a
profunctor. We define a Baer sum on Extn+2

R (B, A) by E+F B ∇(E⊕F)∆, and this makes Extn+2
R

into an abelian group, for all n : N. Our next goal is to show that the collection
{
ExtnR(−, A)

}
n:N

is a (large) universal δ-functor for any A.

Definition 4.2.21. A δ-functor structure on a collection {T n : R-Modop
→ Ab}n:N of additive

functors associates to any short exact sequence A → E → B of R-modules a connecting
homomorphism δn

E : T n(A)→ T n+1(B) for each n : N, such that:

4.2. Ext in HoTT 69

(i) The following long complex is exact:

0→ T 0(B)→ T 0(E)→ T 0(A)
δ0

E
−→ T 1(B)→ · · · → T n(E)→ T n(A)

δn
E
−→ T n+1(B)→ · · · .

(ii) For any morphism of short exact sequences as on the left below, the square on the right
commutes for every n : N:

A E B T n(A′) T n+1(B′)

A′ F B′ T n(A) T n+1(B) .

α β T n
α

δn
F

T n+1
β

δn
E

A δ-functor1 is such a collection equipped with a δ-functor structure. Replacing Ab above
with the category Ab′ of large abelian groups2, we obtain the notion of a large δ-functor.

If T and S are (large) δ-functors, then a morphism f : T → S of δ-functors consists of
a collection of natural transformations { fn : T n ⇒ S n}n:N which respect the connecting maps.
The (large) δ-functor T is universal if the restriction map (T → S)→ (T 0 ⇒ S 0) is a bijection,
for any (large) δ-functor S .

The splicing operation −⊚ E defines connecting maps for the family {ExtnR(−, A)}n:N of con-
travariant functors, and the long exact sequence from Theorem 3.5.5 shows that the first axiom
holds. It is straightforward to verify the second axiom. Thus we have a large δ-functor struc-
ture on {ExtnR(−, A)}n:N. Below, we show that it is universal. This fact is implicit in Yoneda’s
approach to satellites in [Yon60, Chapter 4], though he does not give an explicit proof of univer-
sality. (Satellite is another word for (large) universal δ-functor.) However, [Buc60] constructs
satellites which can be shown to be isomorphic to Yoneda’s definition, and Buchsbaum does
prove that his construction produces a universal δ-functor (see his Proposition 4.3).

Proposition 4.2.22. Let T be a large δ-functor and let A and B be R-modules. For each n : N,
there is a homomorphism of abelian groups dn : ExtnR(B, A) → Ab

(
T 0(A), T n(B)

)
which is

natural in A and B.

Proof. We proceed by induction on n. Since T 0 is an additive contravariant functor, it gives a
homomorphism

ϕ 7−→ T 0
ϕ : R-Mod(B, A) −→ Ab

(
T 0(A), T 0(B)

)
which is natural in A and B. We can therefore define d0(ϕ) B T 0

ϕ .
For n ≡ 1, consider the map E 7→ δ0

E : SESR(B, A) → Ab
(
T 0(A), T 1(B)

)
. Since the

codomain is a set, we get our map d1 out of the set-truncation Ext1R(B, A). We check that d1 is
natural in A; naturality in B is similar. Let f : A → A′ be a homomorphism. Our goal is to
show that the square on the left commutes:

Ext1R(B, A) Ab
(
T 0(A), T 1(B)

)
T 0(A′) T 1(B)

Ext1R(B, A′) Ab
(
T 0(A′), T 1(B)

)
T 0(A) T 1(B) .

f∗

d1

(T 0
f)∗ T 0

f

δ1
f∗E

d1 δ1
E

1More precisely, this is the notion of a contravariant, cohomological δ-functor [Wei94, Chapter 2.1].
2For A, B : Ab′, we still write Ab(A, B) for the large abelian group of group homomorphisms.

70 Chapter 4. Ext in homotopy type theory

Since naturality is a proposition, we may pick an actual short exact sequence A → E → B in
the top left corner. The question then is whether the equation d1(f∗(E)) = d1(E)◦T 0

f holds. But
this equation underlies the commuting square above on the right, which comes from part (ii) of
the δ-functor structure of T applied to the natural morphism E → f∗E of short exact sequences.

Now let n ≥ 1 and assume that we have the natural homomorphism dn. We proceed to
construct dn+1. First we define a map d′n+1 : ESn+1

R (B, A)→ Ab
(
T 0(A), T n(B)

)
by

d′n+1(F ⊚ E) B δn
E ◦ dn([F]) : T 0(A) −→ T n+1(B),

where [F] : ExtnR(C, A) is the equivalence class of F : ESn
R(C, A). To descend d′n+1 to a map

dn+1 on the quotient Extn+1
R , we need to show that it respects the relation on ESn+1

R .
Suppose we have a relation E{ F in ESn+1

R (B, A). Writing E ≡ (C, E0, E1) and F ≡
(C′, F0, F1), the relation gives a map β : C → C′, a relation E0{ β∗(F0) in ESn

R(C, A), and a
path β∗(E1) = F1 in SESR(B′,C). We need to argue that the outer square below commutes:

T 0(A) T n(C′)

T n(C) T n+1(B) .

dn([F0])

dn([E0])
T n
β δn

F1

δn
E1

The lower-right triangle commutes by condition (ii) of the δ-structure of T , using the map of
short exact sequences E1 → F1 associated to the equality β∗(E1) = F1. For the upper-left
triangle, first note that we have dn([E0]) = dn([β∗(F0)]) since dn respects { by induction.
Naturality of dn gives us further that dn(β∗[F0]) = T n

β ◦ dn([F0]), from which we conclude that
the upper-left triangle commutes. Thus we get the desired map dn+1 by passing to the quotient.

It remains to show that dn+1 is natural and a homomorphism. By Lemma 4.2.23 below,
the latter follows from the former, so we only check naturality. First we check it in the first
variable, so let f : A → A′ be a homomorphism. Since we need to show a proposition, we
may consider an actual element F ⊚ E : ESn+1

R (B, A). Then, since pushouts of longer exact
sequences are defined recursively on the left factor, we have

dn+1(f∗(F ⊚ E)) ≡ dn+1(f∗(F)⊚ E) ≡ δn+1
E ◦ dn(f∗F) = δn+1

E ◦ dn(F) ◦ T 0
f

where the only rightmost equality uses naturality of dn. The rightmost term is definitionally
equal to dn+1(F ⊚ E) ◦ T 0

f , as desired.
For naturality of dn+1 in the second variable, let g : B′ → B be a homomorphism. Again,

we consider a general element F ⊚ E as above. Since pullback of longer exact sequences are
defined directly on the last splice factor, we have

dn+1(g∗(F ⊚ E)) ≡ dn+1(F ⊚ g∗E) ≡ δn+1
g∗E ◦dn(F) = T n+1

g ◦ δn+1
E ◦dn(F) ≡ T n+1

g ◦dn+1(E ⊚ F),

where the only non-definitional equality comes from part (ii) of the δ-functor structure of T
applied to the natural morphism g∗E → E of short exact sequences. □

The following is Proposition 4.1 in [Yon60], whose proof is easy to translate to our setting.
Abelian categories are defined as usual.

4.2. Ext in HoTT 71

Lemma 4.2.23. Let A be an abelian category. Consider two additive functors S ,T : A → Ab.
Suppose ηA : S (A) → T (A) is a collection of set-maps, natural in A ∈ A . Then each ηA is a
homomorphism. □

We come to the main result of this section.

Theorem 4.2.24. The large δ-functor {ExtnR(−, A)}n:N is universal, for any R-module A.

Proof. Let {T n : R-Modop
→ Ab′}n:N be a large δ-functor. Note that

(
Ext0R(−, A) ⇒ T 0) ≃

T 0(A), by the Yoneda lemma. (To be precise, we view R-Mod as an Ab′-enriched category, and
use the Yoneda lemma.) We will construct a morphism of (large) δ-functors ExtnR(−, A) → T
for any element η : T 0(A), and show that such morphisms are uniquely determined by their
restriction to the zeroth level.

Let n : N, let η : T 0(A), and let B be an R-module. Using dn from the previous proposition,
define

un(−) ≡ dn(−, η) : ExtnR(B, A) −→ T n(B).

Clearly un is a group homomorphism. Also, since u0(idA) = TidA(η) = η, u0 corresponds to η
under the Yoneda lemma.

To see that {un}n:N is a morphism of δ-functors, we need to show that it respects the connect-
ing maps. To that end, let B → E → B′ be a short exact sequence. We proceed by induction.
For n ≡ 0, we need to show that the following diagram commutes:

R-Mod(B, A) T 0(B)

Ext1R(B′, A) T 1(B′) .

u0

−⊚ E δ0
E

u1

(4.1)

Let f : B→ A be an R-module morphism and recall that f ⊚ E ≡ f∗(E). By definition, we have
that u1(f∗(E)) = δ0

f∗(E)(η). Using functoriality of the δ-structure of T , the natural map of short
exact sequences from E to f∗(E) yields a commuting square

T 0(A) T 0(B)

T 1(B′) T 1(B′).

δ0
f∗(E)

T f

δ0
E

Thus δ0
f∗(E)(η) = δ0

E(T f (η)). The right-hand side is precisely δ0
E(u0(f)), concluding the base

case.
For the inductive step, we need to show that the following square commutes, for n ≥ 1:

ExtnR(B, A) T n(B)

Extn+1
R (B′, A) T n+1(B′) .

un

−⊚ E δn
E

un+1

(4.2)

72 Chapter 4. Ext in homotopy type theory

Whether the square commutes is a proposition, so we may choose a representative F of an
element in the top left corner. But then the square clearly commutes by the definition of u (and
d).

It remains to show uniqueness of the δ-functor morphism u. Specifically, we need to show
that for any δ-functor morphism {vn : ExtnR(−, A) ⇒ T n}n:N such that v0 = u0, we have that
v = u. To show that v1(E) = u1(E) for any E : Ext1R(B, A), we may assume E is a short exact
sequence. Then we may consider diagram (4.1), but with the bottom horizontal map being v1.
For this E, the top-left corner is R-Mod(A, A) and we may chase idA around the two sides of
the square. Since the square commutes, we get v1(E) = δ0

E(η), and the right-hand side is u1(E),
by definition. Similarly, for the inductive step we may write a general element of Extn+1

R (B, A)
as a splice F ⊚ E and consider diagram (4.2) with the lower horizontal map being vn+1. (By the
induction hypothesis the top horizontal map is un = vn.) Chasing F around the two sides of the
square, we get vn+1(F ⊚ E) = δn

E(un(E)) = un+1(E), as desired. □

4.2.5 Computing Ext via projective resolutions
In this section, we use the long exact sequence to show that our Ext groups can be computed
using projective resolutions. A dual argument shows the same for injective resolutions. We
begin by defining and characterizing projectivity and injectivity of modules in our setting.

Definition 4.2.25. We say that an R-module P is projective if for all R-modules A and B (in
U), every epimorphism e : R-Mod(A, B) and every f : R-Mod(P, B), there merely exists a lift
of f through e: ∥∥∥∥ ∑

g:R-Mod(P,A)

e ◦ g = f
∥∥∥∥.

In other words, the postcomposition map e∗ : R-Mod(P, A)→ R-Mod(P, B) is an epimorphism.
We write IsProjective(P) for this property.

It is clear that Rn is a projective R-module, for any ring R and natural number n. More
generally, if X is a projective set, then the free R-module on X is a projective R-module. In
addition, binary coproducts of projective modules are easily seen to be projective.

The following reproduces a classical characterization of projective modules.

Proposition 4.2.26. Let P be an R-module. The following are equivalent:

(i) P is projective.

(ii) Every epimorphism p : R-Mod(A, P) merely splits, i.e., the following holds:∥∥∥∥ ∑
s:R-Mod(P,A)

p ◦ s = idP

∥∥∥∥.
(iii) Ext1R(P, A) = 0 for all R-modules A.

Proof. The equivalence between (i) and (ii) mirrors the classical argument, and the equivalence
of (ii) and (iii) follows from Proposition 4.2.6. □

4.2. Ext in HoTT 73

Definition 4.2.27. We say that an R-module I is injective if for all R-modules A and B (in
U), every monomorphism m : R-Mod(A, B) and every f : R-Mod(A, I), there merely exists
an extension of f along m. In other words, the precomposition map m∗ : R-Mod(B, I) →
R-Mod(A, I) is an epimorphism. We write IsInjective(I) for this property. A dual argument
characterizes the injectives using mere splittings or the condition that Ext1R(B, I) = 0 for all B.

In Section 4.3.2, we interpret projectivity into a model of HoTT and study its relation to
existing notions of projectivity. We do the same for injectivity in Section 4.3.3.

Now we turn to computing ExtnR from a projective resolution. The argument is standard
homological algebra, and the content is that it holds with the results available to us in homotopy
type theory. In the following, assume we have a projective resolution P• of B. This is equipped
with a surjection p0 : P0 → B inducing an isomorphism P0/ im(P1) = B, and so P1 surjects
onto B1 B ker(p0). Continuing inductively, we may factor the projective resolution as follows:

P2 P1 P0

B2 B1 B0 ,

p2 p1 p0
i2 i1

(4.3)

where B0 B B and Bi+1 B ker(pi). Let P−1 B 0 and i0 B 0 in the following.

Proposition 4.2.28. The abelian group ExtnR(B, A) is the nthcohomology of the cochain complex

R-Mod(P•, A) B (· · · → R-Mod(Pn−1, A)→ R-Mod(Pn, A)→ R-Mod(Pn+1, A)→ · · ·).

Proof. Applying R-Mod(−, A) to (4.3) gives a diagram

R-Mod(Pn−1, A) R-Mod(Pn, A) R-Mod(Pn+1, A)

R-Mod(Bn, A) R-Mod(Bn+1, A)
i∗n i∗n+1

p∗n p∗n+1

which has the chain complex across the top. Since pn+1 is an epimorphism, p∗n+1 is a mon-
omorphism, and so we get that ker(R-Mod(Pn, A) → R-Mod(Pn+1, A)) = ker(i∗n+1). Since

(Bn+1
in+1
−−→ Pk

pn
−→ Bn) is a short exact sequence, the contravariant long exact sequence im-

plies that ker(i∗n+1) is R-Mod(Bn, A), with p∗n being the kernel inclusion. Consequently,

Hn(R-Mod(P•, A)) = ker(i∗n+1)/ im(R-Mod(Pn−1, A)) = R-Mod(Bn, A)/ im(i∗n) = cok(i∗n).

If n = 0, then this is R-Mod(B0, A) ≡ Ext0R(B, A), since i0 ≡ 0. To understand cok(i∗n+1), we use
the full long exact sequence

0 R-Mod(Bn, A) R-Mod(Pn, A) R-Mod(Bn+1, A)

Ext1R(Bn, A) 0 Ext1R(Bn+1, A)

Ext2R(Bn, A) 0 Ext2R(Bn+1, A) · · ·

p∗n i∗n+1

74 Chapter 4. Ext in homotopy type theory

where the zeros down the middle column appear due to Pn being projective, by Proposi-
tion 4.2.26. It follows from the first connecting map that cok(i∗n+1) = Ext1R(Bn, A). The sub-
sequent connecting maps imply that ExtkR(Bn+1, A) = Extk+1

R (Bn, A) for k ≥ 1. Applying the
second equality recursively gives Ext1R(Bn, A) = Extn+1

R (B, A), for n ≥ 0, and so we conclude
that cok(i∗n+1) = Extn+1

R (B, A) for n ≥ 0. □

While not formally dual, a similar argument using the covariant long exact sequence lets us
compute ExtnR(B, A) via an injective resolution of A.

4.2.6 Ext of finitely presented modules over (constructive) PIDs
In Section 4.3.2, we will see examples which demonstrate that higher Ext groups of abelian
groups do not necessarily vanish. The main result of this section is that finitely presented
abelian groups B merely have projective dimension at most 1, and consequently ExtnZ(B,−)
vanishes for n > 1. This is true more generally for finitely presented modules over principal
ideal domains, in the constructive sense of [LQ15]. Before turning to the constructive definition
of a PID, we briefly discuss finitely presented modules.

Definition 4.2.29. Let R be a ring and let A be an R-module.

(i) A is finitely generated if there merely exists an epimorphism Rn ↠ A, for some n : N.

(ii) A is finitely presented if there merely exists an epimorphism p : Rn ↠ A, for some n : N,
such that the kernel of p is finitely generated.

If A is finitely presented, then [LQ15, Lemma 1.0, p. 180] implies that any map Rn ↠ A
has finitely generated kernel. Moreover, Proposition 4.2(i) of loc. cit. says that a quotient A/I,
where I is a finitely generated submodule of A, is also finitely presented. These facts play a
role later in this section.

We now recall the constructive definition of a PID, and other relevant notions from [LQ15].

Definition 4.2.30. Let R be a commutative ring, and write x | y B (
∑

a:R ax = y) for x, y : R.

(i) R is is an integral domain if every element x : R is either equal to 0 or regular: the (left)
multiplication map y 7→ xy : R→ R is a monomorphism.

(ii) A greatest common divisor of x, y : R is an element g such that the following holds:

g | x × g | y ×
(∏

z:R

(z | x × z | y)→ z | g
)
.

(iii) R is a Bézout ring if for every x, y : R there merely exist u, v : R such that ux + vy is a
greatest common divisor of x and y. The data of such a u and v is called a Bézout relation
for x and y.

(iv) R is a Bézout domain if it is both a Bézout ring and an integral domain.

(v) R is a principal ideal domain (PID) if it is a Bézout domain, and every ascending chain
of finitely generated ideals merely admits two equal consecutive terms.

4.2. Ext in HoTT 75

This definition of PIDs might seem foreign to classically trained mathematicians, so we
take a moment to give some context.

Definition 4.2.31. An ideal I of a ring R is principal if the proposition ∥
∑

a:R Ra = I∥ holds.

It is not true in our setting that all ideals of Z are principal. This is for a good reason: in
models, there may be “local” ideals which have no “global” generators. However, all finitely
generated ideals of Z are principal in our setting, and it is straightforward to verify that Z
is a PID in the sense of Definition 4.2.30. Indeed, in Z one can actually compute greatest
common divisors and Bézout relations—they don’t just merely exist. The ascending chain
condition actually computes as well: using the following lemma it reduces to checking equality
of principal ideals, which one can do since Z has decidable equality.

Lemma 4.2.32. Suppose R is a Bézout ring. Any finitely generated ideal of R is principal.

Proof. The existence of Bézout relations means that every ideal of R that is generated by two
elements is principal. The claim follows by recursion. □

The reason for the additional “Noetherianity” condition in our definition of PID is that it is
needed to compute Smith normal forms—see [LQ15, p. 209] for further discussion. We also
get that any finitely presented module over a PID merely splits into a free part and a product of
cyclic modules. Using additivity of Ext1Z(−, A) (Proposition 4.2.9), projectivity of Z, and that
Ext1Z(Z/n, A) ≃ A/n (Corollary 3.4.9) we deduce:

Proposition 4.2.33. Let B be a finitely presented abelian group, and write B ≃ (
⊕k

i=1 Z/di)⊕Zr

for the decomposition which merely exists by [LQ15, Prop. 7.3]. For any abelian group A, we
merely have an isomorphism Ext1Z(B, A) ≃

∏k
i=1 A/di. □

From the existence of Smith normal forms over PIDs, we also deduce the following.

Proposition 4.2.34. Suppose R is a PID. For any R-linear morphism α : Rm → Rn, there
merely exist R-linear automorphisms ϕ and ψ of respectively Rm and Rn such that ψαϕ sends
the ith basis vector in Rm to a multiple of the ith basis vector in Rn for 1 ≤ i ≤ min(m, n).

Proof. Follows from [LQ15, Proposition 7.3(i)], whose proof is straightforward to carry out in
HoTT. □

Using the proposition, we can prove the following generalization of Lemma 4.2.32.

Proposition 4.2.35. Let R be a PID, and n : N. A finitely generated submodule of Rn is merely
free.

Proof. Let K be a finitely generated submodule of Rn for some n : N. We need to show
that there merely exists some k : N and an isomorphism Rk ≃ K. By our assumption that
K is finitely generated, there merely exists an epimorphism Rl ↠ K for some l : N. Write
α : Rl → K → Rn for the composite map. Since we are proving a proposition, we may
assume that the matrix of α is diagonal, in the sense of Proposition 4.2.34. The elements on
the diagonal are either regular or zero, by integrality, and we may consider the standard basis
elements ei : Rl such that α(ei)i is regular. Thus we get an inclusion Rk ⊆ Rl induced by

76 Chapter 4. Ext in homotopy type theory

including these basis elements ei. Finally, the composite map p : Rk → Rl → K is necessarily
an epimorphism, since we only threw away basis elements of Rl which are sent to 0 by α. By
construction, the restriction of α to Rk is an embedding, thus p factors an embedding and must
be one itself. It follows that p is an isomorphism. □

Recall that Ext1R(B, A) is itself an R-module whenever R is commutative. For a PID R we
deduce from the above that Ext1R(B, A) is finitely presented (as an R-module) whenever A and
B are, and moreover that ExtnR(B,−) vanishes for n > 1.

Corollary 4.2.36. Let R be a PID. If B is a finitely presented R-module and A is any R-module,
then ExtnR(B, A) = 0 for n > 1. If A is also finitely presented, then so is the R-module Ext1R(B, A).

Proof. Let B be a finitely presented R-module and let A be any R-module. Since we are proving
a proposition, we may assume we have a short exact sequence K → Rn → B where the kernel
K is finitely generated. The previous proposition lets us moreover assume that K is actually
free of finite rank m. Thus the short exact sequence gives a projective resolution of B, and the
claim for n > 1 immediately follows by computing ExtnR(B, A) using this projective resolution
(Proposition 4.2.28). The calculation of Ext1R(B, A) using this projective resolution yields an
exact sequence

Am → An → Ext1R(B, A)→ 0.

Hence, if A is finitely presented, then Ext1R(B, A) is a quotient of the finitely presented module
An by a finitely generated submodule (the image of Am → An), which is finitely presented. □

4.2.7 Ext of ZG-modules
Any construction in homotopy type theory can be carried out “in context,” meaning that the
terms going into a particular construction may themselves depend on some extraneous variable.
In an ∞-topos, the corresponding thing is to work in a slice of your base ∞-topos. In this
section, we work in the context of a pointed, connected type X whose base point will be denoted
by pt : X. We will see that abelian groups in the context of X correspond to modules over the
group ring Zπ1(X), and we will discuss our Ext groups in this setting.

By “an abelian group in the context of X” we mean a family X → Ab. Since Ab is a 1-type,
it is equivalent to consider families on the 1-truncation of X. The latter is equivalent to Bπ1(X)
since X is pointed and connected. To emphasize that no truncation assumptions are needed, we
prefer to work with X in this section.

We begin by constructing the group ring ZG for a group G. For this we use the coproduct
of abelian groups, which has various constructions—see, e.g., Section 2.3.3 and [LLM23].

