
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

CAUSAL FAILURES AND COST-EFFECTIVE EDGE AUGMENTATION IN

NETWORKS

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

By

ZUYUAN ZHANG
Norman, Oklahoma

2023



CAUSAL FAILURES AND COST-EFFECTIVE EDGE AUGMENTATION IN
NETWORKS

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Sridhar Radhakrishnan(Chair)

Dr. Kash Barker

Dr. Sina Khanmohammadi

Dr. Qi Cheng



© Copyright by ZUYUAN ZHANG 2023
All Rights Reserved.



Acknowledgments

I really appreciate these four years at the University of Oklahoma, working as a

graduate teaching/research assistant with so many fabulous people!

I would like to thank Prof. Sridhar Radhakrishnan for being my committee chair

and mentor. His guidance and tireless persistence helped me finish this work. I couldn’t

have had these achievements without his help. He also taught me how to communicate

with people professionally and respectfully.

I also want to thank my parents for their endless love and support throughout this

journey. Without them, I would have given up several times. It is their support that

encourages me to realize my dream. Moreover, I am grateful to my grandparents for

taking care of me when I was a child. In my mind, my grandmother is always the

young lady who was always waiting in front of the school gate and riding her bike to

take me home!

Next, I would like to thank Prof. Kash Barker. He is an excellent professor from

the School of Industrial and Systems Engineering. I am grateful for his efforts on

the ideas of my research, the wording of my papers, and efficient communication. In

addition, I would like to thank Prof. Qi Cheng, and Prof. Sina Khanmohammadi on

my committee for their time and advice.

Then, I want to thank Prof. Changwook Kim and Prof. Dimitrios Diochnos for the

teaching assistant work on the Theory of Computation. The training helps me improve

my English.

Specifically, I want to thank my friends, Mr. Justin Reynolds and Ms. Alison

Smith. We often get together to talk about interesting things that happen in this

country and I learn so much about the culture, beliefs, and living style of the US from

them. I am also grateful for my wonderful colleagues, Dr. Sudhindra Gopal Krishna,

Dr. Aditya Narasimhan, Mr. Reza Gheibi, and Mr. Ashesh Gaur. I really miss the

time I worked with them and the laughter we had when playing with each other.

iv



Finally, I would like to thank everyone who loves me, who hates me, whom I love,

whom I hate. This PhD is not the end of my life, but a new start of my career. I

will take the fortune I got and be ready to accept new challenges in the future! Hope

everyone’s life is going smoothly and happy forever!

v



Table of Contents

Acknowledgments iv

List Of Tables ix

List Of Figures x

Abstract xi

1 Introduction 1
1.1 Networks and Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Causal Failure Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Extension of Causal Failures . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Nomenclature and Notations . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Causal Node Failures on the Robustness of a Network 12
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 NP-Hardness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 MILP for Problem 2.1 . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 A Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.1 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2 Investigation of Giant Components of IEEE 300 . . . . . . . . . 26
2.5.3 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Causal Node Failures on the Vulnerability of a Network 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 NP-Hardness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 MILP for Problem . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.2 A Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.5.1 An Illustrative Example . . . . . . . . . . . . . . . . . . . . . . 42
3.5.2 Investigation of Connected Components of IEEE 300 . . . . . . 44

vi



3.5.3 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Length Constrained Shortest Paths under Cascading Causal Node
Failures 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 NP-Hardness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 MILP for the Problem . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.2 A Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.5.1 Case Study I: IEEE 300 Network . . . . . . . . . . . . . . . . . 61

4.5.1.1 Unweighted Network . . . . . . . . . . . . . . . . . . . 61
4.5.1.2 Weighted Network . . . . . . . . . . . . . . . . . . . . 64

4.5.2 Case Study II: Power 5000 . . . . . . . . . . . . . . . . . . . . . 65
4.5.2.1 Unweighted Network . . . . . . . . . . . . . . . . . . . 66
4.5.2.2 Weighted Network . . . . . . . . . . . . . . . . . . . . 67
4.5.2.3 Scalability Analysis . . . . . . . . . . . . . . . . . . . . 68

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5 Causal Edge Falires on the Maximum Flow in a Network 70
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 NP-Hardness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.4.1 Optimization model . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.4.2 A Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 80

5.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5.1 Comparison of Performance of Algorithms . . . . . . . . . . . . 81
5.5.2 More Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6 Cost-Effective Network Augmentation Facing Causal Node Augmen-
tation 87
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3 NP-Hardness Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.4.1 MILP for the Problem . . . . . . . . . . . . . . . . . . . . . . . 96
6.4.2 A Heuristic Algorithm . . . . . . . . . . . . . . . . . . . . . . . 98

6.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.1 Comparison of MILP and GREEDY-MIN-CRA . . . . . . . . . 101

vii



6.5.2 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7 Conclusions 110
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Reference List 114

viii



List Of Tables

1.1 Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 IEEE 300: first trial for the giant component problem . . . . . . . . . . 27
2.2 IEEE 300: 30 causalities for the giant component problem with 180 total

number of expected nodes failures . . . . . . . . . . . . . . . . . . . . . 29
2.3 Scalability analysis for giant component . . . . . . . . . . . . . . . . . . 31

3.1 IEEE 300: first trial of small components problem . . . . . . . . . . . . 43
3.2 Comparison of networks for small components . . . . . . . . . . . . . . 44
3.3 Scalability analysis for small components . . . . . . . . . . . . . . . . . 45

4.1 Causality definition generated randomly for the IEEE 300 network,
where numbers in the causality sets represent node labels from the orig-
inal network data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Experiments for unweighted IEEE 300 . . . . . . . . . . . . . . . . . . 64
4.3 Experiments for edge-weighted IEEE 300 . . . . . . . . . . . . . . . . . 65
4.4 Experiments for Unweighted Power 5000 . . . . . . . . . . . . . . . . . 66
4.5 Experiments for Weighted Power 5000 . . . . . . . . . . . . . . . . . . 68

5.1 Performance comparison of optimization model and greedy algorithm
for power2000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Performance comparison of algorithms for road3000. . . . . . . . . . . . 84
5.3 Performance comparison of algorithms for power5000. . . . . . . . . . . 85

6.1 Augmentation on the network in Fig.6.1 given α = 0.6. We assume,
for illustration, that all the edge costs are one. The ones that have the
0.6-giant component after the application of the causal failure are given
in the check marks. The augmented edges are in dashed format. . . . . 91

6.2 Comparison of MILP and GREEDY-MIN-CRA . . . . . . . . . . . . . 102
6.3 Approximation Ratios of Multiple Experiments on Networks with 150

Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.4 Scalability Analysis: three networks with 300, 500, 1000 nodes respectively106

ix



List Of Figures

1.1 An example of a network . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Residual network after applying causality C1 : {1, 4} ⇒ {9, 12} . . . . . 7
1.3 Transformation from edges to nodes . . . . . . . . . . . . . . . . . . . . 9

2.1 Example of proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . 20
2.2 IEEE 300 bus system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 IEEE 300: remaining network containing a giant component with size

at least 150 (α = 0.5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1 IEEE 300: remaining network with k = 13 components . . . . . . . . . 43

4.1 Remaining networks after applying different causalities. . . . . . . . . . . . 52
4.2 Example depiction of Theorem 4.1. . . . . . . . . . . . . . . . . . . . . 56
4.3 IEEE 300 network with synthetic edge weights. . . . . . . . . . . . . . 61

5.1 An example of a flow network. . . . . . . . . . . . . . . . . . . . . . . . 74
5.2 Explanation of proof for Theorem 5.1 . . . . . . . . . . . . . . . . . . . 78

6.1 Network example with causalities. . . . . . . . . . . . . . . . . . . . . . 90
6.2 An example of the proof of Theorem 1 . . . . . . . . . . . . . . . . . . 95

x



Abstract

Node failures have a terrible effect on the connectivity of the network. In traditional

models, the failures of nodes affect their neighbors and may further trigger the failures

of their neighbors, and so on. However, it is also possible that node failures would

indirectly cause the failure of nodes that are not adjacent to the failed one. In a power

grid, generators share the load. Failure of one generator induces extra load on other

generators in the network, which could further trigger their failures. We call such

failures causal failures. In this dissertation, we consider the impact of causal failures

on multiple aspects of one network. More specifically, we list the content as follows.

• In Chapter 1, we introduce basic concepts of networks and graphs, classical mod-

els of failures and formally define causal failures in a given network.

• Chapter 2 addresses the network’s robustness and aims to find the maximum

number of causal failures while maintaining a connected component with a size

of at least a given integer. More specifically, we are looking into the number of

causal node failures we can tolerate yet have most of the system connected with

α being used to parametrize.

• Chapter 3 deals with vulnerability, wherein we aim to find the minimum number

of causal failures such that there are at least k connected components remaining.

We are looking for the set of causal failures that will result in the network being

disconnected into k or more components.
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• In Chapter 4, we consider causal node failures occurring in a cascading man-

ner. Cascading causal node failures affect communication within nodes, which

is dependent on the paths that connect them. Therefore, in this context of the

cascading causal failure model, we study the impact of cascading causal fail-

ures on the distance between a pair of nodes in the network. More precisely,

given a network G, a set of causal failures (containing possible cascading fail-

ures), a pair of nodes s and t, and a constant α ≥ 1, we would like to determine

the maximum number of causal failures that can be applied (meaning that the

nodes in the causal failures are removed), such that in the resulting network G′,

dG′(s, t) ≤ α × dG(s, t), where dG(s, t) and dG′(s, t) are the distance between

nodes s and t in the networks G and G′, respectively.

• In Chapter 5, we consider causal edge failures in flow networks and investigate the

impact of causal edge failures on flow transmission. We formulate an optimization

problem to find the maximum number of causal edge failures after which the flow

network can still deliver d units from source node s to terminal node t.

• In Chapter 6, we consider edge-weighted network augmentation when facing

causal failures. We look for a set of edges with minimum weight such that the

network maintains an α-giant component when applying each causality individ-

ually.

We show that the optimization problems in these chapters are NP-hard and provide

the corresponding mixed integer linear programming models. Moreover, we design

polynomial-time heuristic algorithms to solve them approximately. In each chapter, we

run experiments on multiple synthetic and real networks to compare the performance

of the mixed integer linear programming models and the heuristic algorithms. The

xii



results show that the heuristic algorithms show their efficacy and efficiency compared

to the mixed-integer linear programming models.
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Chapter 1

Introduction

1.1 Networks and Graphs

Networks are becoming much more complicated and complex. Components (i.e., nodes,

edges) in these networks are tending to be correlated with each other in terms of

functionality in engineering systems. It is the dependence on components that may

trigger causal failures if the system experiences a malfunction.

Several examples indicate this phenomenon. For a power transmission network, Lin

et al. (1) considered the correlated failures of physical lines in each edge and demon-

strated that a high correlation of the physical lines would cause a critical degradation

of network performance. In large-scale data centers, the fault of a small part may

cause the failure of tasks running on them, severely damaging the reliability of those

data centers (2). For the latest 5G networks, Ganjalizadeh et al. (3) investigated the

impact of the real correlation among different wireless links on end-to-end reliability

for two selected architectures from 3GPP.

Several works have investigated network performance, such as reliability and stabil-

ity, in the case of such correlated failures. Lin et al. (4) constructed a stochastic flow

network model to quantify the impact of correlated failures on the system reliability of

a computer network, where a correlation is built between physical lines in edges and

routers in nodes; Rahnamay-Naeini et al.(5) considered correlated link failures in the

physical infrastructure of communication networks, presented a stochastic model to
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facilitate the spatial properties, and compared network reliability for various scenarios

of correlated link failures; Reis et al. (6) showed that the stability of a network system

depends on the relation between the internal structure of a network and its pattern of

connections to other networks.

There are also some works focusing on network design when there are correlated

failures. Yang et al. (7) proposed two correlated link-weight models and analyzed

the shortest path and min-cut problems defined on one of the two correlated models.

Nath et al. (8) pointed out that node failures are often correlated and happen (nearly)

simultaneously in wide-area storage systems and provided techniques about how to

design systems to tolerate such failures. Similarly, Bakkaloglu et al. (9) utilized avail-

ability modeling to accommodate correlated failures in survival storage systems and

proposed a design decision tool by validating the efficacy of the proposed model based

on conditional probabilities. Lindley et al. (10) defined exchangeability in networks

for designers of networks and presented a simple correlated failure model.

Sen et al. (11) proposed an operational model termed as the Implicative Inter-

dependency Model (IIM). As an example of an operational model, consider the op-

erational equation: v1 ← v2v3 + v4v5 + v6 where vi, i = 1, 2, · · · , 6 are nodes in the

network. The semantic interpretation of the above equation is that node v1 is oper-

ational if both v2 and v3 are operational or v4 and v5 are both operational or v6 is

operational. This operational model can be converted into the causal failure model

proposed in this paper. In the above dependence equation, we know that if one of

v2, v3 fails, one of v4 and v5 fails and v6 fails, then v1 would fail. Banerjee et al. (12)

used IIM to launch protection analysis in multilayered interdependent networks. The

authors aimed to maximize the benefit for network operators after finding specific k

entities that need to be hardened. Furthermore, Banerjee et al. (13) considered the

robustness of a multilayer interdependent network based on IIM.
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1.2 Causal Failure Models

Infrastructure systems, such as electric grids, telecommunications, transportation, and

the Internet, among others, often exhibit network structures. Such infrastructures

play an essential role in our daily lives. Components (i.e., nodes, edges) in these

infrastructures are often interdependent and subject to disruption caused by common

failures, natural disasters, or deliberate attacks. Mathematically, a network is modeled

as an undirected graph G = (V , E), where V is the set of nodes, and E is the set of

edges connecting nodes. The number of nodes is n(= |V|) and of edges is m(= |E|).

Figure 1.1: An example of a network

In classical models, a failure of a node in the network results in the removal of that

node along with all its links. In the example network in Fig. 1, if node 5 fails, then edges

linked to node 5, i.e. edges (1, 5), (2, 5), (3, 5), (4, 5), (6, 5), (8, 5), (9, 5), are removed,

leading to a disconnected network, where nodes {1, 2, 3} and {4, 6, 7, 8, · · · , 16} form

two connected sub-networks.

3



It is also possible that node failures would indirectly cause the failure of nodes that

are not adjacent to the failed one. We are motivated to study the problem of causal

node failures by the following examples.

Electrical Grid System

An electrical grid system consists of several generating stations (i.e., power stations)

as nodes and transmission lines as links that connect the nodes. The power grid allows

more reliability in the sense that the failure of one generating station will cause other

nodes in the network to share the load serviced by the failed station. Additionally, when

the peak load serviced by a station increases beyond its capacity, the grid distributes

the extra load by planning with the other stations. A failure of a node i due to, for

example, an increase in peak demand that is greater than its capacity, could cause the

load to be serviced by another node j. If node j is unable to satisfy the demand, it

will fail. The failure of node j as a result of the failure of node i is a causal failure.

Distributed Computing System

Consider a wide-area network such as the Internet. A cluster is a set of computers

that are situated at a location, and are connected to one of the edge routers on the

Internet. A distributed system consists of a network of nodes and links. Each node

is a cluster of computers (as a single computer is also a cluster), and a link in the

communication channel (via the Internet) between two clusters. A scheduler is a pro-

gram that distributes work among the various clusters, which are chosen to execute

tasks based on their capabilities. In such a distributed system, the most common cause

for casual failure is server overload. Suppose a frontend for cluster A is handling 200

requests per second (QPS), and the frontend for cluster B handles 1000 QPS. One may

4



assume A and B need not be directly connected in the distributed network. If cluster

A fails, requests that come to A may be routed to B by the scheduler. In this case,

the front-end in B will have to handle 1200 QPS, which could result in it running out

of resources, causing it to crash, miss deadlines, or otherwise act differently. In such

a case, the failure of A causes a breakdown of B, a causal failure. The service rate of

B will dip below 1000 QPS, and this could cause the scheduler to transport work to

other clusters, which may, in turn, cause them to fail, and so on.

