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Abstract

A graph G = (V,E) is an ordered tuple where V is a non-empty set of elements

called vertices (nodes), and E is a set of an unordered pair of elements called links

(edges), and a time-evolving graph is a change in the states of the edges over time.

With the growing popularity of social networks and the massive influx of users,

it is becoming challenging to store the network/graph and process them as fast

as possible before the property of the graph changes with the graph evolution.

Graphs or networks are a collection of entities (individuals in a social network)

and their relationships (friends, followers); ways to represent a graph can help how

the information could be extracted. The increase in the number of users increases

the user’s relationship, making the graphs massive and nearly impossible to store

them in friendly structures such as a matrix or an adjacency list. Therefore, an

exciting area of research is storing these massive graphs with a smaller memory

footprint and processing with very little extra memory.

But there is always a trade-off with time and space; to get a small memory

footprint, one must rigorously remove the redundancy, which consumes time. In

the same way, when traversing these tight spaces, the time required to query also

increases compared to a matrix or an adjacency list.

In this dissertation, we provide the encoding technique to store the graphs

in the Compressed Sparse Row (CSR) data structure and extend the encoding
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to store time-evolving graphs as a CSR. We also propose combinations of two

structures (CSR + CBT ) to store the time-evolving graphs and to improve the

time and space trade-off. Our compression technique also enables us to access

any node without the need of decompressing the entire structure.

We then provide four ways to store multi-dimensional data representing intri-

cate social network relations. Once the data are stored in compressed format, it is

important to provide algorithms that support the structures. One such computa-

tion, the basis for any graph algorithm, is matrix multiplication. We now extend

our work to perform value-based matrix multiplication on compressed structures.

We test our algorithm on extremely large matrices in the order of 100s of millions

with various sparsity levels. Using matrix-matrix multiplication and keeping the

theme of storing the data in small spaces, we propose another way of compression

through dimensionality reduction called Matrix Factorization.

Performing these operations on a compressed structure without decompressing

would be time-consuming. Therefore, in this dissertation, we introduce a parallel

technique to construct the graph and run a list of queries using the querying

algorithms, such as fetching neighbor or edge existence in parallel. We also extend

our work to propose parallel time-evolving differential compression of CSR using

the prefix sum approach.
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Chapter 1

Introduction

Graphs, in the real-world have become a pivotal tool to analyze data. But these

real-world data are so large, it is nearly impossible to fit them into one’s computer

to perform analyses. Therefore, in this dissertation, we will focus on the ways, we

can tackle the situation of storing these large data, and also provide algorithms

to perform analyses, that supports the storage structure. Before we move on to

looking at the storage techniques, let us first look at the definitions and some

existing methodologies.

In this chapter, we first look at the definition of graphs in Section 1.1, how

a graph can be represented as a matrix in Section 1.2, the operations that can

be performed on the matrices in Section 1.3, later we discuss how graphs are

exhibited in the real-world in Section 1.4, in Section 1.5 we discuss how graphs

evolve over time, and what operations can be performed on these graphs in Sec-

tion 1.6. Then we introduce the need for compression in Section 1.7, and at last

we introduce the need for parallelism for compressing large graphs in Section 1.8.
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1.1 Graphs

Graphs are fundamental mathematical structures used to represent relationships

between objects. They consist of a set of vertices (also called nodes) and a set

of edges that connect pairs of vertices. Graphs are commonly used to model and

analyze various real-world systems and networks.

In a graph, vertices represent entities or elements, while edges represent the

connections or relationships between them. These connections can be directed

or undirected, depending on whether the edges have a specific direction or not.

Directed edges indicate a one-way relationship, while undirected edges represent

a two-way relationship.

Graphs can be further classified based on their characteristics:

• Weighted Graphs: In weighted graphs, each edge is assigned a numerical

value or weight, representing some attribute or measure associated with

the connection. These weights can denote distances, costs, or any other

relevant metric.

• Unweighted Graphs: In unweighted graphs, edges do not have any associ-

ated weights. They simply indicate the presence of a connection between

vertices without considering any specific attributes.

• Connected Graphs: A connected graph is one in which there is a path

between every pair of vertices. In other words, there are no isolated vertices

or disconnected components within the graph.

• Directed Acyclic Graphs (DAGs): DAGs are directed graphs that do not

contain any cycles. A cycle is a sequence of edges that, when traversed,
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leads back to the starting vertex. DAGs are commonly used in modeling

processes, dependencies, and directed flow of information.

• Bipartite Graphs: Bipartite graphs are graphs whose vertices can be divided

into two disjoint sets, such that there are no edges connecting vertices within

the same set. This property makes bipartite graphs useful for modeling

relationships between two distinct groups of entities.

1.2 Matrices

One of the ways to store and represent a graph is through a matrix. Matrices can

be used to represent graphs in a structured and systematic manner. In the context

of graphs, a matrix representation is often employed to capture the connectivity

and relationships between vertices.

The most common matrix representation for graphs is the adjacency matrix.

An adjacency matrix is a square matrix, where the rows and columns correspond

to the vertices of the graph. The entry at position (i, j) in the matrix indicates

whether there is an edge between vertices i and j.

In an undirected graph, the adjacency matrix is symmetric, meaning that if

there is an edge from vertex i to vertex j, there is also an edge from vertex j to

vertex i. In a directed graph, the adjacency matrix may not be symmetric, as

the presence or absence of an edge can differ depending on the direction.

The entries in the adjacency matrix can be binary, representing the presence

or absence of edges, or they can be weighted to denote the strength or distance

associated with the edges. A value of 1 usually indicates the presence of an edge,

while a value of 0 indicates the absence of an edge. For weighted graphs, the

values in the matrix represent the weights assigned to the edges.
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1.3 Linear Algebra Operations

Linear algebra operations on matrices are vital for graph algorithms as they al-

low for concise representation, efficient manipulation, and analysis of graph data.

These operations reveal important graph properties, enable the implementation

of various graph algorithms, and facilitate solving systems of equations. Opti-

mizations based on linear algebra techniques further enhance algorithm efficiency,

making them essential for effective graph algorithm design and optimization.

• Matrix Addition: Matrix addition is an operation performed on two matri-

ces of the same dimensions. It involves adding the corresponding elements

of the matrices together. The resulting matrix has the same dimensions

as the original matrices, and each entry in the result is the sum of the

corresponding entries from the original matrices.

• Matrix Subtraction: Similar to matrix addition, matrix subtraction is per-

formed on two matrices of the same dimensions. It involves subtracting

the corresponding elements of one matrix from the corresponding elements

of the other matrix. The resulting matrix has the same dimensions as the

original matrices, and each entry in the result is the difference between the

corresponding entries from the original matrices.

• Matrix Multiplication: Matrix multiplication is an operation performed

on two matrices, but with specific requirements on their dimensions. The

number of columns in the first matrix must be equal to the number of rows

in the second matrix. The result is a new matrix where each element is

computed as the sum of the products of the corresponding elements from

the rows of the first matrix and the columns of the second matrix. Matrix
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multiplication is not commutative, meaning that the order of multiplication

matters.

• Element-wise matrix operations involve performing an operation between

corresponding elements of two matrices. In this type of operation, the ele-

ments in the same position (row and column) in both matrices are combined

to produce a new matrix of the same dimensions.

• Matrix Transpose: The transpose of a matrix is obtained by interchanging

its rows with columns. It is denoted by adding a superscript ”T” to the

matrix. The resulting matrix has the dimensions reversed compared to

the original matrix. In other words, if the original matrix is m x n, the

transpose will be n x m. The transpose operation allows for various matrix

manipulations and transformations and is useful in solving systems of linear

equations, among other applications.

• Matrix Inverse: The inverse of a square matrix is a matrix that, when

multiplied with the original matrix, yields the identity matrix. It is denoted

by adding a superscript ”-1” to the matrix. Not all matrices have inverses;

for a matrix to have an inverse, it must be non-singular or invertible. The

inverse operation allows for solving systems of linear equations, calculating

determinants, and performing other computations.

1.4 Types of Real-World Graphs

Real-world graphs, also known as complex networks, are graph structures that

model relationships or interactions between entities in various real-world systems.

These graphs capture the connections between objects, individuals, or entities in
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domains such as social networks, transportation networks, biological networks,

and information networks.

Here are some examples of real-world graphs:

• Social Networks: Social networks represent relationships between individu-

als in social systems. Examples include online social networks like Facebook

and Twitter, where vertices represent users, and edges represent friendships

or connections between them.

• Transportation Networks: Transportation networks model the connections

between locations or transportation infrastructure. Examples include road

networks, where vertices represent intersections or road segments, and edges

represent the connections between them, or airline networks, where vertices

represent airports, and edges represent flight routes.

• Biological Networks: Biological networks represent interactions between bi-

ological entities, such as proteins, genes, or species. For example, protein-

protein interaction networks model interactions between proteins, while

gene regulatory networks represent interactions between genes and their

regulatory elements.

• Information Networks: Information networks capture the flow of informa-

tion or data between entities. Examples include the World Wide Web,

where web pages are represented as vertices, and hyperlinks between them

form the edges, or citation networks, where scientific papers are represented

as vertices, and citations between papers form the edges.

• Collaboration Networks: Collaboration networks represent collaborations

between individuals or entities. Examples include co-authorship networks,
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where vertices represent authors, and edges represent collaborations be-

tween them, or co-occurrence networks, where vertices represent words,

and edges represent co-occurrences of words in documents.

1.5 Time-Evolving Graphs

Time-evolving graphs, also known as temporal graphs or dynamic graphs, are

graph structures that capture the evolution of relationships or interactions over

time. Unlike static graphs, which represent a snapshot of connections at a par-

ticular moment, time-evolving graphs provide a temporal dimension, allowing for

the analysis of how relationships change and evolve over time.

In time-evolving graphs, the edges or attributes of the graph can change over

time, reflecting the dynamic nature of the underlying system being modeled. For

example, in a social network, edges may represent friendships, and the graph can

capture the formation and dissolution of friendships as time progresses. Similarly,

in a communication network, edges can represent interactions between individ-

uals, and the graph can depict the communication patterns that emerge and

change over time.

Analyzing time-evolving graphs has several significant implications. It allows

for a deeper understanding of the dynamics, evolution, and temporal patterns of

complex systems. By studying how relationships change over time, researchers

can gain insights into the underlying processes, identify trends, and predict future

behaviors. Temporal analysis of graphs also facilitates the detection of evolving

communities, influential nodes, and structural changes within the network.

Furthermore, analyzing time-evolving graphs poses unique challenges com-

pared to static graphs. Techniques for storage, indexing, querying, and visual-
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ization need to be adapted to handle the temporal dimension. Temporal graph

mining algorithms and analysis methods need to be developed to extract mean-

ingful insights from the evolving graph structures.

In summary, time-evolving graphs provide a powerful framework to study the

dynamics of relationships and interactions over time. Analyzing these graphs

offers valuable insights into evolving systems, facilitates prediction and decision-

making, and drives advancements in various domains.

1.6 Graph Operations

Graph operations allow us to analyze and understand the structure, properties,

and relationships within complex systems represented as graphs. By performing

operations like traversal, clustering, or community detection, we can gain insights

into the organization, connectivity, and patterns of interaction in various domains

such as social networks, biological systems, or transportation networks.

Let’s explore some common graph operations on both static (non-temporal)

and time-evolving (temporal) graphs:

Graph operations on Static Graphs:

• Graph Traversal: Traversing a static graph involves exploring its vertices

and edges to visit or search for specific nodes or paths. Popular graph

traversal algorithms include depth-first search (DFS) and breadth-first search

(BFS).

• Shortest Path: Finding the shortest path between two vertices is a funda-

mental operation in graph analysis. Algorithms like Dijkstra’s algorithm

and Bellman-Ford algorithm can be employed to determine the shortest
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path based on edge weights.

• Connected Components: Identifying connected components in a graph in-

volves grouping vertices that are connected to each other via paths. This

operation is useful for understanding the connectivity structure of a graph

and detecting isolated clusters.

• Clustering and Community Detection: Graph clustering algorithms aim to

partition the graph into clusters or communities based on the similarity or

connectivity of vertices. Popular methods include modularity optimization

and spectral clustering.

Graph Operations on Time-Evolving Graphs:

• Temporal Traversal: Traversing a temporal graph involves navigating through

its vertices and edges while considering the temporal dimension. This op-

eration requires taking into account the timestamps or intervals associated

with the edges to track the temporal evolution of the graph.

• Temporal Path Analysis: Finding temporal paths in a time-evolving graph

involves identifying paths that follow a specific temporal order of edges.

This operation is useful for studying temporal dependencies or tracing tem-

poral sequences of events.

• Temporal Reachability: Analyzing temporal reachability focuses on deter-

mining whether a vertex is reachable from another vertex within a specific

time window. This operation helps understand the temporal accessibility

or influence between nodes.

• Temporal Community Detection: Temporal community detection algorithm

aims to identify communities or clusters in time-evolving graphs based on
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the temporal patterns of interactions. These algorithms take into account

both the structural properties and the temporal dynamics of the graph.

• Temporal Graph Matching: Matching or aligning temporal graphs involves

finding correspondences between vertices or edges across different time

slices. This operation allows for tracking entities or relationships across

time and studying their evolution.

1.7 Compression

Graphs are widely used to model complex systems and relationships, ranging

from social networks and biological interactions to transportation networks and

information systems. However, as the size of these networks continues to grow

exponentially, the need for efficient storage and processing of graph data becomes

crucial. Graph compression techniques offer a solution by reducing the space

required to store and operate on large-scale graphs without sacrificing important

structural and connectivity information.

Graph compression is the process of representing and storing graphs in a com-

pressed form, allowing for efficient storage, retrieval, and analysis of graph data.

It aims to minimize the storage footprint while preserving the key characteris-

tics of the graph, such as vertex and edge relationships, connectivity, and graph

properties. By compressing graphs, it becomes possible to handle extremely large

graphs within limited resources, enabling more scalable and faster graph process-

ing.

The main objective of graph compression is to achieve a trade-off between

storage space and query performance. Different graph compression techniques

employ various strategies to reduce redundancy and exploit patterns within the
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graph structure. These techniques leverage concepts from data compression,

graph theory, and algorithms to optimize the representation and storage of graph

data.

Compression in general is divided into two category, lossy and lossless.

1.7.1 Lossy Compression

Lossy compression is a compression technique that achieves higher compression

ratios by selectively discarding or approximating certain parts of the data that

are considered less important or perceptually less significant. In lossy compres-

sion, some amount of information is lost during the compression process, and the

decompressed data is not an exact replica of the original data. Lossy compression

techniques are often used in scenarios where some degree of loss or degradation

in quality can be tolerated without significantly affecting the overall usefulness

of the data. Common examples of lossy compression include image compres-

sion techniques like JPEG, audio compression techniques like MP3, and video

compression techniques like MPEG.

1.7.2 Lossless Compression

Lossless compression is a compression technique that allows for the exact recon-

struction of the original data from the compressed form. In lossless compression,

no information is lost during the compression process. The compressed data

retains all the original data, and when decompressed, it is identical to the orig-

inal data. Lossless compression techniques typically exploit redundancies and

patterns in the data to represent it in a more compact form. Examples of loss-

less compression algorithms include Run-Length Encoding (RLE) (Robinson and
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Cherry, 1967), Huffman coding (Huffman, 1952), and Lempel-Ziv-Welch (LZW)

(Ziv and Lempel, 1978) compression.

The choice between lossless and lossy compression depends on the specific

requirements of the application and the trade-offs between compression ratio and

fidelity. Lossless compression is typically preferred when exact preservation of the

data is essential, such as in text documents or program files. Lossy compression,

on the other hand, is commonly used in multimedia applications where a certain

level of imperceptible loss can be accepted to achieve higher compression ratios,

such as in images, audio, and video files.

In the context of graph compression, similar principles apply. Lossless graph

compression techniques aim to preserve the exact structure and connectivity of

the graph, allowing for accurate analysis and query operations. Lossy graph

compression techniques may sacrifice certain details or properties of the graph

to achieve higher compression ratios, which can still be useful in scenarios where

approximate graph information is sufficient for the intended analysis or applica-

tion.

1.7.3 Queryable Compression

Queryable compression on graphs refers to the capability of compressed graph

representations to support efficient and effective query operations. It involves

compressing graph data in a way that preserves important structural information

and allows for querying and retrieving specific information or performing graph

operations on the compressed data without the need for full decompression. Some

of the well-known lossless queryable compressions were introduced by Nelson et.

al., (Nelson et al., 2017)(Nelson et al., 2018)
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In queryable compression, the compressed graph representation is designed to

enable various types of queries or operations on the graph, such as graph traver-

sal, neighborhood exploration, shortest path computation, or subgraph match-

ing. The goal is to achieve a balance between compression ratio and query per-

formance, where the compressed graph occupies less storage space while still

providing fast access and retrieval of relevant information.

To achieve queryable compression, different techniques can be employed:

• Indexing: Indexing structures can be built on top of the compressed graph

to facilitate efficient query processing. These indexes store additional meta-

data or auxiliary structures that allow for fast lookup and retrieval of spe-

cific graph elements or properties

• Preprocessing: Preprocessing techniques can be applied during the com-

pression process to extract and store important graph properties or sum-

maries that are relevant for query operations. These precomputed sum-

maries or properties enable faster query processing by avoiding the need to

decompress the entire graph.

• Compression Trade-offs: The choice of compression algorithm and param-

eters can have an impact on the query performance. Some compression

techniques, while achieving high compression ratios, may introduce higher

overhead in terms of query processing. It becomes important to strike a

balance between compression efficiency and query performance based on

the specific requirements of the application.
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1.7.4 Matrix-Based Compression

Matrix-based compression treats the graph as an adjacency matrix, where rows

and columns represent vertices, and the matrix entries indicate the presence or ab-

sence of edges between vertices. This approach leverages compression techniques

specifically designed for matrices. Some of the most common matrix-based com-

pression are ckd − tree Compression (Caro et al., 2016), Suffix-Array Strategy

Compression (Brisaboa et al., 2014a), and so on.

Advantages of Matrix-based Compression:

• Compact Representation: Matrix-based compression techniques can achieve

high compression ratios by exploiting the sparsity of the graph matrix, as

many real-world graphs exhibit sparsity.

• Efficient Matrix Operations: Once compressed, matrix-based representa-

tions allow for efficient matrix operations like matrix multiplication, which

can be advantageous for certain graph algorithms and computations.

• Well-Studied Techniques: Matrix compression techniques have been exten-

sively studied and optimized, with various algorithms and tools available

for compression and decompression.

Disadvantages of Matrix-based Compression:

• High Memory Overhead: The compressed matrix may still require sub-

stantial memory to store, especially for large graphs. In some cases, the

compression ratios achieved may not be sufficient to fit the graph within

the available resources.
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• Limited Query Flexibility: Querying individual elements or properties of

the graph may require decompressing the entire matrix, which can be inef-

ficient for certain types of graph operations.

• Lack of Scalability: Matrix-based compression techniques may struggle to

handle extremely large graphs due to memory limitations and computa-

tional complexity.

1.7.5 Row-by-Row Compression

Row-by-row compression approaches compress the graph by compressing individ-

ual rows of the adjacency matrix independently. Each row represents the adja-

cency information of a vertex, and compression techniques are applied to each

row separately. Some of the most common row-by-row compression are Backlinks

Compression (Chierichetti et al., 2009), Web-Based Compression (Boldi and Vi-

gna, 2004), and so on.

Pros of Row-by-Row Compression:

• Selective Decompression: Row-by-row compression allows for selective de-

compression of specific rows or vertices, enabling targeted retrieval of infor-

mation without decompressing the entire graph.

• Flexibility in Querying: The compressed representation supports efficient

querying of specific rows or neighborhood information, making it suitable

for various graph operations and algorithms.

• Lower Memory Overhead: Row-by-row compression can achieve better

memory utilization compared to matrix-based compression, as only the nec-

essary rows need to be decompressed for a given operation.
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Cons of Row-by-Row Compression:

• Limited Matrix Operations: Unlike matrix-based compression, row-by-row

compression may not directly support efficient matrix operations like matrix

multiplication, which can be disadvantageous for certain graph algorithms

that heavily rely on matrix operations.

• Lower Compression Ratios: In some cases, row-by-row compression may

achieve lower compression ratios compared to matrix-based compression

techniques, as it focuses on compressing individual rows rather than the

entire matrix.

• Trade-off Between Query Efficiency and Compression Ratio: The level of

compression achieved with row-by-row compression may impact the effi-

ciency of query operations, and finding the optimal balance between com-

pression and query performance can be challenging.

The choice between matrix-based compression and row-by-row compression

depends on the specific characteristics of the graph, the desired query and com-

putation tasks, and the available resources

1.8 Parallel Graph Compression and

Computation

As the size of graphs continues to grow exponentially, the need for efficient com-

pression techniques becomes crucial to handle the storage and processing chal-

lenges associated with large-scale graph data. Parallelism in graph compression
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accelerates the compression process by leveraging multiple processors or comput-

ing units. It divides the compression tasks into smaller subtasks that can be

processed simultaneously. These computing units can be CPU cores, GPUs, or

even distributed computing systems. Each unit works on a subset of the graph

data or performs compression operations on different parts of the graph simulta-

neously, enabling faster compression compared to sequential processing.

Data parallelism and task parallelism are common approaches, distributing

the workload across computing units or stages of the compression algorithm.

Distributed computing frameworks can be used for extremely large graphs. Par-

allel compression offers faster compression, and scalability, and utilizes modern

hardware. Challenges include load balancing and synchronization overhead.

Overall, parallelism provides a powerful solution to compress large graphs

efficiently and reduce compression time.

The remainder of the dissertation is organized as follows. In Chapter 2, we dis-

cuss existing techniques to store time-evolving graphs, and tensors, and existing

work on matrix-matrix multiplication, matrix-factorization, and finally parallel-

based graph compression. In Chapter 3, we introduce techniques to store time-

evolving graphs, and we also introduce improvements on the existing technique.