Construction 4.2.37. Let G be a group. We construct the group ring ZG as follows. The
underlying abelian group of ZG is the coproduct

⊕
G Z, which is the free abelian group on the

set G. To define a bilinear map ZG ⊗Z ZG → ZG it suffices, by the tensor-hom adjunction and
the universal property of coproducts, to give a function

G → G → ZG.

For this we supply the map (g, h) 7→ 1gh, where 1gh is the unit in the gh-summand of
⊕

G Z. The
resulting binary operation on ZG is bilinear, by construction. We need to check that 1e : ZG is
a two-sided unit (where e : G is the unit), and that multiplication is associative.

4.2. Ext in HoTT 77

Under the equivalences

(ZG → ZG) ≃
(∏

g:G

(Z→ ZG)
)
≃ (G → ZG)

the identity map on ZG corresponds to g 7→ 1g : G → ZG. Since eg = g for g : G, we see that
1e · (−) : ZG → ZG is the identity. Similarly for (−) · 1e.

For associativity, simply observe that the two maps

(−) ·
(
− · −

)
,
(
− · −

)
· (−) : ZG3 → ZG

both correspond to the map (g, h, k) 7→ 1ghk : G → G → G → ZG, since G is associative.

Before our next statement, we specify that by an invertible element of a (possible non-
commutative) ring R, we mean an element with a specified two-sided inverse.3 If one exists,
a two-sided inverse is unique, so the type of such defines a proposition. We write R× for the
group of invertible elements of a ring R.

Proposition 4.2.38. The group ring functor Z(−) : Grp→ Ring is left adjoint to (−)×.

Proof. We construct a bijection Ring(ZG,R) ≃ Grp(G,R×) which is natural in G and R. By the
universal property of the coproduct, we already have a bijection Z-Mod(ZG,R) ≃ (G → R).
If a map on the left-hand side is a ring homomorphism, then the corresponding map G → R
lands in R×, since ring homomorphisms are required to preserve the unit. Thus what we need
to show is that a map ϕ : G → R× is a group homomorphism if and only if the induced map
ϕ̂ : ZG → R is a ring homomorphism.

A map ϕ : G → R× is a group homomorphism if and only if the two maps

ϕ(−) · ϕ(−), ϕ
(
(−) · (−)

)
: G2 → R×

coincide. This happens if and only if the two maps ϕ̂(−) ·ϕ̂(−), ϕ̂
(
(−) ·(−)

)
: ZG2 → R coincide.

In other words, ϕ is a group homomorphism if and only if ϕ̂ is a ring homomorphism. □

Using the previous proposition, we relate the category X → Ab of abelian groups in the
context of X to Zπ1(X)-modules. Recall that for any abelian group M and ring R, an R-module
structure on M corresponds to a ring homomorphism R→ Ab(M,M).

Proposition 4.2.39. We have an equivalence of 1-categories Zπ1(X)-Mod ≃ (X → Ab).

Proof. Using the previous proposition and uniqueness of deloopings of maps between groups,
we have the following equivalences of types:

Zπ1(X)-Mod ≃
∑
M:Ab

Ring
(
Zπ1(X),Ab(M,M)

)
≃
∑
M:Ab

Grp
(
π1(X),AutZ(M)

)
≃
∑
M:Ab

(
Bπ1(X)→∗ (Ab,M)

)
≃ (Bπ1(X)→ Ab) ≃ (X → Ab),

3It is equivalent to require separate left and right inverses, since one can prove that these must agree (when
both exist).

78 Chapter 4. Ext in homotopy type theory

where the last line uses that Bπ1(X) is the 1-truncation of X. It is straightforward to make
this association into a functor which is an equivalence of categories, keeping in mind that the
hom-sets in the category X → Ab are of the form

∏
x:X Ab(Ax, Bx) for A, B : X → Ab. □

Given a family A : X → Ab, the abelian group underlying the corresponding Zπ1(X)-
module is Apt, the evaluation of A at the base point pt : X. Accordingly, we may view Apt
either as an abelian group or as a Zπ1(X)-module, depending on context.

An example of particular interest to us is the following.

Proposition 4.2.40. For B, A : X → Ab, the abelian group ExtnZ(Bpt, Apt) is naturally a
Zπ1(X)-module.

Proof. Apply Proposition 4.2.39 to the family x 7→ ExtnZ(Bx, Ax). □

When n = 1, we can understand the action via the following lift to SESZ. For any x : X,
consider the type of short exact sequences from Ax to Bx:

x 7−→ SESZ(Bx, Ax) : X −→ U .

This family defines a ΩX-action on SESZ(B∗, A∗), and one can check that the action of an
element g : ΩX on a short exact sequence E is given by

g · E B (Apt
iE◦g−1

−−−−→ Ept
g◦pE
−−−→ Bpt), (4.4)

where we have used the action of g on Apt and Bpt. Lemma 4.2.11 gives an alternative de-
scription in terms of pullbacks and pushouts. On components, this gives the action of π1(X) on
Ext1Z(B∗, A∗) from Proposition 4.2.40.

For n > 1, one gets a π1(X)-action on ExtnZ(Bpt, Apt) which is similar to Eq. (4.4), but with
a (representative of a) longer extension in place of a short exact sequence.

The following theorem identifies the type of fixed points of the action (4.4).

Theorem 4.2.41. For any B, A : X → Ab, we have an equivalence∏
x:X

SESZ(Bx, Ax) ≃ SESZπ1(X)(Bpt, Apt).

Proof. An element of
∏

x:X SESZ(Bx, Ax) is easily seen to consist of a family E : X → Ab
along with two sections i :

∏
x:X Ab(Ax, Ex) and p :

∏
x:X Ab(Ex, Bx) such that the proposition∏

x:X IsExact(ix, px) holds. The sections i and p correspond to Zπ1(X)-module maps Apt →
Ept and Bpt → Ept under Proposition 4.2.39. The proposition

∏
x:X IsExact(ix, px) holds if

and only if it holds at the base point of X, since X is connected. In other words, it holds if
and only if Apt → Ept → Bpt is an exact sequence of abelian groups (and hence of Zπ1(X)-
modules). □

Corollary 4.2.42. For any M : X → Ab, we have a group isomorphism

H1(X; M) ≃ Ext1Zπ1(X)(Z,Mpt),

where the left-hand side is the cohomology of X with local coefficients in M, and Z on the right
has trivial Zπ1(X)-action.

4.3. Ext in an∞-topos 79

Proof. Since Z is a projective abelian group, by Proposition 4.2.26 we have that SESZ(Z,Mx)
is connected, for any x : X. By Corollary 4.2.4, its loop space is Ab(Z,Mx) ≃ Mx. It follows
that we have an equivalence SESZ(Z,Mx) ≃ K(Mx, 1) which is natural in Mx. Thus we get a
natural equivalence ∏

x:X

K(Mx, 1) ≃
∏
x:X

SESZ(Z,Mx).

The set-truncation of the left-hand side is H1(X; M), and the set-truncation of the right-hand
side is Ext1Zπ1(X)(Z,Mpt) by the previous theorem. After truncating the equivalence above, we
get a natural bijection which is an isomorphism by Lemma 4.2.23. □

4.3 Ext in an∞-topos

Statements in HoTT can be interpreted into an∞-topos [dBB20, dBoe20, KL18, LS20, Shu19].
In this section, we study the interpretation of the constructions and results from Section 4.2.
Our precise setup is explained in the section on foundations just below.

Results about rings and modules in HoTT apply to ring or module objects in X, which we
stress are 0-truncated. Accordingly, these objects live in the sub-∞-category of 0-truncated
objects in X, which is a 1-topos [Lur09, Theorem 6.4.1.5]. In particular, if R is a ring object in
X, then the category of R-modules is equivalent to a category of ordinary sheaves of modules.
Such categories have been extensively studied, and the reader may for example refer to [KS06,
Chapter 18] for background.

In Section 4.3.1, we work out the interpretation SESR(B, A) of the type of short exact se-
quences SESR(B, A), given a ring object R and two R-module objects A and B in X. (Our font
usage is explained below.) The object SESR(B, A) is shown to classify short exact sequences
A → E → B of R-modules in X (Proposition 4.3.3). From this we deduce that the set of path
components of the space of global points of this object recovers the usual external Yoneda Ext
groups (Corollary 4.3.4).

Our next objective is to understand the interpretation Extn
R(B, A) of our Ext groups, which

are abelian group objects in X. In special cases (Proposition 4.3.10 and Corollary 4.3.31),
we show that the global points of Extn

R(B, A) recover the ordinary Ext groups. But this fails
in general. Indeed, we give examples showing that either one can vanish without the other
one vanishing (Examples 4.3.15, 4.3.41 and 4.3.42). However, we show that in many cases
Extn

R(B, A) recovers a known construction. In any 1-topos, one can define sheaf Ext groups
(Definition 4.3.28) by taking the right derived functors of the internal hom of modules, using
the existence of enough (external) injectives. (The name “sheaf” Ext is used because one often
works in a category of sheaves; the name “local” Ext is also used.) We can extend this to an∞-
topos X, by considering sheaf Ext in the 1-topos of 0-truncated objects in X. When sets cover
in X (see Definition 4.3.21), we show that Ext1

R(B, A) agrees with sheaf Ext (Theorem 4.3.29).
We do this by showing that for such X, injectivity of modules in HoTT corresponds to inter-
nal injectivity (Corollary 4.3.27). Since external injectives are always internally injective, it
follows that our Ext groups can also be computed using externally injective resolutions, and
therefore that they agree with sheaf Ext. A consequence of this is that in this setting our Ext
groups only depend on the 1-topos of 0-truncated objects in X (Corollary 4.3.33).

80 Chapter 4. Ext in homotopy type theory

We also study various notions of projectivity in Section 4.3.2, and provide a computation
of our Ext groups using a resolution which is projective in the sense of HoTT in Proposi-
tion 4.3.12. This computation demonstrates, in particular, that our higher Ext groups need not
vanish over the ring object Z. Lastly, Section 4.3.4 contains a detailed study of our Ext groups
over a pointed, connected type X and over a group ring ZG. The considerations in this final
section are meant to illustrate and exemplify the theory developed throughout Section 4.3, in
addition to being of interest in their own right.

Foundations. We explain our setup for interpreting HoTT into the ∞-topos X. We assume
an inaccessible cardinal κ for the entirety of Section 4.3. Formally, the interpretation of HoTT
lands in a type-theoretic model topos M presenting X, which always exists [Shu19]. The
model topos M admits a univalent universe which classifies relatively κ-presentable fibrations.
This universe allows us to interpret HoTT with a single universe. Constructions in M present
constructions in X, and we are interested in studying the fruits of our labour in the latter.
These constructions are all uniquely determined up to equivalence by their universal properties
coming from the interpretation of the various type constructors, and this obviates the need
to explicitly work with M . Moreover, it is shown in [Ste23] that the univalent universe in
M presents an object classifier u : Ũ → U for relatively κ-compact morphisms in X [Lur09,
Section 6.1.6]. This means that the mapping space X(X, U) is naturally equivalent to the space
(X/κX)≃ of relatively κ-compact maps into X in X, and lets us precisely determine the objects
and structures in X which are classified by the universes (of types, and of modules) that we
consider. We write Xκ for the sub-∞-category of κ-compact objects in X.

Our results from the previous section concern truncated objects such as modules, and types
of short exact sequences. The truncation level makes the interpretation particularly straightfor-
ward, and there is not much higher coherence to manage. For this reason—and for reasons of
space and interest—we allow ourselves to state and work with the result of our interpretation
directly in X and not make any further mention of M .

Notation and conventions. We write X for a fixed ∞-topos throughout this section. By
“topos” we mean Grothendieck topos unless otherwise specified. Fonts are used to distinguish
types in HoTT, the objects obtained by interpretation in X, and the classical counterparts. For
example, ExtnR(B, A) will continue to mean the Ext group in HoTT constructed in Section 4.2.
Its interpretation Extn

R(B, A) into X is written in typewriter font. The classical external Ext
groups are written in normal font Extn

R(B, A), whereas the classical sheaf Ext groups are denoted
with an underline Extn

R(B, A). In general, we use underlines to denote traditional constructions
internal to X, such as the internal hom R-Mod(A, B) between two R-module objects A and B.
The (external) set of R-module homomorphisms is R-Mod(A, B).

The 1-topos of 0-truncated objects in X is denoted τ≤0(X), and we write SetX for τ≤0(Xκ).
We write AbE for the (abelian) category of abelian group objects in a (possibly elementary)
1-topos E, and define AbX B Abτ≤0(Xκ). The ∞-topos of spaces is denoted S , and we simply
write Ab for AbS , the category of ordinary (κ-compact) abelian groups. Our abelian group and
module objects in X are always be assumed to be κ-compact.

Base points are denoted by pt, unless another name is given.

4.3. Ext in an∞-topos 81

4.3.1 The object of short exact sequences
Let R be a ring object in Xκ, i.e., a ring object in the 1-topos SetX, and write R-Mod for the
category of (κ-compact) R-modules. Statements from HoTT about rings can be interpreted into
X using R. In particular, Theorem 2.4.17 shows that the category of modules (in U) over R
interprets to an internal category R-Mod which represents the presheaf of 1-categories

X 7−→ (X×R)-Mod : Xop −→ Cat,

where X × R is the ring object in X/X obtained by pulling back. Thus a family of modules
X → R-Mod in X corresponds precisely to a (relatively κ-compact) (X×R)-module in the slice
X/X.

For any two R-modules A and B in Xκ, we interpret the type SESR(B, A) into X to get an
object SESR(B, A) of short exact sequences. We start by describing this and the interpretation
of our Ext groups, for spaces:

Proposition 4.3.1. Let R be a ring object in S (i.e., an ordinary ring), and let B and A be
R-modules.

(i) The interpretation of SESR(B, A) into S is equivalent to the ordinary (1-truncated) space
of short exact sequences from A to B;

(ii) The interpretation of Extn
R(B, A) into S is isomorphic to Extn

R(B, A), i.e., the ordinary Ext
group.

In spaces, we will also use a slight generalization of this statement where the category of
R-modules is replaced by an arbitrary abelian (univalent) category.

Proof. Using that R-Mod classifies R-modules (Proposition 2.4.15), it is straightforward to
check that the interpretation of SESR(B, A) is equivalent to the usual space SESR(B, A) of
short exact sequences. It follows that the interpretation of our Ext1R(B, A) recovers the ordi-
nary Yoneda Ext group Ext1

R(B, A).
For n > 1, the interpretation Extn

R(B, A) into S recovers Yoneda’s definition of Extn
R(B, A)

as a quotient of the space of length-n exact sequences, which is well-known to give the usual
Ext groups defined using resolutions. □

Our present goal is to relate SESR(B, A) to SESR(B, A) for ring and module objects in X.
To do this, we require a lemma which characterizes the interpretation of the objects of epimor-
phisms and monomorphisms from HoTT.

Lemma 4.3.2. Let A and B be R-modules in X. The object EpiR(B, A) resulting from inter-
pretation classifies R-module epimorphisms B → A in X. Likewise, the object MonoR(B, A)
classifies R-module monomorphisms.

Proof. The statement that EpiR(B, A) classifies epimorphisms means that there is a natural
equivalence

X
(
X, EpiR(B, A)

)
≃ Epi(X×R)(X × B, X × A)

of (0-truncated) spaces, for all X ∈ X. Here the right-hand side is the set of epimorphisms of
(X×R)-modules. A map f : X → EpiR(B, A) corresponds to an (X×R)-module homomorphism

82 Chapter 4. Ext in homotopy type theory

f ′ : X×B→ X×A inX/X that satisfies the interpretation of being (−1)-connected from HoTT.
Since we know that (−1)-connected maps in HoTT correspond to (−1)-connected maps in an
∞-topos, we have that f ′ is a (−1)-connected map over X. This means that f ′ is an (effective)
epimorphism between sets (hence modules), as desired.

The statement for MonoR(B, A) is shown similarly, but using that (−1)-truncated maps in
HoTT correspond to (−1)-truncated maps in X (which are monomorphisms between sets). □

We use this lemma in the proof of the following proposition, which says that the object of
short exact sequences from HoTT classifies short exact sequences inX. Recall that base change
functors are exact and therefore preserve ring and module objects, as well as exact sequences
of the latter. This means that any morphism f : X → Y in X induces a map

f ∗ : SES(Y×R)(Y × B,Y × A) −→ SES(X×R)(X × B, X × A)

by base change, for any two R-modules A and B in X.

Proposition 4.3.3. Let A and B be R-modules in Xκ. The object SESR(B, A) represents the
presheaf

X 7−→ SES(X×R)(X × B, X × A) : Xop −→ S .

In particular, the (1-truncated) space SESR(B, A) is equivalent to the global points of the object
SESR(B, A).

Proof. Let X ∈ X. Our goal is to produce equivalences of spaces

X
(
X, SESR(B, A)

)
≃ SES(X×R)(X × B, X × A)

which are natural in X ∈ X. Using the adjunction ΣX ⊣ X × (−) and base-change stability of
interpretation, we may replace the left-hand side above via the following natural equivalences:

X
(
X, SESR(B, A)

)
≃ X/X

(
idX, X × SESR(B, A)

)
≃ X/X

(
idX, SES(X×R)(X × B, X × A)

)
.

The rightmost space is the global points of the object SES(X×R)(X × B, X × A). It therefore
suffices to consider the case X = 1, and to construct an equivalence

X
(
1, SESR(B, A)

)
≃ SESR(B, A).

The right-hand side above is the domain of a (−1)-truncated map into the (1-truncated)
space G consisting of κ-compact R-modules E equipped with a monomorphism i : A→ E and
an epimorphism p : E → B. The object SESR(B, A) is the domain of a (−1)-truncated map into
the corresponding object G′ of such things in X. By Proposition 4.3.1(i) applied to the abelian
category R-Mod, the previous lemma, and Theorem 2.4.17, the space of global points of G′ is
naturally equivalent to G. Thus both sides of the equivalence above are fibered over G, and we
can therefore obtain the desired equivalence from a fibrewise bi-implication (which yields an
equivalence since the maps are (−1)-truncated). We need to check that the internal proposition
IsExact(i, p) holds if and only i and p define an exact complex in the usual sense.

The proposition IsExact(i, p) consists of a witness that the internally induced homomor-
phism A → ker(p) is (−1)-connected. The module ker(p) is clearly equivalent to the exter-
nally defined kernel ker(p), both being given by the fibre over the global point 0 : 1 → B.

4.3. Ext in an∞-topos 83

Under this equivalence, the aforementioned witness implies that the induced map A → ker(p)
is surjective (i.e., (−1)-connected), and vice-versa.

In conclusion,X
(
1, SESR(B, A)

)
and SESR(B, A) are naturally fibrewise equivalent as spaces

over G, which yields the desired natural equivalence on total spaces. □

Recall that π0 SESR(B, A) is the definition of the Yoneda Ext groups (see, e.g., [Mac63]),
which recover the Ext groups defined in terms of resolutions. Thus we have the following:

Corollary 4.3.4. We have a natural isomorphism π0
(
X
(
1, SESR(B, A)

))
≃ Ext1

R(B, A) of ordi-
nary abelian groups, for any R-modules A and B in Xκ. □

Since we do not have a good description of the (untruncated) type of length-n exact se-
quences, we do not have a corresponding statement for the higher Ext groups.

Note that taking global points and taking components do not commute, and it is impor-
tant for the above result that we take global points before taking components. If we reverse
the order, we get the claim that X

(
1, Ext1

R(B, A)
)
≃ Ext1

R(B, A). We show in Examples 4.3.41
and 4.3.42 that this is false in general. However, we will see in Proposition 4.3.10 and Corol-
lary 4.3.31 that there are situations in which the global points of Extn

R agree with Extn
R for all

n.

4.3.2 Comparing various notions of projectivity
It is well-known that ordinary Ext groups of (say) modules can be computed using projective
resolutions, whenever one is at hand. In Section 4.2.5 we showed that the same thing holds
for our Ext groups in HoTT. Accordingly, we can compute our internal Ext groups in X using
resolutions which consist of modules that satisfy the interpretation of the predicate IsProjective
from Definition 4.2.25. An example of such a computation is given in Proposition 4.3.12.
In addition, we compare internal projectivity to ordinary (external) projectivity. There are no
implications either way in general, which we demonstrate through Examples 4.3.15 and 4.3.41.

Definition 4.3.5. Let R be a ring object in X. An R-module P...

(i) ... is (externally) projective if for every epimorphism e : A ↠ B in R-Mod, the map
e∗ : R-Mod(P, A)→ R-Mod(P, B) of ordinary sets (or abelian groups) is an epimorphism;

(ii) ... is internally projective if for every epimorphism e : A ↠ B in R-Mod, the map
e∗ : R-Mod(P, A)→ R-Mod(P, B) in AbX is an epimorphism;

(iii) ... is HoTT-projective if the interpretation of the proposition IsProjective(P) from Defi-
nition 4.2.25 holds.

The external and internal notions are the usual ones which pertain to modules in a 1-topos,
which for us is the 1-topos τ≤0(X). However, in an ∞-topos we also have the third notion of
HoTT-projectivity resulting from interpretation. We mention, to be concrete, that if X is the
sheaf∞-topos on some 1-site, then τ≤0(X) is the category of ordinary set-valued sheaves on the
same site. In this situation, ring and module objects are ordinary sheaves of rings and modules.

In general, when we say that the interpretation of a statement in HoTT “holds” we mean
that the resulting object of X has a global point. If the statement is a proposition, then this

84 Chapter 4. Ext in homotopy type theory

means that the object is terminal. Our first objective is to make a useful reformulation of
HoTT-projectivity.

Proposition 4.3.6. An R-module P is HoTT-projective if and only if the (X×R)-module X × P
is internally projective in (X × R)-Mod for all X ∈ X.

Proof. Let P be an R-module in X. According to Definition 4.2.25, we have

IsProjective(P) B
∏

A:R-Mod

∏
B:R-Mod

∏
e:EpiR(A,B)

IsEpi
(
e∗ : R-Mod(P, A)→ R-Mod(P, B)

)
.

Interpreting IsProjective(P), we get an object of X. It has a global point if and only if the
projection

Q :
∑

A,B:R-Mod

∑
e:EpiR(A,B)

IsEpi(e∗) −→
∑

A,B:R-Mod

EpiR(A, B)

admits a section. This map admits a section if and only if for every map

f : X −→
∑

A,B:R-Mod

EpiR(A, B)

there is a section of the pullback f ∗(Q) ∈ X/X, since we can take f to be the identity map.
Such a map f is equivalent to the data of two (X×R)-modules A and B over X along with
an epimorphism e : A → B. Here we have used Theorem 2.4.17 which says that R-Mod
classifies module objects, and Lemma 4.3.2. By definition, we have that f ∗(Q) = IsEpi(e∗),
where e∗ : (X×R)-Mod(X × P, A) → (X×R)-Mod(X × P, B) is the post-composition map. This
proposition f ∗(Q) holds if and only if e∗ is an epimorphism.

In summary, the statement IsProjective(P) holds if and only if for every X ∈ X, all
(X×R)-modules A and B, and every R-module epimorphism e : A → B, the aforementioned
post-composition map e∗ is an epimorphism. But this is exactly the statement that X × P is an
internally projective (X×R)-module for every X ∈ X. □

Clearly, HoTT-projectivity always implies internal projectivity. The converse holds for ∞-
toposes in which internal projectivity of modules is stable by base change. We do not know
whether this is always true, but it is true for spaces, as we show in Proposition 4.3.40.

