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One Theorem, Two Ways:

A Case Study in Geometric Techniques

John B. Little

Department of Mathematics & Computer Science, College of the Holy Cross,
Worcester, Massachusetts, USA

jlittle@holycross.edu

Synopsis

If the three sides of a triangle ABΓ in the Euclidean plane are cut by points H
on AB, Θ on BΓ, and K on ΓA cutting those sides in the same ratio:

AH : HB = BΘ : ΘΓ = ΓK : KA,

then Pappus of Alexandria proved that the triangles ABΓ and HΘK have the
same centroid (center of mass). We present two proofs of this result: an English
translation of Pappus’s original synthetic proof and a modern algebraic proof
making use of Cartesian coordinates and vector concepts. Comparing the two
methods, we can see that while the algebraic proof gets to the heart of the
matter more efficiently, the synthetic proof does a better job of revealing hidden
aspects of the geometric configuration. Moreover, as Pappus presents it, the
synthetic proof provides a real element of surprise and a sense of discovering
unexpected connections. We conclude with some general observations about
synthetic versus algebraic techniques in geometry and in the teaching and learning
of mathematics.

1. Introduction

Book VIII of the Mathematical Collection (Synagogē) of Pappus of Alexan-
dria (ca. 290–ca. 350 CE) is devoted to a geometric treatment of various
problems from mechanics. In the third numbered proposition from that
book, after recalling ideas about centers of mass drawn from Archimedes’
Equilibria of Planes I, Pappus proves the following interesting statement
about centroids (centers of mass) of triangles to begin his exposition.
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Theorem 1. Let ABΓ be a triangle in the Euclidean plane. If the sides are
cut in the same proportion by points H,Θ,K so that

AH : HB = BΘ : ΘΓ = ΓK : KA,

then the triangles ABΓ and HΘK have the same centroid (center of mass).

A particular case of the situation described in the theorem is given in Figure
1. In physical terms, the triangle ABΓ may be visualized as a thin plate
made of material with constant mass density. The centroid is then the same
as the center of mass of the plate. In preparing the figure, we have made

AH : HB = BΘ : ΘΓ = ΓK : KA = 1 : 3,

so the points H,Θ,K satisfy Pappus’s hypotheses. The point Z is the centroid
of both triangles.

Figure 1: The situation of Theorem 1.

Pappus does not give an attribution for this result. However, it is possible
that he is making use of a section of the Mechanica of Heron of Alexandria
(ca. 10–ca. 70 CE) that is now lost. The surviving text was preserved only
in an Arabic translation made in the ninth century by Qusta Ibn Luqa and
it is not known whether the Arabic version represents the complete text. In
fact, the first part of Pappus’s proof is essentially the proof Heron gives for
the location of the centroid of a triangle in Proposition 35 of Book II of the
Mechanica (see for instance [1, page 111]).
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The Greek text of Pappus’s proof and a more or less literal Latin translation
of the Greek are available in Friedrich Hultsch’s edition of the Mathematical
Collection, [4, pages 1034–1041]. Since neither version is very accessible for
many current readers, and no translation of Book VIII as a whole into English
has been published as of this writing, we give our own translation of Pappus’s
proof in §2.

To make the argument clearer for modern readers, we use the modern fraction
notation that Hultsch used for ratios in parts of his Latin version. In other
words, this is not exactly a literal translation of Pappus’s text, which uses the
usual verbal formulas found in Greek mathematical texts to express ratios
and proportions. There is, of course, some anachronism involved in writing
Pappus’s ratios as fractions. However, in this particular case, we claim that
the anachronism is essentially a matter of notation and not a significant
difference in the mode of reasoning. Every operation with the fractions is
an instance, in fact, of one of the transformations of ratios and proportions
codified in propositions from Book V of Euclid’s Elements (expressed in
words with the terms alternando, componendo, convertendo, invertendo —
we explain these in footnotes when they occur). In other words, the fractions
are not being treated as ways to represent numbers.