In Chapter 4, we introduce multiple techniques to store tensors. In Chapter 5,

we introduce matrix-matrix multiplication on the compressed structures, and in

Chapter 6, we use the multiplication algorithm along with a few other matrix op-

erations to perform matrix factorization. In Chapter 7, we introduce a technique

to store static graphs in parallel on a highly sequential data structure, and also

we propose a technique to store time-evolving graphs in parallel. We conclude

our work in Chapter 8, by summarizing all the contributions.
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Chapter 2

Literature Survey

In this chapter, we discuss all the existing techniques present for the work on time-

evolving graph compression, tensor compression, matrix-matrix multiplication on

the compressed structure, matrix-factorization on the compressed structure and

the parallel construction of the compressed structures.

2.1 Time-Evolving Graphs

A time-evolving graph can be represented as a sequence of static graphs (snap-

shots), with each of the snapshots representing the graph at a particular point

in time. Since a snapshot can be represented as a 2D matrix, a time-evolving

graph can therefore be represented as a 3D matrix, also known as presence matrix

(Ferreira and Viennot, 2002).

In 2009, Chierichetti et al. (Chierichetti et al., 2009) modified the web com-

pression method developed by Boldi and Vigna’s WebGraph (Boldi and Vigna,

2004) called Backlinks Compression (BLC). The compression is based on the so-
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cial network’s property of reciprocity. The compression technique makes use of

intrinsic ordering heuristics based on shingles, which improves on the WebGraph

format.

Nelson et al. (Nelson et al., 2017) in 2017 introduced a compressed data struc-

ture as an indexed array of Compressed Binary Tree (CBT). The data structure

eliminates the necessity of an intermediate structure to create the compressed

binary tree. The data structure also makes use of row-by-row compression which

enables faster access to the edge existence, neighbor query, and the streaming

operation.

In 1976, Compressed Sparse Row (CSR) was first documented by Snay (Snay,

1976b), and is one of the most common data structures used to represent a graph.

The compressed sparse row is also a row-by-row compression that involves two

arrays for the compression of each node. All the information is efficiently packed

in the array for quick traversal of the data structure. The first array shows the

degree of each node, and the following array shows the edge incidence for each

node. Here, the degree of a node v is the number of edges incident to v, and is

denoted as d(v).

In 2016, Caro et al. (Caro et al., 2016) developed ckd − trees. They define

a contact as a quadruplet (u, v, ti, tj) and then compress the 4D binary matrix

corresponding to the time-evolving graph defined by a set of these contacts. It

is done by representing the 4D matrix as a kdtree and then distinguishing white

nodes as those without any contacts, black nodes as those that contain only

contacts, and gray nodes as those that contain only one contact. This work was

preceded by Brisaboa et al. k2 − trees (Brisaboa et al., 2014b) in 2014.

G∗ database (Labouseur et al., 2015) is a distributed index that solves the

space issue of the presence matrix by only storing new versions of an arc when
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its state changes, i.e. as a log of changes. This is done by storing versions of the

vertices as adjacency lists and maintaining pointers to each time frame. If an arc

changes in the next frame, a new adjacency list is created for that vertex’s arc

and a pointer is added to the new frame.

Caro et al. (Caro et al., 2015) proposed a compressed adjacency log structure

based on the log of events strategy called EveLogs. It consists of two separated

lists per vertex, one for the time frames, and another for representing the arcs

related to the event. The time frames are compressed using gap encoding, and

the arc list is compressed with a statistical model. Caro et al. (Caro et al., 2016)

show that query times suffer when the log is sequentially scanned.

Ren et al. (Ren et al., 2011), developed the FVF (Find-Verify-Fix) framework

which includes a copy+log compression that also supports shortest-paths and

closeness centrality queries. More preliminary work is done in (Álvarez-Garćıa

et al., 2014) (Bernardo et al., 2013), which describes three different methods to

index time-evolving graphs based on the copy+log strategy.

Two log of events strategies, CAS and CET, are proposed in (Caro et al.,

2015) to address the problem of slow query times when processing a log. CAS

orders the sequence by vertex and adds a Wavelet Tree (Grossi et al., 2003) data

structure to allow logarithmic time queries. CET orders the sequence by time,

and the authors develop a modified Wavelet Tree called Interleaved Wavelet Tree

to also allow logarithmic time queries.

In 2014, Brisaboa et al. (Brisaboa et al., 2014a) adapted Compressed Suffix

Arrays (CSA) as in (Caro et al., 2015) for use in temporal graphs (TGCSA)

by treating the input sequence as the list of contacts. They use an alphabet

consisting of the source/destination vertices and the starting/ending times.
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2.2 Tensor Representation

There have been extensive work done in the field of either data compression or

matrix multiplication on a HPC, at a time. But, few have managed to club

both of these techniques together. The ones that have both compression and

matrix multiplication on the compressed structure, often contain an intermediate

structure to hold the result of the multiplication before storing the resultant

matrix.

The work on compressed sparse matrix formats is extensively discussed in

(Langr and Tvrdik, 2015; Zhang and Gruenwald, 2018; Zachariadis et al., 2020;

Gopal Krishna et al., 2021). We will discuss some of the most popular formats.

The Coordinate list technique (COO) is a sparse matrix format that stores all non

zero elements in the matrix as an array along with each of their index positions

(i, j).

In the context of parallel computing, the Coordinates list technique (COO)

has been demonstrated to be one of the least efficient formats (Zachariadis et al.,

2020). Therefore, it has been extended and improved in (Zhang and Gruenwald,

2018) with bmSparse. Furthermore, the authors in (Zhang and Gruenwald, 2018)

demonstrated that bmSparse is 32 times more efficient than COO.

Compressed Sparse Row (CSR) (Snay, 1976a) is another popular compression

scheme that has been adapted for a variety of platforms, including GPGPUs

(NVIDIA, 2022) and has been adapted by the authors in the compressed context

for time-evolving graphs in (Krishna et al., 2021; Gopal Krishna et al., 2021).

We proceed to discuss more about various matrix multiplications from a par-

allel processing perspective. We start by exploring the first usage of CBT for

performing matrix operations. CBT (Nelson et al., 2019) by sequentially multi-
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plying two binary matrices. The interesting contribution here is that the resultant

is also stored in the CBT structure directly without usage of any intermediate

structures. To improve that work, the authors in (Krishna et al., 2021) extended

CBT to a value-based sequential matrix-matrix multiplication and compared it

with CSR-based matrix-matrix multiplication.

Sparse General Matrix Multiplication (spgemm), being a fundamental kernel,

has a multitude of applications and implementations (Lin et al., 2014; Deveci

et al., 2018; Wolf et al., 2017). However, one of the challenges of multiplying two

sparse matrices is managing the intermediate results of the output matrix.

In order to address that issue, the Expansion, Sorting, and Contraction al-

gorithm (ESC) from (Dalton et al., 2015) takes intermediate results during the

calculation of matrix-matrix multiplication and stores them in a tuple format

(index and value) that later is sorted and combined based on the common index

positions.

Zachariadis etȧl(Zachariadis et al., 2020) provide a matrix-matrix multiplica-

tion technique that takes these CUSP and ESC methods and modifies them to

an approach called tSparse, which uses a modified ESC called Sort-Expand and

Compress (SEaC).

The usage of the ESC strategy is not necessary in our multiplication technique

as we provide a way that out intermediate results are directly stored as CBT

structures.

We investigate to verify the claims we make about the storage used by all

the formats mentioned above. We consider the friendster dataset from (Leskovec

and Krevl, 2021), which has 65.6 million nodes (nf ) and 1.8 billion edges (nnzf )

(edges correspond to nonzero elements and nodes correspond to the number of

rows and columns). We assume that all these representations are binary and we
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Table 2.1: Comparing the storage for various Boolean matrices in various repre-
sentations/compression techniques.

Number of
rows and
columns

(n)

Number of
nonzero
values
(nnz)

Adjacency
matrix

COO CSR
tSparse
(modified
bmSparse)

CBT

Friendster 65,608,366 1,806,067,135 489.36 T 26.91 G 13.95 G 13.58 G 4.4 G
Live journal 3,997,962 34,681,189 1.82 T 529.19 M295.10 M 272.22 M 64.2 M
10 million 10,000,000 19,999,996 11.37 T 305.18 M228.88 M 171.66 M 59.6 M
100 million 100,000,000 10,000,000 1,136.87 T152.59 M839.23 M 267.03 M 47.68 M
1 billion 1,070,000,00091,070,000,000 127.10 PB 1.32 T 680.51 G 680.51 G 9.5 G

do not consider the values stored in these matrices. The indices and/or numbers

are all assumed to be stored as 64-bit integers. The baseline memory footprint

would be an adjacency matrix representation to store the Friendster matrix. This

would require 7.38 TB of memory to store. When looking into the COO format

to store the above matrix, we calculate the memory required using the formula

nnzf×2×int64. This would result in needing 26.82 GB. We continue to calculate

the memory requirement for CSR using the formula nf × int64 + nnzf .× int64,

which would yield a memory footprint of 13.89 GB.

When considering the bmSparse technique with the assumption from tSparse

having an 8× 8 block, we calculate the memory footprint using the formula used

in (Zhang and Gruenwald, 2018), n block×int64+n block×int64+nnzf×int64.

This would require 13.5 GB of memory. Finally, when comparing this with the

actual memory used by CBT , by experimental evaluation, we find that it takes

4.4 GB. This is much less than the others mentioned and is so because of the

way the CBT is data-dependent.

The storage capacities are further compared in Table 2.1 considering other

datasets (real world and synthetic).
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2.3 Matrix-Matrix Multiplication

Matrix compression and multiplication have been traditional problems that have

been existing since the early 1800s. The recent popular application is NMF (Berry

et al., 2007)(Lee and Seung, 2001)(Shitov, 2017).

The problem of Nonnegative Matrix Factorization(NMF) can be formally de-

fined as the follows: Given a nonnegative matrix A ∈ IR+ of dimension m × n

and an integer k > 0, find the factor matrices if any, W ∈ IR+ of dimension m×k

and H ∈ IR+ of dimension k × n such that:

A = WH

These matrices W and H are also nonnegative and the value of k which is

referred to as the inner dimension is found to have as lower bound the positive

rank(rank+) of the matrix A. This problem of finding the factors that satisfy the

condition A = WH with the rank+(A) = k is proved to be an NP-hard problem.

The proof for the NP-hardness of NMF by Vavasis(Vavasis, 2010), has been a

standard reference in applied mathematics. Shitov(Shitov, 2017) gives a short

proof for this theorem. There is a huge spectrum of applications that use NMF

ranging from text mining and computer vision to clustering in machine learning.

And a large set of these applications are satisfied and work with approximations

of this factorization problem. Now the problem can be rewritten as the following

with the ∥∥F as the Frobenius norm:

min
W≥0,H≥0

∥A−WH∥F
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The paper by Lee and Seung (Lee and Seung, 2001) discusses two variations to

the multiplicative update algorithm amongst many, for NMF. They differ based

on the update functions of the factors. The implementation of these algorithms is

often considered easier than other similar algorithms. However, the compromise is

the time it takes for convergence. This just means that the algorithm needs to run

for more iterations performing repeated matrix multiplications, W TA and ATH.

The beauty of our algorithm from this paper is that these updated A matrices after

each iteration are also stored in our compressed structures. At each iteration, the

repeated multiplication uses no intermediate structures as well.

Another perspective for improving the efficiency to do NMF is to take a

parallel implementation route. This has been looked into extensively in (Kannan

et al., 2017) and (Kaya et al., 2018).

As the order/dimensions of these input matrices get into the billions, to per-

form these algorithms in small spaces, we look into the compression techniques

that are present. Specifically, the two algorithms that are used here are row-by-

row compression algorithms. Compressed Sparse Row (CSR) has been a popular

compressed data structure to store matrices since the first mention in (Snay,

1976a). This specifically is a great way to store value-based matrices because

of the way the values are stored alongside the coordinates in the matrix where

they are found. There have been other row-by-row compression algorithms that

are more specialized for compressing binary matrices. This leads us to the his-

tory of the Compressed Binary Tree (CBT) data structure (Nelson et al., 2017).

The data structure is an improvement from the k2 - tree data structure (Brisaboa

et al., 2014b). CBT was the first to store each row as a binary tree. They also use

different encoding schemes to compress and store two matrices using differential

techniques.
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Binary multiplication performed using CBT structure (Nelson et al., 2019),

does this with a differential row-by-row implementation of CBT as well. Value-

based multiplication has been done using Single Tree Adjacency Forests (STAF)

(Nishino et al., 2014) but has a constraint that the matrices need to follow the

column nonzero property. In (D’Azevedo et al., 2005), multiplication is performed

using CSR by using a vectorization approach to speed up the process. A lot of

approaches have been implemented and presented in the direction of a parallel

implementation for multiplying CSR matrices, but we do not discuss that here.

All Pair Shortest Path algorithms (Floyd, 1962) are another application where

repeated matrix updates happen in the order of n3. When using the compressed

data structures from this paper, the matrix computations use no intermediate

structures to perform these in a repeated manner.

The partial sum idea was first used on a data structure called Single Tree

Adjacency Forest (STAF) in (Nishino et al., 2014). The implementation and

the idea is to be used during matrix-matrix multiplication to reduce the number

of addition and multiplication operations during the dot product intermediate

steps. Although the partial sum idea was used here, a major assumption of the

STAF data structure is that the matrices have to meet the column-scaled nonzero

property. In this paper, we use this partial sum idea to reduce the number of

getRow() queries in our data structure which reduces the resources by a lot.

2.4 Matrix Factorization

The foundation for the Non-negative matrix factorization was laid by Lee and

Seung (Lee and Seung, 2001) in 1999, opening the opportunity to hundreds of

research journals. Before Lee and Seung, few other notable contributions were
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made in the area of NMF, but none came close to the fame of Lee and Seung.

Paatero and Tapper, 1994 (Paatero and Tapper, 1994), produced the work on

positive matrix factorization. Lee and Seung cite the work of Paatero and Tapper

in their work. Articles have shown the significance of Paatero’s work prior to Lee

and Seung but have gone unnoticed.

Since Lee and Seung’s NMF was one of the first ones to be popular, it became

a baseline for many research. Several researchers have proven that the multiplica-

tive update algorithm proposed by Lee and Seung (Lee and Seung, 2001), is slower

to converge, which means that it takes many more iterations to complete com-

pared to the gradient descent method and the alternating least squares. Each

implementation required a total of 12 matrix operations, of which six require

O(n3) matrix-matrix multiplication, and the rest require O(n2) matrix-matrix

element-wise operations.

To overcome this issue, other researchers, such as Gonzalez and Zhang in

2005 (Gonzalez and Zhang, 2005), proposed an alteration to the multiplicative

update, but it ended up having the same convergence issue. Another researcher

named Lin (Lin, 2007) in 2007 proposed a modification that ended with earlier

convergence but at the cost of more operations per iteration.

Theoretically performing 12 matrix operations on a matrix is time- and space-

consuming; performing the same operation on larger matrices would require a

great deal of memory. For example, a 65, 536× 65, 536 requires about 32 GB of

storage in its raw format. To overcome this, in this paper, we use our novel CBT

(Nelson et al., 2018), which works well with binary matrices and the bit-packing

algorithm proposed in (Gopal Krishna et al., 2021) to store integer values. We

also propose to store the matrix in CSR (Snay, 1976a), a common data structure

for storing matrices.
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To perform factorization or any operation on large sparse matrices, one must

efficiently store the matrices so that the entire data can be loaded onto the main

memory in one go. Given a matrix of size n rows and m column, the total number

of possible elements in the matrix is the size of the matrix itself, which m × n,

therefore, the cost of storing a matrix in raw format would require (m× n)× 64

number of bits, where 64 is the number of bits required to store a number. But

in a sparse matrix, this number tends to be very small, where the number of

non-zero elements is extremely less compared to the number of zeros.

Therefore, the sparsity of a matrix is defined as the ratio of the number of

non-zero elements to the number of all possible elements that can be in the

matrix.

Sparsity = nnz
m×n

,

where nnz is the number of non-zero elements in the matrices, n is the number

of rows and m is the number of columns.

This type of behavior in the matrices are found in the real-world, such as

social networks, biological network, topological network, and so on. The cost of

storing zeros in such cases becomes expensive and redundant to an extent, as

they do not contribute to the analysis.

Therefore, to store large sparse matrices, in this paper, we are using existing

structures such as CSR (Gopal Krishna et al., 2021)(Snay, 1976a), and CBT

(Nelson et al., 2017).
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2.5 Parallel Compression of Graph Structures

The Compressed Sparse Row (CSR) (Tinney and Walker, 1967) data structure

is widely utilized for graph representation. CSR involves compressing each row

of the graph into two arrays for each node, allowing efficient packing of all the

necessary information into a single array for fast traversal of the data structure.

Figure 3.2 shows the CSR representation of the graph shown in Table 7.1. While

CSR has the disadvantage of being a static storage format that can require

shifting the entire edge array when adding an edge, its cache-friendliness inspired

the development of Packed Compressed Sparse Row (PCSR) (Winter et al.,

2017). PCSR substitutes the edge array in CSR with a Packed Memory Array

(PMA) (Itai et al., 1981), (Bender et al., 2000), which offers an (amortized)

O(log2|E|) update cost and asymptotically optimal range queries. In this paper,

we do not take the packed CSR route to compress the given graph.

Calculation of the prefix sum is one of the crucial steps in the construction of

CSR for the calculation of the degree array. The prefix sum operation (Blelloch,

1990; Wheatman and Xu, 2021) takes an array A as input of length nand outputs

an array A′ where ∀i ∈ {0, 1, ...n− 1},

A′[i] =
i∑

j=0

A[i]

There have been parallel in-place algorithms for finding prefix sum (Blelloch,

1990) that take O(n) work and O(logn) in time. Because of the high dependency

on computing parallel degree arrays in CSR, there are many challenges involved.

Parallel Packed Compressed Sparse Row (PPCSR) (Wheatman and Xu, 2021),

designs and analyzes a parallel PMA approach and compares it to other similar
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approaches (Shun and Blelloch, 2013; Dhulipala et al., 2019; Shun et al., 2015).
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Chapter 3

Compression Techniques for

Time-Evolving Graphs

A graph G = (V , E) is an ordered tuple where V is a non-empty set of elements

called vertices (nodes), and E is a set of an unordered pair of elements called links

(edges), and a time-evolving graph is a change in the states of the edges over time.

Extremely large graphs are such graphs that do not fit into the main memory.

One way to address the issue is to compress the data for storage. The challenge

with compressing data is to allow for queries on the compressed data itself at

the time of computation without incurring overhead storage costs. Our previous

work on Compressed Binary Trees (CBT), which was shown to be efficient both

in time and space, compresses each node and its neighbors (termed as row-by-

row compression). This chapter first provides encoding to store the arrays in the

Compressed Sparse Row (CSR) data structure and extends the encoding to store

time-evolving graphs in the form of CSR. The encoding also enables accessing

a node without decompressing the entire structure, meaning the data structure
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is queryable. We have performed an extensive evaluation of our structures on

synthetic and real networks. Our evaluations include time/space comparison with

both time-evolving compressed binary tree and ckd data structures, including the

querying times.

3.1 Introduction

Graphs can be used to represent real-world data from a wide variety of domains.

The relationships among the data are captured by the characteristics of the graph.

For most real-world data, the relationships change over time. This results in the

graph evolving from its initial state to the current one. A graph G = (V,E) is

represented by a set of vertices V and a set of edges E. For real-world data,

the graph G evolves with time and can be statically represented using a series of

graphs Gt = (Vt, Et) where the time t indicates an instant that is spread over a

certain interval.

Therefore, a time-evolving graph can be defined as a graph that changes or

evolves over time. Consider, as an example, pages on Wikipedia. Each page

evolves over time with the addition and deletion of content. The current state of

the page is the one that contains the content of the page at present. However,

all the edit information is also saved for the page. Using the edit information,

the state of the page at previous instants of time can be checked. Hence, having

such information preserves the integrity of the page while being open to editing.

Now, the information for the Wikipedia pages with the time-evolving data can

be represented and stored as graphs. Storing such information is useful for per-

forming various kinds of analyses. For example, one might want to know what

changes have occurred to a document from the beginning to the current state.
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Another related query can be what changes occurred to a document within a

certain interval of time; this would be specifically interesting to study if the doc-

ument represents some current socio-economic or political events. Also relevant

would be to know the number of changes that occur to the documents from one

time to another.

Time-evolving graphs represent data from different domains, such as social

networks and communication networks. Various analyses can be performed on

such data based on the availability of the same over time. For example, such

graphs can be used to perform descriptive, diagnostic, predictive, and prescriptive

analytics, among others. Therefore, to execute such operations on time-evolving

graphs, the data must be stored. Generally, graphs are stored in one of the

three different representations: adjacency matrix, adjacency list, and edge list.

In the adjacency matrix, the graph is represented as a matrix of n2 elements,

where |V | = n; edges are represented using 1’s and lack thereof as 0’s. For a

representation of an adjacency list, for each node v ∈ V , a list of adjacent nodes

is stored. Finally, for an edge list representation, all edges are stored in a pair

format (vi, vj) where an edge exists from vi to vj; the number of entries in the

edge list is |E|. However, most real-world graphs are very large in size. Hence,

the memory requirements for storing the data are significant. For example, if we

consider a time-evolving graph, like Wiki-edits and Yahoo Netflow, the data sizes

in the edge list format are 5.7 GB and 19 GB, respectively. With such sizes, the

data might not fit in the main memory for analysis. Therefore, to store the data

for time-evolving graphs and perform computation on the same, the data must

be compressed.

In this chapter, we propose techniques to perform compression on time-

evolving graphs. There are normally two methods for compressing the adjacency
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information for a graph: one is to consider the entire graph together, and the

other considers portions of the graph at a time.

For our methods, we exploit row-by-row compression for node data separately.