Next we show that certain free modules are HoTT-projective. Our proof uses the following
lemma, due to Alex Simpson for internal injectivity of objects in a 1-topos [Sim13], written
up on the nLab4. The definition of internal projectivity of objects is the same as for modules,
but using the internal hom of objects. It is straightforward to check that Simpson’s proof goes
through for objects of an∞-topos as well, providing us with:

Lemma 4.3.7. Let P ∈ X be a internally projective object. Then X×P is an internally projective
object in X/X for all X ∈ X. □

Given a 0-truncated object S in X, we can form the free R-module R(S) on this object, for
any ring object R. This free R-module is the interpretation of the free R-module on a set in
HoTT.

4See internally projective object (rev. 13) on the nLab.

https://ncatlab.org/nlab/revision/internally+projective+object/13

4.3. Ext in an∞-topos 85

Proposition 4.3.8. Let R be a ring object in X, and let P be an internally projective object.
The free R-module R(P) on P is HoTT-projective.

Proof. By the previous lemma, P is internally projective as an object in each slice of X. From
an argument similar to that of Proposition 4.3.6, we deduce that P satisfies the interpretation
of being a projective set in HoTT. The free R-module R(P) on a projective set is projective in
HoTT, so we are done. □

We use this proposition to compute an example of our Ext groups in Proposition 4.3.12. Be-
fore turning to this example, we observe that internal projectivity (and thus HoTT-projectivity)
implies external projectivity in certain situations. This has some interesting consequences.

Proposition 4.3.9. Let E be a (possibly elementary) 1-topos, equipped with a ring object R.
If the global points functor Γ : E → Set preserves epimorphisms, then internal projectivity of
R-modules implies external projectivity.

Proof. The statement easily follows by identifying the external hom of R-modules as the global
points of the corresponding internal hom, and then using the assumption on Γ. □

The previous proposition applies, for example, to any topos of presheaves on a category
with a terminal object 1. In that case Γ is represented by evaluation at 1, which respects both
limits and colimits of presheaves.

Proposition 4.3.10. Let R be a ring object inX, and consider two R-modules B and A. Suppose
that Γ : SetX → Set preserves epimorphisms. If B has a HoTT-projective resolution P•, then
we get an isomorphism ΓExtn

R(B, A) ≃ Extn
R(B, A).

One can check that our assumption on Γ holds if and only if the induced functor Γ : AbX →
Ab is exact, and it is this latter condition that we use in the proof.

Proof. By the interpretation of Proposition 4.2.28, we can compute Extn
R(B, A) with the HoTT-

projective resolution P•. Specifically, taking internal homs we get a complex

· · · → R-Mod(Pn−1, A)→ R-Mod(Pn, A)→ R-Mod(Pn+1, A)→ · · · (4.5)

of abelian groups inX, and we have isomorphisms Hn(P•; A) ≃ Extn
R(B, A) where the left-hand

side is the cohomology of the above complex in AbX.
Now, by our assumption on Γ, the previous proposition tells us that P• is an externally

projective resolution of B (since HoTT-projective always implies internally projective). Thus
we may also compute Extn

R(B, A) using P•, which amounts to taking the cohomology (in Ab)
of the global points of the complex (4.5) above. Since Γ : AbX → Ab is exact, it commutes
with taking cohomology, and we therefore obtain the desired isomorphism. □

In the presence of enough HoTT-projectives, we deduce:

Corollary 4.3.11. Let R be a ring object in X, and suppose that R-Mod has enough HoTT-
projectives. If Γ : SetX → Set preserves epimorphisms, then we have natural isomorphisms

ΓExtn
R(B, A) ≃ Extn

R(B, A)

for any two R-modules B and A. □

86 Chapter 4. Ext in homotopy type theory

We now turn to our computation of a non-trivial Ext2
Z in the Sierpiński ∞-topos X using a

HoTT-projective resolution. Taking the arrow category 0 → 1 to be our site, an abelian group
in X consists of a homomorphism A0 ← A1 between two ordinary abelian groups. We write y
for the Yoneda embedding.

Note that y(0) is an internally projective object in this∞-topos, since it represents the func-

tor sending a presheaf F0 ← F1 to the presheaf F0
id
←− F0, which preserves epimorphisms.

Accordingly, the corresponding free abelian group Z y(0) is HoTT-projective, by Proposi-
tion 4.3.8.

Proposition 4.3.12. Consider the abelian group B B (0 ← Z/2) in the Sierpiński ∞-topos.
We have

Ext2
Z(B,Zy(0)) ≃ B.

Proof. We will compute this internal Ext group using a HoTT-projective resolution of B, as
justified by the interpretation of Proposition 4.2.28. Drawing objects of X vertically and mor-
phisms horizontally, the following is such a resolution P∗(B):

0 Z Z Z/2

Z Z ⊕ Z Z 0 .

2

(0,1)

(2,−1) 1+2

Here, P0(B) = Z y(1) is the integer object in X, which is always HoTT-projective. More-
over, P2(B) = Z y(0) is HoTT-projective by the discussion just above; and P1(B) = Z y(0) ⊕
Z y(1) is a direct sum of HoTT-projectives, which is HoTT-projective. We therefore have that
Ext2

Z(B,Z y(0)) ≃ H2(P∗(B),Z y(0)). The latter computes to B = (0 ← Z/2), as one can
check. □

Remark 4.3.13. The Sierpiński site (0→ 1) has a terminal object (the object 1), which implies
that its global sections functor preserves epimorphisms between abelian group objects. Specif-
ically, the global points of an object A0 ← A1 is simply A1. From Proposition 4.3.10 and the
computation in the previous proposition, we deduce that Ext2

Z(B,Z y(0)) ≃ Z/2 for the external
Ext group.

Remark 4.3.14. The first part of the resolution above gives rise to a short exact sequence

Z Z Z/2

Z Z 0 .

2

2

1

The object in the center is clearly not the product of the kernel and the cokernel, even ignoring
the group structures. In the Sierpiński∞-topos, an object is merely inhabited if and only if it is
inhabited, so it follows that it does not merely hold that the central object is the product of the
kernel and the cokernel. So while it is true that the type of length-1 extensions is essentially
small, this cannot be proved by assuming that the underlying type of the middle object is the
product of the other two types.

4.3. Ext in an∞-topos 87

We conclude this section by studying the relation between internal and external projectiv-
ity in general. Example 4.3.41 gives an internally projective module which is not externally
projective. Here we give an example of an externally projective abelian group that fails to be
internally projective, which is an additive version of an example due to Todd Trimble.5

Consider the poset C B N ∗ {a, b}, where a and b are greater than all n ∈ N,

a

0 1 2 · · ·

b

and let X be the ∞-topos of presheaves on C . As above, we write y : C → X for the
Yoneda embedding. The functor Z(−) : SetX → Z-Mod constructs the free abelian group on a
0-truncated object in X. In particular, we may depict Z y(a) as follows:

Z

Z Z Z · · ·

0

The integer object Z over C is simply the constant presheaf on the ordinary integers.

Example 4.3.15. Z y(a) is externally projective but not internally projective in Z-Mod. It
follows from Proposition 4.2.26 that there exists an A in Z-Mod so that Ext1

Z(Z y(a), A) = 0 and
Ext1

Z(Z y(a), A) , 0.

Proof. It is immediate that Z y(a) is externally projective, since it represents evaluation at a,
which preserves epimorphisms of presheaves of modules. To show that Z y(a) is not internally
projective, we construct an epimorphism σ : F ↠ G that isn’t preserved by Z-Mod(Z y(a),−).

Let F : Z-Mod be defined as follows, with index-wise inclusions:

0⊕
n∈N Z

⊕
n≥1 Z

⊕
n≥2 Z · · ·

0 .

Define G(n) B Z for n ∈ N and G(a) := 0 =: G(b), with all maps between natural numbers
inducing identify maps. Then we have an epimorphism σ : F ↠ G given by addition at n ∈ N
and identities (zero maps) at a and b. However Z-Mod(G, F) = 0 since any such map must
factor through limn F(n) = 0 on the N-part of C (and is necessarily 0 on a and b).

Using that Z(−) : SetX → Z-Mod is strong monoidal, we see that

G = Z(y(a) × y(b)) = Z y(a) ⊗Z Z y(b),

5See presentation axiom (rev. 46) on the nLab.

https://ncatlab.org/nlab/revision/presentation+axiom/46#counter

88 Chapter 4. Ext in homotopy type theory

where ⊗Z is the tensor product of presheaves of modules, which is pointwise (see, e.g., [Sta23,
Section 6.6]). Using the tensor-hom adjunction (see Section 17.22 of loc. cit.), we have iso-
morphisms

Z-Mod(Z y(a), F)(b) ≃ Z-Mod(Z y(a) ⊗Z Z y(b), F) ≃ Z-Mod(G, F) ≃ 0.

On the other hand, Z-Mod(Z y(a),G)(b) = Z-Mod(Z y(a)⊗ZZ y(b),G) = Z-Mod(G,G) contains
at least two elements: 0 and idG. This means that σ∗ : Z-Mod(Z y(a), F) → Z-Mod(Z y(a),G)
cannot be an epimorphism, since it isn’t one at b. □

4.3.3 Internal injectivity and sheaf Ext

The goal of this section is to show that in certain∞-toposes, our Ext groups recover sheaf Ext
groups. (We recall these in Definition 4.3.28.) In order to achieve this, we first must compare
three different notions of injectivity in a model.

Definition 4.3.16. Let R be a ring object in Xκ. An R-module I...

(i) ... is (externally) injective if for every R-module monomorphism m : A → B, the map
m∗ : R-Mod(B, I)→ R-Mod(A, I) in Ab is an epimorphism;

(ii) ... is internally injective if for every R-module monomorphism m : A → B, the map
m∗ : R-Mod(B, I)→ R-Mod(A, I) in AbX is an epimorphism;

(iii) ... is HoTT-injective if it satisfies the interpretation of the proposition IsInjective(I) from
Definition 4.2.27 in X.

As in the projective case, injectivity and internal injectivity are the familiar notions from
the 1-topos SetX. In surprising contrast to the projective case we considered above, external
injectivity always implies internal injectivity in a 1-topos. This theorem is due to [Har83b]
for abelian groups and [Ble18, Theorem 3.8] for modules. The converse holds in any localic
1-topos (as Blechschmidt shows), however not every internally injective module is externally
injective in general. For example, in [Har83a, pp. 259] it is shown that the Z/2-module Q/Z
with trivial action is not externally injective, though it is internally injective (as an abelian
group over BZ/2) by [Har81, Proposition 1.2(i)] (see also Proposition 4.3.38 below).

Remark 4.3.17. Let R be a ring object inXκ. The category R-Mod is equivalent to a category of
modules in a 1-topos [Lur09, Theorem 6.4.1.5], and is therefore Grothendieck abelian [KS06,
Theorem 18.1.6]. Consequently, it has enough external injectives. Since external injective
are internally injective by [Ble18, Theorem 3.8], there are also enough internal injectives in
R-Mod.

To relate HoTT-injectivity to internal injectivity we proceed as we did in Section 4.3.2 for
projectivity. A proof similar to the one of Proposition 4.3.6 gives us the following:

Proposition 4.3.18. An R-module I in X is HoTT-injective if and only if the (X×R)-module
X × I is internally injective in X/X for all X ∈ X. □

4.3. Ext in an∞-topos 89

Clearly, every HoTT-injective module is internally injective. If we could show that internal
injectivity is stable by base change in an ∞-topos, then the two notions would coincide. How-
ever, we do not know whether internal injectivity is stable by base change in a general∞-topos.
We will show below that it holds in certain situations.

In [Har83b], Harting showed that internal injectivity is stable by base change for abelian
groups in any elementary 1-topos. The same holds for modules (see the discussion immediately
after [Ble18, Proposition 3.7]). It follows that the same is true in an ∞-topos for base change
by a 0-truncated object:

Lemma 4.3.19. Let X ∈ X be 0-truncated. Base change X × (−) : R-Mod→ (X×R)-Mod over
X preserves internal injectivity. □

A key fact in the converse direction is that internal injectivity descends along effective
epimorphisms. This is essentially a corollary of the fact that base change along effective epi-
morphisms reflects effective epimorphisms (more generally, connected maps) [Lur09, Propo-
sition 6.5.1.16(6)].

Lemma 4.3.20. Let V be a (−1)-connected object of X, and let I be an R-module. If V × I is
internally injective as a (V×R)-module over V, then I is internally injective.

The same result holds for internal projectivity as well, with only minor changes to the proof.

Proof. Suppose V × I is internally injective as a (V×R)-module, and let i : A ↪→ B be a
monomorphism of R-modules. Using that base change preserves internal homs, consider the
following diagram:

(V×R)-Mod(V × B,V × I) R-Mod(B, I)

(V×R)-Mod(V × A,V × I) R-Mod(A, I)

V 1 .

(V×i)∗
⌟

i∗

⌟

Here the two-headed arrows signify effective epimorphisms (which are pullback-stable). By
assumption, V × I is internally injective, so (V × i)∗ is an effective epimorphism (since mon-
omorphisms are stable by base change). Thus i∗ factors an effective epimorphism, and must
therefore be one itself. We conclude that I is internally injective, as desired. □

One can also prove the previous lemma by using that pullback along an effective epimor-
phism is conservative [Lur09, Lemma 6.2.3.16]. We apply this to the map IsEpi(i∗) → 1,
which is an equivalence precisely when i∗ is an epimorphism.

We now introduce conditions on X which will imply that internal injectivity is stable by
base change.

Definition 4.3.21. Let n ≥ −1 be a truncation level. An object X ∈ X is covered by an n-type
if there exists an n-type V along with an effective epimorphism V ↠ X. If all objects of X are
covered by n-types, then n-types cover in X. When n = 0, we say that sets cover.

90 Chapter 4. Ext in homotopy type theory

Sets cover in any ∞-topos of ∞-sheaves on a 1-category, since any such sheaf can be
covered by a coproduct of representables.

Note that the condition that n-types cover inX is not the interpretation of the corresponding
concept from HoTT. (See [Uni13, Exercise 7.9], [Chr21, Definition 5.2] and the nLab6.) The
HoTT notion only requires that V and the effective epimorphism merely exist. On the other
hand, it requires this in every slice.

By combining the two previous lemmas with this definition above, we obtain the following
result.

Proposition 4.3.22. Let I be an internally injective R-module in X, and let X ∈ X. If X is
covered by a set, then X × I is an internally injective (X×R)-module.

Proof. Let I be an internally injective R-module in X, and let X ∈ X. We wish to show that
X × I is an internally injective (X×R)-module in X/X. Since X is covered by a set, we have
an effective epimorphism V ↠ X with 0-truncated domain. By Lemma 4.3.19, V × I is an
internally injective (V×R)-module. But V ↠ X is a (−1)-connected object over X, thus by
Lemma 4.3.20 we can descend internal injectivity from V × I to X × I. □

Corollary 4.3.23. If sets cover in X, then internal injectivity of R-modules is stable by base
change. □

Our next goal is to extend this result to any slice of an ∞-topos in which sets cover. This
generalization will let us understand the interpretation of internal injectivity when working in
a non-empty context in HoTT, which corresponds to working in a slice of the chosen ∞-topos
model. The key lemma is the following:

Proposition 4.3.24. If n-types cover inX, then n-types cover inX/X for any (n+1)-type X ∈ X.

Proof. Consider an object Y → X in X/X. Since n-types cover in X, there is an effective
epimorphism e : V ↠ Y with V an n-type in X. The map e defines an effective epimorphism
over X with domain the composite V → Y → X. The latter is a map from an n-type to an
(n+ 1)-type, which is necessarily n-truncated (since its fibres are all n-types, as is easily shown
in HoTT). Hence the domain of e is n-truncated as an object of X/X, so Y is covered by an
n-type. □

Theorem 4.3.25. Suppose sets cover in X, and let X ∈ X. For any ring R ∈ X/κX, internal
injectivity of R-modules is stable by base change in X/X.

Proof. Let I ∈ X/X be an internally injective R-module. The truncation map X → ∥X∥1 is
1-connected, and therefore induces an equivalence

τ≤0(X/∥X∥1)
∼
−−→ τ≤0(X/X)

by base change [Lur09, Lemma 7.2.1.13]. Moving back along this equivalence, I becomes an
internally injective module over ∥X∥1. Since ∥X∥1 is a 1-type, the previous proposition implies
that sets cover in X/∥X∥1. By Corollary 4.3.23, this means I is internally injective when pulled
back to any slice of X/∥X∥1. But any slice of X/X is a slice of X/∥X∥1, so we are done. □

6See n-types cover (rev. 6) on the nLab.

https://ncatlab.org/nlab/revision/n-types+cover/6#in_homotopy_type_theory

4.3. Ext in an∞-topos 91

Remark 4.3.26. These methods apply in much greater generality than just internal injectivity.
Consider any “internal notion” P in a 1-topos which is stable by base change and descends
along (effective) epimorphisms. Then, since the 0-truncated objects in X form a 1-topos, we
can ask whether P(Y) holds for some given 0-truncated object Y in any slice X/X. The argu-
ments above show that if sets cover in X, then P is stable by base change in X/X. (Making
precise the meaning of “internal notion” is beyond our current scope.)

Corollary 4.3.27. Suppose sets cover in X. Consider an object X, a ring R ∈ X/κX and an
R-module I. Then I is HoTT-injective if and only if it is internally injective. □

Using Corollary 4.3.27, we explain how our Ext groups recover sheaf Ext.

Definition 4.3.28. Let E be a 1-topos, let R be a ring object in E, and let B be an R-module.
We define the functor Extn

R(B,−) : R-Mod → AbX to be the nth right derived functor of
R-Mod(B,−), where we use an external injective resolution to define the derived functor. We
refer to Exti

R(B, A) as sheaf Ext. We extend this definition to an ∞-topos X by applying it to
the 1-topos τ≤0(X).

The sheaf Ext groups arise in algebraic geometry ([Gro57, Chapitre IV], [Har77, Sec-
tion III.6]) and are also considered in [KS06, Section 18.4] and [Ble17, Section 13.4].

For any R-module B in Xκ, we obtain an internal functor Extn
R(B,−) in X by interpretation,

which yields an ordinary functor Extn
R(B,−) : R-Mod → Ab′X. Here the ′ indicates that the

codomain consists of abelian group objects in X, not just Xκ. The dual of Proposition 4.2.28
lets us compute Extn

R(B, A) via a HoTT-injective resolution of A. Combining the results of this
section, we obtain the following:

Theorem 4.3.29. Suppose sets cover in X. For any X ∈ X, ring R ∈ X/κX and R-module
B, the functor Extn

R(B,−) : R-Mod → Ab′X/X is naturally isomorphic to the sheaf Ext functor
Extn

R(B,−). In particular, we may take Extn
R(B,−) to land in AbX/X.

Proof. Since (external) injectives in R-Mod are always internally injective by [Ble18, Theo-
rem 3.8], and moreover internal and HoTT-injectives coincide in X/X by Corollary 4.3.27,
we can use an (externally) injective resolution to compute Extn

R(B,−) by the dual of Proposi-
tion 4.2.28. But this means that Extn

R(B,−) is the nth right derived functor of the internal hom
of R-modules, meaning it is naturally isomorphic to Extn

R(B,−). □

It follows that the computation in Proposition 4.3.12 can be regarded as a computation of
sheaf Ext in the Sierpiński∞-topos, using a HoTT-projective resolution.

Remark 4.3.30. In his thesis, Blechschmidt gives a definition of sheaf Ext groups in the internal
language of a localic 1-topos using the existence of enough injectives [Ble17, Section 13.4].
In contrast, our internal Ext is the interpretation of Definition 4.2.5, which does not rely on
injectives.

Since there are always enough internally injective R-modules, we deduce the following:

Corollary 4.3.31. Let X ∈ X. Suppose that sets cover in X and that the (set-restricted) global
points functor ΓX : SetX/X → Set preserves epimorphisms. For any ring R ∈ X/κX, R-modules
B and A, and n ≥ 0, we have a natural isomorphism ΓXExt

n
R(B, A) ≃ Extn

R(B, A). In particular,
the ordinary Ext groups are obtained as the global points of sheaf Ext.

92 Chapter 4. Ext in homotopy type theory

Proof. An argument similar to Proposition 4.3.9 shows that internal injectivity implies external
injectivity of R-modules under our assumption on ΓX. Thus internal and external injectivity
coincide, and are equivalent to HoTT-injectivity by Corollary 4.3.27. The statement follows by
the same proof as in Proposition 4.3.10, but using an (internally) injective resolution of A. □

Remark 4.3.32. The previous corollary is well-known for sheaf Ext, and is an easy consequence
of the (“local-to-global”) Grothendieck spectral sequence which relates sheaf Ext and ordinary
Ext, specifically:

(Rp Γ)Extq
R(B, A) =⇒ Extp+q

R (B, A).

(Here Rp denotes the pth right derived functor.) Our assumption on ΓX implies that Rp ΓX

vanishes for p > 0, which means this spectral sequence collapses at the E2-page. It immediately
follows that we have an isomorphism ΓXExtn

R(B, A) ≃ Extn
R(B, A), for all n ∈ N.

We also record the following corollary of Theorem 4.3.29.

Corollary 4.3.33. Suppose sets cover in X, and let X ∈ X. The interpretation of ExtnR(B, A)
into X/X depends solely on τ≤0(X/X). □

There are many ∞-toposes which share 1-toposes of 0-truncated objects. For example,
if X ∈ S is a pointed, connected space, then 0-truncated objects in the slice ∞-topos S /X
are π1(X)-sets. Thus if X is simply connected, these are just sets. Since sets cover in S , the
corollary tells us that interpreting Extn

R into any slice S /X with X simply connected yields the
same result (up to equivalence). This means in particular that we can move between S and
S /X when computing Extn

R—a potentially useful trick.

4.3.4 Ext over BG

Let X be a pointed, connected object in X, with base point pt : X. In this final section, we
study Ext groups of abelian group objects in the sliceX/X, and relate them to Ext groups in the
base X. As we will see, these considerations are intimately related with those of Section 4.2.7,
and they illustrate the theory developed thus far in Section 4.3.

We refer to abelian group objects in X/X as (X×Z)-modules, as this makes the base clear.
We mention that the 1-truncation map X → Bπ1(X) is 1-connected and therefore induces
an equivalence between the 1-topos of sets over X and the 1-topos of sets over Bπ1(X) by
pulling back [Lur09, Lemma 7.2.1.13]. Accordingly, we get an equivalence X × Z-Mod ≃
Bπ1(X) × Z-Mod of categories of modules. To emphasize that no truncation assumptions are
needed, we work with X rather than Bπ1(X).

