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Abstract 

Pressures to decarbonize the United States’ electricity production, reduce dependence on foreign 

energy imports, and the declining levelized cost of renewable electricity is making wind energy 

an increasingly appealing means of meeting electricity demand in the United States. However, 

the installation of new commercial wind farms to meet this demand requires knowledge of the 

most suitable locations for their installation, which depends on a combination of environmental, 

technical, economic, political, and social characteristics. Wind Farm Site Suitability (WiFSS) 

models are frequently enlisted to assist in this decision-making process in countries around the 

world for both onshore and offshore wind farm siting decisions. However, existing WiFSS 

models serve to assess present-day wind farm siting potential, rather than project specific 

locations for future wind energy development. Taking cues from Socio-Environmental Systems 

(SES) models of urban growth, this dissertation presents a Logistic Regression-Cellular 

Automata (LRCA) model, henceforth referred to as WiFSS-LRCA, conceived to produce maps 

that identify scenarios of potential future locations and timing of future commercial wind farms 

across the Conterminous United States (CONUS) between now and the year 2050.  

Following a review of existing WiFSS modeling approaches, and of common practices by which 

WiFSS modeling studies select and represent their predictors, the niche that WiFSS-LRCA 

serves to fill was consequently identified. The majority of WiFSS studies take a Geographic 

Information Systems-based Multi-Criteria Decision Analysis (GIS-MCDA) approach that 

combines spatial data layers corresponding to selected predictors to construct a composite 

suitability surface. Other common approaches include Non-GIS-MCDA models that rank 

discrete potential wind farm sites to prioritize their order of development, Bayesian Network 

(BN) models that construct and convey probabilistic relationships between predictors, and 
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Logistic Regression (LR) models that perform either spatial or non-spatial assessment of a wind 

farm’s suitability of presence based on the log-odds of a linear combination of predictors. The 

common limitation of these modeling approaches is their lack of a temporal component, meaning 

that they can assess WiFSS only at a single point in time. WiFSS-LRCA fills this niche by 

combining an LR equation with the decision rules of Cellular Automata (CA) to iteratively 

advance the computed probabilities of each grid cell, based on areas constrained from 

development and neighboring grid cells that already contain wind farms. 

WiFSS-LRCA enlists a large set of predictors ranging from wind speed to legislation in effect in 

order for the model to represent the influence that environmental, technical, economic, political, 

and social predictors have on wind farm siting decisions. Data were aggregated at 20 different 

grid cell resolutions, collated in four different predictor configurations, and adjustments to the 

model’s constraint, neighborhood effect, and equation-based scenario transition rules were 

incorporated into the model’s construction, facilitating WiFSS-LRCA’s sensitivity and scenario 

analysis of model outputs by end-users. WiFSS-LRCA incorporates both calibration of its LR 

equation’s predictors and validation of the model’s performance to determine its ability to 

correctly identify the observed locations of present-day wind farms. Subsequently, the model 

constructs a WiFSS map whose interpretation and predictive accuracy are informed by the 

calibration and validation process. Construction of scenarios that modify WiFSS-LRCA’s 

predictors allow for the model to consider the impacts of changes in these predictors on the 

locations of future wind energy development (e.g., new transmission line construction, opinions 

of wind energy improving with time, increasing temperatures due to climate change). 

The ability of WiFSS-LRCA to produce suitability surfaces with verifiable accuracy is greatest 

under the following conditions: when running the model over an individual U.S. state rather than 
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the CONUS, when using a smaller grid cell size, when using a more complete (Full 

configuration) or more refined (Reduced configuration) set of predictors, and when the selected 

study area contains a larger number of present-day commercial wind farms. Across most study 

areas, however, WiFSS-LRCA is typically able to correctly identify 75-85% of grid cells that do 

and do not contain commercial wind farms, with these classifications most often associated with 

high wind speed, proximity to transmission lines, legislation that supports wind energy 

development, and large tracts of undeveloped land. CONUS-level model runs indicate five 

regions as being the most suitable for present wind energy development: Southern California, the 

Pacific Northwest, the Central Plains, the Great Lakes, and the Northeastern United States. 

CONUS-level model runs have a tendency to over(under)-estimate grid cell probabilities within 

(outside) the Central Plains and Great Lakes, which makes state-level model runs useful for 

revealing smaller-scale differences in the probabilities computed within these five broad regions. 

Subsequent iterations of WiFSS-LRCA out to the year 2050 show projected wind energy 

development to remain concentrated within these same regions. Many of the grid cells initially 

classified as false positive in the model’s first iteration are those that gain wind farms in 

subsequent iterations, particularly false positive grid cells that were part of high-probability 

hotspots identified by Getis-Ord statistics. Running WiFSS-LRCA over states outside of these 

five regions projects wind energy development potential in low-probability areas (as shown in 

this dissertation for Florida and Kentucky) with projected wind farms in these states concentrated 

closer to existing infrastructure and away from protected natural areas. The Odds Ratios (ORs) 

computed during WiFSS-LRCA’s initial calibration provide geographical insight into its 

projections, with grid cells characterized by high wind speed, undeveloped land, and ambitious 

Renewable Portfolio Standards (RPS) being the most likely to gain wind farms in future decades. 
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The model’s projections are, however, shown to be sensitive to end-user definitions of 

parameters, with neighborhood effect and constraint definitions greatly affecting the location and 

timing of projected wind farm locations. The scenario setup, by contrast, is shown to mostly 

influence the timing of these projections, with grid cell size moderately affecting both. 

Multiple limitations exist in the application and interpretation of WiFSS-LRCA. Firstly, the lack 

of existing LRCA approaches to assessing wind farm siting potential meant few standards 

existed to guide this model’s development, such as the setting of default constraints and 

establishing cutoff statistics for refining the model’s enlisted predictors. Secondly, the use of an 

LR equation to construct suitability surfaces in the model’s first iteration means that both classes 

of the dependent variable must be filled, requiring a study area to contain at least two 

commercial wind farms, compromising the model’s reliability in runs over the Southeastern 

United States. Finally, the lack of spatial stratification during WiFSS-LRCA’s calibration and 

validation means that the model is trained to recognize predictors associated with wind energy 

development in regions where many wind farms exist, namely the Central Plains and Great 

Lakes, hence the greater number of Type 2 errors in CONUS-level model runs outside of these 

regions. Selecting stratified samples of grid cells that contain wind farms from different parts of 

the CONUS could be incorporated into WiFSS-LRCA to address this bias. Other directions for 

future work with WiFSS-LRCA include the following: optimization to assess offshore wind 

energy development potential by training the model with proposed offshore wind farm sites 

surrounding the CONUS; adapting WiFSS-LRCA to run over multiple states simultaneously to 

identify predictors that influence wind farm siting decisions at regional spatial scales; and 

performing projections of other types decentralized land-use change, such as solar energy 

development given similarities in the required model predictors.
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Chapter 1: Introduction 

1.1. Scope of Dissertation 

Global wind energy capacity expanded greatly in the last decade, increasing from 300 Gigawatts 

(GW) installed in 2013 to 899 GW in 2022 [1]. This expansion has occurred in nations and trade 

blocs across the planet, with 289 GW of wind energy capacity installed in China by 2020 [2], the 

European Union receiving 16.4% of its consumed electricity from wind energy in 2021 [3], and 

the United States similarly reaching 10.2% wind-derived electricity as of 2023 [4]. Future plans 

for continued adoption of renewable energy exist at multiple scales and take multiple forms, such 

as the African Renewable Energy Initiative’s continent-wide 300 GW by 2030 renewable energy 

capacity target [5], New Zealand’s 50% by 2035 renewable energy consumption target [6], and 

corporations like BP and Repsol setting “net-zero” targets by 2050 that explicitly require 

renewable energy development to achieve [7,8].  

Among other processes, pressure to decarbonize electricity generation is arguably the major 

driver of the wind energy sector’s current growth [9]. The lifecycle greenhouse gas emissions of 

wind-derived electricity are lower than those produced by coal or natural gas [10], with Wang et 

al. [11] noting a three-times lower emission intensity for an onshore wind farm compared to a 

coal-fired power plant of equivalent capacity. Wind farms also have lower water demands than 

power plants, since the former do not require water for condensation or fuel processing [12], 

hence wind energy development is often recommended both for sustainability and climate 

change mitigation measures [13,14]. Decision-makers commonly select wind energy when 

seeking to improve energy security, such as small islands that lack a domestic fossil fuel supply 

[15], regions facing geopolitical tension that may necessitate foreign energy imports [16], and 

nations ensuring that energy demands are consistently met [17]. Evidence of a declining 
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Levelized Cost of Electricity (LCOE) for wind energy in many countries [18] suggests onshore 

wind energy is now cost competitive, or even less expensive, than other electricity sources. 

Offshore wind energy is more expensive due to sea depth and transmission line challenges [19], 

though its capital costs continue to fall as larger numbers of high-capacity turbines continue to be 

built [20]. Finally, gradual improvement over time in social and political perceptions of wind 

energy among governments [21], the private sector [22], and the general public [23] reduce the 

likelihood of resistance to future wind energy development. 

These drivers of wind energy development raise the question of where new commercial wind 

farms would be best installed to meet capacity targets and future electricity demands. According 

to Latinopoulos and Kechagia [24], efforts to meet renewable energy capacity targets require 

identifying sites for land development that maximize energy production and minimize land-use 

conflicts [25]. Suitability analysis assists this identification process, defined as: “a process of 

systematically [spatially] identifying or rating potential locations with respect to a particular use” 

[26]. Suitability analysis performed using environmental models simplifies the interconnecting 

processes that influence site identification, thus benefiting understanding of system behavior 

[27]. Kelly et al. [28] note that improved system understanding provided by environmental 

models benefits the decision-making process, in this case decisions of where to build commercial 

wind farms. Wind Farm Site Suitability (WiFSS) models specifically enlist datasets for a 

collection of predictors, with each predictor exerting an influence on the wind farm siting 

process. Besides the most obvious predictor of whether sustained wind speeds are in the optimal 

range for wind energy production [29], other key predictors may include distance to transmission 

lines [30] and levels of public support [31], each of which pose a potential barrier to a location’s 
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wind energy development. All WiFSS models have a goal of combining predictor datasets to 

conduct assessments of where wind farms are best installed. 

Using WiFSS models to inform wind farm siting decisions has advantages beyond strategizing 

pathways toward wind energy capacity targets. Firstly, including predictors such as bird habitat 

ranges and public opinion allows WiFSS models to recommend development in areas less likely 

to face public backlash, which is important given the incidents of high bird mortality rates 

[32,33] and forced cancelations [34,35] of some past wind farm projects. Secondly, due to the 

risk involved in investing into wind energy over established technologies [36], WiFSS models 

are valuable to economists interested in valuing a potential wind farm site’s return on investment. 

WiFSS models incorporate economic concerns in different ways, with some studies adjoining 

equation-based analysis to assess profitability of development sites [37,38] and others instead 

including predictors that represent project costs [39]. Finally, WiFSS models frequently enlist 

Geographic Information Science (GIS) to present their outputs in map form [40], thus providing 

communicable results for informing policymaking efforts [41], as well as educational tools for 

academics and non-experts [42]. Continued growth of the wind energy sector increases pressure 

to construct wind farms in areas that are profitable, socially acceptable, and low in environmental 

impact, needs that WiFSS models are built to address. 

The most common WiFSS models are those that take a Multi-Criteria Decision Analysis 

(MCDA) approach [43], which in a GIS context means combining geospatial datasets 

representing different predictors to construct a composite suitability surface [44]. GIS-MCDA 

approaches to WiFSS have been conducted on every continent except Antarctica [45-50]. Non-

spatial approaches to MCDA (i.e., approaches that do not use GIS) typically collect expert 

opinions about each predictor to rank a small set of discrete wind farm sites [51,52]. However, 
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both GIS and Non-GIS MCDA approaches may (or may not) apply weighting schemes (such as 

the Analytic Hierarchy Process (AHP) [53,54], Best-Worst Method (BWM) [55] or Ordered 

Weighted Averaging (OWA) [56]) to account for each predictor’s relative importance to wind 

farm siting decisions. Machine learning algorithms that are trained and tested to predict potential 

wind farm locations are an alternative to MCDA [57], particularly those based on logistic 

regression equations [58,59]. Logistic regression’s ability to combine discrete and continuous 

data with limited error [60] means easier incorporation of implicitly spatial predictors [61], such 

as demographics and election results, hence their inclusion by Harper et al. [62] and Roddis et al. 

[63] for spatially assessing public acceptance of wind farm projects. Bayesian networks, though 

less commonly used in WiFSS modeling studies, construct joint probability distributions between 

the possible states of each predictor to assess both onshore [64] and offshore [65] WiFSS. 

Although each has a different theoretical basis and results presentation, each WiFSS modeling 

approach specifically assesses current wind farm installation potential. Development of a logistic 

regression-based WiFSS model will be the focus of this dissertation. 

While all WiFSS models present deterministic and/or probabilistic assessments of locations for 

building new wind farms, existing models do not include a temporal component that allows the 

locations most suitable for development first to be dynamically identified. Such capability would 

allow model users to prioritize tracts of land for wind energy development at specific future 

times, rather than selecting among many high-probability locations. A temporally (as well as 

spatially) explicit component would also allow WiFSS models to incorporate scenario-based 

modeling, such as varying a model’s predictors and parameters to account for a range of possible 

future land-use changes [66]. One means of adding a temporal component to land-use change 

models is through iterative updates to the modeled surface, such as by using Cellular Automata 
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(CA) to simulate dynamic spatial interactions by applying transition rules to a model’s gridded 

surface [67]. White and Engelen [68] noted CA to be effective at simulating city- to region-level 

land-use change, specifically urban sprawl, of which multiple published examples exist [69-71]. 

The “neighborhood effect” transition rule of CA allows them to capture cluster-like patterns of 

land-use change over time, a characteristic feature of urban sprawl [72] and one that commercial 

wind farm installations in the Conterminous United States (CONUS) also exhibit [73]. 

Incorporation of CA into a WiFSS model should thus allow specific areas for future wind energy 

development to be prioritized temporally, with this work using the CONUS as a case study.  

1.2. Justification for this Work. 

This dissertation’s objective is to present a model that combines a Logistic Regression (LR) 

equation and CA decision rules to project suitable locations for commercial wind energy 

development across the CONUS out to the year 2050. The LR equation provides the CA’s 

“equation-based” transition rule, which governs the state of all relevant predictors (e.g., wind 

speed, distance to transmission lines, vulnerable species, etc.) within each individual grid cell of 

the CA. Since most published examples of Logistic Regression-Cellular Automata (LRCA) 

modeling are in urban sprawl contexts [74-76], application to nationwide commercial wind farm 

projects represents a much larger spatial scale than existing LRCA applications. The CONUS 

was selected as this work’s case study for three reasons: 

1. The predictors relevant to WiFSS are easily representable thanks to publicly available 

datasets. Plassin et al. [77, p.1] comment that datasets prepared within different 

disciplines and geographical contexts result in inconsistent data formatting and content, 

thus “limit[ing] the study of transboundary socio-environmental systems”. The United 

States’ federal agencies maintain online access to datasets for many of the predictors that 
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affect the wind farm siting process, such as the Energy Information Administration’s 

(EIA) state-averaged electricity costs [78], the United States Geological Survey’s (USGS) 

digital land elevation [79] and land cover type rasters [80], and the United States Census 

Bureau’s county-averaged demographics [81,82]. Consistently formatted and easily 

accessible datasets across such a large spatial domain circumvent the transboundary 

concern, while also enabling WiFSS analysis across the CONUS from local to national 

spatial scales.  

2. Predictors can take wide-ranging values across the CONUS. The CONUS’ size means 

that predictors are seldom constant across the entire study area. For instance, average 

wind speeds tend to be greatest over the Central Plains [83,84], wind energy markets are 

more mature in states such as California and Texas [85,86], and public support for wind 

energy is typically higher in Democrat-leaning states [87,88]. This variability should 

allow a WiFSS model to capture spatial differences in each predictor’s influence on wind 

farm siting decisions. 

3. The United States’ federal government is currently advocating for renewable energy 

development. Recent federal initiatives seek to expand the renewable energy sector. 

Examples include newly enacted capacity targets for offshore wind energy development 

[89], a 30% investment tax credit scheme for commercial [90] and residential [91] 

renewable energy projects, and the Department of Energy’s Wind Vision report detailing a 

strategy to meet 35% of nationwide electricity demand with wind energy by 2050 [92]. 

As such, a WiFSS model that projects suitable wind energy development locations is 

beneficial for strategizing how to realize these targets and to understand the required land 

demands for this development. 
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The first purpose of this work is to demonstrate an LRCA model’s ability to project a range of 

wind farm siting futures that can be explained geographically. LR equations in this context yield 

the probability of dichotomous land-use change taking place, based on a trained and tested 

relationship with the equation’s predictors [93]. Existing WiFSS studies express these 

relationships using Odds Ratios (ORs) [62,94], such that each predictor’s OR communicates the 

association between the predictor and whether a location is projected to gain a commercial wind 

farm. For instance, an OR for wind speed is likely to be greater (i.e., more positively associated) 

when running this LRCA model (henceforth referred to as WiFSS-LRCA) over a state that 

possesses optimal wind speed for wind energy development, suggesting wind speed’s importance 

for wind farm siting decisions. Such interpretation of ORs should be done knowing the 

limitations of weak associations [95] and confounding predictors [96]. The “range” of siting 

futures comes from constructing scenarios by modifying the LR equation’s trained and tested 

relationships and observing the effects on WiFSS-LRCA’s projections. Sohl et al. [97, p.108] 

note that scenario-based modeling should “develop a meaningful understanding of how various 

driving forces that caused landscape change interact with other factors to determine a regional 

outcome”. WiFSS-LRCA simulates said interactions by creating future scenarios (e.g., 

infrastructure development, climate change, changing demographics) that modify the 

relationships of groups of predictors in a similar vein to Yang et al. [98], allowing wind farm 

locations to be projected under multiple potential circumstances. 

This work has a second purpose of showing that LRCA modeling can represent spatial scales and 

processes larger than its more common application to localized land-use change. WiFSS-LRCA 

takes cues from the various urban sprawl examples in the literature, particularly Shu et al.’s [76] 

simulation of observed sprawl in China’s Xuzhou Prefecture, and Mustafa et al. [71] capturing 
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recent urban densification across Southern Belgium. These studies selected an LRCA approach 

specifically for the combination of repeated calibration and simplified spatial dynamics offered 

by the LR and CA components, respectively, advantages similarly noted by Shahbazian et al. 

[99] in their projections of future land cover change across Iran’s Ilam Province. These 

examples, however, enlist grid cells that cover small land tracts or groups of buildings (< 100 

meters across), with grid lattices not exceeding county-level in scale. By contrast, wind turbines 

within the same wind farm can be situated up to kilometers apart due to micrositing limitations 

[100], necessitating larger grid cells and thus “neighborhoods” that cover greater distances than 

in existing LRCA applications. Liao et al. [101] found that the decay effect that neighborhood 

effects represent in CA-based models depends partly on the physical distance between developed 

and undeveloped land units. As such, the appropriateness of applying neighborhood effects to 

wind farm siting on a CONUS-wide scale is addressed in WiFSS-LRCA’s presentation. 

The final purpose of this dissertation is to present a WiFSS model that is ready for immediate use 

by a wide range of audiences, including political decision-makers and non-experts. Increasing 

public skepticism about the production of science makes its communication in accessible terms 

important [102]. Indeed, Grimm et al. [103, p.129] emphasize the value of “linking modelers and 

model users, for example stakeholders, decision makers, and developers of policies” through 

documentation of the model development process. To that end, WiFSS-LRCA’s development 

takes several steps to ensure readiness for end-use, such as aggregation of its predictor datasets at 

multiple grid cell resolutions, construction of multiple scenarios, and documentation that 

instructs users on how to run WiFSS-LRCA for themselves. Uploading model resources to online 

repositories facilitates a culture of no-cost model amendment and application by other scientists 

and stakeholders for their specific purposes [104,105] (see Appendix A1 for GitHub link). As 
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such, WiFSS-LRCA aids decision-making efforts for end-users wishing to perform their own 

experiments on wind farm siting futures across the CONUS, with WiFSS-LRCA’s robustness for 

this purpose being explored throughout this dissertation.  

The following three research questions are posed based on the case study context and the 

purposes of this work, along with the Chapters in which each question is addressed: 

1. Where is Logistic Regression-Cellular Automata situated within the broader scope 

of Wind Farm Site Suitability modeling approaches? Chapter 2 details the outcome of 

a systematic literature review of existing WiFSS studies, highlighting the most common 

modeling approaches and the lack of standardization in predictor selection and 

representation. 

2. What are currently the most suitable locations for present wind energy development 

across the CONUS? After first detailing WiFSS-LRCA’s data selection, training, and 

testing techniques in Chapter 3, Chapter 4 presents outputs from running the model’s LR 

equation across the CONUS and a collection of states, ultimately attesting to LR’s ability 

to capture present commercial wind farm locations. 

3. Which regions of the CONUS (at nationwide and state-level scales) are projected to 

acquire wind farms out to the year 2050, and what geographical features may 

explain these projections? Combination of the LR equation with Cellular Automata to 

illustrate common patterns in projected locations, along with a sensitivity analysis of the 

projections to changes in WiFSS-LRCA’s parameters (grid cell size, neighborhood size, 

constraints, scenario setup) are presented in Chapter 5. Chapter 6 concludes the 

dissertation by discussing implications of WiFSS-LRCA’s outputs, the limitations of the 

overall modeling process, and possible directions for future work. 
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Chapter 2: Background – Summarizing Existing WiFSS Studies. 

2.1. Common Approaches to WiFSS Modeling.  

2.1.1. GIS-Based MCDA. 

Combining GIS and MCDA can be defined as “a process that transforms and combines 

geographical data and value judgments to obtain information for decision making” [61, p.703]. 

According to Cowen [106], GIS explicitly supports problem solving through the integration of 

data with a common spatial component, which MCDA aids by providing the decision making 

framework for solving said problems. Such a broad scope means that GIS-MCDA has been used 

to perform suitability analysis across multiple disciplines and contexts, from bicycle facility 

planning in Wisconsin [107] to identifying high flood risk zones in Iran [108]. Eastman [109] 

notes that the spatial datasets GIS-MCDA combines to construct a suitability surface typically 

take one of two forms: Booleans that constrain locations’ development potential by classifying 

them as either suitable or unsuitable, and predictors whose suitability is evaluated continuously 

in space and often weighted to account for relative importance compared to other predictors. In 

the context of performing WiFSS analysis using GIS-MCDA, example Booleans might be 

limiting land slope to 10% or less due to the relative ease of building wind turbines on flat terrain 

[110], or not allowing wind energy development within 500 meters of cultural monuments [111]. 

Examples of continuous evaluation in space include suitability increasing with proximity to 

transmission lines [112] and in areas with greater average wind speed [49]. Different GIS-MCDA 

approaches to WiFSS often use different predictors, and studies that do use the same predictors 

may enlist them as Boolean constraints and/or for continuous evaluation [40]. However, all GIS-

MCDA approaches have a common objective of layering spatial datasets to construct composite 

suitability surfaces that identify suitable locations for wind energy development. 



11 

Maps that illustrate likelihoods or scores for wind energy development based on combining 

dataset layers are the primary output of a GIS-MCDA approach to WiFSS. Figure 1 shows an 

example of the maps typically produced by GIS-MCDA, taken from Villacreses et al.’s [47] 

study of WiFSS in Ecuador. These maps show the areas unsuitable for development based on 

Boolean constraints (Figure 1a), continuous evaluation in space of nine core predictors (Figure 

1b), and the final suitability surface that combines the weighted predictors and constraints 

(Figure 1c). Since GIS-MCDA is the most common approach for performing WiFSS assessment 

[40], multiple variants have been developed on the overall modeling technique in terms of 

predictor selection, criteria weighting, and results validation, as recent reviews by Rediske et al. 

[113] and Shao et al. [114] have covered. Older approaches generally enlist a smaller set of 

predictors with a more simplistic implementation. One such example is Baban and Parry’s [115] 

2001 study of WiFSS in the United Kingdom, in which all predictors are enlisted as Boolean 

constraints and each predictor’s dataset is weighted based on perceived importance by the model 

developers. By contrast, Elkadeem et al.’s [48] 2021 study of WiFSS in Kenya exhibits 

techniques of more contemporary GIS-MCDA approaches, such as citing previous studies to 

justify Boolean constraints, employing additional techniques to weight predictors for their 

importance (Best Worst Method; BWM [116]), and ranking map locations with the greatest wind 

energy development potential (Technique for Order Preference by Similarity to an Ideal 

Solution; TOPSIS [117]). Techniques like BWM and TOPSIS, and especially the Analytic 

Hierarchy Process (AHP) [118], represent attempts at quantifying aspects of GIS-MCDA that 

involve human decision making, such as using AHP to numerically derive criteria weights for all 

predictors [44] and incorporating fuzzy logic to account for the subjectivity of expert opinions 

when deriving said weights [119]. 
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Figure 1: Example maps produced by a GIS-MCDA approach for assessing wind farm site 

suitability. Figure 1a shows locations in Ecuador identified as (un)suitable for wind energy 

development based on Boolean constraints. Figure 1b shows the continuous evaluation of 

each individual predictor. Figure 1c shows the result of applying four different weighting 

schemes when merging Figure 1b, with the white zones indicating the constrained locations 

from Figure 1a. Source: Villacreses et al. [47]. 
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Gonzalez and Enríquez-de-Salamanca [120] identify several advantages of GIS-MCDA in their 

review of its applications to environmental contexts. These advantages include making suitability 

analysis open to exploration and scenario building, ease of combination of heterogeneous 

datasets, and applicability across multiple geographical contexts and spatial scales. Another cited 

advantage of GIS-MCDA is its readiness for non-expert participation, as done by Mekonnen and 

Gorsevski [42] in their creation of a web-based GIS tool that allows communities to inform 

offshore wind farm siting plans in Lake Erie. Ease of access to publicly available spatial datasets 

means that predictors relevant to WiFSS can be freely depicted in GIS-MCDA models [40]. 

Indeed, González-Ramiro et al. [121] noted the value of free access to GIS-MCDA models based 

on public datasets for decision makers with limited resources. The increasing role that GIS plays 

in informing government policy [122] is well-suited to WiFSS assessment since many GIS-

MCDA studies of renewable energy potential already use current political context to inform their 

research methods. For example, Giamalaki and Tsoutsos [123] use Greece’s sustainable 

development legislation to constrain areas of Crete prohibited from solar energy development. 

Refinement across many existing studies [114], such as expansion of enlisted predictors and 

development of weighting and ranking techniques, has sufficiently prepared GIS-MCDA 

approaches to WiFSS for making a tangible impact on present wind farm siting decisions.   

Several limitations exist in GIS-MCDA’s application, as noted by Gonzalez and Enríquez-de-

Salamanca [120]. These limitations include missing data necessary for key constraints resulting 

in false representations of suitable locations and the loss of information from combining data 

layers to create the composite suitability surface. Another limitation is sensitivity of composite 

surfaces to the weighting and ranking criteria used to construct them, as illustrated by Figure 1c 

[47]. This sensitivity also occurs when comparing separate GIS-MCDA studies of WiFSS over 
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the same study area, such as Li et al. [119] and Xu et al.’s [124] studies of WiFSS in China’s 

Liaodong Peninsula. The former’s combination of fuzzy logic and AHP to derive weights for 

each predictor resulted in a larger region being classified as unsuitable for wind energy 

development. While these weighting and ranking methods are more sophisticated than assuming 

equal importance [115] or assigning arbitrary numbers to each predictor [125], newer methods 

are not immune to subjectivity, since expert opinions are still required for setting predictor 

weights/ranks [126]. Furthermore, discrete predictors like political affiliation and health 

conditions are difficult to include in GIS-MCDA models without explicit spatialization [61] or 

being proxied by a continuous predictor; hence, few examples exist of their inclusion in a WiFSS 

context [58,127]. WiFSS-LRCA provides a solution to the following limitations: (1) the 

calibration of its LR equation’s removes human decision-making from weighting importance of 

predictors [128]; (2) LR equations can combine discrete and continuous predictors with limited 

error by constructing a relationship between the logit of wind farm occurrence and the linear 

combination of predictors [60,93].  

2.1.2. Non-GIS Based MCDA. 

Performing environmental assessment (WiFSS or otherwise) using MCDA does not require 

combination with GIS. According to Huang et al. [129, p.3579], MCDA is used “to discover and 

quantify decision maker and stakeholder considerations about various non-monetary factors in 

order to compare alternative courses of action,” a definition that does not necessitate spatial 

analysis. The objective of applying Non-GIS-MCDA to WiFSS nevertheless remains the same, to 

select suitable locations for wind energy development based on predictors relevant to the wind 

farm siting process [130]. Non-GIS-MCDA and GIS-MCDA indeed share similarities in their 

WiFSS evaluation approaches, such as enlisting a comprehensive predictor set including wind 
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speed, environmental impact, terrain, social acceptability, transportation infrastructure, and many 

others [131]. Non-GIS-MCDA is also compatible with the aforementioned weighting and 

ranking techniques. Examples include Rouyendegh et al. [132] combining fuzzy logic and 

TOPSIS to rank potential wind farm sites in Turkey from most to least suitable, and Wu et al. 

[133] using AHP to obtain criteria weights for predictors in their assessment of the East China 

Sea’s offshore wind potential. There are, however, two key differences when implementing Non-

GIS-MCDA to assess WiFSS, the first being that this approach does not construct composite 

suitability surfaces, instead presenting results as tables that compare discrete wind farm sites 

based on chosen predictors and implemented weighting/ranking schemes [134]. The second 

difference is Non-GIS-MCDA more frequently relies on primary data to inform its predictors, 

with common practice being to enlist academic or industrial expert opinions to identify and rate 

the importance of predictors at each discrete wind farm site [51,135]. 

Figure 2 presents Toklu and Uygun’s [136] general application of Non-GIS-MCDA to WiFSS, 

which uses criteria weights derived from applying AHP (Figure 2a), and data for five predictors 

collected at three hypothetical wind farm sites (Figure 2b), to determine the best site for wind 

energy development. Their approach normalizes the predictor data to produce “information 

content” indices, such that the site possessing the lowest total index is the best for development, 

identified as Loc-B in Figures 2c and 2d. Combining criteria weights and predictor data to rank 

wind farm locations from best to worst has long been the baseline for those that use Non-GIS-

MCDA’s approach to WiFSS assessment. Early examples include Aras et al.’s [137] AHP 

assessment for placing a wind turbine near Osmangazi University’s campus (Turkey), and 

Gamboa and Munda’s [138] evaluation of social predictors and actors that limit wind energy 

development in Catalonia (Spain). As with GIS-MCDA, application of Non-GIS-MCDA has  
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Figure 2: Example results from using a Non-GIS-MCDA modeling approach to assess 

three discrete wind farm sites. From top to bottom are the criteria weights obtained from 

applying AHP (Figure 2a), the predictor data at the three discrete sites (Figure 2b), the 

transformation of predictor data to produce “information content” indices (Figure 2c), 

and the product of multiplying these indices by the criteria weights and the summed 

information content indices for each discrete site (Figure 2d). Source: Toklu and Uygun 

[136]. 
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been refined over time, with the greatest difference in contemporary methods being the technique 

used to obtain the final wind farm site rankings. For instance, Wu et al. [139] use the 

PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations) method 

to rank four potential offshore wind farm sites in China’s Guangdong Province, with this method 

selected for its modification to the initial rank order based on decision-makers’ attitudes toward 

risk factors, such as extreme weather and profitability. By contrast, Wang et al. [52] take the 

TOPSIS approach of computing each predictor’s “distance” from ideal conditions and thus 

determining which of seven candidate locations in Vietnam is closest to these conditions. While 

fewer examples exist of Non-GIS-MCDA’s application to WiFSS compared to GIS-MCDA [40], 

the maturation of applied techniques is similar. 

Since Non-GIS-MCDA requires similar decision-making techniques to GIS-MCDA, it shares 

some of its advantages. For instance, the range of weighting and ranking methods used across 

Non-GIS-MCDA studies enables exploration of which discrete wind farm sites are the most 

suitable under different circumstances, and the geographical study context and scale are only 

limited by where primary data can be collected [120]. Reliance on primary data is an advantage 

of Non-GIS-MCDA. Whereas GIS-MCDA approaches compile secondary spatial datasets to 

construct a suitability surface [140,141], Non-GIS-MCDA approaches typically solicit expert 

opinions from questionnaire responses [130], interviews [138], and focus groups [132] about 

each predictor’s relative importance at each discrete wind farm site. Since “data quality standards 

are [usually] developed from the perspective of data producers” [142, p.4], Non-GIS-MCDA is 

less susceptible to poor data quality than WiFSS modeling approaches that rely on secondary 

data. Furthermore, representing predictors as expert opinions allows Non-GIS-MCDA to 

incorporate predictors that are often elusive to GIS-MCDA approaches to WiFSS. For instance, 
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Fetanat and Khorasaninejad’s [143] study of offshore wind farm site potential in Iran sought 

opinions about commercial feasibility, importance of regulations, and aesthetic pollution, 

predictors that are not explicitly spatial [61] and are thus harder to include in GIS-MCDA 

models. A final advantage of Non-GIS-MCDA is that access to, or a working understanding of, 

GIS software is not required. Education in the use of GIS may be prohibited by high costs and 

lack of software availability [144], particularly in less industrialized nations [145]. A lack of 

prohibitive technologies and costs makes Non-GIS-MCDA a more internationally accessible 

means of performing WiFSS assessment than GIS-based options.   

Non-GIS-MCDA also shares some of GIS-MCDA’s limitations, in particular the sensitivity to the 

weighting and ranking methods selected by model developers, and the loss of information due to 

combining and aggregating data for selected predictors [120]. Without the unifying presentation 

of GIS, Non-GIS-MCDA approaches can vary widely in how they select and represent predictors 

relevant to wind farm siting. Jun et al. [146] use 13 predictors ranging from wind power density 

to traffic conditions to rank seven potential wind/solar hybrid power station sites in China, 

compared to Deveci et al.’s [134] larger set of 23 predictors that explicitly uses existing literature 

to justify predictor selections. Furthermore, the latter study enlists expert opinions to assist in 

setting criteria weights for each predictor, whereas the former does not. The many variants of 

WiFSS assessment using Non-GIS-MCDA, particularly in how predictors are selected and 

represented, makes comparisons between studies difficult [40]. Moreover, as Figure 2 illustrates, 

expressing WiFSS across multiple tables is not as easily interpretable as a suitability map. The 

core result of most GIS-MCDA approaches is a composite suitability surface that illustrates the 

best and worst places for wind energy development [44,49,110]. This synthesis of data into a 

single map facilitates communication of interdisciplinary research findings [147] and gives 
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direction to policymaking efforts [148], primarily due to the increased problem-solving time 

required to interpret several tables [149]. To that end, much like other Logistic Regression-

Cellular Automata modeling studies [76,99], WiFSS-LRCA’s primary output is a map showing 

locations across the CONUS projected to acquire wind farms in the following decades, serving 

as an easily communicable result for decision-makers. 

2.1.3. Bayesian Networks. 

According to Ben-Gal [150, p.1], a Bayesian Network (BN) is a “graphical structure used to 

represent knowledge about an uncertain domain. In particular, each node in the graph represents 

a random variable, while the edges between nodes represent probabilistic dependencies among 

the corresponding random variables.” BNs thus compute and construct statistical relationships 

between variables to predict system behavior based on probabilistic connections between said 

behavior and the system’s individual parts. Aguilera et al. [151] note several reasons for a BN’s 

usefulness for environmental modeling, such as its ability to process uncertainty, its 

accommodation of complex systems, and its openness to participatory modeling that incorporates 

the priorities of experts and stakeholders. Example applications of BNs as an environmental 

model range from predicting chemical toxicity to juvenile fish [152] to determining consistent 

causes of Turkish forest fires [153]. In the context of WiFSS, each “parent” node of a BN 

represents a single predictor, with the “child” node being the binary outcome of whether a 

location is suitable for wind energy development. Figure 3 presents the BN produced by Li et al. 

[65] in their study of offshore wind farm siting potential in the North Sea, with predictors such as 

wind speed, wave height, and distance to roads and electricity grids among the parent nodes. As 

in other BN applications to WiFSS, the probability distribution constructed for each parent node 

conveys the likeliest state(s) of each predictor; data comprising each distribution may be  
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generated using long-term observational records [154] or Monte Carlo simulations [155]. BNs 

accommodate wind farm siting scenarios by modifying parent nodes and observing effects on the 

child node, such as Pınarbaşı et al. [156] observing an increased available area for European 

offshore wind energy development if likelihood of underwater cable construction is increased. 