Networked Systems with Multiple Operating Systems

Consider a network where the routers run different versions of an operating system.

A cyber attack on a router with a specific version of the operating system will result

in exposure to the attack of other routers with that version of the operating system.

That is, a failure (compromised due to a cyber-attack) of a router causes other routes

to fail.

Hence, we formalize causal node failures with the following.

Definition 1.1. Given a network G = (V , E), nodes u, v ∈ V, the failure of node v as

a result of the failure of node u is said to be a causal failure or simply causal. The

causality is denoted as C : u⇒ v.

Definition 1.2. A causality C : u⇒ v is applied implies that when node u is removed,

v is also removed.

Definition 1.1 is an extension of classical node failure models. Note that it is not

required that nodes in C be adjacent, leading to the following.

Definition 1.3. Given a network G = (V , E), V1,V2 ⊆ V, the failure of each node in V2

as a result of the failures of all nodes in V1 is said to be a causal failure (or causality)

5



from V1 to V2. One would then say that the failure of V1 causes the failure of V2. The

causality is denoted as C : V1 ⇒ V2.

Definition 1.3 generalizes causal failures to node sets. In particular, failure of only

a proportion of nodes in V1 would not cause failures of any node in V2 unless there

exist other predefined causalities. In Fig.1.2, nodes of V1 and V2 in a causality C

are denoted by dotted circles and dotted squares, respectively. We have causalities

C1 : {1, 4} ⇒ {9, 12}, C2 : {5} ⇒ {11, 16}, C3 : {3} ⇒ {7}. If C1 is applied to the

network, failures of nodes 1 and 4 cause the failure of nodes 9 and 12. However, the

failure of node 1 alone does not cause any failure of nodes 9 or 12.

For the case that V2 also affects V1, we have the following.

Definition 1.4. Given a network G = (V , E) and node sets V1,V2 ⊆ V, C : V1 ↔ V2

is called a correlated failure if and only if C : V1 ⇒ V2 and C : V2 ⇒ V1 are applied.

Definition 1.4 illustrates that nodes in V1 and V2 affect each other mutually. For

example, if Fig. 1.2 has correlated failures C1 : {1, 4} ↔ {9, 12}, then the failures of

nodes 9 and 12 also cause the failures of nodes 1 and 4.

A deeper analysis of all the works cited above informs us:

• The causal failure model is new. It is complementary to the operational model

IIM described by Sen et al. (11). The work on correlated failures has not estab-

lished a formal model of failures; only this work and Sen et al. (11) are those

who have provided the formal model.

• Our work is the first to analyze the impact of causal failures on multiple aspects

of one network.
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Figure 1.2: Residual network after applying causality C1 : {1, 4} ⇒ {9, 12}
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1.3 Extension of Causal Failures

Causal failures are applicable to not only nodes but also a mixture of nodes and edges

(e.g., a subgraph). Mathematically, in a graph G = (V , E , C), a causality is denoted as

C : G1 ⇒ G2, where G1,G2 ⊆ G.

1. We replace e = (u, v) in G = (V , E , C)with a new node and connect this node to

u and v.

2. We replace each predefined failure with the failure of the corresponding node

added in the last step.

Such a method generates a new graph G ′ = (V ′, E ′, C ′) where V ⊆ V ′.

To make the reduction more concrete, we present an example in Fig. 1.3. Suppose

a causality for edges C : {e1, e3} ⇒ {e5, e9} is applied to G, we have corresponding

node causality C : {7, 9} ⇒ {11, 15} applied to G ′. Therefore, all edge failures in G

can be transformed into node failures in G ′. Consequently, causal node failures are the

general version of causal failures related to all possible combinations of components

(nodes/edges) in the network.
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Figure 1.3: Transformation from edges to nodes
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1.4 Nomenclature and Notations

Table 1.1: Nomenclature

QPS reQuest Per Second

3GPP 3rd Generation Partnership Project

IIM Implicative Inter-dependency Model

MILP Mixed Integer Linear Programming

NP Non-deterministic Polynomial

MAX-2SAT MAXimum-2-SATisfiability problem

LHS Left-Hand Side

RHS Right-Hand Side

V fCL The decision version of Problem 2.1

V kCS The decision version of Problem 3.1

V kS The decision version of Vertex k−cut problem

V fCD The decision version of Problem 4.1

V fCd The decision version of Problem 5.1
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Table 1.2: Notations

G = (V , E) An undirected graph

G = (V , E , C) An undirected graph with causal failures

G = (V , E ,W , C) A directed graph with edge capacities and causal failures

V The set of nodes

E The set of edges

C The set of all causalities

W The capacities of edges

n = |V| The number of nodes

m = |E| The number of edges

h = |C| The number of causalities

Vi The i-th subset of V

Ei The i-th subset of E

Gi The i-th subgraph of G

C : V1 ⇒ V2 A causality from V1 to V2
C : E1 ⇒ E2 A causality from E1 to E2
C : G1 ⇒ G2 A causality from G1 to G2
V(C) All nodes in causality C

E(C) All edges in causality C

α Required factor of the size of a giant component

k Required number of connected components

s The source node

t The terminal node

D The length constraint on the shortest path from s to t

d Required flow demand from s to t

MC The approximate solution obtained by a heuristic algorithm

th The time consumed by a heuristic algorithm

opt The solution obtained by MILP

to The time consumed by MILP
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Chapter 2

Causal Node Failures on the Robustness of a

Network

2.1 Introduction

Many metrics have been proposed to evaluate network performance, such as reliability,

dependability, and resilience, among others (14; 15). For example, in cyber-physical

systems, a node’s failure in one network would initiate a failure of other nodes, thereby

reducing the reliability of the system (16). Network robustness refers to the ability of

a network to maintain its functionality even when faced with disruptions or failures.

A robust network is one that can withstand attacks, errors, and other types of dis-

turbances and continue to operate normally. In today’s interconnected world, where

networks play a crucial role in many areas of society, from transportation to com-

munication, the concept of network robustness is more important than ever. Ellens

and Kooij (17) surveyed several measures for network robustness including classical

measures (e.g., connectivity, distance, betweenness, clustering, reliability polynomi-

als) and spectral measures (e.g., algebraic connectivity, number of spanning trees, and

significant resistance).

One way to measure network robustness is to look at its resilience to failures. For

example, if a transportation network is disrupted by an accident, how quickly can it

recover and resume normal operations? If a communication network experiences a
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power outage, how quickly can it be restored? These are the types of questions that

researchers in network robustness are interested in answering.

Another important aspect of network robustness is its ability to resist attacks. In

today’s digital age, cyber-attacks on computer networks are becoming more frequent

and sophisticated. A network that is not designed with robustness in mind can be

easily compromised by these attacks, leading to data breaches, service disruptions, and

other security issues.

To improve network robustness, there are several strategies that can be employed.

One approach is to increase redundancy in the network. This means adding extra

nodes or edges to the network so that if one fails, there are backup options available.

For example, in a transportation network, having multiple routes to a destination can

increase robustness. In a communication network, having multiple data centers or

servers can provide redundancy.

Another strategy is to implement fault-tolerant mechanisms. This involves design-

ing the network so that it can continue to operate even if some nodes or edges fail.

For example, in a computer network, implementing load balancing can distribute the

workload across multiple servers so that if one fails, the others can pick up the slack.

In a transportation network, implementing dynamic rerouting can help vehicles avoid

areas with congestion or accidents.

A third strategy is to improve the network’s security. This can involve implementing

encryption, firewalls, and other security measures to prevent unauthorized access or

data breaches. It can also involve monitoring the network for suspicious activity and

responding quickly to any threats that are detected.

In conclusion, network robustness is an important concept that is becoming in-

creasingly important in today’s interconnected world. A robust network can withstand
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disruptions, failures, and attacks and continue to operate normally. To improve net-

work robustness, strategies such as redundancy, fault tolerance, and security can be

implemented. By designing networks with robustness in mind, we can ensure that they

continue to provide the services and functionality that we depend on, even in the face

of adversity.

To our best knowledge, we are the first to consider the measurement of network ro-

bustness by using causal node failures. Out contribution of this chapter is summarized

as follows:

• We evaluate a network’s robustness by computing the maximum number of

causalities that can be applied while simultaneously ensuring that the modified

network maintains a large giant component.

• We show that the decision problem for the above is NP-complete.

• We provide an optimization model for the above problem and propose a heuristic

algorithm to solve it.

• We apply our algorithms to publicly available electric grid network data.

2.2 Problem Formulation

We consider the impact of causality on the connectivity of the network. First, we recall

the definition of vertex-induced graphs and connected components in graph theory:

Definition 2.1. Given a graph G = (V , E , C), a vertex-induced sub-graph of G is an-

other graph formed by a subset of G and all edges between any pair of vertices in this

subset.
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Definition 2.2. Given a graph G = (V , E , C), a connected component is a vertex-

induced subgraph where any pair of vertices are connected to each other, and which is

not connected to any other vertex in the rest graph.

As Definitions 2.1 and 2.2 show, vertex-induced subgraphs and connected compo-

nents are not completely the same. For instance, in Fig.1, a subgraph with vertices

{1, 8, 14} is a vertex-induced subgraph, but vertex 1 is not connected to vertex 8 in

this subgraph. Moreover, if we remove vertex 5, then we have a subgraph consisting

of vertices {1, 2, 3} and edges {(1, 2), (1, 3)}. This subgraph is a connected component

because it is not connected to any vertex of the rest graph.

After applying causalities, the network might be a collection of connected compo-

nents. To specify the connected components in terms of size, we have the following.

Definition 2.3. Given a network G = (V , E , C) and a constant 0 < α < 1, an α-giant

component of graph G is a connected induced sub-graph where the number of nodes is

at least α|V|.

The giant component is a prominent characteristic of networks because it pro-

vides a critical threshold for random failures and can be used to quantify the ro-

bustness of networks. In Fig. 1.2, given α = 0.45, applying causality C2 : {5} ⇒

{11, 16} results in a disconnected network with 3 connected components {1, 2, 3},

{4, 7}, {6, 8, 9, 10, 12, 13, 14, 15}, in which the largest has 8 nodes. Similarly, if we

apply causality C1 : {1, 4} ⇒ {9, 12}, we have a connected network with nodes 2, 3, 5,

6, 7, 8, 10, 11, 13, 14, 15, 16. Moreover, a connected subgraph with 13 nodes remains

after causality C3 : {3} ⇒ {7, 10} is applied. These cases only apply one causality, but

the connectivities of the remaining networks are different from each other. Addition-

ally, the sizes of the giant components obtained from the application of C2 or C3 are

larger in comparison with the size obtained after applying C1.
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In a power-grid system, connectivity plays a vital role. The number of nodes (e.g.,

generators) that are part of a connected network indicates the system’s capacity. It

also indicates how the excess capacity of one node can be transferred to another in

the connected network. A giant component is the largest connected component. It

informs us of the largest connected component (or the total combined capacity of

a connected network) one could have in the face of causal failures. Therefore, we

attempt to determine the maximum number of causal failures that can be applied

yet maintain a certain level of total capacity (indicated by the parameterized giant

component determination).

As such, we formulate the problem as follows.

Problem 2.1 (Giant Components). Given a network G = (V , E , C), where the set of

causal failures C = {Ci : V1,i ⇒ V2,i, i = 1, 2, · · · , h}, and a fraction 0 < α < 1, the

Giant Component problem seeks to find a maximum size set Ĉ ⊆ C of causal failures

whose application leaves at least one α-giant component of the initial graph surviving

in the remaining graph.

Different from the problem in (13), problem 2.1 is not measuring robustness by

looking for a subset of nodes whose failures cause the failure of a proportion of nodes.

Instead, problem 2.1 identifies the maximum number of causalities that can be applied

without breaking down all giant components of the network. It properly evaluates how

strong the network is (i.e., its robustness) in the face of causal failures. Note that

when α > 1/2, there can be at most one α-giant component that survives. Hence, the

above problem is rephrased (when α > 1/2) to finding the maximum number (and a

corresponding subset) of causalities whose application results in a remaining network

with an α-giant component of the initial graph surviving.
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2.3 NP-Hardness Proof

We demonstrate the NP-hardness of the problem in the previous section. We first

define the decision version of Problem 2.1, denoted as VfCL: given an undirected graph

G = (V , E , C), and integers f and L, does there exist C ′ ⊂ C with size at least f such

that G has a component whose size is at least L after applying causalities in C ′?

First, we prove NP-completeness by presenting a polynomial-time reduction from

the decision version of the MAX-2SAT problem ((18)) to this version of VfCL. The

decision version of MAX-2SAT is described as: given 2-clauses c1, . . . , cp, is there a

truth assignment that satisfies at least f clauses? This problem is NP-complete.

Theorem 2.1. VfCL is NP-complete.

Proof. First, VfCL is in NP. Given a candidate certificate of VfCL, one could verify

in polynomial time whether the remaining graph has a component with L vertices, by

using a depth-first search.

Then we exhibit a polynomial-time reduction ϕ from an instance I of MAX-2SAT

into an instance I ′ of VfCL:

• We create dummy nodes s and t. Suppose I has l boolean variables {x1, . . . , xl}.

Then we add 2l special nodes Xa, X̄a, a = 1, . . . , l, all of which are connected to s.

For each a = 1, . . . , l, we also introduce a new large clique Ca on Y vertices which

is joined by an edge to each ofXa and X̄a. Here, we assume that Y := 2(2+l+5p).

• For clause ci = xa ∨ xb, we add nodes xa, xb, ci,1, ci,2, and a dummy node di, and

edges (s, xa), (s, xb), (xa, di), (xb, di), (ci,1, di), (ci,2, di), (ci,1, t), and (ci,2, t).

• For clause ci = xa ∨ xb, we construct two causalities Ci,1 : xa ⇒ {Xa, ci,1} and

Ci,1 : xb ⇒ {Xb, ci,2}. If there is x̄a in clause ci, the corresponding causality will

include X̄a.
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• We require that there are at least L = lY nodes in the largest component. This

requirement avoids that xa and x̄a would not be picked together, otherwise both

nodes Xa and X̄a would be removed and hence Ca would be isolated. Second,

only one causality would be applied for the clause ci, otherwise dummy node di

is isolated.

Clearly, the size of I ′ is bounded by a polynomial in the size of I. Suppose that I is

satisfiable. Then we have an assignment that satisfies exactly f ′ ≥ f clauses, so we

pick one causality (corresponding to a literal becoming true) from each clause, and the

largest component of the remaining network has at least L′ = 3f ′+2+l+5(p−f ′)+lY ≥

L nodes.

Suppose that every assignment of I satisfies at most f − 1 clauses. Suppose further

I ′ admits a set C ′ of f ′ ≥ f causalities whose application leaves a graph with some

component on at least L vertices. We claim that there cannot be two causalities in C ′

whose LHSs contain respectively xa and x̄a for some a. If otherwise, the clique Ca would

be isolated and hence any other component can have at most 2+2(l−1)+5p+(l−1)Y ≤

L−Y +2l+5p < L nodes, contradicting our assumption. Hence, our claim holds true.