Following this, in §3, we give a second, modern proof of the same result using
Cartesian coordinates. One obvious difference here is the relative simplicity
of this second proof compared with Pappus’s proof. As is often true, the use
of algebra makes the result “fall out” with almost no effort. By comparing
the two proofs, in §4, we make some observations about what is gained or
lost with each of these techniques of geometric proof.

2. A translation of Pappus’s proof

In this section, we give our version of Pappus’s proof, following the notation
of Hultsch’s Latin version in [4]. This is a rather close translation, but
we have sometimes rearranged sentences for greater clarity and added a few
comments (shown in square brackets) and footnotes giving reasons for claims.
We have used colors and different line styles in the accompanying figures for
greater legibility, and we have also written the names of the points using
capital Greek letters rather the lower case letters that Hultsch used in his
Latin translation of the proof.
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Pappus’s proof of Theorem 1 refers to the diagram reproduced in Figure 2
below. We pick up after the statement of the theorem in [4].

Figure 2: Pappus’s main figure for Theorem 1.

Proof: Let BΓ and ΓA be bisected by the points ∆ and E and let A∆ and
BE be joined. We claim that the centroid of the triangle ABΓ is the point
Z [i.e. the intersection of A∆ and BE]. For if the triangle is placed on a
perpendicular plane containing the line A∆, then it will not tend toward
either side,1 since the triangle AB∆ is equal [in area] to the triangle AΓ∆.
But similarly if the triangle is placed on a perpendicular plane containing the
line BE, then it will not tend toward either side, since the triangles ABE and
ΓBE are equal. So if the triangle is placed along either of the lines A∆ or
BE, then equilibrium will be maintained, and the common point Z of those
two lines will be the centroid. Moreover, it is clear that AZ = 2Z∆ and
BZ = 2ZE.2 Also,

ΓA

AE
=

AB

∆E
=

BZ

ZE
=

AZ

Z∆
,

1That is, it will “balance” along that line.
2The standard fact that the centroid cuts the medians in the ratio 2 : 1 is proved in

Proposition 35 in Book II of Heron’s Mechanica. Since Archimedes also used this fact
several times in other works, it is often taken to be a result of his from a hypothetical
original version of the Equilibria of Planes. Later in the argument, Pappus will also use
the fact that the point cutting any one of the medians of a triangle in the ratio 2 : 1 (with
the larger part toward the vertex and the shorter part toward the opposite side) must be
the centroid of that triangle to conclude his main argument.
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since the triangles ∆ZE and AZB are similar, as are the triangles E∆Γ and
ABΓ.3

Let the line ∆E intersect the line ΘK in the point Λ. By composite ratios

BΘ

ΘΓ
=

ΘB

∆Θ
· ∆Θ

ΘΓ
,

and by hypothesis
BΘ

ΘΓ
=

ΓK

KA
.4 From this it follows, componendo, that

BΓ

ΓΘ
=

ΓA

AK
.5 Hence,

∆Γ

ΓΘ
=

EA

AK
by taking halves, and convertendo,

∆Γ

∆Θ
=

EA

EK
.6

Moreover, ∆Γ = B∆ and EA = ΓE,7 so
B∆

∆Θ
=

ΓE

EK
. Hence, componendo,

BΘ

∆Θ
=

ΓK

EK
. By composite ratios,

BΘ

ΘΓ
=

BΘ

∆Θ
· ∆Θ

ΘΓ
=

ΓK

EK
· ∆Θ

ΘΓ
,

or, since by hypothesis
BΘ

ΘΓ
=

AH

HB
,

AH

HB
=

ΓK

EK
· ∆Θ

ΘΓ
.

But, as will be shown in the following Lemma 1, it is also true that

∆Λ

ΛE
=

ΓK

EK
· ∆Θ

ΘΓ
.

Therefore,
AH

HB
=

∆Λ

ΛE
. In addition, AB and ∆E are parallel [as noted above]

and the lines A∆ and BE intersect in the point Z. Therefore, H,Z,Λ are
collinear (as will be shown later in Lemma 2).

3Both of these claims follow because the line ∆E is parallel to the side AB, a fact that
follows from Proposition 2 in Book IV of the Elements of Euclid. Apparently, Pappus
expects his readers to know this so no explicit reference is needed.