Despite a BN’s provided insight into how predictors influence each other, they are less 

commonly applied to WiFSS than (Non-)GIS-MCDA approaches. 

Compared to other WiFSS modeling approaches, BNs have several unique advantages. Firstly, 

constructing probabilistic connections between predictors allows BNs to explicitly estimate risk 

in system behavior [157]. Indeed, BNs are frequently employed for environmental risk 

assessment, with Kaikkonen et al. [158, p.63] commenting that the probability distributions of 

each parent node “explicitly address uncertainty in different parts of the analyzed system”, 

Figure 3: An example Bayesian Network for offshore wind farm siting in the North 

Sea. Probability distributions were constructed for each predictor (or “parent” node), 

with all arrows pointing to the likelihood of offshore wind farm site suitability (the 

“child” node). The quantitative data for each parent node were transformed into discrete 

levels. Source: Li et al. [65]. 
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therefore representing risk. In a WiFSS context, BNs may be used to compute risks due to 

interactions between environmental, social, and political predictors [159], such as potential 

backlash due to avian mortalities caused by a new wind farm project. BNs share Non-GIS-

MCDA’s advantage of using expert knowledge to construct predictor datasets, while 

simultaneously handling predictors based on quantitative data [160]. The intent of BNs is to 

depict each parent node as discrete possible states to be taken (as in Figure 3), hence data for 

each predictor are discretized to produce probabilities of each state’s occurrence [161]. Datatypes 

for each predictor, whether expert knowledge or numerical observations, are thus treated equally 

and allow for a wide range of predictors to be included in BN-based WiFSS models. A final 

important advantage is BNs’ ability to illustrate the causal structure between predictors [162]. 

More complex BNs consist of multiple levels of parent nodes, for instance Borunda et al.’s [64] 

BN for onshore wind energy development across Mexico uses “City” as its highest parent node, 

with wind speed and energy consumption nodes at lower levels. Causal structures give BNs the 

“capability to represent the conditional dependence between events” [163, p. 758], allowing the 

binary outcome of wind energy development to be explained based on probabilistic states of 

individual and groups of predictors.  

Among BNs’ limitations is the inconsistent method for discretizing the data of each parent node’s 

probability distribution [157]. Continuous data may be discretized for inclusion in BNs by 

splitting data up into equal-sized quantiles or equal-length intervals [164]. Studies such as Flores 

et al. [165] and Beuzen et al. [166] found that the selected discretization method impacts a BN’s 

predicted outcomes, because of how the method changes the shape of a node’s probability 

distribution. Another limitation of BNs is that the assumed probability distribution for any node 

might not always be appropriate, again compromising the model’s predicted outcomes. A BN’s 
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developer must choose a distribution shape for each node (normal, uniform, multimodal, etc.) 

that reflects each predictor’s true variability [167], a decision made more difficult with less prior 

knowledge (e.g., few wind speed observations) [168]. An inaccurate probability distribution 

means a greater risk of incorrect WiFSS assessment when running scenarios through the 

network. A BN with many nodes and connections can make quantitative validation methods 

difficult. According to Sperotto et al. [169], the various dataset sources and types used to create 

BNs reduces validation to single components of the network, or to qualitative approaches such as 

comparison against BNs in existing literature [170]. A final important limitation is the acyclic 

nature of BNs resulting in a lack of temporal and spatial explicitness [157]. Stritih et al. [171] 

state that even repeatedly running a BN at different points in space and time cannot account for 

interactions between processes at different scales. Integrating BNs with a GIS and producing a 

cyclic network can grant them spatiotemporal explicitness [172], with examples of this in 

existing WiFSS assessments [156]. By contrast, any model using Cellular Automata is inherently 

spatiotemporally explicit [173], meaning that WiFSS-LRCA can capture iterative updates to 

future commercial wind farm locations without additional model components. 

2.1.4. Logistic Regression. 

Logistic Regression models are useful for analyzing events that are “naturally or necessarily 

represented by binary variables” [174, p.67]. A common application of LR models is analyzing 

the probability of dichotomous land-use change, such as residential development [175], urban 

sprawl [176,177], and wind farm installation [58,59]. LR assumes that the logit (or log-odds) of a 

binary dependent variable is a function of the linear combination of a set of independent 

variables [93] (i.e., predictors of WiFSS). Using the logit means that discrete and continuous 

independent variables can be combined with limited error [60], hence published LR applications 
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to WiFSS do enlist discrete variables, such as political affiliation [62] and reported health 

conditions [178]. In the context of environmental modeling, LR is similar to Bayesian Networks 

in that both approaches probabilistically assess the occurrence of an event, such as land-use 

change. However, LR’s applications also resemble GIS-MCDA in their frequent usage to 

construct a suitability surface at a single point in time, as shown in Figure 4, a raster constructed 

by Mann et al. [58] in their LR-based WiFSS assessment of Iowa. Existing LR-based WiFSS 

models often enlist relatively small predictor sets. Stevens et al. [179] assessed the impacts of a 

wind farm project on migratory birds in Texas based on bird populations and wind turbine 

proximity. Foley [59] applied a larger predictor set that enlisted wind power class, household 

income, elevation, and population density in a WiFSS study over Maine. Outside of the United 

States, LR approaches have focused on analyses of social acceptance of individual wind energy 

projects. Examples include surveyed opinions about existing wind farms in Italy’s Apulia Region 

[180] and stakeholder opinions of potential offshore wind farms in Taiwan [181]. Regardless of 

application context, the overall LR approach in environmental contexts is to use a maximum 

likelihood method to estimate the coefficients of each independent variable [182], to then use this 

fitted equation to predict and/or estimate the environmental feature of interest, and then finally to 

validate the equation’s performance based on prediction error rate [183]. 

One of LR’s greatest advantages is its ability to create spatially explicit model outputs. Figure 4 

shows one of many examples of LR being applied to gridded surfaces to construct suitability 

maps, others being Raja et al.’s [184] study of landslide susceptibility in Turkey and Abdel-

Kader’s [185] construction of soil maps in coastal Egypt. This easy translation into a spatially 

explicit context is a key advantage of LR over BN approaches to environmental modeling, with 

predictions by LR models also less likely to be compromised by relying on expert opinions to fill  
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gaps in datasets [186]. However, much like BN-based models, LR can handle predictors based 

on discrete data [187], because the use of a link function (i.e., a logit) allows variables in an LR 

equation to be discrete or continuous and not require normal distributions [188]. Consequently, 

discrete data are often used to represent predictors in LR-based WiFSS models, such as Mueller 

and Brooks [189] including median age among predictors of wind energy’s distributional justice 

in the United States, and Harper et al. [62] using elected officials to represent political climate 

Figure 4: Example of a suitability surface constructed by applying a logistic regression 

equation to a raster surface over the State of Iowa. Each cell is colored based on the 

probability of commercial wind farm existence, and the locations of existing wind 

farms (as of 2012) are shown in green. Source: Mann et al. [58]. 
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during times of wind farm construction across the United Kingdom. While GIS-MCDA can 

handle discrete datasets with a spatial component, such as transmission lines and major roads 

[45], applying non-spatial datasets often results in all pixels of a suitability surface being 

assigned the same value [190]. As such, unless proxying discrete data with a continuous variable, 

e.g., representing aesthetic pollution of offshore wind farms with distance to the shoreline [191], 

GIS-MCDA approaches to WiFSS assessment are less adept at depicting social and political 

predictors than LR equations. LR’s compatibility with constructing suitability surfaces and its 

ability to handle discrete and continuous data were important reasons for the decision to 

construct an LRCA-based WiFSS model for this dissertation. 

An LR equation that incorporates many predictors is vulnerable to overfitting. According to 

Merckx et al. [192, p.590], a model with too many degrees of freedom “will generally have poor 

predictive performance, as it can exaggerate minor fluctuations in the data.” In the case of LR, 

too many predictors increase the number of possible interactions between them, making effects 

of these individual interactions on the dependent variable difficult to distinguish [193], 

particularly when the number of predictors exceeds the number of data points [194]. Another 

limitation of  LR-based modeling approaches is that the basic equation structure cannot account 

for the scale of influence of each individual predictor. This limitation is sometimes circumvented 

with a multi-level LR structure that accounts for the dependence of a cluster of predictors on a 

single, higher-level predictor [93]. For example, Khan and Shaw [195] use a multi-level LR 

equation to predict rates of contraceptive use across Bangladesh by assessing survey responses at 

three levels of increasing spatial scale: individuals, villages, and administrative areas. A third 

limitation is that, like BN and MCDA approaches, LR equations are not temporally explicit, due 

to predictor data representing a single point in time. Temporal explicitness can be realized by 
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rerunning the LR equation given new data in subsequent timeframes, as in Kong et al.’s [196] 

study of fire detection using surveillance videos, though this requires continued refitting of the 

equation’s coefficients. Another option is to integrate Cellular Automata that update grid cell 

states iteratively based on the trained relationships between the LR equation’s predictors and 

each cell’s transition suitability, a process used by Liao et al. [74] and in various LRCA 

simulations of land-use change [71,76,99]. Temporal explicitness by adding CA is what allows 

WiFSS-LRCA to project the specific future times at which grid cells across the CONUS gain 

commercial wind farms. 

2.2. A Systematic Review of Predictor Standardization in WiFSS Modeling Studies. 

Despite the common objectives of the above modeling approaches, i.e., to improve system 

understanding and to inform the decision-making process for siting wind farms [28], these 

approaches vary in their enlisted predictors. Rediske et al. [113] summarized that certain 

predictors are frequently enlisted in such studies, many of which describe physical features (e.g., 

wind speed, distance to roads/transmission lines/urban areas, land type, slope, etc.), though these 

predictors are not all applied to every study. Several reasons explain the exclusion of certain 

predictors, such as their effects on siting decisions being perceived as lower [197], covariance 

with other predictors [198], or if they are simply irrelevant (e.g., ocean depth does not impact 

onshore wind farm siting decisions). Moreover, non-physical predictors (such as project cost 

[199], government policies in effect [200], and demographics [201]) are harder to include in 

GIS-based approaches to WiFSS because of their need to be spatialized [61] for evaluation on a 

continuous domain. However, the use of expert opinions to rank candidate wind farm sites makes 

inclusion of non-physical predictors easier in Non-GIS approaches [51,52]. Predictor selection is 

also contextual; some WiFSS studies, particularly those using GIS-MCDA, are performed to 
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assess wind farm siting potential based only on features of the land itself [47,125]. Conversely, 

other studies situate their analysis within a broader social or economic context, such as wind 

farm project acceptability [202,203] or total project costs [30,204], thereby altering the enlisted 

predictors. In short, although many predictors can be considered relevant to wind farm siting 

decisions, some are incorporated more frequently into WiFSS models than others, and the same 

predictors may be represented in different ways by different studies. 

The growth of WiFSS modeling, evidenced by recent review papers [40,43,113,114], highlights 

the need for model developers to prioritize communication and knowledge sharing and thus to 

ensure the continued refinement and policymaking benefits of these models [41]. Modeling 

collectives from other disciplines, such as the Coupled Model Intercomparison Project [205], 

encourage their participants to utilize a common set of variables and experiments in order to 

standardize climate model performance and facilitate comparisons of different models’ outputs. 

Jakeman et al. [27] note that model building and usage are inherently subjective and benefit from 

standardization. There is consequent value in recommending predictor standards for current and 

future WiFSS model development, especially since predictor selection and representation 

impacts a model’s suitability analysis (e.g., use of predictors as Boolean constraints or 

continuous evaluation criteria., see Section 2.1.1). Published review articles have covered the 

wind farm site selection process [113], application of GIS-MCDA (and Non-GIS-MCDA) to 

siting renewable energy projects [114], and wind energy development’s social [206,207] and 

environmental [12,208] impacts. However, a systematic review of how existing WiFSS studies 

have selected and represented their predictors did not exist prior to this dissertation. The 

remainder of Section 2.2 and Section 2.3 are taken from Wimhurst et al.’s [40] review of this 

very topic, with the following paragraphs detailing the article selection and data collection 
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approaches. Sections 2.2.1 to 2.2.5 present results of a thematic synthesis of these articles. 

Section 2.3 provides recommendations for standardizing predictor selection and representation in 

future WiFSS studies and how this review informed the construction of WiFSS-LRCA. 

This systematic literature review took a thematic synthesis approach that grouped findings into 

five themes [209], allowing for methodical article selection and thus reduction of author bias in 

the review process [210]. Articles were sought about WiFSS models that detail the selection and 

representation of their predictors, from which inconsistencies in how different studies selected 

and represented them could be deduced. Snowballing and a database search via Web of 

Science/Scopus were done to identify articles for this review over the period from March 2022 to 

May 2022. Articles published between January 2000 and May 2022 were sought for the database 

search, ensuring that this review consisted of contemporary articles up to the time of the search 

process. Existing reviews on related topics [43,113,114] took a similar approach when 

identifying potential articles. A modeling approach was not specified for the dataset search (e.g., 

MCDA, BN, LR), because contrasting predictor representation across modeling approaches was 

of interest to this review. Snowballing added to the database search by using the reference lists of 

existing review articles, thus expanding the list of obtained articles for this review [211]. 

Specifically, a “backward snowballing” approach [212] for articles that mentioned WiFSS 

modeling in their titles and/or abstracts was enlisted. The reference lists of two specific review 

articles were used: Rediske et al.’s [113] review of the wind farm site selection process and Shao 

et al.’s [114] review of MCDA applied to renewable energy site selection, both of which are 

relevant to the current topic and were published in high-impact journals.  
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A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) Flow 

Diagram [213] illustrating the refinement of the collected articles is shown in Figure 5. The 

article search identified 206 articles in total, 109 of which came from the database search and 97 

more from snowballing (54 articles from Rediske et al. [113] and 43 from Shao et al. [114]), 27 

of which were duplicates identified by both approaches. The title, abstract, and keywords of the 

179 non-duplicate articles were screened for references to wind energy or suitability analysis. 

This screening removed 39 articles that focused on other sources of energy (e.g., solar, tidal, 

geothermal) or on assessing the suitability of non-energy systems. A full-text assessment of the 

remaining 140 articles sought details about predictors for a suitability analysis and/or techniques 

associated with WiFSS modeling (e.g., MCDA). This full-text assessment removed 20 articles 

that did not specify their predictors, three articles lacking a full-text version (despite requests 

from their authors), and one article not written in English. The PRISMA approach left 116 

articles eligible for inclusion in the systematic review.  

A spreadsheet was created using the articles identified by this systematic review (see Appendix 

A2 for link to Supplementary Material), which compiled each article’s predictors along with 

other relevant information under the column headings described below:  

1) Year of Publication, for ensuring that methods of predictor selection and representation 

summarized in this review are contemporary. Of the 116 included articles, 66 of them (41 

from the database search, 25 from snowballing) were published from 2018 to 2022. 

2) Country of Origin, for illustrating case study contexts of these articles. These contexts are 

illustrated in Figure 6, showing a large number of studies from China (16), Turkey (15), 

Iran (13), Greece (9), the United States (7), Spain (5), and Saudi Arabia (4). Studies were  
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also conducted on multiple spatial scales, whether regional (city/county/state), national, 

or international; country and spatial scale could impact the treatment of predictors. 

3) Onshore or Offshore, for documenting whether articles assessed onshore or offshore 

WiFSS. Offshore WiFSS studies accounted for 21 (18%) of the 116 articles included in 

this review (offshore study locations in Figure 6 (yellow points) are based on their 

approximate centroids). The number of offshore WiFSS studies is sufficiently large to 

allow for the assessment of onshore versus offshore predictor differences. 

Figure 5: A PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-

Analyses) Flow Diagram that illustrates the method by which articles for this systematic 

review were identified, screened, and finalized. Source: Wimhurst et al. [40]. 
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4) Modeling Approach, for summarizing the type of model and predictor ranking/weighting 

methods enlisted by each article. Table 1a shows that 98 (85%) of the 116 reviewed 

studies enlisted a (Non-)GIS-MCDA approach for assessing WiFSS, most of which were 

performed in a GIS environment (81 out of 98 studies) that utilized secondary datasets 

(e.g., digital elevation models, land cover rasters, census statistics, etc.), and 51 of which 

used AHP to construct a weighting scheme. Conversely, 18 (16%) studies did not use a 

(Non-)GIS-MCDA approach (Table 1b), with Data Envelopment Analysis (DEA) and 

other GIS-based models being frequent choices. The types of data collected for WiFSS 

models are often connected to the modeling approach, e.g., Non-GIS-MCDA relying on 

primary data collection to rank candidate wind farm sites (see Section 2.1.2). As such, 

modeling approach can affect the selection and representation of predictors. 

5) Basis for Predictor Selection, for documenting how each reviewed article decided upon 

its predictors, with all studies relying on at least one of four methods. Eighty (69%) of the 

116 studies used previous literature to justify their predictor choices, 38 (33%) studies 

relied on their authors’ opinions about which predictors to include, 24 studies (21%) 

enlisted external expert opinions to inform these decisions, and 20 studies (17%) stated 

that predictor selection was influenced by knowledge of local geography and/or 

legislation. 

Because this review was performed to examine predictor differences across WiFSS studies, 

several properties of all predictors enlisted in each reviewed article were documented in the 

Supplementary Material. These properties consisted of “File Type” (Vector, Raster, Point 

Observations, Unspecified), “Predictor Type” (Constraint, Evaluation, Unspecified), “Constraint 

Nature; Logic” (if the predictor was implemented as a constraint, how was it implemented, and  
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by what logic), “Data Source” (the primary or secondary data that supplied the predictor, e.g., 

expert opinions, a website source, legislation), “Classification” (Economic, Environmental, 

Social, Technical, etc., otherwise Not Classified), and “Combined Predictors” (describes grouped 

sub-predictors, and/or predictor names that represent the same concept across different studies). 

Each of these six properties underpins the thematic synthesis presented in the systematic review, 

and the discussion of each of the five themes is accompanied by figures and tables that provide 

bibliometrics for each of these properties [120]. For instance, the “Classification” property is 

critical to Section 2.2.2, with bibliometrics computed that quantify the commonest language 

(e.g., technical, economic, environmental, etc.) used to classify predictors across all reviewed 

articles. Absent information about predictor properties was documented in the Supplementary 

Material as “N/A”, for example, an unspecified data source or file type for a particular predictor.  

Figure 6: Study locations of the articles included in the systematic review. Points are 

colored by the spatial scale of the study performed. Note that some points overlap due to 

studies being performed over the same spatial domain. Basemap from Esri [214].  

Source: Wimhurst et al. [40]. 
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MCDA 
Approach 

Study 
Context 

Data Type 
(Secondary/ 

Primary) 

Weighting/Ranking 
Method 

References 

GIS-based 

 
Onshore 

Secondary 

AHP 

[29,37,44,46,47,49,54,110,197,199,215,216, 
217,218,219,220,221,222,223,224,225,226, 

227,228,229,230,231,232,233,234,  
235,236,237,238,239,240,241] 

ANP [56,242,243] 

TOPSIS [46,47,48,230,238] 

VIKOR [47,48] 

OWA [37,48,56,227,228,244,245] 

BWM [47,55,246] 

Prescribed Weights [24,45,247,248,249,250] 

No Scheme/Equal Weights [38,115,251,252,253,254,255,256,257] 

Other [111,139,258,259] 

Primary and 
Secondary 

AHP-VIKOR [119,124] 

TOPSIS [260] 

Offshore Secondary 

AHP [28,112,191,261,262,263,264,265,266] 

TOPSIS [263] 

Prescribed [42,267] 

No Scheme/Equal Weights [268] 

Non-GIS-
based 

 
Onshore 

Secondary AHP [136] 

Primary 

AHP [51,130,137] 

VIKOR [51] 

PROMETHEE [131] 

ELECTRE [135,146] 

TOPSIS [52,132] 

Intuitionistic Fuzzy Logic [269] 

Primary and 
Secondary 

No Scheme/Equal Weights [138] 

Offshore 

Secondary 

AHP [133] 

TODIM [39] 

No Scheme/Equal Weights [270] 

Primary 

BWM [134] 

PROMETHEE [139] 

ANP [139,143] 

 
Table 1a: Articles included in the systematic literature review, for MCDA approaches only. 

Acronyms for the listed MCDA methods: Analytic Hierarchy Process (AHP), Analytic 

Network Process (ANP), Technique for Order of Preference by Similarity to Ideal Solution 

(TOPSIS), Multicriteria Optimization and Compromise Solution (VIKOR, in Bosnian), 

Ordered Weighted Averaging (OWA), Best-Worst Method (BWM), ELimination Et Choice 

Translating REality (ELECTRE, in French), Preference Ranking Organization Method of 

Enrichment Evaluation (PROMETHEE), Multicriteria Interactive Decision Making (TODIM, 

in Portuguese). Source: Wimhurst et al. [40]. 
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2.2.1. Theme 1 – Deciding upon Predictors. 

Predictor decisions are often motivated by the predictors used in prior WiFSS studies. Doing so 

ensures that current modeling studies do not exclude important predictors, while also facilitating 

model output comparisons for the same spatial contexts. Figure 7 shows that, among the 116 

reviewed articles (95 onshore WiFSS studies in Figure 7a, 21 offshore WiFSS studies in Figure 

7b), predictors that describe wind resources (e.g., Wind Speed, Wind Power Density; note that 

italicized predictors designate those identified by the systematic review), natural limitations (e.g., 

Slope, Elevation, Ocean Depth), and distance to land features (e.g., Distance to 

Roads/Transmission Lines/Protected Areas/etc.) are often selected, suggesting that WiFSS 

studies value consistent predictor choices. This consistency continues in how WiFSS studies 

detail their selected predictors. Eighty-five (73%) of the 116 reviewed articles summarized their  

Model Approach 
Study 

Context 

Data Type 
(Secondary/Primary) 

References 

Artificial Neural Network Onshore Secondary [271] 

Benefit-Cost Analysis Offshore Secondary [272] 

Data Envelopment Analysis Onshore 
Secondary [273,274,275,276] 

Primary and Secondary [277,278] 

GIS - Boolean Logic Onshore Secondary [279] 

GIS - Correlation Analysis Onshore Secondary [280] 

GIS - Least Cost Distance Onshore Secondary [281] 

Ideal Matter-Element Model Onshore Primary [282] 

Logistic Regression Onshore Secondary [58] 

Machine Learning Onshore Secondary [57] 

Maximum Entropy Model Onshore Secondary [283] 

Mixed Integer Linear 
Programming 

Onshore Secondary [284] 

Picture Fuzzy Modeling and 
TOPSIS 

Offshore Primary [285] 

Wind Atlas Analysis and 
Application Program 

Onshore Secondary [286] 

 

Table 1b: Same as Table 1a but for approaches that do not use MCDA only.  

Source: Wimhurst et al. [40]. 
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Figure 7: The 15 most commonly enlisted predictors in the onshore (7a, top) and offshore 

(7b, bottom) WiFSS (Wind Farm Site Suitability) studies included in this systematic review. 

Refer to Table 1 for full predictor names. Source: Wimhurst et al. [40]. 
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chosen predictors in table form (see Supplementary Material for details), with table columns 

typically detailing each predictor’s description [55,272], dataset source [191,253], citations 

[230,243], and implementation for constraint or evaluation [47,54]. Older WiFSS studies, such as 

Baban and Parry [115] and Rodman and Meentemeyer [125], along with recent, high-impact 

studies [24,202], are often cited to justify predictor choices, establishing a frequently emulated 

style of predictor selection and tabular presentation. 

Figure 7 also demonstrates how some predictors are enlisted more consistently for WiFSS 

studies than others. Apart from Life Cycle Cost (24 onshore studies, six offshore studies) and 

Policy Support (five offshore studies), non-physical predictors are absent among those most 

frequently enlisted. Malczewski [61] refers to non-physical predictors as being “implicitly 

spatial,” meaning they have potential to be expressed in a spatial context, which Non-GIS-

MCDA models often realize by having experts rate the importance of predictors, and then re-

expressing these ratings numerically [260]. However, this rating and ranking of candidate wind 

farm sites lacks common predictors across studies. Presumably important predictors such as 

Elevation [130,132] and Distance to Airports [135,270] are enlisted by few of the Non-GIS-

MCDA studies in Table 1a, and some of these studies excluded Wind Speed [52,138,146]. Such 

studies sometimes establish a context of ranking wind farm sites based on social acceptability 

[138] or economic viability [39,130], hence Non-GIS-MCDA studies often select non-physical 

predictors relating to electricity demand [132,139], local attitudes to wind farms [131,143], noise 

pollution [52,134], and many others. Some other Non-GIS-MCDA studies propose a general 

model framework without a case study [136,270], allowing selected predictors to remain 

generalized for other modelers to implement. Ultimately, the predictors used in Non-GIS-MCDA 

approaches to WiFSS depend on the study context. 
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Context dependence of predictor choices also applies to GIS-MCDA WiFSS studies. This 

context may simply be a study’s objective, such as Gkeka-Serpetsidaki and Tsoutsos [191] 

examining social acceptance of offshore wind farm sites in Crete by using Distance to Coastlines 

as a proxy for noise pollution and visual disturbance. Similarly, Vinhoza and Shaeffer [265] 

assessed offshore wind’s economic attractiveness in Brazil by using Distance to Shipping Ports 

to represent development costs. Predictor inclusion may also be justified by geographical 

context, such as Díaz-Cuevas [226] including proximity to tourist facilities due to South Spain’s 

large tourism sector, or Ouammi et al. [252] not considering Distance to Water Bodies because 

those in Italy’s Savona Province do not obstruct eligible wind farm sites. Pamučar et al. [55] and 

Sánchez-Lozano et al. [259] both noted that predictor choices depend on the geographical area in 

question. Study context also explains why Wind Speed was not included in some of the reviewed 

articles (101 out of 116, Figure 7). Wind Speed may be deemed invariable across a small study 

domain [251], a study’s authors may instead use wind power density to represent the wind 

resource [244,276] or including Wind Speed may not assist the study’s objective [114,138]. 

Predictor decisions therefore also depend on decisions made by a study’s authors [197,217], not 

just geographical context and the chosen modeling approach. 

Figure 7b shows that, of the 21 offshore studies in this review, many enlisted Wind Speed (19) 

Ocean Depth (18), Distance to Shipping Ports (16), Distance to Transmission Lines (15), and 

Distance to Animal Habitats (15) as predictors, suggesting some level of consensus about 

important predictors for offshore WiFSS studies. However, predictors that have documented 

relevance to offshore wind energy, such as Natural Disaster Risk [287,288] and Distance to 

Commercial Fishing Areas [289,290], were not as frequently used in these 21 studies, featuring 

in four [134,135,139,272] and six [42,133,262,264,265,268] studies, respectively. The exclusion 
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of these predictors could be due to a lack of relevant datasets or the relatively small amount of 

offshore WiFSS literature; the oldest offshore WiFSS study in this review was published in 2013 

[272], compared to 2001 for onshore WiFSS studies [115]. The importance of prior WiFSS 

studies for deciding upon predictors will likely increase, as will the incorporation of underused 

predictors as the demand for offshore wind energy research grows. 

2.2.2. Theme 2 – Classifying Data and Predictor Terminology. 

WiFSS modeling studies often classify their predictors by grouping them under terms such as 

environmental [38,247,258], economic [37,261,283], social [219,224,282], and technical 

[49,110,218]. Classification allows for vocabulary control when describing predictors with 

similar effects on WiFSS. For example, the distance to the nearest city, transmission line, or road 

all present a common technical limitation to wind farm siting [110,226]. Additionally, 

environmental limitations are posed by the noise pollution and visual impact associated with 

wind turbines [217,244]; hence, these predictors are similarly classified together. A second 

benefit of classification in WiFSS studies is organizing one’s analysis. Predictors classified as 

environmental or technical often serve as constraints, such as limited development in protected 

wildlife areas [202,254], land that is too elevated or steep [49,235], or areas with insufficient 

wind speeds [233,264]. Similarly, economic predictors like land leasing and maintenance costs 

are often incorporated into WiFSS models within a subset of equations that calculate cost 

competitiveness of candidate wind farm sites [263,271,284], hence their common classification. 

Table 2 presents the classification terms most utilized across this systematic review. For both 

onshore (Table 2a) and offshore (Table 2b) studies, Distance to Animal Habitats or Migration 

Routes was most frequently classified as an environmental predictor [140,255,267], as were 

other predictors that relate to natural land features, such as Distance to Protected or Wildlife  
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Areas [115,226,242] and Distance to Water Bodies [57,243,254]. This consistency was lacking 

for other predictors, with different studies classifying Wind Speed as a technical [110], economic 

[257], environmental [235], or climate [215] predictor. Similar inconsistency exists for predictors 

relating to distance from infrastructure. Tables 2a and 2b show studies commonly classifying  

Table 2a: Language used to classify the 15 most common predictors in the onshore 

WiFSS studies included in this systematic review. The number of studies including 

each predictor that did not use classification is also given. See the “Classification” 

columns of the Supplementary Material (link in Appendix A2).  

Source: Wimhurst et al. [40]. 

Predictors Common Classifications (Frequency) 
Studies Without 

Classification 

Wind Speed 
Technical (15); Economic (14); Wind/Weather (12); 

Climate (7); Environmental (5) 
30 

Distance to Protected or 
Wildlife Areas 

Environmental (37); Social (3); Protective (2); Location 
(2) 

28 

Slope 
Economic (10); Technical (8); Topography (7); 

Geographical (5); Environmental (3) 
28 

Distance to Urban Centers 
Environmental (14); Social (14); Planning (6); Economic 

(5); Technical (3) 
26 

Distance to Roads 
Economic (26); Environmental (7); Technical (7); 

Location (3); Planning (3) 
24 

Distance to Transmission 
Lines or Substations 

Economic (17); Technical (5); Environmental (3); 
Infrastructural (3); Location (2) 

24 

Distance to Airports 
Environmental (9); Economic (5); Protective (3); 

Location (2); Political (2) 
20 

Distance to Water Bodies 
Environmental (23); Social (3); Economic (2); Location 

(2); Protective (2) 
15 

Elevation 
Technical (6); Environmental (5); Topography (5); 

Economic (3); Geographic (2) 
15 

Distance to Animal Habitats 
or Migration Routes 

Environmental (21); Social (3); Protective (2) 15 

Distance to Agricultural 
Areas 

Economic (2); Technical (2) 14 

Distance to Historic Places Environmental (10); Social (4); Cultural (2) 11 

Distance to Railroads Environmental (4); Economic (2) 11 

Wind Power Density Wind/Weather (8); Technical (4); Climate (2) 10 

Life Cycle Costs Economic (13); Technical (3); Social (2) 8 
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Distance to Airports [247] Distance to Urban Centers [254] and Distance to Railroads [226] as 

environmental predictors, whereas Distance to Roads [217], Distance to Agricultural Areas 

[235], and Distance to Transmission Lines and Substations [244] were often classified as 

economic predictors. Inconsistent classification is further complicated by the prescribed 

influence of predictors. For example, some studies [235,258] prescribe proximity to population 

centers as a social and economic asset (lower construction costs; closer to demand areas), but 

other studies [217,244] prescribe this proximity as a social and economic detriment due to 

Predictors Common Classifications (Frequency) 
Studies Without 

Classification 

Distance to Shipping Ports 
or Coastlines 

Economic (5); Local Conditions (3); Technical (2); Region 
Characteristics (1); Social (1) 

6 

Distance to Shipping Lanes 
Political (2); Protective (2); Social (2); Technical (2); 

Environmental (1) 
6 

Distance to Animal Habitats 
or Migration Routes 

Environmental (10); Protective (1) 5 

Distance to Protected or 
Wildlife Areas 

Environmental (8); Protective (2) 5 

Ocean Bathymetry 
Economic (5); Technical (5); Construction (2); Sea State 

(2); Region Characteristics (2) 
4 

Distance to Transmission 
Lines or Substations 

Local Conditions (4); Economic (3); Technical (2); Region 
Characteristics (1); Safety (1) 

4 

Distance to Military Zones 
Protective (2); Environmental (1); Political (1); Region 

Characteristics (1); Safety (1) 
4 

Distance to Commercial 
Fishing Areas 

Social (2) 4 

Wind Speed 
Technical (9); Wind/Weather (6); Economic (4); 

Geographical (1) 
2 

Wind Power Density Wind/Weather (4) 2 

Life Cycle Costs Economic (4) 2 

Distance to Airports 
Local Conditions (1); Environmental (1); Safety (1); 

Technical (1) 
2 

Soil or Rock Type 
Construction (1); Environmental (1); Region 

Characteristics (1); Sea State (1); Technical (1) 
1 

Other Wind Properties 
(Turbulence, Effective Wind 

Hours, Direction) 
Wind/Weather (3); Environmental (1) 1 

Policy Support Social (3); Cultural (1); Economic (1); Safety (1) 0 

 
Table 2b: Same as Table 2a but for the offshore WiFSS studies included in 

this systematic review. Source: Wimhurst et al. [40]. 
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increased noise pollution and visual impact from new wind farms. The classification terms 

adopted for the predictors of WiFSS models therefore depend to an extent on the subjective 

decisions of model developers. 

Another example of this subjectivity is the decision not to use a classification scheme. Table 2b 

shows that, of the 21 offshore WiFSS studies, six (29%) studies that included Distance to 

Shipping Lanes did not classify their predictors [42,135,262,264,267,285]. Of these six studies, 

Wu et al. [135] and Zhang et al. [285] do not use a GIS-based approach (of the 32 Non-GIS 

studies in this review, eight studies did not classify their predictors [58,136,275-278,284,286], 

and six others classified only some of them [51,133,134,143,270,274]). The other four of these 

six studies that included Distance to Shipping Lanes are GIS-based, despite Tercan et al. [264] 

stressing the importance of having technical, economic, environmental, and social criteria for 

evaluating potential offshore wind farm sites. An absent classification scheme sometimes 

appeared concurrently with other modeling decisions. Of the 32 studies in this review that did 

not classify Wind Speed (Table 2a and 2b), GIS-based studies that included an equation-based 

economic/technical analysis of potential wind farm locations often lacked a classification scheme 

[55,56,239], as did studies with a small number (fewer than seven) of predictors [220,250,279]. 

The application of classification schemes across WiFSS studies is inconsistent and not well-

defined, thus making the intended role of predictors when comparing WiFSS study approaches 

potentially unclear. 

This lack of clarity also comes from WiFSS studies using different terminology to describe the 

same predictors. Wind Speed was referred to by several different terms throughout the systematic 

review, such as “Wind Potential” [45], “Wind Sources” [39], “Average Wind Blow” [273], and 

“Efficiency” [51]. It can be implied that these terms describe the same predictor, but not for 
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certain, and this uncertainty increases if the means of data collection for each WiFSS study is 

different, e.g., a downloadable wind speed dataset versus expert opinion about wind speed’s 

importance. Conversely, some studies used the same terminology to describe different predictors; 

the term “Protected Areas” was used to describe forests [57,225], bird habitats [29,272], marine 

habitats [28,267], or combinations of these features. Common language for both describing and 

classifying predictors is essential for any modeling discipline, such as climate modeling [205], 

especially given the number of recently published WiFSS studies (see Supplementary Material). 

WiFSS modeling would benefit from nomenclature for predictor terms and their classification, 

thereby assisting communication when using prior literature to inform studies and establishing a 

standard language for model developers to adopt [41]. 