Specifically, we utilize two combinations of data structures to store the time and

adjacency information. In the first one, the time tree provides information regard-

ing the instants of time the graph evolved; for each node, there is an additional

tree to store the adjacency information for each instant in the time tree, which

is CBT. Rather than storing the entire adjacency information for the nodes, a

differential approach is leveraged to reduce the memory requirements. In the sec-

ond approach, for each time frame, the edges are stored in an unsigned bit array

and, similar to the CSR-CSR compression, the latter information is stored in a

differential approach to save the memory which is CSR. Our contributions also

show that depending on the characteristics of the graph being compressed, using

a combination of techniques rather than a single method for the data structures

yields better compression.

The remainder of the chapter is organized as follows. We propose the im-

provements performed on the already existing Compressed Binary Trees in Sec-

tion 3.3.1. We propose our methods for compressing and storing time-evolving

graphs in Section 3.3. In Section 3.4, we examine the various algorithms that

provide efficient compression for time-evolving graphs. We report the empirical

results and analysis in Section 3.5.1 and the summary in Section 3.6.
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3.2 Simple data structures for storing the

graph information

One can select from various data structures to store the adjacency information

of graphs in the memory. Each data structure has different storage requirements.

Additionally, certain operations on graphs require accessing the stored data using

one of the available data structures. However, choosing a memory-efficient data

structure may result in worse time complexity for accessing the necessary data

for computations. Thus, selecting the appropriate data structure for storing the

adjacency information of graphs involves a trade-off between memory require-

ments and access time complexity. This section analyzes the space required by

different data structures and their time complexity for performing common graph

operations. It is worth noting that throughout the chapter, boolean data consist-

ing of a single bit is used for calculations, and it does not refer to the data type

available in programming languages.

3.2.1 Adjacency Matrix

For a graph, G = (V,E) with |V | = n, an adjacency matrix is a way to represent

a graph as a square matrix, where each row and column correspond to a vertex

of the graph. The value in each element of the matrix indicates whether there is

an edge between the vertices corresponding to the row and column. Specifically,

the value is 1 if there is an edge between the vertices and 0 if there is no edge.

For an undirected graph, the matrix is symmetric about the main diagonal,

meaning the element at position (i, j) is the same as the element at position (j, i).

However, for a directed graph, the matrix need not be symmetric.
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The adjacency matrix is a simple and intuitive way to represent a graph,

and it allows for easy implementation of certain algorithms, such as breadth-

first search and Dijkstra’s algorithm for finding the shortest path. Additionally,

certain operations on graphs, such as determining if a graph is connected or

calculating its diameter, can be performed efficiently using an adjacency matrix.

However, one downside of the adjacency matrix is that it can be memory-

intensive for large graphs, as the matrix requires O(n2) memory for a graph with

n vertices.

Overall, the adjacency matrix is a useful representation of a graph that has

certain advantages and disadvantages depending on the application.

3.2.2 Adjacency List

The adjacency list is a common data structure representing the relationships

between vertices in a graph. In this data structure, each vertex in the graph is

associated with a list that contains all its neighboring vertices. This list represents

the adjacency information for that particular vertex. Essentially, the adjacency

list captures the connections or edges of a graph by storing them as linked lists

or arrays. Therefore, the memory required to store the adjacency list is n+m+

log264, where n is the number of vertices, m is the number of edges, and log264

refers to space required to store the pointers to the list.

One of the main advantages of using an adjacency list over an adjacency

matrix is its efficient use of memory. In the adjacency matrix representation, the

adjacency information is required to store a two-dimensional matrix of size n×n

(where n is the number of vertices). This means that even if the graph has only a

few edges, the matrix would still consume a significant amount of memory. On the
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other hand, the adjacency list representation only requires memory proportional

to the number of vertices and edges in the graph, making it more space-efficient.

Another advantage of the adjacency list is its flexibility and efficiency when

dealing with sparse graphs. Sparse graphs are those that have relatively few edges

compared to the total number of possible edges. In such cases, the adjacency

list performs better than the adjacency matrix because it avoids the need to

allocate space for all possible edges. Instead, it only stores the edges that actually

exist, resulting in improved efficiency for operations such as finding neighbors or

traversing the graph.

However, the adjacency list is no short of its drawbacks. The drawbacks of the

adjacency list data structure include its relatively slower performance for dense

graphs and certain operations, such as checking the existence of an edge. Addi-

tionally, it requires more effort to modify the graph compared to the adjacency

matrix. These factors should be considered when deciding whether to use an

adjacency list or another graph representation.

In summary, the adjacency list is a data structure representing the connec-

tions between vertices in a graph by associating each vertex with a list of its

neighboring vertices. It offers advantages over the adjacency matrix regarding

memory efficiency and performance for sparse graphs. By leveraging these bene-

fits, the adjacency list is widely used in graph algorithms and applications where

memory usage and efficient traversal are crucial factors.

3.2.3 Edge List

The edge list is a straightforward data structure that represents a graph by listing

all the edges in the graph. It consists of a list of tuples or objects, where each
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tuple represents an edge and contains the pair of vertices that the edge connects.

Therefore the total space required to store an edge list is 2×m.

One of the main advantages of the edge list data structure is its simplicity.

It is easy to understand and implement since it directly represents the edges in

the graph without any additional data or pointers. This simplicity makes it a

suitable choice for small or simple graphs where quick and straightforward access

to the edges is required.

However, the edge list has a few limitations. One drawback is its inefficiency

for certain operations. Finding the neighbors of a vertex or checking the existence

of an edge may require iterating through the entire edge list, resulting in a time

complexity of O(m). In comparison, other data structures like the adjacency list

or adjacency matrix can perform these operations more efficiently.

Another disadvantage of the edge list is its space complexity. The space

required to store an edge list is proportional to the number of edges (m) in the

graph. This means that even for graphs with a small number of vertices but a

large number of edges, the edge list can consume a significant amount of memory.

In contrast, other data structures like the adjacency matrix or adjacency list have

space complexities that depend on the number of vertices and edges, allowing for

more efficient memory usage in certain cases.

In summary, the edge list data structure provides a simple representation of

a graph by listing all the edges. It is easy to understand and implement but may

be inefficient for certain operations and can consume more memory compared

to other graph representations. The choice of using an edge list depends on the

specific requirements of the graph and the operations to be performed.
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3.3 Graph Compression

In this chapter, we represent the time-evolving graphs based on the neighbors

of each node over time. This requires two data structures; the first one stores

the time information, which can be represented as a time array, and the second

one stores the neighbors of the node at each of the instants given in the time

array. Now, the time array can be thought of as a stream of 0 and 1 bits: a 0

indicating no change from the previous instant of time and a 1 indicating changes

in the neighborhood of the node from the previous time stamp. Since the time

instants taken into account are finite and relatively small, the size of the time

array could be in the range of 10,000 for an example graph. For the same graph,

the size of the node array, which would contain the neighborhood information for

the specific node over 10,000-time instants, could be 1,000,000,000 elements.

The density of the time array and the node array can be different. Given

that the time array and the node array are bit arrays, these can be compressed

for storage using different methods. In this chapter, we propose compressing the

binary arrays using one of two techniques: a) CBT and b) CSR. Now, depending

on the size and the sparsity of the graphs, the sizes of the compressed structure

vary.

3.3.1 Compressed Binary Tree

Compressed Binary Tree or CBT , was first developed by Nelson et. al., (Nelson

et al., 2017) for a static graph, and later the concept of compressing the graph

was extended to a time-evolving version by Nelson et. al., (Nelson et al., 2018).
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Direct construction

If we are given the sorted input graph all at once (as discussed above), we can

construct each tree’s preorder bitstring directly. This way, we can achieve an

initial compression with a time complexity of O(c× log(n)). This process is the

same as in Algorithm (Nelson et al., 2018).

Algorithm 1: Construction of CBT ′

Input: The graph as a sorted list of triplets (u, v, t)
Output: The compressed graph as a bitstring

1 begin
2 length← 0;
3 BitString finalBitString;
4 foreach node u, do
5 // Fetch the time frames ti of row u, if row u is changed from ti−1.
6 beg = 0;
7 end = list.size();
8 BitString temp = preorderTraversal(list(t), beg, end);
9 finalBitString.AppendBitString(temp);

10 length + = temp.GetLength()
11 beg = 0;
12 foreach time t in u, do
13 // Fetch all the edges (u, v) ∈ t to a list.
14 end = beg + listt.size();
15 temp = preorderTraversal(listt(v), beg, end);
16 finalBitString.AppendBitString(temp);
17 length + = temp.GetLength()
18 beg = end;

19 return finalBitString;

In Algorithm 1, for each node, we maintain two CBT′ trees, one CBT′ for

storing the time frames where the change occurred in the neighborhood of the

node.

The second CBT is the differential CBT as shown in Figure 3.1. We first

iterate through each node u (line 4) to collect all the time frames the node u
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Figure 3.1: CBT ′ for row A0 for all the time frame.

changed and this is placed in a list (line 5). Using this list, we can directly

construct the CBT implicitly with those elements and retrieve the bit string of

the corresponding preorder traversal of the CBT (line 10). Later, we append the

bitstring obtained in line 10 into the finalBitString variable (line 11).

In lines 14-20, we construct the differential CBT’s. We will start at time frame

0 and construct the CBT. Again, we will use the implicit construction and obtain

the preorder traversal bit string of the binary tree. The second iteration (for time

frame 1), for the same node, we will supply a list of edges which have changed

(added or removed). Please visit Figure 3.1 and the corresponding explanation.

For the new set of edges (added or removed), we construct a new CBT (this

is the differential CBT). At the end of each iteration, we append the bit string

corresponding to the preorder traversal of the CBT that is constructed implicitly.
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Note that the finalBitsString contains the bit string of the preorder traver-

sals of all differential CBT’s for a particular node along with the for the time

dimension.

Improved Space Saving Structure (CBT ′
N)

In this paper, we also designed a variation of the CBT ′ structure. The TCBT

structure informs us in which frame a node has changes in its neighborhood. In

a new variation denoted CBT ′
N , we get rid (only for storage purposes) of the

TCBT structure, instead we keep track of the nodes that have changes in its

neighborhood in each time frame. Please note that we will use the CBT ′ (that

has uses TCBT ) structure for querying and the structure CBT ′
N described below

for storing. We also note that it is easy to convert CBT ′
N structure into the CBT ′.

We will do this after we read in the CBT ′
N into the main memory.

In each time frame, we will store all nodes that have changes made to them

(edges added or removed). This set of nodes forms a bit string. We will store

this bit string as a CBT structure. We can retrieve the nodes from this CBT

structure (actually from the preorder traversal of the CBT structure).

We have shown through experimentation (see Table 3) that this structure

CBT ′
N has a lower space requirement in comparison to CBT ′. The new structure

CBT ′
N while occupies less space, it does not allow for quicker operations. For

example, to execute the edge (u, v) existence query in a given time interval, we

need to check every frame in that time interval to determine if node u is in the

data structure nCBT . To reduce the cost of querying on this new structure

CBT ′
N , we read the structure from the file and convert it to CBT ′ structure for

faster querying and streaming.
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Experimental Result

While examining the compression results, we refer to Table 3.1. The first three

columns describe the dataset with its name, size as a raw text file, and size of the

text file compressed with gzip. Note that these text file sizes are after we have

performed our preprocessing on the graph. The next column gives the percentage

of memory saved by CBT′
N compared to the ckd-tree, for easy reading.

Table 3.1: Shows a comparison between the sizes of the raw graph, CBT′, CBT′
N ,

and ckd-tree compression. The .txt files are the preprocessed triplet representa-
tions of the graph, as described earlier. The .txt.gz are those files after being
gzipped. This data is important because we have implemented a method of com-
pressing the graph directly from the smaller gzip files.

.txt .txt.gz
CBT ′

N

ckd
CBT′

N CBT′ ckd-tree
I-Comm.Net* 271.6MB 51.0MB 50% 15.5MB 15.19MB 31MB
I-Powerlaw* 546.9MB132.2MB50.1% 68.9MB 70.37MB 138MB

I-Yahoo-Netflow 19.3GB 3.9GB 40.9% 1.24GB 2.79GB 2.1GB
G-Flickr-Days 860.0MB130.5MB25.5%63.32MB70.38MB84.9MB
P-Wiki-Edit 5.7GB 1.6GB 10.3% 1.31GB 1.31GB 1.46GB

3.3.2 Compressed Sparse Row

The Compressed Sparse Row (CSR) format is a widely used method for repre-

senting sparse matrices, where most elements are zero. It was first introduced

in Richard, Snay (Snay, 1976a). The CSR format stores a sparse matrix using

three arrays: the values array contains the non-zero elements, the column indices

array (jA) indicates which columns the non-zero elements belong to, and the row

pointers array or the degree array (iA) points to the starting position of each

row in the values and column indices arrays. Since, we focus on the undirected

graph, we ignore the value array associated to the structure.
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Figure 3.2: An example of CSR representation of a boolean matrix.

Since, these numbers have to be stored as integers, each number is bound to

consume either 32-bits or 64-bits depending on the configuration. To avoid the

wastage of bits to store these number, we present an integer encoding mecha-

nism called BitPacking, which efficiently stores numbers one next to the other in

contiguous array locations.

BitPacking

The term bit-packing works on the number of bits required to represent each

number. For a given array of unsigned integers, represent each number of the

array in bits and store them as an unsigned bit array. For example, consider an

array of unsigned integers 1, 3, 5, 10, 16, and 26. The maximum number of bits

required to store each integer is the maximum of the log of the maximum element

in the array. An array location can store a maximum of 32 or 64 bits depending

upon the system, and all the bits are stored in a little-endian format. Table 3.2

shows all the numbers stored above in a single unsigned bit array location.

Table 3.2: The single-bit array needed to represent all integers.

Degree Array 1 3 5 10 16 26
BitPacked 00001000110010101010100001101000

If the entire number does not fit into an array location, a part of the number
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Table 3.3: Shows the partial packing of the leftover bits in the first array location,
and the remaining bits in the next.

Degree Array 1 3 5 10 16 26 30
000010001100101010101000011010 11

BitPacked
110 00000000000000000000000000000

can be stored in one array location, and the rest of the number can be stored in

the starting bits of the following memory location. This ensures that there are

no unoccupied bits in the bit array. Table 3.3 shows the bits carried over for a

32-bit integer.

Algorithm 2 explains the working of the bitPacking method. The algorithm

takes an unsigned integer array, the number of elements in the array, and the

number of bits required to represent each number in the array. The variable

arraySize indicates the number of array locations needed to store the unsigned

bits of all the numbers in the array. Line 7 indicates the start of converting the

unsigned integer to the bit representation; m indicates the number of unsigned

integers that an array location can accommodate. Lines 9 through 11 convert the

unsigned integers to unsigned bits and store them in the array location k. The

remaining bits in the array location k are filled by the most significant bits of the

next number, as shown in lines 13 through 20.

3.4 Combining CBT and CSR

For every input of the time-evolving graphs G, the input is divided as an ordered

triplet (u, v, Tτ ), where u and v are the nodes that form an edge at time Tτ . If the

edge appears again later in another time frame Tτ+i, the edge is considered to be

deactivated in the time frame. For the CSR-CSR and CBT-CSR combinations,

we are assuming that the datasets are sorted with respect to the time frames
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Algorithm 2: Algorithm for bitPacking

Input: An unsigned integer array (uArray), number of elements
(numElements), and the number of bits (numBits) required to
convert

Output: The converted bit array.
1 begin
2 totalBits = 64;
3 balance = 0;

4 arraySize = numberofElements
numberofBits

∗ totalBits;

5 Initialize an unsigned bit array (bArray);
6 k = 0;
7 for index = 0 to (index < numOfElements) do
8 m = availBits/numBits;
9 for i = 0 to (i < m && (index+ i) < numElements) do

10 bArray[k] | = (uArray[index+ i] <<
((i ∗ numBits) + balance)));

11 i++;

12 index + = m;
13 if index < numElements then
14 remBits = availBits%numBits;
15 if ((remBits > 0)&&(m < numElements)) then
16 bArray[k] | = (uArray[index] << (totalBits− remBits));
17 availBits = totalBits− (numBits− remBits);
18 k++;
19 bArray[k] | = (uArray[index] >> remBits);
20 balance = (numBits− remBits);
21 index++;

22 else
23 k++;
24 balance = 0;
25 availBits = totalBits;

26 return bArray;
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and then sorted by node numbers for each time frame. For the CSR-CBT and

CBT-CBT combinations, the datasets are first sorted with respect to the source

node and then sorted with respect to the time frame for each source node.

Algorithm 3: Algorithm for Compressed Sparse Row at time T0

Input: Unsigned integer array of contacted nodes (v), unsigned integer
array of a degree of each node (u), the maximum degree of the
graph (δ(G))

Output: Unsigned bit array
1 begin
2 logD = log2(maxDegree) + 1;
3 logN = log2(numNodes) + 1;
4 degreeBitArray = bitPacking(degreeArray, numNodes, logD);
5 csrBitArray = bitPacking(vArray, numEdges, logN);
6 finalBitArray.append(degreeBitArray);
7 finalBitArray.append(csrBitArray);
8 return finalBitArray;

3.4.1 CSR-CSR

This is a novel combination. In this algorithm, we compress the graph based on

the edges appearing in each time frame. For the time frame T0, we compress the

graph row-by-row in a conventional compressed sparse row format using Algo-

rithm 3. For each row, the first array consists of each node’s degree in the time

frame T0, and the second array consists of the upper triangular destination edge

id v.

For the time frame, T1 to Tτ , storing the edge in the conventional CSR format

will cost more space as not all the edges from the original start edges change. To

overcome this, we encoded all the edges using Algorithm 4. For every time frame

Ti, CSR is made up of three arrays, where the first array is the unique source

node u involved in the graph’s changes, the second array consists of the degree
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Algorithm 4: Algorithm for Compressed Sparse Row from time T1 to
Tτ

Input: Unsigned integer array of contacted nodes (v), unsigned integer
array of a degree of each node (u), unsigned integer array of
contact nodes (u)

Output: Unsigned bit array
1 begin
2 for time t = 1 to t = τ − 1 do
3 logU = log2(maxContactNode) + 1;
4 logD = log2(maxDegree) + 1;
5 logN = log2(maxContactedNode) + 1;
6 bitUArray = bitPacking(uArray, uArray.size(), logU);
7 bitDegreeArray = bitPacking(degreeArray, uArray.size(), logD);
8 bitVArray = bitPacking(uArray, vArray.size(), logN);
9 finalBitArray.append(bitUArray);

10 finalBitArray.append(bitDegreeArray);
11 finalBitArray.append(bitVArray);

12 return finalBitArray;

of the source nodes, and the third array consists of the destination nodes v.

This yields the time complexity of O(τ ∗(n∗ log(δ)+mlog(n))), where τ is the

number of time frames, n is the number of nodes, m is the number of contacts,

and δ is the maximum degree of the graph.

Figure 3.3 shows the overall structure of the CSR-CSR compression. The

dotted line in the graph at each time frame represents the edge being added and

the double-crossed red line represents the edge being deleted at the time frame.

3.4.2 CBT-CSR

This is a novel combination. In this combination, we compress the first time frame

T0 using the existing CBT algorithm (Nelson et al., 2017) as shown in Figure 3.4.

The input to the algorithm (Nelson et al., 2017) are the edges associated with

time frame T0. For the time frames T1 to Tτ we follow the method used in the
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CSR as unsinged char: 01101100010010001000
100001001100001010100010010101110000100110000101010 000100101
100010100 110000101010001 100010001 100100010 0010111000010101000
0000100011000001 1111 1100111011101001

Figure 3.3: The structure of the time-evolving CSR

CSR-CSR compression, as shown in Figure 7.4. This yields the time-complexity

of O(τ ∗ (d(v)log(δ) +mlog(n))).

3.4.3 CBT-CBT

In this combination, we followed the algorithm mentioned in (Nelson et al., 2018).

The input to this algorithm is first sorted based on the source node u, and for

each source node, the data is sorted based on the time Ti. With this type of input

comes two arrays for each node, the first being the time frames at which the node

has an edge, followed by all the destination nodes v for each time Ti. Therefore,

each node’s total number of trees will be the number of time frames for the node

u and one tree to represent all the time frames. This yields the time-complexity
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Figure 3.4: The structure of the time-evolving CBT at time frame T1

of O(τ ∗ (d(τ)log(δ) +mlog(n))), where d(τ) represents the degree of each time

frame.

3.4.4 CSR-CBT

This is a novel combination. In this combination, we follow the same input type

as the CBT-CBT combination, but here we first compress the time array using

bit-packing algorithm 2, and to compress the destination edges for each time

frame of the source node u, we follow the CBT algorithm (Nelson et al., 2017).

This yields the time-complexity of O(τ ∗ (d(v)log(δ) + mlog(n))), where d(v)

denotes the degree of each node v.

3.5 Experimental Results

For our analyses, we have the results of compression size and the time taken to

compress from all the combinations using the datasets mentioned in Table 3.4,

which is compared with the results of ckd − tree (Caro et al., 2016) and CBT

(Nelson et al., 2018) as shown in Table 3.5.

If the edges in the graph exist from time [ti, tj), then such graphs are called

50



Table 3.4: The graph datasets, including the type, number of nodes, number of
edges, time frames, and the size of the input file both in .txt and gzip format.