The category of (X×Z)-modules has another description. However, as we will see in a
moment, this other description is not equivalent when working internally, since it changes the
ambient topos. For any (0-truncated) group object in X, we can form the internal group ring
ZG as the object

⊕
G Z with its natural ring structure. This is the result of interpreting the

group ring of Construction 4.2.37 into X. Being a G-set, ZG defines an object of X/BG which
may be seen to be the free abelian group on the base point (or universal cover) 1→ BG, though
we will not make use of this description.

4.3. Ext in an∞-topos 93

Proposition 4.3.34. Restriction to the base point of X gives an equivalence of 1-categories

X × Z-Mod ≃ Zπ1(X)-Mod,

where the left-hand side is the category of abelian groups in X/κX and the right-hand side is
the category of Zπ1(X)-modules in Xκ. In particular, we obtain an isomorphism

Extn
X×Z(B, A) ≃ Extn

Zπ1(X)(Bpt, Apt)

of external Ext groups for all (X×Z)-modules A and B.

We point out that this statement does not imply that ExtX×Z coincides with ExtZπ1(X), as the
former is an abelian group in X/X, whereas the latter is an abelian group in X. However, the
relation between these objects is interesting and is further discussed below.

Proof. By Theorem 2.4.17, the category X × Z-Mod is equivalent to the category X(X,Z-Mod)
(whose categorical structure comes from Z-Mod). The interpretation of Proposition 4.2.39
yields an equivalence of categories Z-ModX ≃ Zπ1(X)-Mod in X, which on global points yields
the desired equivalence of categories X(X,Z-Mod) ≃ Zπ1(X)-Mod. It follows that the stated
(external) Ext groups are isomorphic. □

Given a (X×Z)-module A, we call its restriction Apt along 1 → X the underlying abelian
group object of A. This has a natural π1(X)-action, so it can also be regarded as a Zπ1(X)-
module in X. Note that the equivalence X × Z-Mod ≃ Zπ1(X)-Mod sends the ring X × Z to
Z with the trivial π1(X)-action, and not to the ring Zπ1(X). We also warn the reader that care
must be taken when moving across this equivalence. For example, the category X × Z-Mod
is enriched over itself via the internal hom of abelian groups in X/κX, while Zπ1(X)-Mod is
naturally enriched over AbX. The hom-objects of this second enrichment are given by taking
the fixed points of the former enrichment, using the equivalence. Because of the difference
between the internal homs, many internal properties are not preserved by the equivalence. An
example of this is given in Example 4.3.41, as explained in the discussion immediately after it.

We record the following fact, which immediately follows from base-change stability of
interpretation.

Proposition 4.3.35. Let B and A be (X×Z)-modules. The underlying abelian group object of
the (X×Z)-module Extn

X×Z(B, A) is Extn
Z(Bpt, Apt). □

A concrete description of the π1(X)-action on Extn
Z(Bpt, Apt) can be worked out from

Proposition 4.2.40 and the discussion surrounding it.

Remark 4.3.36. It might be tempting to believe that the abelian group object Extn
Zπ1(X)(Bpt, Apt)

is isomorphic to the fixed points of the Zπ1(X)-module Extn
X×Z(B, A)pt described by the previ-

ous theorem. In general, this is not the case, as we will see in Example 4.3.42.

We deduce a vanishing result for ExtX×Z.

Corollary 4.3.37. Let n be a natural number. Suppose that Extn
Z(B, A) vanishes for all abelian

groups B and A in Xκ. Then Extn
X×Z(N,M) also vanishes for all (X×Z)-modules N and M. □

94 Chapter 4. Ext in homotopy type theory

Our next result characterizes internal injectivity of abelian groups in the slice X/X, and
generalizes [Har81, Proposition 1.2(i)] for ordinary sheaves on a space.

Proposition 4.3.38. An (X×Z)-module is internally injective if and only if its underlying abe-
lian group object is internally injective. The same holds for internal projectivity.

Proof. We prove the injective case, as the projective case is shown similarly.
(→) Let I be an internally injective (X×Z)-module. A monomorphism i : A ↪→ B of abelian

groups in X pulls back to a monomorphism i : X × A ↪→ X × B between (X×Z)-modules (with
trivial action). Thus we get an epimorphism i∗ : X × Z-Mod(X×B, I)↠ X × Z-Mod(X×A, I) of
(X×Z)-modules. This map is given by i∗ : Z-Mod(B, Ipt) → Z-Mod(A, Ipt) on the underlying
abelian group objects, since base change (here along 1↠ X) respects internal homs. The latter
map is therefore an epimorphism, as desired.

(←) By Lemma 4.3.20 we can descend internal injectivity along the effective epimorphism
1↠ X, meaning I is an internally injective (X×Z)-module whenever I∗ is an internally injective
abelian group object. □

We note that the proof of (→) only used that X was pointed.

Remark 4.3.39. The previous proposition sheds new light on Proposition 4.3.35. Namely, if
one computes Extn

X×Z(B, A) using an internally injective resolution of (X×Z)-modules (which
always exists), then the underlying abelian resolution can be used to compute Extn

Z(Bpt, Apt).
Thus we see that the latter is the underlying abelian group object of the former.

Before our next examples, we show that internal projectivity and HoTT-projectivity coin-
cide in spaces.

Proposition 4.3.40. In the ∞-topos of spaces, HoTT-projectivity and internal projectivity of
modules coincide.

Proof. Firstly, note that external and internal projectivity coincide in spaces. Now, suppose
that P is an (internally) projective R-module. By Proposition 4.3.6, we need to show that
X × P is an internally projective (X×R)-module in X/X, for any X ∈ X. Since sets cover in
spaces, and internal projectivity descends along effective epimorphisms by a proof analogous
to Lemma 4.3.20, we can assume that X is a set. Then an (X×R)-module is simply an X-indexed
collection of R-modules, and the internal hom of such is the index-wise hom. The axiom of
choice implies that an X-indexed collection of epimorphisms defines an epimorphism between
the collections, so X × P is internally projective. □

We now give examples of modules which are internally projective, but not externally pro-
jective.

Example 4.3.41. Let G be a non-trivial (0-truncated) group in S . The (BG×Z)-module BG×Z
is internally projective, but not externally projective. It follows that there exists a (BG×Z)-
module A so that Ext1

BG×Z(BG × Z, A) = 0 and Ext1
BG×Z(BG × Z, A) , 0.

Proof. Any ring is HoTT-projective as a module over itself, and is therefore internally pro-
jective. In particular, BG × Z is internally projective. (This can also be seen from Proposi-
tion 4.3.38.) External projectivity of (BG×Z)-modules corresponds to ordinary projectivity of

4.3. Ext in an∞-topos 95

ZG-modules by Proposition 4.3.34. As a ZG-module, BG×Z corresponds to the abelian group
Z with trivial G-action. Since G is non-trivial, the augmentation map ZG → Z cannot split,
thus Z is not projective. The last claim follows from Proposition 4.2.26. □

As mentioned above, for a module in S , internal and external projectivity agree. So the
example shows that while BG × Z is internally projective as a (BG×Z)-module, the corre-
sponding ZG-module Z is not internally projective. This demonstrates the sense in which the
equivalence of Proposition 4.3.34 does not respect internal properties, since the ambient topos
changes. This is also demonstrated by the following example, which ties together many of our
results and remarks into a concrete example in spaces.

Example 4.3.42. Take X to be S and G to be a (0-truncated) group. Since AbS = Ab has
global dimension 1 and Extn

Z interprets to ordinary Extn
Z by Proposition 4.3.1, we deduce that

Extn
Z vanishes for n > 1. Corollary 4.3.37 then says that Extn

BG×Z vanishes for n > 1. Even
more, Extn

BG×Z(BG × Z,M) vanishes for all n ≥ 1 and every M, since BG × Z is internally pro-
jective. On the other hand, by Proposition 4.3.34, the ordinary Ext groups Extn

BG×Z(BG × Z, A)
are the same as the ordinary Ext groups Extn

ZG(Z, Apt), which need not vanish. For example, it
is well known that Extn

ZG(Z,M) � Hn(BG; M), which may be nonzero for all n ∈ N. Indeed,
as we saw in Example 4.3.41, Z with trivial action is not a projective ZG-module. Note also
that Extn

ZG agrees with Extn
ZG, again using Proposition 4.3.1. In particular, as mentioned in

Remark 4.3.36, it is not the case in general that Extn
ZG can be described as the fixed points of

the ZG-module corresponding to Extn
BG×Z, even for n = 1.

We explain this phenomenon in a bit more detail. A short exact sequence of (BG×Z)-
modules

0→ A→ E → B→ 0

may be seen both as an element of the abelian group Ext1
BG×Z(B, A) � Ext1

ZG(Bpt, Apt), and as
an element (indeed, G-fixed point) of the ZG-module Ext1

BG×Z(B, A)pt. This extension E is
trivial as an element of the former if and only if the map E → B admits a (BG×Z)-module
section (i.e., a G-equivariant section). In contrast, E is trivial as an element of the latter if and
only if the underlying map Ept → Bpt admits an abelian section, by Proposition 4.3.35.

Chapter 5

Central H-spaces and banded types

Abstract. We introduce and study central types, which are generalizations of Eilenberg–
Mac Lane spaces. A type is central when it is equivalent to the component of the identity among
its own self-equivalences. From centrality alone we construct an infinite delooping in terms of
a tensor product of banded types, which are the appropriate notion of torsor for a central type.
Our constructions are carried out in homotopy type theory, and therefore hold in any∞-topos.
Even when interpreted into the∞-topos of spaces, our main results and constructions are new.

Along the way, we further develop the theory of H-spaces in homotopy type theory, includ-
ing their relation to evaluation fibrations and Whitehead products. These considerations let
us, for example, rule out the existence of H-space structures on the 2n-sphere for n > 0. We
also give a novel description of the moduli space of H-space structures on an H-space. Using
this description, we generalize a formula of Arkowitz–Curjel and Copeland for counting the
number of path components of this moduli space. As an application, we deduce that the moduli
space of H-space structures on the 3-sphere is Ω6S3.

5.1 Introduction

In this paper we study H-spaces and their deloopings. By working in homotopy type theory,
our results apply to any ∞-topos [dBB20, dBoe20, KL18, LS20, Shu19]. While most of the
theory we develop is new to homotopy type theory, much of the theory related to H-spaces in
Section 5.2 is inspired by classical topology. However, our main results and constructions in
Sections 5.3 and 5.4 are new even for the∞-topos of spaces.

A key concept is that of a central type. A pointed type A is central if the map

f 7−→ f (pt) : (A→ A)(id) −→ A

which evaluates a function at the base point of A is an equivalence. Here (A → A)(id) denotes
the identity component of the type of all self-maps of A, and pt denotes the base point of
A. Since the domain of this map is a connected H-space (see Definition 5.2.1(2)), so is any
central type. We give a list of equivalent conditions for a connected H-space to be central
in Proposition 5.3.6, and one of them is that the type A →∗ A of pointed self-maps is a set.
It follows, for example, that every Eilenberg–Mac Lane space K(G, n), with G abelian and

96

5.1. Introduction 97

n ≥ 1, is central. We show in Section 5.5.3 that some, but not all, products of Eilenberg–
Mac Lane spaces are central. In Section 5.5.4, we show that every truncated, central type with
at most two non-zero homotopy groups, both of which are finitely presented, is a product of
Eilenberg–Mac Lane spaces. In general, we don’t know whether every central type is a product
of Eilenberg–Mac Lane spaces, and we leave this as an open question.

Our first result is:

Theorem 5.4.6. Let A be a central type. Then A has a unique delooping.

The key ingredient of this result—and much of the paper—is that we have a concrete de-
scription of the delooping of A. It is given by the type BAut1(A) B

∑
X:U ∥A = X∥0 of types

banded by A, which is the 1-connected cover of BAut(A). As an example, since K(G, n) is
central for G abelian and n ≥ 1, this gives an alternative way to define K(G, n + 1) in terms
of K(G, n), as previously indicated by the first author [Buc19]. Banded types are denoted Xp,
where p : ∥A = X∥0 is the band.

We also show:

Theorem 5.4.10. Let A be a central type. Every pointed map f : A →∗ A has a unique
delooping

Xp 7−→ (X → A)(f ∗◦ p̃−1) : BAut1(A) −→∗ BAut1(A).

The formula for the delooping is explained in Definition 5.4.7. It follows that the type of
pointed self-maps of BAut1(A) is a set, since it is equivalent to A→∗ A.

One of the motivations for studying BAut1(A) is that one can define a tensoring operation.
Given two banded types X and Y in BAut1(A), the type X∗ = Y has a natural banding, where
X∗ denotes a certain dual of X. We write X ⊗ Y for this banded type, and show in Theo-
rem 5.4.19 that it makes BAut1(A) into an abelian H-space. Combined with Theorem 5.4.6,
Theorem 5.4.10, and the characterization of central types mentioned earlier, we therefore de-
duce:

Corollary 5.4.20. For a central type A, the type BAut1(A) is again central. Therefore, A is
an infinite loop space, in a unique way. Moreover, every pointed map A →∗ A is infinitely
deloopable, in a unique way.

Our tensoring operation gives a new description of the H-space structure on K(G, n), which
will be helpful for calculations of Euler classes in work in progress and is what originally
motivated this work.

We also give an alternate description of the delooping of a central type A as a certain type
of A-torsors (Section 5.4.3), and give an analogous description of K(G, 1) for any group G
(Section 5.5.1).

To prove the above results, we first need to further develop the theory of H-spaces. One
difference between our work and classical work in topology is that we emphasize the mod-
uli space HSpace(A) of H-space structures on a pointed type A, rather than just the set of
components. For example, we prove:

Theorem 5.2.27. Let A be an H-space such that for all a : A, the map a · − is an equivalence.
Then the type HSpace(A) of H-space structures on A is equivalent to the type A ∧ A →∗ A of
pointed maps.

98 Chapter 5. Central H-spaces and banded types

This generalizes a classical formula of Arkowitz–Curjel and Copeland, which plays a key
role in classical results on the number of H-space structures on various spaces. The classical
formula only determines the path components of the type of H-space structures, while our
formula gives an equivalence of types. From our formula it immediately follows, for example,
that the type of H-space structures on the 3-sphere is Ω6S3. The proof of Theorem 5.2.27 uses
evaluation fibrations, which generalize the map appearing in the definition of “central.” In fact,
these evaluation fibrations play an important role in much of the paper, and underlie our main
results about central types. We also relate the existence of sections of an evaluation fibration to
the vanishing of Whitehead products. Related considerations let us show that no even spheres
besides S0 admit H-space structures.

In Proposition 5.3.3 we show that every central type has a unique H-space structure, in the
strong sense that the type HSpace(A) is contractible. We prove several results about types with
unique H-space structures. For example, we show that such H-space structures are associative
and coherently abelian, and that every pointed self-map is an H-space map, a weaker version
of the delooping above. We also give an example, pointed out to us David Wärn, which shows
that not every type with a unique H-space structure is central (Example 5.5.12).

We note that these results rely on us defining “H-space” to include a coherence between the
two unit laws (see Definition 5.2.1).

Formalization. Many of the main results of this paper have been formalized in the Coq
proof assistant using the Coq-HoTT library [CH]. This includes much of the basic theory that
we develop related to H-spaces, and these results have already been accepted into the Coq-
HoTT library under the Homotopy.HSpace namespace. Notably, Theorem 5.2.27 has been
formalized as equiv cohhspace ppmap, modulo the smash-hom adjunction which has been
formalized by Floris van Doorn in Lean 2 [vDoo18]. In the separate repository central-types,
we have formalized Theorems 5.4.6 and 5.4.19, and that BAut1(A) is central whenever A is
(i.e., one part of Corollary 5.4.20), plus various other results.

Outline. In Section 5.2, we give results about H-spaces which do not depend on centrality,
including a description of the moduli space of H-space structures, results about Whitehead
products and H-space structures on spheres, and results about unique H-space structures. In
Section 5.3, we define central types, show that central types have a unique H-space structure,
give a characterization of which H-spaces are central, and prove other results needed in the
next section. Section 5.4 is the heart of the paper. It defines the type BAut1(A) of bands
for a central type A, shows that it is a unique delooping of A, proves that it is an H-space
under a tensoring operation, and shows that central types and their self-maps are uniquely
infinitely deloopable. We also give the alternate description of the delooping in terms of A-
torsors. Finally, Section 5.5 gives examples and non-examples of central types, mostly related
to Eilenberg–Mac Lane spaces and their products. It also contains a construction of K(G, 1) as
a type of torsors, and defines an H-space structure on this type when G is abelian, paralleling
the H-space structure on BAut1(A). It ends by showing that every truncated, central type with
at most two non-zero homotopy groups, both of which are finitely presented, is a product of
Eilenberg–Mac Lane spaces.

https://github.com/HoTT/Coq-HoTT/blob/1032ee0e7d2b4838b068944443c04318813bbcd9/theories/Homotopy/HSpace/Moduli.v#L130
https://github.com/jarlg/central-types/

5.2. H-spaces and evaluation fibrations 99

Notation and conventions. In general, we follow the notation used in [Uni13]. For example,
we write path composition in diagrammatic order: given paths p : x = y and q : y = z, their
composite is p � q. The reflexivity path is written refl.

We writeU for a fixed univalent universe of types, and frequently make use of univalence.
We also use function extensionality without always explicitly mentioning it.

Given a type A and an element a : A, we write (A, a) for the type A pointed at a. If A is
already a pointed type with unspecified base point, then we write pt for the base point. If A
and B are pointed types, and f , g : A→∗ B are pointed maps, then f =∗ g is the type of pointed
homotopies between f and g.

If A is an H-space, then we write x·y for the product of two elements x, y : A (unless another
notation for the multiplication is given). For a pointed type A, we write HSpace(A) for the type
of H-space structures on A with the base point as the identity element (Definition 5.2.1).

We write Sn for the n-sphere.

5.2 H-spaces and evaluation fibrations
In Section 5.2.1, we begin by recalling the notion of a (coherent) H-space structure on a pointed
type A, give several equivalent descriptions of the type of H-space structures, and prove basic
results that will be useful in the rest of the paper.

In Section 5.2.2, we discuss the type of pointed extensions of a map B ∨C →∗ A to B ×C,
and show that the type of H-space structures on A is equivalent to the type of pointed extensions
of the fold map. We relate the existence of extensions to the vanishing of Whitehead products,
and use this to show that there are no H-space structures on even spheres except S0. In addition,
we show that for any n-connected H-space A, the Freudenthal map π2n+1(A)→ π2n+2(ΣA) is an
isomorphism, not just a surjection.

In Section 5.2.3, we study evaluation fibrations. We show that for a left-invertible H-
space A, various evaluation fibrations are trivial, and use this to show that the type of H-space
structures is equivalent to A ∧ A →∗ A, generalizing a classical formula of Arkowitz–Curjel
and Copeland. It immediately follows, for example, that the type of H-space structures on the
3-sphere is Ω6S3.

Section 5.2.4 is a short section which studies the case when the type of H-space structures
is contractible. We stress that this is not the same as HSpace(A) having a single component,
which is what is classically meant by “A has a unique H-space structure.” This situation is in-
teresting in its own right. We show that such H-space structures are associative and coherently
abelian, and we prove that all pointed self-maps of A are automatically H-space maps.

5.2.1 H-space structures

We begin by giving the notion of H-space structure that we will consider in this paper.

Definition 5.2.1. Let A be a pointed type.

1. A non-coherent H-space structure on A consists of a binary operation µ : A→ A→ A,
a left unit law µl : µ(pt,−) = idA and a right unit law µr : µ(−, pt) = idA.

100 Chapter 5. Central H-spaces and banded types

2. A (coherent) H-space structure on A consists of a non-coherent H-space structure µ on
A along with a coherence µlr : µl(pt) =µ(pt,pt)=pt µr(pt).

3. We write HSpace(A) for the type of (coherent) H-space structures on A.

When the H-space structure is clear from the context we may write x ·y B µ(x, y). Any H-space
structure yields a non-coherent H-space structure by forgetting the coherence. Suppose A has
a (non)coherent H-space structure µ.

4. If µ(a,−) : A → A is an equivalence for all a : A, then µ is left-invertible, and we write
x\y B µ(x,−)−1(y). Right-invertible is defined dually, and we write x/y B µ(−, y)−1(x).

5. The twist µT of µ is the natural (non)coherent H-space structure with operation

µT (a0, a1) B µ(a1, a0).

When we say “H-space” we mean the coherent notion—we will only say “coherent” for
emphasis. The notion of H-space structure considered in [Uni13, Def. 8.5.4] corresponds to
our non-coherent H-space structures. While many constructions can be carried out for non-
coherent H-spaces (such as the Hopf construction), the coherent case is more natural for our
purposes.

The type of H-space structures on a pointed type has several equivalent descriptions.

Proposition 5.2.2. Let A be a pointed type. The following types are equivalent:

1. The type HSpace(A) of H-space structures on A.

2. The type of pointed sections of the pointed map ev : (A → A, idA) →∗ A which sends an
unpointed map f to f (pt).

3. The type of families µ :
∏

a:A(A, pt) →∗ (A, a) of pointed maps equipped with a pointed
homotopy µ(pt) =∗ idA.

Moreover, the type of non-coherent H-space structures on A is equivalent to the type of families
µ :
∏

a:A(A, pt)→∗ (A, a) of pointed maps equipped with an unpointed homotopy µ(pt) = idA.

Proof. All of these claims are simply reshuffling of data combined with function extensionality.
For example, given a pointed section s of ev, the underlying map of s gives the binary operation
µ, the pointedness of s gives the left unit law µl, the homotopy ev ◦s = idA gives the right unit
law, and the pointedness of that homotopy gives the coherence. The data in (3) is almost
identical. In particular, it is the pointedness of the homotopy µ(pt) =∗ idA that corresponds to
coherence, and omitting this gives the description of non-coherent H-space structures. □

Remark 5.2.3. Note that A is left-invertible if and only if the maps in (3) are equivalences. We
say that A is a homogeneous type if it is equipped with a family µ :

∏
a:A(A, pt) ≃∗ (A, a), and

so we see that every left-invertible H-space is homogeneous.

We have the following converse.

5.2. H-spaces and evaluation fibrations 101

Lemma 5.2.4. Let A be a pointed type equipped with a family µ :
∏

a:A(A, pt) →∗ (A, a) such
that µ(pt) is an equivalence. Then A can be given the structure of an H-space.

Proof. The new family defined by µ′(a) = µ(a) ◦ µ(pt)−1 has the property that µ′(pt) =∗ idA,
and therefore gives an H-space structure on A. □

Note that this lemma shows that every homogeneous type can be given the structure of a
(left-invertible) H-space, and that every non-coherent H-space can be given the structure of
an H-space. In the latter case, since the original µ(pt) is equal to the identity map (as un-
pointed maps), the new H-space retains the same binary operation µ and left unit law µl, but
has a different right unit law µr. While the types of non-coherent and coherent H-space struc-
tures on a pointed type are logically equivalent, they are not generally equivalent as types (see
Remark 5.3.4).

We’ll be interested in abelian and associative H-spaces later on.

Definition 5.2.5. Let A be an H-space with multiplication µ.

1. If there is a homotopy h :
∏

a,b µ(a, b) = µ(b, a), then µ is abelian.