2.2.3. Theme 3 – Implementing Predictors for Constraint or Evaluation. 

The implicitly spatial nature of non-physical predictors [61] means that their depiction as 

continuous in space requires joining them to a gridded dataset (see Mann et al.’s [58] approach to 

census demographics, or Brewer et al.’s [127] to social attitude surveys), or being proxied with a 

physical predictor, such as inferring noise pollution or visual impact based on distance from 

infrastructure [248,281]. Either of these approaches allow non-physical predictors to be used 

alongside datasets that commonly represent physical predictors in GIS-based WiFSS models, 

such as line shapefiles of powerlines for transmission line proximity [231,237] or rasters of wind 

speed for assessing the resource itself [47,225]. The common function of the datasets for each 

predictor is to inform a GIS-based model’s assessment of wind farm potential across a 

continuous spatial domain. Where GIS-based WiFSS studies frequently differ is in their 

implementation of the same predictors as constraints and/or evaluation criteria. 
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In this review’s context, constraints are Boolean restrictions that eliminate potential wind farm 

locations based on a minimum standard [24], such as land being too steep [247,251], being too 

close to historic landmarks [191,230], among many others. These constraints are typically either 

a buffer distance around land features (e.g., no wind farms within 500 meters of a river [235]), or 

prohibition within an area of conflicting land-use (e.g., no wind farms in a designated vulnerable 

bird habitat [46]). Evaluation criteria assess WiFSS outside the constrained zones, either as an 

ordinal [229,250] or a quantitative [112,279] value. The two commonest types of evaluation 

criteria are those that assess suitability with distance from physical features (e.g., WiFSS being 

greater closer to roads [44]), and those based on magnitude at a singular point in space (e.g., 

WiFSS being greater in high-altitude locations up to 2000 meters [215]). Table 3 summarizes 

onshore (Table 3a) and offshore (Table 3b) physical predictors that were frequently enlisted as 

constraints and/or evaluation criteria by the studies in this review, with predictors representing 

distance to land features (e.g., Distance to Urban Centers, Distance to Shipping Ports or 

Coastlines, Distance to Protected or Wildlife Areas), Slope, Wind Speed, and Ocean Depth being 

especially common as constraints. Some of these studies used predictors to both constrain and 

evaluate WiFSS, such as Ajanaku et al. [110] excluding areas of West Virginia more than 10 

kilometers from transmission lines (constraint), and having suitability increase with proximity to 

transmission lines outside of constrained zones (evaluation). Many predictors were used to both 

constrain and evaluate WiFSS across the studies in this review, particularly Wind Speed 

[220,236], Distance to Roads [216,231], and Ocean Depth [249,267], hence the high counts in 

both columns of Table 3 for these predictors. 
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Despite these similarities in the implementation of constraints and evaluation criteria across 

WiFSS studies, this review highlighted some important differences: 

1. Specifying logic for the selection and setting of constraints. Most studies in this review 

utilized existing legislation (e.g., laws prohibiting wind energy development in protected 

areas [262]), previous WiFSS modeling studies (e.g., setting a maximum land slope based 

on a prior study [246]), and/or a chain of reasoning in the main text (e.g., setting a buffer 

around airports to mitigate radar signal interference [111]) to justify the selection and 

setting of constraints. Some studies, however, did not provide logic for their models’  

Table 3a: Number of studies that employed predictors as constraints and/or 

evaluation criteria, among the most common predictors used in the onshore WiFSS 

studies included in this systematic review. The frequency of unspecified logic for 

constraint criteria for each predictor is also given in parentheses. See the “Predictor 

Type” and “Constraint Nature; Logic” columns of the Supplementary Material (link 

in Appendix A2). Source: Wimhurst et al. [40]. 

 

Predictor 
 Frequency as 

Constraints 
(Unspecified Logic) 

Frequency as 
Evaluation 

Criteria 

Distance to Urban Centers 57 (15) 38 

Distance to Protected or Wildlife 
Areas 

52 (10) 23 

Slope 51 (14) 42 

Distance to Roads 49 (24) 51 

Wind Speed 47 (18) 70 

Distance to Airports 38 (14) 13 

Distance to Water Bodies 37 (9) 12 

Distance to Transmission Lines 
or Substations 

30 (13) 42 

Distance to Animal Habitats or 
Migration Zones 

29 (9) 13 

Distance to Historic Places 24 (7) 7 

Elevation 21 (8) 20 

Distance to Railroads 16 (4) 4 

Distance to Agricultural Areas 9 (4) 14 

Wind Power Density 7 (4) 18 
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constraints. Table 3a shows that, of the 49 studies that implemented Distance to Roads as 

a constraint, 24 (49%) did not justify this constraint in any of the manners mentioned 

previously. Unspecified logic was, conversely, significantly less common for offshore 

predictors (Table 3b). Not justifying constraints leaves readers to guess whether a 

constraint is appropriate, and furthermore whether the constraint is transferable to other 

contexts. For instance, a 300-meter buffer distance around railroads might be acceptable 

for a WiFSS study in Northwest Iran [254], but whether 300 meters would be acceptable 

for studies in other locations is uncertain due to absent logic.  

Predictor 
Frequency as 
Constraints 

(Unspecified Logic) 

Frequency as 
Evaluation 

Criteria 

Ocean Depth 14 (1) 13 

Distance to Shipping Ports or 
Coastlines 

12 (1) 10 

Wind Speed 11 (0) 13 

Distance to Animal Habitats or 
Migration Routes 

11 (0) 2 

Distance to Protected or Wildlife 
Areas 

11 (1) 2 

Distance to Shipping Lanes 9 (0) 5 

Distance to Military Zones 9 (0) 1 

Distance to Transmission Lines 
or Substations 

9 (2) 7 

Distance to Airports 5 (0) 2 

Distance to Commercial Fishing 
Areas 

5 (0) 1 

Soil or Rock Type 4 (1) 3 

Wind Power Density 2 (2) 5 

Other Wind Properties 
(Turbulence, Effective Wind 

Hours, Direction) 
1 (1) 4 

 
Table 3b: Same as Table 3a but for the offshore WiFSS studies 

included in this systematic review. Source: Wimhurst et al. [40]. 
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2. Inconsistent implementation of constraints. Table 3 suggests a common set of constraints 

employed by WiFSS studies, such as, for example, a minimum wind speed [256,268], 

limiting wind farm construction in protected areas [54,125], and a minimum distance 

from urban centers [251,283]. However, the magnitude of these common constraints 

varies widely. Pamučar et al. [55] enlisted a maximum land slope of 7%, in contrast to 

Tegou et al.’s [218] constraint of 30% (some studies instead constrained land slope with a 

degree angle [197,215], adding further inconsistency). Additionally, for distance-based 

constraints, some studies enlisted a prohibition rather than a buffer. Whereas Cradden et 

al. [267] only prohibited wind energy development in Europe’s Important Bird Areas 

(IBAs), Ayodele et al. [216] also included a 300-meter buffer around Nigeria’s IBAs, 

despite both studies using the same dataset [291]. A third facet of inconsistent 

implementation is the exclusion of important constraints. Compared to predictors listed in 

Table 3, few studies in this review enlisted constraints for Distance to Mines or Pits 

[24,237], or Distance to Fault Lines [38,257], despite the known risks of building wind 

farms in earthquake-prone areas [292,293] and over mines [294]. The decision to 

implement specific constraints in WiFSS models is sometimes context-dependent (e.g., 

there is no need to include fault line proximity if the study area does not experience 

earthquakes), but constraints having a consistent magnitude, units, and nature 

(prohibition or buffer distance) across studies is nevertheless important.  

3. Enlisting predictors as constraints or evaluation criteria in different studies. While some 

studies enlist predictors to both constrain and evaluate WiFSS, as previously discussed, 

other studies may enlist a predictor only for constraint or only for evaluation. For 

instance, Mekonnen and Gorsevski [42] and Kazak et al. [248] set WiFSS to increase 
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with distance away from bird habitats, with no specified minimum distance or similar 

constraint. Conversely, Değirmenci et al. [225], Genç et al. [268] and Ouammi et al. 

[252] implemented proximity to bird habitats and migration routes strictly as a constraint. 

An increasing suitability with distance from a bird habitat (i.e., evaluation) would 

produce a different model output than just buffering the same habitat (i.e., a constraint), 

resulting in two different WiFSS outputs for the same spatial context. This difference 

presents a planning risk, knowing the negative impacts of improper wind farm siting on 

avian species [32,33]. The decision to implement predictors for either constraint or 

evaluation may be motivated by usage of these predictors in prior studies, and/or the 

modelers’ objectives, for example, the evaluation of the wind resource in remaining 

locations after applying all other predictors as constraints [38,256,284].  

The implementation of predictors as constraints or evaluation criteria can be subjective, again 

depending on a WiFSS study’s context and individual modeler preference. Addressing this 

subjectivity could benefit the consistency of GIS-based WiFSS studies by normalizing the use of 

literature and legislation to inform the magnitude of constraints, thus explicitly justifying the use 

of specific predictors for constraint and/or evaluation. This implementation can also depend on 

regulations observed in a particular country or region. For example, some counties in the United 

States enforce setback distance constraints on wind energy development, other counties do not, 

and constraints in some cases are enforced at higher levels of government [295]. 

2.2.4. Theme 4 – Utilizing Primary and Secondary Data. 

Tables 1a and 1b show that most studies in this review utilized secondary datasets, particularly 

studies that built GIS-MCDA models, usually in the form of downloaded geospatial data 

[219,238] and previously recorded observations [240,277]. Some secondary datasets were 
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enlisted by multiple studies, such as road information obtained from OpenStreetMap 

[225,231,237], Digital Elevation Models from the United States Geological Survey 

[125,216,228], and wind speed information from the Global Wind Atlas [49,236,241]. The use of 

such datasets for WiFSS studies exemplifies the value of free resource access for public sector 

model development [296], because developers are thereby encouraged to use a common set of 

predictors, facilitating standard language and comparisons of modeling approaches that are less 

biased by predictor choices. Differences in model outputs for the same geographical contexts 

could indeed be partially attributed to their enlisted secondary datasets. For instance, WiFSS 

studies from Turkey have represented protected areas with secondary datasets enlisted data either 

from the state government [229,232] or from larger organizations such as the European 

Environment Agency [283] and the United Nations Educational, Scientific and Cultural 

Organization [225]. Each data source has its own unique definition of protected areas, which 

combined with modeler preferences results in quite different depictions of protected areas for the 

same country. Selected secondary datasets therefore have important consequences for the 

consistency and comparability of model outputs across (GIS-based) WiFSS studies. 

By contrast, primary data were enlisted almost entirely by the Non-GIS-MCDA studies in this 

review (Table 1a). These primary data are usually the collected opinions of academic or 

industrial experts, whether from questionnaire responses [137,269], conducted interviews 

[52,138], or focus groups [39,132], with the objective of assessing discrete wind farm sites based 

on the rated importance of a set of predictors. These ratings are usually ordinal and employ either 

a linguistic scale to express each predictor’s individual importance [51,135,143] or a ranking of 

predictors relative to each other [131,134,231]. There are multiple examples in this review of 

WiFSS studies that relied solely on primary data for both physical and non-physical predictors 
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(e.g., studies that enlisted both Wind Speed/Power Density and Life Cycle Cost [134,143,269]), 

because they are both collected using opinion-based methods. However, the predictors 

incorporated into studies that rely on primary data are not consistent. Aras et al. [137] and 

Gamboa and Munda [138] excluded Wind Speed due to their interest in the technical and social 

feasibility of wind farm sites, respectively, and important predictors like Distance to Military 

Zones [134,135] and Distance to Water Bodies [132] were rarely included. Differences in 

predictor choices could result in inconsistent wind farm site characterization, which can be a 

problem when comparing Non-GIS-MCDA studies with the same geographical contexts, such as 

those from China [39,139,146] or Turkey [51,132,134]. The collection and application of 

primary data in these studies varied in other important ways, such as some studies using outside 

expert opinions, rather than those of the authors alone, to help decide upon predictors 

[130,134,269]. Additionally, most studies applied fuzzy logic to both quantify expert opinions 

and address the uncertainty inherent to linguistic decision-making [132], though some studies did 

not [131,137,146]. Much like with secondary data, there are several conventions in the use of 

primary data to represent predictors in WiFSS models, such as the use of linguistic scales and 

enlisting expert opinions, though these conventions are not universal. 

A small number of studies in this review presented models that combined primary and secondary 

data in their assessment of WiFSS [119,124,138,260,277,278], eliminating the need for proxies 

or dataset transformations. For instance, Rezaei-Shouroki et al. [277] combined secondary wind 

speed observations and primary opinions about land price into the same set of Data Envelopment 

Analysis equations. Studies that enlist primary and secondary data also often take different 

approaches to WiFSS modeling, such as Xu et al. [124], which used datasets of bird migration 

routes and power plant locations to constrain suitable wind farm sites, and subsequently 
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evaluated a grid of remaining potential wind farm sites using expert opinions about a host of 

predictors. Li et al. [119] took a similar GIS-based approach but also assessed future wind 

resources under climate change. These efforts represent possible new directions for assessing 

WiFSS, but the lack of a standard approach makes predictor selection and representation highly 

variable. For instance, Gamboa and Munda [138] accounted for candidate wind farm sites’ visual 

pollution with secondary simulations of viewshed (in square kilometers), in contrast to the more 

common method of assessing visual impact using the primary opinions of experts [51,52,143]. 

Another example is Pambudi and Nananukul’s [278] decision to collect wind speed data using 

questionnaire responses. Studies that combine data collection methods show that WiFSS is not 

confined to representing predictors with only primary or only secondary data, but also that a 

common standard for their combination would benefit comparisons between study approaches. 

2.2.5. Theme 5 – Data Source and Accessibility. 

Beyond specifying data types (i.e., primary or secondary), it is also important for WiFSS studies 

to specify data sources and to ensure their accessibility [113,114]. Specifying data sources is 

important for several reasons, firstly doing so enables the replication of similar modeling studies 

and findings in the same or different spatial contexts [217,221]. Replication allows scientists and 

other modelers seeking to conduct similar research to better understand how and where to source 

candidate data sources for their respective studies, thus facilitating practices of knowledge 

transfer and data sharing for the public [41]. Secondly, action based on the results of WiFSS 

modeling studies requires their acceptance by scientists and decision makers. This acceptance is 

more likely if data sources and details regarding their accessibility are specified, thereby creating 

transparency in the research process and allowing other modelers and the public to trust a study's 

findings more readily [138]. Lastly, it is important to give credit to the producers or hosts of all 
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enlisted data sources. Citation is the primary means of demonstrating how credit should be given 

to existing studies and their data sources, while also helping other scientists and modelers locate 

data sources for their own research [52,114].  

This review found that although many studies indeed specified data sources for their enlisted 

predictors [48,232,233], there were also studies that did not [38,273,274]. Tables 4a and 4b show 

the number of onshore and offshore WiFSS studies, respectively, that did and did not specify data 

sources for common predictors for the countries with the most studies in this review (see Figure 

6). The tables suggest that not specifying data sources was more common for onshore WiFSS 

studies, particularly those from Greece, Iran, and Turkey, with datasets for Distance to 

Airports/Protected or Wildlife Areas/Roads/Urban Centers being the most frequently 

unspecified. There exist a few reasons why WiFSS studies may not specify their data sources, 

first among which is that the datasets used in these studies may be proprietary, as was often the 

case for studies that incorporated military zones [221,285], bird migration habitats [244,246] and 

protected areas [138,254] into their predictor choices. This non-disclosure of data sources can 

also be for legal and/or regulatory reasons [233]. Secondly, discussions about the importance of 

sharing datasets for environmental model development started relatively recently; the practice of 

dataset sharing is crucial for asserting any modeling practice as its own discipline [41]. The 

importance of providing citations for secondary datasets is particularly salient for predictors 

enlisted as constraints (see Section 2.2.3). Specifying these datasets means that studies 

performed in the same geographical context could brand the same locations as being (un)suitable 

for wind energy development, allowing for focused refinement of the predictors used for 

evaluation and of the models themselves [219]. Specifying dataset sources for predictors is also 

important for studies that employ primary datasets. Some studies in this review did not clarify  
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how they obtained expert opinions about predictors, nor did they provide the questions that were 

posed in the questionnaires or interviews conducted with them [119,278]. Although these data 

would be useful, their non-disclosure could be for ethical reasons such as protection governed by 

institutional review boards [266,267]. 

 Countries (Number of Onshore Studies) 

Predictor 
China 
(10) 

Turkey 
(13) 

Iran 
(12) 

Greece 
(6) 

United 
States (6) 

Spain 
(5) 

Saudi 
Arabia (4) 

Distance to 
Agricultural Areas 

1(0) 1(0) 2(0) 3(1) 2(0) 1(1) - 

Distance to Airports 1(0) 2(5) 2(2) 2(4) 1(2) 2(2) 1(2) 

Distance to Animal 
Habitats or Migration 

Zones 
3(1) 3(4) - 3(2) 2(0) 1(2) 1(1) 

Distance to Historic 
Places 

0(1) 1(2) 1(2) 3(3) - 2(1) 1(0) 

Distance to Protected 
or Wildlife Areas 

3(1) 6(5) 5(4) 4(2) 4(1) 2(3) 1(2) 

Distance to Railroads 1(0) 1(2) 0(2) - 2(0) 2(1) - 

Distance to Roads 3(2) 4(4) 4(3) 3(3) 2(3) 2(1) 3(1) 

Distance to 
Transmission Lines or 

Substations 
4(1) 5(4) 3(4) 2(/2) 2(1) 2(1) 2(0) 

Distance to Urban 
Centers 

4(2) 5(3) 6(4) 3(3) 4(2) 2(2) 1(2) 

Distance to Water 
Bodies 

2(1) 4(3) 4(2) 1(2) 3(1) 2(1) 0(2) 

Elevation 3(1) 5(1) 5(2) - 1(1) 1(0) - 

Life Cycle Cost 4(0) 4(1) 2(4) 0(1) - 1(1) 1(0) 

Slope 5(1) 6(3) 7(4) 4(1) 2(1) 3(1) 0(2) 

Wind Power Density 4(1) 2(5) 4(0) - 1(0) - 1(0) 

Wind Speed 6(1) 8(2) 7(4) 4(2) 5(1) 2(2) 4(0) 

 
Table 4a: Countries with four or more studies (see Figure 6) that specified data 

sources for the 15 most common predictors in this systematic review (see Figure 7) 

for onshore WiFSS studies. Each cell contains the number of studies that did and 

did not specify their data sources, the latter in parentheses.  See the “Data Source” 

columns of the Supplementary Material (link in Appendix A2).  

Source: Wimhurst et al. [40]. 
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Beyond specifying data sources, there is also the issue of data accessibility for predictors enlisted 

in WiFSS models. Although most studies in this review cited their datasets [216,236,286], others 

only listed the names of the institutes who provided their datasets in the Methods section 

[215,218], and some did not list their datasets at all [38,248]. By not providing full citations with 

functional links to enlisted datasets, the nature of the data that informed each predictor becomes 

difficult to ascertain. There was also some inconsistency in how these studies reported their 

dataset sources. While some studies provided data source details in the main text [233,248], other 

Table 4b: Same as Table 4a but for the offshore WiFSS studies 

included in this systematic review. Source: Wimhurst et al. [40]. 

 

 Countries (Number of Offshore Studies) 

Predictor 
China 

(6) 
Turkey 

(2) 
Iran 
(1) 

Greece 
(3) 

United 
States (1) 

Spain 
(0) 

Saudi 
Arabia (0) 

Distance to Airports 1(1) 1(0) - 1(2) - - - 

Distance to Animal 
Habitats or Migration 

Routes 
3(1) 2(0) 1(0) 2(0) 1(0) - - 

Distance to 
Commercial Fishing 

Areas 
- 1(0) - - 1(0) - - 

Distance to Military 
Zones 

- 2(0) - 3(0) - - - 

Distance to Protected 
or Wildlife Areas 

3(0) 1(0) 1(0) 3(0) - - - 

Distance to Shipping 
Lanes 

2(1) 2(0) 1(0) 3(0) 1(0) - - 

Distance to Shipping 
Ports or Coastlines 

2(1) 1(0) 1(0) 3(0) 1(0) - - 

Distance to 
Transmission Lines or 

Substations 
1(2) 2(0) 1(0) 3(0) 1(0) - - 

Life Cycle Cost 2(1) 1(0) 1(0) 1(0) - - - 

Ocean Depth 3(1) 2(0) 1(0) 3(0) - - - 

Other Wind 
Properties 

- - - - - - - 

Policy Support 0(2) 2(0) 1(0) - - - - 

Soil or Rock Type 1(0) 1(0) - 1(0) - - - 

Wind Power Density 1(2) - - - - - - 

Wind Speed 2(4) 2(0) 1(0) 3(0) - - - 
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studies provided details in an Acknowledgements section [282], and others only in their lists of 

references [48,265]. Without a recognizable, consistent way of identifying dataset sources, it 

becomes harder for readers to identify what datasets informed each predictor, as well as the data 

preparation that would have been necessary to incorporate them into a WiFSS model. This 

review also highlighted an issue with incomplete citation for selected datasets. Even among 

studies that did provide citations for their dataset sources, these citations were sometimes only 

the name of the government website, piece of legislation, or research institute that provided the 

data, without specific details regarding the dataset source [222,228]. When links to data sources 

were included, they were sometimes inaccessible, even in recent WiFSS studies [56,229]. 

Greater emphasis should be placed on ensuring that data sources for predictors are fully sourced 

in a consistent manner across WiFSS studies, in order to encourage the use of publicly available, 

high-quality datasets and to standardize their citation and presentation in published work. 

2.3. Recommendations Based on the Systematic Review. 

By performing a systematic literature review on 116 identified articles, it was found that 

predictor choices in WiFSS models and the reasons for adopting common standards for them 

were best discussed under the headings of five themes (see Sections 2.2.1 to 2.2.5). The 

summary of each theme below includes recommendations for standardizing predictor selection 

and representation in future work. This section concludes with remarks about how WiFSS-

LRCA’s construction was informed by this systematic review: 

1. Deciding upon Predictors. WiFSS studies frequently justify predictors to be included in their 

models based on those used in prior work. Their usage in previous studies, and reasoning by 

model developers, has resulted in some predictors, such as Wind Speed, Distance to Roads, 

and Elevation, being used more than others. The reasoning employed by modelers to select 
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certain predictors over others may be motivated by overarching study context (e.g., assessing 

social acceptance of wind energy development), the geographical context, the perceived 

importance of predictors, or whether the study is one of onshore or offshore WiFSS. The 

decision to include or exclude predictors in a WiFSS model is sometimes obvious, such as 

only certain study areas being vulnerable to earthquakes [272], but not explaining predictor 

selections can be detrimental when comparing different studies with similar geographical 

contexts. For instance, Deveci et al. [297] included water depth in their study of offshore 

WiFSS in New Jersey to represent the required foundation structures and costs, but 

Mekonnen and Gorsevski’s [42] participatory GIS model of offshore WiFSS in Lake Erie 

excluded water depth with no justification. Given the United States Federal government’s 

interest in expanding offshore wind energy in the coming years [298,299], and the limitations 

water depth places on offshore wind farms [300], model developers could increase their 

impact on decision-making by using consistent predictor sets that raise fewer questions for 

non-modelers. If a decision is made to exclude predictors frequently used in prior work, then 

standard practice should be for WiFSS model developers to justify that decision explicitly. 

2. Classifying Data and Predictor Terminology. While some WiFSS studies group their 

predictors under the subheadings of broader classification terms (e.g., economic, 

environmental, social, technical, etc.), others do not, or they may use different terms that 

describe the same sorts of classification. The advantage of classifying is clarification of the 

role that predictors play in a given WiFSS model. For example, Distance to Roads and 

Distance to Urban Centers represent “technical” aspects of wind energy development. 

Classification is especially useful when comparing WiFSS studies that utilized the same 

predictors. The terminology used to describe the same predictors (e.g., “Wind Speed” versus 
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“Wind Potential”) is a second example of the importance of uniform vocabulary when 

conducting WiFSS studies. In their review of modeling water flows, Refsgaard and 

Henriksen [301, p.76] conclude that adopting standard terminology is important for 

“bridg[ing] the gap between scientific philosophy and pragmatic modelling”. The importance 

of language choices that have an agreed-upon definition has also been recommended by 

dietetic [302], ecological [303], and behavioral [304] model developers. Proposing common 

definitions and vocabulary for the predictors used in different WiFSS models, and enlisting 

classification terms that group predictors with related effects on WiFSS, should thus be a 

priority as this modeling discipline expands. Based on the findings of this review, common 

classifications such as economic, environmental, social, and technical should be made 

commonplace and be given refined definitions, and uncommon names for predictors (e.g., 

“Average Wind Blow” rather than “Wind Speed” [273]) should be avoided in future work.  

3. Implementing Predictors for Constraint or Evaluation. GIS-based approaches to WiFSS tend 

to incorporate predictors as Boolean restrictions on potential wind farm locations 

(constraints) and/or as quantified suitability with distance or magnitude (evaluation criteria). 

While some predictors are used frequently as constraints (e.g., Wind Speed, Slope, and Ocean 

Depth), some studies implement the same predictors as evaluation criteria instead, or in 

addition to being constraints. There is also the concern that logic for the selection and setting 

of constraints is left unspecified in some studies, meaning that readers must guess whether, 

for instance, a minimum Distance to Protected Areas of 500 meters is appropriate for other 

study contexts. Not addressing the subjectivity in setting constraints and evaluation criteria 

can cause serious wind farm planning risks. For example, the five WiFSS studies from Spain 

in this review all enlisted a Distance to Protected Areas constraint; one study did not specify 
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its constraint [138], three studies prohibited development within protected areas [37,46,259], 

and the fifth study also applied a 1000-meter buffer distance to these areas [226]. Rodríguez-

Rodríguez et al. [305] found that Spain’s protected areas are more vulnerable to any form of 

land development when not surrounded by a buffer distance. For that reason, using a WiFSS 

study to guide wind energy development in Spain that does not adequately protect vulnerable 

flora and fauna could cause inadvertent environmental damage, such as heightened avian 

mortalities [32,33]. It is thus recommended that future WiFSS studies apply predictors for 

constraint or evaluation in a manner consistent with existing literature, government policy, 

and expert opinions.  

4. Utilizing Primary and Secondary Data. There are some commonly used datasets for WiFSS 

studies that represent predictors with secondary data, such as the Global Wind Atlas for Wind 

Speed [306] and the United States Geological Survey for Slope and Elevation [79]. However, 

the familiarity of model developers with certain, often more localized, datasets can result in 

quite different depictions of WiFSS due to using different datasets, even within the same 

geographical contexts. Inconsistencies also exist in the representation of predictors with 

primary data, such as the decision to involve experts in the predictor selection process, 

whether to use a linguistic scale to capture experts’ opinions, and the frequent differences in 

enlisted predictors. This review found that the decision to use primary and/or secondary data 

in WiFSS studies often depended on the research question being answered. Studies that 

focused on developing a model that could construct a continuous WiFSS surface were more 

likely to rely solely on secondary data, such Mann et al.’s [58] logistic regression-based 

approach to assessing WiFSS in Iowa. By contrast, primary data were most often 

incorporated in WiFSS studies that ranked candidate wind farm sites for their development 
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potential based on expert opinions, as in Deveci et al.’s [307] assessment of potential 

offshore wind farm locations in Norway. The innovative methods of integrating primary and 

secondary data presented by this review were of particular interest. Standout examples 

include Rezaei-Shouroki et al.’s [277] use of expert opinions to construct a land cost 

predictor alongside secondary sources for population and wind speed, and Xu et al. [124] 

using secondary spatial data layers to constrain potential sites and then using expert opinions 

to rank the remaining sites. WiFSS approaches that combine primary and secondary data 

sources should continue to be pursued, using these existing studies as a basis for 

standardizing how their predictors are represented. 

5. Data Source and Accessibility. Facilitating common standards for predictor selection in 

WiFSS studies depends highly on providing complete and functional citations for enlisted 

datasets. This review showed, however, that some WiFSS studies do not provide any citation 

for enlisted secondary datasets; some only specify the dataset provider in-text without a full 

citation, and sometimes citations lack specific details on how to access the data sources used 

in these studies. Some WiFSS studies that represented predictors with primary data also did 

not fully detail their data sources, namely how expert opinions about candidate wind farm 

sites were collected or the questions that were asked of said experts. At a time when scientific 

integrity is being questioned by the public and elected officials [102], there is an increasing 

onus upon model developers to ensure that their work is fully transparent and accessible, 

such as by making effective use of free online repositories [308] and preparing robust model 

documentation [309]. This motion toward transparency in part requires documenting how 

predictors were selected, and how and where each predictor’s dataset(s) can be found in a 

way that both modelers and non-modelers can recognize across separate studies. While 
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proprietary knowledge and institutional review boards often limit the extent to which data for 

predictors can be shared, a standard presentation of dataset details in-text, and providing 

complete citations, would allow modelers to share knowledge of robust datasets more easily, 

while also garnering trust in their work. 

The intent of this systematic review is not to dictate how predictors in WiFSS models should be 

selected and represented moving forward. Rather, this review serves to identify that an explicit 

common standard for predictor selection and representation does not yet exist, and that a set of 

standards for predictors could be adopted by at least recognizing the role played by subjective 

modeling decisions (e.g., approach to citation, deciding upon important predictors, predictor 

vocabulary). As such, the construction of WiFSS-LRCA takes cues from each of the five themes 

presented by the systematic review. Firstly, WiFSS-LRCA uses a comprehensive set of 47 

predictors that existing literature have all been shown to influence commercial wind farm siting 

decisions, with explicit reasoning given for each predictor’s inclusion. Secondly, common 

classification and predictor terminology found throughout the systematic review (e.g., Tables 2 

and 3) were applied to WiFSS-LRCA, making this model’s vocabulary consistent with previous 

work. Thirdly, the constraints most frequently used in prior WiFSS studies are used to restrict 

wind energy development in WiFSS-LRCA’s grid cells, with citations given to justify the buffer 

distance/prohibition applied to each predictor acting as a constraint. Fourthly, while primary data 

would be useful to directly capture predictors such as social attitudes toward wind energy, the 

CONUS-wide scale of WiFSS-LRCA’s application makes using secondary datasets the more 

realistic option. Finally, all secondary datasets in WiFSS-LRCA are summarized in the main text, 

fully cited in the References list, and compiled in a GitHub repository (see Appendix A1), thus 

clarifying how the data for each predictor were enlisted and where these data can be accessed by 
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others. Future WiFSS studies will ideally use the five themes presented by this systematic review 

to similarly justify their methods of predictor selection and representation, hopefully converging 

toward a standard approach throughout subsequent work. 
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Chapter 3: Data and Methods – Building WiFSS-LRCA. 

3.1. Deciding upon Predictors and Datasets. 

3.1.1. Dataset Selection. 

Following the systematic review detailed in Chapter 2 [40] and based on predictors deemed 

relevant to WiFSS by previous work [113,114], the predictors for which datasets were sought for 

WiFSS-LRCA are presented in Tables 5a and 5b. The tables’ columns detail the classification, 

predictor name (plus each predictor’s codename as it appears when running WiFSS-LRCA), year 

of data preparation, datatype (and units), spatial scale (state or CONUS) and data source, with all 

datasets being publicly available. The classification and predictor terminology used follow from 

the systematic review, with the classifications grouping predictors under subheadings with 

related effects on wind farm siting decisions. These classifications consist of human and natural 

environmental conditions [283], technical limitations caused by existing/absent infrastructure 

and energy sector maturity [52], economic viability of wind energy development [286], 

conduciveness of the political landscape for wind energy sector growth [310], and social 

indicators that may be associated with attitudes toward wind energy [138]. Table 5a contains 

predictors classified for WiFSS-LRCA as either environmental or technical, with Table 5b 

containing the model’s economic, political, and social predictors. Many of the predictors in Table 

5b were not readily available as spatial datasets; their tabular data were joined to shapefiles of 

county [311] and state [312] boundaries for model runs over individual states and the CONUS, 

respectively. Annual data from each dataset were averaged over the years 2015 to 2019, 

assuming an installation period for an onshore commercial wind farm in the United States of five 

years [340]. Additionally, some predictor datasets possess resolutions too coarse to train WiFSS- 
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Classification Predictor Codename Year Datatype (unit) State CONUS Source 

Pre-established 
Land Use 

(Environmental) 

Critical 
Habitats 

Critical 2023 
Shapefile, Polygon/Line 

(Y/N) 
✓ ✓ [313] 

Historical 
Landmarks 

Historical 2014 
Shapefile, 

Polygon/Point (Y/N) 
✓ ✓ [314] 

Military 
Installations 

Military 2019 Shapefile, Polygon (Y/N) ✓ ✓ [315] 

Mining 
Operations 

Mining 2022 
Shapefile, 

Polygon/Point (Y/N) 
✓ ✓ [316] 

National Parks Nat_Parks 2022 Shapefile, Polygon (Y/N) ✓ ✓ [317] 

Population 
Density by 

County 
Dens_15_19 2019 

Tabular*  
(persons/sq mi) 

✓ ✓ [311,82] 

Tribal Lands Trib_Land 2018 Shapefile, Polygon (Y/N) ✓ ✓ [318] 

Wildlife 
Refuges 

Wild_Refug 2022 Shapefile, Polygon (Y/N) ✓ ✓ [319] 

Condition of 
the Natural 

Environment 
(Environmental) 

Average 
Elevation 

Avg_Elevat 2022 Raster (m) ✓ ✓ [79] 

Average 
Temperature 

Avg_Temp 2016 Raster (°C) ✓ ✓ [320] 

Average Wind 
Speed 

Avg_Wind 2017 Raster (m/s) ✓ ✓ [321] 

Bat Habitat 
Range Count 

Bat_Count 

2018 
Shapefile, Polygon 

(number) 
✓ ✓ [322] 

Bird Habitat 
Range Count 

Bird_Count 

Proportion of 
Rugged Land 

Prop_Rugg 2022 Raster (number) ✓ ✓ [79] 

Proportion of 
Undevelopable 

Land 
Undev_Land 2019 Raster (number) ✓ ✓ [80] 

Distance to 
Infrastructure 

(Technical) 

Nearest 
Airport 

Near_Air 2022 Shapefile, Point (m) ✓ ✓ [323] 

Nearest 
Hospital 

Near_Hosp 2022 Shapefile, Point (m) ✓ ✓ [324] 

Nearest Major 
Road 

Near_Roads 2016 Shapefile, Line (m) ✓ ✓ [325] 

Nearest Major 
Transmission 

Line 
Near_Trans 2022 Shapefile, Line (m) ✓ ✓ [326] 

Nearest School Near_Sch 2022 Shapefile, Point (m) ✓ ✓ [327,328] 

Power Plant 
Maturity 

(Technical) 

Age of the 
Nearest (Non-
Wind) Power 

Plant 

Plant_Year 2022 Shapefile, Point (year) ✓ ✓ [329] 

Age of the 
Nearest Wind 

Farm 
Farm_Year 2022 Shapefile, Point (year) ✓ ✓ [73] 

 
Table 5a: Predictors used in WiFSS-LRCA that are classified as Environmental or Technical, 

along with each predictor’s name in the model, year of data preparation, datatype (and units), 

spatial scale (State/CONUS), and data source. Asterisked entries in the Datatype column are 

predictors that did not exist as pre-prepared datasets and thus were compiled manually. 
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Classification Predictor Codename Year Datatype (unit) State CONUS Source 

Competitiveness 
of Wind Energy 

Sales 
(Economic) 

Electricity Cost Cost_15_19 2021 Tabular ($)  ✓ [312,78] 

Independent System 
Operator(s) 

ISO_YN 2022 
Shapefile, 

Polygon (Y/N) 
✓ ✓ [311,330] 

Nearest (Non-Wind) 
Power Plant 

Near_Plant 2022 
Shapefile, Point 

(m) 
✓ ✓ [329] 

Land Value by 
State 

(Economic) 

Farmland Value Farm_15_19 2023 Tabular* ($)  ✓ [312,331] 

Property Value Prop_15_19 2020 Tabular ($)  ✓ [312,332] 

Renewable 
Energy and 

Energy 
Efficiency 
Incentives 
(Economic) 

Investment Tax Credits In_Tax_Cre 

2023 Tabular* (Y/N)  ✓ 

[312,333] 

Property Tax Exemptions Tax_Prop 

Sales Tax Abatements Tax_Sale 

Total Number of 
Incentives 

Numb_Incen 2023 
Tabular* 
(number) 

 ✓ 

Election Results 
(Political) 

Gubernatorial Election 
Results by State 

Rep_Wins 2023 
Tabular* 
(number) 

 ✓ [312,334] 

Presidential Election 
Results by County 

Dem_Wins 2021 
Tabular 

(number) 
✓ ✓ [311,335] 

Government 
Legislation in 

Effect (Political) 

Interconnection Interconn 

2023 Tabular* (Y/N)  ✓ 

[312,333] 

Net Metering Net_Meter 

Renewable Portfolio 
Standard 

Renew_Port 

Size of Renewable 
Portfolio Standard 

Target 
Renew_Targ 

2023 
Tabular* 
(number) 

 ✓ 
Total Number of 

Statewide Legislative 
Pieces 

Numb_Pols 

State 
Government 

Lobbies 
(Political) 

Fossil Fuel Lobbies Foss_Lobbs 
2023 

Tabular* 
(number) 

 ✓ [312,336] 

Green Lobbies Gree_Lobbs 

Condition of the 
Workforce 

(Social) 

Employment Type by 
County 

Type_15_19 2021 Tabular (%) ✓ ✓ [311,337] 

Unemployment Rate by 
County 

Unem_15_19 2021 Tabular (%) ✓ ✓ [311,338] 

Demographics 
by County 

(Social) 

Percent Female 
Population 

Fem_15_19 

2019 Tabular (%) ✓ ✓ [81,311] 

Percent Hispanic 
Population 

Hisp_15_19 

Percent of Population 
Under 25 

Avg_25 

Percent White 
Population 

Whit_15_19 

Public Support for 
Renewable Portfolio 

Standards 
supp_2018 2022 Tabular (%) ✓ ✓ [311,339] 

 
Table 5b: Same as Table 5a but for the predictors that can be broadly 

classified as Economic, Political, or Social. 
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LRCA’s LR equation over individual U.S. states, only being possible in CONUS model runs, as 

specified by the “State” and “CONUS” columns in Table 5a/5b. WiFSS-LRCA assumes that all 

enlisted predictors are relevant to past, present, and future wind farm siting decisions. 