Graphs Type Nodes Edges Contacts Time Frames
CommNet Interval 10000 15940743 19061571 10001
PowerLaw Interval 1000000 31979927 32280816 1001
Flickr-Days Incremental 2585570 33140018 33140018 135
Wiki-edits Point 21504191 561754369 266769613 134075025

Yahoo Netflow Interval 32904819 122075170 1123508740 58735

Table 3.5: The compression size and the time taken to compress each dataset.
Please note that ckd does not allow streaming operations

Graphs .txt .txt.gz CSR-CSR CSR-CBT
CommNet 271.6 M 51 M 34 M 10.25 s 16 M 56.19 s
PowerLaw 546.9 M 132 M 80 M 18.94 s 80 M 162.23 s
Flickr-Days 860 M 130 M 107 M 34.16 s 91 M 208.39 s
Wiki-edits 5.7 G 1.8 G 2.0 G 1158 s 1.8 G 2042.88 s

Yahoo Netflow 19 G 4.9 G 4.3 G 1372 s 3.2 G 1770.71 s

Graphs .txt.gz CBT-CSR CBT-CBT CkD
CommNet 51 M 16 M 55.80 s 15.9 M 65.5 s 30 M 119 s
PowerLaw 132 M 70 M 141.21 s 73.80 M 149 s 128 M 254 s
Flickr-Days 130 M 82 M 120.015 s 73.8 M 179 s 89 M 235 s
Wiki-edits 1.8 G 2.0 G 1126.85 s 1.4 G 3081s 1.2 G 2059 s

Yahoo Netflow 4.9 G 4.2 G 1874.95 s 2.99 G 3506 s 2.5 G 5471 s

interval graphs. If the edges in the graph appear once and live till the last time

frame, such graphs are referred to as incremental graphs. If the edges appear for

a single time frame, then such graphs are referred to as point graphs.

The CommNet graph and the PowerLaw graphs are synthetically generated

datasets based on the data available from (Caro et al., 2016). CommNet graph

simulates short communication between random vertices. PowerLaw graph sim-

ulates the power-law degree distribution in the graph.

Flickr dataset is an incremental graph (Fli, 03/2020). This graph represents

the user interaction derived from the Flickr social network for a span of days from

11-02-2006 to 05-18-2007.

51



Wiki-edits is a bipartite point graph (Wik, 03/2020). This graph shows when

the user edited an article in Wikipedia. The time is stored in seconds since the

creation of Wikipedia.

The last dataset for our analysis is a Yahoo-Netflow graph (Yah, 03/2020).

This graph is an interval graph, where the data are the interaction between

the users and the Yahoo server. The time is measured in seconds and the first

occurrence of the data was on 04-29-2008.

All the experiments were run on an Intel(R) Xeon(R) CPU E5520 @ 2.27GHz

(16 Cores) with 64 GB of RAM, and the programs are written in GNU C/C++.

The source code for this work is available to download at (git, 02/2021).

3.5.1 Compression Results

Table 3.5 shows the compression results for the dataset in Table 3.4 over all the

combinations and ckd − trees. We have used compression size, time taken to

compress each dataset, and querying times as metrics to evaluate.

Table 3.5 clearly shows the space and time tradeoff between the compression

results of CSR-CSR and CBT-CBT. While the CBT-CBT consumes 30% less

space compared to CSR-CSR, CSR-CSR consumes around 40% less time for the

Yahoo-Netflow graph(Yah, 03/2020). The combination of CBT-CSR and CSR-

CBT has shown similar or better results with datasets with fewer or no changes

in both compression size and time taken to compress.

3.5.2 Querying Results

For 1000 randomly chosen vertices,

• Neighbor Query: What are the neighbors that exist at time Ti.
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• Neighbor Query: What are all the possible neighbors of a node between

time interval of Ti through Tj.

• Edge Existence: Does an edge exist at time Ti.

• Edge Existence: Does an edge exist between the time interval of Ti through

Tj.

From Tables 3.6 and 3.7, we can infer that the CSR takes the least amount

of time to query a random node both for edge existence and to fetch all the

neighbors.

3.6 Summary

In this chapter, we focused on creating a time-evolving structure to support one

of the most utilized data structures which is Compressed Sparse Row. We also

introduced a mechanism to encode a fixed length integers to save memory. We

also introduced combination of compression techniques to yield the space and

time trade-off seen in CSR and CBT.
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Chapter 4

Compressed Structure for

Representing Tensors

Tensors, their representations, and computations are gaining popularity with

an increasing number of machine learning algorithms for applications. In this

chapter, we show several techniques for storing compressed sparse tensors. One

of our approaches using compressed binary trees (CBT s) shows that the large

sparse tensors occupy nearly 1/3 of the space occupied by the storage technique

used in tsparse. We show how tensor multiplication can be performed directly on

our proposed structure thereby making it space efficient – allowing us to perform

tensor multiplication on extremely large tensors on GPU computing platforms.

Our results show that the smaller the block size (up to a point), the larger the

size of the representation, and the larger the level of parallelism, and vice versa.
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4.1 Introduction

A tensor is a n-dimensional array – or a multidimensional array – typically viewed

as a generalization of a matrix into n-dimensions. In the simplest cases, a 1-

dimensional tensor is referred to as a vector or an array, whereas a 2-dimensional

tensor is a matrix. The power of a tensor lies in its ability to concisely capture

complex relationships in multidimensional data. Such is the case in physics,

quantum chemistry, and more recently in machine learning and graph analytics.

For example, any social media platform where a user can tag another user will

produce 3-dimensional data that record user-item-tag data (Smith et al., 2015).

In practice, these tensors can be extremely large in nature and often tend to

push the limits of storage and computational power needed to perform analy-

sis. High Performance Computing (HPC) comes into play to help parallelize the

resource-heavy operations that can be performed using tensors. Deep learning

data are represented using tensors and are often used in the model training phase.

Various verticals of research from computational physics to quantum chemistry

as well use HPC to perform operations on tensor data specific to their field.

This approach of using HPC raises another problem, being able to fit these ex-

tremely large datasets into our desired memory for computation. General-purpose

graphic processing units (GPGPUs), being the most popular and accessible HPC

accelerator hardware, present a large set of challenges as well. Global memory

in such architectures is very limited and is typically smaller than what is needed

to store a large tensor dataset. Thus, the predominate challenge blocking these

datasets and arranges the computation so that the necessary subset of the data,

or working dataset, is in the global when it is needed.

The working dataset can be swapped between the host’s memory and the
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GPGPUs global every so often. However, this is a very costly operation that of-

ten becomes a bottleneck because of the bandwidth limitations of these transfers.

One solution to overcome this issue and make maximum use of the bandwidth

is to compress the data on the host before transferring the working dataset to

the device and directly access the desired data on the compressed structure with-

out having to decompress. This enables us to bring more data with constant

bandwidth, thus reducing the number of transfers that occur. Additionally, the

compressed data allows us to place larger amounts of data in the space limited

shared memory that is available on the streaming multiprocessors. By keeping

data closer to the processor (rather than accessing the global memory) it allows

to overcome memory access latency.

In this chapter, we address this problem for performing tensor computations

on compressed data using GPGPUs. Our work builds Compressed Binary Trees

(CBT ) – a row by row adjacency matrix compression technique for storing graphs

– that are used to perform computations on tensors that have been flattened to

matrices. The advantage of this compression scheme is that it is lossless and

provides the ability to query data without first decompressing the entire dataset.

We provide a hierarchical granular approach to use this compression, tailored to

fit the hardware architecture of the GPGPU.

Our contributions in this work are the following.

• We developed several compression techniques for storing sparse tensors with

billions of elements. These techniques use CBT as the baseline technique.

We have shown that our compression technique uses only about 30% of

the space required by any other block compression technique that has been

proposed in the past.
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• Previously, it was shown that dividing the matrix into blocks is amenable

to parallel computation, as computation on each block can be performed in

parallel. We have improved this concept in several ways. The computation

can now be performed on our compressed blocks. Since the size of each block

is very small (due to compression), one or more blocks can be stored in a

memory of a single streaming multiprocessor, thereby avoiding or reducing

memory access time issues dealing with data in the global memory.

• We have provided an approach that refines parallel computation from coarse

grain involving row blocks and column blocks in multiplication to finer grain

that includes computing several block to block computations in parallel and

also performing in parallel within computations that arise within single

block to block.

• Our algorithms are such that all computations are performed directly on

the compressed structure - there is no need to decompress. This avoids the

crucial step in previous algorithms which uses the Expand, Sort, and Com-

press technique. We do not use intermediate data structures to store our

partial results. All results can be stored directly in compressed structures.

• We have experimentally evaluated the performance of a tensor-tensor multi-

plication algorithm that takes into account compressed structures of various

block sizes.

The remainder of the chapter is as follows. Section 4.2, explains various ways

one can represent different modes of tensor. In section 4.3, we propose a various

ways to we can store these tensors using our compression techniques. In Section

4.4, we show the compression results of different tensors. In Section 4.5, we
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propose a parallel algorithm for matricized tensor multiplication, and finally in

Section 4.6, we summarize our work in this chapter.

4.2 Tensor Representation

One of the most common ways to store a tensor for any application is to first

represent them as one large high-dimensional matrix. Once represented as a ma-

trix, a tensor could be either split by decomposing into lower dimensions for ease

of computation and perform the necessary operations on the lower-dimensional

matrices. This comes with a loss of information, as matrix decomposition meth-

ods are highly approximate. However, to achieve an exact result, one must have

to store the high-dimensional matrices in a compressed format without any loss

of data. This chapter approaches the storage of tensors in three different ways,

a) approaches to store tensors of even dimensions, b) approaches to store tensors

of odd dimensions, and c) an approach to store tensors of any dimension.

4.2.1 Even-Mode Tensor

Figures 4.1, 4.2 shows two ways to compress the even mode tensors. For the figure

4.1, the process first starts by compressing the outermost dimension A, which

denotes all non-zero locations where the corresponding Ai are present. Then, the

corresponding Ai, the matrix of the following dimensions. The figure 4.2, shows

the second approach for compressing an even-mode tensor. In this approach,

we first start by compressing the nonzero matrix A, followed by compressing

the further dimensions Ais in the same way as a time-evolving graph shown in

(Nelson et al., 2021).
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Figure 4.1: Represents a 4 mode tensor, where a dimension in compressed at
time, starting from the outer-most dimension.

4.2.2 Odd-Mode Tensor

For the tensor of odd modes, we first compress all but the last dimension using

the even-mode tensor approach discussed in Section 4.2.1, and every non-zero row

of the last dimension is then compressed using the desired compression algorithm.

Figure 4.3.a, illustrates a three-mode tensor, where the nonzero element of the

matrix A consists of an array in the third dimension.

4.2.3 Unfolded Tensor

However, one of the most common methodologies for representing a tensor is to

convert any mode tensor into a matrix. The reduction in dimensionality starts

by merging the inner dimension with the penultimate dimension repeatedly until

the total number of dimensions is equal to two, which is a matrix. This process
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Figure 4.2: Represents a tensor of 4 mode, where the inner dimensions are con-
sidered as time-evolving graphs.

Figure 4.3: Represents a tensor of 3 mode, an array inside a matrix

represents a tensor, as a matrix is referred to as unfolding. For example, consider

a three-mode tensor as shown in right of Figure 4.4 is of dimension (I×J×K), the

unfolded representation of the tensor will be represented as a matrix of dimensions

(I × (J ∗K)).

4.3 Compression Methods

This section discusses the various compression techniques that can be applied

to any given tensor. The compression is based on the data structure called the
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Figure 4.4: Shows the approaches where the tensors of any modes are represented

Compressed Binary Tree (CBT ) (Nelson et al., 2018). Until now, compression

techniques and operations on compressed structures have been limited to matrices

(Nelson et al., 2018) (Nelson et al., 2019) (Krishna et al., 2021).

This chapter introduces four techniques to compress the tensors represented

as shown in section 4.2.

4.3.1 CBT-Leaf CBT

For a tensor of any mode, a CBT −Leaf CBT will first construct a Compressed

Binary Tree (CBT ) (Nelson et al., 2018) for the outer most dimension of the

tensor A. Consider the example as shown in the figures 4.1, and 4.3. Every

nonzero entry in the outer most matrix will constitute an array or another matrix

in the inner dimension. If a nonzero entry in the following dimensions are a set

of arrays, then each array Ai is compressed separately using CBT (Nelson et al.,

2018) (Krishna et al., 2021). If the nonzero entry in the following dimensions

are a set of matrices, then each matrix Ai is compressed row-by-row using CBT
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(Nelson et al., 2018) (Krishna et al., 2021).

Figure 4.5, shows the working of a CBT−Leaf CBT on a three-mode Tensor.

Figure 4.5: Shows the working of 3-mode compression using CBT-Leaf CBT

4.3.2 Time-Evolving CBT

The term time-evolving comes from the common dimensionality in inner dimen-

sions of the tensor. Here, the two-dimensional matrix A, is compressed row-by-

row using the Compressed Binary Tree (CBT ) (Nelson et al., 2018) similar to

that in CBT − Leaf CBT 4.3.1. Now, for the inner dimensions, all adjacent

rows of A′
is represented by CBT ′s are obtained by |Ai+1row −Airow |, for example,

to compress the first row of an Ai + 1, we first computer |Ai+10 − Ai0 |, which

is the difference from the first row of Ai+1 to the first row of Ai (Nelson et al.,

2021).
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Figure 4.6: Shows the time-evolving compression of a row Ai+1

Figure 4.6, shows the working of a time-evolving CBT way of storing the

inner dimensions of the tensors.

4.3.3 Unfolding CBT

This is one of the most common techniques to store and represent a tensor. Since

a tensor of three-mode and higher are often hard to visualize, one of efficient

ways to do it is by spreading out the inner-dimensions of the tensor into the

outer-dimension which is often referred to as unfolding. Unfolding is a process

of reducing the dimensionality by converting the tensor into a two-dimensional
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matrix. The dimensionality can be reduced by considering any phase of the

tensor. For a three-mode tensor of dimensionality (I × J ×K), ways to unfold

are by holding one dimension constant and merging the other two dimensions. In

our experiments conducted we have chosen to keep the I th dimension constant and

merge dimensions J and K to form a higher dimension, resulting in I × (J ×K).

Once the tensor is unfolded into a matrix, the matrix is then compressed one row

at a time using CBT (Nelson et al., 2018). This compression technique is referred

to as Unfolded CBT or UCBT .

4.3.4 Block CBT

This compression technique is designed to store matricized tensor blocks that will

serve to improve the temporal cache locality during the tensor operations.

This compression technique is called Block Compressed Binary Tree (BCBT ).

Nonzero blocks are continuously stored in the same way as the row-by-row nature

of CBT (Nelson et al., 2018). For this compression, the rows in the block are

represented in the row major order and then the block is compressed as one

single CBT . The choice of using one single CBT with row major order is to

take advantage of the special cases within the working of CBT , which eliminates

the excess zeros and compresses the consecutive nonzeros. The size of the blocks

for compression can be decided at the time of compression. The total number of

blocks in the matricized tensor is defined as the ratio between the total number

of matrix cells (number of rows × number of columns) to the square of block size.

(numRows×numColumns)
blockSize2

Figures 4.7, 4.8, and 4.9, shows the block wise compression of the matricized

tensor using Compressed Binary Tree.
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Figure 4.7, shows one of the ways in which we can covert a tensor into a

matrix, in this approach, the third dimension k, is kept constant and the other

two dimensions are merged together to form a high-dimension matrix. Once the

tensor is unfolded, the tensor is then split into blocks of desired size, in this case

the blocks are divided into the dimensions of size (2× 2).

Figure 4.7: Shows the process to convert a 3-mode Tensor to a Matricized Tensor

Figure 4.8, shows the procedure to store each block in a compressed format.

Before compressing the block, the block is first converted to a row of data using

the row-major order. In this example, for simplicity, we have considered the block

size to be (3× 3).

Figure 4.8: Shows the process of converting a block into a row-major ordered row
of data.

Once represented as a row, the data is now compressed using CBT (Nelson

et al., 2018), as shown in figure 4.9.

During the multiplication process for multiplying two blocks, we cannot di-

rectly get the element in the specific row and column since we have stored them

67



Figure 4.9: Shows the process of representing a row-major ordered data in Com-
pressed Binary Tree format.

in compressed row major order. For this, we first query the column numbers

(neighbor query) from BCBT and then reverse map the row and column value

from the index position. This can be done by first finding the column number

(j) with a mod operation with the number of columns and then finding the row

number by dividing with the number of columns and then adding j to that value.

4.4 Compression Results

The data used in this chapter are generated synthetically. Data generation is

modeled after the real-world scenario of a sparse tensor. For the analyses, the

data generated are in the scale of tens of million to more than a billion nonzero

values in the tensor.

Since, the data are randomly generated, we performed an extensive run on a

500×500×400 tensor, with the sparsity 3.39×E−7. We performed CBT LeafCBT ,

Unfold CBT , and Block CBT on these tensors as shown in table 4.1.

It is evident from these runs that, the random tensors generated is not a the

best-case data for the algorithm to work. With this information, we perform
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Table 4.1: Average size and average time consumed to compress 30 different 3-
mode tensors with same dimension, and same sparsity

Average Size (MB) Average Time (secs)
CBT LeafCBT 3.5599 ∓ 0.0002 0.9422∓ 0.003
Unblock CBT 3.5254 ∓ 0.0002 1.0442 ∓ 0.004
Block CBT 3.5265 ∓ 0.0003 0.9834 ∓ 0.004

compression on more random datasets as shown in table 4.2.

Table 4.2 shows the various datasets that are used in the analyses and their

corresponding memory sizes when we take the corresponding compression ap-

proaches. From the table, it does look like the memory required and the time

taken to compress are very similar. However, depending on the use of these

tensors, the appropriate compression approach must be chosen. The result for

Unfold CBT on the billion-scale graph is missing due to the extremely high value

of the outer dimension.

4.5 Tensor Multiplication

In this section, we explain the implementation of our matricized tensor multi-

plication in parallel. Operating on any data requires understanding the access

pattern to take maximum advantage of parallelism. Sparse matrices, in general,

are highly irregular, which relates to more memory accesses for fewer data. The

GPU’s efficiency depends on maximizing the amount of data read (lower commu-

nication cost) from the host to the device. To achieve maximum computation out

of GPU’s on the data, we are considering using block-based tensor compression

discussed in Section 4.3.4.

Here, we have divided the implementation of multiplying two matrices into

three algorithms. The algorithm 8 multiplies two blocks of matrices to obtain
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a partial result, algorithm 7 provides the implementation for multiplying a row

block of A and a column block of B to obtain a block in C, and algorithm 7

provides the implementation for multiplying the matrix in parallel.

There are four levels of parallelism here. The first level is where each thread

executes a row of blocks from A along with a column of blocks from B. The

second level is when a thread takes two blocks (one from A and one from B) to

be multiplied. The third deeper level is when a single thread takes an entire row

of A and an entire column of B of elements to result in a single resultant value

in C. The fourth final level of parallelism occurs when a single element is taken

from the row of A to be multiplied with another element of B.

Figure 4.10: Shows the two levels of parallelism in the GPU. p and q are the
number of blocks on both the dimensions. p = n

nB
q = m

mB

Once we find the partial multiplication results of these values, we may use the

scan operation to receive the resultant element in C. In this chapter, the first

two levels of parallelism are implemented. The latter levels are the potential for

future work.
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4.5.1 Partial Multiplication

This algorithm takes a block of matrix A, and a block of matrix B as input and

computes the partial resultant block of matrix C as shown in Figure 4.11. Since

these blocks are of compute size, these block matrices are multiplied in parallel,

where a row in block A and a column in block B, are multiplied to obtain a value

in C. Once all threads finish multiplying the block, it is sent back to Algorithm

7.

Figure 4.11: Shows the multiplication of blocks to obtain a partial result of
resultant block.

Algorithm 5: multiply(nnz A, nnz B): A Parallel Partial Matrix Mul-
tiplication Algorithm

Input: Block in A, Block in B
Output: Partial Block of Resultant Matrix C

1 begin
2 do in parallel:
3 for a row of block A: a do
4 for a row of block B: b do
5 if index a == index b then
6 rowSum += a×b;

7 partialBlock C += rowSum;

8 return partialBlock C;
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4.5.2 Compute Resultant Block

This algorithm computes the result of a block of matrix, this algorithm receives

the starting index positions of each block in a row of matrix A, and starting index

of each block in a column of matrix B. Since each block is independent of other

blocks, these blocks can also be parallelized to obtain the results much faster.

The algorithm is tweaked to take a blocked compressed data as an input and

the starting index of the block, to obtain all non-zero elements in a row-major

order. Each block of A and B is then sent to the algorithm 8 to obtain the partial

resultant of the block. The blocks obtained from each thread are then reduced

with respect to their indices to obtain the final result.

Algorithm 6: matrixMultiply(indicesA tid, indicesB tid): A Parallel
Algorithm for Computing Resultant Block for Matrix C

Input: Row Indices of Matrix A, Column Indices of Matrix B
Output: Block of Resultant Matrix C

1 begin
2 /* Number of RowIndices == Number of Column Indices */
3 do in parallel: for each block in A and a block in B
4 nnz A = matA[rowBlock].getNNZ()
5 nnz B = matB[columnBlock].getNNZ()
6 partialBlock C += multiply (nnz A, nnz B)

7 return block C;

4.5.3 Parallel Matrix Multiplication

This algorithm is the final piece of matrix multiplication. Line 2 determines the

number of threads required to compute the resultant matrix. From Line 3, each

resultant block of C is computed by the thread associated with the row. The

thread will handle the row of matrix A and a column of matrix B, and then this
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thread calls the procedure mentioned in algorithm 7 to obtain the final result of

a block in C. Line 6, then computes the bitstring for the final resultant of the

block in C (Gopal Krishna et al., 2021). These bitstrings are then appeneded

one after the other in the order of the blocks in C.

Algorithm 7: Parallel Algorithm to Multiply Matrices

Input: Compressed Matrix A, Compressed Matrix B, Index Array id A,
Index Array id B

Output: Resultant Matrix C
1 begin

2 numThreads = (numRowsC∗numColumnsC)
block size2

3 do in parallel: for each block in C
4 // call algorithm 7 to compute the resultant of each block
5 block C = matrixMultiply(rowOf A, columnOf B)
6 bitString Block C = block C.toBitString()

7 return ResultantMatrix C

At the lowest level of these algorithms, when multiplying a row and a column

to calculate the result element of the resultant matrix, there would be multiple

queries to be performed, and this is going to result in multiple neighbor queries.

To avoid this, a partial sum technique can be implemented that takes the two

CBT structures and merges them by adding the common index values (Krishna

et al., 2021).