2. If µ = µT in HSpace(A), then µ is coherently abelian.

3. If there is a homotopy α :
∏

a,b,c:A µ(µ(a, b), c) = µ(a, µ(b, c)), then µ is associative.

The following lemma gives a convenient way of constructing abelian H-space structures,
and will be used in Theorem 5.4.19.

Lemma 5.2.6. Let A be a pointed type with a binary operation µ, a symmetry σa,b : µ(a, b) =
µ(b, a) for every a, b : A such that σpt,pt = refl, and a left unit law µl : µ(pt,−) = idA. Then
A becomes an abelian H-space with the right unit law induced by symmetry.

Proof. For b : A, the right unit law is given by the path σb,pt � µl(b) of type µ(b, pt) = b. For
coherence we need to show that the following triangle commutes:

µ(pt, pt) µ(pt, pt)

pt .
µl

σpt,pt

µl

By our assumption that σpt,pt = refl, the triangle is filled reflµl . □

We collect a few basic facts about H-spaces. The following lemma generalizes a result of
Evan Cavallo, who formalized the fact that unpointed homotopies between pointed maps into
a homogeneous type A can be upgraded to pointed homotopies. Being a homogeneous type is
logically equivalent to being a left-invertible H-space [Cav21]. Here we do not need to assume
left-invertibility, and we factor this observation through a further generalization.

Lemma 5.2.7. Let A be a pointed type, and consider the following three conditions:

1. A is an H-space.

102 Chapter 5. Central H-spaces and banded types

2. The evaluation map (idA = idA)→ (pt = pt) sending a homotopy h to hpt has a section.

3. For every pointed type B and pointed maps f , g : B →∗ A, there is a map (f = g) →
(f =∗ g) which upgrades unpointed homotopies to pointed homotopies.

Then (1) implies (2) and (2) implies (3).

Proof. To show that (1) implies (2), suppose that A is an H-space. By Proposition 5.2.2 we
have a pointed section s of ev : (A→ A, idA)→∗ A. The evaluation map in (2) is Ω ev, and has
a (pointed) section Ωs.

We next show that (2) implies (3). Let f , g : B →∗ A be pointed maps and let H : f = g
be an unpointed homotopy. By path induction on H, we can assume we have a single function
f : B → A with two pointings, fpt and f ′pt : f (pt) = pt. Our goal is to define a homotopy
K : f = f such that Kpt = r, where r B fpt · f ′pt : f (pt) = f (pt). By path induction on fpt, we
can assume that the base point of A is f (pt). By (2), we have s : (f (pt) = f (pt))→ (idA = idA)
such that s(p, f (pt)) = p for all p : f (pt) = f (pt). For b : B, define Kb to be s(r, f (b)). Then
Kpt = r, as required. □

The following result is straightforward and has been formalized, so we do not include a
proof.

Proposition 5.2.8. Suppose A is a (left-invertible) H-space. For any pointed type B, the map-
ping type B →∗ A based at the constant map is naturally a (left-invertible) H-space under
pointwise multiplication. Similarly, for any type B, the mapping type B → A based at the
constant map is a (left-invertible) H-space under pointwise multiplication. □

In particular, if A is left-invertible then for any f : B →∗ A there is a self-equivalence of
B→∗ A which sends the constant map to f —namely, the pointwise multiplication by f on the
left.

Another way to produce H-space structures is via the following result:

Proposition 5.2.9. If A is an H-space and A′ is a pointed retract of A, then A′ is an H-space.

Proof. Assume we have s : A′ →∗ A, r : A→∗ A′ and h : r◦s =∗ id. We define a multiplication
on A′ by sending (a, b) : A′ × A′ to r(s(a) · s(b)). The left unit law is the composite path

r(s(pt) · s(b)) r(pt · s(b)) r(s(b)) b ,
apr apµ(−,s(b)) spt apr µl(s(b)) hb

and the right unit law is apr apµ(s(a),−) spt � apr µr(s(a)) � ha. To show coherence, we must show
that these are equal when a ≡ b ≡ pt. By cancelling the common hpt and removing the apr,
we see that it suffices to prove that

apµ(−,s(pt)) spt � µl(s(pt)) = apµ(s(pt),−) spt � µr(s(pt)).

To prove this, we compose both sides with spt on the right, use naturality of µl and µr, coher-
ence, and the naturality of apµ in its two variables. (We can also appeal to Lemma 5.2.4 to
avoid this part of the argument.) □

5.2. H-spaces and evaluation fibrations 103

5.2.2 (α, β)-extensions and Whitehead products
We begin by defining (α, β)-extensions, and then use them to give a different description of the
type of H-space structures on a pointed type A. Then we relate them to Whitehead products,
and use Brunerie’s computation of Whitehead products to rule out H-space structures on even
spheres. To do this, we prove some results about Whitehead products from [Whi46] which
relate to H-spaces. Finally, we also show that for an n-connected H-space, the Freudenthal
map π2n+1(A) → π2n+2(ΣA) is an isomorphism, not just a surjection. None of the results in this
section are used in the rest of the paper.

Definition 5.2.10. Let α : B→∗ A and β : C →∗ A be pointed maps. An (α, β)-extension is a
pointed map f : B×C →∗ A equipped with a pointed homotopy filling the following diagram:

B ∨C A

B ×C .

α∨β

f

Remark 5.2.11. It is equivalent to consider the type of unpointed (α, β)-extensions consisting
of unpointed maps f : B × C → A and unpointed fillers. The additional data in a pointed
extension is a path fpt : f (pt, pt) = pt and a 2-path that determines fpt in terms of the other
data. These form a contractible pair.

When α and β are maps between spheres, Whitehead instead says that f is “of type (α, β)”
but we prefer to stress that we work with a structure and not a property.

We now relate (α, β)-extensions to the following generalization of the map ev. Given a
pointed map f : B →∗ A, we again write ev for the map (B → A, f) →∗ A which evaluates at
pt : B. This map is pointed since f is. Recall that the case where f ≡ idA played a key role in
Proposition 5.2.2.

Definition 5.2.12. Let e : X →∗ A and g : Y →∗ A be pointed maps. A pointed lift of g
through e consists of a pointed map s : Y →∗ X along with a pointed homotopy e ◦ s =∗ g.
When g ≡ id, then we recover the notion of a pointed section of e.

Proposition 5.2.13. Let α : B →∗ A and β : C →∗ A be pointed maps. The type of (α, β)-
extensions is equivalent to the type of pointed lifts of β through ev : (B→ A, α)→∗ A. □

The proof of the statement is a straightforward reshuffling of data along with cancellation
of a contractible pair. Diagrammatically, it gives a correspondence between the dashed arrows
below, with pointed homotopies filling the triangles:

B ∨C A (B→ A, f)

B ×C C A

f∨g

ev

g

Proposition 5.2.14. H-space structures on a pointed type A correspond to (idA, idA)-extensions.

Proof. This follows from Propositions 5.2.2 and 5.2.13. □

104 Chapter 5. Central H-spaces and banded types

Lemma 5.2.15. If A is an H-space, then there is an (α, β)-extension for every pair α : B→∗ A
and β : C →∗ A of pointed maps.

Proof. Using naturality of the left and right unit laws and coherence, one can show that the
map (b, c) 7→ α(b) · β(c) : B × C → A is an (α, β)-extension. Alternatively, observe that the
(α, β)-extension problem factors through the (idA, idA)-extension problem via the map α × β :
B ×C → A × A. □

These results explain the relation between H-space structures and (α, β)-extensions, which
are in turn related to Whitehead products via the next two results. (See [Bru16, Section 3.3]
for the definition of Whitehead products.)

Proposition 5.2.16 ([Whi46, Corollary 3.5]). Let m, n > 0 be natural numbers and consider
two pointed maps α : Sm →∗ A and β : Sn →∗ A. The type of (α, β)-extensions is equivalent to
the type of witnesses that the map [α, β] : Sm+n−1 →∗ A is constant (as a pointed map).

Proof. Consider the diagram of pointed maps below, where the composite of the top two maps
is [α, β] and the left diamond is a pushout of pointed types by [Bru16, Proposition 3.2.2]:

Sm ∨ Sn

Sm+n−1 Sm × Sn A .

1

α∨β

f

An (α, β)-extension is the same as a pointed map f along with a pointed homotopy filling the
top-right triangle. Since the bottom-right triangle is filled by a unique pointed homotopy, an
(α, β)-extension thus corresponds exactly to the data of a filler in the outer diagram, i.e., a
homotopy witnessing that [α, β] is constant as a pointed map. □

With the notation of the previous proposition, we have the following:

Corollary 5.2.17 ([Whi46, Corollary 3.6]). Suppose A is an H-space. Then [α, β] is constant.

Proof. This follows from Lemma 5.2.15 and Proposition 5.2.16. □

Using the above results, we can rule out H-space structures on even spheres in positive
dimensions.

Proposition 5.2.18. The n-sphere merely admits an H-space structure if and only if [ιn, ιn] = 0.
In particular, there are no H-space structures on the n-sphere when n > 0 is even.

Proof. The implication (→) is immediate by Corollary 5.2.17. Conversely, Proposition 5.2.16
implies that [ιn, ιn] = 0 if and only if an (idSn , idSn)-extension merely exists, which by Proposi-
tion 5.2.14 happens if and only if Sn merely admits an H-space structure.

Finally, Brunerie showed that [ιn, ιn] = 2 in π2n−1(Sn) for even n > 0 [Bru16, Proposi-
tion 5.4.4], which by the above implies that Sn cannot admit an H-space structure. □

5.2. H-spaces and evaluation fibrations 105

We also record the following result and a corollary.

Proposition 5.2.19. Let A be a left-invertible H-space. The unit η : A →∗ ΩΣA has a pointed
retraction, given by the connecting map δ : ΩΣA→∗ A associated to the Hopf fibration of A.

Proof. Let δ : ΩΣA →∗ A be the connecting map associated to the Hopf fibration of A. Recall
that for a loop p : N = N, we have δ(p) B p∗(pt) where p∗ : A → A denotes transport and A
is the fibre above N. By definition of the Hopf fibration, a path merid(a) : N =ΣA S sends an
element x of the fibre A to a · x. Now define a homotopy δ ◦ η = id by

δ(η(a)) ≡ δ(merid(a) �merid(pt)−1) = merid(pt)−1
∗ (merid(a)∗(pt)) ≡ pt\(a · pt) = a.

Finally, we promote this to a pointed homotopy using Lemma 5.2.7. □

It follows that for any n-connected H-space A, the Freudenthal map π2n+1(A) → π2n+2(ΣA)
is an isomorphism, not just a surjection. In particular, we have:

Corollary 5.2.20. The natural map π5(S3)→ π6(S4) is an isomorphism. □

The fact that the unit η : A →∗ ΩΣA has a retraction when A is a left-invertible H-space
also follows from James’ reduced product construction, as shown in [Jam55]. Using [Bru16],
one can see that this goes through in homotopy type theory. However, the above argument is
much more elementary. We don’t know if this argument had been observed before.

5.2.3 Evaluation fibrations
We now begin our study of evaluation fibrations and their relation to H-space structures.

Definition 5.2.21. Let A be a type and a : ∥A∥0. The path component of a in A is

A(a) B
∑
a′:A

(|a′|0 = a).

If a : A then we abuse notation and write A(a) for A(|a|0), and in this case A(a) is pointed at
(a, refl).

Definition 5.2.22. For any pointed map α : B →∗ A, the evaluation fibration (at α) is the
pointed map evα : (B→ A)(α) →∗ A induced by evaluating at the base point of B.

Note that the component (B → A)(α) consists of maps that are merely equal to α as un-
pointed maps. Also observe that the component (A → A)(id) is equivalent to (A ≃ A)(id), since
being an equivalence is a property of a map. We permit ourselves to pass freely between the
two.

Since pointed maps out of connected types land in the component of the base point of the
codomain, we have the following consequence of Proposition 5.2.2.

Corollary 5.2.23. Let A be a pointed, connected type. The type of H-space structures on A is
equivalent to the type of pointed sections of evid : (A ≃ A)(id) →∗ A. □

For left-invertible H-spaces, various evaluation fibrations become trivial:

106 Chapter 5. Central H-spaces and banded types

Proposition 5.2.24. Suppose A is a left-invertible H-space. We have a pointed equivalence
over A

(A→ A) (A→∗ A) × A

A ,
ev

∼

pr2

where the mapping spaces are both pointed at their identity maps. This pointed equivalence
restricts to a pointed equivalence (A ≃ A) ≃∗ (A ≃∗ A) × A over A, and a pointed equivalence
(A→ A)(id) ≃∗ (A→∗ A)(id) × A(pt) over A(pt).

Proof. Define e : (A→ A)→ (A→∗ A)×A by e(f) B (a 7→ f (pt)\ f (a), f (pt)) where the first
component is a pointed map in the obvious way. Clearly e is a map over A, and moreover e is
pointed. It is straightforward to check that the triangle above is filled by a pointed homotopy.
(One could also apply Lemma 5.2.7, but a direct inspection suffices in this case.)

Finally, it’s straightforward to check that e has an inverse given by

(g, a) 7→ (x 7→ a · g(x)).

Hence e is an equivalence, as desired. The restrictions to equivalences and path components
follow by functoriality. □

The hypotheses of the proposition are satisfied, for example, by connected H-spaces.

Example 5.2.25. We obtain three pointed equivalences for any abelian group A and n ≥ 1:(
K(A, n)→ K(A, n)

)
≃∗ Ab(A, A) × K(A, n),(

K(A, n) ≃ K(A, n)
)
≃∗ Aut()Ab(A) × K(A, n), and(

K(A, n)→ K(A, n)
)

(id) ≃∗ K(A, n).

Example 5.2.26. Taking A B S3 in the previous proposition, by virtue of the H-space structure
on the 3-sphere constructed in [BR18], we get three pointed equivalences:

(S3 → S3) ≃∗ Ω3S3×S3, (S3 ≃ S3) ≃∗ Ω3
±1S

3×S3, and (S3 ≃ S3)(id) ≃∗ (S3 ≃∗ S
3)(id)×S

3,

where Ω3
±1S

3 B (Ω3S3)(1) ⊔ (Ω3S3)(−1) and 1 and −1 refer to the corresponding elements of
π3(S3) = Z.

By combining our results thus far, we obtain the following equivalence which generalizes
a classical formula of [Cop59, Theorem 5.5A], independently shown by [AC63], for counting
homotopy classes of H-space structures on certain spaces.

Theorem 5.2.27. Let A be a left-invertible H-space. The type HSpace(A) of H-space structures
on A is equivalent to A ∧ A→∗ A.

Proof. By Proposition 5.2.2, the type of H-space structures on A is equivalent to the type of
pointed sections of ev : (A → A) → A. By Proposition 5.2.24, this type is equivalent to
the type of pointed sections of pr2 : (A →∗ A) × A → A, which are simply pointed maps
A→∗ (A→∗ A, id), where the codomain is pointed at the identity. The latter type is equivalent
to A →∗ (A →∗ A), where the codomain is pointed at the constant map, by Proposition 5.2.8.
Finally, this type is equivalent to A ∧ A →∗ A, by the smash–hom adjunction for pointed
types [vDoo18, Theorem 4.3.28]. □

Example 5.2.28. It follows, for example, that HSpace(S1) ≃ 1 and HSpace(S3) ≃ Ω6S3.

5.2. H-spaces and evaluation fibrations 107

5.2.4 Unique H-space structures
We collect results about H-space structures which are unique, in the sense that the type of
H-space structures is contractible. In particular, we give elementary proofs that such H-space
structures are coherently abelian and associative. Moreover, pointed self-maps of such types
are always H-space maps.

There are many examples of types with a unique H-space structure. We will see in Proposi-
tion 5.3.3 that the “central types” we study in the next section have unique H-space structures.
The following proposition is another source of examples, which will be used in Example 5.5.12
and Section 5.5.4.

Proposition 5.2.29. Let k ≥ 0 and let A be an (k − 1)-connected, pointed type. If A is (2k − 1)-
truncated, then A has at most one H-space structure. If A is (2k − 2)-truncated, then A has a
unique H-space structure.

This also appears in [Wär23], with a different argument.

Proof. Assume A is (k−1)-connected and (2k−1)-truncated. By [CS20, Corollary 2.32], A∧A
is (2k− 1)-connected, and therefore A∧A→∗ A is contractible. Therefore, if A has an H-space
structure, then HSpace(A) is contractible, by Theorem 5.2.27.

If we make the stronger assumption that A is (2k − 2)-truncated, then by [BvDR18, Theo-
rem 6.7], A is an infinite loop space, so it is in particular an H-space. □

Now we show that unique H-space structures are particularly well-behaved.

Lemma 5.2.30. Let A be a pointed type and suppose HSpace(A) is contractible. Then the
unique H-space structure µ on A is coherently abelian.

Proof. Since HSpace(A) is contractible, there is an identification µ = µT of H-space structures.
(Here, µT is the twist, defined in Definition 5.2.1.) □

Remark 5.2.31. In fact, a unique H-space structure is coherently abelian in a stronger sense,
which we now explain. The type of H-space structures on A can be given a Z/2-action, fol-
lowing the general procedure of equipping a type X with a G-action by constructing a type
family Y : BG → U equipped with an equivalence Y(pt) ≃ X. To construct the Z/2-action
on HSpace(A) we first need to construct a Z/2-action on the identity type. Recall that BZ/2
can be described as

∑
X:U ∥X = 2∥, where 2 is the two-element type. We define the symmetric

identity type
ĨdA :

∏
X:BZ/2

AX →U

by ĨdA(X, f) :=
∑

a:A
∏

x:X f (x) = a. One can easily check that ĨdA(2, f) ≃ (f (0) = f (1)), so
that the symmetric identity type indeed defines a Z/2-action on the ordinary identity type.

Now we define for any 2-element type X : BZ/2 the type

HSpaceX(A) :=
∑

µ:AX→A

∑
H:unital(µ)

Ĩd(X, x 7→ H(constpt, x, refl)),

108 Chapter 5. Central H-spaces and banded types

where unital(µ) B
∏

f :X→A
∏

x:X
∏

p: f (x)=pt µ(f) = f (σ(x)) asserts that µ satisfies unit laws
in both variables and σ : X → X is the transposition. It is straightforward to check that
HSpace2(A) ≃ HSpace(A). The type of symmetric H-space structures on A is defined to be∏

X:BZ/2

HSpaceX(A),

i.e., the type of fixed points of the Z/2-action on HSpace(A). If HSpace(A) is contractible,
then each HSpaceX(A) is contractible, and so the type of symmetric H-space structures on A
is also contractible. Since σ : 2 → 2 transports an H-space structure µ to µT , it follows that
a symmetric H-space structure is coherently abelian, as in Lemma 5.2.30. Furthermore, by
applying the first projection, we obtain an operation∏

X:BZ/2

AX → A.

Put another way, we obtain an operation(∑
X:BZ/2

AX)→ A

defined on the type of unordered pairs. In other words, unique H-spaces are abelian in a fully
coherent way.

For the next result, we use the definition of the smash product from [vDoo18, Defini-
tion 4.3.6] (see also [CS20, Definition 2.29]) which avoids higher paths. For pointed types
(X, x0) and (Y, y0), the smash product X∧Y is the higher inductive type with point constructors
sm : X×Y → X∧Y and auxl, auxr : X∧Y , and path constructors gluel :

∏
y:Y sm(x0, y) = auxl

and gluer :
∏

x:X sm(x, y0) = auxr. It is pointed by auxl. The smash product was shown to be
associative in [vDoo18, Definition 4.3.33].

Proposition 5.2.32. Suppose A is a pointed type with a unique H-space structure which is left-
invertible. Any pointed map f : A→∗ A is an H-space map, i.e., we have f (a · b) = f (a) · f (b)
for all a, b : A.

Proof. Let f : A →∗ A be a pointed map. We will define an associated map ν : A ∧ A →∗ A,
which records how f deviates from being an H-space map. We define ν(sm(a, b)) B

(
f (a) ·

f (b)
)
\ f (a · b), ν(auxl) B pt, and ν(auxr) B pt. For b : A, we have a path ν(sm(pt, b)) ≡(

f (pt) · f (b)
)
\ f (pt · b) =

(
pt · f (b)

)
\ f (b) = f (b)\ f (b) = pt, and similarly for the other path

constructor. Since A admits a unique H-space structure, the type A∧ A→∗ A is contractible by
Theorem 5.2.27. Consequently, ν is constant, whence for all a, b : A we have

(
f (a) · f (b)

)
\ f (a ·

b) = pt, and therefore
f (a · b) = f (a) · f (b). □

Remark 5.2.33. Note that when A and B are two pointed types, each with unique H-space
structures, it is not necessarily the case that every pointed map f : A →∗ B is an H-space
map. For example, the squaring operation gives a natural transformation H2(X;Z)→ H4(X;Z)
which is represented by a map K(Z, 2) →∗ K(Z, 4). But since squaring isn’t a homomorphism,
this map isn’t an H-space map.

5.3. Central types 109

Proposition 5.2.34. Suppose A is a pointed type with a unique H-space structure which is
left-invertible. Then the H-space structure is necessarily associative.

Proof. Let a : A. Define a map ν : A∧A→∗ A as follows. Let ν(sm(b, c)) B ((a·b)·c)\(a·(b·c)),
ν(auxl) B pt, and ν(auxr) B pt. For c : A, we have a path

ν(sm(pt, c)) ≡ ((a · pt) · c)\(a · (pt · c)) = (a · c)\(a · c) = pt,

and similarly for the other path constructor. Since A admits a unique H-space structure, the
type A ∧ A →∗ A is contractible by Theorem 5.2.27. Consequently, for each a, the map ν is
constant. It follows that for all a, b, c : A we have ((a · b) · c)\(a · (b · c)) = pt, and therefore

a · (b · c) = (a · b) · c. □

Note that if A∧A→∗ A is contractible, then it follows from the smash-hom adjunction that
A∧n →∗ A is contractible for each n ≥ 2, where A∧n denotes the smash power.

5.3 Central types
In this and the next section we focus on pointed types which we call central. Centrality is
an elementary property with remarkable consequences. For example, in the next section we
will see that every central type is an infinite loop space (Corollary 5.4.20). To show this, we
require a certain amount of theory about central types. We first show that every central type
has a unique H-space structure. When A is already known to be an H-space, we give several
conditions which are equivalent to A being central. From this, it follows that every Eilenberg–
Mac Lane space K(G, n), with G abelian and n ≥ 1, is central. We also prove several other
results which we will need in the next section.

Definition 5.3.1. Let A be a pointed type. The center of A is the type ZA B (A → A)(id),
which comes with a natural map evid : ZA →∗ A (see Definition 5.2.22). If the map evid is an
equivalence, then A is central.

Remark 5.3.2. The terminology “central” comes from higher group theory. Suppose A B BG
is the delooping of an ∞-group G. The center of G is the ∞-group ZG B

∏
x:G (x = x), with

delooping BZG B (BG ≃ BG)(id), which is our ZA.

Central types and H-spaces are connected through evaluation fibrations:

Proposition 5.3.3. Suppose that A is central. Then A admits a unique H-space structure. In
addition, A is connected, so this H-space structure is both left- and right-invertible.