Now consider the assignment ψ of Boolean values to {x1, . . . , xl} defined by ψ(xa) = T

(or ψ(xa) = F ) depending on whether xa (or x̄a) is in the LHS of some causality in

C ′. For other variables, we arbitrarily set their values to one of T or F . In view of

the claim above, this is a valid assignment that satisfies at least f ′ ≥ f clauses of I,

thus contradicting our assumption. Hence, I ′ does not admit such a set C ′ of f ′ ≥ f

causalities. This proves the theorem.

Fig. 2.1 shows an example of the proof of Theorem 1. The MAX-2SAT instance is

(x1 ∨ x2) ∧ (x̄1 ∨ x2) ∧ (x̄1 ∨ x̄2) where l = 2, p = 3. Hence, we construct a graph with

97 nodes and 6 causalities. Cliques C1 and C2 both have 38(= 2(2+ 2+ 3× 5)) nodes.
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It is required that there are at least L = lY = 2 × 38 = 76 nodes in the remaining

network. We set x1 = T, x2 = T and apply causalities related to x2 only, then we have

2 causalities applied to the network and maintain 93 nodes.
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Figure 2.1: Example of proof of Theorem 2.1
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2.4 Algorithms

2.4.1 MILP for Problem 2.1

We first provide a MILP formulation, denoted by MILP-GC, to seek an α-giant compo-

nent. Let G = (V , E , C) be the undirected network and DG = (V ,A, C) be its directed

version obtained by replacing each edge of E with two directed edges in opposite di-

rections. Let n denote |V| and N denote the set of nonnegative integers.

The formulation is inspired by a flow formulation (19) which aims to determine the

largest connected component of an undirected graph. We set up a source node s and

terminal node t, each of which has edges incident on all nodes in the network. In the

newly constructed graph, xij denotes the flow from node i to node j. The description

of the above formulation is listed as follows.

• Eqs. (2.1), (2.12): Binary variable zC indicates that whether causality C is ap-

plied to the network. Problem 1 seeks the maximum number of applied causali-

ties, therefore the objective function is the sum of zC , which should be maximized.

• Eq. (2.2): This constraint ensures that there exists a giant component in the

residual network. Correspondingly, the total amount of flow delivered to t is at

least αn.

• Eqs. (2.3), (2.4): These constraints govern flow conservation (i.e., the total

amount of flow from the source node s must be equal to the flow to the terminal

node t, and the incoming flow is equal to the outgoing flow for each node i ∈ V).

• Eqs. (2.5),(2.6): These constraints ensure that the entire flow from s is received

directly by only one i, and this flow cannot exceed n.
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• Eqs. (2.7), (2.8): The flow along each edge is an integer. Moreover, the capacity

of each edge (i, t) is 1 to ensure that at most one unit reaches t from any i.

• Eqs. (2.9), (2.10), (2.11): If a causality C is applied to the network, no flow is

allowed to pass through any node i ∈ V(C); otherwise, the flow amount is not

greater than n.

maximize
∑
C∈C

zC (2.1)

s.t.
∑
i∈V

xit ≥ αn (2.2)∑
i∈V

xsi =
∑
i∈V

xit (2.3)

xsi +
∑

j:(j,i)∈A

xji = xit +
∑

j:(i,j)∈A

xij, i ∈ V (2.4)

∑
i∈V

yi = 1 (2.5)

xsi ≤ yin, i ∈ V (2.6)

yi, xit ∈ {0, 1}, i ∈ V (2.7)

xsi, xij ∈ N, i ∈ V , (i, j) ∈ A (2.8)

xij ≤ (1− zC)n,C ∈ C,

i ∈ V(C), (i, j) ∈ A (2.9)

xji ≤ (1− zC)n,C ∈ C,

i ∈ V(C), (j, i) ∈ A (2.10)

xsi, xit ≤ (1− zC)n,C ∈ C,

i ∈ V(C) (2.11)

zC ∈ {0, 1}, C ∈ C (2.12)

xij ∈ N, (i, j) ∈ A (2.13)
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Complexity analysis: this formulation has h + 2n binary variables, which are h

variables (i.e., zC , C ∈ C) indicating whether a causality is applied, n variables (i.e.

xit, i ∈ V) indicating whether a node i ∈ V has flow 1 shipping to t, n variables (i.e.

yi, i ∈ V) indicating whether a node i ∈ V receives at most n unit of flow from s. In

addition, there are 2m+n integral variables ranging from 1 to n, which are 2m variables

(i.e., xij, xji, ij ∈ E) showing the flow from nodes i to j or from j to i and xsi, i ∈ V

representing the flow from s to node i. Hence, the overall computation complexity is

O(2n+hnm+n).

2.4.2 A Heuristic Algorithm

In Problem 1, we hope to find the largest number of causalities that could be applied

to one network while maintaining one giant component in the remaining network.

Let Ci : V1,i ⇒ V2,i, i = 1, 2, · · · , h be a set of causalities. First, we assume that

|V1,i| = |V2,i| = 1, for i = 1, 2, · · · , h.

Let dG(v) be the degree of a node v in G and we denote by χ(Ci) as the number of

edges each causality destroys:

χ(Ci) =


dG(V1,i) + dG(V2,i), if (V1,i,V2,i) /∈ E

dG(V1,i) + dG(V2,i)− 1, otherwise

(2.14)

We have a greedy algorithm as follows.

We will now present a generalized version with the assumption that |V1,i| ≥ 1 and

|V2,i| ≥ 1. Correspondingly, let

• dG(Vp,i) be the sum of degrees of each node in set Vp,i, p = 1, 2,

• E(L,M) be the set of all edges e = (u, v) ∈ E such that u ∈ L and v ∈M,
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Algorithm 1 GREEDY-MAX-GC

Input: graph G = (V , E , C), constant α;
Output: A set of causalities MC, s.t. when all causalities in MC are applied to G,
there exists at least one giant component of G with size larger than α× |V|.
1: Sort the set C based on χ(C) for all C ∈ C and let χ(C1) ≤ χ(C2) ≤ · · · ≤ χ(Ch);
2: S ← |V|;
3: G1 ← G;
4: i← 1;
5: MC ← ∅;
6: while S > α× |V| do
7: G1 ←Apply Ci to G1;
8: S ←size of the largest connected component of G1;
9: MC ←MC ∪ C ′;
10: i← i+ 1;
11: end while
12: returnMC.

• T (L,M) be the set of all nodes v ∈ V such that (u1, v) ∈ E and (u2, v) ∈ E with

u1 ∈ L and u2 ∈M where L,M⊂ V ,

Then we have

χ(Ci) = dG(V1,i) + dG(V2,i) + |V1,i|+ |V2,i|

− 2|E(V1,i,V2,i)| − 2|E(V1,i,V1,i)|

− 2|E(V2,i,V2,i)| − 2|T (V1,i,V2,i)|

(2.15)

χ(Ci) denotes the number of edges the nodes in Ci are incident to. Eq. (2.15)

ensures that all edges are counted once. Now we use the values of χ(Ci) in Step 2 of

Algorithm 2 to find a large set of causalities.

Complexity analysis: We assume that the graph is represented as its adjacency

matrix. Step 2 sorts the metric values of all causalities, so it takes O(h log h) time. The

while loop (steps 6-11) does at most h operations on searching for connected compo-

nents, which takes O(n2). Hence, the total time complexity is O(max(h log h, hn2)) =

O(hn2).
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Approximation ratio: algorithm 1 greedily looks for causalities to be applied

based on the total degree metric χ. It can be envisioned that the extreme situation is

that causalities are defined on low-degree cut vertices. Based on the greedy strategy,

these causalities would be chosen first and might quickly make the size of the largest

giant component less than α × n after applying one causality. On the other hand,

the optimal solution might be h − 1, i.e. applying all causalities except the one that

disconnects the giant component. Hence, we have |C̃|/|MC| ≤ h− 1.

Example 2.1. Given causalities C1 : {1, 4} ⇒ {9, 12}, C2 : {5} ⇒ {11, 16}, C3 :

{3} ⇒ {7} and α = 0.5, the maximum set of causalities is obtained as follows:

1: χ(C1) = 14, χ(C2) = 16, χ(C1) = 6, so sorted causalities are C3, C1, C2;

2: S ← 16;

3: G1 ← G;

4: i← 1;

5: MC ← ∅;

6: (While loop:);

7: Apply C3 to G1 and S = 14 > 8;

8: MC = {C3};

9: i = 2;

10: Apply C1 to G1 and S = 10 > 8;

11: MC = {C3, C1};

12: Apply C2 to G1 and S = 4 < 8;

13: (End while);

14: Output: MC = {C3, C1}

The output MC = {C3, C1} illustrates that at most 2 causalities can be applied to

the network in Fig. 1 while maintaining a giant component with at least eight nodes.
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2.5 Experimental Results

We present experiments to validate the performance of the proposed optimization mod-

els and algorithms, which are coded into a Python program and implemented on a PC

with a 2.6 GHz 6-Core Intel Core i7 with a RAM of 16GB. Particularly, heuristic algo-

rithms are coded with NetworkX (20), and optimization models are coded with Gurobi

(21).

2.5.1 An Illustrative Example

The IEEE 300 bus system (22) is a popular test system (Fig. 2.2) and has been

tested in many models, such as false data injection attacks (23), sequential power flow

calculation (24), and probabilistic load margins (25), among others.

We use a subnetwork of the system and randomly generate a set of 25 disjoint

causalities, where Vi,1 and Vi,2 (i = 1, . . . , 25) are both of size at most five. Fig.2.3

presents the residual network after applying 19 causalities when α = 0.5. It can be

seen that there is only one giant component remaining.

Table 2.1 shows the maximum number of causalities that can be applied to the

network in terms of α. The results obtained from GREEDY-MAX-GC and MILP-GC

are close, but GREEDY-MAX-GC takes less time. Especially for α = 0.5, it takes 0.63s

for GREEDY-MAX-GC to find 15 causalities, while MILP-GC spends 38.8s looking

for all possible causalities to be applied.

2.5.2 Investigation of Giant Components of IEEE 300

Recalling the set-up that the number of nodes in V1 (or V2) in C : V1 ⇒ V2 follows a

uniform distribution between 1 and 5, we know that the expected number of nodes in
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Figure 2.2: IEEE 300 bus system

Table 2.1: IEEE 300: first trial for the giant component problem

GREEDY-MAX-GC MILP-GC

α |MC| th(s) opt to(s)

0.1 25 0.55 25 0.78

0.2 24 0.54 24 0.77

0.3 19 0.53 22 3.10

0.4 18 0.54 21 12.35

0.5 15 0.63 19 38.80

0.6 15 0.67 17 12.43

0.7 13 0.67 14 6.53

0.8 9 0.67 11 1.84

0.9 5 0.61 7 0.97
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Figure 2.3: IEEE 300: remaining network containing a giant component with size at
least 150 (α = 0.5)
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each causality is 6. To explore more properties of this system, we set up 10 experiments,

each of which generates 30 causalities. Correspondingly, the expected number of nodes

to be failed is 180. Given that it was demonstrated that GREEDY-MAX-GC works

well in terms of accuracy, we use GREEDY-MAX-GC in the experiments, the results

of which can be found in Table 2.2.

Table 2.2: IEEE 300: 30 causalities for the giant component problem with 180 total
number of expected nodes failures

Experiment No.

α 1 2 3 4 5 6 7 8 9 10 mean

0.1 26 28 29 23 24 23 24 29 18 27 25.1

0.2 23 22 23 19 22 17 20 26 15 24 21.1

0.3 20 20 21 17 22 15 20 22 14 22 19.3

0.4 17 13 17 16 21 14 18 19 13 21 16.9

0.5 17 12 14 13 19 13 15 19 10 21 15.3

0.6 16 12 11 13 14 12 14 18 9 19 13.8

0.7 11 11 10 13 12 11 11 15 9 15 11.8

0.8 7 6 8 10 9 10 8 13 8 11 9

0.9 4 5 5 7 5 7 6 8 5 7 5.9

From Table 2.2, it can be observed that the greater the desired size of the giant

component is, the fewer will be the number of causalities that need to be applied.

More specifically, the number of applied causalities indicates the expected number of

failed nodes, which have a close relationship with the size of the giant component. For

instance, given α = 0.5, the network allows 15.3 causalities to be applied, indicating

that the number of failed nodes is expected to be 15.3 × 6 ≈ 92. This means that

to maintain a giant component with at least 300 × 0.5 = 150 nodes, on average 92

nodes can fail. Similarly, if there is a giant component with at least 300 × 0.1 = 30
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nodes in the remaining network, on average we could let 25.1× 6 = 151 nodes fail. In

fact, the total number of nodes in the applied causalities is likely to be smaller than

the expected number because the algorithm we use usually searches for the causality

containing small numbers of nodes first. It is possible that even after we apply almost

all causalities, we will still be able to get an α-giant component when the α is kept

smaller. For example, in experiments 3 and 8, 29 causalities are applied to the network

while we have a 0.1-giant component.

2.5.3 Scalability Analysis

To analyze the scalability of GREEDY-MAX-GC and MILP-GC, we use three network

data sets, i.e., IEEE 300, power network 1138-bus (26), and Western US Power Grid

(27) (written as power5000 in Table 2.3) with 300, 1138 and 4941 nodes respectively.

In addition, we set up our experiments on these data sets as follows:

1. For each network, we randomly generate 10, 20, and 30 causalities;

2. For each causality C : V1 ⇒ V2, |V1| ≤ 5 and |V2| ≤ 5 for IEEE 300, |V1| ≤ 20

and |V2| ≤ 20 for power network 1138-bus, |V1| ≤ 80 and |V2| ≤ 80 for Western

US Power Grid;

3. α = 0.9;

In Table 2.3, we could see that the numbers of applied causalities obtained by

GREEDY-MAX-GC are the same as those obtained by executing MILP-GC. However,

the time consumed by the heuristic algorithm is much less than that by MILP. For

instance, given 30 predefined causalities for the Western US Power Grid, the heuristic

and the MILP model consumed 5.18 seconds and 396.41 seconds, respectively, and

produced 8 casualties that can be applied. Moreover, as the number of nodes increases,
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the time taken by MILP increases exponentially. For example, when there are 10

predefined causalities, the running times for the three networks are 0.77 seconds, 8.63

seconds, and 151.22 seconds, respectively. This is in agreement with the computational

complexity of MILP mentioned in section 2.4. By contrast, the running time of the

heuristic algorithm is only 0.08 seconds, 0.26 seconds, and 1.07 seconds, respectively.

Hence, GREEDY-MAX-GC when compared with the MILP formulation is comparable

in terms of accuracy and efficiency in terms of running time.

2.6 Conclusion

In this chapter, we consider the impact of causal node failures on the robustness of

one network, which is measured as the maximum number of applied causalities while

the network maintains a giant component. We formally formulate the problem and

prove the NP-hardness of the problem. Correspondingly, a mixed integer linear pro-

gramming model is proposed to obtain the exact solution and a heuristic algorithm is

designed to approximate the solution. Experimental results based on the IEEE 300

Bus, Power1138, and the Western US Power Grid system show that the heuristic algo-

rithm can be considered as an alternative to the optimization model to substantially

reduce the computational time.
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Chapter 3

Causal Node Failures on the Vulnerability of a

Network

3.1 Introduction

In today’s increasingly interconnected world, networks are an essential part of modern

life. They enable communication, data transfer, and access to information on a global

scale. However, this interconnectedness also means that networks are vulnerable to a

wide range of threats, both internal and external. In this essay, we will explore network

vulnerability, its causes, and the steps that can be taken to mitigate the risks.