4This was added in the Latin version by Hultsch; it does not appear explicitly in the
Greek.

5In classical terms, if A : B :: C : D, componendo, the equivalent proportion A + B :
B :: C +D : D is produced.

6Again, in classical terms, if A : B :: C : D, assuming A > B and C > D, convertendo,
the equivalent proportion A : A−B :: C : C −D is produced.

7This is by construction since ∆ and E are the midpoints of the sides they lie on.
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Because of the parallels,8 it is true that
BZ

ZE
=

HZ

ZΛ
. Since, as we showed

above, BZ = 2ZE,9 it is also true that HZ = 2ZΛ. Lemma 1 also shows that
KΘ is bisected by Λ. Therefore Z is also the centroid of the triangle HΘK.10

2

We now show the claims whose proofs were deferred [in the argument above].

Lemma 1. Let
Γ∆

∆Θ
=

ΓE

EK
and join ∆E and KΘ, meeting in Λ. Then

ΘΛ = ΛK and
∆Λ

ΛE
=

∆Θ

ΘΓ
· ΓK
KE

.

Figure 3: Figure for Lemma 1.

Proof: [Referring to Figure 3], through Γ, construct the line ΓZ parallel
to ΘK, and let Z be the point of intersection with the line ∆E, produced.
Because the lines ∆Λ and ΛE are given, and the line ZΛ is obtained by
construction, by the formula for composite ratios,

8Note that the triangles BHZ and EΛZ are similar because HB is parallel to EΛ.
9Actually this was just stated.

10Hultsch adds his own footnote here that this can be shown by the same sort of argu-
ment used before to identify Z as the centroid of the triangle ABΓ.
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∆Λ

ΛE
=

∆Λ

ΛZ
· ΛZ
ΛE

.

ΓZ and KΘ are parallel, so
∆Λ

ΛZ
=

∆Θ

ΘΓ
. By the similarity of the triangles

ΓEZ and KEΛ, and componendo, it follows that
ZΛ

ΛE
=

ΓK

KE
. Therefore,

∆Λ

ΛE
=

∆Θ

ΘΓ
· ΓK
KE

.

By the same reasoning, it can also be shown that

KΛ

ΛΘ
=

KE

EΓ
· Γ∆
∆Θ

,

when the line ΓM is drawn through Γ parallel to E∆, meeting the line KΘ,
produced, in M. Again [by composite ratios],

KΛ

ΛΘ
=

KΛ

ΛM
· ΛM
ΛΘ

.

And again because EΛ and ΓM are parallel,
KΛ

ΛM
=

KE

EΓ
. Moreover, by the

similarity of the triangles ∆ΘΛ and ΓΘM and componendo, it follows that
ΛM

ΛΘ
=

Γ∆

∆Θ
. Therefore

KΛ

ΛΘ
=

KE

EΓ
· Γ∆
∆Θ

.

From the hypothesis,
KE

EΓ
=

Θ∆

∆Γ
,11 and hence

KΛ

ΛΘ
=

∆Θ

∆Γ
· Γ∆
∆Θ

,

which is the ratio of a magnitude to an equal magnitude. Therefore KΛ =
ΛΘ. 2

We now show the other claim that was deferred [in the proof of Theorem 1].

11Pappus is also using the fact that if A : B :: C : D, then B : A :: D : C. This
transformation of the proportion was known as invertendo.
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Lemma 2. Let AB and Γ∆ be parallel. Let Z be a point on AB and let Θ be

a point on Γ∆ such that
AZ

ZB
=

ΓΘ

Θ∆
. Let AΓ and B∆ be joined and let the

intersection point of those lines be E. Then Z,E,Θ are collinear.

Figure 4: Figure for Lemma 2.