3.1.2. Justifications for Each Predictor’s Inclusion. 

Provided below is the reasoning for why each of the 47 predictors listed in Tables 5a and 5b were 

included in WiFSS-LRCA, discussed under the same Classification terms given in these two 

tables. The Codenames for each predictor are given in parentheses throughout this sub-section. 

1. Pre-established Land Use (Environmental Predictors). 

Wind energy development may be incompatible, or even prohibited, in areas of land 

designated for specific purposes. Wind turbine installation can disrupt breeding and predation 

behaviors [341], and cause fragmentation of sensitive ecosystems [342] (Critical; 

Wild_Refug). Federal regulations for renewable energy development prevent impairment or 

damage to important landmarks, such as National Parks [343] or sites protected under the 

National Historic Preservation Act [344] (Nat_Parks; Historical). Commercial wind farms 

are also inadvisable in areas with established human activity. Wind turbines pose collision 

and radar detection hazards for military operations [345], nearby mining operations may 

compromise a turbine tower’s foundations [226], and densely populated areas often lack the 

space for large wind farm projects [45] (Military; Mining; Dens_15_19). Finally, 

development of wind energy resources in tribal lands has been limited by “federal 

bureaucratic inefficiencies” [346] (Trib_Land). 

2. Condition of the Natural Environment (Environmental Predictors). 

Suitable areas for wind energy development generally have mean wind speeds over 6.5 

meters per second at 80 meters above the ground [347] (Avg_Wind). Moderate elevations are 
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preferable for this development since wind speed increases with height [348], but not over 

2000 meters above sea level due to declining air density [349] (Avg_Elevat). The natural 

environment also presents construction challenges, such as damage caused by turbine blade 

icing in colder climates [350] and the difficulty of building and maintaining wind farms on 

rugged terrain [218] (Avg_Temp; Prop_Rugg). Improper wind farm siting poses a collision 

risk to birds [351] and bats [352], with bats at an added risk of barotrauma around rotating 

blades [353] (Bat_Count; Bird_Count). Moreover, certain land cover types are considered 

unsuitable for wind energy development, such as forested land due to lack of open space and 

downwind turbulence [354] and the sensitive ecosystems of wetlands [355] (Undev_Land). 

3. Distance to Infrastructure (Technical Predictors). 

Wind farm construction is more feasible nearer transmission lines [47], due to lower costs of 

connecting new wind farms to the electricity grid [356] (Near_Trans). Similarly, nearby 

roads facilitate wind farm maintenance and further reduce costs [357], though roads being 

too close poses a safety risk [57] (Near_Roads). Complaints of wind farms causing shadow 

flicker, noise, and aesthetic pollution [358] mean that some states now legislate setback 

distances around specific infrastructure, such as hospitals and schools [359] (Near_Hosp; 

Near_Sch). Wind farms also pose safety and visibility risks to airports [244], along with 

disruption to radar signals for navigation and weather monitoring [360] (Near_Air). 

4. Power Plant Maturity (Technical Predictors). 

The United States’ oldest commercial wind farms were constructed in California in the 1980s 

[85]. Such maturity suggests well-established infrastructure and protocols for wind energy 

development and thus less of a technical challenge for future expansion (Farm_Year). 

Furthermore, wind energy could be considered more attractive if nearby non-wind power 
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plants have aged beyond their life expectancy [361] and are thus more likely to fail [362] or 

be too inefficient to be worth maintaining [363] (Plant_Year). 

5. Competitiveness of Wind Energy Sales (Economic Predictors). 

Studies from Spain [364] and Germany [365] show that wholesale electricity from wind 

farms can be cheaper than from other sources. However, wind energy’s intermittency comes 

with a greater risk of negative pricing [366] (Cost_15_19). Hence, the monitoring of 

electricity transmission and prices by Independent System Operators (ISOs) is an asset to 

WiFSS [367]. ISOs enlist wind forecast data to allow wind energy developers to participate 

in day-ahead sales markets [368], thus enabling electricity sales [369] and limiting manual 

wind farm curtailment [370] (ISO_YN). Conversely, nearby non-wind power plants that 

already provide local jobs [371] and sell electricity at a low price [372] can limit a wind 

farm’s economic competitiveness (Near_Plant). 

6. Land Value by State (Economic Predictors). 

State governments may be more willing to subsidize and invest in developing land for 

agricultural and residential purposes, rather than for wind energy development, especially in 

states where the former’s economic values are high (Farm_15_19; Prop_15_19). WiFSS-

LRCA does not account for how farmland/property value is itself affected by wind energy 

development, since studies such as Vyn and McCollough [373], Sampson et al. [374], and 

Castleberry and Greene [375] suggest a lack of meaningful effect. 

7. Renewable Energy and Energy Efficiency Incentives (Economic Predictors). 

Wind energy’s adoption can be hastened by offering economic incentives, such as rebates 

[376] and tax incentives [377]. If state governments and utilities offer incentives for 

renewable energy and energy efficiency technologies, this may suggest an economy that 
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welcomes commercial wind energy development [378]. The existence of state-level financial 

incentives (In_Tax_Cre; Tax_Prop; Tax_Sale) and the number of current and expired 

incentives (Numb_Incen) [333] are compiled to represent these predictors. 

8. Election Results (Political Predictors) 

Within American politics, progressive ideals often support decarbonization initiatives [379], 

with Democrats being generally more proactive in passing legislation that supports the wind 

energy sector [380]. However, a partisan lens on energy politics can be myopic because some 

Republicans do recognize wind energy’s economic potential [381] and its role in mitigating 

environmental pollutants [87]. The electorate’s attitude toward wind energy is approximated 

using gubernatorial (Rep_Wins) and presidential (Dem_Wins) election results since 1976 

[338] and 2000 [339], respectively. 

9. Government Legislation in Effect (Political Predictors). 

Passing legislation theoretically represents citizens’ interest in wind farm siting decisions 

[382]. Example legislation includes Renewable Portfolio Standards (RPS) that establish 

future targets for total renewable energy capacity [383], and interconnection rules for 

equitable transmission of renewable electricity [384]. Laws such as RPS vary state-by-state 

in terms of stringency, and their importance for driving wind energy sector growth over non-

political drivers, such as resource abundance [385] and the energy market [310], has been 

questioned. As with financial incentives (Section 2.1.7), the existence of common state-level 

regulations (Interconn; Net_Meter; Renew_Port), the number of regulations in effect 

(Numb_Pols), and the stringency of RPS (Renew_Targ) are compiled to represent these 

predictors [333]. 
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10. State Government Lobbies (Political Predictors). 

While the cost competitiveness and maturity of renewable energy are reducing the influence 

of interest groups lobbying for/against them [386], fossil fuel companies can still lose 

revenue if legislators enable wind energy’s expansion [387]. Since clean energy and 

environmental issues are politically intertwined [388], both the number of state-registered 

renewable energy and environmental lobbies (Gree_Lobbs) and the number of registered 

fossil fuel and mining lobbies (Foss_Lobbs) are compiled to represent lobbyism’s effects on 

WiFSS [336]. 

11. Condition of the Workforce (Social Predictors). 

Wind energy development is a force for creating local jobs [389], particularly in rural areas 

with high unemployment rates [390]. Workers in established sectors often possess skills 

easily transferable to the renewable energy sector [391], especially those working in 

manufacturing and construction [392]. However, most jobs created by wind energy 

development are temporary [393], and large mining and extraction workforces may indicate 

potential for pushback against wind energy development [88], rather than a potential to 

retrain workforces. High county-level unemployment rates (Unem_15_19) and large utility, 

construction, and manufacturing workforces (Type_15_19) are assumed to be social benefits 

to WiFSS. 

12. Demographics by County (Social Predictors). 

While Sokoloski et al. [394] find that older demographics are associated with lower wind 

energy support, Brannstrom et al. [395] find this link to lack statistical significance. 

Statistical significance similarly lacks in studies that find greater support for wind energy in 

the United States among women [396,397], and among Black, Indigenous and People of 
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Color (BIPOC) [398]. These demographic groups are represented among WiFSS-LRCA's 

predictors (Avg_25; Fem_15_19; Hisp_15_19; Whit_15_19). Variability in actual public 

opinions is also represented using county-level responses to questions about Renewable 

Portfolio Standards (supp_2018) [339]. 

3.2. Data Pre-Processing and Aggregation. 

The selected datasets come in a variety of data types and resolutions, as shown by Tables 5a and 

5b, necessitating their aggregation to a shared format usable by WiFSS-LRCA. This 

dissertation’s process of raw dataset collection, pre-processing, and aggregation takes cues from 

Plassin et al.’s [77] construction of an integrated geodatabase for the Rio Grande Basin, with a 

similar purpose of facilitating repeated experiments in the hands of end-users (see Section 1.2). 

Other WiFSS studies have performed this aggregation by converting all datasets into a raster 

format for continuous WiFSS evaluation in space [58], or by applying datasets to wind turbine 

point locations to evaluate their likelihood of acceptance [62]. For WiFSS-LRCA, all datasets 

were aggregated over a gridded surface covering a single U.S. state or the CONUS, with the 

suitability for each grid cell containing a commercial wind farm calculated by the model’s LR 

equation. Previous contexts for applying an LR equation to aggregated grid cell data include 

modeling grassland fire occurrence [399], erosion susceptibility [400], and radon potential in 

rocks [401]. WiFSS-LRCA enlists hexagonal grid cells for their minimization of edge effects 

along state and coastal borders [402], and for better approximation of radial distance between 

wind farms and spatial features (e.g., transmission lines, roads, power stations) compared to 

square grid cells [403]. Hexagonal surfaces covering a single U.S. state (or the CONUS) that 

illustrate the probabilities of commercial wind farm occurrence (i.e., WiFSS surfaces), and the 

grid cells projected to acquire wind farms by the year 2050, are WiFSS-LRCA’s primary outputs. 
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Performing the dataset aggregation at 20 different grid cell resolutions allows WiFSS-LRCA’s 

sensitivity to commercial wind farm capacities (in Megawatts (MW)) to be tested [404]. Typical 

commercial wind farm density (in acres/MW) in the CONUS varies, quoted as 30 acres/MW by 

the National Renewable Energy Laboratory [405] and as 85 acres/MW by the University of 

Michigan [406]. The United States Wind Turbine Database [73] is used to express the CONUS’ 

present range of commercial wind farm capacities as quintiles (20th to 100th percentile). These 

quintiles and quoted densities are used to define WiFSS-LRCA’s 20 grid cell resolutions (in 

acres), summarized in Table 6. Aggregating the predictors’ datasets at multiple resolutions has 

two benefits: 1) the sensitivity of WiFSS-LRCA to grid cell size can be examined; and 2) the 

performance of custom model projections can be diagnosed, which is useful to end-users wishing 

to investigate important predictors and suitable locations for a specific wind farm size. 

 

 

 

 

  Wind Farm Capacity, MW (Percentile) 

 x 
30 

(20th) 
90 

(40th) 
150 

(60th) 
200 

(80th) 
520 

(100th) 

Wind 
Farm 

Density, 
acres/MW 

25 750 2250 3750 5000 13000 

45 1350 4050 6750 9000 23400 

65 1950 5850 9750 13000 33800 

85 2550 7650 12750 17000 44200 

 
Table 6: Area of an individual hexagonal grid cell 

(in acres) for all 20 aggregations of WiFSS-LRCA’s 

predictors. 
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Some datasets required pre-processing before aggregation onto the hexagonal grid cells: 

• Bat/Bird Habitat Range Count (Bat_Count; Bird_Count) – the USGS Gap Analysis Project 

maintains habitat ranges of bird and bat species as separate shapefiles [322]. Each dataset 

layer was combined to produce a single shapefile, allowing for counts of the number of 

species found over each grid cell. 

• Average Elevation and Proportion of Rugged Land (Avg_Elevat; Prop_Rugg) – Digital 

Elevation Model rasters with a one arc-second (30-meter) resolution [79] were merged to 

create one large elevation dataset, from which a land slope raster across the CONUS was also 

derived. Raster cells with a land slope greater than 7% were classified as unsuitable (“N”, 

otherwise suitable (“Y”)) for commercial wind farm construction [55,125]. 

• Population Density by County (Dens_15_19) – besides spatially joining to a shapefile of the 

CONUS’ county borders (Section 3.1.1), the annually-averaged populations from 2015-2019 

of each county [82] were divided by its surface area to calculate population density for each 

county separately. 

• Proportion of Undevelopable Land (Undev_Land) – WiFSS-LRCA considers forested [354], 

riverine [254], urban [48], and wetland [355] land cover types to be unsuitable for wind 

energy development. The National Land Cover Database raster [80] was thus reclassified 

such that raster cells possessing any of these four land types were assigned 0, and all others 

were assigned 1. 

The applied aggregation method depends on each predictor’s datatype (raster, vector (shapefile), 

or tabular), and whether said predictor is quantitative or Boolean. Predictors of raster datatype 

(Avg_Elevat; Avg_Temp; Avg_Wind; Prop_Rugg; Undev_Land) were averaged over the area of 
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each grid cell to yield a mean cell value. Vector datasets representing proximity to commercial 

wind farms (i.e., all “Distance to Infrastructure” predictors and Near_Plant) are quantitative and 

were thus aggregated as the distance between a grid cell’s centroid and the closest relevant 

physical feature. The “Power Plant Maturity” predictors (also vector datasets) were aggregated as 

the age of the closest wind farm and non-wind power plant to this centroid. Vector datasets 

representing Booleans (Critical; Historical; Military; Mining; Nat_Parks; Trib_Land; 

Wild_Refug; ISO_YN) were aggregated as whether or not a grid cell overlapped with each of 

these features and were thus assigned “Y” (yes) or “N” (no). The vector datasets for Bird_Count 

and Bat_Count were unique, with each grid cell acquiring the number of overlapping feature 

layers (each layer represents a single species). The remaining predictors, all of tabular datatype, 

were aggregated based on overlapping features, whether Boolean (In_Tax_Cre; Tax_Prop; 

Tax_Sale; Interconn; Net_Meter; Renew_Port) or quantitative (Dens_15_19; Cost_15_19; 

Farm_15_19; Prop_15_19; Numb_Incen; Rep_Wins; Dem_Wins; Renew_Targ; Numb_Pols; 

Foss_Lobbs; Gree_Lobbs; Type_15_19; Unem_15_19; Fem_15_19; Hisp_15_19; Avg_25; 

Whit_15_19; supp_2018). Figure 8 illustrates the outcome of this aggregation for four of WiFSS-

LRCA’s 47 predictors, each at a different grid cell resolution. All aggregated data serve as 

independent variables of WiFSS-LRCA’s logistic regression equation. 

3.3. The Logistic Regression Equation. 

One of the core components of WiFSS-LRCA is its binary logistic regression equation. The 

model uses this LR equation to calculate the probability of each grid cell of a hexagonal surface 

containing a commercial wind farm, such that the logit of this probability is a function of the 

linear combination of the aggregated predictors [93]. The binary dependent variable is the 
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probabilistic identification of wind turbines contained in the United States Wind Turbine 

Database [73]. Equation 1 below is the LR equation applied to all grid cells in any study area:  

𝑃𝑖 =
1

1 + exp(𝑍𝑖)
, where𝑍𝑖 = 𝑌0 +∑𝑌𝑗𝑥𝑖𝑗

𝑘

𝑗=1

(𝟏) 

Figure 8: Aggregations of four of the predictors that comprise WiFSS-LRCA’s 

aggregated dataset, for CONUS-level model runs at different resolutions, zoomed into the 

Southeast United States. From top-left to bottom-right are the aggregations of National 

Park Locations (Nat_Parks), Distance to the Nearest Airport (Near_Air), Gubernatorial 

Election Results by State (Rep_Wins), and Support for Renewable Portfolio Standards by 

County (supp_2018). Hexagonal grid cell sizes are given on each map (see Table 6). 

Basemap from Esri [407]. 



74 

where 𝑃𝑖 is the probability computed for grid cell 𝑖, 𝑍𝑖 is the sum of the linear combination of 

predictors, 𝑌0 is the intercept, 𝑌𝑗 is the coefficient of predictor 𝑗, 𝑥𝑖𝑗 is the value of predictor 𝑗 in 

grid cell 𝑖, and 𝑘 is the number of predictors.  

The aggregated predictor datasets (see Section 3.1.1) and the binary dependent variable must 

satisfy four crucial assumptions before application to Equation 1. Firstly, grid cells containing 

extreme data values are preemptively identified before training and testing WiFSS-LRCA, thus 

reducing the risk of these outlying data affecting the model’s parameterization [408]. WiFSS-

LRCA excludes these identified grid cells based on a Cook’s distance test [409]. Secondly, 

aggregated data for any pair of independent variables must lack multicollinearity, i.e., predictors 

must not be strongly correlated with each other. WiFSS-LRCA assesses pairwise 

multicollinearity by computing Variance Inflation Factors (VIFs) for all pairs of predictors [410], 

such that each pair with a VIF above 10 [411] is removed from the LR equation. Thirdly, WiFSS-

LRCA verifies that a linear relationship exists between the continuous predictors and 𝑃𝑖 with a 

Box-Tidwell test [412], with the test’s threshold p-value for assessing linearity modified by 

applying a Bonferroni correction [63]. This linearity assumption is more robust at higher grid cell 

resolutions and in U.S. states containing more wind farms, since having more grid cells in both 

classes of the dependent variable reduces the risk of quasi-complete separation [413]. WiFSS-

LRCA removes continuous independent variables that breach this assumption. Finally, the 

aggregated data must be independent, meaning a predictor must not be constant across all grid 

cells [414], otherwise the predictor has no effect on the binary dependent variable. Predictors 

lacking independence are again removed prior to training and testing Equation 1. Any attempt at 

running WiFSS-LRCA applies these four assumptions to the predictor datasets as a first step. 
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3.3.1. Calibration, Validation, and Analysis of LR Equation Performance. 

Meeting this dissertation’s purpose of projecting wind farm siting futures (see Section 1.2) 

requires that WiFSS-LRCA’s logistic regression equation can correctly predict the locations of 

existing commercial wind farms. WiFSS-LRCA thus trains and tests its LR equation in the 

model’s first iteration. The training step samples 75% of all hexagonal grid cells (over a single 

U.S. state or the CONUS) to calibrate predictor coefficients for Equation 1 (𝑌1, 𝑌2, … , 𝑌𝑘) that 

maximize its goodness-of-fit [415]. Each training grid cell sample contains a stratified number of 

grid cells that possess a wind farm [416], thus ensuring that the LR equation’s calibrated 

coefficients reflect grid cells that do and do not contain wind farms. Goodness-of-fit assessment 

requires computing the log-likelihood ratio (𝜆) of the trained LR equation (all predictors) versus 

a null version of the same equation (intercept only), computed using Equation 2 [417]: 

𝜆 = −2 ln (
𝑛𝑢𝑙𝑙𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑
)(𝟐) 

where the statistical significance (p < 0.05) of 𝜆 assumes a chi-square distribution [418]. 

McFadden’s Adjusted Pseudo R-squared (𝑅𝑀𝐹𝐴
2 ) re-expresses 𝜆 as a bounded value; WiFSS-

LRCA uses McFadden’s version for its numerator adjustment based on the number of predictors 

(𝑘) [419], as shown in Equation 3: 

𝑅𝑀𝐹𝐴
2 = 1 −

ln(𝑡𝑟𝑎𝑖𝑛𝑒𝑑𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑) − 𝑘

ln(𝑛𝑢𝑙𝑙𝑚𝑜𝑑𝑒𝑙𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑)
(𝟑) 

Random selection of training grid cells for logistic regression necessitates repeating this 

calibration process 30 times [420], a standard sample size for deriving sample statistics [421]. 

These statistics are the median coefficients that maximize the LR equation’s goodness-of-fit, as 

well as the number of times the trained model outperforms the null model. 
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WiFSS-LRCA illustrates the range of coefficients obtained from these repeated calibrations by 

computing Odds Ratios (ORs) for each predictor. ORs quantify how strongly associated unit 

changes in a predictor are with the likelihood of a binary event (i.e., a grid cell containing a wind 

farm) taking place [422]. Sperandei [423] notes ORs to be a standard approach of representing 

effects on a binary event within an LR equation, with an odds ratio below (above) one signifying 

a lower (greater) chance of the binary event’s occurrence [424]. As such, ORs provide important 

insight into the geographical properties (e.g., wind speed, state legislature, infrastructure, etc.) 

associated with WiFSS-LRCA’s projected wind farm siting futures, one of this dissertation’s 

purposes (see Section 1.2). Tables 7a and 7b summarize expected median ORs for each predictor, 

and reasons for each expectation, to be compared to the ORs produced by WiFSS-LRCA. 

Calibration of the LR equation is followed by WiFSS-LRCA using the remaining 25% of grid 

cells to validate this equation’s ability to correctly predict which grid cells contain commercial 

wind farms. Validation using these testing grid cells gives credence to the WiFSS surfaces later 

constructed by WiFSS-LRCA. The model enlists two metrics to perform this validation: 

• The Receiver Operating Characteristic (ROC) – a plotted summary of the LR equation’s 

ability to correctly classify grid cells as containing a wind farm across multiple classification 

thresholds [425]. Testing thresholds from 0 to 1 identifies changing proportions of Type 1 

errors, as well as the probability that maximizes correct grid cell classifications [426]. 

Accompanying ROC is the Area Under Curve (AUC) statistic, with a greater AUC 

suggesting a high rate of correct grid cell classification at more thresholds [427].  

• Confusion Matrices – a presentation of the number of (in)correctly classified testing grid 

cells at a given threshold [428]. The probability that maximized grid cell classification 

accuracy when constructing the ROC curves is used by WiFSS-LRCA to present the number 
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Predictor (Codename) 
Greater 
Than 1? 

Less 
Than 1? 

Explanation 

Critical Habitats  
(Critical) 

 ✓ 
Wind farms present risks to breeding and 

ecosystem fragmentation. 

Historical Landmarks 
(Historical) 

 ✓ 
Spaces and objects protected from 

development by federal law. 

Military Installations (Military)  ✓ 
Greater risk of collision and radar detection 

hazards. 

Mining Operations (Mining)  ✓ Weaker foundations for turbine towers. 

National Parks (Nat_Parks)  ✓ 
Natural spaces protected from excessive 

human development. 

Population Density by County 
(Dens_15_19) 

 ✓ 
Too much urbanization to allow for large 

commercial wind farms. 

Tribal Lands 
 (Trib_Land) 

 ✓ 
Bureaucratic inefficiency can limit wind 

energy development. 

Wildlife Refuges (Wild_Refug)  ✓ 
Wind farms present risks to breeding and 

ecosystem fragmentation. 

Average Elevation (Avg_Elevat) ✓  Greater wind speed at higher altitudes. 

Average Temperature 
(Avg_Temp) 

✓  Lower blade icing risk. 

Average Wind Speed 
(Avg_Wind) 

✓  Greater energy source to capture. 

Bat Habitat Range Count 
(Bat_Count)  ✓ 

Habitat disruption risk (collisions, predation 
behavior, barotrauma). Bird Habitat Range Count 

(Bird_Count) 

Proportion of Rugged Land 
(Prop_Rugg) 

 ✓ 
Lack of flat open spaces for wind farm 

construction. 

Proportion of Undevelopable 
Land (Undev_Land) 

 ✓ 
Harder to build wind farms in forests, 

wetlands, rivers, and urban areas. 

Nearest Airport (Near_Air) ✓  Less concern for navigation disruption. 

Nearest Hospital (Near_Hosp) ✓  Setback distance laws are less of a concern. 

Nearest Major Road 
(Near_Roads) 

 ✓ 
Transporting construction and maintenance 

materials becomes more expensive. 

Nearest Major Transmission 
Line (Near_Trans) 

 ✓ 
More costly to connect wind farms to the 

electricity grid. 

Nearest School 
 (Near_Sch) 

✓  Setback distance laws are less of a concern. 

Age of the Nearest (Non-Wind) 
Power Plant (Plant_Year) 

✓  Wind farms are a candidate to replace 
old/failing power plants. 

Age of the Nearest Wind Farm 
(Farm_Year) 

✓  Wind energy infrastructure is more mature 
and established. 

 

Table 7a: Expected odds ratios produced by WiFSS-LRCA, assuming a unit 

increase in each predictor. Note that Boolean predictors (Y/N see Table 5a/5b) 

are re-expressed by the model such that N = 0 and Y = 1.  
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Predictor (Codename) 
Greater 
Than 1? 

Less 
Than 1? 

Explanation 

Electricity Cost (Cost_15_19) ✓  Electricity from wind provides a cheaper 
alternative. 

Independent System Operator(s) 
(ISO_YN) 

✓  Monitoring of fair electricity prices and 
transmission is in effect. 

Nearest (Non-Wind) Power Plant 
(Near_Plant) 

✓  Reduced competition for providing local jobs 
and cheap electricity. 

Farmland Value (Farm_15_19)  ✓ 
Wind farm development is a less profitable 

means of using the land. Property Value (Prop_15_19) 

Investment Tax Credits (In_Tax_Cre) 

✓  
Economic supports from government and 

utilities make wind energy development more 
affordable. 

Property Tax Exemptions (Tax_Prop) 

Sales Tax Abatements (Tax_Sale) 

Total Number of Incentives 
(Numb_Incen) 

Gubernatorial Election Results by 
State (Rep_Wins) 

 ✓ 
Republicans tend to be less supportive of 

wind energy development. 

Presidential Election Results by 
County (Dem_Wins) 

✓  Democrats tend to be more supportive of 
wind energy development. 

Interconnection (Interconn) 

✓  Political will exists to ensure that growth of 
the wind energy sector is supported. 

Net Metering (Net_Meter) 

Renewable Portfolio Standard 
(Renew_Port) 

Size of Renewable Portfolio Standard 
Target (Renew_Targ) 

Total Number of Statewide 
Legislative Pieces (Numb_Pols) 

Fossil Fuel Lobbies (Foss_Lobbs)  ✓ 
More organizations are influencing  politics 

against wind energy development. 

Green Lobbies (Gree_Lobbs) ✓  More organizations are influencing politics  in 
favor of wind energy development. 

Employment Type by County 
(Type_15_19) 

✓  A greater number of people possess 
employable, transferable skills. 

Unemployment Rate by County 
(Unem_15_19) 

✓  Opportunity exists to create new jobs, 
especially in poverty-stricken areas. 

Percent Female Population 
(Fem_15_19) 

✓  Younger, marginalized demographics tend to 
be more supportive of renewable energy. 

Percent Hispanic Population 
(Hisp_15_19) 

Percent of Population Under 25 
(Avg_25) 

Percent White Population 
(Whit_15_19) 

 ✓ 
Support for renewable energy tends to be 

higher among BIPOC. 

Public Support for Renewable 
Portfolio Standards (supp_2018) 

✓  Support from communities for wind energy 
growth is likely to be higher. 

 

Table 7b: Same as Table 7a but for the remaining predictors. 
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of true/false positive/negative testing grid cell classifications. Confusion matrices provide a 

non-spatial summary of accuracy by comparing expected and observed grid cell states [429].  

As with the calibration step, these two metrics are computed by WiFSS-LRCA 30 times to 

account for randomness in testing grid cell samples [420], thus validating the LR equation’s 

performance based on median confusion matrices, ROC curves, and AUC statistics. Following 

validation is use of the LR equation to calculate the probability of commercial wind farm 

occurrence across all grid cells in the selected study area. WiFSS-LRCA constructs four 

boxplots, with one plot for each of the four grid cell classifications (true/false positive/negative). 

If the equation’s grid cell classifications are robust, then these boxplots will illustrate a 

statistically significant difference in the rank order of the true positive and false positive (true 

negative and false negative) plots (p < 0.05), according to a Mann-Whitney U-test [430]. 

Statistically significant differences suggest a non-random reason for WiFSS-LRCA correctly 

classifying the highest (lowest) probability grid cells as containing (not containing) a commercial 

wind farm. Possible reasons come from interpreting the ORs obtained from calibrating the LR 

equation, with large OR values suggesting predictors having strong associations with predicted 

grid cell states, thus providing a geographical basis for WiFSS-LRCA’s outcomes. It should be 

noted that this calibration, validation, and analysis of model performance are done in WiFSS-

LRCA’s first iteration, meaning that they are only representative of the model’s ability to 

construct wind farm site suitability surfaces that reflect present conditions. 

3.3.2. WiFSS Surface Construction and Model Caveats. 

The probabilities computed for all grid cells by Equation 1 are used by WiFSS-LRCA to create a 

map of present WiFSS across the selected study area. Doing so is beneficial to end-users 

interested in assessing present suitability for wind energy development in addition to future 
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suitability, while also presenting the outcomes of the trained and tested LR equation in a more 

accessible format, again being purposes laid out for this dissertation (see Section 1.2). 

Furthermore, a high rate of correct classification suggested by the present WiFSS map, as well as 

the aforementioned metrics, should mean that future wind farm locations projected by WiFSS-

LRCA should reflect the predictors most strongly associated with wind farm siting decisions. 

Constructing a map of present WiFSS yields three key outputs (as shown in an example for 

Wyoming in Figure 9): 

1. The probability (WiFSS) of a given grid cell containing a commercial wind farm in WiFSS-

LRCA’s first iteration (“Probab”). 

2. The classification of a grid cell as true positive, false positive, true negative, or false negative 

(“Cell_State”), as classified when creating the boxplots (see Section 3.3.1). 

3. The Getis-Ord (Gi*) statistic [431] computed for each grid cell, to assess statistically 

significant (p < 0.05) clustering of grid cells classified as true positive or false positive 

(“GiZScore”, “GiPValue”). Clusters of grid cells with high Gi* scores suggest high-

probability grid cells being scored as such due to commonly suitable conditions for wind 

farm siting. Applications of Gi* to identify clustered probabilities generated from LR range 

from juvenile delinquency [432] to leptospirosis infection [433]. 

There exist two caveats to training and testing an LR equation and then using it to construct 

suitability surfaces. Firstly, running the LR equation at the state-level is only possible in U.S. 

states that contain at least two grid cells that overlap with commercial wind farms, otherwise the 

stratified training and testing datasets cannot be produced [416]. As such, unless performing a 

CONUS model run, present WiFSS cannot be assessed using WiFSS-LRCA for the following 
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U.S. states: Alabama, Arkansas, Connecticut, Delaware, Florida, Georgia, Kentucky, Louisiana, 

Mississippi, New Jersey, Rhode Island, South Carolina, Tennessee, and Virginia. Secondly, 

WiFSS-LRCA excludes certain predictors when applied over an individual U.S. state rather than 

the CONUS, as summarized in Table 5a/5b. Of the 47 predictors enlisted in CONUS runs of 

WiFSS-LRCA, 32 are used in state-level runs. The other 15 predictors consist of datasets too 

coarse (e.g., state-averaged farmland values (Farm_15_19), number of state government lobbies 

(Foss_Lobbs; Gree_Lobbs)) to vary over a single U.S. state. Including these 15 predictors would 

invalidate LR’s assumption of independent observations [414].  

Figure 9: Example fields of the hexagonal gridded surface produced by WiFSS-LRCA’s 

first iteration over the state of Wyoming. From top-left to bottom-right are the grid cell 

classifications (Cell_State), grid cell probabilities (Probab), and the Getis-Ord z-scores and 

p-values (GiZScore; GiPValue). Hexagonal grid cell sizes are given on each map (see Table 

6). Basemap from Esri [407]. 
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3.4. Projections using Logistic Regression-Cellular Automata. 

The other core component of WiFSS-LRCA is its cellular automata, the means of updating a 

hexagonal grid using a set of transition rules [67]. The CA iteratively convert grid cells to acquire 

a commercial wind farm (excluding cells that already possess one) to thus project patterns of 

future wind energy development. WiFSS-LRCA performs six iterations after its first one (see 

Section 3.3), each one representing a five-year wind farm installation timestep [340] from the 

years 2025 to 2050. The grid cells that experience binary land-use change in each iteration are 

those with the greatest probability of obtaining a wind farm. The number of grid cells that change 

state in each timestep is based on projected wind energy capacity gains from the United States 

Department of Energy’s Wind Vision report [92] and the grid cell sizes defined in Table 6, 

although the overall results may vary since these gains are customizable by end-users. Using CA 

to modify grid cell states based on a prescribed demand, i.e., gained wind energy capacity every 

five years, has precedent in studies by Barredo et al. [66] and Shu et al. [75], both of whom 

imposed an external increase in urban area to determine the number of cells that became 

urbanized in each iteration. Equation 4 summarizes the transition rules applied by the CA to all 

grid cells during each iteration of WiFSS-LRCA: 

𝑃𝑟𝑜𝑏𝑖
𝑡 = 𝐶𝑜𝑛𝑠𝑡𝑖 ∗ 𝑁𝑒𝑖𝑔ℎ𝑏𝑖

𝑡 ∗ 𝑃𝑖 (𝟒) 

𝑃𝑟𝑜𝑏𝑖
𝑡 is the probability of grid cell 𝑖 obtaining a wind farm during timestep 𝑡, 𝐶𝑜𝑛𝑠𝑡𝑖 is whether 

wind energy development is constrained in the grid cell, 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 is the neighborhood effect 

factor of the grid cell computed using surrounding grid cell states, and 𝑃𝑖 is computed using 

Equation 1, the latter representing the CA’s “equation-based” transition rule [434]  (𝐶𝑜𝑛𝑠𝑡𝑖 and 

𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 are described below). If grid cell 𝑖 already contains a commercial wind farm, Equation 
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4 is not applied. WiFSS-LRCA assumes that current constraints on wind energy development 

persist in future, hence 𝐶𝑜𝑛𝑠𝑡𝑖 does not update with each iteration. 

WiFSS-LRCA accounts for unfeasible wind energy development in certain grid cells using 

constraints (𝐶𝑜𝑛𝑠𝑡𝑖). Representing predictors as Boolean constraints on wind energy 

development is common in GIS-MCDA approaches to WiFSS (see Section 2.1.1), such that 

constructing the composite suitability surface illustrates areas in which this development is 

impossible or not recommended, such as wildlife refuges [233], areas too far from transmission 

lines [236], or places with low average wind speeds [48]. In modeling studies that use CA, a 

constraint transition rule assigns a value of 0 to all grid cells that violate at least one constraint, 

while assigning 1 to those that do not [435], with the constraints similarly representative of 

conflicting land-use [436]. Table 8 details the predictors used as WiFSS-LRCA’s default Boolean 

constraints. The selected predictors and the (numerical) values that define each constraint follow 

from the systematic review [40] (see Section 2.2) and from the wider literature. If the aggregated 

predictor data in grid cell 𝑖 violate just one of these constraints, 𝐶𝑜𝑛𝑠𝑡𝑖 is set as 0 (otherwise set 

as 1), meaning 𝑃𝑟𝑜𝑏𝑖
𝑡 equals 0 in all timesteps. These constraints are fully customizable as part 

of this dissertation’s purpose of preparedness for experimentation by end-users (see Section 1.2). 

The neighborhood effect term of Equation 4 (𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡) represents the influence that nearby grid 

cells have on the binary state of grid cell 𝑖, intended to approximate a decaying influence on 

land-use change with increasing distance [69]. A CA model’s output is sensitive to both the 

selected neighborhood size (e.g., 2x2 cells versus 3x3 cells) [437] and the prescribed 

neighborhood shape (e.g., Moore versus von Neumann) [438]. This dissertation uses a hexagonal 

neighborhood shape, given WiFSS-LRCA’s use of hexagonal grid cells. Example applications of 

hexagonal neighborhoods in CA studies range from simulating traffic flows [439] to floodwater 
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dynamics [440], with Nugraha et al. [441] noting an equivalent (if not improved) simulated 

positional accuracy of hexagonal CA neighborhoods versus other prescribed shapes. Values of 

𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 in each iteration are calculated by WiFSS-LRCA using Equation 5, which defines the 

neighborhood effect transition rule. The equation comes from the formulation given by Shu et al. 