4.6 Summary

In summary, we introduce ways to represent tensors of different modality. We

also provide a mechanism to represent a tensor with any-mode, which can be used

on any tensor. We introduced, a variable block matricized tensor compression on

CBT, which in-turn aids to parallelize the matricized tensor multiplication.
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Chapter 5

Matrix-Matrix Multiplication on

Compressed Structure

Matrix multiplication is an essential operation in the field of mathematics and

computer science. Many critical computations, such as matrix factorization and

graph computations, cast the bulk of their computation in terms of this operation.

Thus, it is crucial that this operation is tuned to the data being computed on.

In the case of sparse domains, this translates to minimizing the traffic between

the CPU and main memory as the amount of work is not necessarily sufficient to

amortize the code of the data movement. The amount of memory required to store

a nonnegative valued matrix of n rows and m columns requires (n×m)× log2(n)

bits. When these dimensions are converted to real world scenarios, for example,

a one billion by one billion matrix will require 1000 petabytes of memory, which

is impractical. This hinders the ability to perform any operations on the matrix.

In this chapter, we propose techniques for performing Matrix-Matrix multi-

plication directly on compressed data stored in two different compression data
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structures. The structures we consider are the well-known compressed sparse

matrix and the Compressed Binary Trees. We test our algorithm on extremely

large matrices, in the order of 100s of millions with various levels of sparsity. We

show for matrices of order 100 million with 10 million nonzero elements, the space

required to store the matrices using the CBT representation is about 6.4MB and

requires 13.52s to complete the multiplication using the sequential algorithms

provided in this chapter.

5.1 Introduction

One of the most important operations in linear algebra is matrix multiplication.

The näıve approach to multiply a n × n matrix requires O(n3) number of oper-

ations, which was first introduced in the year 1812 by a French mathematician

Jacques Philippe. Later in the year 1969, Strassen (Strassen, 1969) introduced

an algorithm to multiply matrices with at most O(n2.81) number of operations,

proving the näıve algorithm is not optimal.

Many real-world matrices that exhibit the small world phenomenon are sparse

and extremely large. These matrices are usually in the range of millions to hun-

dreds of millions or even billions. This means the number of nonzero elements in

the matrix is meager compared to the total number of possible values in the ma-

trix. For these datasets, sophisticated compressed data structures are employed

to store only the nonzero elements and their associated indexing information.

However, this space efficiency comes at the expense of complexity when comput-

ing over these structures. For compute-intensive classes of computations, such as

Non-negative matrix factorization, this overhead is substantial. Thus, efficient

implementation of these methods for compressed data structures is necessary for
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performing these operations over extremely large real-world matrices.

A large class of operations requires matrix factorization as one of the steps

in achieving the result. Non-negative matrix factorization (NMF ) is a compu-

tationally expensive operation as the method requires repeated matrix-matrix

multiplication. The cost increases as the data gets larger and sparse.

In this chapter, we propose a technique to multiply two matrices using the

compressed sparse row (CSR) (Gopal Krishna et al., 2021), and the compressed

binary tree (CBT ) (Nelson et al., 2019) with our novel integer encoding technique.

The input to the algorithm is the compressed structure produced by either CSR

or CBT , the matrices used for the analyses are both synthetically generated and

real-world matrices with defined structures. The experimental analyses show the

space and time trade-off between CSR and CBT , leaving the choice to choose

the algorithm depending on the constraint of either space or time. Our method

leverages the row-by-row compression of both CSR and CBT , enabling us to

achieve the result much faster than the näıve matrix multiplication.

Our contribution is listed as follows:

• Value-based matrix-matrix multiplication algorithms on matrices that are

stored as compressed binary trees (CBT ).

• A novel bit packing mechanism to further improve compression sizes for

both CBT and the CSR structures.

• We perform matrix-matrix multiplication without transposing the second

matrix. We do this by a clever partial sum calculation.

• Our matrix-matrix multiplication algorithm stores the result (resultant ma-

trix) directly into the compressed structure (CSR or CBT ) without creat-
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ing any secondary data structures.

• We have provided an extensive empirical evaluation of our algorithms on

extremely large matrices that can be in 100’s of millions in size (number of

rows and columns) with various degrees of sparsity.

The rest of the chapter is divided as follows. Section 5.2 describes the various

ways of storing the matrices, and this section also includes an introduction to var-

ious integer encoding techniques. Section 5.3 introduces the different approaches

to multiply two matrices. This section also includes the detailed algorithm for

CSR, and CBT multiplication. Section 5.4 describes the experimental evalu-

ations performed on various matrices. and conclude the chapter with Section

5.5.

5.2 Matrix Representation

In this chapter, the matrices are represented based on the nonzero values present

in each row of the matrix. This requires representing the coordinates of the

nonzero elements and their respective values, which can be stored as a coordi-

nate array and a value array. In this chapter, we use the Compressed Sparse

Row (CSR) representation introduced by Snay, Richard (Snay, 1976a) with the

variables defined in Krishna et al. (Gopal Krishna et al., 2021), and our novel

Compressed Binary Tree (CBT) (Nelson et al., 2017), structures to store these

matrices. In the previous work of matrix multiplication presented by Nelson et

al. (Nelson et al., 2017), the matrices are considered boolean. Here, we extend

the similar concept of storing the matrices with an additional integer encoding

to represent all nonzero values of the matrix.
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5.2.1 CSR Representation

Snay, Richard in 1976 (Snay, 1976a) first came up with the Compressed Sparse

Row representation for sparse matrices. Since then, CSR has been one of the

widely used sparse matrix representations in linear algebra and graph algorithms.

CSR is a row-row compression that is represented using three arrays, the first one

being the starting position of each row, the second being the column where the

nonzero element is present in that particular row, and the third one being the

value of each nonzero element.

To represent all these arrays as integers, the total number of bits required is

(2m+n)∗64. Instead, our work uses the novel bit-packing algorithm proposed in

(Gopal Krishna et al., 2021) for a time-evolving graph. This reduces the number

of bits required to (m× log2(n) + m× log2(γ) + n× log2(m)), where γ represents

the maximum nonzero value.

m× log2(n) to represent the column positions of nonzero elements, m× log2γ

to represent the values of all nonzero elements, and n× log2(m) to represent the

starting position of each row.

5.2.2 CBT Representation

In 2017, Nelson et al. (Nelson et al., 2017) introduced Compressed Binary Tree

representation for an unweighted graph or boolean matrix. This data structure

represents the matrix one row at a time, which eliminates the need for an inter-

mediate data structure to convert from the input to the compressed format. The

compressed structure of each row is represented as a preorder traversal of a tree.

To represent a matrix as CBT, the structure requires n × log2(n) number of

bits. However, for a weighted matrix, CBT representation would require (n ×
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log2(n) +m× log2(δ)) (if we use bit-packing as an integer encoding scheme).

5.2.3 Integer Encoding

The values in the matrix stored as integers require 64 bits to represent each

number, for example, a 1 billion by 1 billion matrices with sparsity 10(−9), which

will contain 1 billion values, and the data structure requires 64 billion bits or

about 8 gigabytes. This contributes to a large chunk of the total memory required.

To overcome this issue, all integers can be encoded/represented in a binary format

to reduce the amount of space required to store each integer. In this chapter,

we use a novel integer encoding, called Bit-Packing (Gopal Krishna et al., 2021),

and then compare the performance with the well-known encoding techniques such

as 1) Elias Gamma Encoding (Elias, 1975) and 2) Elias Delta Encoding (Elias,

1975).

Elias Gamma Encoding

Elias Gamma encoding was introduced in 1975 by Elias Peter (Elias, 1975), which

postulates bit-encoding of positive integers. Gamma encoding is most commonly

used when the upper bound of the integer values could not be determined at the

start. The first step in gamma encoding involves computing the unary notation

for the minimum number of bits required to store the integer value in binary

format. The second step is to append the binary representation of the integer

value, which is one more of the number of bits required to store the unary nota-

tion. Let x be the positive integer value, where x ≥ 1, the unary notation takes

⌊log2(x)⌋ bits, and the binary representation requires ⌊log2(x) + 1⌋ bits. For ex-

ample 1 → 1, 2 → 010, 3 → 011, 1000 → 0000000001111101000. Therefore, as
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the number increases, the gamma encoding becomes inefficient.

Elias Delta Encoding

Elias Delta encoding was introduced by Elias Peter (Elias, 1975) in 1975, which

replaces the Elias Gamma encoding algorithm. In Elias Delta, the first step is

to store the gamma encoding of ⌈log2(x+ 1)⌉, and then in the second step, delta

encoding stores all but most significant bits of the binary notation of the number

x. For example, if x = 8, ⌈log2(8 + 1) = 4⌉, hence the gamma encoding of 4

00100, and the all but most significant bit of 8 is 000, therefore, 8 can be encoded

as 00100000.

Bit-Packing

Bit-packing is a novel encoding scheme introduced in (Gopal Krishna et al., 2021),

in this technique, given an array of integers, the numbers are represented based

on the minimum number of bits the largest number consumes in the array.

Table 5.1, shows the number of bits required (in megabytes) to store random

integers using Elias Gamma, Elias Delta, and Bit-packing algorithms. From the

table, it is evident that bit-packing performs better than both Elias Gamma and

Elias Delta Encoding.

This statement of bit-packing performs better than both Elias Gamma and

Elias Delta encoding can be backed up by looking at the theoretical aspect of

the storage. (2× (⌊log2(x)⌋) + 1) ≥ (⌊log2(x)⌋+2× (⌊log2⌊log2(x) + 1⌋) + 1)⌋ ≥

⌈log2(x)⌉.

Hence, in this chapter, all integer values in the matrices are stored as bits

using the bit-packing algorithm.
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Table 5.1: Shows the size of the memory required to store the integer values using
various integer encoding schemes.

ArraySize Elias Gamma Elias Delta Bit-Packing
in MB

1000 0.002 0.0017 0.0011
100000 0.36 0.27 0.20
10000000 52.02 36.13 28.61
100000000 599.24 400.94 321.86

5.3 Matrix-Matrix Multiplication

5.3.1 Näıve Algorithm

Given A and B matrices of dimension n×k and k×m respectively, our goal is to

multiply them and store the result in a matrix C of dimension n×m. We consider

an example to illustrate the multiplication algorithm shown in 5.1. To compute

the first element (0, 0) in our resultant C matrix, we multiply the corresponding

values in r0(A) (ri – the ith row of A) and c0(B) (cj – the jth column of B)and

cumulatively add them. This operation is repeated by looping through each

column of B to compute the values in r0(C). This is mathematically represented

as

C =
n∑

p=0

m∑
q=0

k∑
r=0

Cpq += Apr ×Brq (5.1)

A B

5 0 2 3

3 0 0 5

0 0 2 4

0 1 2 0




2 2 0 3

4 0 1 0

3 0 1 2

1 1 0 0




Figure 5.1: Matrices A and B
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The time complexity in the worst case for this algorithm is O(nmk) or O(n3)

if A and B are square matrices. Breaking the time complexity to compute a

single element Cij in the resultant matrix C, it takes O(k) once we fetch ri(A)

and cj(B).

Taking the example shown in 5.1, where matrix A and B are shown and

highlighted in blue are r0(A) and c0(B), we show the calculation that goes into

computing the value of C00. Values from r0(A) are matched with the values from

c0(B) by matching the column numbers of values from r0(A) and row numbers of

the values of c0(B). By doing the cumulative addition of these multiplied values,

we get the value 19 for C00, as shown in 5.3.

This, however, can be improved in the case of a sparse matrix considering

the number of nonzero elements in ri(A). Which means we can skip the n −

numNonZero(ri(A)) multiplications and cumulative additions, where

numNonZero(ri(A))

represents the number of non zero elements in row i of matrix A (Gustavson,

1978).

Although this above algorithm works well for the data structure of a 2D

array/matrix, for the compressed data structure that we use in this chapter (Snay,

1976a)(Nelson et al., 2017), the algorithm can be optimized for better efficiency.

More about the motivation and the partial sum algorithm follows.
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A×B =

0 1 2 3


0 5 0 2 3

1 3 0 0 5

2 0 0 2 4

3 0 1 2 0

×

0 1 2 3


0 2 2 0 3

1 4 0 1 0

2 3 0 1 2

3 1 1 0 0

(5.2)

⇒

r0(A)→

c0(B)→


5

×

2

+


0

×

4

+


2

×

3

+


3

×

1



⇒ r0[C] = C00 = 19 (5.3)

5.3.2 Partial Sum

The compressed data structures that are used in this chapter for storing and

multiplying (Snay, 1976a)(Nelson et al., 2017), are both techniques that compress

matrices row by row. Because of the row-by-row compression of these two data

structures, querying becomes a challenge as we are able to only query the values

per row. Therefore, the column queries (ci(B)) would involve querying each of

rows of the matrix and indexing the first values from them to build the first

column. This means that the column query would have to be performed k times

(number of rows) for matrix B in our example. This process is to just build one

column (c0(B)) to perform the multiplication to find the resultant value C00, in

our example. To compute the resultant row (ri(C)), we would need to do row

queries k×m number of times. This becomes a very costly step in our algorithm.

One way to circumvent this issue would be to transpose the B matrix so that
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a column query would mean actually mean row query which would fetch us all

the required values. This becomes a preprocessing step before multiplication and

turns out to not be very convenient as well. The second approach would be to

store B as a column compressed format, but this would mean that we are going

to be storing A and B in two different formats and making it nonuniform.

The partial sum idea explained in algorithm 8, is to compute one entire row

in the resultant matrix, ri(C) with just n row queries to B.

Taking the example given in equation 5.4, the goal is to compute one entire

row in our resultant r0(C), from A and B matrices. The first step is to query

r0(A) and identify only the nonzero indices. The corresponding row is queried

from B. In our example, 5 is the first nonzero element from r0(A) at index

(column number) 0 in A. The corresponding row is queried from B, r0(B). Now,

a dot product is performed between 5 and r0(B) and the result is stored in a

temporary row (resultantRow) which is of length m. This temporary row holds

the partial sum of r0(C) and is shown in equation 5.5. The next query would

be r2(B) since that is the next index position where the next nonzero element is

found in r0(A). As seen in equation 5.5, a dot product is performed between the

value 2 and r2(C). The resultant partial sum after this product is cumulatively

added to resultantRow as shown in equation 5.6.

Once we loop through the nonzero indices of r0(A), we now have an entire

row of the resultant matrix, r0(C). The number of queries performed to get the

row of B is now n.

A similar idea about using partial sum calculations was used in value-based

matrix-matrix multiplication using a data structure called Single Tree Adjacency

Forest (STAF) (Nishino et al., 2014). This however had an assumption that the

matrices would follow the column scaled nonzero property, which puts a big con-
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straint in regard to value-based matrices. In this chapter, we use a compressed

value-based matrix data structure to perform multiplication without any inter-

mediate structures and stream the result into the resultant structure directly.

A×B =

0 1 2 3


0 5 0 2 3

1 3 0 0 5

2 0 0 2 4

3 0 1 2 0

×

0 1 2 3


0 2 2 0 3

1 4 0 1 0

2 3 0 1 2

3 1 1 0 0

(5.4)

⇒

5× r0(B)⇒ 5 ∗
(
2 2 0 3

)
2× r2(B)⇒ 2 ∗

(
3 0 1 2

)
3× r3(B)⇒ 3 ∗

(
1 1 0 0

) (5.5)

⇒

(
10 10 0 15

)
+(

6 0 2 4

)
+(

3 3 0 0

)

⇒ r0(C)→
(
19 13 2 19

)
(5.6)
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Algorithm 8: Computing the Resultant Row Using Partial Sum

Input: A row of matrix A, matrix B
Output: Resultant row of matrix C

1 begin
2 for everyNeighbor in A row do
3 B row = getRow(B, everyNeighbor)
4 for everyCol in B row do
5 resultantRow[everyCol] += A.values[A row]*B.values[B col]

6 return resultantRow

5.3.3 CBT Matrix-Matrix Multiplication

Let A & B be two matrices to be multiplied, in this section, we adapt the par-

tial sum algorithm from section 5.3.2 to multiply two matrices which are stored

in a Compressed Binary Tree (CBT) format. Then finally store the resultant

matrix C as a Compressed Binary Tree format. In this process of multiplica-

tion, the resultant indices are directly stored in CBT without any intermediate

structures. The following algorithm walks through the implementation of CBT

Matrix-Matrix Multiplication.

Algorithm 9, takes in the row of bits compressed using CBT , and the asso-

ciated row number. The algorithm reads one bit at a time from the bitstring

which is traversed in a preorder (line 9). If the bit read is equal to 1, that means

there is at least one edge present in the range. Line 10 checks if the traversal

has reached the leaf, if so, we append the index associated with the range to the

final resultant rowIndices (Line 11). Lines 13 through 20 checks for special cases

that are associated with CBT compression. Lines 13 through 17 retrieve the row

number in the range of indices, and line 19 retrieves all row numbers in the range

of indices.

Given matrix A, and matrix B as two compressed binary trees (Nelson et al.,
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Algorithm 9: Get A Row From CBT

Input: A bitstring of a row (rowString), and the row number (u)
Output: All indices of non-zero elements in the row u

1 begin
2 int[] rowIndices
3 maxDepth = log2(numNodes)
4 beginCol = 0
5 endCol = numNodes - 1
6 index = 0 /*index to traverse the row*/
7 preOrderStack.push(pair(beginCol, endCol))
8 while !preOrderStack.empty() do
9 nodeLabel = rowString.getBit(index)

10 if nodeLabel == 1 &&IsMaxDepth() then
11 rowIndices.append(beginCol)
12 index += 1;

13 else if nodeLabel == 1 && nodeLabel.leftChild == 0 &&
nodeLabel.rightChild == 0 then

14 if nodeLabel.getBit(index+3) == 1 then
15 colNum = rowString.getRelativePath()
16 rowIndices.append(colNum)
17 index += 4 + lengthOfPath;

18 else
19 rowIndices.append(range(beginCol, endCol))
20 index += 4;

21 else
22 nodeLabel.ignore();

23 return rowIndices;
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2017), algorithm 10 multiplies A × B, to produce matrix C in the compressed

binary tree. For each row in the matrix A CBT , line 3 fetches all nonzero column

numbers associated with the row using algorithm 9. The row obtained in line 3

from A CBT , is then fed into algorithm 8 along with B CBT , and the values

associated with both the matrices encoded using bit-packing algorithm 2. The

row of resultant integers obtained from the partial sum algorithm is the resultant

row of matrix C. Furthermore, each index associated with the resultant row

is then streamed onto the compressed binary tree C CBT , and all resultant

multiplied values are stored as bits using the bit-packing algorithm (lines 6-7).

Algorithm 10: CBT Matrix-Matrix Multiplication

Input: A CBT , B CBT
Output: C CBT

1 begin
2 for row = 0 to numberOfRows do
3 Arow = getRow(A CBT , row)
4 tempArray = comutePartialSum(Arow, B CBT )
5 for nnzElements in tempArray do
6 C CBT [row].streamEdge(nnzIndex)
7 C CBT.values.bitPack(nnzValues)

8 return C CBT

5.3.4 CSR Matrix-Matrix Multiplication

The approach to the CSR matrix-matrix multiplication is very similar to that

of the CBT matrix-matrix multiplication 5.3.3. Consider two matrices A & B

represented in the compressed sparse row format (Gopal Krishna et al., 2021),

the objective of this algorithm is to compute the product A × B and store the

resultant C in the compressed sparse row without any intermediate structures

that aid the storage.
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Algorithm 11 provides the methodology to retrieve a row from the matrix,

compressed using CSR. The algorithm takes in the unsigned bit representation of

the row u, the row number u, and the number of bits required to store each integer

of the row. Line 16 retrieves the bits associated with the integer to the variable

res, as the system architecture stores the numbers in the little-endian format, the

bits in the res are stored in the most significant bit. Lines 17-18 push the bits

into the appropriate position to represent the actual integer stored in the array

(line 20). If the current array location contains a part of the number, lines 21-31

will retrieve the partial number from the current location and the remaining bits

from the concurrent location to form an integer value. This process is repeated

until all numbers are retrieved from the given uArray. Finally, line 35 will return

all column numbers associated with the row where nonzero elements are present.

Now, the second step of the process is the matrix-matrix multiplication. Al-

gorithm 12 takes in matrix A, A CSR and matrix B, B CSR as arguments. For

all nonzero rows present in matrix A CSR, line 3 obtains one row of elements

from A CSR, this is then fed into algorithm 8 along with B CSR, and the val-

ues associated with both the matrices encoded using bit-packing algorithm 2 (line

4). The row of resultant integers obtained from the partial sum algorithm is the

resultant row of matrix C, along with the number of elements (degree) of the

resultant row (line 5). Furthermore, each index associated with the resultant

row is then streamed on to the compressed sparse row C CSR, and all resultant

multiplied values are stored as bits using the bit-packing algorithm (lines 7-8).
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Algorithm 11: Get A Row From CSR

Input: An array of unsigned bits uArray, the row number (u), and the
number of bits (numBits)

Output: All indices of non-zero elements in the row u
1 begin
2 int[] rowIndices
3 totalBits = 64
4 balance = 0

5 arraySize = numberofElements
numberofBits

∗ totalBits;

6 for i = 0 to arraySize do
7 /* denotes how many numbers are stored in an array location */
8 m = availBits/numBits
9 /* leftover bits at the end of the array */

10 remBits = availBits%numBits
11 /* keep track of the number */
12 ind = 0
13 while ind < m do
14 res = 0
15 j = 0
16 res = uArray[i] >> (ind*numBits + balance)
17 j = res << (totalBits - numBits)
18 j = j >> (totalBits - numBits)
19 ind ++
20 rowIndices.append(j)

21 if rem > 0 then
22 /* First read the remaining bits in index */
23 res = uArray[i] ¿¿ (totalBits - rem)
24 /* Increment the array index */
25 i += 1
26 /* Now get the remaining bit from the next array location */ j

| = res
27 res = b << rem
28 res = res << (totalBits - numBits)
29 res = res >> (totalBits - numBits)
30 j | = res
31 /* update the remaining bits in the new location */

32 else
33 i ++;
34 /* reset all parameters */

35 return rowIndices;
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Algorithm 12: CSR Matrix-Matrix Multiplication

Input: A CSR, B CSR
Output: C CSR

1 begin
2 for row = 0 to numberOfRows do
3 Arow = getRow(A CSR, row)
4 tempArray = comutePartialSum(Arow, B CSR, A values,

B values)
5 C CSR.degree[row] = nnz;
6 for nnzElements in tempArray do
7 C CSR.indices[row].bitPack(nnzIndex)
8 C CSR.values.bitPack(nnzValues)

9 return C CSR

5.4 Experimental Results

For the analyses involving matrix-matrix multiplication, we consider the follow-

ing datasets shown in table 5.2. For the analyses, the matrices are generated

using either of the four following properties, 1) Power-Law distribution, 2) Erdő-

Rényi random generator, 3) Random Walk generator, and 4) Real-World data.