Network vulnerability refers to the susceptibility of a network to malicious attacks

or unauthorized access. This can be caused by a variety of factors, including outdated

software, weak passwords, unpatched systems, or human error. Cybercriminals can

exploit these vulnerabilities to gain access to sensitive data, install malware, or launch

attacks on other networks.

One of the primary causes of network vulnerability is outdated software. When

software is not updated, it can contain security flaws that hackers can exploit. For

example, the WannaCry ransomware attack in 2017 was able to infect hundreds of

thousands of computers worldwide because they were running outdated versions of

Microsoft Windows.
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Another common cause of network vulnerability is weak passwords. Many people

still use passwords that are easy to guess, such as ”123456” or ”password.” This makes

it easy for hackers to gain access to sensitive information. Similarly, when employees

reuse the same passwords across multiple accounts, a single compromised password can

lead to a domino effect of security breaches.

Human error is another significant cause of network vulnerability. Employees can

accidentally download malware, click on phishing links, or leave their devices unlocked

and unattended, providing an opportunity for cybercriminals to access the network.

In some cases, employees may also intentionally engage in malicious behavior, such as

stealing data or selling access to the network.

To mitigate the risks of network vulnerability, organizations must take proactive

steps to secure their networks. This includes regularly updating software, implementing

strong password policies, providing employee training on cybersecurity best practices,

and conducting regular security audits. Additionally, organizations can implement

security measures such as firewalls, intrusion detection systems, and access controls to

limit access to sensitive data.

In conclusion, network vulnerability is a serious threat that can lead to data breaches,

financial losses, and reputational damage. It is caused by a variety of factors, includ-

ing outdated software, weak passwords, and human error. Organizations must take

proactive steps to secure their networks and implement security measures to reduce

the risks of cyberattacks. By staying vigilant and staying ahead of potential threats,

organizations can protect their networks and the sensitive information they contain.
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3.2 Problem Formulation

While the giant component in section 2.2 provides us with information on the capacity

of the largest networked system amidst causal failures, we are also interested in the

number of non-connected components (aka small components). The number of small

components shows how much the network is disconnected given causal failures. We

have parameterized this to see the minimum number of causal failures that can be

applied that break the network into components. Hence, we have:

Problem 3.1 (Small Connected Components). Given a network G = (V , E , C), an

integer k > 0, and causalities C = {Ci : V1,i → V2,i, i = 1, . . . , h}, find a minimum

size set C̄ ⊆ C of causal failures whose applications leave a set of at least k connected

components in the remaining graph.

Problem 3.1 identifies causalities that would significantly damage the network, eval-

uating how weak the network is (i.e., its vulnerability). Naturally, if failed nodes result

in a disconnected network with many components, there must be some vital nodes in

the failed ones. Finding a minimum number of casualties is to find vital nodes that

significantly affect the network’s connectivity.

3.3 NP-Hardness Proof

We prove that Problem 3.1 is NP-hard by showing that its decision version is NP-

complete. The decision version seeks to know, given G, C, k, and s, if there exists a

C ′ ⊆ C of size at most s such that the application of all causalities in C ′ leaves us a

graph with at least k connected components. We refer to this decision version as the

VkCS problem.

Theorem 3.1. The decision problem VkCS is NP-complete.
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Proof. Clearly, the decision version is in NP. Then we consider Vertex k-cut (VkS)

problem defined as: given an undirected graph G = (V , E) and a positive integer k,

find a C ⊆ V of minimum size |C| such that G \C has at least k connected components.

We refer to such a C as a k−separator. This problem is known to be NP-hard (28) for

fixed values of k. The decision version of this problem asks that given G, k and s, if

there exists a C ⊆ V satisfying (i) such that |C| ≤ s.

We exhibit a polynomial-time computable and answer-preserving reduction ϕ from

instances of VkS into instances of VkCS. Given an instance I = (G, k, s) of VkS, ϕ

maps I to an instance I ′ = (G ′, C, k, s) of VkCS and is defined as follows. G ′ = (V ′, E ′)

where V ′ = {u1, u2 : u ∈ V}, E ′ = {(u1, v1), (u1, v2), (u2, v1), (u2, v2) : (uv) ∈ E} and

C = {(u1 → u2) : u ∈ V}. It is easy to see that G has a k-separator of size at most

s if and only if G ′ admits a subset C ′ ⊆ C of size at most s whose application leaves

us with a graph having at least k connected components. This reduction shows that

VkCS is NP-complete.
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3.4 Algorithms

3.4.1 MILP for Problem

We provide two versions of the MILP formulation for the problem that seeks to min-

imize the number of causalities whose application leaves us with at least k connected

components. The first one is listed as follows:

minimize
∑
C∈C

zC (3.1)

s.t.
∑
i∈K

xiv ≤ 1, v ∈ V (3.2)

xiu +
∑

j∈K\{i}

xjv ≤ 1, i ∈ K, uv ∈ E (3.3)

∑
v∈V

xiv ≥ 1, i ∈ K (3.4)∑
i∈K

xiu + zC ≤ 1, C ∈ C, u ∈ V(C) (3.5)

1 ≤
∑
i∈K

xiu +
∑

C:u∈V(C)

zC , u ∈ V (3.6)

∑
i∈K

xiu = 1, u ∈ V \
⋃
C∈C

V(C) (3.7)

zC , x
i
v ∈ {0, 1}, C ∈ C, i ∈ K, v ∈ V (3.8)

The above formulation is inspired by the work of Cornaz et al. (28) that aims to

determine a vertex subset whose removal disconnects the graph in at least k compo-

nents. Our focus is on minimizing the number of causalities. We use K to denote the

set {1, . . . , k}, representing k copies of all nodes in V . As usual, C denotes the set of

all causalities that are potentially effected. The description of the equations is listed

as follows:

• Eq. (3.2): These constraints ensure that at most one copy of each node is selected.
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• Eq. (3.3): For each edge (u, v), this inequality guarantees that for every i ̸= j,

the i-th copy of u and the j-th copy of v will not be chosen together.

• Eq. (3.4): These constraints ensure that each copy of the graph has at least one

node in the final solution, thereby getting at least k connected components.

• Eq. (3.5): These constraints ensure that no copy of any vertex belonging to a

chosen (for application) causality is chosen, thereby effectively forbidding that

vertex from becoming a member of any connected component in the remaining

graph.

• Eq. (3.6): These constraints ensure that for any vertex u either some causality

containing u is chosen or that the vertex becomes a member of some connected

component in the remaining graph.

• Eq. (3.7): These constraints ensure that those nodes that do not belong to any

causality have to be in the remaining network.

Complexity analysis: this formulation contains h variables (i.e. zC , C ∈ C) indicat-

ing whether each causality is applied and nk variables (i.e. xiv, i = 1, 2, · · · , k, v ∈ V)

indicating whether one node in one copy is selected. As all variables are binary, we

have a solution space with 2h+nk points. Hence, the overall computational complexity

is O(2h+nk).
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We also provide another formulation for our problem that is based on the multi-

source one-terminal flow network problem.

minimize n2

(∑
C∈C

zC

)
−
∑
i∈V

zi (3.9)

s.t.
∑
l∈K

∑
j∈V

xslj = n−
∑
i∈V

zi (3.10)∑
l∈K

∑
j∈V

xslj =
∑
j∈V

xjt (3.11)∑
j∈V

ylj = 1, l ∈ K (3.12)∑
l∈K

xsli +
∑

j:(j,i)∈A

xji =
∑

j:(i,j)∈A

xij + xit, i ∈ V (3.13)

xslj ≤ yljn, l ∈ K, j ∈ V (3.14)

ylj, xjt ∈ {0, 1}, l ∈ K, j ∈ V (3.15)

xslj, xij ∈ N, l ∈ K, (i, j) ∈ A (3.16)

xij ≤ (1− zC)n, C ∈ C,

i ∈ V(C), (i, j) ∈ A (3.17)

xji ≤ (1− zC)n, C ∈ C,

i ∈ V(C), (j, i) ∈ A (3.18)

xslj, xjt ≤ (1− zC)n, C ∈ C,

j ∈ V(C), l ∈ K (3.19)

zi ≥ zC , i ∈ V(C), C ∈ C (3.20)

zi, zC ∈ {0, 1}, i ∈ V , C ∈ C (3.21)

The description of the above formulation is listed as follows:

• Eq. (3.9): problem 3.1 aims to find the minimum number of applied causalities,

so the objective function is minimized;
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• Eqs. (3.10), (3.20): these two equations ensure that each vertex that is part of a

causality effected is not considered for the calculation of the remaining number

of vertices. However, a vertex i that is not part of any applied causality can also

be removed from consideration in (22). To avoid this, we include them as part of

the objective function with a −1 coefficient. To make sure that only the number

of effected causalities is determined, we multiply each zC with a large (= n2)

multiplicative factor so that the optimum value is essentially determined by the

number of applied causalities.

• Eq.(3.11): the flow going to the terminal t is equal to n minus the number of

failed nodes;

• Eq.(3.12-3.19): similar to the formulation of Problem 2.1.

Complexity analysis: this formulation has k + 2n + nk binary variables, i.e. h

variables (i.e. zC , C ∈ C) indicating whether a causality is applied, n variables (i.e.

xit, i ∈ V) indicating whether a node i ∈ V ships 1 unit of flow to t, n variables (i.e.

zi, i ∈ V) indicating that whether each node i is in the remaining network and nk

variables (i.e. ylj, l ∈ K, j ∈ V) indicating whether a node j ∈ V receives at most n

unit of flow from slk. Moreover, there are 2m+nk integral variables ranging from 1 to

n, which are 2m variables (i.e. xij, xji, ij ∈ E) showing the flow from nodes i to j or

from j to i and xslj, j ∈ V representing the flow from sl to node j. Hence, the overall

computation complexity is O(2nk+knm+nk).
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Algorithm 2 GREEDY-MIN-SC

Input: graph G = (V , E , C), constant k;
Output: minimum set of causalitiesMC, s.t. when all causalities inMC are applied
to G, there exists at least k connected components.

1: H ← G;
2: S ← 1//the number of connected components;
3: MC ← ∅;
4: while S < k do
5: Select C ∈ C to maximize S;
6: MC ←MC ∪ C;
7: C ← C − C;
8: H ← apply C to H;
9: S ←number of connected components of H;
10: end while
11: returnMC;

3.4.2 A Heuristic Algorithm

Different from Problem 2.1, Problem 3.1 deals with determining the vital nodes whose

failures have the greatest impact on the connectivity of other nodes. We design a

greedy algorithm and provide an example as follows.

Complexity analysis: Step 6 takes O(hn2) after all causalities are checked. The

worst case is that S ≥ k after applying all causalities. Hence, the total complexity is

h·O(hn2) = O(h2n2).

Approximation ratio: algorithm 2 greedily looks for the causality that causes

a significant increase in the number of connected components. The extreme situation

is that algorithm 2 finds ≥ k connected components by applying all causalities, i.e.

|MC| = h, while the optimal solution is |C̄| = 2. The reason is that if |C̄| = 1,

then the specific causality would be found by algorithm 2. For this case, we have

|MC|/|C̄| ≤ h/2.
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Example 3.1. Given causalities C1 : {1, 4} → {9, 12}, C2 : {5} → {11, 16}, C3 :

{3} → {7}, and k = 2, the minimum set of causalities for Fig. 1.1 is calculated as

follows.

1: H ← G;

2: S ← 1;

3: MC ← ∅;

4: (While loop:);

5: Apply C2 to H and S = 3 > 2;

6: (End while);

7: Output: MC = {C2}.

The output MC = {C2} reveals that applying one causality is enough to make the

network disconnected with 3 components. Hence, nodes {5, 11, 16} have a great impact

on the connectivity of the network.

3.5 Experimental Results

3.5.1 An Illustrative Example

We use the same experimental settings in section 2.6.1 and show the first trial in Fig.

3.1 and Table 3.1, which compares the performance of GREEDY-MIN-SC and the

corresponding optimization model. In terms of the number of causalities, GREEDY-

MIN-SC performs as well as the optimization model. The reason is that the very

first causality found by GREEDY-MIN-SC contains cut vertices, and its application

disconnects the network significantly. In addition, MILP costs much more time than

GREEDY-MIN-SC, especially when k = 10.
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Figure 3.1: IEEE 300: remaining network with k = 13 components

Table 3.1: IEEE 300: first trial of small components problem

GREEDY-MIN-SC MILP

k |MC| th(s) opt to(s)

2 1 0.11 1 0.08

3 1 0.06 1 0.27

4 1 0.04 1 0.35

5 1 0.04 1 0.58

6 1 0.04 1 2.61

7 1 0.04 1 1.09

8 1 0.04 1 1.48

9 1 0.04 1 1.85

10 2 0.09 2 18.91
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3.5.2 Investigation of Connected Components of IEEE 300

Table 3.2 shows the common trend that applying more causalities could generate more

connected components. More specifically, the results in Table 3.2 are in agreement in

that GREEDY-MIN-SC is able to detect the causalities that cause severe failures in

the network. For example, 8 experiments have found one causality whose application

disconnects the network into at least 10 connected components. From the perspective

of the number of nodes, by randomly removing 6 nodes on average, we are able to

disconnect the network into at least 10 connected components. GREEDY-MIN-SC

is looking for causalities whose removal generates the greatest number of connected

components greedily, so the number of nodes in the applied causality should be higher

than the expected value.

Table 3.2: Comparison of networks for small components

k IEEE300 Power1138 power5000

2 1 1 1

3 1 1 1

4 1 1 1

5 1 1 1

6 1 2 1

7 1 2 1

8 1 2 2

9 1 2 2

10 1 2 2
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3.5.3 Scalability Analysis

To analyze the scalability of GREEDY-MIN-SC and MILP, we utilize the same exper-

iment settings as section 2.6.3. Specifically, k = 10 for IEEE 300, k = 40 for power

network 1138-bus, and k = 80 for Western US Power Grid. In Table 3.3, we can also

see the advantage of GREEDY-MIN-SC over MILP formulation. For example, if the

number of predefined causalities is 20, the running time of GREEDY-MIN-SC is 0.04

seconds, 0.27 seconds, and 0.95 seconds, respectively for the power network while MILP

takes 8.07 seconds, 902.25 seconds, and > 3 hours given that both methods obtain the

same results. An interesting observation between tables 2.3 and 3.3 is that MILP for-

mulation for problem 3.1 takes much more time than MILP for problem 2.1. Recalling

the computational complexity of both programs, we know that MILP for problem 2

generates k copies of all nodes in the network if we use the first formulation of MILP

for problem 2. As a result, the number of variables is much more than that of MILP

for problem 1. Therefore, by checking so many more variables, MILP for problem 2

costs much more time.

3.6 Conclusion

In this chapter, we consider the impact of causal node failures on the vulnerability

of one network, which is measured as the minimum number of applied causalities

while the network has at least k connected components. We formally formulate the

problem and prove the NP-hardness of the problem. Correspondingly, a mixed integer

linear programming model is proposed to obtain the exact solution and a heuristic

algorithm is designed to approximate the solution. Experimental results based on the

IEEE 300 Bus, Power1138, and the Western US Power Grid system show that the
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heuristic algorithm can be considered as an alternative to the optimization model to

substantially reduce the computational time.

47



Chapter 4

Length Constrained Shortest Paths under

Cascading Causal Node Failures

4.1 Introduction

The shortest paths have a widespread application in engineering systems (29; 30; 31).