[76], altered for a hexagonal neighborhood shape: 

𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 =

∑ (𝐶𝑒𝑙𝑙𝑖 = 𝑤𝑖𝑛𝑑𝑓𝑎𝑟𝑚)𝑛

3𝑛(𝑛 + 1)
(𝟓) 

The numerator is the total hexagons in grid cell 𝑖’s neighborhood that contain a wind farm, the 

denominator is the total number of neighboring cells, and 𝑛 is the neighborhood size. 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 

Predictor Constraint Value Source(s) 

Nearest Airport < 2,500 meters [44,47,233] 

Nearest Hospital < 2,500 meters [359] 

Nearest Major Road 
< 500 meters AND >10,000 

meters 
[216,236,240] 

Nearest Major Transmission Line 
< 250 meters AND >10,000 

meters 
[233,236,272] 

Nearest School < 2,500 meters [359] 

Nearest (Non-Wind) Power 

Plant 
> 10,000 meters [222,255] 

Critical Habitats Prohibited (N) [125,265] 

Historical Landmarks Prohibited (N) [47,257] 

Military Installations Prohibited (N) [191,272] 

Mining Operations Prohibited (N) [24,246] 

National Parks Prohibited (N) [125,265] 

Tribal Lands Prohibited (N) [346] 

Wildlife Refuges Prohibited (N) [233,265] 

Average Elevation > 2,000 meters [110,216,233] 

Average Temperature < 0 °C [350] 

Average Wind Speed < 4 m/s [48,56,111] 

 
Table 8: Default Boolean constraints of WiFSS-LRCA when applied over a given grid 

cell. Sources are given for the value that defines each constraint. 
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takes a range of values from 0 to 1, depending on how many neighboring grid cells contain a 

wind farm. Since applying Equation 4 causes the highest-probability grid cells to obtain wind 

farms up to the prescribed demand, 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 values for all grid cells are updated before the next 

model iteration. It is the neighborhood effect term that allows WiFSS-LRCA to account for 

cluster-like patterns of land use change [72], i.e., the assumption that future commercial wind 

farms will continue to be installed in common geographical regions across the CONUS [73]. 

Completing all six iterations yields a map of grid cells projected to obtain commercial wind 

farms across a given U.S. state or the CONUS by the year 2050. Projections may cease before 

the sixth iteration if all remaining grid cells violate the set constraints, or none are left within the 

neighborhoods of current or projected wind farms. Example maps produced by running  

WiFSS-LRCA out to the year 2050 over Oklahoma are shown in Figure 10, which like the maps 

of present WiFSS shown in Figure 9 possess several key fields: 

1. The grid cells eligible to gain a commercial wind farm, based on WiFSS-LRCA’s 

constraint rule and the default constraints given in Table 8 (“Constraint”). 

2. The value of 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 computed for each grid cell using Equation 5, presented for the 

first (“Neighborhood”) and final (“Neighb_Update”) iterations of WiFSS-LRCA. 

3. The WiFSS surfaces constructed in every iteration of WIFSS-LRCA, consisting of the 

values of 𝑃𝑟𝑜𝑏𝑖
𝑡 calculated for each grid cell (“Probab_2025”, ”Probab_2030”, 

”Probab_2035”, “Probab_2040”, “Probab_2045”, “Probab_2050”). 

4. The grid cells projected to gain commercial wind farms by WiFSS-LRCA’s final 

iteration, with grid cell color identifying the iteration in which land-use change takes 

place (“Wind_Turb_Fut”). 



86 

Maps like those in Figure 10 can be produced by WiFSS-LRCA for any study area (U.S. state or 

CONUS), or grid cell resolution (defined in Table 6) of interest and are the primary output of this 

model. It is through creating these maps that this dissertation realizes its purposes (see Section 

1.2), namely to project and illustrate wind farm siting futures to assist decision-makers and to 

show that models that incorporate cellular automata can be developed for spatial scales larger 

than in LRCA’s previous applications.  

Figure 10: Example fields of the hexagonal gridded surface produced by WiFSS-LRCA’s 

iterations out to 2050 over the state of Oklahoma. From top-left to bottom-right are the grid 

cells constrained for future wind energy development (Constraint), neighborhood effect 

factors by the final iteration (Neighb_Update), the constructed WiFSS surface 

(Probab_2050), and projected wind farm locations by the year 2050 (Wind_Turb_Fut). 

Hexagonal grid cell sizes are given on each map (see Table 6). Basemap from Esri [407]. 
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3.5. Sensitivity Analysis. 

3.5.1. Scenario Building and Sensitivity to Model Parameters. 

The many components of WiFSS-LRCA (e.g., grid cell size, neighborhood size, predictors, etc.) 

mean that its projections may be sensitive to how these components are defined. Sensitivity 

analysis aims to “establish overall behavior of a system or model to the variation of a parameter” 

[442, p.720], which WiFSS-LRCA addresses partially through incorporation of scenarios that 

modify the fitted coefficients obtained from training the model’s LR equation (see Section 3.3). 

Some of the predictors enlisted by WiFSS-LRCA are likely to change between now and 2050, 

meaning their influences on WiFSS are unlikely to be static, such as transmission line networks 

expanding to meet electricity demand [356], continued changes in overall attitudes toward 

renewable energy [23], and climate change’s impacts on wind energy generation [430]. Hence, 

modifying these predictors’ coefficients between iterations, and by extension their association 

with whether a grid cell contains a wind farm, is a means of representing this non-static 

influence. Urban growth applications of LRCA modeling often enlist scenarios that assume 

various future growth dynamics [66,70], which WiFSS-LRCA emulates by prescribing arbitrary 

percent changes to the coefficients in Equation 1 between timesteps. Ten scenarios constructed 

for WiFSS-LRCA are summarized in Table 9, with each scenario representing a group of 

predictors that have related effects on wind farm siting decisions. A default percent change of 

±10% to each predictor coefficient is used in each scenario, unless otherwise specified, with 

signs derived from the expected ORs for each predictor (OR > 1 means positive sign, and vice 

versa; Tables 7a and 7b). Average Elevation (Avg_Elevat) and Proportion of Rugged Land 

(Prop_Rugg) are absent from these conceived scenarios, because their rate of change is 

negligible over a 30-year study period. 
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Scenario Description Predictor % Change (+/-) 

Changing 

Energy 

Economies 

Older forms of energy generation age out, and a demand grows 

for green energy and green jobs. 

Dens_15_19 - 

Farm_Year + 

ISO_YN + 

Plant_Year + 

Type_15_19 + 

Unem_15_19 - 

Climate Change 
Temperature and wind speed increase, and bird and bat habitats 

are increasingly threatened. 

Avg_Temp + 

Avg_Wind + 

Bat_Count - 

Bird_Count - 

Demographic 

Changes 

Demographics that are statistically more supportive of wind 

energy projects comprise a greater amount of local populations. 

Avg_25 + 

Hisp_15_19 + 

Fem_15_19 + 

Whit_15_19 - 

Nationwide 

In model runs performed for the CONUS, predictors with effects 

at a nationwide level, such as legislation in effect, lobbyism, and 

land value are implemented as an extra scenario. 

Cost_15_19 + 

Farm_15_19 - 

Foss_Lobbs - 

Gree_Lobbs + 

In_Tax_Cre + 

Interconn + 

Net_Meter + 

Numb_Incen + 

Numb_Pols + 

Prop_15_19 - 

Renew_Port + 

Renew_Targ + 

Rep_Wins - 

Tax_Prop + 

Tax_Sale + 

Natural and 

Cultural 

Protection 

Protection of land that is historically, culturally, or 

environmentally significant is prioritized as commercial wind 

energy development continues. 

Critical - 

Historical - 

Nat_Parks - 

Trib_Land - 

Undev_Land - 

Wild_Refug - 

New 

Infrastructure 
Roads and transmission lines are built to support development of 

new commercial wind farms. 

Near_Roads + 

Near_Trans + 

Sociopolitical 

Landscape 

Support for wind energy development among politicians and the 

electorate increases. 

Dem_Wins + 

supp_2018 + 

Urban 

Protection 

Wind energy development continues at a distance set far enough 

away from industrial and domestic activities. 

Military - 

Mining - 

Near_Air + 

Near_Hosp + 

Near_Plant + 

Near_Sch + 

Custom A unique set of coefficient changes can be set by an end user. Any Any 

Default 
The coefficients of predictors remain constant, meaning 

projections are driven only by neighborhood effects. 
 

 
 

Table 9: Scenarios constructed to iteratively modify Equation 1’s coefficients. Standard 

percent change is ±10%. The Nationwide scenario cannot be used in model runs over 

individual U.S. states. If the Default or Custom scenario is used, no other scenarios can be 

selected. Percent changes other than ±10% can be specified only in the Custom scenario. 
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In addition to modifying predictor coefficients, several of WiFSS-LRCA’s other parameters are 

also customizable. Listed below are the four customizable parameters of WiFSS-LRCA and 

evidence from the literature of how each of them has been shown to influence CA-based models: 

1. Sensitivity to grid cell size. Pan et al. [443] found that small grid cell sizes can cause land 

use change projected by CA to remain localized to existing patches of the same land type. 

Grid cell size modifications are limited to those listed in Table 6. 

2. Sensitivity to neighborhood size. Wu et al.’s [444] study of CA-Markov modeling of land 

use change in China showed that a grid cell’s neighborhood size more greatly impacts 

land use change potential than grid cell size does. Modification to n in Equation 5 alters 

WiFSS-LRCA’s neighborhood size. 

3. Sensitivity to constraints. By loosening or disabling the default constraints in Table 8, 

more grid cells become candidates to acquire wind farms in any model iteration, i.e., 

𝐶𝑜𝑛𝑠𝑡𝑖 = 1 for more grid cells, as similarly noted by Li and Yeh [435]. 

4. Sensitivity to scenario setups. Allowing certain coefficients to change between iterations 

(i.e., selecting only some of the scenarios in Table 9), rather than none or all of them, 

would affect computed 𝑃𝑖 values (and thus of 𝑃𝑟𝑜𝑏𝑖
𝑡) in each iteration, and thus 

potentially affect which grid cells acquire wind farms first. 

The value of integrating such sensitivity analysis into WiFSS-LRCA’s design is twofold: 1) 

determination of which components of the model are the most consequential to projected 

commercial wind farm locations should they be modified; and 2) allowing end-users to perform 

model projections that meet their specifications and interests in projecting wind energy 

development (e.g., excluding certain constraints, selecting a larger wind farm capacity). 
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This dissertation will examine the consequences to WiFSS-LRCA’s projected commercial wind 

farm locations of modifying each of these parameters, thus determining whether the sensitivities 

observed in the literature above also apply in the present context. Doing so is key to this 

dissertation’s purpose of expanding the use of LRCA modeling to new and larger contexts (see 

Section 1.2), since existing sensitivity analyses of similar models have mostly been performed on 

smaller spatial scales (e.g., city, county) than a U.S. state or the CONUS [435,443,444]. A 

response to model parameters that is consistent with those in the literature would accredit a state 

or national-level scope for future studies using WiFSS-LRCA or similar models. Beyond visual 

inspection, WiFSS-LRCA computes metrics to aid its own sensitivity analysis. Firstly, Getis-Ord 

statistics [430] convey changes in the statistical significance (p < 0.05) of projected clusters of 

future wind farms produced by different parameter setups. For instance, disabling certain 

constraints may allow new commercial wind farms to be projected closer together, thus altering 

the cluster-like growth driven by 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡. Secondly, WiFSS-LRCA computes a Quantity and 

Allocation Disagreement Index (QADI) to numerically represent differences in the number and 

location of grid cells that gain wind farms [445], as an alternative to the now-deprecated Kappa 

index [446]. QADI values are based on comparing projected wind farm locations against those 

produced using a “null” version of Equation 4 that excludes all predictors from 𝑃𝑖. As such, a 

QADI closer to 0 means lower disagreement, indicating 𝑃𝑖’s lack of importance in Equation 4 as 

well as 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 effecting tighter future wind farm clusters. Answering this dissertation’s 

research questions requires knowing the robustness of the supporting evidence, particularly when 

proposing geographical influences on WiFSS-LRCA’s projections (see Section 1.2); sensitivity 

analysis is crucial in the composition of said evidence. 
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3.5.2. Setting Predictor Configurations. 

Projections made by WiFSS-LRCA for a U.S. state or the CONUS are also likely to be sensitive 

to the predictors used to train and test its LR equation. WiFSS-LRCA therefore includes four 

predictor configurations to examine this sensitivity, while also facilitating bespoke projections by 

end-users interested in the effects of specific predictors on the model’s output. The Full 

configuration incorporates all predictors into Equation 1 whose datasets satisfied the assumptions 

of logistic regression (see Section 3.3). Since Wind Speed is considered an important predictor in 

existing WiFSS studies, as it represents the energy resource itself [44,124,218], WiFSS-LRCA 

possesses two more configurations named Wind_Only (Wind Speed is the only predictor in 

Equation 1) and No_Wind (all predictors except for Wind Speed are used in Equation 1). The 

Reduced configuration is a refined set of predictors that maximizes the number of correctly 

predicted grid cell states and true to false positive ratio when assessing WiFSS-LRCA’s 

performance during its validation step (see Section 3.3.1). The Reduced configuration is the most 

complex of the four to construct, created by WiFSS-LRCA as part of its calibration and 

validation in the following steps:  

• In each of the 30 repeats of its calibration, WiFSS-LRCA samples all predictors with 

replacement, with each sample removing the training grid cell data for a different predictor, 

k. As such, WiFSS-LRCA assesses its goodness-of-fit and log-likelihood ratio (see Equation 

2) k times, with each assessment yielding coefficients, 𝑌1 to 𝑌𝑘−1. 

• WiFSS-LRCA compares the log-likelihood ratios obtained used each sampled set of 𝑘 − 1  

predictors against the ratio obtained using the Full predictor configuration. This comparison 

counts the number of times (out of 30 calibration repeats) that the Full configuration yields 

the greater median log-likelihood ratio. In essence, WiFSS-LRCA counts how many times its 
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goodness-of-fit is worsened by removing a given predictor. This approach of refining model 

predictors to obtain a median worsened model performance is based on log-likelihood 

quantization in signal processing studies [447]. 

• WiFSS-LRCA also counts the number of times that this worsened model performance is 

significant, assuming a chi-square distribution and a stopping criterion of p < 0.5 [448] to 

determine said significance. WiFSS-LRCA then orders the predictors by how consequential 

each one’s removal is to the model’s goodness-of-fit, based on the number of times each 

predictor’s removal significantly worsened model performance. 

• Finally, in the validation 30 repeats, WiFSS-LRCA creates confusion matrices using the 

testing grid cell data for all sets of predictors, starting from the predictor whose removal was 

the most consequential and adding predictors consecutively. The predictor set that maximizes 

WiFSS-LRCA’s median correctly predicted grid cell states, based on the median true to false 

positive ratios yielded by the confusion matrices, defines the Reduced configuration. 

There are two benefits to constructing the Reduced predictor configuration, the first being that its 

removal of nonessential predictors reduces the risk of overfitting WiFSS-LRCA to the 

aggregated predictor data. Having too many degrees of freedom, i.e., too many predictors, makes 

effects of individual predictors on model outputs difficult to distinguish, while also exaggerating 

data variations [192]. Secondly, this removal of predictors allows those most pertinent to WiFSS 

over a selected study area to be identified; the Reduced configuration may not retain Wind Speed 

when running WiFSS-LRCA over a U.S. state that generally has weaker winds. As with 

assessing sensitivity to selected scenarios and model parameters, this dissertation examines 

impacts of selecting specific predictors as part of its sensitivity analysis, realized through 

comparing model projections produced using these four predictor configurations. 
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Chapter 4: Results – Prediction Using the LR Equation. 

This chapter covers the outcomes of training and testing WiFSS-LRCA’s Logistic Regression 

equation, with the chapter focusing specifically on this equation for two reasons. Firstly, given 

this dissertation’s purpose of projecting wind farm siting futures that can be explained 

geographically (see Section 1.2), doing so requires determining first that the model can capture 

present wind farm locations. This idea of evaluating WiFSS-LRCA’s performance against true 

wind farm locations is analogous to comparing hindcast climate model runs against historical 

observations before using said climate model for projection [449]. A model that produces limited 

error or uncertainty when compared to observations can be regarded as better at capturing 

present system behavior [450], making the model’s projections of future behavior more 

trustworthy [451]. It is thus important to determine that this model’s LR equation can correctly 

predict present wind farm locations before asserting possible reasons for these predictions and 

before allowing the CA component to project locations for future wind energy development. 

Secondly, this dissertation’s second research question concerns identifying locations across the 

CONUS that are currently the most suitable for building commercial wind farms. Identifying 

suitable locations requires analysis only of WiFSS-LRCA’s output in its first iteration, i.e., that of 

the trained and tested LR equation. Focusing only on the LR equation’s predictions allows for 

questions to be answered about the regions of the CONUS in which WiFSS-LRCA can most 

accurately capture present wind farm locations, which predictors are strongly associated with 

these predictions, and how predictions are impacted by chosen grid cell resolutions and predictor 

configurations. Using a selection of U.S. states and the CONUS as case examples, this chapter 

will address all these questions using figures and tables produced by WiFSS-LRCA in its first 

iteration. An example console output from running WiFSS-LRCA’s LR script is in Appendix A3. 
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4.1. Results from Calibrating the Logistic Regression Equation. 

4.1.1. Goodness-of-Fit. 

According to Smith and McKenna [452], an LR equation has a good fit if its classification of a 

binary outcome statistically significantly improves (assuming a chi-square distribution [418]) 

over a null model. Across all four predictor configurations and most study areas, WiFSS-LRCA’s 

goodness-of-fit showed consistent improvements over the null model, as summarized in Table 

10. The log-likelihood ratio (λ, Equation 2) was frequently statistically significant when using 

larger sets of predictors, particularly the Full configuration, and for study areas with more grid 

cells. The least improvement in goodness-of-fit occurred with the Wind_Only configuration, 

especially in U.S. states with lower wind speeds, such as Maine and New Hampshire [321]. 

Although an 𝑅𝑀𝐹𝐴
2  above 0.2 is a recommended standard for judging a good fit [453], Table 10 

shows that a negative 𝑅𝑀𝐹𝐴
2  can occur despite λ being statistically significant. Negative values 

may result from large log-likelihood (LL) scores (e.g., North Dakota), or from the adjustment for 

𝑘 predictors (Equation 3) having a greater effect on small differences in LL scores (e.g., Maine). 

Generally, WiFSS-LRCA’s goodness-of-fit was most robust under the Full and Reduced 

configurations. 

4.1.2. Observed and Expected Odds Ratios. 

The coefficients obtained from maximizing WiFSS-LRCA’s log-likelihood ratio convey the 

strength of association between each predictor and the binary existence of commercial wind 

farms [422]. Each coefficient’s exponent yields an Odds Ratio (OR), as shown from a CONUS 

model run of WiFSS-LRCA (Figure 11), with green bars signifying a positive association (OR > 

1), and red bars a negative association (OR < 1). The association of Wind Speed (Avg_Wind) 

with a training grid cell containing a wind farm was the strongest, possessing a median OR of  
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9.74. Other strongly positively associated predictors included Total Number of Statewide 

Legislative Pieces (Numb_Pols; OR = 2.64), Size of RPS Target (Renew_Targ; OR = 1.86), and 

Percent White Population (Whit_15_19: OR = 1.42). Important negatively associated predictors 

included Nearest Major Transmission Line (Near_Trans; OR = 0.36), Proportion of 

Undevelopable Land (Undev_Land; OR = 0.38), and Green Lobbies (Gree_Lobbs; OR = 0.49). 

Five of these seven predictors (except for Gree_Lobbs and Whit_15_19) possessed OR values 

that agreed with expectations presented in Tables 7a and 7b; 26 (55.3%) of all 47 predictors 

State 
Predictor 

Configuration 
Median LL, 

(Trained - Null) 
LL Ratio, 

λ 
Times Improved 

(Sig.) 

Median 
Pseudo-R2 , 

R2
MFA 

Maine 

Full 31.22 62.44* 30 (30) -0.02 

No_Wind 33.56 67.11* 30 (30) -0.03 

Wind_Only 1.62 3.25 30 (3) 0.00 

Reduced 26.7 53.40* 30 (30) -0.02 

New 
Hampshire 

Full 10.2 20.39 30 (1) 0.11 

No_Wind 8.11 16.22 30 (0) 0.12 

Wind_Only 0.49 0.99 30 (3) 0.02 

Reduced 1.7 3.39 20 (3) 0.03 

North 
Dakota 

Full 100.27 200.54* 30 (30) -0.36 

No_Wind 77.95 155.89* 30 (30) -0.24 

Wind_Only 49.67 99.34* 30 (30) -0.25 

Reduced 76.91 153.82* 30 (30) -0.35 

Oklahoma 

Full 190.09 380.18* 30 (30) 0.49 

No_Wind 112 223.99* 30 (30) 0.25 

Wind_Only 123.15 246.30* 30 (30) 0.36 

Reduced 140.77 281.54* 30 (30) 0.40 

 

Table 10: Results from calibrating WiFSS-LRCA’s logistic regression equation over 

four states (grid cell size = 13,000 acres, see Table 6), using all four predictor 

configurations. Median log-likelihood (LL) and Pseudo-R2 values were obtained from 

the 30 calibration repeats. “Times Improved” shows the number of times the trained 

model’s LL score exceeded the null model’s score, and the number of times the 

difference was statistically significant (p < 0.05).   

* = Statistically significant LL Ratio (p < 0.05). 
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agreed with these expectations. However, over-interpretation of OR values should be avoided 

when associations are weak (i.e., closer to one) [95], and because of confounding predictors 

potentially influencing each other and/or the dependent variable [96] resulting in spurious 

relationships that cannot be easily explained. Figure 11 typifies runs of WiFSS-LRCA over the 

CONUS, such that predictors like Avg_Wind, Near_Trans, Undev_Land, and Numb_Pols are 

frequently among the predictors most strongly associated with whether or not training grid cells 

contain commercial wind farms. 

Figure 11: Odds Ratio (OR) chart produced from running WiFSS-LRCA over the 

CONUS using the Full predictor configuration (grid cell size = 13,000 acres, see Table 

6). Each bar presents a positive (green, OR = 1) or negative (red, OR = 1) median OR for 

each predictor, with the error bars showing the lower quartile and upper quartile ORs 

obtained from the 30 repeats of the model calibration step. 
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Running WiFSS-LRCA over different states (or locations), such as a model run over Indiana that 

produced Figure 12, shows that these computed ORs are sensitive both to the selected predictor 

configuration and spatial scale, with several notable results: 

• Unlike for the CONUS, Avg_Wind was not the most positively associated predictor when 

running WiFSS-LRCA over Indiana. Public Support for RPS (supp_2018; OR = 7.46), 

Employment Type by County (Type_15_19; OR = 5.20), Whit_15_19 (OR = 3.40), and 

Critical Habitats (Critical; OR = 2.12) were all more positively associated than Avg_Wind 

(OR = 1.87) in WiFSS-LR’s Full (top-left) predictor configuration. 

• The OR of Avg_Wind was much greater in WiFSS-LRCA’s Wind_Only (bottom-left) 

configuration (OR = 6.00). This and the Full configuration suggest that Wind Speed is a less 

important predictor for wind farm siting decisions in Indiana than across the CONUS, a 

difference perhaps attributable to a state versus nationwide spatial scale and/or the smaller 

number of predictors used in state-level model runs (see Tables 5a and 5b) 

• WiFSS-LRCA’s Reduced (bottom-right) configuration retained five of the 32 predictors 

available for state-level runs (Undev_Land, supp_2018, Avg_25, Near_Air, Near_Plant). 

These five predictors maximized WiFSS-LRCA’s ability to correctly classify testing grid 

cells as (not) containing a wind farm. However, Avg_25 lacked the expected OR listed in 

Table 7b, unlike the other four predictors. 

The removal of wind speed for the No_Wind configuration (top-right) did little to the other 

predictors’ ORs, unlike the reduction of predictors to five when applying the Reduced 

configuration to Indiana. Comparing these two configurations shows large changes in median 

ORs, especially for supp_2018 and Undev_Land, with the former decreasing from 7.56 to 4.31  
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(1.75 times weaker association) and the latter increasing from 0.03 to 0.07 (2.33 times weaker 

association). WiFSS-LRCA’s computed ORs were thus sensitive to the number of predictors, the 

selected spatial scale, and somewhat sensitive to the specific predictors added/removed. 

Figure 12: Same as Figure 11, but for runs of WiFSS-LRCA over Indiana using all four 

predictor configurations. From top-left to bottom-right are the results from using the Full, 

No_Wind, Wind_Only, and Reduced configurations. Note that each of these charts possesses 

a different x-axis. 
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4.1.3. Effects of Randomness on the “Reduced” Predictor Configuration. 

Although WiFSS-LRCA mitigates impacts of random grid cell sampling by repeating its 

calibration 30 times [420], and by stratifying its training and testing data [416], the Reduced 

predictor configuration was still sensitive to this randomness. The combination of predictors that 

maximized the number of correctly classified grid cell states (see Section 3.5.2) changed greatly 

in each training grid cell sample, meaning that separate runs of WiFSS-LRCA retained different 

sets (and different numbers) of predictors in their Reduced configurations. Table 11 illustrates 

this sensitivity to randomness based on four separate WiFSS-LRCA runs over California (grid 

cell size = 17,000 acres). Despite the number of predictors ranging from three to 21 (out of 32 

predictors), each configuration produced a similar median accuracy, with 89-93% of California’s 

testing grid cells correctly classified as (not) containing a wind farm. Moreover, the predictors 

most consequential to model performance were consistent between separate WiFSS-LRCA runs, 

with removal of Avg_Wind, Whit_15_19, Independent System Operators (ISO_YN), and Tribal 

Lands (Trib_Land) consistently worsening its goodness-of-fit. As such, while the Reduced 

configuration’s predictor combinations varied widely in separate model runs, impacts on WiFSS-

LRCA’s performance were minimal. The Reduced configuration is therefore robust in its intent to 

retain only the predictors most pertinent to wind farm siting decisions.  

4.2. Results from Validating the Logistic Regression Equation. 

4.2.1. Receiver Operating Characteristics and Sensitivity to Resolution. 

Classification of binary events by an LR equation is better than random chance if the computed 

AUC statistic for these events is greater than 0.5 [454], which WiFSS-LRCA assesses by 

constructing ROC curves. Figure 13 shows ROC curves produced from 30 repeats of WiFSS-

LRCA’s validation over Texas (grid cell size = 23,400 acres) for all four predictor configurations.  
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Predictors Reduced_Fit Stop_Criterion  Predictors Reduced_Fit Stop_Criterion 

Avg_Wind 30 30  Avg_Wind 30 30 

Whit_15_19 30 28  Whit_15_19 24 14 

Near_Plant 30 8  ISO_YN 21 7 

Near_Air 28 10  Trib_Land 21 6 

Trib_Land 28 7  Near_Hosp 21 4 

Undev_Land 27 14  Undev_Land 20 6 

Military 27 14  Unem_15_19 20 6 

Unem_15_19 27 13  Dem_Wins 20 4 

Mining 26 15  Historical 19 7 

ISO_YN 26 15  Nat_Parks 19 5 

Dem_Wins 26 13  Fem_15_19 18 6 

Prop_Rugg 26 12  Farm_Year 18 3 

Bird_Count 25 9  Plant_Year 18 2 

Farm_Year 25 9  Bat_Count 18 1 

Near_Hosp 24 15  Type_15_19 18 1 

Fem_15_19 24 13  Near_Air 17 3 

Avg_25 24 10  supp_2018 17 3 

Wild_Refug 24 10  Critical 17 3 

Near_Roads 24 6  Median Prediction 
Accuracy: 

0.93 

Nat_Parks 24 5  Median True-False 
Positive Ratio: 

0.13 

Plant_Year 23 13     

Median Prediction 
Accuracy: 

0.89     

Median True-False 
Positive Ratio: 

0.09  Predictors Reduced_Fit Stop_Criterion 

    Avg_Wind 30 30 

Predictors Reduced_Fit Stop_Criterion  Whit_15_19 28 7 

Avg_Wind 30 30  Dem_Wins 22 3 

Whit_15_19 28 14  ISO_YN 20 6 

Mining 25 7  Trib_Land 20 5 

Median Prediction 
Accuracy: 

0.91  Median Prediction 
Accuracy: 

0.90 

Median True-False 
Positive Ratio: 

0.09  Median True-False 
Positive Ratio: 

0.08 

 

Table 11: Results from identifying the predictors to be used in the Reduced predictor 

configuration of four separate model runs over California. Each table shows the number 

of times the removal of each predictor worsened WiFSS-LRCA’s goodness-of-fit 

(“Reduced_Fit”), the number of times this worsening was significant based on a p < 0.5 

stopping criterion [447], and the median proportion of testing grid cells that were 

correctly classified based on 30 repeats with this set of predictors.  

Grid cell size = 17,000 acres. 
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Figure 13: Receiver Operating Characteristic (ROC) curves produced from running 

WiFSS-LRCA over Texas. Each colored line represents one of the 30 repeats of the 

model’s validation step. The diagonal (gray) line denotes the ROC curve should the 

correct classification of testing grid cells be equal in probability to random chance (Area 

Under Curve (AUC) = 0.5). From top-left to bottom-right are the results from using the 

Full, No_Wind, Wind_Only, and Reduced predictor configurations. Grid cell size = 

23,400 acres. 
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These curves came closer to the top-left corner (0,1), and thus possessed a greater AUC [455], 

when enlisting the Full (Median AUC = 0.886) or Reduced (Median AUC = 0.874) 

configuration. WiFSS-LRCA thus seemed to distinguish between testing grid cells with and 

without wind farms more successfully when using a complete (Full) or more refined (Reduced; 

nine out of 32 predictors) predictor set, much like how WiFSS-LRCA’s goodness-of-fit generally 

maximized under these two configurations (see Section 4.1.1). The median threshold probability 

for correctly classifying grid cells was similarly sensitive to predictor configuration, with this 

threshold maximizing under the Full configuration (0.482) and being lowest under the 

Wind_Only configuration (0.445). Across most U.S. states, this threshold probability was 

similarly highest when WiFSS-LRCA enlisted the Full or Reduced configuration, suggesting that 

this model commits more Type 1 (false positive) errors (i.e., incorrectly classifies more grid cells 

as containing wind farms) when using an incomplete predictor set. 

Constructing ROC curves also revealed WiFSS-LRCA’s lower predictive accuracy when run 

over U.S. states with fewer commercial wind farms. Construction of ROC curves from validating 

WiFSS-LRCA over Vermont (Figure 14; Reduced predictor configuration) at two different grid 

cell resolutions (left = 23,400 acres; right = 1,350 acres) presented two key results: 

• The lack of grid cells containing wind farms in the testing dataset increases the risk of 

WiFSS-LRCA’s 30 validation repeats not outperforming random chance (i.e., AUC < 0.5). At 

the lower grid cell resolution (Figure 14, left), having only two testing grid cells that 

contained wind farms resulted in some repeated validations vastly underperforming, with a 

Minimum AUC of 0.119 observed. 

• In study areas with a smaller number of commercial wind farms, such as Vermont, the AUC 

statistic becomes more sensitive to changes in grid cell size. Indeed, the higher grid cell  
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resolution in Figure 14 (right) resulted in the number of testing grid cells that contain wind farms 

increasing from two to four, accompanied by a greater Area Under Curve statistic (Median AUC 

= 0.790), along with no incidents of performing worse than random chance (Minimum AUC = 

0.560). Furthermore, this sensitivity of AUC statistics to grid cell size was lower in states 

possessing more commercial wind farms, such as Texas. 

Validating WiFSS-LRCA using ROCs is limited by these curves not conveying which testing 

grid cells are reclassified at different threshold probabilities [456]. Nevertheless, WiFSS-LRCA’s 

sensitivity to predictor configuration, grid cell size, and the number of existing commercial wind 

farms is apparent. However, the sensitivity to grid cell size should not be overstated, since this 

sensitivity is partially an artifact of a selected study area having few commercial wind farms. 

Low prevalence of a binary outcome (i.e., a lack of testing grid cells available to predict as 

Figure 14: Same as Figure 13, but from runs of WiFSS-LRCA over Vermont using the 

Reduced predictor configuration only. Grid cell size, left = 23,400 acres. Grid cell size, 

right = 1,350 acres. 
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ontaining wind farms) is a known limitation of using ROCs to evaluate a predictive model’s 

performance [457], as highlighted by Figure 14.  

4.2.2. Using Confusion Matrices to Summarize Type 1 and Type 2 Errors. 

Confusion matrices constructed by WiFSS-LRCA illustrate the actual number of testing grid 

cells correctly and incorrectly classified as containing a commercial wind farm. This validation 

enlists the median threshold probability computed from the prior ROC analysis, such that grid 

cells with a 𝑃𝑖 above this threshold value and do contain a wind farm [73] are classified as true 

positive, increasing the true positive count by one. Similarly, grid cells with a 𝑃𝑖 below the 

median probability threshold that do not contain a wind farm are classified as true negative, and 

so on for false positive (Type 1 error) and false negative (Type 2 error) classifications [458]. 

WiFSS-LRCA consistently achieves high rates of correct grid cell classification across most 

states and grid cell sizes. Figure 15 shows that, for all four predictor configurations, more than 

75% of grid cells in a model run over New Mexico (grid cell size = 33,800 acres) were classified 

as true positive (bottom-right quadrant) or true negative (top-left quadrant), with the biggest 

difference between configurations being the number of Type 1 errors (top-right quadrant). In 

both state-level and CONUS model runs, the fewest Type 1 errors consistently occurred when 

using the Full or Reduced predictor configuration, again suggesting that more robust assessments 

using WiFSS-LRCA came from using a complete or more refined predictor set. WiFSS-LRCA 

was also not susceptible to frequent Type 2 errors, as evidenced by the small numbers of false 

negative testing grid cells (bottom-left quadrant). 

Much like the ROCs made by WiFSS-LRCA, the confusion matrices revealed the model's 

sensitivity to selected grid cell size. Comparing model runs using the Full configuration over  
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Figure 15: The median confusion matrices produced from running WiFSS-LRCA over New 

Mexico, produced by 30 repeats of the model’s validation step. The color ramp from purple 

to red designates the relative number of testing grid cells in each quadrant. From top-left to 

bottom-right are the results from using the Full, No_Wind, Wind_Only, and Reduced 

predictor configurations. Grid cell size = 33,800 acres. 
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New York (Figure 16), the percentage of correctly predicted testing grid cell states was 64.83% 

at the 33,800-acre resolution (left), compared to 76.22% at the 9,750-acre resolution (right). As 

with Figure 15, the biggest difference between these matrices was the smaller proportion of Type 

1 errors at the higher grid cell resolution. This result suggests that WiFSS-LRCA can correctly 

identify a larger number of existing commercial wind farm locations when enlisting a smaller 

grid cell size. As such, WiFSS-LRCA's practical applications may be more suited to predicting 

sites for smaller commercial wind farm projects, rather than wind farms comparable to the 

highest-capacity wind farms in the CONUS. The lack of Type 2 errors in Figures 15 and 16 

means that WiFSS-LRCA rarely misclassifies grid cells that do contain a commercial wind farm, 

a result that pervades across study areas, grid cell sizes, and predictor configurations. The high 

number of true positives versus false negatives therefore suggests that predictors with strong 

associations (Figures 11 and 12) are indeed important for identifying and siting commercial wind 

farms, which Yun [459] similarly observed in their LR-based study of algal blooms. 

4.3. Applying the LR Equation to All Grid Cells. 

4.3.1. Boxplot Construction. 

After having calibrated the equation’s coefficients (see Section 4.1) and having validated its 

ability to correctly classify grid cell states (see Section 4.2), WiFSS-LRCA’s logistic regression 

equation is then ready for application to all grid cells in the selected study area to create a WiFSS 

surface. WiFSS-LRCA first constructs boxplots using its LR equation to assess model 

performance across all grid cells, as in the boxplots produced by a CONUS model run in Figure 

17 (Full configuration, grid cell size = 44,200 acres). Each of the four boxplots illustrates the 

range of probabilities of the grid cells within each classification (true/false positive/negative), 

compared to the median threshold probability derived from the ROC curves constructed by this  
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same model run. In this example, grid cells classified as true positive have a greater median 

probability of containing a commercial wind farm (0.827) than those classified as false positive 

(0.716). Similarly, true negative grid cells possessed the lowest median probability of wind farm 

occurrence (0.041), being much lower than that for false negative grid cells (0.355). If WiFSS-

LRCA can make accurate predictions of where wind farms are currently located across the 

CONUS, then grid cells with the greatest 𝑃𝑖 values should be those that contain wind farms, and 

vice versa. Figure 17 shows that of the 2055 grid cells in this configuration that contain a wind 

farm across the CONUS (true positive plus false negative), 1725 (83.9%) of them were classified 

as true positive, with 33,102 grid cells that do not contain a wind farm (74.9%) similarly 

classified as true negative (rather than false positive). Such high rates of correct classification  

 

Figure 16: Same as Figure 15, but from runs of WiFSS-LRCA over New 

York using the Full predictor configuration only. Grid cell size, left = 

33,800 acres. Grid cell size, right = 9,750 acres. 
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Figure 17: Boxplots of the probability of all grid cells in the CONUS study area (Full 

configuration, grid cell size = 44,200 acres) containing a commercial wind farm, with one 

boxplot for each of the four grid cell classifications. Orange lines indicate median 

probabilities. The blue dashed line indicates the median probability threshold derived from 

WiFSS-LRCA’s validation step, against which grid cell probabilities were classified. 