The first three properties are synthetically generated using the appropriate func-

tions defined in the properties of random networks, and the real-world data are

obtained from the Stanford Large Network Dataset Collection (Snap)(Leskovec

and Krevl, 2021).

Erdő and Rényi introduced the notion of random graph (Erdos et al., 1960)

(Erdős and Rényi, 1961) in the year 1960. There are three important parameters

in generating a random graph, they are the number of nodes n, the density of the

graph (number of edges) e, and the probability of an edge exist in the graph p.

The G(n, e) model random graphs, generate a uniform number of edges for the

all the nodes n, which is not a feasible structure. Therefore, G(n, p)n model as
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described Erdos and Renyi, assigns the edge with the chosen probability p.

The power-law random graph generator takes a page out of the G(n, p) model.

The power-law random graph model P (α, β) is described as follows. Let v be the

number of nodes with degree x, P (α, β) assigns uniform probability to all the

nodes with v = eα/xβ.

The last random graph generator used in this chapter is obtained by using the

technique of random walk. The graph generator produces two random numbers

(u, v) from the non-negative integer line Z.

The amazon network (Leskovec and Krevl, 2021), is based on the product

recommendation to customers who bought the similar products as a bundle.

That is, if a product a is purchased frequently along with another product b

by the customers, then there exists a directed edge a→ b. The Web-NorteDame

network (Leskovec and Krevl, 2021), is obtained from the University of Norte

Dame, the directed edge represents the hyperlinks within the nd.edu domain.

The data was collected by Albert, Jeong and Barabasi (Albert et al., 1999) in

1999. The Facebook network (Leskovec and Krevl, 2021), consists of ’circles’

(or ’friend lists’) on Facebook. The dataset includes node features (profiles),

circles, and ego networks. The Email-EU network (Leskovec and Krevl, 2021),

the dataset was obtained from the communication with European universities.

Overall, there are 3,038,531 emails between 287,755 different email addresses.

A directed edge u → v, corresponds to an email sent from u to another email

address v.

Table 5.2, shows the statistics of the datasets used in this chapter. The table

contains the number of rows in column 2, the number of nonzero elements in the

matrix in column 3, the sparsity of the matrix in column 4, and followed by the

size of the files expressed in megabytes (MB) in the text format mentioned in
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column 5, the compressed sparse row (CSR) in column 6, and in a compressed

binary tree (CBT ) in column 7.

The sparsity of a matrix is defined as the ratio of the number of nonzero

elements to the number of all possible elements that can be in the matrix.

Sparsity = numberofnonzeroelements
numberofrows×numberofrows

All experiments were run on an Intel(R) Xeon(R) CPU E5520 @ 2.27GHz (16

Cores) with 64 GB of RAM, and the programs are written in GNU C/C++.

Table 5.3, shows the results obtained from multiplying two matrices using

compressed sparse row (CSR) and the compressed binary tree (CBT ) format.

From the results, the pattern of space and time trade-off is very evident. On

average, CBT consumes 30% lesser space compared to CSR, where as CSR

makes its ground by consuming on an average 40% less time compared to CBT .

Both CBT and CSR require substantially less amount of memory compared

to the file stored in the text.

We also ran the experiments on random generated graphs. We performed an

extensive run on a 1 Million by 1 Million, with the sparsity 2.39× E−6.

Where we saw, CSR completed the multiplication in 1.17∓ 0.05 secs, where

as CBT completed in 5.49∓ 0.03 secs.

Meanwhile, CSR consumed 4.72∓ 0.04 MB, and CBT consumed 4.39MB to

store the resultant matrix.

5.5 Summary

In summary, we introduced matrix multiplication on the compressed structures,

CSR and CBT , using the Partial Sum algorithm, which yielded in a row-by-row
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computation. We tested our algorithm on 100 million by 100 million matrices of

different sparsity and also on real-world matrices.

97



Chapter 6

Matrix Factorization on

Compressed Structure

Non-negative Matrix Factorization (NMF ) is one of the algorithms with a wide

range of applications, from dimensionality reduction and computer vision to text

mining. The dimensions of these matrices can be of the order of several hundreds

of thousands to millions, which is a raw format that would not fit in the main

memory. Additionally, while performing matrix factorization on these extremely

large matrices, the algorithms involving matrix operations such as transpose,

multiplication, and subtraction; demand more storage for intermediate resultant

matrices. In this chapter, we store the matrices in compressed structures ( Com-

pressed Binary Tree CBT and Compressed Sparse Row CSR) that allow fac-

torization without decompression. We also perform factorization CBT without

using any intermediate structures by performing a virtual transpose and stream-

ing the intermediate resultant matrices of a sequence of matrix multiplications

directly into the compressed structure for every iteration. As an example, for an
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input matrix A of dimension 65, 536 × 65, 536 with 1.46M number of non-zero

elements, the peak storage in any iteration of the multiplicative update factor-

ization algorithm is 32.98GB when using a 2D array, 200MB when using CSR

and 14.8MB for CBT . The ability to stream (add and delete) into the CBT

structure without reallocation is why CBT performs the best. Furthermore, we

provide a heuristic to reduce memory usage that also aids in faster convergence.

6.1 Introduction

Non-negative Matrix Factorization (NMF ) can be formally defined as follows:

Given a non-negative matrix A ∈ IR+ of dimension m×n and an inner dimension

k > 0, find the factor matrices if any, W ∈ IR+ of dimension m× k and H ∈ IR+

of dimension k × n such that:

A = WH

The factor matrices W and H are also non-negative in nature. The rank of

the input matrix A gives a lower bound for the inner dimension k. This inner

dimension k is referred to as the Non-negative rank of a matrix. This problem of

finding the factors that satisfy condition A = WH with rank(A) = k has proved

to be an NP-hard problem (Vavasis, 2010) (Shitov, 2017). The short proof of

(Shitov, 2017) tries to reduce the graph coloring problem and equates the NP-

hardness of the graph chromatic number with the non-negative ranks of the input

matrix, which is the smallest inner dimension for NMF .

There are various applications (Gillis, 2014) that use NMF from computer

vision, text mining/information retrieval, email, and pattern recognition to clus-

tering in machine learning (Xu et al., 2003), face recognition (Guillamet and
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Vitria, 2002) and data mining (Berry and Browne, 2005; Zhang et al., 2006).

Another application of NMF is that it can be used as a lossy compression algo-

rithm to compress a large matrix. If the inner dimension k is small enough, then

the input matrix A can be factored in W × H, resulting in a lower number of

elements in total. The number of elements in A to be stored will be m× n, but

if factorized, the number of elements to be stored will be m × k + k × n. The

latter is assumed to be smaller when k is small.

The correctness of the factorization is calculated using the Frobenius norm

suggested by (Lee and Seung, 2001) (Guan et al., 2012). Now, the problem can

be rewritten as:

min
W≥0,H≥0

∥A−WH∥F

Some of the well-known sequential algorithms to solve the non-negative fac-

torization are, Multiplicative Update Algorithms(Lee and Seung, 2001) (Gonzalez

and Zhang, 2005), Gradient Descent Algorithms and Alternating Least Squares

Algorithms(Berry et al., 2007) (Kim and Park, 2008). There are several ap-

proaches as defined in (Wang and Zhang, 2012) that can be taken to solve this

problem. In this chapter, we will evaluate the Multiplicative Update Algorithm

defined by Lee & Seung (Lee and Seung, 2001).

To solve any of the sequential algorithms mentioned above for large matrices,

the algorithms require a system configuration that can handle a huge number of

gigabytes of data at a time. We present two state-of-the-art compressed struc-

tures (CBT (Nelson et al., 2019) and CSR (Gopal Krishna et al., 2021)) that

are used to store these matrices and used for operations and algorithms. The in-

put matrices and the factor matrices are all stored in either of these compressed
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structures. The matrices used for the analyses are both real-world and syntheti-

cally generated. We have also shown that there is a space-time trade-off between

the two structures CBT and CSR. CBT taking lesser space and CSR having a

shorter query time (Gopal Krishna et al., 2021).

Our contribution is as follows:

• We provide a method for factorizing matrices with the least memory foot-

print per iteration using compressed structures.

• Sections 6.2.1 and 6.2.2, explain various value-based matrix−matrix oper-

ations that are performed without decompression.

• We provide a matrix-transpose multiplication algorithm (Section 6.2.3) that

provides results without transposing, by streaming the result directly into

compressed structures.

• In Section 6.2.4, we explain how we sequence 3 or more matrix multiplica-

tion operations, without storing any intermediate matrices.

• Proposed a heuristic (Section 6.2.5) that eliminates unnecessary rows/-

columns that leads to lower memory usage and faster convergence.

This chapter is divided as follows, In Section 6.2, we go through all the al-

gorithms required to compute the factorization using multiplicative update algo-

rithm. In Section 6.3, we show the experimental results of the factorization. We

conclude our work in Section 6.4.
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6.2 Matrix Factorization

There are several approaches that can be taken to factorize a given matrix. To

mention a few of the popular ones, multiplicative update, gradient descent, and

alternating least squares (Lee and Seung, 2001)(Berry et al., 2007). Here, we

take the updated rules provided by Lee and Seung (Lee and Seung, 2001).

H ← H
(W TV )

(W TWH)
, W ← W

(V HT )

(WHHT )

Algorithm 13: Multiplicative Update Algorithm

Input: Matrix to be factorized A.
Output: Factorized matrix W and H.

1 begin
2 W = rand(m, k)
3 H = rand(k, n)
4 for i : maxiter do
5 H ← H . ∗ (W TA) ./ (W TWH + 10−9)
6 W ← W . ∗ (AHT ) ./ (WHHT + 10−9)

Algorithm 13, shows the workings of how to factorize the given large matrix

using the multiplicative update algorithm. The algorithm involves a series of op-

erations to obtain the desired result of W and H. To clarify the various matrix

element-wise operations, the .∗ operation represents an element-wise multiplica-

tion, and a ./ represents an element-wise division and matrix-based operations

such as matrix-matrix multiplication. So, we continue this section by providing

the algorithms for the various operations that are the building blocks of 13.
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6.2.1 Matrix-Matrix Multiplication

One of the first and most important operations to be performed during the fac-

torization process is matrix-matrix multiplication. The work on matrix-matrix

multiplication has been published in (Krishna et al., 2021), which explains the

working of how two matrices stored in either of the data structures CSR and

CBT are multiplied without the need for an intermediate data structure.

6.2.2 Element-Wise Matrix Operation

The multiplicative update algorithm consists of several element-wise matrix oper-

ations. The operations involved in the algorithm are element-wise multiplication

.∗, element-wise division ./, and element-wise subtraction − to find the Frobenius

norm. Apart from these three, we can also extend the algorithm for element-wise

addition +.

Algorithm 14, explains the working of the element-wise matrix operation.

The operation to be performed, ”Op,” is specified as input. The algorithm first

checks if the dimensions of the two matrices are equal and, if not, throws an

error. It then loops through each row of the matrices, and for each row, it checks

if the size of the row is zero in either matrix. If it is, it appends a zero to the

corresponding row of the resultant matrix C. If both matrices have a row of size

zero, it also appends a zero to the corresponding row of C. If only one matrix

has a row of size zero, it copies the elements from the non-zero row and appends

them to the corresponding row of C. If neither matrix has a row of size zero, the

algorithm performs the specified operation on each element of the corresponding

rows of A and B and appends the result to the corresponding row of C. Finally,

the algorithm returns the resultant matrix C.
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Algorithm 14: Element-wise matrix Addition, Subtraction, Multipli-
cation, and Division

Input: Matrix A, Matrix B, Operation Op
Output: resultan matrix C

1 begin
2 if A.rowSize != B.rowSize or A.colSize != B.colSize then
3 Error: Matrix dimensions should be the same for both the

matrices
4 for i in numberofRows do
5 if A[i].rows == 0 and B[i].rows == 0 then
6 C[i] = 0
7 continue to the next row

8 else if A[i] == 0 then
9 C[i] = B[i]

10 continue to the next row

11 else if B[i] == 0 then
12 C[i] = A[i]
13 continue to the next row

14 for aIndex in A[i] do
15 for bIndex in B[i] do
16 C[i][j] = A[i][j] ”Op” B[i][j]
17 Where ”Op” = ”+ or - or .* or ./”

18 return C
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6.2.3 Matrix Transpose

Another important operation required to perform matrix factorization is to trans-

pose a given matrix. There are two ways we have handled this situation in this

chapter, one way is to transpose the given matrix and store it as another matrix

that occupies extra space, and another way to do it is to incorporate transpose

during the required operation.

The multiplicative update algorithm contains matrix-matrix multiplication

where either one of the matrices needs to be transposed. A way to achieve

this operation would be to transpose the required matrix and use the algorithm

mentioned in (Krishna et al., 2021), but this requires additional memory; here the

additional memory is the transposed matrix. To avoid this issue, we perform an

in-place transpose multiplication. This can be achieved by accessing the matrices

with a different access pattern

A×BT =

0 1 2 3


0 5 0 2 3

1 3 0 0 5

2 0 0 2 4

3 0 1 2 0

×

0 1 2 3


0 2 4 3 1

1 2 0 0 1

2 0 1 1 0

3 3 0 2 0

(6.1)

⇒

r0(A)→

c0(B)→


5

×

2

+


5

×

4

+


5

×

3

+


5

×

1



⇒ c0[C] = {10 20 15 5} (6.2)
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Figure 6.1: The working of AT ×B, by storing the result in a pattern to eliminate
the need to transpose the actual matrix.

Equation 6.2 shows an example of A × BT , where the partial resultant of

column c0[C], is obtained after multiplying the first row r0[A] of A, and virtually

transposed the first column of B, in this case, it is still r0[B].

Figure 6.1 shows the multiplication of AT×B by virtually transposing A. Here,

the colors along the diagonal show the order in which the resultant is obtained.

Multiplying r0[A] with all rows of B, we obtain the main diagonal; continuing the

process to the farther rows of A, we move the resultant to the upper triangle and

wrap it around to the lower triangle, as shown in red, and green.

6.2.4 Sequence of matrix multiplications

Revisiting algorithm in (Krishna et al., 2021), where algorithms take two ma-

trices as input and multiply them to produce the resultant matrix. However,

data structures such as our novel versions of CBT and CSR are amenable to

multiplying multiple matrices without storing the intermediate resultant matrix.

Algorithm 16 shows multiple matrix-matrix multiplication. Line 5 takes the
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output of line 3, the intermediate resultant row, and computes the resultant row

on the third matrix. This process can be repeated through any number of input

matrices. Therefore, this can be scaled to k as the number of matrices.

Figure 6.2 shows the pictorial representation of sequential multiplications of

multiple matrices. A row of matrix A, Ai is multiplied by matrix B using the

partial sum algorithm to obtain the intermediate resultant row Zi, then Zi is

multiplied with the next matrix C to obtain the final resultant row Di.

Algorithm 16: Matrix-Matrix Multiplication in Sequence

Input: Matrix A, Matrix B, Matrix C
Output: Resultant Matrix D

1 begin
2 for row = 0 to numberOfRows do
3 aRow = getRow(A, row)
4 tempArray = copmutePartialSum(aRow,B)
5 /* Call Algorithm in Sec 6.2.1 */
6 tempArray = computePartialSum(tempArray, C)
7 /* Call Algorithm in Sec 6.2.1 */
8 for nnzElements in tempArray do
9 D[row].streamEdge(nnzIndex)

10 D.values.bitPack(nnzValues)

11 /* If we are performing the matrix multiplication in CSR, then
the number of non-zero elements in the resultant data for each
row should be stored in C */

12 return D

6.2.5 Heuristic for faster convergence

One of the drawbacks of the multiplicative update approach is the convergence

time and the iterations it takes to find an optimal solution. One of the ways to

make the algorithm faster would be to reduce the number of non-zero values in the

input matrix. If we are given a threshold number of index positions per row that
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can be made zero, we can come up with a heuristic approach to make specific

values zero so that our compression is more efficient. One way to approach

this is to remove the noise in the data; that is, we remove the data that do

not contribute to the overall solution. This may lead to more loss, but the

threshold will dictate the metric of the percentage of loss added to this already

lossy factorization approach if we had not taken the heuristic approach. This

will be a heuristic approach and will not be optimal. But it will lead to reduced

resource utilization. Space is reduced in the already compressed structure and

time to query the smaller CBT structure.

6.3 Experimental Results

This section evaluates matrix factorization on various matrices. For this experi-

ment, we considered the variety of matrices with variable sparsity.

To factorize the matrices, we must first choose low-rank dense random W and

H matrices. Choosing a low-ranking matrix leads to the formation of a smaller

resultant matrix, which in turn consumes less space. Finding an optimal rank for

factorization is a hard problem, as the algorithm has to go through the process

of finding the number of orthogonal rows in the matrix. It is also more likely

that the larger the inner dimension of the factors that we compute (W and H),

the sparser these matrices will be, in which case CBT outperforms CSR even in

terms of the storage of dense matrices. Therefore, in this chapter, we perform a

brute-force analysis to obtain a minimal rank that would satisfy the criteria to

reproduce the almost original matrix when W and H are multiplied.

Before we evaluate the algorithms on the other datasets, we first performed

repeated factorization for a given matrix, since matrix W and H are random. In
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this experiment, we first considered a matrix of size 43, 008×43, 008, with 462, 364

nonzero elements, we were able to store the matrix using CBT in 4.44MB.

We then ran the factorization repeatedly for any random matrices W and H.

The resultant W and H were then multiplied to replicate the original matrices.

In the end, we ended storing the W×H matrix in 4.21∓0.073 MB, in 88.79∓0.76

secs.

Table 6.1 shows the overall result of the computation performed in this chap-

ter. The first set of columns in the table explains the basic details of the input,

matrix dimensions in the first column, the number of non-zero elements in the

second, matrix size when represented by using the 2 − D matrix in the third,

and the compressed sizes in the fourth and fifth respects. In the next part of the

table, we present the inner rank of the factored matrices, followed by the result of

W ×H for both CBT and CSR, and the amount of memory required to process

factorization at each iteration by CBT , CSR, and 2 − D representation of the

matrix.

In the results, one can notice that the memory required by the 2−D matrix

is the highest. Still, the majority of the size is just the A matrix. Since the

resultants can be streamed into a matrix in O(1) (constant), the extra memory

used is very minimal. Still, as the inner rank increases, memory usage will increase

accordingly.

However, when considering the two compressed structures, the proportion of

memory consumed by CSR is much greater compared to the memory consumed

by CBT (Gopal Krishna et al., 2021). This is due to the inability of CSR’s

to stream (add/delete), as the arrays need to resize, whereas CBT ’s ability to

perform in-line operations, the advantage of one such operation is shown in the

Figure 6.3, the figure compares the time taken to multiply three matrices in
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Figure 6.3: Comparison between the time taken to multiply three matrices in
traditional two steps and uses our novel sequence multiplication in a single step
for a Million-by-Million matrix.

Figure 6.4: The evolution of W and H during the factorization for Matrix of size
(21,504× 21,504, 1.36M nnz elements)
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traditional two steps and uses our novel sequence multiplication in a single step

for a Million-by-Million matrix of various levels of sparsity ranging from 1M to

5.4M elements. This memory usage will have a significant impact for a very large

matrix, as shown in (Krishna et al., 2021).

Figure 6.4 shows the decrease in the memory required to store W and H as

the iteration progresses, with the number of non-zero elements represented in the

bars.

All experiments were run on an Intel(R) Xeon(R) W-2295 CPU @ 3.00GHz

(16 Cores) with 64 GB of RAM, and the programs were written in GNU C/C++.

6.4 Summary

In summary, using our matrix multiplication algorithm, and proposal of other

matrix operations required to a factorize matrix. We introduced a mechanism to

solve the multiplicative update algorithm introduced by Lee and Seung (Lee and

Seung, 2001) on the compressed structure. In this chapter, we also introduced

multiple matrix multiplication, by eliminating intermediate resultant matrix.
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Chapter 7

Parallel Construction

The growing popularity of social networks and the massive influx of users have

made it challenging to store and process the network/graph data quickly before

the properties of the graph change due to graph evolution. Storing graphs or

networks that represent entities and their relationships (such as individuals and

their friends/followers in a social network) becomes more difficult as the num-

ber of users increases, resulting in massive graphs that are challenging to store

in standard structures like matrices or adjacency lists. Research in this field

has focused on reducing the memory footprint of these large graphs and mini-

mizing the extra memory required for processing. However, there is a trade-off

between time and space, as rigorous redundancy removal to achieve a small mem-

ory footprint consumes time, and querying becomes more time-consuming when

traversing compressed structures compared to matrices or adjacency lists.

In this chapter, we introduce a parallel technique for constructing graphs

using compressed sparse rows (CSR), which offers a smaller memory footprint

and allows for parallel querying algorithms, such as fetching neighbors or checking
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edge existence. We extend our work to include parallel time-evolving differential

compression of CSR using the prefix sum approach. Additionally, we measure

the speed-up gained by using multiprocessors to compress the graph data. To

evaluate our techniques, we perform empirical analysis on massive anonymized

graphs, including Live-Journal, Pokec, Orkut, and WebNotreDame, which are

publicly available. Overall, our results demonstrate that our proposed methods

achieve a smaller memory footprint and faster querying compared to traditional

storage structures, with additional speed-up gained (up to 83% for the biggest

graph with 3.07M nodes and 117.18M edges) through the use of multiprocessors.