For a power system, (32) proposed a new approach based on shortest paths to analyze

whether a contingency creates a saturated cutoff in a power system when considering

the problem of identifying transmission lines with a limited capacity if multiple distur-

bances occur in the system. For the singularity-induced voltage instability in a power

network, (33) searched for the shortest path to its boundary. The arc length of the path

is used to formulate the problem and is converted into a control framework to solve

the shortest path manifold. (34) pointed out the importance of designing appropriate

management, measurement, and communication infrastructures for a wide-area mea-

surement system. Especially, the authors utilized dynamic multiobjective shortest-path

programming for optimal communication infrastructure design. For the virtualization

of network functions, to find a suitable service path that optimizes a specific target,

(35) formulated a capacitated integer linear programming model based on the shortest

path tour problem for service chaining and function placement, and showed that the

performance of the proposed model is better than the current state model.
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Constraints on the length of the path require that the distance between any pair

of nodes be at most a given integer D. As we know, the diameter of a graph is the

greatest distance between any pair of nodes, so a constraint on path length is also

called a diameter constraint. A diameter constraint has been widely used in many

networks, especially when evaluating network reliability. (36) introduced a diameter

constraint on source-to-terminal reliability in a communication network, where each

link fails with a given probability. They integrated the constraint with a factoring

algorithm (37) and illustrated the computation gain in terms of topological reduction

when computing the reliability. In a transportation network, which is often modeled as

a flow network, (38) designed an approximation algorithm for multistate two-terminal

reliability using a diameter constraint of st paths as a tuning parameter. Moreover,

due to signal attenuation problems (39), wavelength division multiplexing networks

often require a diameter constraint. Similarly, a hop constraint is also useful in virtual

topology and routing design (40; 41; 42).

In this chapter, we mainly consider the impact of cascading causal failures on the

paths between a set of source and terminal nodes. Our contributions are listed as

follows:

• We formally define cascading causal failures. If the nodes in V1 ⊆ V (V is the

network node set) fail, all the nodes in V2 ⊆ V will fail. The nodes in V1 do not

need to be adjacent to the nodes in V2. Furthermore, if V3 ⊆ V1 ∪ V2 and the

failure of the nodes in V3 causes the failure of the nodes in V4, then the failure

of V1 leads to cascading causal failures.

• We define the closure of a subset U of the node set as the set of nodes whose

failures are triggered by the failure of U .
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• We consider the impact of causal node failures on the shortest paths of a pair

of nodes s, t in the network G and formulate a problem to find the maximum

number of causal failures applied by restricting the lengths of the paths st to at

most α× dG(s, t).

• We provide an NP-hardness proof of the formulated problem.

• We present an integer linear programming model to find the solution to the pro-

posed problem. We also design a greedy algorithm to find an approximate solu-

tion and compare the performance of the greedy algorithm with the optimization

model.

The rest of this chapter is organized as follows. Section 4.2 shows the system model

of this paper. We provide an NP-hardness proof of the proposed problem in Section

4.3 and the corresponding integer linear programming model, and a heuristic algorithm

in Section 4.4. We run the optimization model and the heuristic algorithm on several

networks in Section 4.5. Finally, Section 4.6 concludes this chapter.

4.2 Problem Formulation

Example 4.1. In Fig. 4.1(a), we use dotted circles and dotted squares to denote

the nodes in V1 and V2 of a causality C, respectively. The given causalities are C1 :

{1, 4} → {9, 12}, C2 : {4, 9} → {15}, C3 : {5} → {11, 16}, C4 : {3} → {7, 10},

C5 : {15} → {13}.

If we apply C3 to the network, the failure of node 5 causes the failure of nodes 11

and 16. Fig. 4.1 (b) presents the remaining network with three connected components

(i.e. {1, 2, 3}, {4, 7}, and {6, 8, 9, 10, 12, 13, 14, 15}).
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If C1 is applied to the network, then nodes {1, 4, 9, 12} are removed from the net-

work. As {4, 9} is on the left side of C2, node 15 fails. Furthermore, the failure of node

15 causes the failure of node 13, according to C5. Therefore, we observe a cascade of

causal failures C1, C2, C5, and Fig. 4.1 (c) shows the remaining network consisting of

two connected components (that is, {2, 3, 5, 6, 8, 10, 14, 16} and {7, 11}) after applying

C1, C2, C5.

From Example 4.1, we observe cascading failures in the causal model. Therefore,

we formally define cascading causal failures.

Definition 4.1. Given a network G = (V , E , C), if the application of a causality C ∈ C

triggers the subsequent application of other causalities, we say that cascading causal

failures are applied to the network.

Def. 4.1 generalizes causal failures to the cascading case if the information on the

dependency between nodes is known. Naturally, given a group of failed nodes, it is

necessary to obtain all failed nodes triggered by the failures of the group of nodes based

on causal failures. Therefore, we define the closure of a group of nodes.

Definition 4.2. Given a set of causalities C, the closure of a set of nodes U with respect

to C, denoted by U+
C , is the set of all nodes (including those in U) whose failures are

triggered by causalities in C upon removal of nodes in U . The cascading set C(U) is

the set of causalities in C that are automatically triggered (in a cascading fashion) as

a result of the failure of the nodes in U .

The closure plays an important role in cascading causal failures assuming the time

delays for cascading effects to be negligible while studying the performance of the

network. An equivalent algorithmic definition of U+
C and C(U) is the output of the

following algorithm, the computational complexity of which is O(h2).
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Figure 4.1: Remaining networks after applying different causalities.
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Algorithm 3 Closure

Input: graph G = (V , E , C), U ⊆ V ;
Output: U+

C , C(U).
1: U ′ ← U , S ← ∅, D ← C ;
2: while ∃Ci ∈ D such that V1,i ⊆ U ′ do
3: U ′ ← U ′ ∪ V2,i,S ← S ∪ {Ci},D ← D \ {Ci}
4: end while
5: return U ′ and S.

Given a source node s and a terminal node t, it is well known that node failure may

increase the distance between them (38). More specifically, the more node failures the

network has, the more likely the distance between s and t would increase.

Example 4.2. In Fig. 1.1, let s = 2 and t = 14, then dG(2, 14) = 3. If causality C1

is applied to G, then nodes 1, 4, 9, 12, 15, and 13 will be removed from G, but the

distance between 2 and 14 is still 3. However, if we apply the causal failure C3, then

node 2 is not reachable from node 14 because node 5 is removed.

Example 4.2 presents the difference in causalities with respect to their impact on

connectivity. As alluded to in Section 1, the lengthening of the shortest paths can

adversely affect certain networks (e.g., the distance between nodes affects the efficiency

of power transmission in the power network). Therefore, it is interesting to investigate

how the number of causal failures applied affects the shortest path from s to t. Let

D0 = dG(s, t), then we have the following problem.

Problem 4.1. Given a network G = (V , E , C), where causality set C = {Ci : V1,i ⇒

V2,i, i = 1, 2, · · · , h} (containing possible cascading failures), s, t ∈ V, and a constant

α, find a maximum subset of causalities whose application maintains the distance

between s and t to be at most α×D0.

Problem 4.1 investigates the impact of cascading causal failures on the distance

between a given pair of nodes. This is a good metric to measure the connectivity of a
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pair of nodes in terms of the maximum number of causalities they can withstand. Let

D = α×D0, and we shall use D and α interchangeably below.

4.3 NP-Hardness Proof

The problem 4.1 is also applicable to edge-weighted networks because it focuses on the

length of st paths. To prove its hardness, we start with the case where the edges are

not weighted and there are no cascading failures and then extend the unweighted case

to the weighted case.

We consider the decision version of Problem 4.1 with unweighted edges and no

cascading failures, denoted as VfCD : given a network G = (V , E , C), where causalities

C = {Ci : V1,i ⇒ V2,i, i = 1, 2, . . . , h}, s, t ∈ V , D0 = dG(s, t), and a constant α, let

D = ⌊α×D0⌋, whether there exists C ′ ⊆ C with size at least f such that applying

causalities in C ′ maintains dG(s, t) ≤ D.

To prove that this version is NP-complete, we utilize the decision version of the

MAX-2SAT problem (18), which is described as: given 2-clauses c1, c2, . . . , cp, whether

there is a truth assignment satisfying at least f clauses. This problem is NP-complete.

Theorem 4.1. VfCD is NP-complete.

Proof. First, VfCD is in NP because one could verify whether dG(s, t) ≥ D in polyno-

mial time given a certificate of VfCD.

Then we perform a polynomial-time reduction from an instance I of MAX-SAT to

an instance I ′ of VfCD as follows:

1. We create the source node s. For each clause ci = xa ∨ xb, i = 1, 2, . . . , h, we

create nodes xa, xb, three nodes ci, ci,1, ci,2 and edges (xa, ci), (xa, ci,1), (xb, ci),

(xb, ci,2), (ci, ci,1), (ci, ci,2). Moreover, we add edges (s, xa) and (s, xb) if xa and

xb are in clause c1.
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2. For each literal xj, j = 1, 2, . . . , l, nodes Xj, X̄j, and dummy node dj are created,

with edges (dj, Xj), (dj, X̄j), (Xj, dj+1), (X̄j, dj+1). In particular, when j = 1,

we add edges (ch,1, d1), (ch,2, d1); when j = l, let t = dl+1.

3. For each clause ci = xa ∨xb, causalities are defined as Ca : {xa} ⇒ {Xa, ci,2} and

Cb : {xb} ⇒ {Xb, ci,1}.

4. D = 3p+ 2l + 1.

Suppose that I is satisfiable for a given assignment, then we have at least f satisfied

clauses. We pick one ”True” literal for each satisfied clause and apply the correspond-

ing causality in the constructed graph. The distance between s and t is at most D.

Therefore, I ′ is also satisfiable.

Suppose that I is not satisfiable for all possible assignments, which means that at

most f−1 clauses are satisfied. We prove that there are at most f−1 causalities applied

by contradiction. Suppose that at least f causalities are applied to the network; then,

based on the assumption of the construction method, the applied causalities must be

of different causalities; otherwise, s is not connected to t. Furthermore, the applied

causalities should not contain both x and be negative; otherwise, s is not connected

to t. Therefore, the causalities applied to ≥ f would lead to the fact that s is not

connected to t, which means that the distance between s and t is infinity (≥ D).

Therefore, at most f − 1, causalities should be applied to the network.

Fig. 4.2 illustrates the construction method in the proof of Theorem 4.1. The

instance of MAX-2SAT is (x1 ∨ x2)∧ (x̄1 ∨ x2)∧ (x̄1 ∨ x̄2). The corresponding instance

of VfCD without cascading effects is a graph with 23 nodes and 6 causalities.
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Figure 4.2: Example depiction of Theorem 4.1.
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Theorem 4.1 presents the hardness of problem 4.1 with unweighted edges. We can

consider unweighted edges with a uniform weight (e.g., 1). As a result, VfCD is a

special situation for the edge-weighted case. Then we could easily know:

Corollary 4.1. VfCD with weighted edges is NP-complete.

Furthermore, Theorem 1 and Corollary 1 establish the NP-completeness of a re-

stricted version of VfCD where there are no cascading failures. This establishes the

NP-completeness of the decision versions of Problem 1 with cascading failures. There-

fore, we have the following:

Corollary 4.2. VfCD with weighted edges and cascading failures is NP-complete.

4.4 Algorithms

4.4.1 MILP for the Problem

We propose a mixed integer linear programming (MILP) formulation to find the maxi-

mum number of causal failures that result in the shortest path of at most D = α×D0.

We consider the directed version DG = (V ,A, C) of the undirected graph G = (V , E , C),

where A is generated by replacing each edge in E with two directed arcs in opposite
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directions. Given the causal failures set C and the length constraint D, we have the

formulation in Eqs. (4.1-4.9).

Maximize
∑
C∈C

zC (4.1)∑
ij∈A

wijxij ≤ D (4.2)

xij ≤ 1− zC , C ∈ C,

i ∈ V1,C ∪ V2,C , (i, j) ∈ A (4.3)

xji ≤ 1− zC , C ∈ C,

i ∈ V1,C ∪ V2,C , (j, i) ∈ A (4.4)

∑
j

xij −
∑
j

xji =



1, if i = s

−1, if i = t

0, otherwise

(4.5)

∑
i

xij ≤ 1, j ∈ V , i ∈ V − {s, t} (4.6)

xij, xji ∈ {0, 1}, ij ∈ A (4.7)

zC ∈ {0, 1}, C ∈ C (4.8)

1− zC ≤
∑

i∈V1,C

∑
ij∈A

xij, C ∈ C (4.9)

This formulation aims to transmit one unit flow from source s to terminal t. There-

fore, in Eq. (4.5), for the source, s, the sum of the outgoing flow is 1 higher than the

incoming flow, while the total incoming flow for t is 1 higher than its total outgoing

flow. Other nodes follow the flow conservation constraint. Because only one unit of

flow is transmitted in the network, the total outgoing flow of each node v ∈ V − {s, t}

is at most 1 according to Eqs. (4.6) and (4.7). Regarding causality, C, the binary
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variable zC = 1 implies that causality C is applied to the network. Once C is applied,

each edge incident on any node in C would not carry any flow, as governed by Eqs.

(4.3) and (4.4). Consequently, the state of each edge would be 0 or 1, and the edges

with state 1 definitely form an st path. Let wij be the weight of the edge (i, j) ∈ E ,

and we require the length of the path to be at most D (in Eq. (4.2)) while maximizing

the number of applied causalities (in Eq. (4.1)). Finally, Eq. (4.9) is the application

of cascading causal failures, that is, causality C should be applied automatically if the

sum of the flow of all nodes in V1,C is 0.

4.4.2 A Heuristic Algorithm

Algorithm 4 Greedy-Max-Length

Input: graph G = (V , E , C), length constraint D, source node s and terminal node t;
Output: maximal set of causalities MC, such that when all causalities in MC are
applied to G, there exists at least one st-path whose length is not greater than D.

1: Sort the set C based on θ(C) for all C ∈ C and let θ(C1) ≤ θ(C2) ≤ · · · ≤ θ(Ch)
and update C as {C1, C2, · · · , Ch};

2: i← 1, C ′ ← ∅;
3: while i ≤ |C| do
4: MC ←MC ∪ Ci;
5: Run Algorithm 1 to get the closure of V(MC), i.e., causality set S and nodes

in S, denoted as U .
6: if s, t are not connected or dG(s, t) > D in G − U then
7: MC ←MC − Ci

8: i← i+ 1
9: Continue
10: else
11: G ← G − U
12: C ← C −MC
13: end if
14: end while
15: returnMC

Given the NP-hardness of the formulated problem, we design a greedy strategy to

solve the problem approximately in polynomial time. Let θ(C) be the distance between
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s and t if we apply the causality C with its closure to G, then we sort the causalities

based on the corresponding values of θ in ascending order. In the sorted causalities, we

add one causality and check the closure of the removed nodes and the distance between

s and t. If the distance between s and t is less than or equal to D, we add the applied

causalities to the result; otherwise, we ignore the present causality and continue to

check the next one. The details of the algorithm are listed below.

Complexity Analysis: Step 1 actually computes the shortest st path that passes

each node in each causality. In the while loop (Steps 3-13), the algorithm calculates

the shortest path between s and t after iteratively applying the causalities. Therefore,

the time complexity is O(n3).