Proof. Since evid is an equivalence, it has a unique section. By Corollary 5.2.23, we deduce
that A has a unique H-space structure µ. It follows from Lemma 5.2.30 that it is coherently
abelian. Finally, the equivalence evid : (A → A)(id) ≃ A implies that A is connected. Then,
since µ(pt,−) and µ(−, pt) are both equal to the identity, it follows that µ is left- and right-
invertible. □

It follows from Proposition 5.2.34 and Lemma 5.2.30 that the unique H-space structure on
a central type is associative and coherently abelian.

110 Chapter 5. Central H-spaces and banded types

Remark 5.3.4. In contrast, the type of non-coherent H-space structures on a central type A is
rarely contractible. We’ll show here that it is equivalent to the loop space ΩA. First consider
the type of binary operations µ : A → (A → A) which merely satisfy the left unit law. This is
equivalent to the type of maps A → (A → A)(id), since A is connected. Such a map µ satisfies
the right unit law if and only if the composite evid ◦µ : A → A is the identity map. In other
words, µ must be a section of the equivalence evid, so there is a contractible type of such µ.

The left unit law says that µ sends pt to id. After post-composing with evid, it therefore
says that it sends pt to id(pt), which equals pt. So the type of left unit laws is pt = pt, i.e.,
the loop space ΩA. Note that we imposed the left unit law both merely and purely, but that
doesn’t change the type. So it follows that the type of all non-coherent H-space structures on a
central type A is ΩA.

We give conditions for an H-space to be central, in which case the H-space structure is the
unique one coming from centrality. For the next two results, write

F B
∑

f :A→∗A

∥ f = id∥

for the fibre of evid : (A→ A)(id) →∗ A over pt : A. Note that the equality f = id is in the type
of unpointed maps A→ A.

Lemma 5.3.5. Suppose that A is an H-space. Then F ≃ (A→∗ A)(id).

Proof. This follows immediately from Lemma 5.2.7. □

Proposition 5.3.6. Let A be a pointed type. Then the following are logically equivalent:

1. A is central;

2. A is a connected H-space and A→∗ A is a set;

3. A is a connected H-space and A ≃∗ A is a set;

4. A is a connected H-space and A→∗ ΩA is contractible;

5. A is a connected H-space and ΣA→∗ A is contractible.

Proof. (1) =⇒ (2): Assume that A is central. Then Proposition 5.3.3 implies that A is a con-
nected H-space. Since A is a left-invertible H-space, so is A→∗ A, by Proposition 5.2.8. There-
fore all components of A →∗ A are equivalent to (A →∗ A)(id), and thus to F by Lemma 5.3.5.
Now, F is contractible since evid is an equivalence, and consequently A →∗ A is a set since all
of its components are contractible.

(2) =⇒ (3): This follows from the fact that A ≃∗ A embeds into A→∗ A.
(3) =⇒ (1): If (A ≃∗ A) is a set, then its component (A→∗ A)(id) is contractible. Therefore

F is contractible, by Lemma 5.3.5. It follows that evid is an equivalence, since A is connected.
Hence A is central.

(3) ⇐⇒ (4): Since A is a left-invertible H-space, so is A →∗ A. The latter is therefore a
set if and only if the component of the constant map is contractible, which is true if and only if
the loop space Ω(A →∗ A) is contractible. Finally, the equivalence Ω(A →∗ A) ≃ (A →∗ ΩA)
shows that this is true if and only if A→∗ ΩA is contractible.

(4) ⇐⇒ (5): This follows from the equivalence (A→∗ ΩA) ≃ (ΣA→∗ A). □

5.3. Central types 111

Corollary 5.3.7. If A is central and A′ is a pointed retract of A, then A′ is central.

Proof. By Proposition 5.2.9, A′ is an H-space. Also note that A′ is connected, as a retract of
the connected type A.

By Proposition 5.3.6, it suffices to show that A′ →∗ ΩA′ is contractible. We do this by
showing that it is a retract of the type A →∗ ΩA, which is contractible by Proposition 5.3.6.
We define a map (A′ →∗ ΩA′) → (A →∗ ΩA) by sending f to (Ωs) f r and a map in the other
direction by sending g to (Ωr)gs. The composite sends f to (Ωr)(Ωs) f rs, which is equal to f
because r ◦ s =∗ id. □

Example 5.3.8. Consider the Eilenberg–Mac Lane space K(G, n) for n ≥ 1 and G an abe-
lian group. It is a pointed, connected type. Since K(G, n) ≃ ΩK(G, n + 1), it is an H-space.
By [BvDR18, Theorem 5.1], K(G, n) ≃∗ K(G, n) is equivalent to the set of automorphisms of
G. It therefore follows from Proposition 5.3.6 that K(G, n) is central. We will see in Proposi-
tion 5.5.9 a more self-contained proof of this result.

Example 5.3.9. Brunerie showed that π4(S3) ≃ Z/2 [Bru16]. Therefore, S4 →∗ S
3 is not

contractible, and so S3 is not central, by Proposition 5.3.6(5). Since this is in the stable range,
it follows that Sn is not central for n ≥ 3. By Corollary 5.3.7, any product Sn×X with X pointed
is not central for n ≥ 3.

Remark 5.3.10. For a pointed type A, we have seen that A being central is logically equivalent
to A being a connected H-space such that A ≃∗ A is a set. It is natural to ask whether the
reverse implication holds without the assumption that A is an H-space. However, this is not the
case. Consider, for example, the pointed, connected type K(G, 1) for a non-abelian group G.
Then K(G, 1) ≃∗ K(G, 1) is equivalent to the set of group automorphisms of G. If K(G, 1) were
central, then G would be twice deloopable, which would contradict G being non-abelian.

Remark 5.3.11. In Remark 5.2.31 we saw that every unique H-space is a symmetric H-space.
In particular, every central H-space is a symmetric H-space, and therefore the binary operation
of a central H-space extends to an operation on unordered pairs

A2

∑
X:BZ/2 AX A .

µ

µ̃

We claim that the binary operation furthermore extends to the type of genuine unordered
pairs [Buc23]. The type GUP(A) of genuine unordered pairs of elements of A is defined
to be the pushout

BZ/2 × A A

∑
X:BZ/2 AX GUP(A) ,

δ

π2

where δ(X, a) := (X, consta). To see that µ̃ extends to the genuine unordered pairs, we have to
show that

µ̃X(consta) = µ(a, a)

112 Chapter 5. Central H-spaces and banded types

for every X : BZ/2 and every a : A. To see this, note that both a 7→ µ̃X(consta) and a 7→ µ(a, a)
are pointed maps A →∗ A. Since A is assumed to be a central H-space, the type A →∗ A is a
set, so the type of pointed homotopies

(a 7→ µ̃X(constA)) =∗ (a 7→ µ(a, a))

is a proposition. Therefore it suffices to construct a pointed homotopy

(a 7→ µ̃2(constA)) =∗ (a 7→ µ(a, a))

We clearly have such a pointed homotopy, since µ̃ is an extension of µ. Note that in this
argument we made essential use of the assumption that A is central. We do not currently know
whether the binary operation of a unique H-space can be extended to the genuine unordered
pairs.

By the previous proposition, the type A →∗ A is a set whenever A is central. Presently we
observe that it is in fact a ring.

Corollary 5.3.12. For any central type A, the set A →∗ A is a ring under pointwise multipli-
cation and function composition.

Proof. It follows from A being a commutative and associative H-space that the set A →∗ A is
an abelian group. The only nontrivial thing we need to show is that function composition is
linear. Let f , g, ϕ : A →∗ A, and consider a : A. By Proposition 5.2.32, ϕ is an H-space map.
Consequently,(

ϕ ◦ (f · g)
)
(a) ≡ ϕ(f (a) · g(a)) = ϕ(f (a)) · ϕ(g(a)) ≡

(
(ϕ ◦ f) · (ϕ ◦ g)

)
(a). □

The following remark gives some insight into the nature of the ring A→∗ A.

Remark 5.3.13. If BG is an ∞-group and X is a pointed type, recall that a bundle over X is
G-principal if it is classified by a map X →∗ BG (see e.g. [Sco20, Def. 2.23] for a formal
definition which easily generalizes to arbitrary ∞-groups). In particular, it is not hard to see
that the Hopf fibration of G (as the loop space of BG) is a G-principal bundle, i.e., classified by
a map ΣG →∗ BG.

In Proposition 5.4.4 we will see that any central type A has a delooping BAut1(A). This
means we have equivalences

(A→∗ A) ≃
(
A→∗ (A ≃ A)(id)

)
≃ (ΣA→∗ BAut1(A)).

Thus we see that A →∗ A is the ring of principal A-bundles over ΣA. The equivalence above
maps the identity id : A→∗ A to the Hopf fibration of A (as a principal A-bundle), meaning the
Hopf fibration is the multiplicative unit from this perspective.

In the remainder of this section we collect various results which are needed later on. The
first result is that “all” of the evaluation fibrations of a central type A are equivalences:

Proposition 5.3.14. Let A be a central type and let f : A →∗ A. The evaluation fibration
ev f : (A→ A)(f) →∗ A is an equivalence, with inverse given by a 7→ a · f (−).

5.4. Bands and torsors 113

Proof. The type A → A is a left-invertible H-space via pointwise multiplication, by Proposi-
tion 5.2.8. So there is an equivalence (A → A)(id) → (A → A)(f) sending g to f · g. Since f is
pointed, we have

ev f (f · g) ≡ (f · g)(pt) ≡ f (pt) · g(pt) = pt · g(pt) = g(pt) = evid(g).

In other words, ev f ◦(f · −) = evid, which shows that ev f is an equivalence. Since f is pointed,
the stated map is a section of ev f , hence is an inverse. □

Corollary 5.3.15. Let A be a central type, let f : A →∗ A, and let g : (A → A)(f). Then for all
a : A, we have g(a) = g(pt) · f (a). □

Any central type has an inversion map, which plays a key role in the next section.

Definition 5.3.16. Suppose that A is central. The inversion map id∗ : A → A sends a to
a∗ B a\pt.

The defining property of a∗ is that a·a∗ = pt. Since A is abelian, we also have a∗ ·a = pt, so
it would have been equivalent to define the inversion to be a 7→ pt/a. Because pt · pt = pt, it
follows that pt∗ = pt, and from commutativity of a central H-space it follows that and a∗∗ = a
for all a. Thus the inversion map id∗ is a pointed self-equivalence of A and an involution.

A curious property is that on the component of id∗, inversion of equivalences is homotopic
to the identity. This comes up in the next section.

Proposition 5.3.17. The map ϕ 7→ ϕ−1 : (A ≃ A)(id∗) → (A ≃ A)(id∗) is homotopic to the identity.

Proof. Let ϕ : (A ≃ A)(id∗). We need to show that ϕ = ϕ−1, or equivalently that ϕ(ϕ(pt)) = pt,
since evid is an equivalence. (Note that ϕ ◦ ϕ : (A ≃ A)(id).) Using Corollary 5.3.15, we have
that

ϕ(ϕ(pt)) = ϕ(pt) · ϕ(pt)∗ = pt. □

5.4 Bands and torsors
We begin in Section 5.4.1 by defining and studying types banded by a central type A, also
called A-bands. We show that the type BAut1(A) of banded types is a delooping of A, that A
has a unique delooping, and that every pointed self-map A→∗ A has a unique delooping.

In Section 5.4.2, we show that BAut1(A) is itself an H-space under a tensoring operation,
from which it follows that it is again a central type. Thus we may iteratively consider banded
types to obtain an infinite loop space structure on A, which is unique. As a special case, taking
A to be K(G, n) for some abelian group G produces a novel description of the infinite loop space
structure on K(G, n), as described in Section 5.5.2.

In Section 5.4.3, we define the type of A-torsors, which we show is equivalent to the type of
A-bands when A is central, thus providing an alternate description of the delooping of A. The
type of A-torsors has been independently studied by David Wärn [Wär23], who has shown that
it is a delooping of A under the weaker assumption that A has a unique H-space structure.

114 Chapter 5. Central H-spaces and banded types

5.4.1 Types banded by a central type
We now study types banded by a central type A. On this type we will construct an H-space
structure, which will be seen to be central.

Definition 5.4.1. For a type A, let BAut1(A) B
∑

X:U ∥A = X∥0. The elements of BAut1(A)
are types which are banded by A or A-bands, for short. We denote A-bands by Xp, where
p : ∥A = X∥0 is the band. The type BAut1(A) is pointed by A|refl|0 .

Given a band p : ∥A = X∥0, we will write p̃ : ∥X ≃ A∥0 for the associated equivalence.

Remark 5.4.2. It’s not hard to see that BAut1(A) is a connected, locally small type—hence
essentially small, by the join construction [Rij17].

The characterization of paths in Σ-types tells us what paths between banded types are.

Lemma 5.4.3. Consider two A-bands Xp and Yq. A path Xp = Yq of A-bands corresponds to a
path e : X = Y between the underlying types making the following triangle of truncated paths
commute:

A

X Y .

p q

|e|0

In other words, there is an equivalence (Xp = Yq) ≃ (X = Y)(p̄ � q). □

For the remainder of this section, let A be a central type. We begin by showing that the type
of A-bands is a delooping of A.

Proposition 5.4.4. We have that ΩBAut1(A) ≃ A.

Proof. We have ΩBAut1(A) ≃ (A = A)(refl) ≃ (A ≃ A)(id) ≃ A, where the first equivalence
makes use of Lemma 5.4.3 and the last equivalence is by centrality. □

Corollary 5.4.5. The unique H-space structure on A is deloopable. □

Note that this gives an independent proof that it is associative (cf. Proposition 5.2.34).

Theorem 5.4.6. The type A has a unique delooping.

Proof. We must show that the type
∑

B (ΩB ≃∗ A) of deloopings of A is contractible, where B
ranges over the universe of pointed, connected types. We will use BAut1(A), with the equiva-
lence ψ from Proposition 5.4.4, as the center of contraction. (More precisely, we use a small
type BA which is equivalent to BAut1(A), along with the naturally associated equivalence
Ω(BA) ≃∗ A, as the center. See Remark 5.4.2. We will suppress this from the rest of the
proof.)

Let B be a delooping of A, i.e., a pointed, connected type with a pointed equivalence ϕ :
ΩB ≃∗ A. Given x : B, consider pt =B x. Since A is connected, B is simply connected.
Therefore, to give a banding on pt =B x, it suffices to do so when x is pt, in which case
we use ϕ. This defines a map f : B → BAut1(A). It is easy to show that the equivalence
ϕ : (pt =B pt) ≃ A is an equivalence of bands, making f into a pointed map.

5.4. Bands and torsors 115

We claim that the following triangle commutes:

ΩB ΩBAut1(A)

A .
ϕ

∼

Ω f

ψ

∼

Let q : pt =B pt. Then (Ω f)(q) is the path associated to the equivalence

A ≃ (pt =B pt) ≃ (pt =B pt) ≃ A.

The first equivalence is ϕ−1 and the last is ϕ, as these give the pointedness of f . The middle
equivalence is the map sending p to p � q. The map ψ comes from the evaluation fibration, so
to compute ψ((Ω f)(q)) we compute what happens to the base point of A. It gets sent to refl,
then q, and then ϕ(q). This shows that the triangle commutes.

It follows that Ω f is an equivalence. Since B and BAut1(A) are connected, f is an equiv-
alence as well. So f and the commutativity of the triangle provide a path from (B, ϕ) to
(BAut1(A), ψ) in the type of deloopings. □

We conclude this section by showing how to deloop maps A→∗ A.

Definition 5.4.7. Given f : A→∗ A, define B f : BAut1(A)→∗ BAut1(A) by

B f (Xp) B (X → A)(f ∗◦ p̃−1),

where f ∗ B f ◦ id∗, and we have used that f ∗ ◦ p̃−1 is well-defined as an element of the set-
truncation. To give a banding of (X → A)(f ∗◦ p̃−1) we may induct on p and use Proposition 5.3.14.
The same argument shows that B f is a pointed map.

Note that f (a∗) = f (a)∗ for any a : A, since f is an H-space map by Proposition 5.2.32, so
there’s no choice involved in this definition.

Let g : BAut1(A)→∗ BAut1(A). Given a loop q : pt = pt, the loop (Ωg)(q) is the composite

pt = g(pt) = g(pt) = pt,

which uses pointedness of g and apg(q). We will identify (pt = pt) with A and then write

Ω′g : A ≃∗ (pt = pt)
Ωg
−−→∗ (pt = pt) ≃∗ A.

Proposition 5.4.8. We have that Ω′B f = f for any f : A→∗ A.

Proof. The following diagram describes how B f acts on a loop p : pt =BAut1(A) pt:

Arefl (A→ A)(f ∗) A

Arefl (A→ A)(f ∗) A

p g7→g◦ p̃−1

∼

∼

116 Chapter 5. Central H-spaces and banded types

Since p̃ is in the component of the identity, Corollary 5.3.15 tells us that p̃(a) = x · a for all
a : A, where x = p̃(pt). So p̃−1(a) = x\a. Then the composite A ≃ A on the right is seen to be

a 7→ ev f ∗

((
a · f ∗(−)

)
◦ p̃−1

)
= ev f ∗

(
a · f ∗

(
x\(−)

))
= a · f (x∗∗) = a · f (x).

The domain Arefl = Arefl is identified with A by sending a path p to p̃(pt), which in this
case is the x above. The codomain (A ≃ A)(id) is identified with A using evid, which sends the
displayed function to pt · f (x), which equals f (x). So we have thatΩB f = f . By Lemma 5.2.7,
they are equal as pointed maps. □

Proposition 5.4.9. We have that BΩ′g = g for any g : BAut1(A)→∗ BAut1(A).

Proof. Given an A-band Xp, we need to show that g(Xp) = (X → A)((Ω′g)∗◦ p̃−1). First we con-
struct a map of the underlying types from left to right. For y : g(Xp), define the map

Gy : X
∼
−→ (pt = Xp) ≃ (Xp = pt)

apg
−−→ (g(Xp) = g(pt)) ≃ (pt = pt) → A,

where the second map is path inversion, and the fourth map uses the trivialization of g(Xp)
associated to y and pointedness of g. The identification pt = g(pt) corresponds to a unique
point y0 : g(pt). To check that Gy lies in the right component, we may induct on p and assume
y ≡ y0, since g(pt) is connected. We then get the map

Gy0 : A
id∗
−−→ A ≃ (pt = pt)

Ωg
−−→ (pt = pt) → A,

since path inversion on (pt = pt) corresponds to inversion on A, and y0 corresponds to the
pointing of g. This map is precisely the definition of (Ω′g)∗, so G lands in the desired compo-
nent.

To check that G defines an equivalence of bands we may again induct on p. We write
ỹ0 : pt ≃ g(pt) for the equivalence associated to the point y0 : g(pt), which is a lift of the
(equivalence associated to the) banding of g(pt). It then suffices to check that the diagram

g(pt) (A→ A)((Ω′g)∗)

pt
ỹ0
−1

G

ev(Ω′g)∗

commutes. Let y : g(pt), which we identify with a trivialization y′ : pt = g(pt). Chasing
through the definition of G and using that apg(refl) = refl, we see that

Gy(pt) = ev(y′ � y0) = ỹ0
−1(y′(pt)) ≡ ỹ0

−1(y),

where ev : (pt = pt) → A is the last map in the definition of Gy, which transports pt along a
path. Thus we see that the triangle above commutes, whence G is an equivalence of bands, as
required. □

Theorem 5.4.10. We have inverse equivalences

Ω′ : (BAut1(A)→∗ BAut1(A)) ≃ (A→∗ A) : B.

In particular, the type BAut1(A)→∗ BAut1(A) is a set.

Proof. Combine Propositions 5.4.8 and 5.4.9. □

5.4. Bands and torsors 117

5.4.2 Tensoring bands
In this section, we will construct an H-space structure on BAut1(A), where we continue to
assume that A is a central type. This H-space structure is interesting in its own right, and also
implies that BAut1(A) is itself central. It that follows that A is an infinite loop space. The tensor
product of banded types is analogous to the classical tensor product of torsors over an abelian
group. An account of the latter is given in Section 5.5.1.

This elementary lemma will come up frequently.

Lemma 5.4.11. Let P : BAut1(A) → U be a set-valued type family. Then
∏

Xp
P(Xp) is

equivalent to P(pt).

Proof. Since each P(Xp) is a set,
∏

Xp
P(Xp) is equivalent to

∏
X:U
∏

p:A=X P(X|p|0). By path
induction, this is equivalent to P(A|refl|0), i.e., P(pt). □

A consequence of the following result is that any pointed A-band is trivial.

Proposition 5.4.12. Let Xp be an A-band. Then there is an equivalence (pt =BAut1(A) Xp)→ X.

Proof. By Lemma 5.4.3, there is an equivalence (pt =BAut1(A) Xp) ≃ (A ≃ X)(p̃). We will show
that evp : (A ≃ X)(p̃) → X is an equivalence. By Lemma 5.4.11, it’s enough to prove this when
Xp ≡ pt, and this holds because A is central. □

We now show that path types between A-bands are themselves banded. This underlies the
main results of this section.

Proposition 5.4.13. Let Xp and Yq be A-bands. The type Xp =BAut1(A) Yq is banded by A.

Proof. We need to construct a band ∥A = (Xp = Yq)∥0. Since the goal is a set, we may induct
on p and q, thus reducing the goal to ∥A = (pt =BAut1(A) pt)∥0. Using that (pt =BAut1(A) pt) ≃
(A ≃ A)(id) and that A is central, we may give the set truncation of the inverse of the evaluation
fibration at idA. □

The following is an immediate corollary of Proposition 5.4.12.

Corollary 5.4.14. For any A-band Xp, the A-band (Xp = Xp) is trivial. □

We next define a tensor product of banded types, using the notion of duals of bands. Write
refl∗ : A = A for the self-identification of A associated to the inversion map id∗ (Defini-
tion 5.3.16) via univalence.

Definition 5.4.15. Let Xp be an A-band. The band p∗ B |refl∗| � p is the dual of p, and the
A-band X∗p B Xp∗ is the dual of Xp.

Since id∗ is an involution, it follows that taking duals defines an involution on BAut1(A),
meaning that X∗∗p = Xp.

Lemma 5.4.16. We have pt = pt∗ in BAut1(A).

Proof. The underlying type of pt∗ is A, which has a base point, so this follows from Proposi-
tion 5.4.12. □

118 Chapter 5. Central H-spaces and banded types

We now show how to tensor types banded by A.

Definition 5.4.17. For Xp, Yq : BAut1(A), define Xp ⊗ Yq B (X∗p = Yq), with the banding from
Proposition 5.4.13.

It follows from Lemma 5.4.3 that the type Xp ⊗ Yq is equivalent to (X = Y)(p∗ � q). Since
taking duals is an involution, we also have identifications

Xp ⊗ Yq ≡ (X∗p = Yq) ≃ (Xp = Y∗q) ≃ (X = Y)(p � q∗).

Moreover, from Corollary 5.4.14, we see that X∗p ⊗ Xp = pt.
Tensoring defines a binary operation on BAut1(A), and we now show that this operation is

symmetric.