Proof: Suppose not and suppose that the straight line through Z and E
intersects ∆Γ in H [a point different from Θ]. Because AB and ∆Γ are
parallel,

AZ

ΓH
=

ZE

EH
=

ZB

H∆
.

and hence
AZ

ZB
=

ΓH

H∆
.12 It follows that

ΓΘ

Θ∆
=

ΓH

H∆
,

since by hypothesis
AZ

ZB
=

ΓΘ

Θ∆
. But this is not possible [if H and Θ are

different], hence the straight line through Z and E must pass through Θ. 2

3. Cartesian coordinates and a second proof

In this section, we present an alternative proof of Theorem 1 using Cartesian
coordinates. The fact that coordinate proofs of geometric statements, using
algebra, are often shorter and easier than synthetic, Euclidean-style proofs
is something that every student of mathematics exposed to both geometric

12Pappus is using the fact that A : B :: C : D implies A : C :: B : D, applied to the
outside terms here. This transformation is sometimes called alternando.



346 One Theorem, Two Ways

techniques has surely noticed. Indeed, we can see from Descartes’ own writ-
ings that it was partly the dissatisfaction that he felt with proofs from works
like Pappus’s Mathematical Collection that led him to begin the process of
marrying algebra with geometry through the use of coordinates. In the first
book of his groundbreaking work La Géométrie, for instance, (in connection
with a different theorem of Pappus) Descartes states that

In passing, I ask you to remark that the reluctance [i.e. scruples]
the ancients had about using arithmetic terms in geometry, which
could only have come from the fact that they did not see the
connection very clearly, caused much obscurity and difficulty in
the ways they expressed themselves.13

For the alternative proof of Pappus’s Theorem 1, we only need to know that
if the vertices of a triangle ABΓ in the plane are given in coordinates by

A = (x1, y1), B = (x2, y2), Γ = (x3, y3),

then the coordinates of the centroid Z are given by

Z =

(
x1 + x2 + x3

3
,
y1 + y2 + y3

3

)
,

or in vector form by

Z =
1

3
(A + B + Γ). (1)

This is discussed in many geometry textbooks and is presented in many
online videos and websites. Also note the analogy with the formula for the
midpoint of a line segment.

Proof: Let the vertices of the triangle ABΓ be as above. We will use the
same letters to represent the points and their coordinate vectors. Suppose
the points H,Θ,K are given as before, but now assume:

AH

AB
=

BΘ

BΓ
=

ΓK

ΓA
= ρ,

13This is my English translation rather than the one given in [2], which seems a bit
garbled. The original French text is: Ou ie vous prie de remarquer en passant, que le
scrupule, que faisoient les anciens d’vser des termes de l’Arithmetique en la Geometrie,
qui ne pouuoit proceder, que de ce qu’ils ne voyoient pas assés clairement leur rapport,
causoit beaucoup de d’obscurité, & d’embarras, en la façon dont ils s’exploient. [2, pages
19-20].
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for some real number 0 < ρ < 1.14 Then the coordinates of these points can
be computed easily from the vector formulation:

H = A + ρ(B− A),

Θ = B+ ρ(Γ− B), (2)

K = Γ + ρ(A− Γ).

Hence, when we apply the formula (1) above to compute the centroid of the
triangle HΘK, we have

1

3
(H + Θ +K) =

1

3
(A + ρ(B− A) + B + ρ(Γ− B) + Γ + ρ(A− Γ))

=
1

3
(A + B + Γ)

= Z,

since the other terms cancel in pairs because of the alternating signs. Hence
the triangles ABΓ and HΘK have the same centroid. 2

To be clear, I am not claiming any originality for this proof. For instance, it
is certainly a special case of the results on systems of particles with a common
centroid from [3]. I am sure that it has been found many other times, too,
because it is simply what comes out when one understands a suitable way to
set up the problem, and then “turns the crank” of the algebra machine.

4. Observations and Conclusions

Why do we do mathematics? What is it for? I hope that no one would argue
with the idea that (at least) one reason that humans do mathematics is to
gain understanding — to explain patterns and to find reasons why things
that seem to be true are true (or not). Proofs have a key role to play in this
enterprise. Working through a proof or, even better, finding a proof, should
help us gain understanding, and then perhaps take further steps in exploring
the mathematical world.