Approximation Ratio: we consider the worst case. The first causality ap-

plied maintains dG(s, t) ≤ D while applying any of the other causalities would make

dG(s, t) > D. The result of the algorithm would be 1. On the other hand, the optimal

solution might apply all other causalities except the first one found by the proposed

algorithm. Therefore, the optimal solution for the worst case is h− 1.

4.5 Experimental Results

In this section, we demonstrate the performance of the proposed algorithm and the op-

timization model in experiments involving real-world networks. All programs are coded

in Python and implemented on a Macbook with CPU M1 Pro and 16 GB memory.

The graph-related programs refer to the NetworkX library (20), and the optimization

model uses the Gurobi library (21).
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4.5.1 Case Study I: IEEE 300 Network

We explore the connectivity of the IEEE 300 bus system, the topology of which is

found in Fig. 4.3. We randomly generate 25 causalities as shown in Table 4.1. In each

causality C : V1 ⇒ V2, the number of nodes in V1 or V2 follows a discrete uniform

distribution in {1, 2, 3, 4, 5}.

Figure 4.3: IEEE 300 network with synthetic edge weights.

4.5.1.1 Unweighted Network

We pick 4 pairs of terminal nodes, compare the performance of the proposed greedy

algorithm with the optimization model and show the results in Table 4.2, where th

and to denote the time consumed by the greedy algorithm and the optimization model,
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Table 4.1: Causality definition generated randomly for the IEEE 300 network, where
numbers in the causality sets represent node labels from the original network data set.

No. V1 V2
1 136, 127 113

2 27, 90, 175 148, 107, 102

3 181 89, 137, 52

4 86, 9044 5, 171

5 7130, 42, 9036 25, 79, 198, 240

6 61, 9042, 188 552, 201, 41

7 226, 53, 104, 124 9044, 241, 228

8 243, 88, 203, 248, 176 526, 44, 102, 129

9 196, 117, 48, 39, 235 145

10 9055, 72 9053, 241, 224, 9026, 201

11 121, 126, 161, 178, 9037 9038, 122, 125, 72

12 526, 153, 9055 16, 225, 5, 109

13 108, 72, 179, 1201 188

14 160, 9035, 142, 60, 7139 140, 9023

15 214, 116, 22 103, 188, 9052, 182, 156

16 198, 9071, 237, 23, 166 9022

17 322, 214, 103, 205, 9037 2040, 9071

18 20 130, 72, 218, 128

19 4, 203, 90 64, 62, 204, 202

20 135 151

21 103, 211 53, 9023, 129, 115, 73

22 226, 7055, 169, 121 141, 229, 227, 120

23 25 9002

24 14, 158, 34, 27 224, 609

25 114 168, 156, 48, 9022, 45
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respectively. In terms of running time, the greedy algorithm takes only 20% of the

time cost by the optimization model to obtain the solution. However, for the IEEE

300 network, the running time of the optimization model is still acceptable, because

the average would be around 0.14 seconds. For the number of causalities applied, we

can see that the results of the greedy algorithm are close to those of the optimization

model. For example, when s = 3 and t = 7039, both methods found the same number

of causalities applied for D = 6. Moreover, for s = 7166, t = 9533, D = 24, the

greedy algorithm found 19 applied causalities, 2 fewer than the optimization models.

Interestingly, the results obtained from the optimization model are almost unchanged,

although D is increasing. The reason is that the optimization model always tries to

keep the shortest path from s to t unchanged and applies all causalities that do not

contain nodes on the shortest st-path. However, this does not indicate that the problem

formulated can be solved in polynomial time, unless we have prior knowledge that there

is only one shortest path from s to t.

From the perspective of the removed nodes, the number of causalities applied

indicates the expected number. Based on the assumption mentioned at the begin-

ning of this subsection, the expected number of nodes in each causality is 6. For

s = 199, t = 9033, D = 20, the number of causalities applied is 22, which means that

removing 22 × 6 = 132 nodes on average could guarantee that the distance between

node 199 and node 9033 is at most 20.

One might be interested in the difference between individual node failures and

causal failures. Suppose that we have an IEEE 300 network with 132 nodes that will

fail; we hope to find the maximum number of failed nodes such that the distance

between s and t is at most D. Clearly, we need to check cases 2132 in the worst case.

Taking into account causal failures, we know that the expected number of causalities is
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Table 4.2: Experiments for unweighted IEEE 300

{s, t} D0 D |MC| th(s) OPT to(s)

6 21 0.17

{3, 7039} 5 10 21 0.03 22 0.13

18 22 0.13

11 22 0.16

{2, 7061} 10 13 19 0.03 23 0.13

17 23 0.13

16

{199, 9003} 13 20 20 0.03 22 0.16

24

20 0.16

{7166, 9533} 19 24 19 0.03 21 0.13

28 0.13

132/6 = 22. In other words, we need to scan 222 cases to obtain the maximum number

of causalities in the proposed problem. This is a substantial computation gain if we

consider failures as causalities.

4.5.1.2 Weighted Network

For the same network, we sample a real number between 1 and 5 for each edge and

use the same source and terminal nodes as the unweighted network. Instead of setting

D directly, we pick three values of α for each pair of source and terminal nodes. The

results in Table 4.3 again illustrate the fact that the time spent by the optimization

model is almost 5 times the time cost of the greedy algorithm. For example, given

s = 2, t = 7061, α = 2.5, the optimization model takes 0.16 seconds, while the greedy

algorithm takes 0.03 seconds. Similar cases occur with s = 3, t = 7039, α = 1.5 and
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s = 7166, t = 9533, α = 1.5. Furthermore, compared to Table 4.2, we could see that for

the same terminal nodes, the running time of the unweighted version is close to that of

the weighted version for both the greedy algorithm and the optimization model. This

fact indicates that whether the edges are weighted does not affect the running time of

both algorithms.

Table 4.3: Experiments for edge-weighted IEEE 300

{s, t} D0 α |MC| th OPT to

1.5 0.15

{3, 7039} 13.97 2.5 21 0.03 22 0.13

3.5 0.13

1.5 0.06 0.15

{2, 7061} 32.89 2.5 19 0.03 23 0.16

4 0.03 0.13

1.5 0.04 0.17

{199, 9003} 35.65 2.5 20 0.03 22 0.16

4 0.03 0.16

1.5 0.15

{7166, 9533} 51.66 2.5 19 0.03 21 0.13

3.5 0.13

4.5.2 Case Study II: Power 5000

A power network with 4945 nodes and 6570 edges is generated using the method in

(43) and introduced to investigate the scalability of the proposed algorithm. We also

randomly generate 40 causalities. For each causality, C : V1 ⇒ V2, the number of nodes

in V1 or V2 is sampled from a discrete uniform distribution between 1 and 60.
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4.5.2.1 Unweighted Network

Each edge is weighted as 1 in this case. Four pairs of terminals are selected for exper-

iments, and the comparison is shown in Table 4.4.

Table 4.4: Experiments for Unweighted Power 5000

{s, t} D0 D |MC| th(s) OPT to(s)

10 0.70 36 20.37

{184, 187} 8 12 36 0.67 36 20.37

16 0.70 37 20.10

14 0.73 20.73

{10, 14} 13 18 37 0.78 37 19.94

22 0.70 20.67

22 10 0.83 33 20.70

{709, 1314} 19 26 12 0.84 33 20.47

28 21 0.84 34 20.72

26 0.84 34 34.43

{1035, 1200} 25 30 29 0.80 34 31.02

34 0.81 35 30.33

In terms of the number of causalities applied, we also observe the efficacy of the

greedy algorithm. For example, given s = 10, t = 14, D = 18, both the greedy algo-

rithm and the optimization model obtain 37 causalities. Similarly, given s = 184, t =

187, D = 12, we have 36 causalities applied using the greedy algorithm and the op-

timization model. An interesting situation is that the number of causalities applied

remains unchanged regardless of the change of D in some experiments. For example,

for D = 14, 18, 22, s = 10, t = 14, the number of causalities applied remains at 37.

Obviously, most causalities do not affect the shortest path from node 10 to node 14.
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From Table 4.4, we also observe the uncertainty of the proposed greedy algorithm.

For s = 709, t = 1314, D = 22, the optimization model obtains 33 applied causalities,

while the greedy algorithm finds 10. As we mentioned in Theorem 2, applying any

causality except for the causalities found by the greedy algorithm causes the distance

between node 709 and node 1314 to be greater than 22. However, this is very rare.

From the above experiments, the greedy algorithm works in most cases.

From the perspective of running time, we can see that the greedy algorithm takes

much less time than the optimization model. For example, for s = 1035, t− 1200, D =

26, the greedy algorithm spends 0.84 seconds, while the optimization model spends

34.43 seconds. Similarly, for s = 184, t = 187, D = 10, the running time of the

optimization model is almost 20 times that of the greedy algorithm. However, for a

network with 5000 nodes, the optimization model takes only 1 minutes to obtain the

solution, probably reasonable if we want the exact solution.

4.5.2.2 Weighted Network

We randomly assign weights from 1 to 5 to each edge and repeat the experiments for the

terminal nodes above. We choose α = 1.5, 2.5, 3.5 and compare the greedy algorithm

and the optimization model, the results of which are listed in Table 4.5.

The results in Table 4.5 are consistent with the observations that we have obtained

in previous experiments. However, the efficacy for s = 709, t = 1314 is much higher

than the corresponding unweighted version. The reason is that for a pair of terminal

nodes in the weighted version, there exist several paths with lengths that are close to

each other. As a result, the network could apply more causalities without making the

distance between s and t exceed the length constraint.
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Table 4.5: Experiments for Weighted Power 5000

{s, t} D0 α |MC| th(s) OPT to(s)

1.5 0.71 20.05

{184, 187} 26.80 2.5 36 0.77 37 20.44

3.5 0.68 20.47

1.5 0.72 20.58

{10, 14} 38.80 2.5 37 0.74 37 20.22

3.5 0.75 20.56

1.5 0.83 20.64

{709, 1314} 76.30 2.5 35 0.95 36 20.74

3.5 0.93 20.66

1.5 30.61

{1035, 1200} 110.59 2.5 29 0.88 35 30.58

3.5 30.29

4.5.2.3 Scalability Analysis

By comparing the results of the IEEE 300 network with the Power 5000 network,

we observe the scalability of the proposed algorithms. Looking at the run time, it

takes < 1 seconds for the optimization model for the IEEE 300 network, but the time

is greater than 20 seconds for most experiments in the Power 5000 network. One

might imagine that the running time would be much higher as the size of the network

increases. However, the time taken by the greedy algorithm in the Power 5000 network

is almost twice that of the time in the IEEE 300 network, while the greedy algorithm

preserves the efficiency to a certain degree. If there is no other specific requirement for

the number of causalities, the greedy algorithm is a good alternative with respect to

the optimization model.
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4.6 Conclusion

In this chapter, we consider the impact of causal failures on the shortest paths between

pairs of nodes. We formulate a problem to find the maximum number of applied

causalities since the length of the st-path is at most D. The formulated problem is

NP-hard, and a mixed integer linear programming model is built correspondingly. In

comparison, we propose a greedy algorithm to approximately obtain the number of

applied causalities. The experiments demonstrate that the greedy algorithm works

well in most cases and that the optimization model is acceptable in terms of running

time.

For future work, we will look at the impact of causal node failures on st-reliability in

a network. That is, considering the probability that each node is functioning or not, we

will construct the model of probabilistic causal failures and investigate the probability

that the source node s is connected to the terminal node t, that is, st-reliability, in the

presence of causal failures.
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Chapter 5

Causal Edge Falires on the Maximum Flow in a

Network

5.1 Introduction

Network flow models have been applied to real-world applications, such as power trans-

mission networks (44), supply chain networks (45), and transportation networks (46).

The failure of edges affects the flow transmission in these networks and might trigger

failures of other edges or a situation in which no flow is transmitted via other edges.

More specifically, we consider the cases of the networks mentioned above as follows.

Power Networks

A power transmission network consists of generators, substations, and transmission

towers, which are all modeled as nodes, and transmission lines, which are modeled as

edges connecting those nodes. Each transmission line consists of several physical lines,

and each physical line supplies a specific capacity. Therefore, each transmission line has

multiple capacities, depending on the number of physical lines operating. For example,

if there are x functioning physical lines for an edge, then we say that the capacity or

state is x. Furthermore, if a transmission line fails, the load will be redistributed and

other transmission lines might have to receive additional loads. It is possible that

the extra load due to load redistribution exceeds the capacity of other transmission
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lines, and thus causes complete or partial failure of these lines if the load of the failed

transmission line has a relatively large load. This is an example in which the failure of

an edge causes the failure of other non-adjacent edges.

Supply Chain Networks

A standard supply chain network consists of suppliers, plants, warehouses, and retailers

(47), and it is represented by nodes found within levels labeled 1, 2, 3, and 4, respec-

tively. The transportation edges are placed between levels l and l+1, where l = 1, 2, 3.

Each transportation link has its own flow capacity, representing the maximum number

of products that could be shipped between levels. The demand originates from retail-

ers, and the products are shipped through the network to satisfy that demand. If an

edge from a supplier fails due to a disruption (e.g., a natural disaster such as a flood

or earthquake), the amount of each product delivered to the warehouses connected to

the retailer will be reduced. As a result, the flow transmitted to the retailer could

be smaller, or even 0. Let us consider that the flow of one edge is 0 to be an edge

failure because of the initial edge failure. We could observe from this example that an

edge failure in a supply chain network can trigger failures of other edges, regardless of

whether these edges share common nodes.

Transportation Networks

A transportation network is a network in a geographical space, such as a highway

or airline network. Such a network is generally modeled as a graph in which a node

represents a location (e.g., a station, airport, or municipality), and an edge is a con-

nection between two locations. For example, in a road network, an edge is a one-way

road between two stations, and the weight of the edge indicates the number of vehi-

cles that a particular road can handle in a specific time period. Vehicles can bypass
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an edge representing a closed road segment by finding alternate roads but which can

cause severe traffic congestion. To avoid such congestion, a traffic authority can shut

down some low-capacity roads, forcing vehicles to choose high-capacity roads. From

the perspective of failures, if we consider the closed road segment to be a failed edge,

then causal edge failures are a common phenomenon in road networks.

The flow network model is important in representing engineering applications. For

example, the assignment problem, a fundamental problem in operations research, is

widely applied in real life. Generally, it is defined as assigning k′ agents to k jobs to

minimize the corresponding cost. Hu et al. (48) constructed an integer programming

model based on network flow and proposed a dynamic algorithm to solve the generalized

assignment problem. In operator networks, network function virtualization technology

helps manage network service, the requests of which are usually deployed as a service

function chain. However, load imbalance has been an issue in such a network. Han et al.

(49) proposed a method for implementing the service function chain using network flow

theory to solve the load imbalance. For coupled electricity and gas networks, Mhanna

et al. (50) formulated the multi-period optimal electricity and gas flow problem, which

aims to find a dispatch such that the costs of power generators and nodes in the gas

network are minimized and solve the problem by constructing algorithms based on

network flow and linear programming.

Node/edge failures affect the maximum flow and reliability between the source node

s and the terminal node t in such flow networks. Specifically, the failure of one node

triggers a malfunction of edges emanating from the node. As a result, flow cannot

be delivered through these malfunctioning edges. Furthermore, the probability that d

units of flow could be delivered from s to t is also lower because the failure of a node

can reduce the number of minimal paths. Lin (51) considered a stochastic flow network

where each edge/node has several capacities and may fail, and proposed an algorithm
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to compute the probability that the maximum flow from s to t is at least a given integer

d by finding all d-MPs and using the inclusion-exclusion principle. Similarly, Yeh (52)

proposed an algorithm based on d-MC to compute multi-state two-terminal reliability

based on the same network assumption. Both works show that node/edge failures play

a vital role in the reliability of a flow network.