Proposition 5.4.18. For any Xp,Yq : BAut1(A), there is a path σ(Xp,Yq) : Xp⊗Yq =BAut1(A) Yq⊗Xp

such that σpt,pt = 1.

Proof. By univalence and the characterization of paths between bands, we begin by giving an
equivalence between the underlying types. The equivalence will be path-inversion, as a map

(X = Y)(p � q∗) −→ (Y = X)(q � p∗).

To see that this is valid it suffices to show that the inversion of p � q∗ is q � p∗. We have:

p � q∗ ≡ p � refl∗ � q = refl∗ � q � p = q � refl∗ � p = q � refl∗ � p ≡ q � p∗,

where we have used associativity of path composition, and that refl∗ = refl∗ by Proposi-
tion 5.3.17.

To prove the transport condition, we may path induct on both p and q which then yields the
following triangle:

(A = A)(refl∗) (A = A)(refl∗)

A .
evrefl∗

p7→p

evrefl∗

Here we are writing evrefl∗ for the composite (A = A)(refl∗) ≃ (A ≃ A)(id∗)
evid∗
−−−→ A. The horizontal

map is given by path-inversion, which is homotopic to the identity by Proposition 5.3.17, hence
the triangle commutes.

Paths between paths between banded types correspond to homotopies between the under-
lying equivalences. Thus σpt,pt = 1 since path-inversion on (A = A)(refl∗) is homotopic to the
identity. □

We now use Lemma 5.2.6 to make BAut1(A) into an H-space.

Theorem 5.4.19. The binary operation ⊗ makes BAut1(A) into an abelian H-space.

Proof. We start by showing the left unit law. Since pt∗ = pt, we instead consider the
goal (pt = Xp) = Xp. An equivalence between the underlying types is given by Proposi-
tion 5.4.12, which after inducting on p clearly respects the bands. Using Proposition 5.4.18
and Lemma 5.2.6, we obtain the desired H-space structure. □

5.4. Bands and torsors 119

Corollary 5.4.20. For a central type A, the type BAut1(A) is again central. Therefore, A is
an infinite loop space, in a unique way. Moreover, every pointed map A →∗ A is infinitely
deloopable, in a unique way.

Proof. That BAut1(A) is central follows from condition (2) of Proposition 5.3.6, using Theo-
rems 5.4.10 and 5.4.19 as inputs. That A is a infinite loop space then follows from Proposi-
tion 5.4.4: writing BAut01(A) B A and BAutn+1

1 (A) B BAut1(BAutn1(A)), we see that BAutn1(A)
is an n-fold delooping of A. The uniqueness follows from Theorem 5.4.6. That every pointed
self-map is infinitely deloopable in a unique way follows by iterating Theorem 5.4.10. □

Note that BAut1(A) is essentially small (Remark 5.4.2), so these deloopings can be taken to
be in the same universe as A.

From Theorem 5.4.19 we deduce another characterization of central types:

Proposition 5.4.21. A pointed, connected type A is central if and only if
∑

X:BAut1(A) X is con-
tractible.

Proof. If A is central, then by the left unit law of Theorem 5.4.19, we have∑
X:BAut1(A)

X ≃
∑

X:BAut1(A)

(pt∗ =BAut1(A) X) ≃ 1.

Conversely, if
∑

X:BAut1(A) X is contractible, then so is its loop space. But the loop space
is equivalent to

∑
f :A→∗A ∥ f = id∥, i.e., the fibre of evid over the base point. Thus evid is an

equivalence, since A is connected. □

5.4.3 Bands and torsors
Let A be a central type. We define a notion of A-torsor which turns out to be equivalent to the
notion of A-band from the previous section. Under our centrality assumption, it follows that
the resulting type of A-torsors is a delooping of A. An equivalent type of A-torsors has been
independently studied by David Wärn [Wär23], who has also shown that it gives a delooping
of A under the weaker hypothesis that A has a unique H-space structure.

Definition 5.4.22. An action of A on a type X is a map α : A × X → X such that α(pt, x) = x
for all x : X. If X has an A-action, we say that it is an A-torsor if it is merely inhabited and
α(−, x) is an equivalence for every x : X. The type of A-torsor structures on a type X is

TA(X) B
∑

α:A×X→X

(α(pt,−) = idX) × ∥X∥−1 ×
∏
x:X

IsEquivα(−, x),

and the type of A-torsors is
∑

X:U TA(X).

Since A is connected, an A-action on X is the same as a pointed map A→∗ (X ≃ X)(id). Nor-
mally one would require at a minimum that this map sends multiplication in A to composition.
We explain in Remark 5.4.28 why our definition suffices.

The condition that α(−, x) is an equivalence for all x is equivalent to requiring that for every
x0, x1 : X, there exists a unique a : A with α(a, x0) = x1. It is also equivalent to saying that
(α, pr2) : A × X → X × X is an equivalence.

For any type X, write ev≃ : (A ≃ X) → X for the evaluation fibration which sends an
equivalence e to e(pt). For a map f , write Sect(f) for the type of (unpointed) sections of f .

120 Chapter 5. Central H-spaces and banded types

Lemma 5.4.23. For any X, we have an equivalence

TA(X) ≃ ∥X∥−1 × Sect(ev≃).

Proof. This is simply a reshuffling of the data. The map from left to right sends a torsor
structure with action α : A × X → X to the map X → (A → X) sending x to α(−, x). By
assumption, this lands in the type of equivalences, and the condition α(pt,−) = idX says that it
is a section. We leave the remaining details to the reader. □

Lemma 5.4.24. Let X be an A-torsor. Then X is connected.

Proof. Since X is merely inhabited and our goal is a proposition, we may assume that we have
x0 : X. Then we have an equivalence α(−, x0) : A → X. A is connected by Proposition 5.3.3,
so it follows that X is. □

Proposition 5.4.25. Let X be an A-torsor. Then X is banded by A.

Proof. Associated to the torsor structure on X is a section X → (A ≃ X) of ev≃. Since X is
0-connected, it lands in a component of A ≃ X. By univalence, this determines a banding of
X. □

Theorem 5.4.26. Let X be a type. There is an equivalence TA(X) ≃ ∥A = X∥0. Therefore, there
is an equivalence between the type of A-torsors and BAut1(A).

Proof. Proposition 5.4.25 gives a map f . We check that the fibres are contractible. Let p :
∥A = X∥0 be a banding of X. An A-torsor structure t on X with f (t) = p consists of a section s
of ev≃ that lands in the component (A ≃ X)(p̃), where p̃ denotes the equivalence associated to
p. But by Proposition 5.4.12, the evaluation fibration (A ≃ X)(p̃) → X is an equivalence, so it
has a unique section. □

Remark 5.4.27. It follows that TA(X) is a set. One can also show this using Corollary 5.4.14
and Proposition 5.3.6.

Remark 5.4.28. Let X be an A-torsor, or equivalently, an A-band. By Corollary 5.4.14, we have
an equivalence e : A ≃ (X ≃ X)(id). Since A has a unique H-space structure, this equivalence is
an equivalence of H-spaces, where the codomain has the H-space structure coming from com-
position. Since A is connected, the A-action on X gives a map α′ : A →∗ (X ≃ X)(id). (In fact,
α′ = e, but we won’t use this fact.) Using the equivalence e, it follows from Theorem 5.4.10
that any map with the same type as α′ is deloopable in a unique way. That is, it has the structure
of a group homomorphism in the sense of higher groups (see [BvDR18]). This explains why
our naive definition of an A-action is correct in this situation.

5.5 Examples and non-examples
We show that the Eilenberg–Mac Lane spaces K(G, n) are central whenever G is abelian and
n > 0, and we use our results to give a self-contained, independent construction of Eilenberg–
Mac Lane spaces. The base case K(G, 1) is discussed in Section 5.5.1 and the other cases
in Section 5.5.2. In Section 5.5.3, we produce examples of products of Eilenberg–Mac Lane

5.5. Examples and non-examples 121

spaces which are central and examples which are not central. At present, we do not know
whether there exist central types which are not products of Eilenberg–Mac Lane spaces. In Sec-
tion 5.5.4, we show that any truncated, central type with just two non-zero homotopy groups,
both of which are finitely presented, is a product of Eilenberg–Mac Lane spaces.

5.5.1 The H-space of G-torsors
Given a group G, we construct the type TG of G-torsors and show that it is a K(G, 1). Specif-
ically, a pointed type X is a K(G, 1) if it is connected and comes equipped with a pointed
equivalence ΩX ≃∗ G which sends composition of loops to multiplication in G. (We always
point ΩX at refl.) Another account of this fact may be found in [Bez+23, Section 4.9].

When G is abelian, we can tensor G-torsors to obtain an H-space structure on TG which
is analogous to the tensor product of bands of Theorem 5.4.19. These constructions are all
classical and we therefore omit some details.

Definition 5.5.1. Let G be a group. A G-set is a set X with a group homomorphism α : G →
Aut(X). If the set X is merely inhabited and the map α(−, x) : G → X is an equivalence for
every x : X, then (X, α) is a G-torsor. We write TG for the type of G-torsors. Given two G-sets
X and Y , we write X →G Y for the set of G-equivariant maps from X to Y , defined in the usual
way.

We may write g · x instead of α(g, x) when no confusion can arise. The following is straight-
forward to check:

Lemma 5.5.2. Let X and Y be G-torsors. We have an equivalence (X =TG Y) ≃ (X →G Y),
natural in X and Y. In particular, a G-equivariant map between G-torsors is automatically an
equivalence. □

Any group G acts on itself by left translation, making G into a G-torsor which constitutes
the base point pt of both TG and the type of G-sets. Since a G-equivariant map pt →G X
is determined by where it sends 1 : G, the map (pt →G X) → X that evaluates at 1 is an
equivalence. It is clear that the type TG is a 1-type, which implies that its loop space is a
group.

Proposition 5.5.3. We have a group isomorphism ΩTG ≃ G.

We only sketch a proof since this is a classical result.

Proof. Since paths between G-torsors correspond to G-equivariant maps, we have equivalences
of sets

(pt =TG pt) ≃ (pt→G pt) ≃ G,

where the second equivalence is given by evaluation at 1. The first equivalence sends path
composition to composition of maps, which reverses the order—i.e., it’s an anti-isomorphism.
The second equivalence evaluates a map at 1 : G. Thus, for ϕ, ψ : pt→G pt we have

ϕ(ψ(1)) = ϕ(ψ(1) · 1) = ψ(1) · ϕ(1),

where · denotes the multiplication in G. In other words, evaluation at 1 is an anti-isomorphism,
meaning the composite (pt =TG pt) ≃ G is an isomorphism of groups. □

122 Chapter 5. Central H-spaces and banded types

The following proposition says that the G-torsors are precisely those G-sets which lie in
the component of the base point.

Proposition 5.5.4. A G-set (X, α) is a G-torsor if and only if there merely exists a G-equivariant
equivalence from pt to X.

Proof. Suppose X is a G-torsor. To produce a mere G-equivariant equivalence pt ≃G X we
may assume we have some x : X, since X is merely inhabited. Then (−) · x : G → X yields an
equivalence which is clearly G-equivariant, as required.

Conversely, assume that there merely exists a G-equivariant equivalence from pt to X.
Since being a G-torsor is a proposition, we may assume we have an actual G-equivariant equiv-
alence. But then we are done since pt is a G-torsor. □

It follows that TG is connected. Thus by Proposition 5.5.3 we deduce:

Corollary 5.5.5. The type TG is a K(G, 1). □

For the remainder of this section, let G be an abelian group.

Proposition 5.5.6. For any two G-torsors S and T , the path type S =TG T is again a G-torsor.

Proof. First we make S =TG T into a G-set. This path type is equivalent to the type S →G T .
Using that G is abelian, it’s easy to check that the map

(g, ϕ) 7−→
(
s 7→ g · ϕ(s)

)
: G × (S →G T) −→ (S →G T)

is well-defined and makes S →G T into a G-set.
To check that the above yields a G-torsor, we may assume that S ≡ pt ≡ T , by the previous

lemma. One can check that Proposition 5.5.3 gives an equivalence of G-sets, where pt→G pt

is equipped with the G-action just described. Thus pt→G pt is a G-torsor, as required. □

In order to describe the tensor product of G-torsors, we first need to define duals.

Definition 5.5.7. Let (X, α) be a G-torsor. The dual X∗ of X is the G-torsor X with action

α∗(g, x) B α(g−1, x).

The tensor product of G-torsors is now defined as X ⊗ Y B (X∗ =TG Y).

Proposition 5.5.8. The tensor product of G-torsors makes TG into an H-space.

Proof. We verify the hypotheses of Lemma 5.2.6. Thus our first goal is to construct a symmetry

σX,Y : (X∗ =TG Y) =TG (Y∗ =TG X).

After identifying paths of G-torsors with G-equivariant equivalences, we may consider the
map which inverts such an equivalence. A short calculation shows that if ϕ : X∗ →G Y is
G-equivariant, then ϕ−1 : Y∗ →G X is again G-equivariant. We need to check that the map

5.5. Examples and non-examples 123

sending ϕ to ϕ−1 is itself G-equivariant, so let ϕ : X∗ →G Y and let g : G. Since the inverse of
g · (−) is g−1 · (−), we have:

(g · ϕ)−1 = ϕ−1(g−1 · (−)) = g · ϕ−1(−),

using that ϕ−1 : Y∗ →G X is G-equivariant. Thus inversion is G-equivariant, yielding the
required symmetry σ.

Now we argue that σpt,pt = refl, or, equivalently, that maps pt∗ →G pt are their own
inverses. Such a map is uniquely determined by where it sends 1 : G, so it suffices to show that
ϕ(ϕ(1)) = 1 for every ϕ : pt∗ →G pt. Fortunately, we have

ϕ(ϕ(1)) = ϕ(ϕ(1) · 1) = ϕ(1)−1 · ϕ(1) = 1.

Lastly, it is straightforward to check that the map (pt∗ →G X) → X which evaluates at
1 : G is G-equivariant, for any G-torsor X. This yields the left unit law for the tensor product
⊗. As such we have fulfilled the hypotheses of Lemma 5.2.6, giving us the desired H-space
structure. □

Using Proposition 5.3.6, one can check that TG is a central H-space.

5.5.2 Eilenberg–Mac Lane spaces
We now use our results to give a new construction of Eilenberg–Mac Lane spaces. For an
abelian group G, recall that a pointed type X is a K(G, 1) if it is connected and there is a
pointed equivalence ΩX ≃∗ G which sends composition of paths to multiplication in G. For
n > 1, a pointed type X is a K(G, n + 1) if it is connected and ΩX is a K(G, n). It follows that
such an X is an n-connected (n + 1)-type with Ωn+1X ≃∗ G as groups.

In the previous section we saw that the type TG of G-torsors is a K(G, 1) and is central
whenever G is abelian. The following proposition may be seen as a higher analog of this fact.

Proposition 5.5.9. Let G be an abelian group and let n > 0. If a type A is a K(G, n) and an
H-space, then A is central and BAut1(A) is a K(G, n + 1) and an H-space.

The fact that BAut1(A) is a K(G, n + 1) also follows from [Shu14], using the fact that
BAut1(A) is the 1-connected cover of BAut(A).

Proof. Suppose that A is a K(G, n) and an H-space. Then A →∗ ΩA is contractible, since
it is equivalent to ∥A∥n−1 →∗ ΩA, and ∥A∥n−1 is contractible. So Proposition 5.3.6 implies
that A is central. By Proposition 5.4.4, ΩBAut1(A) ≃ A, so BAut1(A) is a K(G, n + 1). By
Theorem 5.4.19, BAut1(A) is also an H-space. □

We can use the previous proposition to define K(G, n) for all n > 0 by induction. For the
base case n ≡ 1 we let K(G, 1) B TG, the type of G-torsors from the previous section. When
G is abelian, we saw that TG is an H-space, which lets us apply the previous proposition.
By induction, we obtain a K(G, n) for all n. Note that this construction produces a K(G, n)
which lives n − 1 universes above the given K(G, 1), but that it is essentially small by the join
construction [Rij17].

124 Chapter 5. Central H-spaces and banded types

5.5.3 Products of Eilenberg–Mac Lane spaces
Here is our first example of a central type that is not an Eilenberg–Mac Lane space.

Example 5.5.10. Let K = K(Z/2, 1) = RP∞ and L = K(Z, 2) = CP∞, and consider A = K × L.
This is a connected H-space, and(

K × L→∗ Ω(K × L)
)
≃
(
K →∗ Ω(K × L)

)
since K = ∥K × L∥1

≃
(
K →∗ ΩL

)
since K is connected

≃
(
Z/2→Ab Z) by [BvDR18, Theorem 5.1]

≃ 1.

So it follows from Proposition 5.3.6(4) that A is central.

On the other hand, not every product of Eilenberg–Mac Lane spaces is central.

Example 5.5.11. Let K = K(Z/2, 1) = RP∞ and L′ = K(Z/2, 2). A calculation like the above
shows that K × L′ →∗ Ω(K × L′) is not contractible, so K × L′ is not central.

As another example, [Cur68, Proposition Ia] shows that K(Z, 1) × K(Z, 2)) (i.e., S1 × CP∞)
has infinitely many distinct H-space structures classically. So it is not central, by Proposi-
tion 5.3.3.

Clearly both of these examples can be generalized to other groups and shifted to higher
dimensions. Moreover, by Corollary 5.3.7, the product of any non-central type with any pointed
type is again not central.

By Proposition 5.3.3, centrality of a type implies that it has a unique H-space structure.
The converse fails, as we now demonstrate. We are grateful to David Wärn for bringing our
attention to this example.

Example 5.5.12. The type A B K(Z, 2)×K(Z, 3) is not central, by a computation similar to the
one in the previous example. However, we note that it admits a unique H-space structure. Since
A is a loop space it admits an H-space structure. Then, by the first claim in Proposition 5.2.29,
with k = 2, we see that type of H-space structures on A is contractible.

5.5.4 Truncated types with two non-zero homotopy groups
All the examples we have of central types so far are generalized Eilenberg–Mac Lane spaces
(GEMs), i.e., products of Eilenberg–Mac Lane spaces. We do not know whether all central
types are GEMs. In this section we rule out a class of potential counterexamples. Specifically,
we show that any truncated central type with only two non-zero homotopy groups, both of
which are finitely presented, is a product of Eilenberg–Mac Lane spaces.

We first show that one can reduce to the stable range. Let X be a (k + 1)-truncated central
type, which is in particular 0-connected. Since X is an infinite loop space, we may consider
an (n − 1)-fold delooping Bn−1X, for any n > k + 1. This is a central, (n − 1)-connected,
(n + k)-truncated, pointed type, and thus represents a stable k-type, i.e., a stable (k + 1)-
group [BvDR18]. If Bn−1X is a GEM, then so is X, so for our goal of ruling out non-GEM,
truncated central types, it suffices to consider stable (k + 1)-groups for k ≥ 1.

Here is the main result of the section.

5.5. Examples and non-examples 125

Theorem 5.5.13. Let X be a truncated central type and let n, k ≥ 1. Suppose that πn(X) and
πn+k(X) are non-trivial groups and that all of the other homotopy groups vanish. Assume that
πn(X) is finitely presented and if k > 1 that πn+k(X) is as well. Then X is merely equivalent to
K(πn(X), n) × K(πn+k(X), n + k).

Proof. Write A B πn(X) and B B πn+k(X). By the argument above, we can assume that
n > k + 1. Since X is truncated and has no other non-trivial homotopy groups, the fibre of the
truncation map X → ∥X∥n ≃ K(A, n) is a K(B, n + k). Since we are in the stable range, we can
deloop the next map in the fibre sequence, so we see that X is the homotopy fibre of a pointed
map c : K(A, n) →∗ K(B, n + k + 1). We will show that c is merely homotopic to the constant
map, which implies that X splits as claimed.

Since X is central, X →∗ ΩX is contractible, so X →∗ ΩiX is connected for all i ≥ 1.
In particular, taking i = k, we get that Hom(A, B) ≃ ∥K(A, n) →∗ K(B, n)∥0 ≃ 0. Since A is
finitely presented and Z is a PID (in the constructive sense), A is merely equivalent to a finite
direct sum of cyclic groups. (See [MRR88, Theorem V.2.3] or [LQ15, Proposition 7.3].) Our
goal is a proposition, so we can assume that A is explicitly given as such a direct sum. Since
Hom(A, B) is trivial and B is non-trivial, we must have that A is finite, with torsion coprime to
the torsion of B. Let r be the cardinality of A. Since X is deloopable, so is c, and in particular,
the square

K(A, n) K(B, n + k + 1)

K(A, n) K(B, n + k + 1)

c

0 r

c

(5.1)

commutes, where we write r for the map induced by multiplication by r on B.
Now we split into cases. First assume that k > 1, which means we also know that B

is finitely presented. Since X →∗ Ωk−1X is connected, we deduce that Hn+1(K(A, n); B) ≃
∥K(A, n) →∗ K(B, n + 1)∥0 ≃ 0. By Theorem 4.2.12, the cohomology group is isomorphic to
Ext1Z(A, B), so the latter must also vanish. It follows that B is finite as well, as Ext1Z(Z/s,Z) ≃
Z/s (see Corollary 3.4.9) and Ext1Z respects direct sums. Since the torsion of A is coprime to
the torsion of B, multiplication by r on B is an isomorphism. Therefore, the right-hand map
in (5.1) is an equivalence. It follows that c is trivial.

Now we consider the case when k = 1. In the square (5.1), we no longer know that the
map on the right is an equivalence. However, it does follow that c factors through the fiber of
r, which we analyze next.

We claim that multiplication by r on B is injective. It suffices to show that the kernel is
trivial. So let b : B be such that rb = 0. Let p be a prime factor of r. Then p((r/p)b) = 0,
so there is a homomorphism A → B which hits (r/p)b. So (r/p)b = 0. Continuing with the
remaining prime factors of r, one eventually gets that b = 0.

Thus we have a short exact sequence

0 −→ B
r
−→ B

q
−→ B/r −→ 0. (5.2)

This gives rise to a fibre sequence

K(B, n + 1)
q
−→ K(B/r, n + 1)

f
−→ K(B, n + 2)

r
−→ K(B, n + 2).

126 Chapter 5. Central H-spaces and banded types

The map c is a composite

K(A, n)
c′
−→ K(B/r, n + 1)

f
−→ K(B, n + 2).

The short exact sequence (5.2) also gives rise to a six-term exact sequence ending in

· · · −→ Ext1Z(A, B) −→ Ext1Z(A, B) −→ Ext1Z(A, B/r) −→ 0.

Constructively, for general A, the sequence would continue with Ext2, but since A is finitely
presented, Ext2Z(A,C) vanishes for all C by Corollary 4.2.36. So the map Ext1Z(A, B) →
Ext1Z(A, B/r) is surjective. Using that maps of degree one are the same as Ext1Z, we can identify
that map with the map

∥K(A, n)→∗ K(B, n + 1)∥0 −→ ∥K(A, n)→∗ K(B/r, n + 1)∥0

induced by q. This means that c′ merely factors through q, and therefore that the composite
c = f ◦ c′ is merely zero. □

Bibliography

[AC63] M. Arkowitz and C. R. Curjel. “On the number of multiplications of an H–space”.
In: Topology 2 (1963), pp. 205–207. doi: 10.1016/0040-9383(63)90003-X.