Asterisks against the True Positive and True Negative probabilities designate their statistical 

significance based on a Mann-Whitney U-test (p < 0.05). 
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mean that this trained and tested LR equation can make mostly accurate predictions of 

commercial wind farm locations based on computed 𝑃𝑖 values, making the constructed WiFSS 

surface more trustworthy. 

WiFSS-LRCA checks the robustness of these computed probabilities by conducting a Mann-

Whitney U-test [430] on two pairs of classifications: true positive and false positive; true 

negative and false negative. Doing so ensures that the classification of grid cells as (not) 

containing commercial wind farms is not random, based on a rank order comparison of the 

probabilities that comprise each pair of boxplots. The asterisked median probabilities in Figure 

17 indicate statistically significant (p < 0.05) differences in rank order, the reason for which can 

be suggested based on the computed ORs for each predictor in the Full configuration. Figure 11 

shows that predicted grid cell states over the CONUS (that use a Full predictor configuration) are 

strongly associated with aggregated data values for Avg_Wind, Near_Trans, Numb_Pols, 

Undev_Land, Renew_Targ, and several others. Based on these predictors’ associations, grid cells 

classified as true positive are thus more likely to possess greater wind speeds, be closer to 

transmission lines, benefit from many renewable energy policies, not be faced with competing 

land use, and be located in areas with more ambitious RPS targets, respectively. False positive 

grid cells may possess all these qualities as well, but do not currently contain a commercial wind 

farm. While interpreting a Mann-Whitney U-test in this manner provides geographical context to 

WiFSS-LRCA’s predictions, there are two caveats to doing so. Firstly, Mann-Whitney U-tests are 

less robust for boxplots composed of fewer than 30 data points [460], which mostly affects false 

negative boxplots to WiFSS-LRCA’s infrequent Type 2 errors (see Section 4.2.2). Secondly, 

interpreting ORs is complicated by the associations produced by WiFSS-LRCA not always 

agreeing with the expectations laid out in Tables 7a and 7b, as well as ORs being strictly non-
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causal depictions of the link between predictors and the outcome of interest [422]. Nonetheless, 

WiFSS-LRCA is proficient at computing probabilities that reflect both geographical context and 

the locations of present commercial wind farms across the CONUS. 

4.3.2. Interpreting the Wind Farm Site Suitability Surface. 

The final step of WiFSS-LRCA’s first iteration is application of all probabilities to the hexagonal 

grid, thus generating a map that depicts how the suitability for commercial wind farm occurrence 

varies in space, i.e., a WiFSS surface. Figure 18 shows WiFSS surfaces generated by running 

WiFSS-LRCA over Wisconsin (grid cell size = 5,000 acres) for all four predictor configurations, 

which highlight the impacts made on the final WiFSS surface by an end-user’s predictor choices. 

All four configurations predicted high suitability for commercial wind energy development on 

the state’s southern and eastern sides, areas of Wisconsin with dense road and transmission line 

networks [325,326], fewer protected natural areas [317,318], and higher average wind speed due 

to the proximity of Lake Michigan [461]. The importance of wind speed for predicting WiFSS 

over Michigan stands out when using the Wind_Only configuration (bottom-left), given the 

concentration of high probabilities in the Green Bay area. Interestingly, the Wind_Only 

configuration also resulted in WiFSS-LRCA predicting higher suitability along Wisconsin’s 

northern border than under the other three configurations, an area of the state with higher average 

wind speeds than to the south [321]. The No_Wind configuration (top-right) similarly resulted in 

unique high-probability regions, with one such region in Central Wisconsin that was less 

pronounced under the Full (top-left) and Reduced (bottom-right) configurations. The ORs 

generated alongside Figure 18 showed that these predictions were most strongly associated with 

Wind Speed and Military Installations (Military), with very few of the latter existing across 

Central Wisconsin [315], perhaps explaining the results under the No_Wind configuration.  



111 

Harper et al. [62] similarly found that ORs obtained from different combinations of predictors 

can provide spatial context to the outputs of an LR equation. These four maps ultimately attest to 

how the enlisted predictors can impact the WiFSS surface generated by WiFSS-LRCA, and 

moreover WiFSS-LRCA’s sensitivity to predictor choices made by end-users. 

Projecting believable wind farm siting futures depends on whether the suitability surfaces 

generated by WiFSS-LRCA are reflective of present commercial wind farm locations (see 

Sections 1.2 and 3.3.2). As such, present WiFSS surfaces like those in Figure 18 can be 

Figure 18: Wind Farm Site Suitability (WiFSS) surfaces constructed from running WiFSS-

LRCA over Wisconsin, with each grid cell assigned a probability between 0 and 1. From 

top-left to bottom-right are the results from using the Full, No_Wind, Wind_Only, and 

Reduced predictor configurations. Grid cell size = 5,000 acres. Basemap from Esri [407]. 
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compared against the classified existence or absence of wind farms in each grid cell, and clusters 

of high-probability regions indicated by Getis-Ord statistics [431], as summarized in Figure 19. 

A greater number of true positive grid cells, and fewer false positives, occurred in South and East 

Wisconsin under the Full configuration (top) versus the Wind_Only configuration (bottom). As 

such, the WiFSS surface created using the Full configuration (Figure 18, top-left) was more 

reflective of Wisconsin’s existing commercial wind farms, meaning that constructing robust 

model outputs for Wisconsin required more predictors than Wind Speed alone. This result 

reflected in the validation of WiFSS-LRCA over Wisconsin, which classified 87.19% of testing 

grid cells correctly under the Full configuration, compared to 84.54% under the Wind_Only 

configuration, the biggest difference being fewer Type 1 errors under the former (see Section 

4.2.2). Further context for grid cells classified as false positive comes from Figure 19’s mapped 

Getis-Ord statistics. Many of the high-probability grid cells in Figure 18 are shown to exist in 

statistically significant clusters (p < 0.05), with these clusters containing almost all grid cells 

classified by WiFSS-LRCA as true positive. For that reason, the false positive grid cells in these 

clusters could be candidates for future commercial wind energy development. 

4.3.3. Contrasting CONUS and State-Level Suitability Surfaces. 

Comparison of ORs generated by U.S. state and CONUS-level model runs showed that WiFSS-

LRCA’s outputs are sensitive to selected spatial scale (see Figure 4.1.2), potentially translating 

into inconsistencies in the WiFSS surfaces constructed at these different scales. This potential is 

considered by examining maps presented in Figure 20 (Full configuration, grid cell size = 33,800 

acres): classified grid cell states by WiFSS-LRCA for the CONUS (top) and for model runs over 

Iowa (bottom-left) and West Virginia (bottom-right). These two U.S. states were selected to 

convey regional limitations of constructing a WiFSS surface for the CONUS. For instance, while  
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the CONUS model run does capture present wind farms in the Central Plains and Great Lakes, 

hence the many true positive (blue) grid cells in these regions, comparing this map to the WiFSS 

surface generated for Iowa shows a greater number of false positive (yellow) grid cells in the 

former. Runs of WiFSS-LRCA over the CONUS seem to overestimate the number of existing 

wind farms more than in runs over individual U.S. states, meaning CONUS model runs are more 

susceptible to Type 1 errors. Conversely, while the state-level run of WiFSS-LRCA over West 

Virginia classified no grid cells as false negative (red), several false negative classifications 

Figure 19: Outputs from the same model run that produced Figure 18, showing the 

classified grid cell states (left) and cluster analyses of the WiFSS surfaces using the 

Getis-Ord statistic (right). Results are shown from the Full (top) and Wind_Only (bottom) 

predictor configurations. Grid cell size = 5,000 acres. Basemap from Esri [407]. 
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occurred over West Virginia in the CONUS model run. WiFSS-LRCA similarly classified many 

grid cells in the Western United States as false negative, despite the successful identification of 

wind farms in state-level model runs over this region (Figures 9 and 15). A greater proportion of 

Figure 20: Classified grid cell states produced by running WiFSS-LRCA (Full configuration) 

over the CONUS (top), as well as over Iowa (bottom-left) and West Virginia (bottom-right). 

The grid cell states obtained for Iowa and West Virginia within the CONUS model run have 

been enlarged for comparison with those obtained from running WiFSS-LRCA over these two 

states separately. Grid cell size = 33,800 acres. Basemap from Esri [407]. 
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Type 2 errors seems to occur in CONUS model runs versus individual U.S. states, though these 

errors are located further away from the Central Plains and Great Lakes, in contrast to the large 

number of Type 1 errors in these two regions. Recall from Figures 11 and 12 that spatial scale 

possessed a link to the predictors retained by WiFSS-LRCA and changes in their ORs, thereby 

altering computed probabilities for each grid cell and by extension their classifications. 

The WiFSS surfaces associated with Figure 20 provide more context to the inconsistencies 

between state-level and CONUS-level runs of WiFSS-LRCA. The WiFSS surfaces produced by 

these same model runs are given in Figure 21, showing that the CONUS model run assigned 

higher probabilities to Iowa (and the Central Plains more broadly) compared to running WiFSS-

LRCA over Iowa alone. With these higher probabilities comes more grid cells exceeding the 

median probability threshold for classication as containing a wind farm (see Section 4.2), hence 

the larger number of false positive grid cells over the Central Plains and Great Lakes compared 

to state-level model runs. The opposite is true when comparing outputs over West Virginia, with 

WiFSS-LRCA assigning lower 𝑃𝑖 values across much of the state in CONUS model runs, hence 

the larger number of false negative classifications. The implication is that WiFSS surfaces 

generated by a CONUS-level model run are less representative of true commercial wind farm 

potential than when running WiFSS-LRCA over an individual U.S. state, with the highest-

probabilities in the regions most populated by wind farms.  

Despite WiFSS-LRCA’s lower predictive accuracy in identifying wind farm locations and 

constructing WiFSS surfaces for the CONUS than individual U.S. states, the model still 

possesses high performance when run at a CONUS-level spatial scale. This performance is 

evident from the metrics produced from the calibration and validation of WiFSS-LRCA that 

subsequently yielded Figures 20 and 21; Figure 22 presents the ORs (top-left), ROC curves  
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(top-right), median confusion matrix (bottom-left) and boxplot (bottom-right) produced from this 

model run. The predictors with the strongest association with WiFSS-LRCA’s predicted 

outcomes are consistent with those presented earlier in this dissertation (see Section 4.1.2), 

including Avg_Wind, Near_Trans, Undev_Land, Numb_Pols, and Renew_Targ, suggesting that  

Figure 21: Same as Figure 20 but for the constructed WiFSS surfaces from the same model 

runs. Basemap from Esri [407]. 
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the most suitable areas for wind energy development are likely those with greater average wind 

speeds, nearer to transmission lines, few competing land uses, a legislature that is supportive of 

renewable energy, and ambitious RPS. The high-probability regions in Figure 21 are often indeed 

Figure 22: Results from the calibration and validation of WiFSS-LRCA that produced 

Figures 20 and 21. From top-left to bottom-right are the Odds Ratios of each predictor 

retained by the model, the Receiver Operating Characteristic curves produced by each 

repeated validation, the median confusion matrix, and the boxplots from applying the trained 

and tested model to all grid cells.   
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those with high wind speeds [321], dense transmission line networks [326] and an abundance of 

flat, undeveloped land [80].  However, of the 44 predictors that were retained by this model run, 

only 23 of them (52.2%) possessed OR consistent with the expectations in Tables 7a and 7b, 

meaning geographical interpretations of Figures 20 and 21 should not be overstated, especially 

outside of the Central Plains and Great Lakes regions.  

The ROC curve and confusion matrix illustrate a high rate of correct grid cell classification 

across the CONUS, with 80.92% of testing grid cells being classified on average (median) as 

either true positive or true negative. Despite the Type 1 and Type 2 errors presented in the above 

WiFSS surfaces, these metrics suggest that the predictors used in WiFSS-LRCA can still 

correctly identify the majority of commercial wind farm locations. Finally, the boxplots and 

Mann-Whitney U-test illustrate statistically significant differences in the median probabilities 

associated with each grid cell classification (true positive = 0.842, false positive = 0.744, true 

negative = 0.048, false negative = 0.391). This result gives credence to geographical 

explanations for the constructed WiFSS surface, such as high wind speeds over the Central 

United States and support from the legislature. WiFSS-LRCA is ultimately able to construct 

suitability surfaces in its first iteration that reflect present patterns of commercial wind energy 

development, at both U.S. state and CONUS-level scales (though the former with greater 

accuracy). These predicted wind farm locations are geographically explicable to a point, and are 

also sensitive to the predictor configuration and grid cell size selected by an end-user. This 

ability to capture existing conditions should make future sites for development projected by the 

model’s CA component more trustworthy [450,451], thereby legitimizing this dissertation’s 

purposes of projecting wind farm siting futures and demonstrating a larger scale application of 

LRCA than used in previous work (see Section 1.2).  
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Chapter 5: Results – Projection Using the CA Component. 

Whereas the previous chapter focused on assessing currently suitable wind energy development 

locations, this chapter addresses which of the most suitable locations could gain commercial 

wind farms first. The focus of this chapter pertains to the third research question of projecting 

wind farm siting futures using WiFSS-LRCA, including their connections to geographic 

properties and the sensitivity to WiFSS-LRCA’s own parameters (see Section 1.2). This 

dissertation distinguishes between prediction of current wind farm locations in WiFSS-LRCA’s 

first iteration and projection of future wind farm locations in its subsequent iterations. Lemos and 

Rood [463] pose that prediction is deterministic, meaning it is concerned with whether a specific 

event will happen based on current conditions, such as whether high average wind speeds 

suggest a wind farm’s presence. By contrast, projection communicates a range of possible future 

states that accommodate dynamics in independent variables, which are often temporally explicit 

[464]. Uncertain time horizons and multiple simultaneous processes (e.g., constructing roads and 

transmission lines, legislated setback distances, electricity cost fluctuations) mean that 

expressing modeled futures as ranges of possibilities is more appropriate than a deterministic 

approach [465]. This uncertainty is why WiFSS-LRCA has been constructed to accommodate 

multiple predictor configurations, grid cell sizes, constraints, neighborhood sizes, and scenario 

setups, allowing the model to project a range of futures for commercial wind energy 

development across the CONUS. Inclusion of constraints and neighborhood effects in WiFSS-

LRCA represents application of CA at a spatial extent larger than most previous examples [442]. 

According to Wu et al. [444, p.1041], “spatial extent is often associated with a given study case, 

such that it does not have a universal feature of spatial scale sensitivity during CA-based land use 

change simulation”, meaning that CA is not limited to applications of simulating city-level 
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urbanization [69-71]. As such, this chapter presents examples of WiFSS-LRCA’s outputs over 

U.S. states and the CONUS to show that CA can project commercial wind farm siting futures. An 

example console output from running the CA component of WiFSS-LRCA is in Appendix A4. 

5.1. Core Projections from Running WiFSS-LRCA Simulations. 

5.1.1. Suggestion of Geographical Patterns. 

As exemplified by Figure 10 (see Section 3.4), each iteration of WiFSS-LRCA projects a set 

number of grid cells to experience binary land use change (i.e., “yes” or “no” to a future 

commercial wind farm), based on a default capacity increase in Megawatts [92] or the increase 

set by an end-user. Geographical influences on common locations for projected wind farms can 

be suggested based on ORs, like in Chapter 4, along with how these influences change with 

spatial scale (U.S. state versus CONUS). Figure 23 presents maps from running WiFSS-LRCA 

over the CONUS (parameter setup is given in the figure caption), with grid cell colors 

corresponding to the year (iteration) in which grid cells acquire a wind farm. In both maps, future 

wind farms appear mostly in the South-Central Plains and Midwest. Of particular note is the 

concentrated wind energy development projected from 2040 onward in the Texas Panhandle, 

South Kansas, and East Colorado. As mentioned in Section 4.3.3, the Central United States 

region is populated by many wind farms [73] and possesses high wind speeds (Avg_Wind) 

[83,321], political support for renewable energy (Numb_Pols; Renew_Targ) [87,333], and large 

tracts of undeveloped land (Undev_Land) [80]. Furthermore, based on computed ORs, the 

predictors most associated with WiFSS-LRCA’s projected outcomes included these predictors, 

with ORs of 23.53, 2.87, 2.38, and 0.20, respectively. Although ORs are not causal [422] and 

their magnitudes should not be overstated [95,96], those with the strongest associations appear 

geographically sound, while also consistent with the expected OR values in Table 7a/7b. 
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Figure 23: Outputs from running WiFSS-LRCA, showing projected wind farm sites out 

to the year 2050 for the CONUS. The maps display the year in which grid cells are 

projected to obtain a wind farm. Odds ratios of the most strongly associated predictors 

are also given. Default gained wind energy capacity [92]; Full predictor configuration; 

default constraints (Mining and Historical are switched off); all applicable scenarios 

used; neighborhood size = 2 (Neighborhood effects are on in Figure 23a, and off in 

Figure 23b). Grid cell size = 44,200 acres. Basemap from Esri [407]. 
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Much like other CA-based model studies that observed cluster-like patterns of land use change 

[72], such clustering appears in Figure 23a due to the inclusion of 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 in Equation 4 (see 

Section 3.4). The influence of neighborhood effects on WiFSS-LRCA’s projections can be 

assessed by removing 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡, as in Figure 23b. While the South-Central Plains and Midwest 

remain the areas projected to undergo the greatest future wind energy development, smaller 

clusters also appear in Washington, Montana, and New York, especially after 2035. Another 

impact of switching off neighborhood effects is that wind farms in the Oklahoma and Texas 

Panhandles proliferate during the 2020s, earlier than most other locations. A westward shift of 

projected wind farm locations toward the Rocky Mountains also occurs; given this model run’s 

strong associations with Renew_Targ and Undev_Land, New Mexico and Colorado’s RPS [149] 

and undeveloped spaces perhaps influence projected wind farm locations more so than when not 

limited to neighboring grid cells. The biggest difference between these two simulation runs is 

that switching neighborhood effects off causes wind farms in WiFSS-LRCA’s later iterations to 

appear farther from present clusters (white grid cells). For instance, East Iowa, East Oklahoma, 

and West Wisconsin all gain fewer wind farms in Figure 23b, implying that these regions have 

lower probabilities of wind farm occurrence based on the LR equation alone, as also suggested 

by Figure 21. Switching off the neighborhood effect transition rule reduces the tightness of future 

wind farm clustering around the CONUS’ present wind farms, with the timing of cluster 

formation also changing slightly. These maps show the importance of including 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 in 

WiFSS-LRCA for characterizing wind farm siting potential around present wind farm clusters.  

Figure 23 shows that regions of the CONUS where commercial wind farms presently exist are 

those with the greatest probability of future wind energy development, meaning few projected 

new wind farm locations exist in the Western and Southeastern United States. Running WiFSS-
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LRCA over individual U.S. states identifies suitable future wind farm sites at smaller spatial 

scales, revealing both regional WiFSS (Figure 24a) and differences in WiFSS from CONUS 

model runs (Figure 24b) for Florida and Illinois, respectively. Future wind farm clusters in 

Florida are located mostly on the periphery of infrastructure, particularly Florida’s cities and 

interstates, perhaps explaining why Undev_Land (OR = 0.20) and Near_Trans (OR = 0.59) have 

strong negative associations with model outputs. Projected wind farm locations also have a 

strong positive association with Percent of Population Under 25 (Avg_25: OR = 1.67), suggesting 

that WiFSS in Florida may be greater in areas with younger populations, which is important 

given the high median age of Floridians [466]. As for Illinois, the state-level run of WiFSS-

LRCA that is shown in Figure 24b projects more future wind farms on the state’s west side than 

does Figure 23a. Furthermore, predictors like Critical Habitats (Critical: OR = 1.84) and Bat 

Habitat Range Count (Bat_Count: OR = 0.49) have stronger associations with projected 

outcomes when running WiFSS-LRCA over Illinois only, predictors that are most prevalent on 

the state’s east side [313,322]. However, both the state and CONUS-level simulations by WiFSS-

LRCA agree on few future wind farms appearing to the north and south of Illinois’ present wind 

farms, possibly due to lower average wind speeds given the strong positive association of 

Avg_Wind (OR = 2.43). Running WiFSS-LRCA at these two spatial scales shows how broader 

nationwide trends in potential future wind farm locations differ from those over individual U.S. 

states, along with corresponding differences in the predictors associated with localized versus 

broader trends in wind energy development. Recall from Section 3.3.2 that states lacking two or 

more grid cells that contain wind farms (such as Florida) use an LR equation trained and tested 

for the CONUS (rather than the individual U.S. state), though WiFSS-LRCA is nevertheless able 

to project future wind farm locations that can be explained geographically. 
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Figure 24: Same as Figure 23 but for runs of WiFSS-LRCA over Florida (Figure 

24a) and Illinois (Figure 24b), and a 2,000 Megawatt gained capacity in each model 

iteration. Basemap from Esri [407]. 
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5.1.2. Analysis of Projected Wind Farm Clusters. 

Figures 18 and 19 (see Section 4.3.2) showed that grid cells classified as true positive during 

WiFSS-LRCA’s first iteration are frequently part of high-probability clusters of the constructed 

WiFSS surface. The false positive grid cells in these clusters that also possessed statistical 

significance (p < 0.05) were proposed as being candidates for future wind energy development, 

something that WiFSS-LRCA can identify in its subsequent iterations. Indeed, the role of the 

neighborhood effect transition rule in Equation 4 is to represent decaying suitability for land-use 

change with distance from the physical feature of interest (i.e., commercial wind farms) [69]. 

One would thus expect that the grid cells projected to gain wind farms should be those that were 

initially classified as false positive and also part of these high-probability clusters. Figure 25 

illustrates projected wind farm locations by 2050 for Iowa, New York, and Texas, along with 

how their grid cells were initially classified (false positive or true negative) during WiFSS-

LRCA’s first iteration. Of the 120 grid cells set to gain a wind farm during each model run (20 

cells per iteration, see figure caption for details), 113 (94.2%) of those cells over Texas, 111 

(92.5%) over Iowa, and 95 (79.2%) over New York were initially false positive.  

Getis-Ord statistics [431] of the 𝑃𝑖 values from WiFSS-LRCA’s first iteration showed that 71 of 

Texas’ 113 false positive grid cells (62.8%) that gained a wind farm were initially part of 

statistically significant clusters of high 𝑃𝑖 values, with a similar result having occurred for New 

York (56 out of 95, or 58.9%). Iowa stands out for only seven of its 111 false positive grid cells 

(6.3%) being part of such clusters, for which there are two possible explanations. Firstly, based 

on Figure 20, Iowa’s present commercial wind farms are large in number and spread out fairly 

evenly across the state, unlike in states such as West Virginia, Texas, or New York. Since 

standardized Getis-Ord statistics are a function of the number of physical features [467], more  
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features mean lower scores and thus fewer clusters. Secondly, although Figure 21 does 

overestimate WiFSS across the Central United States in CONUS model runs (as discussed in 

Section 4.3.3), high probabilities pervade across much of Iowa, suggesting that WiFSS-LRCA’s 

predictors indicate suitability for wind energy development (e.g., high wind speeds, flat land, 

productive legislature, etc.). With more grid cells possessing high 𝑃𝑖 values, 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 becomes 

Figure 25: Outputs from running WiFSS-LRCA at the state-level, showing projected 

wind farm sites out to the year 2050 for Iowa (top-left), New York (top-right), and Texas 

(bottom). Grid cells initially classified as false positive (yellow) and true negative (red) 

are also illustrated. 4,000 Megawatt gained capacity in each iteration; Reduced predictor 

configuration; default constraints; all applicable scenarios used; neighborhood size = 2. 

Grid cell size = 5,000 acres. Basemap from Esri [407]. 
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less of a limiting term for computing 𝑃𝑟𝑜𝑏𝑖
𝑡 (Equation 4), allowing grid cells to gain wind farms 

further away from any statistically significant clusters. Despite the large spatial scales of WiFSS-

LRCA’s application, in contrast to the city and county-level scales of previous LRCA studies 

[68,76,442], the influence of neighborhood effects on the likeliest locations for wind energy 

development is evident from Figure 25, also giving credence to the cluster-like patterns 

discussed in Figures 23 and 24. 

5.1.3. Impact of Predictor Configurations on Model Projections. 

It was previously established that certain predictor configurations allow WiFSS-LRCA to capture 

the number of grid cells that presently contain commercial wind farms more accurately than 

others, namely the Full and Reduced configurations (see Section 4.2). Since predictor 

configurations impact computed 𝑃𝑖 values for each grid cell, the final values of 𝑃𝑟𝑜𝑏𝑖
𝑡 and thus 

the projected grid cell states would by extension be altered, meaning that future WiFSS surfaces 

could be sensitive to predictor configurations. Projected wind farm locations across North 

Dakota are shown in Figure 26, using the No_Wind (Figure 26a) and Full (Figure 26b) predictor 

configurations. The wind farm locations projected by both configurations share some 

similarities; wind energy development in the 2020s is concentrated on the state’s southwest side 

(where many wind farms currently exist), along with a new wind farm cluster appearing near the 

border with Minnesota during the 2040s. However, this cluster to the east is larger, forms earlier, 

and extends to the southeast corner under the Full configuration, with the No_Wind configuration 

instead adding to the larger cluster in the southwest after 2035. The only difference in 

constructing these two maps is the exclusion of Avg_Wind under the No_Wind configuration, 

with Figure 26 thus showing that Wind Speed’s inclusion greatly alters the spatial distribution 

and timing of future wind energy development. Previous studies have frequently justified Wind  
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Speed’s inclusion in WiFSS assessments because of its assumed importance compared to other 

predictors [44,124,218]. WiFSS-LRCA goes one step further by mapping out the sensitivity of 

future wind farm siting decisions to whether Wind Speed is included as a predictor, and the 

persistence of this sensitivity regardless of the model’s constraints and neighborhood effects.  

Constraints and predictor configurations can, however, have compounding influences on 

projections made by WiFSS-LRCA. Since 𝐶𝑜𝑛𝑠𝑡𝑖 places a Boolean restriction on whether a grid 

cell can gain a commercial wind farm (see Section 3.4), one could imagine both maps in Figure 

26 looking quite different should the constraints have been modified. Furthermore, because of 

the impacts that the enlisted predictor configuration has on 𝑃𝑖 values, a new set of constraints 

may prohibit wind energy development for grid cells in which 𝑃𝑖 is high, thus yielding a different 

future WiFSS surface. The dual impact of constraints and predictor configurations is shown in 

Figure 26: Outputs from running WiFSS-LRCA at the state-level, showing projected 

wind farm sites out to the year 2050 for North Dakota. The maps display the year in 

which grid cells are projected to obtain a wind farm. 4,000 Megawatt gained capacity 

in each iteration; No_Wind predictor configuration used for Figure 26a; Full predictor 

configuration used for Figure 26b; default constraints; all applicable scenarios used; 

neighborhood size = 3. Grid cell size = 13,000 acres. Basemap from Esri [407]. 
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Figure 27, future WiFSS surfaces produced by running WiFSS-LRCA over Kentucky using the 

Wind_Only (Figure 27a) and Reduced (Figure 27b) configurations. Because the two predictor 

configurations yield a different set of 𝑃𝑖 values for all grid cells, the highest-probability grid cells 

that gain wind farms first are not the same in both maps, being concentrated in two locations 

under the Reduced configuration compared to four under the Wind_Only configuration. Added to 

this, many grid cells in West Kentucky violate WiFSS-LRCA’s default constraints, particularly 

Mining Operations and Wildlife Refuges (Table 8), limiting the growth of future wind farm 

clusters in this area by preventing neighboring grid cells that violate said constraints from 

gaining wind farms. Consequently, no grid cells gain wind farms during the final iteration (2050) 

under the Reduced configuration because all neighboring grid cells in this area that lack a wind 

farm violate at least one constraint. These results demonstrate WiFSS-LRCA’s response to 

predictor configuration choices in two ways: 1) excluding certain predictors from WiFSS-LRCA 

may obscure pathways to wind energy capacity targets should those predictors conflate with the 

constraint transition rule; and 2) the collection of projected wind farms in West Kentucky under 

the Reduced configuration illustrates the important role that predictors other than Wind Speed 

have on future wind farm siting decisions. 

5.2. Sensitivity Analysis of WiFSS-LRCA’s Parameters. 

5.2.1. Sensitivity to Grid Cell Size. 

According to Ménard and Marceau’s [442, p.710] CA-based study of agriculture encroachment 

on forested land: “finer exploration of cell size sensitivity suggests that even small variations in 

cell size can produce significant divergence in results when scale thresholds are crossed.” It is 

therefore expected that different grid cell sizes could drastically alter the pattern of projected 

future wind farm locations across a selected study area. Alongside catering to the interest of end-
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users in experimenting with different commercial wind farm capacities, preparing aggregated 

predictor data at 20 different resolutions (Table 6) allows the sensitivity of WiFSS-LRCA’s 

projections to grid cell size to be tested. An example of this sensitivity is presented in Figure 28, 

future wind farm locations projected for Maine at two different grid cell sizes: 23,400 acres (low-

resolution; Figure 28a/c) and 6,750 acres (high-resolution; Figure 28b/d). Some agreement exists 

between the two projections, namely the earliest future wind farms (2025 and 2030) appearing in 

Southeast Maine, an area with overall less rugged land [79] and a relatively dense transmission 

line network [326]. WiFSS-LRCA runs at both resolutions also agree on future wind energy 

development being limited on the state’s west side, perhaps due to the area’s mountainous terrain 

complicating commercial wind farm installation [218]. Grid cell size therefore does not seem to 

impact the general areas in which future wind energy development is projected to occur.  

Figure 27: Same as Figure 26 but for applications of WiFSS-LRCA over Kentucky, 

with the Wind_Only predictor configuration used for Figure 27a and the Reduced 

predictor configuration used for Figure 27b. Basemap from Esri [407]. 
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Differences between WiFSS-LRCA’s outputs at different resolutions present themselves when 

comparing the timing of land use change and the tightness of the formation of projected wind 

farm clusters. Firstly, the north edge of Maine’s eastern cluster expands at different times 

depending on the grid cell size, expanding from 2030 onward at the lower resolution (Figure 

28a) compared to 2040 onward at the higher resolution (Figure 28c). More interesting is the 

clusters of high-probability grid cells being tighter at the higher resolution, as evidenced by 

Figure 28: Outputs from running WiFSS-LRCA at the state-level, showing projected wind 

farm sites out to the year 2050 for Maine at a lower (Figure 28a, 23,400 acres) and a higher 

(Figure 28b, 6,750 acres) grid cell resolution. Also given are p-values obtained from 

computed Getis-Ord statistics (Figures 8c and 8d), based on the 𝑃𝑟𝑜𝑏𝑖
𝑡 values that 

produced Figures 28a and 28b. 2,500 Megawatt gained capacity in each iteration; Full 

predictor configuration; default constraints (Critical, Historical, and Mining are switched 

off, Near_Trans increased to 15,000 meters); Climate Change, Demographic Changes and 

New Infrastructure scenarios are used; neighborhood size = 3. Basemap from Esri [407]. 
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computing Getis-Ord statistics. At both resolutions, statistically significant (p < 0.01) hotspots of 

𝑃𝑟𝑜𝑏𝑖
𝑡 values exist in two large clusters, though these clusters are less dense and displaced 

northward at the lower resolution (Figure 28c) versus the higher resolution (Figure 28d). QADI 

statistics [445] further highlight the tighter clustering that occurs when enlisting smaller grid cell 

sizes, with the higher resolution map’s lower statistic (QADI = 0.047, versus 0.064 at the lower 

resolution) conveying less disagreement with the null version of WiFSS-LRCA (see Section 

3.5.1). Smaller grid cell size therefore increases the influence of WiFSS-LRCA’s constraint and 

neighborhood effect transition rules on projections, compared to the influence of the LR 

equation’s predictors, resulting in denser, more localized patterns of projected land-use change. 

Pan et al. [443] came to a similar conclusion that smaller grid cell sizes cause CA-based models 

to project land-use change that sprawls over shorter distances, though WiFSS-LRCA’s sensitivity 

to grid cell size has less impact on the timing of these projections.  

5.2.2. Sensitivity to Neighborhood Size. 

An increased neighborhood size (i.e., a greater value of n; Equation 5) means that the decaying 

influence on land-use change with distance stretches further from present physical features [68]. 

In other words, grid cells that lack wind farms are more likely to gain one if present wind farms 

have a larger defined influence. Like with grid cell size, the sensitivity of WiFSS-LRCA’s 

outputs to neighborhood size is explored based on differences in timing and location of projected 

wind energy development, presented again for Maine in Figure 29 (Figure 29a: n = 1, Figure 

29b: n = 3, Figure 29c: n = 5). As in Figure 28, two clusters of wind energy development are 

projected in East and Southeast Maine, but neighborhood size greatly changes the timing of these 

clusters’ expansion. At the largest neighborhood size (n = 5), Southeast Maine’s cluster is the 

only location projected to gain wind farms in 2025, with only two grid cells outside of this 



133 

cluster experiencing land-use change in 2030. Furthermore, East Maine’s cluster expands 

progressively later as neighborhood size increases, gaining no commercial wind farms in 2025 

(and only one in 2030) in Figure 29c. The construction of Equations 4 and 5 explain why 

Southeast Maine increasingly gains wind farms first at larger neighborhood sizes. The likelihood 

of 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 equaling zero is higher for smaller neighborhood sizes, since there are fewer chances 

for grid cells to already contain a wind farm, meaning 𝑃𝑟𝑜𝑏𝑖
𝑡 will also equal zero regardless of 

Figure 29: Same as Figure 28 but with each map possessing a different neighborhood size, 

being n = 1 (Figure 29a), n = 3 (Figure 29b), and n = 5 (Figure 29c). Grid cell size = 9,000 

acres. Basemap from Esri [407]. 



134 

the value of 𝑃𝑖. Consequently, a larger neighborhood means fewer grid cells are assigned a 𝑃𝑟𝑜𝑏𝑖
𝑡 

value of zero, thus allowing the high 𝑃𝑖 values of these grid cells to influence WiFSS-LRCA’s 

projections. It was noted in Section 5.2.1 that the model’s predictors were conducive for wind 

energy development in Southeast Maine [79,326]. Increasing WiFSS-LRCA’s prescribed 

neighborhood size thus increases the suitability for larger present wind farm clusters being the 

first to expand in the model’s early iterations. 

As well as the above changes in timing, some evidence also exists for neighborhood size 

affecting the locations of projected future wind energy development. Based on visual inspection, 

the East and Southeast Maine clusters become slightly larger at greater neighborhood sizes, again 

due to fewer grid cells being assigned a 𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 value of zero in WiFSS-LRCA’s first few 

iterations. Of more interest, however, is the decline in both the QADI statistic and the allocation 

disagreement score as neighborhood size increases; the smallest neighborhood size (Figure 29a) 

yields the greatest disagreement with projections made by the null WiFSS-LRCA model (QADI 

= 0.054, allocation disagreement = 126). Projected wind farm locations more closely resemble 

the null model’s output as neighborhood size increases, meaning that the neighborhood effect 

transition rule (𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡) supersedes the influence of the equation-based transition rule (𝑃𝑖) 

when a larger neighborhood is prescribed. However, it was previously noted that a larger 

neighborhood size is precisely what allows grid cells with high 𝑃𝑖 values to gain wind farms. It 

therefore stands to reason that a neighborhood size that is too large may reduce WiFSS-LRCA’s 

ability to accurately project future wind farm locations, an observation that Li et al. [468] 

similarly made in their study of trend-adjusted LRCA modeling of urban sprawl. Based on these 

results, the sensitivity of CA-based models to neighborhood size noted by Kocabas and 

Dragicevic [437] is also produced when running WiFSS-LRCA. Furthermore, neighborhood 
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size’s strong impact on the timing of future wind energy development suggests that Wu et al.’s 

[444] conclusion of higher CA sensitivity to neighborhood size than grid cell size equally applies 

to WiFSS studies that take this modeling approach. 