7.1 Introduction

Graphs can represent real-world data from a wide variety of domains. The char-

acteristics of the graph capture the relationships among the data. A graph is

defined as G = (V,E), where V is a non-empty set of nodes (vertices), and E is a

set of relationships (edges). The most common examples of graphs that follow the

definition would be a snapshot of a social network, transportation network, bio-

logical network, and infrastructure network. Since these graphs change in nature,

the word snapshot captures a frame of the network at a particular point in time.

Analyzing such graphs/networks offers a wide range of information, starting from

how a user’s influence would change his connections, the edge betweenness of the

highways connecting major cities, analyzing the spread of infection, and design-

ing an efficient routing algorithm based on the nature of the network. Efficiently

answering these questions would be quite tedious as one has to deal with the

balance between time and space required to process each one of these real-world

networks.
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In a real-world scenario, these graphs in a matrix format would require mas-

sive memory. For example, the Friendster network (Stanford Network Analysis

Project, 2011), which contains 65 million nodes and 1.8 billion edges, requires

about 30.02 Petabytes of storage space. This kind of storage availability is un-

heard of, and one way to address this issue is through compression. But once

the data are compressed, the data should also be amenable to queries without

completely decompressing. So, to come up with a good storage system that

queries the graph without decompressing it has been proposed by (Boldi and

Vigna, 2004; Nelson et al., 2017, 2018; Caro et al., 2016; Chierichetti et al., 2009;

Gopal Krishna et al., 2021).

However, all these compression techniques proposed take time to compress

the data. To speed up the process, in this chapter, we introduce a parallel

algorithm to construct one of the most commonly used graph data structures,

Compressed Sparse Row (CSR) (Tinney and Walker, 1967). Along with the

compression, we also introduce graph querying techniques, where multiple queries

can be performed in parallel.

A time-evolving graph is a graph that changes over time and can be rep-

resented using a series of graphs at different instances. A graph Gt = (Vt, Et)

where time t indicates an instant that is spread over a certain interval. For in-

stance, the pages on Wikipedia change over time with the addition and deletion

of content, and the edited information is saved, allowing the preservation of the

page’s integrity while remaining open to editing. The information for such pages

with time-evolving data can be stored as graphs, which can be useful for various

kinds of analysis. However, most real-world graphs are large, and the memory

requirements to store the data can be significant. Therefore, the data must be

compressed to fit in the main memory for analysis.
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The data for time-evolving graphs can be stored in three different represen-

tations: adjacency matrix, adjacency list, and edge list. Descriptive, diagnostic,

predictive, and prescriptive analyses can be performed on such graphs based on

the availability of the data over time. However, with large sizes of real-world

graphs such as Wiki-edits and Yahoo Netflow, which are 5.7 GB and 19 GB in

edge list format, respectively, storing and analyzing the data can be challenging.

Therefore, compressing the data is necessary to store and perform computation

on time-evolving graphs.

The contributions are as follows.

• We provide a parallel novel implementation to compress a given edge list

into CSR in Section 7.3.

• A parallel prefix sum calculation approach is used to parallelize the con-

struction of a cumulative degree array in Section 14.

• The algorithm provided in Section 14, computes the degree of each node

concurrently.

• Algorithms to parallelly compress a time-evolving graph stored as a CSR

are provided in Section 7.4.

• The neighbor query algorithm that is performed in parallel to get a set of

neighbors, given a CSR is explained in section 7.5.1.

• Two approaches to query edge existence(Section 7.5.2):

– Given an array of edge existence queries, perform subset queries in

parallel.

– Given a single query that parallelly accesses CSR.
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• We evaluate (Section 7.6) the construction of CSR with respect to the

number of processors, and experimented with inputs of million-scale social

networks.

So rest of the chapter is organized as follows. In Section 7.3 explains the

procedure to parallelly compress the graph. In Section 7.5, we explain the query-

ing algorithms on the compressed structure, and in Section 7.6, we evaluate our

structure with the publically available social networks, then we conclude our work

in Section 7.7.

7.2 Related Work

The Compressed Sparse Row (CSR) (Tinney and Walker, 1967) data structure

is widely utilized for graph representation. CSR involves compressing each row

of the graph into two arrays for each node, allowing efficient packing of all the

necessary information into a single array for fast traversal of the data structure.

Figure 7.1 shows the CSR representation of the graph shown in Table 7.1. While

CSR has the disadvantage of being a static storage format that can require

shifting the entire edge array when adding an edge, its cache-friendliness inspired

the development of Packed Compressed Sparse Row (PCSR) (Winter et al.,

2017). PCSR substitutes the edge array in CSR with a Packed Memory Array

(PMA) (Itai et al., 1981) , (Bender et al., 2000), which offers an (amortized)

O(log2|E|) update cost and asymptotically optimal range queries. In this chapter,

we do not take the packed CSR route to compress the given graph.

Calculation of the prefix sum is one of the crucial steps in the construction of

CSR for the calculation of the degree array. The prefix sum operation (Blelloch,
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1990; Wheatman and Xu, 2021) takes an array A as input of length nand outputs

an array A′ where ∀i ∈ {0, 1, ...n− 1},

A′[i] =
i∑

j=0

A[i]

There have been parallel in-place algorithms for finding prefix sum (Blelloch,

1990) that take O(n) work and O(logn) in time. Because of the high dependency

on computing parallel degree arrays in CSR, there are many challenges involved.

Parallel Packed Compressed Sparse Row (PPCSR) (Wheatman and Xu, 2021),

designs and analyzes a parallel PMA approach and compares it to other similar

approaches (Shun and Blelloch, 2013; Dhulipala et al., 2019; Shun et al., 2015).

One way to represent a time-evolving graph is by using a sequence of static

graphs, where each graph represents the state of the graph at a specific point in

time. These individual graphs, also called snapshots, can be represented as 2D

matrices. By stacking these matrices along a third dimension, we can construct

a 3D matrix, commonly referred to as a presence matrix according to (Ferreira

and Viennot, 2002).

Caro et al. introduced ckd − trees in 2016 (Caro et al., 2016). They define

a contact as a quadruplet (u, v, ti, tj) and use this to compress the 4D binary

matrix representing the time-evolving graph. This is achieved by treating the

4D matrix as a kdtree and differentiating between white nodes, which have no

contacts, black nodes, which only have contacts, and gray nodes, which have

only one contact. This approach is based on the work of Brisaboa et al., who

introduced k2 − trees in 2014 (Brisaboa et al., 2014b).

The G* database (Labouseur et al., 2015) is a distributed index that addresses

the space issue of the presence matrix by storing new versions of an arc as a log
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of changes instead. It accomplishes this by storing versions of the vertices as

adjacency lists and maintaining pointers to each time frame. Whenever an arc

changes in the next frame, a new adjacency list is created for that vertex’s arc, and

a pointer is added to the new frame. DeltaGraph (Khurana and Deshpande, 2013)

is another distributed index that groups the different snapshots in a hierarchical

structure based on common arcs.

EveLog (Caro et al., 2015) is a compressed adjacency log structure based on

the ”log of events” strategy, consisting of two separated lists per vertex, one for

the time frames and another for the arcs related to the event. The time frames are

compressed using gap encoding, and the arc list is compressed with a statistical

model. However, query times suffer because the log must be scanned sequentially.

To determine if an arc is active at a particular time frame in the log strategy, it is

necessary to sequentially read the log of events (possibly deactivating/reactivating

the arc) until the time frame is reached. This approach is slow for large time-

evolving graphs since it takes linear time. Ferreira et al. (Ferreira and Viennot,

2002) follow this strategy by providing a quadruplet (u, v, t, state) for each time

an arc changes. In (Bui-Xuan et al., 2002), the authors present a data structure

of adjacency lists where each neighbor has a sublist indicating the time intervals

when the arc is active to improve query times. EdgeLog (Caro et al., 2015)

compresses this idea using gap encoding.

In (Ren et al., 2011), the FVF (Find-Verify-Fix) framework is developed,

which includes a copy+log compression that also supports shortest paths and

closeness centrality queries. Three different methods to index time-evolving

graphs based on the copy+log strategy are described in (Bernardo et al., 2013)

and (Álvarez-Garćıa et al., 2014).

Two ”log of events” strategies, CAS and CET, are proposed in (Caro et al.,
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2015) to address the problem of slow query times when processing a log. CAS

orders the sequence by vertex and adds a Wavelet Tree (Grossi et al., 2003) data

structure to allow for logarithmic time queries. CET orders the sequence by time

and develops a modified Wavelet Tree called Interleaved Wavelet Tree to also

allow logarithmic time queries.

In 2014, Brisaboa et al. (Brisaboa et al., 2014a) adapt compressed suffix

arrays (CSA) (Caro et al., 2015) for use in temporal graphs (TGCSA) by treat-

ing the input sequence as the list of contacts. An alphabet consisting of the

source/destination vertices and the starting/ending times is used.

7.3 Compressed Sparse Row

The compressed sparse row, known as CSR, is one of the most common data

structures for storing a graph. CSR was first introduced by Tinney et al. in

1967 (Tinney and Walker, 1967). Since then, the structure has been an integral

part of research in the area of data storage. The representation consists of three

arrays,

• iA: indicates the number of non-zero elements that are present in a row

• jA: indicated the column number where the non-zero element is present in

that particular row

• vA: a value array (if the graph is weighted).

If the graph is unweighted, we ignore the third array since an unweighted array

is also a boolean array.

121



Table 7.1: An example of a 10-node sparse graph.

0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 1 0 0

2 0 0 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0 0 1 1

4 0 0 0 0 0 0 0 0 0 1

5 1 0 0 0 0 0 0 0 0 0

6 0 1 0 0 0 0 0 0 0 0

7 0 1 1 0 0 0 0 0 0 0

8 0 0 1 1 0 0 0 0 0 0

9 0 0 0 1 0 0 0 0 0 0

Figure 7.1: Compressed Sparse Row representation of the upper triangular matrix
of the shown graph as degree array and neighbor list
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7.3.1 Parallel Construction for CSR

Before we discuss the construction of CSR, we first explain one of the pivotal

algorithms used in the construction which is Parallel Prefix Sum by Guy Blelloch

(Blelloch, 1990). At first, we describe a way to use the prefix to compute the

degree array, and later in the chapter, we also discuss the concept of prefix sum

to construct time-evolving parallel CSR or TPCSR.

Algorithm 17: Parallel Prefix Sum calculation

Input: An array of unsigned integers vec, startI, endI
Output: Prefix sum calculated for vec[startI : endI]

1 begin
2 for i = startI + 1 to endI do
3 vec[i] += vec[i− 1]

4 sync() // synchronize all parallel processors
5 // lock to add and carry over the last prefix value to each processor
6 Lock()
7 if startI > 0 then
8 vec[end− 1] += vec[start− 1]

9 Unlock()
10 sync()
11 if startI > 0 then
12 for i = startI to endI do
13 vec[i] += vec[start− 1]

14 return vec

Prefix Sum Computation

Algorithm 17, of the Parallel Prefix Sum calculation, also known as the Scan

algorithm. This algorithm is used to calculate the prefix sum of an input array

in parallel, meaning that it can be executed by multiple processors or threads

simultaneously.
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Given an array of unsigned integers, vec, and two indices startI and endI,

which define the range of the array to operate on as inputs, this range is referred

to as a chunk. The output of the algorithm is the prefix sum calculated for

the elements in the specified range. The algorithm starts by iterating over the

elements in the input array, starting at index startI + 1 and ending at index

endI. For each element i, the value of vec[i] is updated by adding the value of

vec[i−1] to it, thus calculating the prefix sum up to that point, as shown in lines

2-3.

Figure 7.2: Shows the steps for obtaining the prefix sum of an array in parallel:
The first array is shown in the input, and the dotted lines show the chunks. The
second array shows the prefix sum calculated per chunk. The third array, after
locking the last element in each chunk is sequentially added to the last element of
the next chunk. After unlocking, the processors in parallel add the last element
of the previous chunk to all but the last element in the current chunk.

Once the update to the chunk is completed, the algorithm synchronizes all

parallel processors. This ensures that all processors have completed their updates

and are ready to proceed, lines 4-5. Now, we lock the execution and add the last
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prefix value to each processor. These updates happen for chunks not starting

from 0, as chunk 0 will have no dependency. This is necessary to carry over the

prefix sum value from the previous range, lines 6-7. After the process finishes

adding the corresponding values, the execution unlocks and synchronizes once

again to proceed further to line 8. Finally, all processors except the first pick

the previous processor’s last element and add it to the range in its chunk of the

array. This process is repeated until endI − 1 since the end value was updated

in the previous step, lines 9-11. The algorithm returns the modified input array,

which now contains the prefix sum values for that given range, line 12.

Figure 7.2 shows the detailed visualization of the work of the prefix sum.

Degree Computation

The degree array (iA) in CSR often stores the starting index of each row. To

compute the starting index, one must first compute the degree of each node and

then compute the sum. To compute the sum sequentially, in the worst case, one

would require O(n2) units of time, where n is the number of nodes. But to avoid

spending O(n2) units of time, we use the prefix sum algorithm, which is set to

solve in O(logn) units of time with O(n) processors.

To compute the degree of our graph, we first split the given array of size n into

p chunks, p being the number of processors. Then each processor takes in a chunk

of data to compute the occurrences of each element in that particular array, and

write it into the globalDegArray, which contains the degree of each node. To

avoid the concurrency which might occur when two processors are competing to

write the degree of same node, we construct a tempGlobalDegree array of size p,

then finally merge globalDegArray and tempGlobalDeg.

The construction of the degree array is split into two algorithms.

125



Figure 7.3: Shows the working of degree computation in parallel: The first array
shown is the input array. The frequency of the node in each chunk is stored in
a global temporary degree array. The frequency of the remaining nodes in each
chunk is stored in the global degree array. After all, processors finish the degree
count for their chunk, the processors are synchronized to ensure that all global
degree arrays are up-to-date. Then, we add the frequency of the first appearing
node of each chunk to their corresponding degree in the global degree array.
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Algorithm 18 computes the degree of a chunk and stores the result in a global

array. The algorithm starts by computing the node numbers for the start and

end of the chunk. This is done by dividing the array into smaller nodes or

subarrays and assigning node numbers to each of them. Then, the variable uStart

is assigned the node number for the start of the chunk, and uEnd is assigned the

node number for the end of the chunk.

Algorithm 18: Computation of degree array per chunk

Input: An array of unsigned integers A, startI, endI
1 begin
2 uStart = node number at the start of chunk
3 uEnd = node number at the end of chunk
4 globalTempDegree[A[uStart]] = Count the number of consecutive

occurrences of the first node in each chunk and store it in a
secondary global degree array.

5 for i = startI + 1 to endI do
6 nodeI = A[i]
7 /* denotes looping through each value in A */
8 globalDegArray[nodeI] = count number of consecutive

occurrences of nodeI

Next, the algorithm counts the number of consecutive occurrences of the first

element in the chunk, which is A[uStart], and stores it in a secondary global de-

gree array called globalTempDegree. This is done by looping through the chunk

and incrementing a counter variable every time the first element is encountered

consecutively.

After that, the algorithm enters a loop that iterates through each element

in the specified range, starting from the second element (A[startI + 1]). For

each element, the algorithm counts the number of consecutive occurrences of the

element and stores it in the global degree array called globalDegArray. This is

done by looping through the chunk and incrementing a counter variable every
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time the current element is encountered consecutively.

Finally, the algorithm terminates after looping through all the elements in

the specified range and counting the number of consecutive occurrences of each

element in the global degree array.

Algorithm 19, builds the degree array for the CSR structure. Figure 7.3,

shows how we merge the globalDegArray with the globalTempDegree array.

Since each chunk receives a sorted list of edges, it is for sure that there would

only be at most one overlap between two processors.

For example, in the figure, the chunk 1 has received edges from nodes 0−1, the

chunk 2 has received edges from nodes 1−2, the chunk 3 has received edges from

nodes 3− 5, and finally, chunk 4, has element 5. Each processor in the algorithm

will always save the frequency of the first element in the temporary global degree

array, and the remaining elements are written directly to the global degree array.

Once all processors have finished, they synchronize their computations using the

sync() function to ensure that all the global degree arrays are up-to-date.

After that, each processor updates the global degree array globalDegArray by

adding the temporary degree count globalTempDegree[pid] for the first element

in its chunk, which is calculated as A[pid ∗ chunkSize]. This is done to account

for the overlap between consecutive chunks in the CSR format.

Finally, the algorithm returns the global degree array globalDegArray, which

is needed to represent the degree of each node in the graph in CSR format.

Build CSR

Once we retrieve the degrees of all nodes in the graph, these graphs are now

compressed. For further compression, we are using our novel technique to store

the integer numbers associated with both the degree array iA, and the edge

128



Algorithm 19: Build CSR degree array

Input: An array of unsigned integers A, p number of processors
Output: Degree array degArr

1 begin
2 globalDegArray // an array of size n
3 globalTempDegree // an array of size p
4 chunkSize = n/p
5 do in parallel:
6 call Algorithm 18 for each chunk
7 sync()
8 globalDegreeArray[A[pid ∗ chunkSize]]+ =

globalTempDegree[pid]

9 return globalDegreeArray

column array jA.

Algorithm 20: Build bitPacked CSR

Input: EdgeList, p number of processors
Output: BitPacked CSR

1 begin
2 do in parallel: for each processor
3 chunkSize = Compute the chunk based on the processor

availability.
4 call bitPack algorithm from (Gopal Krishna et al., 2021), for each

chunk.
5 The resultant bit array is then stored in a global location.

6 finalBitArray = merge all bitArrays from global location
7 Repeat the process once for degree array iA,
8 and once for edge column array jA return CSR

Similarly to our previous approach of diving the array into chunks and pro-

viding them to each processor, we continue the same approach to call our bit

packing algorithm mentioned in (Gopal Krishna et al., 2021), to compress the

CSR. We repeat this process separately for the degree array and again for the

edge column array, as shown in Algorithm 20.
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7.4 Parallel Construction of Time-Evolving

CSR

For every input of the time-evolving graphs G, the input is divided as an ordered

triplet (u, v, Tτ ), where u and v are the nodes that form an edge at time Tτ . If

the edge appears again later in another time frame Tτ+i, the edge is considered

to be deactivated in the time frame. We assume that the datasets are sorted with

respect to the time frames and then sorted by node numbers for each time frame.

Figure 7.4 shows the design of how storing a differential time-evolving graph

works. The graph shown in the figure evolves for 4 time frames in every time

frame, we could either see an edge being added or an edge being deleted or no

change. To illustrate, we have shown the edge being deleted in red color and

the edge being added as a dotted line. For time frame T0 (first time frame), we

construct the CSR with both the degree array and the column index array, and

for the following time frames, Ti, we store the difference in the graph with respect

to the time frame T(i−1).

Since the process is serial and has dependency over the previous time frame,

constructing a time-evolving graph in parallel would need a different approach.

Figure 7.5, shows the working on parallelly constructing time-evolving CSR. The

input to the compression method is a time-sorted edge list. Therefore, we now

divide the entire edge list. Once divided, we compute CSR on these chunks.

Note that there could be an overlap similar to that of computation of degree in

Section 14. Similarly to degree merging, we merge the overlapped CSR to obtain

one CSR for every time frame.

Storing the CSR this way is space-consuming, as not all nodes have changed
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CSR as unsinged char: 01101100010010001000 100001001100001010100010010101110000100110000101010
000100101 100010100 110000101010001 100010001 100100010 0010111000010101000 0000100011000001 1111
1100111011101001

Figure 7.4: Captures the graph evolving over 4 time frames. The edges in red
show the edge being deleted from one time frame to another, and the dotted edge
indicates the edge being added.

Figure 7.5: Shows the construction of time-evolving differential CSR using Prefix
Sum, which is used to compute the difference in the consecutive time frames. This
follows a similar approach to Figure 7.2.
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state from one-time frame to another. Therefore, in the next step, we perform

a differential operation parallelly. To perform this differential operation, we seek

to prefix the sum computation. Now, we divide the array of CSR′s into chunks

and process the differences. The first time frame in every chunk is kept as is, and

the differences are computed on the remaining CSR′s in the same chunk.

Once we find the differences in each chunk, we perform the sync and lock op-

eration to propagate the end difference. Once the end differences are propagated,

we unlock and resync to perform the final differential operation, similar to prefix

sum.

The differences here are the edges added or deleted in each time frame. Within

a given time interval, if an edge appears an even number of times, the edge is

set to be inactive, and if the count is odd, then the edge is set to be active. The

working of TCSR is shown by Gopal et al. (Gopal Krishna et al., 2021).

Algorithm 21: Build TCSR degree array

Input: EdgeList with time-intervals, p number of processors
Output: Degree Array degArrT as differential TCSR

1 begin
2 do in parallel:
3 Divide the input edge list, and construct CSR for each time

frame in the chunk.
4 Merge overflowing CSR′s between chunks
5 Perform differential CSR for every time frame using the prefix

sum algorithm.

6 return BitArray TCSR

7.5 Parallel Querying Algorithms for CSR

One of the most important operations on a social network is about getting to

know if there is a connection between two individuals or checking who are all the
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acquaintances of a given user. These operations translate to checking if there is

an edge between two nodes and fetching all neighbors of a given node.

These two searches are performed quite frequently, which means that we can

search for multiple queries at once. For a social network with millions and billions

of users that are using it at once, it is quite time-consuming to perform one query

at a time. Instead, if multiple processors involve querying multiple items at once,

the time required to search reduces.