[AKS15] B. Ahrens, K. Kapulkin, and M. Shulman. “Univalent categories and the Rezk
completion”. In: Math. Structures Comput. Sci. 25.5 (2015), pp. 1010–1039.

[AR01] J. Adámek and J. Rosický. “On sifted colimits and generalized varieties.” In:
Theory Appl. Categ. 2001 (2001), pp. 33–53.

[ARV10] J. Adámek, J. Rosický, and E. M. Vitale. Algebraic Theories: A Categorical Intro-
duction to General Algebra. Cambridge Tracts in Math. Cambridge Univ. Press,
2010.

[Bae34] R. Baer. “Erweiterung von Gruppen und ihren Isomorphismen”. In: Math. Z. 38
(1934), pp. 375–416.

[BCFR23] U. Buchholtz, J. D. Christensen, J. G. T. Flaten, and E. Rijke. Central H-spaces
and banded types. 2023. arXiv: 2301.02636.

[Bez+23] M. Bezem, U. Buchholtz, P. Cagne, B. I. Dundas, and D. R. Grayson. Symmetry.
Commit: bc6c168. Jan. 12, 2023. url: https : / / github . com / UniMath /
SymmetryBook.

[Bla79] A. Blass. “Injectivity, projectivity, and the axiom of choice”. In: Trans. Amer.
Math. Soc. 255 (1979), pp. 31–59.

[Ble17] I. Blechschmidt. “Using the internal language of toposes in algebraic geometry”.
June 2017. url: https://rawgit.com/iblech/internal-methods/master
/notes.pdf.

[Ble18] I. Blechschmidt. Flabby and injective objects in toposes. 2018. arXiv: 1810.
12708v1.

[Bor94] F. Borceux. Handbook of Categorical Algebra. Vol. 1. Encyclopedia Math. Appl.
Cambridge Univ. Press, 1994.

[BR18] U. Buchholtz and E. Rijke. “The Cayley-Dickson construction in homotopy type
theory”. In: High. Struct. 2.1 (2018), pp. 30–41. doi: https://doi.org/10.
21136/HS.2018.02.

[Bru16] G. Brunerie. “On the homotopy groups of spheres in homotopy type theory”. PhD
thesis. Laboratoire J.A. Dieudonné, 2016. arXiv: 1606.05916v1.

127

https://doi.org/10.1016/0040-9383(63)90003-X
https://arxiv.org/abs/2301.02636
https://github.com/UniMath/SymmetryBook
https://github.com/UniMath/SymmetryBook
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://rawgit.com/iblech/internal-methods/master/notes.pdf
https://arxiv.org/abs/1810.12708v1
https://arxiv.org/abs/1810.12708v1
https://doi.org/https://doi.org/10.21136/HS.2018.02
https://doi.org/https://doi.org/10.21136/HS.2018.02
https://arxiv.org/abs/1606.05916v1

128 BIBLIOGRAPHY

[Buc19] U. Buchholtz. Non-abelian cohomology (Groups, torsors, gerbes, bands & all
that). Invited talk at the workshop Geometry in Modal Homotopy Type Theory,
Carnegie Mellon University. 2019. url: https://youtu.be/eB6HwGLASJI.

[Buc23] U. Buchholtz. Unordered pairs in homotopy type theory. Preprint. 2023. url:
https://ulrikbuchholtz.dk/pairs.pdf.

[Buc55] D. A. Buchsbaum. “Exact categories and duality”. In: Trans. Amer. Math. Soc. 80
(1955), pp. 1–34.

[Buc60] David A. Buchsbaum. “Satellites and Universal Functors”. In: Ann. of Math. 71
(1960), p. 199.

[BvDR18] U. Buchholtz, F. van Doorn, and E. Rijke. “Higher groups in homotopy type
theory”. In: Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS ’18. Oxford, United Kingdom: ACM, 2018, pp. 205–
214. isbn: 978-1-4503-5583-4. doi: 10.1145/3209108.3209150.

[Cav21] E. Cavallo. Pointed functions into a homogeneous type are equal as soon as they
are equal as unpointed functions. Agda formalization, part of the cubical library.
2021. url: https://agda.github.io/cubical/Cubical.Foundations.
Pointed.Homogeneous.html#1616.

[CE56] H. Cartan and S. Eilenberg. Homological algebra. Princeton, N. J.: Princeton
Univ. Press, 1956, pp. xv+390.

[CF23] J. Daniel Christensen and Jarl G. Taxerås Flaten. Ext groups in Homotopy Type
Theory. 2023. arXiv: 2305.09639.

[CH] The Coq HoTT library. url: https://github.com/HoTT/Coq-HoTT.

[Chr21] J. D. Christensen. Non-accessible localizations. 2021. arXiv: 2109.06670v1.

[CL20] A. Campbell and E. Lanari. “On truncated quasi-categories”. In: Cahiers Topol.
Géom. Différ. Catég. 61.2 (2020), pp. 154–207.

[Cop59] A. H. Copeland. “Binary operations on sets of mapping classes.” In: Michigan
Math. J. 6 (1959), pp. 7–23. url: http://projecteuclid.org/euclid.mmj/
1028998133.

[CS07] T. Coquand and A. Spiwack. “Towards Constructive Homological Algebra in
Type Theory”. In: Towards Mechanized Mathematical Assistants. Ed. by M. Kauers,
M. Kerber, R. Miner, and W. Windsteiger. Springer Berlin Heidelberg, 2007,
pp. 40–54.

[CS20] J. D. Christensen and L. Scoccola. The Hurewicz theorem in homotopy type the-
ory. To appear in Algebraic & Geometric Topology. 2020. arXiv: 2007.05833v2.

[Cur68] C. R. Curjel. “On the H-space structures of finite complexes”. In: Comment.
Math. Helv. 43 (1968), pp. 1–17. doi: 10.1007/BF02564376.

[dBB20] M. de Boer and G. Brunerie. Agda formalization of the initiality conjecture. 2020.
url: https://github.com/guillaumebrunerie/initiality.

https://youtu.be/eB6HwGLASJI
https://ulrikbuchholtz.dk/pairs.pdf
https://doi.org/10.1145/3209108.3209150
https://agda.github.io/cubical/Cubical.Foundations.Pointed.Homogeneous.html#1616
https://agda.github.io/cubical/Cubical.Foundations.Pointed.Homogeneous.html#1616
https://arxiv.org/abs/2305.09639
https://github.com/HoTT/Coq-HoTT
https://arxiv.org/abs/2109.06670v1
http://projecteuclid.org/euclid.mmj/1028998133
http://projecteuclid.org/euclid.mmj/1028998133
https://arxiv.org/abs/2007.05833v2
https://doi.org/10.1007/BF02564376
https://github.com/guillaumebrunerie/initiality

BIBLIOGRAPHY 129

[dBoe20] M. de Boer. “A proof and formalization of the initiality conjecture of dependent
type theory”. Licentiate thesis. 2020. url: https://urn.kb.se/resolve?
urn=urn:nbn:se:su:diva-181640.

[Fla23a] J. G. T. Flaten. Formalising Yoneda Ext in univalent foundations. Accepted to ITP
2023. 2023. arXiv: 2302.12678v1.

[Fla23b] Jarl G. Taxerås Flaten. “Univalent categories of modules”. In: Mathematical Struc-
tures in Computer Science (2023), pp. 1–28. doi: 10.1017/S096012952300017
8.

[Gro57] A. Grothendieck. “Sur quelques points d’algèbre homologique, I”. In: Tohoku
Math. J. 9 (1957), pp. 119–221.

[GV83a] R. Guitart and L. Van den Bril. “Calcul des satellites et présentations des bimod-
ules à l’aide des carrés exacts”. fr. In: Cahiers Topol. Géom. Différ. Catég. 24.3
(1983), pp. 299–330.

[GV83b] R. Guitart and L. Van den Bril. “Calcul des satellites et présentations des bimod-
ules à l’aide des carrés exacts (2e partie)”. In: Cahiers Topol. Géom. Différ. Catég.
24.4 (1983), pp. 333–369.

[Har77] R. Hartshorne. Algebraic geometry. Springer, 1977.

[Har81] R. Harting. “Locally injective G-sheaves of abelian groups”. In: 22.2 (1981),
pp. 115–122.

[Har82] R. Harting. “Internal coproduct of abelian groups in an elementary topos”. In:
Comm. Algebra 10.11 (1982), pp. 1173–1237.

[Har83a] R. Harting. “Abelian groups in a topos: injectives and injective effacements”. In:
J. Pure Appl. Algebra 30.3 (1983), pp. 247–260. issn: 0022-4049.

[Har83b] R. Harting. “Locally injective abelian groups in a topos”. In: Comm. Algebra 11
(1983), pp. 349–376.

[Jam55] I. M. James. “Reduced product spaces”. In: Ann. of Math. (2) 62 (1955), pp. 170–
197. doi: 10.2307/2007107.

[Jam57] I. M. James. “Multiplication on spheres. II”. In: Trans. Amer. Math. Soc. 84
(1957), pp. 545–558.

[Joh77] P. T. Johnstone. Topos theory. L.M.S. Math. Monogr. 10. Academic Press, New
York, 1977.

[JW78] P. T. Johnstone and G. C. Wraith. “Algebraic theories in toposes”. In: Indexed
Categories and Their Applications. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1978, pp. 141–242.

[KECA17] N. Kraus, M. Escardó, T. Coquand, and T. Altenkirch. “Notions of Anonymous
Existence in Martin-Löf Type Theory”. In: Log. Methods Comput. Sci. Volume
13, Issue 1 (Mar. 2017). doi: 10.23638/LMCS-13(1:15)2017. url: https:
//lmcs.episciences.org/3217.

[KL18] K. Kapulkin and P. LeFanu Lumsdaine. “The homotopy theory of type theories”.
In: Adv. Math. 338 (2018), pp. 1–38. doi: 10.1016/j.aim.2018.08.003.

https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-181640
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-181640
https://arxiv.org/abs/2302.12678v1
https://doi.org/10.1017/S0960129523000178
https://doi.org/10.1017/S0960129523000178
https://doi.org/10.2307/2007107
https://doi.org/10.23638/LMCS-13(1:15)2017
https://lmcs.episciences.org/3217
https://lmcs.episciences.org/3217
https://doi.org/10.1016/j.aim.2018.08.003

130 BIBLIOGRAPHY

[KL21] K. Kapulkin and P. LeFanu Lumsdaine. “The simplicial model of Univalent Foun-
dations (after Voevodsky)”. In: J. Eur. Math. Soc. 23 (6 2021), pp. 2071–2126.

[KS06] M. Kashiwara and P. Schapira. Categories and Sheaves. Vol. 332. Springer-Verlag
Berlin Heidelberg, 2006.

[LLM23] T. Lamiaux, A. Ljungström, and A. Mörtberg. “Computing Cohomology Rings
in Cubical Agda”. In: Proceedings of the 12th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs. ACM, Jan. 2023. doi: 10 . 1145 /
3573105.3575677.

[LQ15] H. Lombardi and C. Quitté. Commutative algebra: constructive methods. Finite
projective modules. Vol. 20. Algebr. Appl. Translated from the French by Tania
K. Roblot. Springer, Dordrecht, 2015, pp. xlix+996. doi: 10.1007/978-94-
017-9944-7.

[LS20] P. LeFanu Lumsdaine and M. Shulman. “Semantics of higher inductive types”. In:
Math. Proc. Cambridge Philos. Soc. 169.1 (2020), pp. 159–208. doi: 10.1017/
s030500411900015x.

[Lur09] J. Lurie. Higher Topos Theory. Princeton Univ. Press, 2009.

[Mac63] S. Mac Lane. Homology. Springer, 1963.

[Mar21] L. Martini. Yoneda’s lemma for internal higher categories. 2021. arXiv: 2103.
17141v2.

[mathlib] The mathlib Community. “The Lean Mathematical Library”. In: Proceedings
of the 9th ACM SIGPLAN International Conference on Certified Programs and
Proofs. CPP 2020. New York, NY, USA: Association for Computing Machinery,
2020, pp. 367–381.

[Mit65] B. Mitchell. Theory of categories. Academic Press, 1965.

[MRR88] R. Mines, F. Richman, and W. Ruitenburg. A course in constructive algebra. Uni-
versitext. Springer-Verlag, New York, 1988, pp. xii+344. doi: 10.1007/978-1-
4419-8640-5.

[Mye20] D. J. Myers. “Higher Schreier Theory”. Slides from the HoTTEST Conference of
2020. url: http://davidjaz.com/Talks/DJM_HoTT2020.pdf.

[NSS14] T. Nikolaus, U. Schreiber, and D. Stevenson. “Principal ∞-bundles: general the-
ory”. In: J. Homotopy Relat. Struct. 10.4 (June 2014), pp. 749–801. issn: 1512-
2891. doi: 10.1007/s40062-014-0083-6.

[Ras18] N. Rasekh. Complete Segal Objects. 2018. arXiv: 1805.03561v1.

[Ras21] N. Rasekh. Univalence in Higher Category Theory. 2021. arXiv: 2103.12762v2.

[Ras22] N. Rasekh. A Theory of Elementary Higher Toposes. 2022. arXiv: 1805.03805v
3.

[Ret86] V. S. Retakh. “Homotopic properties of categories of extensions”. In: Russian
Math. Surveys 41.6 (Dec. 1986), pp. 217–218.

https://doi.org/10.1145/3573105.3575677
https://doi.org/10.1145/3573105.3575677
https://doi.org/10.1007/978-94-017-9944-7
https://doi.org/10.1007/978-94-017-9944-7
https://doi.org/10.1017/s030500411900015x
https://doi.org/10.1017/s030500411900015x
https://arxiv.org/abs/2103.17141v2
https://arxiv.org/abs/2103.17141v2
https://doi.org/10.1007/978-1-4419-8640-5
https://doi.org/10.1007/978-1-4419-8640-5
http://davidjaz.com/Talks/DJM_HoTT2020.pdf
https://doi.org/10.1007/s40062-014-0083-6
https://arxiv.org/abs/1805.03561v1
https://arxiv.org/abs/2103.12762v2
https://arxiv.org/abs/1805.03805v3
https://arxiv.org/abs/1805.03805v3

BIBLIOGRAPHY 131

[Rez01] C. Rezk. “A model for the homotopy theory of homotopy theory”. In: Trans.
Amer. Math. Soc. 353 (2001), pp. 973–1007.

[Rij17] E. Rijke. The join construction. 2017. arXiv: 1701.07538v1.

[Rij23] E. Rijke. Introduction to Homotopy Type Theory. To appear. Cambridge Univ.
Press, 2023.

[RV22] E. Riehl and D. Verity. Elements of ∞-Category Theory. Cambridge Stud. Adv.
Math. Cambridge Univ. Press, 2022.

[Sco20] L. Scoccola. “Nilpotent types and fracture squares in homotopy type theory”.
In: Math. Structures Comput. Sci. 30.5 (2020), pp. 511–544. doi: 10 . 1017 /
s0960129520000146.

[Shu14] M. Shulman. “Fibrations with fiber an Eilenberg-MacLane space”. Blog post at
homotopytypetheory.org. 2014. url: https://homotopytypetheory.org/
2014/06/30/fibrations-with-em-fiber/.

[Shu15] M. Shulman. “Univalence for inverse diagrams and homotopy canonicity”. In:
25.5 (2015), pp. 1203–1277.

[Shu17] M. Shulman. Elementary (∞, 1)-Topoi. 2017. url: https://golem.ph.ut
exas . edu / category / 2017 / 04 / elementary _ 1topoi . html (visited on
02/10/2022).

[Shu19] M. Shulman. All (∞, 1)-toposes have strict univalent universes. 2019. arXiv: 190
4.07004.

[Sim13] Alex Simpson. Pullback-stability of internally projective objects. MathOverflow.
Version dated 2013-08-23. 2013. url: https://mathoverflow.net/q/14026
2.

[Sta23] The Stacks project authors. The Stacks project. https://stacks.math.colum
bia.edu. 2023.

[Ste23] R. Stenzel. On notions of compactness, object classifiers and weak Tarski uni-
verses. To appear in Math. Structures Comput. Sci. 2023. arXiv: 1911.01895v3.

[Tav85] J. Tavakoli. “On products of modules in a topos”. In: J. Aust. Math. Soc. 38
(1985), pp. 416–420.

[Uni13] Univalent Foundations Program. Homotopy type theory: Univalent foundations
of mathematics. Institute for Advanced Study: http://homotopytypetheory.
org/book/, 2013.

[UniMath] V. Voevodsky, B. Ahrens, D. Grayson, et al. UniMath — a computer-checked
library of univalent mathematics. available at https://unimath.org.

[vDoo18] F. van Doorn. “On the formalization of higher inductive types and synthetic ho-
motopy theory”. PhD thesis. Carnegie Mellon University, 2018. arXiv: 1808.
10690v1.

[Ver19] M. Vergura. Localization theory in an∞-topos. 2019. arXiv: 1907.03836.

https://arxiv.org/abs/1701.07538v1
https://doi.org/10.1017/s0960129520000146
https://doi.org/10.1017/s0960129520000146
https://homotopytypetheory.org/2014/06/30/fibrations-with-em-fiber/
https://homotopytypetheory.org/2014/06/30/fibrations-with-em-fiber/
https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html
https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html
https://arxiv.org/abs/1904.07004
https://arxiv.org/abs/1904.07004
https://mathoverflow.net/q/140262
https://mathoverflow.net/q/140262
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu
https://arxiv.org/abs/1911.01895v3
http://homotopytypetheory.org/book/
http://homotopytypetheory.org/book/
https://unimath.org
https://arxiv.org/abs/1808.10690v1
https://arxiv.org/abs/1808.10690v1
https://arxiv.org/abs/1907.03836

132 BIBLIOGRAPHY

[Wär23] D. Wärn. Eilenberg-MacLane spaces and stabilisation in homotopy type theory.
2023. arXiv: 2301.03685.

[Wei94] C. A. Weibel. An Introduction to Homological Algebra. Cambridge Stud. Adv.
Math. Cambridge Univ. Press, 1994.

[Whi46] G. W. Whitehead. “On products in homotopy groups”. In: Ann. of Math. 47
(1946), pp. 460–475. doi: 10.2307/1969085.

[Wof16] E. Wofsey. Extn as the class of Yoneda extensions of degree n. Mathematics Stack
Exchange. 2016. url: https://math.stackexchange.com/q/1766337.

[Yon54] N. Yoneda. “On the homology theory of modules”. In: J. Fac. Sci. Univ. Tokyo
Sect. I 7 (1954), pp. 193–227.

[Yon60] N. Yoneda. “On Ext and exact sequences”. In: J. Fac. Sci. Univ. Tokyo Sect. I 8
(1960), pp. 507–576.

https://arxiv.org/abs/2301.03685
https://doi.org/10.2307/1969085
https://math.stackexchange.com/q/1766337

Curriculum Vitae

Name: Jarl G. Taxerås Flaten

Education: Ph.D., University of Western Ontario (UWO), 2019–2023.
M.Sc., Norges Teknisk-Naturvitenskapelige Universitet (NTNU), 2017–2019.
B.Sc., École Polytechnique Fédérale de Lausanne (EPFL), 2013–2017.

Publications: 2. Formalising Yoneda Ext in univalent foundations (arXiv:2302.12678),
accepted to ITP 2023.

1. Univalent categories of modules (arXiv:2207.03261),
in Mathematical Structures in Computer Science.

Preprints: 2. Ext groups in homotopy type theory (arXiv:2305.09639),
with Dan Christensen. Submitted.

1. Central H-spaces and banded types (arXiv:2301.02636),
with Ulrik Buchholtz, Dan Christensen, and Egbert Rijke. Submitted.

Selected talks: Central H-spaces and their bands (invited),
Rochester Topology Seminar, University of Rochester, Februrary 2023.

Central H-spaces and banded types,
Homotopy Type Theory Electronic Seminar Talks, November 2022.

Internal Yoneda Ext groups,
Category Theory Octoberfest 2022, October 2022.

The moduli space of H-space structures,
AMS Fall 2022 Eastern Sectional Meeting, October 2022.

Internal injectivity of modules in higher toposes,
ASL 2022 North American Annual Meeting, Cornell University, April 2022.

Internally injective modules in higher toposes,
Logic and higher structures, CIRM, Marseille, February 2022.

Awards: Teaching Assistant award for the academic year 2021/22.

Teaching: Calculus 1000A instructor, Fall 2022.
Teaching Assistant for the HoTTEST Summer School 2022.

133

https://arxiv.org/abs/2302.12678
https://mizar.uwb.edu.pl/ITP2023/
https://arxiv.org/abs/2207.03261
https://doi.org/10.1017/s0960129523000178
https://arxiv.org/abs/2305.09639
https://arxiv.org/abs/2301.02636
https://www.uwo.ca/math/faculty/kapulkin/seminars/hottest.html
https://richardblute.ca/octoberfest-2022/
https://meetings.ams.org/math/fall2022e/meetingapp.cgi/Paper/15482
https://publish.uwo.ca/~jtaxers/asl22.pdf

	Internal Yoneda Ext Groups, Central H-spaces, and Banded Types
	Recommended Citation

	Abstract
	Summary for Lay Audience
	Co-Authorship Statement
	Acknowlegements
	Introduction
	Univalent categories of modules
	Introduction
	Sifted and filtered precategories
	Limits and colimits of sets
	Sifted colimits
	Filtered colimits

	The internal AB axioms
	Grothendieck categories
	Colimits of R-modules
	AB5 implies AB4

	Semantics
	Rezk (1,1)-objects
	The universe of sets
	The universe of R-modules

	Formalising Yoneda Ext in univalent foundations
	Introduction
	Preliminaries
	Homotopy type theory
	The Coq-HoTT library

	Yoneda Ext
	The type of short exact sequences
	Ext as a bifunctor
	The Baer sum

	The pullback fibre sequence
	The long exact sequence
	The type of length-n exact sequences
	The long exact sequence

	Conclusion

	Ext in homotopy type theory
	Introduction
	Ext in HoTT
	The type of short exact sequences
	Classifying extensions and smallness of Ext¹
	The six-term exact sequences
	Higher Ext groups
	Computing Ext via projective resolutions
	Ext of finitely presented modules over (constructive) PIDs
	Ext of ZG-modules

	Ext in an ∞-topos
	The object of short exact sequences
	Comparing various notions of projectivity
	Internal injectivity and sheaf Ext
	Ext over BG

	Central H-spaces and banded types
	Introduction
	H-spaces and evaluation fibrations
	H-space structures
	(α,β)-extensions and Whitehead products
	Evaluation fibrations
	Unique H-space structures

	Central types
	Bands and torsors
	Types banded by a central type
	Tensoring bands
	Bands and torsors

	Examples and non-examples
	The H-space of G-torsors
	Eilenberg–Mac Lane spaces
	Products of Eilenberg–Mac Lane spaces
	Truncated types with two non-zero homotopy groups

	Bibliography
	Curriculum Vitae