5.2.3. Sensitivity to Constraints. 

Predictor configurations and the constraint transition rule have been shown to have compounding 

effects on WiFSS-LRCA’s projections (see Section 5.1.3), such that otherwise suitable grid cells 

cannot gain future wind farms should they, for instance, be too far from transmission lines or 

overlap with military installations (Table 8). Long et al. [469] found that trialing different sets of 

constraints is key to preparing a CA-based model that captures urban forms that are in line with 

planning preferences. In the same way, running WiFSS-LRCA while varying its default 

constraints allows an end-user to project wind farm siting futures that may or may not be limited 

by these constraints. Cluster-like expansion of commercial wind farms could thus occur in 

different locations should WiFSS-LRCA’s default constraints be modified, hence the model’s 

potential sensitivity to its own constraints. Figure 30 illustrates outputs from running WiFSS-

LRCA over Montana using three constraint setups: the default set from Table 8 (Figure 30a), a 

loosened setup that deactivates Wild_Refug and increases the distance for Near_Trans to 15,000 

meters (Figure 30b), and all constraints deactivated (Figure 30c). A more restrictive constraint 

setup limits the grid cells that gain wind farms, plus the iteration of WiFSS-LRCA after which 

future wind energy development cannot occur; the default constraints prevent grid cells from 

gaining wind farms after 2035, and the loosened constraints extend development over Montana 

to 2040. Although WiFSS-LRCA’s constraints are defined based on the literature and this 

dissertation’s systematic review [40] (see Section 2.2), Figure 30 shows that the default 

constraints are restrictive enough over some U.S. states to prevent completion of the model’s 
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iterations. Furthermore, as Figure 10 showed, many grid cells that contain present wind farms 

should be restricted based on WiFSS-LRCA’s default constraints, meaning that the constraint 

transition rule is an inherently imperfect depiction of where future wind energy development is 

feasible. Deactivating WiFSS-LRCA’s constraints (Figure 30c) allows iterations to complete out 

to 2050, though the cluster pattern of grid cells that gain wind farms is quite different. The 

Figure 30: Outputs from running WiFSS-LRCA at the state-level, showing projected wind 

farm sites out to the year 2050 for Montana using the default constraints (Figure 30a), a 

loosened constraint setup (Figure 30b, Wild_Refug turned off and Near_Trans extended from 

10,000 to 15,000 meters) and all constraints switched off (Figure 30c). QADI statistics are 

computed using Figure 30a as a point of comparison, rather than the output from the null 

model. 4,000 Megawatt gained capacity in each iteration; No_Wind predictor configuration; 

Changing Energy Economies, New Infrastructure, and Urban Protection scenarios are used; 

neighborhood size = 2. Grid cell size = 9,750 acres. Basemap from Esri [407]. 
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cluster of present wind farms in East Montana does not expand at all in Figures 30a and 30b, 

though this cluster grows in almost all directions without the constraint transition rule in effect, 

gaining wind farms in all but the final iteration. An MCDA-based WiFSS study by Díaz-Cuevas 

[226] found that constraints that were too restrictive rendered all of Córdoba (Spain) unsuitable 

for wind energy development. The expansion of East Montana’s wind farm cluster only when 

deactivating WiFSS-LRCA’s constraints attests to a similar result, exemplifying the model’s 

sensitivity to its own constraints. Switching off constraints means that only WiFSS-LRCA’s 

neighborhood effect transition rule is able to restrict future wind energy development (i.e., 

automatically set 𝑃𝑟𝑜𝑏𝑖
𝑡 to equal zero), causing projections to occur in tighter clusters around 

present developments, similar to the clustering in Figures 28 and 29. This result highlights the 

interdependence of a CA-based model’s constraint and neighborhood effect transition rules. For 

WiFSS-LRCA, the tendency of neighborhood effects to limit land-use change to compacted 

areas of development [470] often works against that of constraints to place exogenous limits on 

where said development is allowed to occur [69]. An important difference between these two 

transition rules, however, is that modifying constraints more easily reduces the number of grid 

cells that gain commercial wind farms, thus affecting both quantity and allocation disagreements 

between WiFSS-LRCA’s generated maps [445] (changes to neighborhood size only affected the 

allocation disagreement; Figures 28 and 29). As Figure 30b and 30c show, loosening the 

constraints increased their quantity disagreement with Figure 30a, thus increasing the computed 

QADI statistic and quantifying WiFSS-LRCA’s sensitivity to how its constraints are defined. 

However, using looser constraints would require an end-user to accept potentially detrimental 

impacts of future wind energy development, such as impacts on Wildlife Refuges [341,342]. 
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5.2.4. Sensitivity to Scenario Setups. 

Whereas the previous sections pertain to WiFSS-LRCA’s sensitivity to its neighborhood effect 

(Section 5.2.2) and constraint (Section 5.3.3) transition rules, using the scenarios defined in 

Table 9 to modify Equation 1’s coefficients allows sensitivity to the model’s equation-based 

transition rule to be considered. Modifying the LR equation in this way allows for consideration 

of how changes in WiFSS-LRCA’s predictors alter the projected sites for wind energy 

development, and subsequently the importance of each predictor for devising wind energy 

policy. As discussed in Section 3.5.1, modifying predictor coefficients to construct scenarios 

assumes that ORs represent how strongly associated changes in each predictor are with the 

suitability for land-use change, recognizing that associations are not causal [422]. Projections 

made by WiFSS-LRCA using three different scenario setups over Washington are shown in 

Figure 31, one using the Default scenario (Figure 31a), one using all eight available scenarios for 

a state-level model run (Figure 31b), and one using a Custom scenario that modifies the 

coefficients of the five most and five least associated predictors (based on OR values in WiFSS-

LRCA’s first iteration) by ±50% in each iteration (Figure 31c). All three maps exhibit a similar 

cluster pattern: future wind energy development is concentrated around three present clusters on 

the state’s east side, with development elsewhere nonexistent due to WiFSS-LRCA’s constraint 

and neighborhood effect transition rules. Equation 4 sets the value of 𝑃𝑟𝑜𝑏𝑖
𝑡 to zero for a grid 

cell that violates at least one constraint (𝐶𝑜𝑛𝑠𝑡𝑖 = 0) or is too far away from other grid cells that 

contain a wind farm (𝑁𝑒𝑖𝑔ℎ𝑏𝑖
𝑡 = 0), limiting scenario setup to mostly influencing the timing of 

expansion of existing wind farm clusters without greatly changing their spread or location. It can 

thus be inferred that scenario setup (and by extension modifications to 𝑃𝑖) has less influence than 

constraints and neighborhood effects on location differences in projected wind farm sites. 
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The expansion of Washington’s three easternmost wind farm clusters can be understood by 

comparing them against the ORs (listed on each map in Figure 31) of WiFSS-LRCA’s predictors. 

East Washington is an area that is characterized by a lack of vulnerable species habitats (Critical) 

[313], few designated tribal lands (Trib_Land) [318], higher wind speeds compared to areas 

further west (Avg_Wind) [321], and a denser transmission line network than the areas 

immediately north and south of these clusters (Near_Trans) [326]. All four of these features 

Figure 31: Outputs from running WiFSS-LRCA at the state-level, showing projected wind 

farm sites out to the year 2050 for Washington using the Default scenario (Figure 31a), all 

eight scenarios available for state-level model runs in Table 9 (Figure 31b) and a Custom 

scenario (Figure 31c). The custom scenario modified the coefficients of the 5 most and 5 

least associated predictors based on ORs by ±50% in accordance with Table 9. 3,500 

Megawatt gained capacity in each iteration; Full predictor configuration; default 

constraints (Mining and Near_Plant switched off); neighborhood size = 2. Grid cell size 

=13,000 acres. Basemap from Esri [407]. 
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correspond to some of the most positively and negatively associated predictors listed on all three 

maps, with Avg_Wind consistently having the most positive association. While the ORs can offer 

suggestions for why future wind energy development in East Washington is suitable, they cannot 

explain the differences in timing and spread of each cluster’s projected expansion. For instance, 

the westernmost of these three clusters is projected to expand the fastest in Figure 31b (all 

scenarios), having obtained the most new wind farms by 2035 (yellow grid cells). As another 

example, Figure 31a (Default scenario) projects the southernmost of the clusters expanding 

westward in 2045 (blue grid cells) and 2050 (purple grid cells), which the other two scenarios do 

not. Most interesting is Figure 31c (Custom scenario) from 2040 (green grid cells) onward, with 

the two clusters furthest east merging to become one larger cluster along the border with Idaho, 

and the westernmost cluster expanding northward earlier than in the other two maps. These 

differences in the timing of projected wind energy development are comparable to the effects of 

changing grid cell size (Figure 28), though those of modifying scenario setups are more localized 

to the present wind farm clusters. However, it should be acknowledged that this method of 

modifying WiFSS-LRCA’s equation-based transition rule inherently alters the LR equation’s 

goodness-of-fit [415].  

Compared to modifying the other parameters discussed here, constructing scenarios to represent 

changes in WiFSS-LRCA’s predictors affects the timing more so than the location of future wind 

energy development. That being said, the dynamic land-use change simulated by WiFSS-LRCA’s 

Cellular Automata component is still evident, specifically considering how the grid cells that 

gain wind farms in prior iterations affect those of subsequent iterations. For instance, while all 

maps in Figure 29 show that wind farms in later iterations tend to appear on the periphery of 

those of earlier iterations, this tendency strengthens with larger neighborhood size (Figure 29c), 
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with the Southeast Maine cluster’s youngest wind farms by 2050 being consistently further away 

from the center of the cluster. This dynamic of later land-use change being influenced by earlier 

land-use change is also evident from the sensitivity to scenario setup. While Figure 31c depicts a 

well-defined merging of Washington’s two easternmost wind farm clusters after 2040, Figures 

31a and 31b project similar behavior but without the clusters becoming consistently closer to 

each other with each iteration. The presented sensitivity analysis does not obscure the overall 

pattern of future wind farms appearing concentrically around those already present or that are 

projected in WiFSS-LRCA’s first few iterations, attesting to the continuation of cluster-like wind 

farm installation that has historically occurred across the CONUS [73].  

The results presented in this chapter show that WiFSS-LRCA is indeed able to project wind farm 

siting futures that that reflect geographical features of the CONUS, with the predictors most 

associated with these projections changing based on the study area and spatial scale considered 

(Section 5.1.1). In addition to geographical context, the definition of WiFSS-LRCA’s constraint 

and neighborhood effect transition rules also have important consequences for the model’s 

projections, with there being demonstrable sensitivity to both rules. Altering the equation-based 

transition rule, i.e., the predictors used in the LR equation, has less impact on WiFSS-LRCA’s 

projections, limited mostly to the timing of when grid cells acquire future wind farms (Section 

5.2.4). By contrast, changes to neighborhood size and the restrictiveness of constraints greatly 

alter how tightly future wind energy development is clustered at both state-level and nationwide 

scales (Sections 5.2.2 and 5.2.3). Most importantly, the ongoing pattern of commercial wind 

farms being installed in regions of the CONUS with commonly suitable locations [73] is 

expected to continue in future decades, given the number of grid cells initially classified as false 

positive that gain wind farms in WiFSS-LRCA’s subsequent iterations (Section 5.1.2). 
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Chapter 6: Discussion – Summary, Limitations, and Future Work. 

The objective of this dissertation is to present a new model that is capable of projecting suitable 

locations for future commercial wind energy development across the Conterminous United 

States. With the ongoing pressure to address climate change by decarbonizing the nation’s 

electricity production [9], as well as to improve domestic energy security by reducing reliance on 

foreign energy imports [15-17], Wind Farm Site Suitability models have the role of informing 

decision-makers of where said development should be focused. As with other Socio-

Environmental Systems (SES) models, a key advantage of WiFSS models is their systematic 

approach and simplification of the wind farm siting process to produce a better system 

understanding [28] by combining a set of predictors (e.g., wind speed, transmission line 

proximity, political climate, etc.) in some manner to compute a suitability score [114]. Whereas 

existing WiFSS models identify locations for potential wind farms based on present-day 

conditions, whether by constructing a suitability surface [44,47] or ranking candidate sites 

[51,52], there previously existed no WiFSS models before this study that explicitly project which 

of the most suitable locations could gain wind farms first in the years to come. The addition of 

such a temporal component allows for projection of a range of possible wind farm siting futures, 

taking cues from Cellular Automata-based modeling studies that simulate future land-use change 

scenarios, especially of urban growth [66,98]. Unlike most CA-based approaches to land-use 

change modeling, however, WiFSS-LRCA (the model built for this dissertation) has been 

developed for application to larger spatial domains, while still assuming that the constraint and 

neighborhood effect transition rules [434] of CA models are applicable. This dissertation focuses 

on demonstrating WiFSS-LRCA’s ability to make accurate predictions of present-day 

commercial wind farm locations at both state- and CONUS-wide spatial scales, and that its 
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subsequent projections are geographically sound, thereby accrediting its temporally explicit CA-

based modeling approach. This chapter summarizes how each research question laid out in 

Section 1.2 has been answered, critical comments about the model’s limitations, and future work 

that could follow from this dissertation. 

6.1. Answering the Research Questions. 

6.1.1. Question 1: Where is Logistic Regression-Cellular Automata situated within the broader 

scope of Wind Farm Site Suitability modeling approaches? 

The decision to develop a WiFSS model that combines a Logistic Regression equation and 

Cellular Automata decision rules came from evaluation of the abilities of existing WiFSS 

models. This evaluation took the form of a review of common modeling approaches (Section 

2.1) and of predictor selection and representation [40] (Section 2.2), conveying WiFSS-LRCA’s 

differences from models with similar objectives as well as their shared abilities. Table 12 

summarizes the similarities and differences in WiFSS-LRCA’s construction and results 

presentation compared to those of the four WiFSS modeling approaches covered in Section 2.1. 

Between Table 12 and the discussion below, a consensus is derived of where WiFSS-LRCA fits 

among other modeling approaches and when WiFSS-LRCA would be the preferred model to use.  

1. GIS-Based Multicriteria Decision Analysis. 

Limiting land use change to feasible areas is achieved by CA-based models using constraint 

transition rules [434] that designate certain grid cells as unsuitable for development, based on 

violation of Boolean conditions or quantitative values for each predictor. Incorporating data 

layers that represent undevelopable tracts of land is also important to GIS-MCDA modeling 

approaches [109], with the same objective of preventing undesirable predictions of land-use 

change. Restricting wind energy development to feasible areas e.g., absence of vulnerable bird  
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Model 
Approach 

Similarities with WiFSS-LRCA Differences from WiFSS-LRCA 

GIS-Based           
Multicriteria 

Decision 
Analysis                              

(GIS-MCDA) 

1. Representation of predictors as 
Boolean constraints and/or as changing 
continuously in space.  

1. Predictors are retained as layers of data 
superimposed on top of each other. 

2. Computation of a suitability score for 
each individual spatial unit. 

2. Weighting schemes that involve human 
decision-making compute the influence of each 
predictor's data layer. 

3. Flexible model design that 
accommodates spatial scale choices and 
scenario building. 

3. Including a discrete predictor requires explicit 
spatialization or a proxy continuous predictor. 

4. Model output vulnerable to inaccurate 
or overly strict Boolean constraints. 

4. Temporal explicitness requires data 
preparation at multiple points in time. 

Non-GIS-
Based 

Multicriteria 
Decision 
Analysis                             

(Non-GIS-
MCDA) 

1. Predictor selection is not limited by 
whether each one's data are discrete or 
continuous. 

1. Weighting schemes that involve human 
decision-making compute the influence of each 
predictor's data layer. 

2. Identification of specific locations most 
suited for wind energy development first. 

2. Suitability surfaces are not constructed, 
instead presenting wind farm site comparisons 
in tabular form. 

  
3. Greater reliance on primary, non-spatial data 
to inform selected predictors. 

  
4. Temporal explicitness requires data 
preparation at multiple points in time. 

Bayesian 
Network 

(BN) 

1. Wind farm site suitability is inherently 
represented as a probability between 0 
and 1. 

1. Depiction of causal relationships between 
predictors through conceptualizing "child" and 
"parent" nodes. 

2. Accommodation of scenario building 
by modifying the state of predictors. 

2. Scenario building is more useful for present-
day risk assessment than projecting wind farm 
siting futures. 

3. Capable of handling predictor datasets 
that are natively discrete or continuous. 

3. Representation of all predictors as discrete 
data, regardless of original data type. 

  
4. Lack of spatiotemporal explicitness without 
integration of a GIS or other extra model 
components. 

Logistic 
Regression 

(LR) 

1. Wind farm site suitability is inherently 
represented as a probability between 0 
and 1. 

1. Temporal explicitness requires data 
preparation at multiple points in time. 

2. Used to define WiFSS-LRCA's equation-
based transition rule. 

2. No mechanism for constraining spatial units 
as unsuitable for wind energy development. 

3. Applicable to a GIS for producing 
spatial depictions of wind farm site 
suitability. 

  

4. Capable of handling predictor datasets 
that are natively discrete or continuous. 

  

 
Table 12: Summary of the similarities and differences between WiFSS-LRCA and models 

that are commonly enlisted for wind farm site suitability analysis, based on the literature 

presented in Sections 2.1 and 2.2. 
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habitats [244], high average wind speed [233], and proximity to road networks [224], is thus 

common practice in WiFSS modeling studies, which Cellular Automata inherently incorporate. 

Both WiFSS-LRCA and GIS-MCDA are sensitive to how their enlisted constraints are defined. 

Section 5.2.3 showed that WiFSS-LRCA’s default constraints (Table 8) can be restrictive enough 

that the model cannot complete its iterations over certain states (due to no remaining suitable 

grid cells), while also characterizing some grid cells that contain wind farms in the first iteration 

as unsuitable. According to Li and Yeh [435, p.135], constraints in CA-based models “are used to 

make more reliable and reproducible predictions of actual land-use patterns”, which WiFSS-

LRCA showed to be occasionally imprecise. Constraints used in GIS-MCDA models are 

similarly vulnerable to missing data or imprecise definition [120], as shown by Rodríguez-

Rodríguez et al.’s [305] study of GIS-MCDA sensitivity to protected bird habitat definitions. 

Beyond enlisting some predictors as constraints, the final product of both WiFSS-LRCA and 

GIS-MCDA is a continuous suitability surface that assigns every spatial unit a score. Whereas 

GIS-MCDA approaches typically produce aggregate scores derived from compositing all 

predictors’ (weighted) dataset layers [219], WiFSS-LRCA condenses this information into a 

single probability value between zero and one (e.g., Figure 21). Both approaches are equally 

vulnerable to a loss of information compared to the original predictors [120] while also spatially 

conveying suitable locations for wind energy development. 

There are some differences between WiFSS-LRCA and GIS-MCDA’s approach to wind farm 

siting decisions, notably how discrete predictor data are handled. The “Tabular” datasets in Table 

5a and 5b are inherently discrete because they aggregate a single value (whether of Green 

Lobbies (Gree_Lobbs), Percent Female Population (Fem_15_19), Unemployment Rate 

(Unem_15_19), etc.) to each state/county across the CONUS (see Section 3.2), as opposed to the 



146 

predictors represented by raster and vector datasets that are continuous in space. Aggregation 

onto each hexagonal grid cell allows WiFSS-LRCA’s Logistic Regression equation to handle 

predictors depicted by either discrete or continuous data, “so long as interactions among the 

explanatory variables do not affect the response” [60, p.199]. Including discrete predictor data is 

hard in GIS-MCDA models because each dataset layer must be explicitly spatial and combinable 

with other predictors to produce a composite suitability surface [61]. As such, predictors in Table 

5b are rarely used in GIS-MCDA approaches without constructing raster layers from one or more 

proxy predictors, such as Harper et al. [201] constructing a social acceptability data layer based 

on predictor associations derived from an LR equation (e.g., distance to national parks, mean 

age, political representation). Weighting each predictor’s importance also works differently in 

these two modeling approaches. Literature examples of GIS-MCDA applied to WiFSS 

assessment frequently use an AHP method that computes predictor weights that enlist ranked 

expert opinions of each predictor’s importance [44,53], with alternative weighting methods 

including BWM [55,134], PROMETHEE [131,139], and TOPSIS [230,263] (see Section 2.1.1 

and 2.1.2 for summaries of each). WiFSS-LRCA circumvents expert involvement by preparing 

scenarios that iteratively modify the LR equation’s predictor coefficients with each model 

iteration, taking cues from Harper et al.’s [62] LR-based study of wind farm project acceptance 

and Yang et al.’s [98] method of scenario construction within an LRCA modeling approach.  

2. Non-GIS-Based Multicriteria Decision Analysis. 

Non-GIS-MCDA benefits from a similarly broad range of predictors as those enlisted by WiFSS-

LRCA. Since the former relies on primary data to represent the predictors that are of interest to 

either the researchers or experts [51,135], the limitation that GIS-MCDA faces of requiring all 

predictors of WiFSS to be representable by secondary data does not apply. Non-GIS-MCDA 
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approaches can thus seek data about any of the predictors listed in Tables 5a and 5b, as well as 

predictors that WiFSS-LRCA does not include due to a lack of secondary data availability at 

state- or CONUS-wide spatial scales, such as noise pollution [143], visual impact [52], and life 

cycle wind farm costs [135]. Another similarity between Non-GIS-MCDA approaches and 

WiFSS-LRCA is that both models share a common objective of identifying an order of 

development for potential future wind farm sites, albeit approached in different ways. In WiFSS-

LRCA, grid cells with the greatest probability of gaining a wind farm based on running Equation 

4 are identified in each iteration (every five years), explicitly timing when each grid cell would 

be most suited for development (e.g., Figures 23 and 24). Conversely, the typical approach of 

Non-GIS-MCDA is to select a small number of possible wind farm locations and rank them from 

most to least suitable for development, with the ranking typically based on the linguistic [51,143] 

or ordinal [131,134] judgment of a set of predictors by outsider experts. These predictors are 

frequently weighted using the same methods as those used in GIS-MCDA approaches to WiFSS, 

with Rouyendegh et al.’s [132] Non-GIS-MCDA study of wind farm site selection in Turkey 

using a TOPSIS approach to “reflect the judgments of decision makers and deal with the 

complexity of the decision process”. The approaches that Non-GIS-MCDA and WiFSS-LRCA 

take to explicitly identifying the first and last locations for wind energy development are thus 

quite different, with the former considering individual locations and collecting primary data for a 

single point in time, though the motivation is essentially the same. 

Although Non-GIS-MCDA and WiFSS-LRCA both aggregate their predictors to obtain 

dimensionless numbers, their methods of doing so are different, resulting in different 

representations of the same predictors. As described in Section 3.2, despite all data being 

secondary, the employed aggregation methods depend on each predictor’s native datatype (raster, 
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vector, tabular) and whether the data are Boolean or quantitative, in line with the aggregation 

methods laid out by Plassin et al. [77] and LR-based environmental modeling studies [399-401]. 

Following aggregation, data values for all relevant predictors are assigned to each hexagonal grid 

cell; Boolean data are assigned as a value of 0 (“N”, no) or 1 (“Y”, yes) but the quantitative 

data’s magnitude varies, meaning all predictors are not aggregated to a common scale by WiFSS-

LRCA. As for Non-GIS-MCDA, primary data for all predictors are collected and aggregated in a 

uniform linguistic or ordinal manner. For example, Wu et al.’s [135] offshore wind farm siting 

study in China’s Shandong Province asked experts to rate importance of six siting criteria (wind 

resources, construction, onshore conditions, environmental impact, economy, societal benefit) on 

a linguistic scale from “extremely high” to “very very low”, later converted into a prescribed 

numerical format. Regardless of how predictors may be classified or the phenomena they each 

represent, Non-GIS-MCDA approaches to WiFSS treat all predictors equally. Another crucial 

difference between these two modeling approaches is that the output of Non-GIS-MCDA is 

discrete by design. Figure 2 exemplifies the tabular output of most Non-GIS-MCDA studies 

[136], in which each site’s candidacy for wind energy development is represented by a collection 

of numbers and metrics. Map construction in Non-GIS-MCDA studies is typically used only to 

convey locations of candidate wind farms, as in Kaya and Kahraman’s [51] study of onshore 

WiFSS in Turkey. Maps that display the suitability for wind farm installation and projected wind 

farm locations are, by contrast, the core model output of WiFSS-LRCA. 

3. Bayesian Networks. 

The strongest similarity between WiFSS-LRCA and BN models is that both represent likelihood 

of land-use change (whether wind energy development or otherwise) in a probabilistic way to 

derive a binary outcome. In the case of BN, this outcome is based on statistical relationships 
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constructed between the acyclic connections of the model’s predictors [150], whereas WiFSS-

LRCA takes the log-odds of the sum of the predictors to also obtain a value between zero and 

one (Equation 1, see Section 3.3). Another similarity between these two modeling approaches is 

their ability to handle both discrete and continuous datasets, in contrast to GIS-MCDA models’ 

ability to only use the latter. WiFSS-LRCA’s methods of aggregation and its LR equation’s 

ability to limit errors when combining different datatypes [60] allow for predictor datatypes to be 

retained as either discrete or continuous. The approach of most BN models is to represent each 

predictor as discrete potential states (e.g., strong versus weak winds, far or close to transmission 

lines), in order to “increase the [BN’s] level of generalization” [161, p.398] for different study 

contexts. As such, any predictor whose dataset is natively continuous is discretized for inclusion 

in the network [157], such as constructing probability distributions from wind speed data split 

into quantiles. While BNs do not maintain predictors as continuous, and a consistent method for 

their discretization is lacking [165,166], these models are theoretically capable of enlisting as 

wide a range of predictors as WiFSS-LRCA (and of Non-GIS-MCDA models). Another key 

feature of BNs is that they are specifically designed for performing scenario-based modeling, 

like WiFSS-LRCA. Prescribing a condition to a BN’s parent node(s) (e.g., setting “wave height” 

in Figure 3 to “Level1” or “Level2” [65]) changes the likelihood of the possible outcomes of the 

network’s child node, which BN studies like Pinarbaşi et al. [156] have done to assess scenarios 

of offshore wind farm siting potential. This approach of devising scenarios is different though 

analogous to the predictor coefficient modifications performed using WiFSS-LRCA. 

The distinctive feature of a BN is its illustration of the acyclic connections between predictors, 

thereby depicting causal relationships. Borunda et al. [64] use this depiction to their advantage 

by using a BN to illustrate how a selected city connects both to local energy consumption and 
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regional differences in wind speed. Arora et al. [162, p.440] note specifically that LR-based 

models are not suited to depicting causal relationships because “they operate under restrictive 

assumptions about the relationships among variables”, which in WiFSS-LRCA means a linear 

sum (Equation 1) cannot convey how predictors may vary together or influence each other. Some 

LR-based models enlist multilevel equation structures that account for how singular predictors 

can influence groups of predictors that operate at different spatial or temporal scales [93], such as 

Shu et al. [76] enlisting “grid cell level” and “town level” predictors in their LRCA simulations 

of urban growth. Such modifications effectively introduce a depiction of causality between the 

predictors in LR-based models. Beyond differences in representing causality, BN and WiFSS-

LRCA also differ in terms of their treatment of space and location. Much like Non-GIS-MCDA 

models, spatial explicitness is difficult to represent in BN models, particularly when interested in 

representing spatial interactions between different locations, given the need to construct a new 

acyclic network for each location of interest [171]. Uusitalo et al. [157] also note that the acyclic 

structure of BN models prevents them from representing feedback loops, which WiFSS-LRCA 

can represent thanks to its iterative adjustment of predictor coefficients and the consequent 

effects on its equation-based transition rule (see Section 5.2.4). Most notably, BNs cannot 

construct suitability surfaces on their own like WiFSS-LRCA does, because each constructed 

acyclic network typically represents the conditions of a point location or small region in space. 

New studies are appearing, however, that combine BNs and GIS techniques to construct maps of 

the probabilities of event occurrence derived from the former [172]. 
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4. Logistic Regression. 

Since an LR equation is what defines one of WiFSS-LRCA’s transition rules, and is therefore 

used to train and test the model to identify the locations of present commercial wind farms, 

similarities do exist between the two of them. LR-based approaches to WiFSS typically possess 

two core outputs: a map that illustrates spatial differences in the probability (between zero and 

one) of an event’s occurrence [62,179], and computed coefficients/ORs showing the association 

between each predictor and said event [180,189]. LR approaches that do not construct suitability 

surfaces illustrating these probabilities are typically those that rely on primary data, often in the 

form of survey responses to opinions about predictors relevant to the wind farm siting process 

[181]. LR models that rely on secondary data for predictors are, by contrast, frequently used to 

construct suitability surfaces, Figure 4 being a quintessential example that illustrates probabilities 

for every raster cell of aggregated data [58]. WiFSS-LRCA’s first iteration relies on secondary 

data in the same manner, constructing hexagonal surfaces of the probability of a commercial 

wind farm’s existence (e.g., Figure 21) to convey suitability for wind energy development. The 

LR-based studies referenced in this dissertation produce model outputs analogous to that of 

WiFSS-LRCA’s first iteration, i.e., the results presented in Chapter 4. It is the lack of temporal 

explicitness of using an LR model alone that distinguishes these referenced studies from WiFSS-

LRCA. Unless provided with data for each predictor for a future point in time, an LR equation is 

capable only of assessing present land-use change potential, hence the multitude of urban growth 

studies that combine LR equations with CA to iterate all grid cell states using the latter’s 

constraint and neighborhood effect transition rules [71,75,99]. Moreover, LR models do not  
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possess anything similar to a constraint transition rule, meaning that grid cells of a suitability 

surface are not immediately assigned a probability of zero if, for instance, any of the default 

constraints in Table 8 are violated.  

Each of the WiFSS modeling approaches discussed here has at least one unique feature that 

equips said model to address specific needs regarding decision-making and system 

understanding [28]. GIS-MCDA is equipped to manage high-resolution secondary datasets that 

also allow locations unsuitable for wind energy development to be constrained and mapped. 

Non-GIS-MCDA is best for performing in-depth assessment of specific locations for potential 

wind energy development, subsequently ranking said locations from highest to lowest 

development priority. BNs are most useful when model users wish to understand how predictors 

relevant to the wind farm siting process influence each other, as well as how the influence of 

each individual predictor can be described probabilistically. LR combines GIS-MCDA’s ability 

to produce maps of the most and least suitable locations for wind energy development with BNs’ 

ability to aggregate both discrete and continuous datasets, making for a (theoretically) more 

comprehensive WiFSS assessment. The limitation that all of these WiFSS modeling approaches 

have in common is their lack of a temporal component, only being able to communicate the 

likelihood, acceptance, or suitability of installing wind farms at a single point in time. WiFSS-

LRCA’s niche among these other approaches is its integration of a Logistic Regression equation 

with Cellular Automata’s transition rules [67]. Their integration allows the initial probabilities 

computed by an LR equation to be contextualized by violation of where wind farms cannot be 

installed (i.e., the constraint transition rule) and where wind energy development has already 

occurred (i.e., the neighborhood effect transition rule). Iterating these two rules, along with a  
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prescribed demand of gained wind farm capacity to drive land-use change [66,75], are ultimately 

what allow a Logistic Regression-Cellular Automata approach to project future wind farm 

locations, being beyond the capacity of existing approaches that predict present locations.  

6.1.2. Question 2: What are currently the most suitable locations for present wind energy 

development across the Conterminous United States? 

The first iteration of WiFSS-LRCA provides an assessment of present wind farm site suitability 

across the domain of interest, whether of the CONUS or an individual U.S. state, thus revealing 

the locations most and least suitable for wind energy development based on present conditions. 

Performing this assessment first required determining that WiFSS-LRCA could use its predictors 

(Tables 5a and 5b) to compute probabilities for each grid cell that correspond to the presence or 

absence of true commercial wind farms [73], through repeated calibration of the model’s 

coefficients and validation of its overall performance (see Section 3.3). Furthermore, verifying 

that WiFSS-LRCA can construct suitability surfaces that are consistent with current wind farm 

siting practices makes the model’s projections of future wind farm siting potential easier to trust 

in the hands of decision-makers [450,451]. One would also expect, however, that many high-

probability locations for wind farm construction across the CONUS have not yet been developed, 

which WiFSS-LRCA identifies in its first iteration using its classification scheme (i.e.., the false 

positive grid cells in Figure 20). The results in Chapter 4 thus provide important context to the 

projections of future wind energy development potential presented in Chapter 5. This section 

explains the intended interpretation of WiFSS-LRCA’s calibration and validation outputs, with 

the final two paragraphs concluding with how these interpretations connect to the suitability 

maps that convey the most and least suitable locations for present wind energy development. 
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WiFSS-LRCA contributes to a broader effort of SES model development that prioritizes 

combining quantitative and categorical datatypes and model runs at multiple spatial scales, 

among other priorities listed by Iwanaga et al. [471]. It was with these priorities in mind that 

WiFSS-LRCA was conceived to allow end-users to customize the model’s spatial scale (CONUS 

or U.S. state), project capacity from 20 different grid cell sizes (see Table 6), and predictor 

configuration (see Section 3.5.2) of interest. WiFSS-LRCA thus accommodates experimentation 

of how suitable locations for wind energy development are affected by user priorities, while also 

meeting this dissertation’s purpose (see Section 1.2) of preparedness for immediate end-use and 

serving as an educational tool about how end-user choices affect the modeled system’s behavior 

[41]. Chapter 4 uses the customizability built into WiFSS-LRCA to demonstrate how its ability 

to construct robust suitability surfaces and identify grid cells that presently contain commercial 

wind farms are affected by these choices. The presented analysis shows that, when compared to a 

null model (intercept-only version of Equation 1), this model’s LR equation performed 

statistically significantly well at classifying grid cells as (not) possessing commercial wind farms 

across multiple U.S. states (Table 10), based on assessment of WiFSS-LRCA’s calibration (see 

Section 4.1.1). This assessment used a log-likelihood ratio statistic (𝜆, Equation 2) to assess how 

well the LR equation’s coefficients fit to whether a study area’s training grid cells contain wind 

farms [417], with the statistic maximizing under a Reduced configuration that refined the enlisted 

set of predictors (Section 3.5.2 explains the configuration’s construction). This result held when 

running WiFSS-LRCA over most U.S. states and the CONUS, agreeing with Smith and 

McKenna’s [452] expectation that well-fitted LR equations are those that statistically 

significantly improve over a null version of the same equation.  
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A greater log-likelihood ratio should mean that WiFSS-LRCA makes more accurate predictions 

of where the CONUS’ present wind farms are located, but this dissertation also shows that this 

accuracy varied with both grid cell size and the number of present wind farms.  Sensitivity to the 

latter was evident when validating this model’s LR equation using ROC curves (see Section 

4.2.1), with Figure 14 showing that there was a greater tendency for WiFSS-LRCA to incorrectly 

classify testing grid cells when fewer of them contained a wind farm, resulting in more frequent 

underperformance versus an AUC threshold for random chance of 0.5 [454]. This 

underperformance became less frequent when selecting a smaller grid cell size over the same 

study area, due to the same wind farm locations being split among smaller hexagons, suggesting 

that Linden’s [457] observation of ROC’s sensitivity to the low prevalence of a binary outcome 

also applies to WiFSS-LRCA. Conversely, in states containing a large number of present wind 

farms (such as Texas, Figure 13), the ROC curves constructed by WiFSS-LRCA portrayed a 

much greater rate of correct classification, showing that ROC curves are a more reliable means 

of validating WiFSS-LRCA’s LR equation when more of the testing grid cells contain wind 

farms. Furthermore, based on the AUC statistics that accompany the ROC curves in Figure 13, 

the proportion of correctly classified grid cells maximized under the Full and Reduced predictor 

configurations. This result represents a reduction in the number of Type 1 errors (i.e., fewer false 

positive grid cells) compared to enlisting the No_Wind or Wind_Only configurations, and more 

importantly the value of constructing a predictor set that includes not only wind speed (a key 

predictor from the perspective of prior WiFSS studies [44,124,218]) but other predictors as well. 