In this chapter, we propose two querying algorithms, one is to perform an

array of neighborhood queries in parallel, and the second one is to perform an

array of edge existence queries in parallel. In addition, we propose a quicker way

to query the edge existence by splitting the bit array of a node into multiple

chunks and making multiple processors check for the edge.

7.5.1 Neighborhood Query

The first querying algorithm we perform is neighborhood querying. Given an

array of queries (node numbers uNodes), an array of unsigned bits A, the start

and end indices in uNodes, and the number of bits numBits. The numBits tells

us the number of bits to process in the bit array to obtain a node number.

The algorithm starts by iterating through the range of nodes in uNodes from

the specified start index startI to the end index endI. For each node uNodes[i]

in this range, the algorithm calls the GetRowFromCSR function mentioned in

(Krishna et al., 2021), passing in the array of unsigned bits A, the starting index

of the node uNodes[i].startingIndex, the degree of the node degrees[uNodes[i]],

and the number of bits numBits.

The GetRowFromCSR function takes as input a compressed sparse row
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(CSR) representation of the graph and returns the row corresponding to the

specified node. This row contains the indices of the node’s neighbors in the

graph.

The row of neighbors returned by GetRowFromCSR is then assigned to the

corresponding element in the resultNeighbors vector, using the node number as

the index.

Algorithm 22: Get neighbors of uNodes

Input: An array of unsigned bits A, an array of uNodes containing
neighbor queries, startI index in uNodes, endI index in
uNodes, and the number of bits numBits

Output: Vector of vectors resultNeighbors of all the neighbors of
uNodes from startI to endI

1 begin
2 for i = startI to endI do
3 /* denotes looping through one neighbor from uNodes */
4 resultNeighbors[uNodes[i]] = GetRowFromCSR(A,

uNodes[i].startingIndex, degrees[uNodes[i]], numBits)

Finally, once the loop ends and the queries are completed, the vector resultant-

Neighbors will be left with an array of neighbors. During the call to this method,

the array of queries is split among processors, and the chunks of neighbors are

obtained at once.

7.5.2 Edge Existence

In this section, we are going to discuss two types of edge existence; the first one

being, given an array of edges, query the existence, and the second one being,

given an edge, divide the array into chunks and process for existence.

Algorithm 23, takes an array of unsigned bits A, an array of edges edges

containing edge queries, startI index in edges, endI index in edges, and the
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number of bits numBits as input, and outputs the existence of edges between all

pairs of nodes u and v in edges.

The algorithm iterates through each edge query in the given range of indices

from startI to endI. For each edge query, it first retrieves the neighbors of

the source node u in the given array A using the function GetRowFromCSR

function mentioned in (Krishna et al., 2021) which takes A, the starting index of

the row of the source node, the degree of the source node u and the number of

bits numBits as input and returns the list of neighbors of the source node.

Next, the algorithm iterates through each neighbor of the source node u and

checks if it is equal to the target node v. If a match is found, the algorithm

outputs the presence of an edge between the nodes u and v.

Algorithm 23: Edge existence of an array of edges

Input: An array of unsigned bits A, an array of edges containing edge
queries, startI index in edges, endI index in edges, and the
number of bits numBits

Output: Existence of edge between u and v for all edges
1 begin
2 for i = startI to endI do
3 uNeighs = GetRowFromCSR(A, edges[i].startingIndex,

degrees[edges[i]], numBits)
4 for sn in uNeighs do
5 /* denotes looping through each neighbor of u */
6 if sn == v then
7 output presence of edge (u, v)

Overall, the algorithm checks for the existence of edges between all pairs of

nodes u and v in the given range of edge queries. It does this by retrieving the

neighbors of the source node for each edge query and then checking if the target

node is present in the list of neighbors.

For the algorithm 24, we narrow down the search space for an edge query
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by first retrieving the neighbor of u and splitting the neighbor array among

processors to search for v. This could also be extended to a binary search to

speed up the process.

Algorithm 24: Single Edge Existence

Input: An array of neighbors of uNeighs, startI in A, endI in A, node v
Output: Existence of v in uNeighs

1 begin
2 for sn in uNeighs within the range do
3 /* denotes looping through each neighbor of u */
4 if sn == v then
5 output presence of edge (u, v)

So far, we have seen how each of the querying algorithms works. However, the

work lies in the design of the call to algorithms parallelly. Algorithm 25 shows

the call to all querying algorithms parallelly.

The first parallel do, explains the call to Algorithm 22, the algorithm fetches

all neighbors associated with the input array of nodes by splitting the input array

into p parts. Once the input is split, each processor takes in the compressed

CSR and the start and end of the query array to fetch all the neighbors. The

result for every node queried will be returned as an array of arrays with all the

neighborhood information.

The second parallel do, explain the call to Algorithm 23, where given an array

of edge inputs, how do we parallelly see if the edge exists or not? The approach

is similar to a neighborhood query, where we divide the array into p chunks and

divide the input amongst multiple processors. Each processor then reads the

input and processes the adjacency list associated with the edge to see if the edge

exists.

The third parallel do, explain the call to Algorithm 24, where given a single
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edge (u, v), query to check if the edge exists in parallel. For this, we first retrieve

the neighborhood list of the node u, then split the list into p parts, and parallelly

subject each processor to look if v exists in the given chunk.

Overall, this algorithm is designed to efficiently query a compressed CSR data

structure in parallel by dividing the work among multiple processors. By doing

this, the algorithm can speed up the process of querying large matrices or graphs.

Algorithm 25: Call to Querying Algorithms

Input: Compressed CSR
1 begin
2 // Given an array of nodes, and p processors,
3 // fetch all neighbors associated with these nodes.
4 do in parallel:
5 Split the input array into p parts, and call Algorithm 22
6 This algorithm takes in the CSR, and the start and end of the

query array for each processor
7 The result for every node queried will be returned as an array of

arrays with all the neighborhood information.

8 // Compute edge-existence given multiple edges
9 do in parallel:

10 Give an array of edges to be queried,
11 Split the edge array into to p parts,
12 Call Algorithm 23, with the query array and array starting and

ending index.

13 // Given the list of adjacency for a node u, and p processors
14 // To see if v exists.
15 do in parallel:
16 Split the list into p parts, and call Algorithm 24
17 This algorithm takes in the starting and ending index of the list

along with the node to be searched.
18 One of the processors will return true if the edge exists,
19 If not all return false
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7.6 Experimental Evaluation

In this section, we evaluate the performance of parallel CSR. For evaluation, we

have considered publicly available social networks provided by Stanford SNAP

(Stanford Network Analysis Project, 2011).

Table 7.2 shows the compression result on various numbers of processors. The

first three columns explain the properties of the graphs, the number of nodes,

and the number of edges present in each graph. The fourth column shows the

space required to store the graph if the graph is stored in an edge list. The size

might seem small compared to storing the graph in a matrix. However, the edge

list consumes more time in querying compared to CSR. Therefore, in the fifth

column, we have the space required to store the same graph in bit packed CSR.

The sixth column shows the different numbers of processors on which the graph

was tested; if the number of processors is equal to 1, then the algorithm is said

to run in serial mode. Therefore, the seventh column shows the time required to

process the same graph when there are a different number of processors working

to achieve the resultant CSR. The final column shows the speed-up gained using

multi-processors over a single processor, measured in percentage (%), as shown

in figure 7.7.

Figure 7.6 shows the pictorial representation of the time taken to compress

the graph versus the number of processors used to compress it.

A rapid decline is seen when going from 1 processor to 4, then a steady decline

with 8 and 16, followed by a decent drop in time with 64 processors. The steady

decline within multiple processors is due to the inherent sequential steps.

All experiments were run on AMD Ryzen Threadripper 3970X 32-Core Pro-

cessor, with 128 GB of memory, and the programs are written in GNU C++17.
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Figure 7.6: Shows the execution times for different number processors for various
graphs. We see the time taken to construct CSR decreases significantly when
parallelized.

Figure 7.7: Shows the speed-up gained using multiple processors to compress the
graphs to CSR.
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7.7 Summary

In summary, we developed a parallel degree computation, which is by nature

sequential. Which is one of the most integral part of constructing a CSR. Then

we introduced a parallel prefix sum in a multi-threaded environment, with which

we based the differental time-evolving CSR.
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Chapter 8

Conclusions

We conclude by summarizing the concepts we covered in this dissertation.

8.1 Chapter 3

Valuable insights can be gained from the analysis of time-evolving graphs. How-

ever, due to the large size of such graphs, the memory requirements are significant

and it is a challenge for computing using the main memory. Therefore, in this

paper, we propose compression techniques for time-evolving graphs.

Our techniques show that a significant reduction in memory requirements can

be achieved by exploiting the topological characteristics of graphs, specifically,

the adjacency information for each node also known as row-by-row compression.

With the help of the characteristics of the graphs, we were also able to combine

two identical or different techniques to compress a graph, as proposed in section

3.4. We also compare our compression results with state-of-the-art compression

CBT-CBT and ckd − trees, as shown in Table 3.5.
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We implement our algorithms on real-world datasets and show significant im-

provements in the time required to query edges or any node’s neighbors at a given

time over the existing techniques, as shown in Tables 3.6 and 3.7, thereby showing

a clear space/time tradeoff between the compression size and the querying time.

8.2 Chapter 4

In this chapter, we focus on extending the work proposed by Nelson et. al,

(Nelson et al., 2018), (Nelson et al., 2021) to tensor representation. In this work,

we proposed different ways to represent a tensor. In the first method, we spoke

about two ways in which one can store an even-mode tensor, the second method is

to store an odd-mode tensor, and the third way is the most common way one store

a tensor is to unfold a multi-mode tensor into a 2-mode tensor a.k.a matrices. We

also propose a block-wise tensor compression, with variable block-size making the

structure amenable to parallelism, and having the block of data into the shared

memory for faster computations. One of our approaches using CBTs shows that

the large sparse tensors occupy nearly 1/3 of the space occupied by the storage

technique used in tsparse. To utilize the compressed structure, we performed a

matrix-matrix multiplication on the metricized tensors to show the operations

that are capable on a matrix of such a large scale. Our compression technique

also allows one to eliminate the need to use ESC methodologies to update the

partially computed matrix. We also show the ability to compress the metricized

tensors into blocks of size greater than 8 × 8 as needed in (Zachariadis et al.,

2020) (Zhang and Gruenwald, 2018). The multiplication technique can be further

improved by constructing CBT on the partial results obtained in the algorithm 8,

and combining these CBTs at the end of the algorithm 7. This helps to multiply
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larger blocks, as the partial results are compressed in the computation.

8.3 Chapter 5

In this chapter, we have adapted our previous work of CSR and CBT , the

compression realm, to introduce non-negative value-based matrix multiplication

using the concept of the partial sum to reduce the number of row query operations

on the compressed data structure.

We test our algorithm on extremely large matrices in the order of 100s of

millions with various levels of sparsity. We show for matrices of order 100 million

with 10 million nonzero elements, the space required to store the matrices using

the CBT representation is about 6.4MB and requires 13.52s to complete the

multiplication using the sequential algorithms provided in this chapter.

8.4 Chapter 6

In this chapter, we show that the given million-scale matrix can be factorized

directly on the compressed structure. We also show that the intermediate result

obtained in the matrix factorization process can be eliminated using sequential

matrix operations. In this chapter, we also introduced element-wise matrix mul-

tiplication, division, subtraction, addition, and sequential multiple matrix mul-

tiplications on top of the existing work of matrix multiplication. We have also

shown that traversing through the matrix in the pattern can avoid an explicit

transpose operation during the matrix factorization. We also provide the heuris-

tic relationship between inner rank and the sparsity of the factor matrices, and we

have also shown in the results that the lower the rank, the smaller the factors W
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and H. In the future, we would expand the computation to the Alternating Least

Squares and Gradient Descent approach to factorize matrices. Our compression

algorithms mentioned in this paper natively support binary matrices. Hence, we

would also expand our work toward Binary Matrix Factorization.

8.5 Chapter 7

In conclusion, the analysis of social networks can provide valuable insights, but

as the size of these networks grows, storing them for analysis becomes a chal-

lenge. Although various storing mechanisms are available, compressing a graph

for storage takes time, and accessing the information directly from a compressed

structure is not always straightforward.

In this chapter, we solve the problem by speeding up the compression process

on CSR and also increasing the number of queries that can be performed at once.

To aid in the process of constructing the CSR in parallel, we provide a parallel

prefix sum approach to compute the degree array concurrently. We also propose

algorithms to construct the time-evolving differential CSR in parallel using prefix

sum.

Overall, the contributions of this chapter provide a valuable foundation for

efficient parallel graph processing, which is essential for dealing with the increas-

ingly large and complex graphs that arise in many real-world applications.

145



Bibliography

https://github.com/sudhigopal/csr cbt paper, 02/2021. URL https://github.
com/sudhigopal/CSR CBT Paper.

http://socialnetworks.mpi-sws.org/data-www2009.html, 03/2020. URL http://
socialnetworks.mpi-sws.org/data-www2009.html.

http://konect.uni-koblenz.de/, 03/2020. URL http://konect.uni-koblenz.de/.

http://webscope.sandbox.yahoo.com/catalog.php?datatype=g, 03/2020. URL
http://webscope.sandbox.yahoo.com/catalog.php?datatype=g.
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wide web. nature, 401(6749):130–131, 1999.
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Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. Publ. Math.
Inst. Hung. Acad. Sci, 5(1):17–60, 1960.

Afonso Ferreira and Laurent Viennot. A Note on Models, Algorithms, and Data
Structures for Dynamic Communication Networks. Research Report RR-4403,
INRIA, 2002. URL https://hal.inria.fr/inria-00072185.

Robert W Floyd. Algorithm 97: shortest path. Communications of the ACM, 5
(6):345, 1962.

Nicolas Gillis. The why and how of nonnegative matrix factorization. Connec-
tions, 12(2):257–291, 2014.

Edward F Gonzalez and Yin Zhang. Accelerating the lee-seung algorithm for non-
negative matrix factorization. http://www.caam.rice.edu/tech reports/2005/
TR05-02.ps, 2005.

Sudhindra Gopal Krishna, Michael Nelson, Sridhar Radhakrishnan, Amlan Chat-
terjee, and Chandra Sekharan. On Compressing Time-Evolving Networks. In
ALLDATA 2021, The Seventh International Conference on Big Data, Small
Data, Linked Data and Open Data, pages 43–48, 2021. ISBN 978-1-61208-
842-6. URL https://www.thinkmind.org/index.php?view=article&articleid=
alldata 2021 1 70 80024.

Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order Entropy-
compressed Text Indexes. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’03, pages 841–850, Philadelphia,
PA, USA, 2003. Society for Industrial and Applied Mathematics. ISBN 0-
89871-538-5. URL http://dl.acm.org/citation.cfm?id=644108.644250.

148

https://hal.inria.fr/inria-00072185
http://www.caam.rice.edu/tech_reports/2005/TR05-02.ps
http://www.caam.rice.edu/tech_reports/2005/TR05-02.ps
https://www.thinkmind.org/index.php?view=article&articleid=alldata_2021_1_70_80024
https://www.thinkmind.org/index.php?view=article&articleid=alldata_2021_1_70_80024
http://dl.acm.org/citation.cfm?id=644108.644250


Naiyang Guan, Dacheng Tao, Zhigang Luo, and John Shawe-Taylor. Mahnmf:
Manhattan non-negative matrix factorization. arXiv preprint arXiv:1207.3438,
2012.

David Guillamet and Jordi Vitria. Non-negative matrix factorization for face
recognition. In Catalonian Conference on Artificial Intelligence, pages 336–
344. Springer, 2002.

Fred G Gustavson. Two fast algorithms for sparse matrices: Multiplication
and permuted transposition. ACM Transactions on Mathematical Software
(TOMS), 4(3):250–269, 1978.

David A Huffman. A method for the construction of minimum-redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

Alon Itai, Alan G Konheim, and Michael Rodeh. A sparse table implementation of
priority queues. In Automata, Languages and Programming: Eighth Colloquium
Acre (Akko), Israel July 13–17, 1981 8, pages 417–431. Springer, 1981.

Ramakrishnan Kannan, Grey Ballard, and Haesun Park. Mpi-faun: an mpi-
based framework for alternating-updating nonnegative matrix factorization.
IEEE Transactions on Knowledge and Data Engineering, 30(3):544–558, 2017.

Oguz Kaya, Ramakrishnan Kannan, and Grey Ballard. Partitioning and commu-
nication strategies for sparse non-negative matrix factorization. In Proceedings
of the 47th International Conference on Parallel Processing, pages 1–10, 2018.

Udayan Khurana and Amol Deshpande. Efficient snapshot retrieval over historical
graph data. 2013 IEEE 29th International Conference on Data Engineering
(ICDE), pages 997–1008, 2013.

Hyunsoo Kim and Haesun Park. Nonnegative matrix factorization based on al-
ternating nonnegativity constrained least squares and active set method. SIAM
journal on matrix analysis and applications, 30(2):713–730, 2008.

Sudhindra Gopal Krishna, Aditya Narasimhan, Sridhar Radhakrishnan, and
Richard Veras. On large-scale matrix-matrix multiplication on compressed
structures. In 2021 IEEE International Conference on Big Data (Big Data),
pages 2976–2985, 2021. doi: 10.1109/BigData52589.2021.9671829.

Alan G. Labouseur, Jeremy Birnbaum, Paul W. Olsen, Jr., Sean R. Spillane,
Jayadevan Vijayan, Jeong-Hyon Hwang, and Wook-Shin Han. The G* Graph
Database: Efficiently Managing Large Distributed Dynamic Graphs. Distrib.
Parallel Databases, 33(4):479–514, December 2015. ISSN 0926-8782. doi: 10.
1007/s10619-014-7140-3. URL http://dx.doi.org/10.1007/s10619-014-7140-3.

149

http://dx.doi.org/10.1007/s10619-014-7140-3


Daniel Langr and Pavel Tvrdik. Evaluation criteria for sparse matrix storage
formats. IEEE Transactions on parallel and distributed systems, 27(2):428–
440, 2015.

Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factor-
ization. In Advances in neural information processing systems, pages 556–562,
2001.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, 11 2021.

Chih-Jen Lin. On the convergence of multiplicative update algorithms for non-
negative matrix factorization. IEEE Transactions on Neural Networks, 18(6):
1589–1596, 2007.

Paul Lin, Matthew Bettencourt, Stefan Domino, Travis Fisher, Mark Hoemmen,
Jonathan Hu, Eric Phipps, Andrey Prokopenko, Sivasankaran Rajamanickam,
Christopher Siefert, et al. Towards extreme-scale simulations for low mach flu-
ids with second-generation trilinos. Parallel processing letters, 24(04):1442005,
2014.

Michael Nelson, Sridhar Radhakrishnan, Amlan Chatterjee, and Chandra Sekha-
ran. Queryable Compression on Streaming Social Networks. In Big Data (Big
Data), 2017 IEEE International Conference on, IEEE BigData ’17. IEEE Com-
puter Society, 2017. ISBN 978-1-5386-2715-0. doi: 10.1109/BigData.2017.
8258020. URL https://ieeexplore.ieee.org/document/8258020/.

Michael Nelson, Sridhar Radhakrishnan, and Chandra Sekharan. Queryable
Compression on Time-Evolving Social Networks with Streaming. In Big
Data (Big Data), 2018 IEEE International Conference on, IEEE BigData ’18.
IEEE Computer Society, 2018. doi: 10.1109/BigData.2018.8622386. URL
https://ieeexplore.ieee.org/abstract/document/8622386.

Michael Nelson, Sridhar Radhakrishnan, and Chandra N Sekharan. Billion-scale
matrix compression and multiplication with implications in data mining. In
2019 IEEE 20th International Conference on Information Reuse and Integra-
tion for Data Science (IRI), pages 395–402. IEEE, 2019.

Michael Nelson, Sridhar Radhakrishnan, Chandra Sekharan, Amlan Chatterjee,
and Sudhindra Gopal Krishna. Queryable compression on time-evolving web
and social networks with streaming. ACM Trans. Web, 16(2), dec 2021. ISSN
1559-1131. doi: 10.1145/3495012. URL https://doi.org/10.1145/3495012.

Masaaki Nishino, Norihito Yasuda, Shin-ichi Minato, and Masaaki Nagata. Ac-
celerating graph adjacency matrix multiplications with adjacency forest. In

150

http://snap.stanford.edu/data
https://ieeexplore.ieee.org/document/8258020/
https://ieeexplore.ieee.org/abstract/document/8622386
https://doi.org/10.1145/3495012


Proceedings of the 2014 SIAM International Conference on Data Mining, pages
1073–1081. SIAM, 2014.

NVIDIA. CUDA C Programming Guide. https://docs.nvidia.com/cuda/cuda-c-
programming-guide/index.html, 03 2022.

Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative
factor model with optimal utilization of error estimates of data values. Envi-
ronmetrics, 5(2):111–126, 1994. doi: https://doi.org/10.1002/env.3170050203.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/env.3170050203.

Chenghui Ren, Eric Lo, Ben Kao, Xinjie Zhu, and Reynold Cheng. On querying
historical evolving graph sequences. PVLDB, 4:726–737, 2011.

A.H. Robinson and C. Cherry. Results of a prototype television bandwidth
compression scheme. Proceedings of the IEEE, 55(3):356–364, 1967. doi:
10.1109/PROC.1967.5493.

Yaroslav Shitov. The nonnegative rank of a matrix: Hard problems, easy solu-
tions. SIAM Review, 59(4):794–800, 2017.

Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing framework
for shared memory. In Proceedings of the 18th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 135–146, 2013.

Julian Shun, Laxman Dhulipala, and Guy E Blelloch. Smaller and faster: Par-
allel processing of compressed graphs with ligra+. In 2015 Data Compression
Conference, pages 403–412. IEEE, 2015.

Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George
Karypis. Splatt: Efficient and parallel sparse tensor-matrix multiplication.
In 2015 IEEE International Parallel and Distributed Processing Symposium,
pages 61–70, 2015. doi: 10.1109/IPDPS.2015.27.

Richard A Snay. Reducing the profile of sparse symmetric matrices. Bulletin
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