But as Hermann Weyl said in his famous address “Topology and abstract
algebra as two roads of mathematical comprehension,”

14Note that to say these are all equal, we have applied another transformation of pro-
portions to the hypotheses as Pappus states them. These are the ratios of the lengths of
the segments to the whole corresponding sides.
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We are not very pleased when we are forced to accept a mathe-
matical truth by virtue of a complicated chain of formal conclu-
sions and computations, which we traverse blindly, link by link,
feeling our way by touch. We want first an overview of the aim
and of the road; we want to understand the idea of the proof, the
deeper context. ([5, page 453])

Because of the length of the chain of deductive steps, really coming to grips
with and understanding Pappus’s proof of Theorem 1 from §2 requires much
more time and persistence than understanding the steps presented in the
algebraic proof from §3. Part of the issue is that Pappus has not been very
good about explaining the key idea of the proof before plunging into the
technical details. If he had said from the beginning that the idea was to
show that H,Z,Λ are collinear, ΘΛ = ΛK, and HZ = 2ZΛ, that would have
been a real help in sorting out why Z also has to be the centroid of the triangle
HΘK. But Pappus clearly does not want to give away the punchline too early.
Greek mathematical writing seemingly hardly ever takes the reader’s needs
into account in the way Weyl wanted. We will see a possible reason for this
shortly.

On the other hand, the algebraic proof seems almost too easy. As we said
before, that proof is (just) a matter of seeing a good way to set up the
problem and “turning the crank.”

To make a fairer comparison, we should point out that a substantial chunk of
the beginning of Pappus’s proof is devoted to the argument showing that the
centroid is the intersection of the two medians of the triangle. To even things
out, we probably should have included a derivation of the formula (1) in the
second proof. We did not do that, though, to make the point that modern,
algebraic proofs in coordinate geometry are often simpler precisely because
they are also often farther from the geometric foundations. This means that,
without the derivation of (1), most of the physical intuition providing the
meaning of the centroid is lost in the algebraic proof.

Algebraic proofs often make full use of sophisticated algebraic reformulations
of the problem at hand, such as the formulas from (2) in the last section.
Those equations essentially rely on parametrizing the line segments making
up the edges of the triangle and interpreting the hypothesis that H,Θ,K
cut the edges in the same ratios in those terms. “Seeing a good way to
set up the problem” requires understanding that thinking that way would
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be useful, and then knowing how to do that. And of course, that requires
a good understanding of Cartesian coordinates as vectors, the algebra of
vectors, parametrizations of lines, and so forth. The passage from Weyl’s
address quoted above continues,

A modern mathematical proof is not very different from a modern
machine, or a modern test setup: the simple fundamental prin-
ciples are hidden and almost invisible under a mass of technical
details. ([5, page 453])

In a different direction, to foster understanding, a “good” proof may try to
catch the attention and interest of the reader. One way this can be done
is through a surprising, or unexpected deduction. In my opinion, on this
score, Pappus’s proof passes with flying colors! What reason do we have to
expect before it is demonstrated that the three points H,Z,Λ in Figure 2 are
actually collinear or that ΘΛ = ΛK? This is the possible reason for not giving
away the punchline too early that I alluded to above and, in my opinion, it
really does make the eventual conclusion more surprising. The algebraic
cancellations in the proof from §3 seem rather humdrum by comparison.

A reader might be forgiven at this point if they have formed the impression
that I am about to advocate for the abolition of algebraic coordinate proofs
in geometry. But of course that would be quixotic and surely counterproduc-
tive for mathematics. My only real issue with algebraic proofs in geometry
is that, especially for some students learning a geometric subject, “turning
the crank” to get quick results without any real understanding can unfortu-
nately become the perceived raison d’être for the whole exercise.15 Even if it
takes longer and is more frustrating, I would argue that successfully finding a
complete and solid synthetic proof of a geometric theorem can provide more
real understanding and be a more meaningful learning experience than ma-
nipulating symbols to establish an algebraic identity. And for that reason, it
would be a real shame if synthetic geometry were to disappear entirely from
our secondary and undergraduate curricula.

15This statement may seem unexpected from an algebraic geometer whose work features
applying techniques from symbolic computation to geometric questions. But it reflects the
experience gained in a career of undergraduate teaching.
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