Whereas the ROC curves constructed by WiFSS-LRCA illustrate the proportion of (in)correctly 

classified testing grid cells at various probability thresholds, the Confusion Matrices explicitly 

quantify these rates of (in)correct classification and crucially the number of Type 1 and Type 2 
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errors (see Section 4.2.2). The Confusion Matrices presented in this dissertation again confirm 

the smaller proportion of false positive grid cell classifications that occur when using a Full or 

Reduced predictor configuration (Figure 15), with study areas that contain few commercial wind 

farms being vulnerable to a lower percentage of correct classifications. More interestingly, 

however, is how Confusion Matrices convey the LR equation’s sensitivity to grid cell size, with 

Figure 16 showing a greater correct classification percentage at higher resolution due to fewer 

grid cells being classified as false positive. A higher resolution meant that more testing grid cells 

were likely to exist in both classes of the dependent variable (i.e., whether or not a grid cell 

contains a wind farm), meaning that the LR equation’s assumption of linearity of the continuous 

predictor datasets was more likely to hold (see Section 3.3) [412]. Furthermore, more grid cells 

containing wind farms made it is less likely that the predictor datasets would all be associated 

with one outcome (e.g., almost no testing grid cells containing a wind farm), thus reducing the 

risk of quasi-complete separation and thus allowing for computation of finite log-likelihood 

ratios [413]. The validation of WiFSS-LRCA’s performance in its first iteration is thus more 

trustworthy under the following conditions: a more complete (Full) or more refined (Reduced) 

predictor dataset is used, a smaller grid cell size is selected, and the chosen study area presently 

contains more commercial wind farms. As such, the calibrated fit produced by WiFSS-LRCA to 

its predictor datasets, and thus its recommended sites for wind energy development, are best for 

smaller wind farm projects. Published LR-based WiFSS assessments do not rely on classifying 

spatial units to validate their models’ performance [58,59,179], though WiFSS-LRCA 

encapsulates the utility of ROC curves and Confusion Matrices for this very purpose.  

In cases where these two validation metrics suggest WiFSS-LRCA’s classification accuracy 

being lower, the ORs obtained from calibrating the model’s LR equation should not be 
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overinterpreted. Although ORs strictly represent non-causal associations between the equation’s 

predictors and whether a grid cell contains a wind farm [422], geographical influences on the 

final suitability surface can be inferred from their magnitudes. As exemplified by Figures 11 and 

12 (see Section 4.1.2), certain predictors are consistently among those most strongly associated 

with grid cells being assigned high probabilities, namely Average Wind Speed (Avg_Wind), 

Distance to the Nearest Transmission Line (Near_Trans), Proportion of Undeveloped Land 

(Undev_Land), Average Elevation (Avg_Elevat), Interconnection (Interconn), and Total Number 

of Statewide Legislative Pieces (Numb_Pols). There are three caveats to using these ORs to 

suggest predictors’ general importance to wind farm siting decisions. Firstly, the magnitude of 

the ORs obtained from training and testing WiFSS-LRCA’s LR equation do not always agree 

with expectations. According to Table 7a and 7b, Avg_Elevat is expected to have a positive 

association because of wind speed increasing with height [348], as would Interconn due to the 

assumed positive influence on the political will to install renewable energy systems [384]. Figure 

11 subverts these expectations, showing both predictors to have strong negative associations with 

grid cell outcomes in a model run over the CONUS, highlighting the imperfection of ORs as 

geographical indicators of WiFSS. Secondly, the importance of the predictors changes with the 

scale at which WiFSS-LRCA runs, such as Avg_Wind being the most strongly associated 

predictor in model runs over the CONUS (Figure 11) but not over Indiana alone (Figure 12), 

suggesting that there exist regional-scale differences in the wind farm siting roles played by 

predictors. Finally, some predictors are important (and thus have different ORs) in one U.S. state 

but not another, evidenced by comparing predictors in the Reduced configurations for California 

(Table 11) with those for Indiana (Figure 11, bottom-right), with Undev_Land and Public 

Support for Renewable Portfolio Standards (supp_2018) seldom retained in California’s Reduced 
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predictor set. These differences in ORs across spatial scale and study area show that WiFSS-

LRCA can differentially parameterize for spatial contexts of interest to the user. In other words, 

WiFSS-LRCA accounts for the varying importance of predictors depending on the study area of 

interest, hence its utility to decision-makers, emphasizing importance of spatially explicit 

modeling approaches that capture regional heterogeneities in the represented predictors. 

These interpretations of the calibrated predictors and validation metrics provide key context to 

the suitability surfaces constructed in WiFSS-LRCA’s first iteration. The examination of Figures 

18 and 19 (see Section 4.3.2) showed that the high-probability grid cells across South and East 

Wisconsin were frequently part of statistically significant hotspots according to Getis-Ord 

statistics. These hotspots were explicable based on the strongly positive ORs of Avg_Wind and 

Military Installations (Military) and validated by around 85% of testing grid cell states being 

correctly classified by the model’s LR equation. Since true positive grid cells frequently have the 

highest probability of containing wind farms across most study areas and grid cell sizes (e.g., 

Figure 17, see Section 4.3.1), the true positive grid cells within these hotspots suggest that the 

constructed WiFSS surface is reflective of current wind farm siting practices. If WiFSS-LRCA 

does not generate strongly associated ORs for each predictor that can be rationalized, and also 

does not perform well during its validation step, such interpretation of the final suitability surface 

should be more cautious. Furthermore, it was noted in Section 4.3.2 that false positive grid cells 

within hotspots may be candidates for future wind energy development, should true positive grid 

cells also exist among them. As such, given the United States’ priorities of energy security [472] 

and decarbonization [473], a WiFSS surface with verifiable accuracy could convey future wind 

farm project sites. However, this deduction assumes that present wind farms are already in 

suitable locations, since these locations were used to both train and test WiFSS-LRCA (see 
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Section 3.3). This assumption may be inappropriate in U.S. states with previous wind farm siting 

controversies, such as bird mortalities in California’s Altamont Pass [32] and social opposition to 

the abandoned Cape Wind project in Massachusetts [35]. These controversies may reflect 

temporal changes in important wind farm siting predictors [25], hence the value of projecting 

future wind farms in WiFSS-LRCA’s subsequent iterations. 

When examining Figure 21, the highest-probability locations for wind energy development 

(based on WiFSS-LRCA’s first iteration) can be grouped into five broad regions: the Central 

Plains, Southern California, the Pacific Northwest, the Great Lakes, and the Northeastern United 

States. All five of these regions are currently populated by commercial wind farms [73], with 

runs of WiFSS-LRCA across the CONUS thus implying that these regions are indeed those most 

suitable for wind farm construction. As covered in Section 4.3.3, Figure 22 (top-left) shows these 

computed probabilities to be strongly associated with high wind speeds (Avg_Wind), closeness to 

transmission lines (Near_Trans), an abundance of undeveloped land (Undev_Land), legislation 

that supports wind energy (Numb_Pols), and ambitious RPS (Renew_Targ), all possessing ORs 

consistent with expectations (Table 7a and 7b). Some strongly associated predictors, however, 

have ORs that cannot be rationalized, particularly those for Avg_Elevat and Gree_Lobbs, though 

the five aforementioned predictor properties are generally shared among the five broad regions 

(except for Avg_Wind being relatively low in Southern California and the Pacific Northwest 

[321]). Beyond ORs that can mostly be rationalized, the constructed WiFSS surface for the 

CONUS is validated by over 80% of testing grid cells being correctly classified (Figure 22, 

bottom-left), and the correctly classified grid cells (true positive and true negative) having a 

statistically significantly different (p < 0.05) median probability than those that are incorrectly 

classified based on a Mann-Whitney U-test (Figure 22, bottom-right). Furthermore, Figure 20 
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shows that most grid cells classified as false positive, particulary those in the Central Plains and 

Great Lakes, are clustered around true positive cells, which Getis-Ord statistics often found to be 

statistically significant (p < 0.05). The verifiable accuracy of the suitability surface constructed 

by WiFSS-LRCA for the CONUS in Figure 21 means that its high-probability grid cells serve as 

indicators for wind energy development potential, particularly in the five broad regions. 

These conclusions of suitable wind energy development regions across the CONUS should be 

made recognizing the limits to the interpretation of WiFSS surfaces. Figures 20 and 21 show that 

WiFSS-LRCA tends to predict greater probabilities and classify more grid cells as false positive 

in CONUS-level runs than in runs over individual U.S. states, particularly in regions greatly 

populated by wind farms (i.e., the Central Plains and Great Lakes). For instance, the CONUS-

level run predicts high probabilities over almost all of Iowa, but the state-level run over Iowa 

confines high probabilities to the state’s north, center, and west. Furthermore, CONUS-level 

model runs generate more false negative classifications outside of these populated regions than 

state-level runs do, suggesting less capability at capturing isolated commercial wind farm 

locations. A few reasons exist for WiFSS-LRCA’s lower performance in CONUS-level model 

runs versus runs over individual U.S. states. Firstly, the predictors most pertinent to wind farm 

siting differ between regions, e.g., Avg_Wind was a less important predictor in Indiana (Figure 

12) and political attitudes toward wind energy are more positive in some states [87,88]. 

Coefficients for each predictor in Equation 1 therefore represent more than a single U.S. state in 

CONUS-level model runs, changing the computed 𝑃𝑖 values. Secondly, CONUS-level runs use 

up to 15 more predictors than state-level runs (Table 5a/5b), raising the risk of overfitting 

WiFSS-LRCA to the aggregated data [192] and potentially biasing computed probabilities. 

Finally, since WiFSS-LRCA is trained and tested based on presence of commercial wind farms 
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(see Section 3.3.1), this process is biased by most present wind farms being in two regions: the 

Central Plains and Great Lakes. Maximizing WiFSS-LRCA’s goodness-of-fit thus reflects 

conditions in these regions moreso than regions further away with fewer wind farms [462], hence 

there being more true positives and fewer false negatives across the Central Plains and Great 

Lakes in CONUS-level model runs (Figure 20). For these reasons, although WiFSS-LRCA’s 

performance in CONUS-level model runs has verifiable accuracy, state-level model runs 

generally possess greater accuracy since they can capture local differences in the predictors most 

pertinent to wind farm siting (see Section 4.1.2). It is thus recommended that CONUS-model 

runs be used to identify broad regions for wind energy development potential that cover multiple 

states, and that state-level runs of WiFSS-LRCA identify the highest-probability areas within 

these broader regions, as exemplified by comparing CONUS and state-level runs over Iowa and 

West Virginia in Figure 21. 

6.1.3. Question 3: Which regions of the CONUS (at nationwide and state-level scales) are 

projected to acquire wind farms out to the year 2050, and what geographical features may 

explain these projections? 

The first iteration of WiFSS-LRCA uses its Logistic Regression equation to predict present 

suitability for wind energy development based on the states of its enlisted predictors. Whereas, 

the subsequent iterations project future locations for wind energy development out to the year 

2050, using both customizable scenarios that modify the LR equation’s predictors and the 

constraint and neighborhood effect transition rules of Cellular Automata to replicate and continue 

observed patterns and limitations on this development. The decision to combine an LR equation 

and CA transition rules for these projections is predicated on two core assumptions. Firstly, that 

neighborhood effects indeed influence preferred installation sites of commercial wind farms, and 
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that a CA’s neighborhood effect transition rule is applicable on state- to CONUS-wide spatial 

scales. Previous wind farm installations have clustered in common locations across the CONUS, 

such as the Texas Panhandle and south of Lake Michigan [73], suggesting commonly suitable 

locations for wind energy development, hence WiFSS-LRCA incorporates neighborhood effects 

(alongside constraints and scenario setups) to drive model projections. Secondly, that the idea of 

using neighborhood effects in CA models to modify probability of a grid cell’s land-use change 

is equally applicable to commercial wind farms installed kilometers apart as it is to previous 

smaller-scale applications to urban growth [71,76], local deforestation [474] and landslides 

[475]. Verifying this application required a comprehensive sensitivity analysis (see Section 5.2), 

demonstrating the influence of modifying WiFSS-LRCA’s neighborhood effects compared to the 

model’s other parameters and determining whether the neighborhood effect parameter influences 

cluster-like land-use change patterns in a manner similar to other CA applications [72]. This 

section thus uses the results from Chapter 5 to summarize how this dissertation met its purpose 

(see Section 1.2) of showing that LRCA models are applicable in a WiFSS context, while also 

showing that geographical reasoning can be provided for the generated model outputs. 

The maps presented throughout Chapter 5 accredit the application of WiFSS-LRCA to informing 

planning efforts for future wind farm projects. The high-probability regions identified in WiFSS-

LRCA’s first iteration (Figure 21), particularly the Central Plains and Great Lakes, were 

consistently projected to experience the most wind farm expansion across the CONUS (Figure 

23a), areas that are already highly populated by wind farms. In CONUS-level model runs, this 

projection within broad regions held true whether or not the neighborhood effect transition rule 

was activated (Figure 23b), the only difference being that switching this rule off enabled 

projected locations to appear further away from present-day clusters. Neighborhood effects are 
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crucial, however, when running WiFSS-LRCA over individual U.S. states. Section 4.3.2 

discussed how Getis-Ord statistics revealed that grid cells classified as false positive in WiFSS-

LRCA’s first iteration were frequently clustered around those that are true positive (Figure 19), 

thus perhaps representing candidate locations for future wind energy development. Figure 25 

showed that these clustered false positive grid cells were frequently those projected to gain 

commercial wind farms in WiFSS-LRCA’s subsequent iterations, a result that can be captured 

thanks to how neighborhood effects simulate the influence area of grid cells (i.e., the influence of 

common conditions for wind energy development in the same location) [437]. Micrositing 

concerns such as downwind turbulence and reduced energy generation necessitate building wind 

turbines in the same farm up to kilometers apart [100], hence WiFSS-LRCA has a larger spatial 

unit for defining a neighborhood than other LRCA applications, which often define tracts of land 

or groups of buildings tens [99] to hundreds [71] of meters across. This difference in scale and 

density of land-use change does not, however, seem to effect WiFSS-LRCA’s ability to make 

projections in regions that are both 1) of high probability according to the model’s LR equation; 

and 2) consistent with previous patterns of wind energy development across the CONUS, 

accrediting the use of neighborhood effects in this model. 

Trust in the projections made by WiFSS-LRCA further comes from the model’s response to 

different predictor configurations, specifically how the predictors incorporated into the model’s 

LR equation affected these projections. Much like previous WiFSS studies that have noted Wind 

Speed to be an important (if not the most important) predictor for wind farm siting decisions 

[44,124,218], WiFSS-LRCA evidenced the same conclusion, with Figures 26 and 27 both 

showing that excluding Wind Speed affected the locations of future wind energy development 

clusters. Using ORs as evidence for the association between model predictors and model outputs, 
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the roles of predictors besides Wind Speed also became apparent. Much like in WiFSS-LRCA’s 

first iteration, Figure 23 suggests that Avg_Wind, Numb_Pols, Renew_Targ. and Undev_Land are 

all strongly associated with future wind farm locations in CONUS model runs, regardless of 

applied scenarios modifying the relationships that these predictors possess (see Table 9). 

However, the importance of other predictors based on their associations changed when running 

WiFSS-LRCA over individual U.S. states. Figure 24a suggested that projected wind energy 

development in Florida frequently clustered around existing infrastructure and potentially in 

areas with younger demographics. Additionally, projections over Illinois in Figure 24b pointed to 

projected wind farm locations often being those not overlapping vulnerable wildlife areas, again 

not predictors with the strongest association in CONUS-level model runs. The spatial scale of 

WiFSS-LRCA’s application therefore affects the geographical interpretation of its projections, 

which decision-makers could use to their advantage. Specifically, end-users of WiFSS-LRCA 

that may be concerned with wind energy development’s response to these wildlife areas [341, 

351] and demographics [339,398] could use WiFSS-LRCA to evaluate these responses, thus 

identifying localized influences on future wind farm siting decisions.  

Geographical explanations for trends in the projections constructed by WiFSS-LRCA were also 

apparent when conducting its sensitivity analysis, while simultaneously illustrating the model’s 

response to its four parameters: grid cell size, neighborhood size, constraint definitions, and 

scenario setup (see Section 5.2). Adjusting the prescribed neighborhood size (i.e., increasing the 

value of n in Equation 5 to allow grid cells further away to influence the state of grid cell i [68]) 

had arguably one of the greatest influences on WiFSS-LRCA’s projections. Projections 

performed over Maine (Figure 29, see Section 5.2.2) showed future wind farms to appear earlier 

and in denser clusters to the southeast as neighborhood size was increased, an area of Maine with 
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high WiFSS likely due to relatively flat terrain [79] and dense transmission line infrastructure 

[326]. Modifying grid cell size (Figure 28, see Section 5.2.1) similarly influenced a clustering of 

future wind farm locations, since smaller grid cells in CA models have been shown to project 

land-use change over shorter distances [443]. Modifying these two parameters reaffirms WiFSS-

LRCA’s ability to project continued cluster-like patterns of wind energy development that have 

previously occurred across the CONUS [73]. It was also possible to infer geographical 

explanations from altering WiFSS-LRCA’s constraints. As shown in Figure 30, many grid cells 

over Central Montana were only projected to gain commercial wind farms once the Wildlife 

Refuges constraint had been disabled (Figure 30b), suggesting a prevalence of protected land 

across the state that limits wind energy development [342]. Based on computed QADI statistics 

for these three parameters [445], adjustments to neighborhood size and grid cell size had the 

stronger influence on disagreement between separate runs of WiFSS-LRCA, but only 

adjustments to the constraint transition rule could reduce this statistic’s quantity disagreement 

component (rather than just allocation disagreement).  

As for the scenario setup parameter, regardless of the scenario that was enlisted when running 

WiFSS-LRCA over Washington (Figure 31), future wind energy development remained 

concentrated to the state’s east side. Possible geographical interpretations for these projections 

include, based on computed ORs, greater Average Wind Speed [321] and few competing land 

uses (Wildlife Refuges, National Parks, Military Operations) compared to elsewhere in 

Washington. However, WiFSS-LRCA’s projections were demonstrably less sensitive to scenario 

setup than the other three parameters discussed here. According to Figure 31, scenario 

modifications altered the timing more so than the location of when grid cells over Washington 

gained wind farms in subsequent iterations, with the other three parameters impacting both 
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timing and location of these projections. This smaller influence of modifying scenarios on 

WiFSS-LRCA’s projected wind farm locations could be due to other parameters superseding the 

scenarios’ effects. For instance, increasing neighborhood size and loosening the default 

constraints (Table 8) were both observed to cause tighter clustering of future wind farms around 

existing ones (Figures 28 and 30), resulting in the model’s projections more closely resembling 

the outputs of a null model (i.e., a lower QADI score occurred). In other words, grid cells having 

a high 𝑃𝑖 value becomes less important if WiFSS-LRCA is able to cluster future wind farms 

around present ones (i.e., looser constraints and larger neighborhoods are set as the model’s 

parameters), making scenario modifications to predictor coefficients less influential. Much like 

in existing WiFSS studies and other studies that enlisted LRCA approaches, WiFSS-LRCA is 

demonstrably sensitive to how its neighborhood effects [437,444], constraints [226,435], and 

grid cell size [443] are defined. Moreover, the repeated training and testing of this model’s LR 

equation (see Section 3.3.1) mitigates, but cannot negate, the effect of randomness on its final 

projections [421]. This randomness and sensitivity are two reasons why deduction of the 

geographical processes that influence these projections should not be overstated, because in 

addition to ORs not being a causal depiction of relationships between predictors and the model 

outcome [422], the model’s development choices also influence their interpretation.  

When running WiFSS-LRCA at the CONUS-level (as in Figure 23), the locations in which wind 

farm construction is projected to occur follow the most suitable regions identified in the model’s 

first iteration (Figure 21). Two regions in particular are the Central Plains and Great Lakes, 

regions characterized by conditions suited for wind energy development (e.g., strong winds, 

undeveloped land, transmission line proximity, renewable energy legislation), substantiated by 

the OR associations obtained from initially calibrating the model’s LR equation. As discussed in 
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Section 6.1.2, however, training and testing of this equation is biased by the many commercial 

wind farms that exist in these two regions, meaning grid cells that are in fact suitable for 

development in other parts of the CONUS may not gain a wind farm during WiFSS-LRCA’s 

iterations. Furthermore, CONUS-level model runs only account for nationwide wind energy 

capacity targets (see Section 3.4) [92], hence the value of also running WiFSS-LRCA over 

individual U.S. states, both to identify local geographical influences on projections and to 

represent state-level capacity targets.  The model requirement of at least two grid cells containing 

a wind farm to train and test WiFSS-LRCA at the state level (see Section 3.3.2) means that U.S. 

states currently lacking wind farms gain them based on ORs identified from CONUS model runs, 

hence states like Florida (Figure 24a) and Kentucky (Figure 27) are subject to the same equation-

based transition rules. The constraint and neighborhood effect transition rules of the model’s CA 

component result in projections of future wind farms that cluster in proximity to present wind 

farms (Figure 23, 29, and 30), thereby continuing the CONUS’s ongoing pattern of clustered 

wind energy development. WiFSS-LRCA is, however, sensitive to how these transition rules, 

other parameters (grid cell size, scenarios), and predictor configurations are defined, with this 

sensitivity occurring in similar ways to LRCA models developed for other land-use change 

contexts. This dissertation ultimately represents a proof of concept in integration of Cellular 

Automata transition rules and a Logistic Regression equation on a spatial scale larger than that of 

previous work, within a model that incorporates a robust sensitivity analysis that both verifies its 

own predictive accuracy and enables experimentation in the hands of end-users. 
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6.2. Limitations in WiFSS-LRCA’s Construction and Application. 

In answering these three research questions, WiFSS-LRCA also fulfills the purposes set out at 

the beginning of this dissertation (see Section 1.2). The future wind farm locations projected by 

WiFSS-LRCA have been shown to change considerably depending on the model setup, e.g., grid 

cell size, predictor configuration, study area, constraints, etc., with these projections explicable 

based on results of its calibration, meeting the model’s first purpose. WiFSS-LRCA’s 

incorporation of constraint and neighborhood effect transition rules to project future wind farm 

sites addresses the second purpose, since these projections successfully continue ongoing 

patterns of commercial wind farm construction across the CONUS while also illustrating 

development opportunities in states presently lacking wind farms. The third purpose has been 

met thanks to WiFSS-LRCA being constructed to allow end-users to customize its parameters 

and other features (e.g., neighborhood size, gained wind power capacity, scenario setup) to serve 

their own interests. WiFSS-LRCA can thus function as a decision-making tool to inform future 

wind farm construction strategy over the next 30 years. Furthermore, the dataset aggregation, 

calibration, validation, and grid cell iteration techniques presented in this dissertation could be 

used to inform LRCA-based WiFSS analyses in other countries. However, there are a few 

limitations to the transferability of WiFSS-LRCA into other geographical contexts moving 

forward. Some of these limitations have been discussed throughout this dissertation, specifically 

the non-causal nature of ORs warning against their over-interpretation as geographical indicators 

(see Section 6.1.2), and the inability to train and test the model’s LR equation over individual 

U.S. states that presently lack commercial wind farms (see Section 3.3.2). Other important 

limitations in WiFSS-LRCA’s construction and application are addressed in this section. 
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Since an LRCA model had not previously been developed for performing WiFSS assessment, 

there existed few common standards to inform WiFSS-LRCA’s development, with there being 

three prominent examples. Firstly, while LR-based WiFSS studies like Harper et al. [62] have 

proposed a hierarchical combination of predictors to construct predictor configurations, WiFSS-

LRCA’s Reduced configuration (see Section 3.5.2) lacked precedent and sought basis from 

wireless signal quantization [447]. Secondly, Variance Inflation Factor (VIF) cutoffs in LR-based 

WiFSS studies lack consistency. While WiFSS-LRCA used a value of 10 as a recommended 

upper limit [411], other studies have used a more conservative VIF of 2.5 [63] or did not specify 

their cutoff [62]. Thirdly, although this dissertation surveyed literature to define WiFSS-LRCA’s 

default constraints (Table 8), these constraints frequently lacked consensus in the literature, such 

as prescribed maximum distance to transmission lines ranging from 2,000 meters [218] to 40,000 

meters [49]. Each of these components of WiFSS-LRCA impacts its modeled outputs; predictor 

configurations and the VIF cutoff impact the predictors retained by Equation 1, and the default 

constraints impact which grid cells are unsuitable for future wind energy development. This lack 

of standards for model development extends to modeling approaches beyond WiFSS-LRCA, as 

discussed within the systematic review in Section 2.2 [40], such as the lack of common 

classification vocabulary, the varying application of predictors for constraint or evaluation, and 

inconsistent dataset citation methods. This dissertation serves in part to highlight the benefit of 

standardizing aspects of WiFSS modeling approaches, particularly predictor selection and 

representation, to ultimately synergize the discipline into one with consistent goals. 

As mentioned in Section 3.3.1, the effects of randomness on WiFSS-LRCA’s projected wind 

farm locations cannot be eliminated. During WiFSS-LRCA’s first iteration, 75% of grid cells are 

used to train the LR equation (i.e., calibrate its coefficients to maximize the predictors’ goodness-
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of-fit to the locations of wind farms [415]) and the other 25% are used to test the equation (i.e., 

validate the fitted equation’s ability to correctly classify grid cells as containing a wind farm or 

not). Random sampling of grid cells is accounted for by repeating the training and testing process 

30 times [421] to derive median fitted coefficients and to obtain a median validated performance. 

Random effects on WiFSS-LRCA’s outputs can persist regardless, especially when enlisting the 

Reduced predictor configuration because of how the sampled grid cells affect its refined 

combination of predictors (Table 11, see Section 4.1.3). Each run of WiFSS-LRCA produces 

slightly different results from a previous run because of this random grid cell sampling, 

regardless of using the same parameters, predictor configuration, and gained wind farm capacity. 

A possible solution is to bring spatial stratification into the random sampling of training and 

testing grid cells, such that balanced proportions of grid cells containing wind farms are 

extracted from strata covering a study area [476]. The benefit of spatial stratification would be 

evident when running WiFSS-LRCA over large domains, such as the CONUS or other countries. 

Doing so ensures that training and testing grid cell samples better represent a study area’s 

geography, preventing random chance from sampling grid cells where most wind farms exist. 

While experimenting with geographic stratification of predictor data is beyond this dissertation’s 

scope, not doing so is partly why CONUS-level runs of WiFSS-LRCA are biased to project 

future wind energy development in areas populated by wind farms, regardless of whether 

neighborhood effects are active (Figure 23a and 23b). WiFSS-LRCA’s training and testing grid 

cell samples must contain a proportional number of grid cells that possess a wind farm [416], 

ensuring that fitted coefficients reflect both presence and absence of wind farms (see Section 

3.3.1). However, lack of spatial stratification means that grid cells with wind farms are sampled 

where most are found: the Central Plains and Great Lakes. Moreover, as discussed in Section 
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6.1.2, sampling grid cells from the same region means that WiFSS-LRCA’s predictor coefficients 

are fitted to the predictor values associated with grid cell states in these regions, hence the large 

number of false positive classifications across the Central Plains and Great Lakes in Figure 20 

(and the large number of false negatives outside of these two regions). Spatial stratification 

would address this problem by ensuring that grid cells containing wind farms are extracted 

proportionately across the CONUS, meaning that WiFSS-LRCA is trained and tested to 

recognize conditions suited for wind energy development outside of these populated regions. 

Another solution would be using state-level wind energy capacity targets [92] in CONUS-level 

model runs, to place regional limits on how many grid cells gain wind farms per iteration. 

The interpretation that a grid cell containing a wind farm is related to geographical conditions 

depends on whether there is a statistically significant (p < 0.05) difference in the probabilities of 

grid cells classified as true/false positive and true/false negative. Section 4.3.1 summarized 

WiFSS-LRCA’s use of Mann-Whitney U-tests to determine whether a statistically significant 

difference in ranked probabilities of grid cells exists between these pairs of classifications [430], 

which was the case for the CONUS (Figure 17) and indeed most study areas and grid cell sizes. 

A lack of statistical significance would caution against, for instance, asserting that true positive 

grid cells are those that possess higher wind speeds or are closer to transmission lines. More 

importantly, given the consensus that statistical tests involving differences in two groups’ central 

tendencies require at least 30 sample members in each group [477], the results of WiFSS-

LRCA’s Mann-Whitney U-test may not always be robust. It was shown in Section 4.2 that false 

positive grid cell classifications (Type 2 errors) are produced infrequently by WiFSS-LRCA, 

hence the interpretation of differences in the probabilities of grid cells classified as true negative 

versus false negative should be made cautiously. 
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The method of defining scenarios for WiFSS-LRCA had little effect on the model’s outputs. 

Section 5.2.4 showed that WiFSS-LRCA’s projections are less sensitive to the scenario setup 

parameter than to neighborhood size, grid cell size, or the specified constraints, more so affecting 

the timing than location of future wind energy development. Modifying the constraints and 

neighborhood effects superseded modifying the coefficients of the model’s LR equation, since a 

grid cell that violates constraints, or is too far away from grid cells that currently contain wind 

farms, are instantly assigned a 𝑃𝑟𝑜𝑏𝑖
𝑡 value of zero (Equation 4), regardless of the closeness of 

the 𝑃𝑖 value to one (Equation 1). WiFSS-LRCA’s scenario approach of modifying these 

coefficients assumes that grid cells projected to gain wind farms are partially in response to 

changes in associations (Odds Ratios) between predictors and the binary dependent variable. It is 

established practice to use ORs to express these associations [62], and studies such as Yang et al. 

[98] also constructed scenarios that modified groups of predictors in an LRCA model (Tables 9a 

and 9b). However, this scenario definition compromises the maximized goodness-of-fit from 

calibrating WiFSS-LRCA’s LR equation, and understanding the scenario outputs is subject to 

confounding predictors that can obscure OR interpretations [96]. Alternative scenario definitions 

in other LRCA studies represent potential to refine the definition used by WiFSS-LRCA. For 

instance, Gomes et al. [478] prescribed groups of drivers deemed important by local farmers 

(e.g., population density, road networks, land slope) to construct bespoke scenarios for their 

model’s equation-based transition rule, and Mirbagheri and Alimohammadi [479] used 

Geographically Weighted Logistic Regression to weight global and local probabilities of land-

use change differently to depict two respective scenarios of urban development. 

A final key limitation is that WiFSS-LRCA has been optimized for the projection of onshore 

future wind energy development, rather than offshore development. Given the investment tax 



173 

credits [298], development plans [480], and capacity targets [89] recently released by the United 

States’ federal government to support offshore wind energy, offshore WiFSS models are in 

demand. Indeed, non-LR-based offshore WiFSS models have already been developed for Egypt 

[262], Brazil [265], and South Korea [272]. However, with only two wind farms currently 

installed on the Atlantic Seaboard [73], running WiFSS-LRCA in the CONUS’ surrounding 

waters would validly represent the predictor conditions of a relatively small region. Furthermore, 

assessing offshore wind energy development would require changes to WiFSS-LRCA’s enlisted 

predictors. Proportion of Rugged Land (Prop_Rugg) and Proportion of Undevelopable Land 

(Undev_Land) would be obsolete in an offshore WiFSS assessment, and datasets representing 

ocean depth and offshore bird/fish habitat ranges would likely need to be included among 

WiFSS-LRCA’s aggregated data. Under WiFSS-LRCA’s current method of training and testing 

its LR equation (see Section 3.3), extending the model to project offshore wind farm locations 

would require separate model runs for onshore and offshore WiFSS assessment due to the 

differences in the necessary predictors. 

6.3. Possible Directions for Future Work. 

Acknowledging the above limitations does not discredit the research contributions made by 

WiFSS-LRCA, namely the development of a SES model that produces temporally explicit, 

geographically sound projections of future locations for wind energy development for a given 

study area, and the verified application of LRCA models on scales considerably larger than their 

more common city-to-county scale assessments of land-use change. As such, there are three 

directions of interest for expanding WiFSS-LRCA’s use in future work, the first of which being 

the projection of offshore wind energy development. The United States’ ongoing interest in 

increasing its offshore wind energy capacity means that WiFSS models that can inform where 
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this development should be focused would be of use. Amending WiFSS-LRCA to meet this 

demand for knowledge of offshore WiFSS should be straightforward for two reasons. Firstly, 

despite the lack of present offshore wind farms in the United States’ surrounding waters [73], the 

Bureau of Ocean Energy Management maintains activity records for the nation’s planned and 

completed offshore wind projects [481]. The locations of these projects could be used to define 

dummy offshore wind farm locations to train and test WiFSS-LRCA in the manner described in 

Section 3.3, allowing the model to project suitable offshore sites that have not yet been planned. 

Secondly, predictors that have been included in published offshore WiFSS studies, such as Ocean 

Depth [267], Distance to Shipping Lanes [268], and Distance to Commercial Fishing Areas 

[262], are available for the United States’ surrounding waters as public domain data 

[482,483,484]. These datasets are therefore readily integrated into WiFSS-LRCA’s dataset 

aggregation (see Section 3.2), allowing the model to project offshore WiFSS using the same 

hexagonal grid cell setup. Integration of offshore WiFSS assessment into WiFSS-LRCA could 

also expand the devised scenarios in Table 9 to include one for changes to offshore-specific 

predictors, along with new default constraints (Table 8), e.g., a maximum Ocean Depth of 60 

meters for fixed-bottom wind turbine construction [261,480]. 

Another intended direction for future work is a more detailed analysis of how the spatial scale of 

WiFSS-LRCA impacts both projected wind farm locations and the geographical interpretation of 

said projections. This dissertation showed that running WiFSS-LRCA at a state-level or CONUS-

level scale impacted the classified grid cell states in WiFSS-LRCA’s first iteration (e.g., Figure 

20) and the final projected wind farm locations (e.g., Figure 23 and 24). Additionally, state-level 

model runs generally allowed for greater predictive accuracy and identification of predictors that 

are less strongly associated in CONUS-level model runs (e.g., Critical and Bat_Count in Figure 
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24b). However, since individual U.S. states vary greatly in size and have borders based on a 

combination of river courses and latitude-longitude lines [485], alternative spatial scale 

definitions may reveal previously undetected patterns in the influence of predictors on wind farm 

siting decisions. For example, running WiFSS-LRCA over multiple states simultaneously may 

reveal which predictors have strong associations with model outputs across larger regions. 

Another option may be to construct spatial scales by using the predictors to define geographic 

regimes, e.g., predominant regional land types using the National Land Cover Database [80] or 

regional wind speed classes based on the National Renewable Energy Laboratory’s wind 

resource maps [321]. Constructing study areas based on overarching geographic conditions may 

also provide more context to the ORs computed by WiFSS-LRCA, in this case for Undev_Land 

and Avg_Wind, respectively. Such definition of spatial scale as broad regions encompassing 

multiple states would also allow WiFSS-LRCA to be trained and tested over individual U.S. 

states that do not presently contain commercial wind farms. Section 3.3.2 stated that training and 

testing the model’s LR equation requires both classes of the dependent variable to possess at 

least one grid cell that contains a wind farm [416], meaning 14 U.S. states rely on training 

WiFSS-LRCA over the CONUS to produce model projections. Running WiFSS-LRCA over 

multiple neighboring states, or basing study areas on broad geographic regimes, would allow the 

model’s predictive accuracy in its first iteration to be verified over these 14 states. 

Finally, the potential applications of WiFSS-LRCA go beyond projecting wind energy 

development. Aggregation of WiFSS-LRCA’s dataset across multiple grid cell sizes and study 

areas means that it is readily applicable to suitability analyses of other types of decentralized 

energy, particularly solar energy. Indeed, many predictors relevant to WiFSS are also relevant to 

commercial solar farm site suitability, such as transmission line proximity, population density, 
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and ruggedness of terrain, predictors that have been used in SES modeling studies of solar farm 

siting potential [45,127]. The only essential additions to WiFSS-LRCA’s aggregated dataset 

would be locations of present commercial solar farms and solar irradiance, with datasets for both 

existing in the United States’ public domain [486,487]. Furthermore, any form of decentralized 

land-use change over the CONUS of interest to this model’s end-users could be projected with 

WiFSS-LRCA, given the necessary substitution of the binary dependent variable. Despite the 

limitations previously discussed, WiFSS-LRCA’s verified predictive accuracy of both present 

and future wind farm locations across the CONUS mean it is prepared for application in other 

contexts, expanding beyond the more common land-use change applications of LRCA models. 
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Appendix 

A1: Link to the GitHub repository that contains WiFSS-LRCA’s model code, model user 

instructions, and aggregated datasets for the CONUS and its 48 individual U.S. states: 

https://github.com/JoshuaW1994/Wind-Farm-Site-Suitability-CONUS.  

A2: Link to the spreadsheet containing Supplementary Material for the systematic review 

(See Section 2.2): https://sooners-my.sharepoint.com/:x:/g/personal/joshua_j_wimhurst-

1_ou_edu/EUSZO1GKaG5HjidzOaiXjq4BC6U0SPyixNfpnVsFDlQY4A?e=v46kmA.  
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A3: Example console output from running WiFSS-LRCA’s Logistic Regression equation: 

 



219 

  



220 

 



221 

 



222 

 



223 

 



224 

 



225 

 



226 

A4: Example console output from running WiFSS-LRCA’s Cellular Automata component: 
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