These works do not mention the dependence of edges in a network, regardless of

whether the edges share common nodes. We address this deficiency in the literature

by exploring causal edge failures and their impact on flow. And we formalize the study

of such causal edge failures with the following contributions.

• We formally define causal edge failures in a directed flow network.

• We formulate a problem to find the maximum number of causal edge failures

while preserving d units of flow to transmit from source node s to terminal node

t.

• We prove the decision version of the formulated problem to be NP-complete

and present a mixed linear programming model to find the exact solution to the

problem.

• We design a greedy algorithm to approximate the solution to the optimization

problem to deal with its computational complexity.

The rest of this paper is organized as follows. Section 5.2 builds the mathematical

model of causal edge failures and formulates the problem. In Section 5.3, we show the

hardness of the proposed problem and present a corresponding optimization model.

Section 5.4 provides a genetic algorithm and an approximation algorithm to solve

the problem. We demonstrate multiple experiments in Section 5.5, comparing the

performance of the designed algorithms, and conclude this chapter in Section 5.6.
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5.2 Problem Formulation

We consider a directed flow network G = (V , E ,W , C), where V is the set of nodes, E

is the set of edges, W is the set of edge capacities and C is the set of causalities. The

network has |V| = n nodes and |E| = m edges. Each edge e ∈ E can also be represented

as an ordered pair of nodes e = (u, v), where u, v ∈ V . Furthermore, the capacity of

edge e = (u, v) is indicated by we or wu,v, which is the maximum number of units of

flow that can be transmitted through this edge.

Fig. 5.1 depicts an example of a flow network that has 6 nodes {1, 2, 3, 4, 5, 6} and

9 edges {e1, e2, e3, e4, e5, e6, e7, e8, e9}, the capacities of which are {3, 2, 1, 2, 1, 3, 1, 1, 2}.

For example, the capacity of edge e1 is 3, such that edge e1 can transmit at most 3

units of flow from node 1 to node 2. edges are correlated in this network. We consider

Figure 5.1: An example of a flow network.

the edge dependence model as follows:

Definition 5.1. Given a network G = (V , E ,W , C), edges ei, ej ∈ E, if the failure edge

ei triggers the failure of the edge ej, we say that causal edge failures denoted C : ei ⇒ ej,

are applied to G.
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Definition 5.2. A causality C : ei ⇒ ej is applied implies that when the edge ei is

removed, ej is removed.

The removal or failure of an edge is equivalent to the capacity of the edge being set

to 0. Furthermore, we generalize causal edge failures to the case of edge sets as follows.

Definition 5.3. Given a network G = (V , E ,W , C), E1, E2 ⊆ E, if the failure of edges

in E1 cause the failure of all edges in E2, we call such failure as a causal failure (edge)

from E1 to E2. We refer to this as failure of E1 causes failure of E2. The causality is

denoted as C : E1 ⇒ E2.

Example 5.1. Given the causality C1 : {e1} ⇒ {e2} in Fig. 5.1, if we apply C1 to

the network, then we remove the edges e1 and e2 or set the capacities of both edges to

0 simultaneously. As a result, nodes 2 and 4 do not have incoming flow, and the edges

e3, e5, and e6 are unrelated to the flow transmission from node 1 to node 6.

It should be noted that causal edge failures are an extension of the Shared Risk

Links Group, a set of links that share a common resource, which affects all links in

the set if the common resource fails (53). Causal edge failures can describe all kinds of

edge dependence from the network topology perspective.

For the flow network, the flow from source node s to terminal node t is affected

once we apply causal edge failures.

Maximum flow is perhaps the most popular way to characterize flow in such net-

works, defined as the maximum units that can be delivered from source node s to

terminal node t. From the example in Fig. 5.1, the maximum flow from source node 1

to terminal node 6 is 5. Given the causalities, C1 : {e1} ⇒ {e2}, C2 : {e6} ⇒ {e7}, and

C3 : {e5} ⇒ {e3}, applying them, respectively, reduces the maximum flow to 2, 4, and

4. As such, it is also interesting to explore the impact of causal failures on maximum
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flow, namely in finding the maximum subset of causalities that, when applied, enable

the flow network to maintain some desired level of maximum flow.

Problem 5.1. Given a flow network G = (V , E ,W , C), causalities Ci : E1,i ⇒ E2,i, i =

1, 2, · · · , h, two nodes s, t ∈ V, and a constant d, with a maximum flow fs,t, find a

maximum subset of causalities whose application maintains fs,t ≥ d.

Problem 5.1 evaluates the robustness of the network when faced with edge failures.

It uses the number of causalities of edges as a metric instead of the number of edges.

Intuitively, one could check each possible combination of all causalities and obtain

the solution to Problem 5.1. However, the number of combinations to be checked is

2h, where h is the number of causalities, indicating the hardness of Problem 5.1.

5.3 NP-Hardness Proof

We consider the decision version of the problem formulated, denoted as VrCd : Given

graph G = (V , E ,W , C), source node s, and terminal node t, is there C ′ ⊆ C with size

at least r such that applying C ′ maintains fs,t ≥ d?

To prove VrCd is NP-complete, we refer to the decision version of the maximum 2-

satisfiability (MAX-2SAT) problem: given a Conjunctive Normal Form with p clauses

c1, c2, . . . , cp, is there a true/false assignment of all literals such that there are at least

r clauses that are satisfied? MAX-2SAT is NP-complete (54). Then we have the

following.

Theorem 5.1. VrCd is NP-complete.

Proof. First, it is straightforward to see that VrCd is in NP because we could verify a

certificate of VrCd in polynomial time by using a known algorithm to find the maximum

flow.
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Then we perform a polynomial-time reduction from an instance I of MAX-2SAT

to an instance I ′ of VrCd as follows:

• We identify source node s and terminal node t. Suppose that there are l literals

x1, x2, . . . , xl and/or their negatives x̄1, x̄2, . . . , x̄l. For each literal xi, we have

nodes Xi, their negatives X̄i, and a dummy node Di. In addition, we have edges

(s,Xi), (s, X̄i), (Xi, Di), (X̄i, Di) and (Di, t). The capacities of all the edges here

are set to p.

• For each clause cj = xa ∨ xb, j = 1, 2, . . . , p, we construct nodes xa, xb, cj and

edges (s, xa), (s, xb), (xa, cj), (xb, cj), (cj, t). The capacities of all the edges here

are set to p. In particular, if xa appears in more than one clause, we do not

construct duplicate nodes for xa, that is, only one xa is enough in the graph.

• If xa is in clause cj, j = 1, 2, . . . , p, causality is defined as Ca : {(s, xa)} ⇒

{(xa, cj), (s,Xa)}.

• Let d = pl + p2 − p+ 1 and Ea be applied if xa is assigned True in clause cj.

Suppose I is satisfied, then at least r clauses are satisfied. Then we choose one true

literal from each satisfied clause, and consequently, at least r causalities are applied.

The flow from s to t is pl + p, which meets the requirement that at least d units are

transmitted from s to t.

Suppose I is not satisfied; then, at most, r − 1 clauses are satisfied. Further, we

have the following.

Claim: It is not possible that causalities r are applied to the network.

Suppose there are r applied causalities. If each comes from one clause, then we have r

clauses that are satisfied according to the above construction. Therefore, two of them

come from the same clause cj, leading to the situation that no flow from s to t will flow
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through node cj. As a result, the flow would be at most p(l− 1)+ p2 = pl+ p2− p < d.

Alternatively, two of the applied causalities come from xi and x̄i, then the flow from s

to t through node Di is 0. Consequently, we have fs,t ≤ pl+ p(p− 1) = pl+ p2− p < d.

Therefore, the claim holds and the theorem is proved.

For another explanation of the proof of theorem 5.1, we provide an example in Fig.

5.2 where the instance of MAX-2SAT is (x1∨x2)∧ (x̄1∨x2)∧ (x̄1∨ x̄2). Consequently,

six causalities are constructed in the graph, and, finally, two causalities are applied to

the network according to the assignment of literals.

Figure 5.2: Explanation of proof for Theorem 5.1
.
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5.4 Algorithms

5.4.1 Optimization model

We provide a mixed-integer linear programming (MILP) model to solve VrCd. In this

model, an additional edge is added from node t to s, (t, s), with infinite capacity, and

zC is a binary variable that indicates whether causality C is applied: zC = 1 indicates

that causality C is applied, and zC = 0 indicates that causality C is not applied.

maximize
∑
C∈C

zC (5.1)

s.t. ft,s ≥ d (5.2)∑
u∈V

fv,u =
∑
u∈V

fu,v, v ∈ V (5.3)

fu,v ≤ wu,v, (u, v) ∈ E (5.4)

fu,v ≥ 0, (u, v) ∈ E (5.5)

fu,v ≤ wu,v(1− zC), C ∈ C, (u, v) ∈ E(C) (5.6)

zC ∈ {0, 1}, C ∈ C (5.7)

This formulation aims to find the maximum number of causalities with Eq. (5.1)

while preserving the flow transmitted from s to t is at least d, governed by Eq. (5.2).

We assume that there is no learning effect or deterioration effect in the network, so for

each node, the sum of all coming flows equals the sum of all outgoing flows, as dictated

by Eq. (5.3). This is called the flow conservation law. The flow passing through each

edge does not exceed the capacity of the edge and must be nonnegative, ensured by

Eqs. (5.4) and (5.5), respectively. For the edges of causality E, Eq. (5.6) requires that

the flow must be 0 if causality E is applied, according to Eq. (5.7).
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5.4.2 A Heuristic Algorithm

To find the solution more efficiently, we propose an approximation algorithm consider-

ing causalities. As we know, applying one causality might reduce the maximum flow

from the source to the terminal. If the maximum flow drops sharply after removing

edges from one causality, then this causality should not be applied to the network

first. Therefore, for causality C ∈ C, we consider the maximum flow in the graph

G−C, denoted as θ(C), and classify the causalities based on θ(C) in descending order.

Moreover, we use a stack to store the applied causalities while checking whether the

maximum flow is at least d. Details of the algorithm are listed below.

Algorithm 5 GREEDY-MAX-FLOW

Input: graph G = (V , E ,W , C), flow demand d, source s, terminal t;
Output: approximated maximum number of applied causalities.

1: Sort all causalities based on θ values in ascending order, and let θ(C1) ≥ θ(C2) ≥
· · · ≥ θ(Ch);

2: MC = ∅; //initialization
3: for i in 1 : h do
4: if the maximum flow of G − Ci is at least d then
5: MC ←MC + Ci; //updating MC
6: G ← G − Ci;
7: else
8: Continue;
9: end if
10: end for
11: returnMC.

Computational Complexity: Algorithm 1 only needs to compute the maximum

flow for 2h times in the worst case. Hence, the total computational complexity is

O(hnm2).

Approximation Ratio: After sorting, the first causality can be applied to the

network but applying each of the remaining causalities would reduce the maximum
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flow to less than d, while applying all other causalities is the solution. Therefore, this

worst-case indicates that the tightest approximation ratio should be h− 1.

5.5 Experimental Results

In this section, multiple experiments are presented to compare the performance of the

proposed algorithms and the optimization model. All algorithms, coded in Python, are

implemented on a desktop with a 2.6 GHz 6-Core Intel Core i5 with a RAM of 16GB.

Specifically, the optimization model utilizes the Gurobi library (21) and the NetworkX

library (20) to help code the greedy algorithm and the genetic algorithm.

5.5.1 Comparison of Performance of Algorithms

In this subsection, we use a power network, denoted power2000, with 1,723 nodes and

2,394 edges from Rossi and Ahmed (26) with the following settings.

• We assign the capacity of each edge by randomly sampling an integer from 1 to

wmax. In this experiment, wmax = 20.

• For each causality C : E1 ⇒ E2, we randomly generate m′
1 and m′

2 edges for

E1 and E2, respectively, where m′
1,m

′
2 ∈ [1,mmax]. In this experiment, mmax =

30, h = 40. In addition, to avoid cascading failures, we ensure that all causalities

are disjoint.

• When running the optimization model, we convert this undirected network to a

directed network by replacing each edge uv with two edges (u, v) and (v, u), the

capacities of which are the same.

We choose different pairs of s, t, compute the number of causalities, and list the

results in Table 5.1.
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Table 5.1: Performance comparison of optimization model and greedy algorithm for
power2000.

s, t max-flow d
MILP GREEDY-MAX-FLOW

opt to(s) |MC| th(s) |MC|/opt

1 36 6.10 36 4.75 1.00

2 36 5.88 35 4.72 0.97

{40, 310} 5 3 35 6.09 35 5.17 1.00

4 34 5.95 34 4.96 1.00

5 33 6.09 33 5.10 1.00

1 36 5.81 36 6.80 1.00

3 36 5.97 36 6.72 1.00

{20, 1000} 11 5 36 5.85 36 6.64 1.00

7 34 5.82 31 6.53 0.91

9 32 5.91 30 7.12 0.94

1 38 5.81 37 8.70 0.97

4 38 5.84 38 8.60 1.00

{500, 1500} 18 7 37 6.04 35 8.79 0.94

10 35 5.97 31 9.94 0.88

16 29 6.17 28 9.68 0.96
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From Table 5.1, we observe the efficacy of the greedy algorithm. The greedy algo-

rithm could achieve almost at least 90% of the solution. For example, the optimization

model and the greedy algorithm obtained 36 causalities for s = 40, t = 310, d = 1. Sim-

ilarly, for s = 20, t = 1000, and d = 9, the number of causalities applied as obtained

by the greedy algorithm is only 1 less than that obtained by the optimization model.

However, in some cases, the greedy algorithm spent more time getting the results than

the optimization model. For example, it took the optimization model 6.17 seconds to

get the solution for s = 500, t = 1500, d = 16, while the greedy algorithm consumed

9.68 seconds. Similarly, for s = 20, t = 1000, d = 9, the greedy algorithm spent about

1 second more than the optimization model. This indicates that the greedy algorithm

does not necessarily provide an advantage relative to the optimization model in terms

of the running time for power2000.

From the perspective of the relationship between the number of edges and the num-

ber of causalities, we could observe the advantage of causalities from the experiments.

Consider a network with m edges where we are looking for the maximum number of

failed edges such that there exists flow d from s to t. This problem is very hard, requir-

ing O(2m) time in the worst case because one needs to check each possible combination

of all edges. However, based on causalities, we know that the expected number of

edges in one causality is mmax + 1 and the expected number of causalities is m
mmax+1

if all edges belong to a specific causality. Consequently, we need to check the possible

combination of causalities, which takes much less time than O(2m).

5.5.2 More Examples

To investigate the scalability of the optimization model and the greedy algorithm, we

performed the experiments on a road network with 2642 nodes and 3303 edges and a

power network with 4941 nodes and 6954 edges, denoted by road3000 and power5000,
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respectively(26). We use the same experimental setting as power2000 except that

nmax = 40 for road3000 and nmax = 60 for power5000.

Table 5.2: Performance comparison of algorithms for road3000.

s, t max-flow d
MILP GREEDY-MAX-FLOW

opt to(s) |MC| th(s) |MC|/opt

1 29 99.53 26 9.24 0.90

2 26 91.20 22 9.37 0.85

{200, 2500} 5 3 25 65.12 20 10.61 0.80

4 24 24.02 17 12.16 0.71

5 22 27.34 17 11.91 0.77

2 29 129.19 26 11.88 0.90

4 27 146.57 20 13.32 0.74

{1000, 2000} 10 6 25 185.92 21 14.79 0.84

8 22 130.07 18 15.55 0.82

10 21 68.96 15 16.68 0.71

2 37 13.55 37 7.71 1.00

4 35 14.12 30 9.22 0.86

{1500, 1600} 12 8 35 13.43 35 8.54 1.00

10 32 14.08 31 8.66 0.97

12 28 13.85 28 8.39 1.00

Table 5.2 illustrates the efficacy of the greedy algorithm for road3000. The greedy

algorithm achieves at least 70% of the solution obtained by the optimization model.

Also, the greedy algorithm took much less time to get the solution. For example,

the optimization model consumed 129.19 seconds to get 29 applied causalities for s =

1000, t = 2000, d = 2, while it only took 11.88 seconds for the greedy algorithm to get

26 applied causalities. The greedy algorithm only spent 10% of the time consumed by
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the optimization model to obtain 90% of the solution. Similarly, the greedy algorithm

only spent 12% of the time consumed by the optimization model to obtain 82% of the

solution for s = 1000, t = 2000, d = 8.

Note that different choices of s, t could result in a significant difference in running

time. For example, for s = 1000, t = 2000, the running time of the optimization model

is almost 10 times that of the optimization model for s = 1500, t = 1600. The reason is

that when searching for the MILP solution if the quality of the initial feasible solution

is good, the search will stop quickly.

Table 5.3: Performance comparison of algorithms for power5000.

s, t max-flow d
MILP GREEDY-MAX-FLOW

opt to(s) |MC| th(s) |MC|/opt

5 37 46.49 37 18.27 1.00

6 36 47.17 36 18.37 1.00

{1, 5} 11 8 36 47.36 35 18.73 0.97

9 36 46.81 34 18.02 0.94

10 36 46.74 34 18.05 0.94

1 38 47.11 38 23.09 1.00

5 36 46.66 36 23.29 1.00

{2100, 4600} 19 9 35 46.61 34 23.19 0.97

13 33 47.10 33 22.52 1.00

17 31 45.80 31 26.68 1.00

6 37 47.79 37 17.14 1.00

11 36 46.41 36 18.01 1.00

{1200, 2000} 28 16 35 46.85 34 17.13 0.97

21 32 49.02 31 18.28 0.97

26 30 48.13 29 18.62 0.97
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Table 5.3 compares the performance of the optimization model with the greedy

algorithm. The greedy algorithm again shows its efficacy and efficiency. For example,

the greedy algorithm only spent 1/3 of the time cost by the optimization model to

obtain the solution for s = 2100, t = 4600, d = 6. Similarly, the greedy algorithm

achieved 97% of the solution using almost half the time consumed by optimization.

Looking at Tables 5.1, 5.2, and 5.3, we can see that the execution time of the

algorithms depends on the size of the network and the choices of the terminal nodes

s, t. We can see that for a pair of s, t in road3000, the run-time of the algorithms might

be much more than that of an experiment in power5000. The case s = 1000, t = 2000

on road3000 and the case s = 1200, t = 2000 on power5000 illustrate that. In addition,

both algorithms are scalable. The running time of the optimization model is not more

than 4 minutes for all experiments. We are confident that both algorithms would be

efficient in larger networks.

5.6 Conclusion

This chapter defines the causal edge failures and their impact on the flow network. We

formulate an optimization problem to investigate the robustness of the flow network

and design a greedy algorithm to search for the solution exactly and heuristically. The

experiments show the efficiency and efficacy of the greedy algorithm for large-scale

networks.

In future work, we will investigate probabilistic causal failures. More specifically,

we plan to define the probability of applying one causality based on the likelihood that

each edge is functioning. Then the reliability of a flow network facing causal failures

will be defined. Moreover, we will also look at cascading causal edge failures in flow

networks.
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Chapter 6

Cost-Effective Network Augmentation Facing

Causal Node Augmentation

6.1 Introduction

As a basic topic in graph theory, augmentation for network connectivity adds edges with

minimum weights to meet some connectivity requirements (55). Based on connectivity

metrics, network augmentation could be categorized into two cases: edge connectivity

augmentation and node connectivity augmentation. For the former, connectivity aug-

mentation is typically performed according to k-edge-connectivity, such that the net-

work remains connected whenever at most k edges are removed. k-edge-connectivity

measures how robust a network is, and the corresponding weighted augmentation prob-

lem is denoted as W-k-ECA. To determine whether a network is k-edge-connected, it

is suggested to check whether the maximum flow between any pair of nodes is greater

than k when setting the capacity of each edge to be 1 (as a maximum flow ≥ k means

that there are at least k disjoint paths between a pair of nodes). Frederickson et al. (56)

proved the NP-hardness of W-k-ECA even for k = 2. Watanabe et al. (57) designed

approximation algorithms for W-k-ECA and pointed out that W-k-ECA has a variant:

given a k-edge-connected graph, find the minimum weighted edges to be added such

that the graph is (k + 1)-edge-connected. For this variant, Dinitz et al. (58) showed

that if k is odd, then the problem could be converted to the tree augmentation problem;
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otherwise, it is equivalent to the cactus augmentation problem. Lately, researchers have

made significant progress in analyzing the performance of the approximation algorithm

for this variant of W-k-ECA. Byrka et al. (59) presented a polynomial-time (< 1.91)

approximation for the cactus augmentation problem. Furthermore, Cecchetto et al.

(60) obtained a 1.393 approximation algorithm for the cactus augmentation problem.

The augmentation problems on edge connectivity could be directly converted to the

corresponding augmentation problems on node connectivity.

The above works focused on edge-weighted augmentation requiring that the net-

work be connected after augmentation. There is no such work mentioning network

augmentation facing causal failures. In addition, it is not necessary to always keep the

network connected because the failures might cause severe disconnectivity to the net-

work and the augmentation would be costly. Instead, we could maintain a connected

component with a specific size.

Current research lacks the means to make connectivity augmentation decisions to

maintain a connected component of a given size when faced with causal failures. There-

fore, we consider this problem in this chapter: weighted edge connectivity augmentation

under the threat of causal node failures. Our contributions are as follows:

• We propose a new metric called k-causality-α-robust to measure the robustness

of a network.

• We formulate a problem looking for the minimum cost of adding edges such

that the network has a giant component after the application of a given set of

causalities.

• We prove that the formulated problem is NP-hard and present the corresponding

MILP model.
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• We propose an efficient greedy algorithm to solve the problem approximately and

study its effectiveness in the experiments.

The remainder of this chapter is organized as follows. The system model and the

problem are formulated in Section 6.2. Section 6.3 proves that the proposed problem

is NP-hard. Section 6.4 proposes the corresponding mixed integer linear programming

model to find the exact solution and a heuristic algorithm to solve the problem approx-

imately. Section 6.5 verifies the performance of the proposed algorithms using several

examples of random networks. Finally, Section 6.6 concludes this paper.

6.2 Problem Formulation

Fig. 6.1 shows the topology of a network G consisting of 11 nodes and 10 edges, along

with their causal failures C1 : {2} ⇒ {6}, C2 : {4} ⇒ {10}, C3 : {5} ⇒ {8}. If causality

C1 is applied to the network, then we have the removal of nodes 2 and 6 at the same

time because the failure of node 2 causes the failure of node 6. As a result, we have

5 connected components in the remaining network (i.e. {1}, {3}, {4, 5, 9, 10}, {7},

{8, 11}). Similarly, if we apply causalities C2 or C3 to the network individually, then

we could obtain 3 and 4 connected components, respectively. Therefore, applications

of different causalities have different effects on the connectivity of the network.

Definition 6.1. Given a graph G = (V , E , C), causality-α-robustness, denoted as crα(G),

is the minimum number of causalities whose application leaves no α-giant component.

Definition 6.1 proposes a new metric based on the existence of a α-giant component

to measure the robustness of a network when several causalities are defined. In Fig.

6.1, given α = 0.4, applying causality C1 would result in no connected components

with a size of at least 5. Therefore, cr0.4(G) = 1.
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Figure 6.1: Network example with causalities.

Definition 6.1 is actually looking for critical causalities of the network. Based on

the number of critical causalities, we propose the following definition.

Definition 6.2. A graph G = (V , E , C) is called k-causality-α-robust if crα(G) ≥ k.

Definitions 6.1 and 6.2 offer a means of measuring the robustness of a network

based on the relationship between the number of causalities applied and the size of a

giant component. In particular, with Definition 6.2, we can suggest that a network is

robust if any < k causalities could be applied to the network while preserving a α-giant

component.

Generally, a network might not be as robust with respect to k and α when con-

sidering causal failures. As a result, it is necessary to add some edges to obtain the

robustness of the network. In Table 6.1 we have illustrated three augmentation strate-

gies for the network in Fig. 6.1 with three causal failures. There are two augmentations
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in which all causal failures produce a 0.6-giant component and the one with the fewest

edge augmentations adds three edges.

The small experiment above raises a significant problem: how to maintain a α-

giant component regardless of which causality is applied to the network. To be more

practical, we consider the fact that the costs of adding edges are not the same. Math-

ematically, we denote by Gc the complete graph of G, that is, Gc = (V , Ec) where

Ec = {uv|u, v ∈ V}. Consequently, Ḡ = (V , Ē) is the complementary graph of G with

respect to Gc and Ē = Ec − E . Furthermore, we define a cost function c : Ē → R that

indicates the cost to add an edge e ∈ Ē . The problem is formally formulated as follows.

Problem 6.1. Given a graph G = (V , E , C), together with a cost function c : Ē → R+

in Ḡ = (V , Ē), and constants α and k, find a minimum-cost set of edges Ẽ ⊆ Ē such

that crα((V , E ∪ Ẽ)) ≥ 2.

Different from the traditional node/edge connectivity augmentation problems, Prob-

lem 6.1 emphasizes that only nodes in causalities can fail, therefore nodes that are not in

causalities are considered to be perfectly functioning. Given that the number of nodes

in each causality is not fixed, the problem 6.1 is to find an augmentation strategy for

the network to keep an α-giant component when random (causal) failures occur.

It is worth noting that causality is related to a group of nodes. For any fixed k,

any combination of causalities of size k can be considered as a larger group of nodes if

we combine the causalities in the combination as one causality. Therefore, we consider

k = 2 in this work, which means that we are looking for a minimum-cost network

where the application of any causality would maintain a connected component of size

at least α× n.
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6.3 NP-Hardness Proof

Before we move forward to the proof of the hardness of the formulated problem, we

introduce some concepts in graph theory.

Definition 6.3. The edge connectivity of a graph G denoted as ec(G), is the minimum

number of edges whose removal disconnects the graph.

For example, we only need to remove edge (1, 2) to disconnect node 1 of the network

in Fig. 6.1 from the remaining nodes, so the minimum number of edges to disconnect

the network is 1. In other words, the edge connectivity of the network is 1, ec(G) = 1.

Definition 6.4. A connected graph G is called k-edge-connected if ec(G) ≥ k.

Similarly to Definition 6.2, Definition 6.4 indicates that if removing fewer than k

edges from the network G it remains connected, then G is k-edge-connected. Therefore,

Definition 6.4 enables a metric for the robustness of a network in terms of the number of

edges that could be removed. For example, the network in Fig. 6.1 is 1-edge-connected

because removing any edge from the network would not disconnect it. It should be

noted that the degree of node 1 in the network is 1, which is also the minimum degree,

indicated by δ(G), of the network. From the above examples, we could observe that if

a network G is k-edge-connected, then k ≤ δ(G).

We have the following NP-complete weighted edge connectivity augmentation prob-

lem (57), denoted as W-2-ECA:

Problem 6.2. Given a graph G ′ = (V ′, E ′) together with a cost function c : Ē → R+ in

Ḡ ′ = (V ′, Ē ′), find a minimum cost of the edges Ẽ ′ ⊆ Ē ′ such that ec((V ′, E ′ ∪ Ẽ ′)) ≥ 2.

Suppose that we have an instance I ′ of problem 6.2 and an instance I of problem

6.1, denoted by W-2-CRA, we prove the NP-hardness of problem 6.1 by constructing

a polynomial-time reduction from I ′ to I.
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Theorem 6.1. W-2-CRA is NP-hard.

Proof. Clearly, W-2-CRA is in NP because one could easily verify the causality-α-

robustness given a certificate of I.

We perform the following steps to reduce I ′ to I:

• For each edge uv ∈ E ′, we add two nodes u∗, v∗, remove the edge uv and add the

edges uu∗, u∗v, uv∗, v∗v. Then we set the causality C : u∗ ⇒ v∗. Therefore, we

have the graph G = (V , E) of instance I where |V| = |V ′|+ 2|E ′| and |E| = 4|E ′|,

and the causality set C, which contains |E ′| causalities.

• We denote by c′u′,v′ and cu,v, respectively, for u
′v′ ∈ Ē ′ and uv ∈ Ē . If u, v ∈ V ′,

then cu,v = c′u,v; otherwise, cu,v = ∞. Furthermore, if (u, v) is in G ′, then

cu,v =∞.

• α = 1− 2
|V| .

If I ′ is satisfied, then ec((V ′, E ′∪Ẽ ′)) ≥ 2 after adding edges in Ẽ ′ with minimum cost,

that is, after augmentation, the removal of any edge would preserve the connectivity

of G ′. Using the same augmentation strategy, we could always have one connected

component of a size of at least |V| − 2 whenever any causality is applied. Therefore,

I is also satisfied. On the reverse side, if I is satisfied, then the connected component

with a size of at least |V|− 2 indicates the connectivity of the network G ′ because each

causality containing two nodes corresponds to an edge in I ′, so I ′ is also satisfied.

If I ′ is not satisfied, then after augmentation, there exists an edge such that network

G ′ is not connected without this edge. By adding the same edges as G ′ to G, we apply

the corresponding causalities to network G, because G ′ is not connected whichever

edge we remove and then the size of the largest connected component of G ′ is less than

|V ′| − 1. Correspondingly, the size of each connected component is obviously less than
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|V|−2. Therefore, I is not satisfied. On the reverse side, if I is not satisfied, then there

exists a causality whose application results in at least two connected components. The

network G ′ is not connected if the corresponding edges are removed. Therefore, I ′ is

also not satisfied.

Figure 6.2: An example of the proof of Theorem 1

For another explanation, we use the example in Fig. 6.2 to illustrate the reduction.

Given a graph G ′ with 5 nodes and 4 edges, it is obvious that removing any edge

from the graph would disconnect the graph. As Fig. 6.2 shows, we replace each edge

of G ′ with 2 nodes and 4 edges and construct 4 causalities. Regarding the cost of

edges, we have cu,v = ∞ if (u, v) ∈ {(1, 2), (1, 3), (3, 5), (4, 5)} or if one of u, v is in

{11, 12, 13, 14, 31, 32, 41, 42}. For the rest, cu,v = c′u,v.
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6.4 Algorithms

6.4.1 MILP for the Problem

We introduce the idea of building a flow network to find an α-giant component from

(61). For a given graph G = (V , E , C), Zhang et al. (61) converted G = (V , E , C) to

its directed version G = (V ,A, C) by replacing each edge uv ∈ E with directed arcs

(u, v), (v, u). They added auxiliary nodes s, t and arcs (s, u), (u, t) to G for each node

u ∈ V . Each edge connected to node s has an index that indicates whether the flow

from s passes through this edge. The model requires that only one node in G receives

the flow from s. As a result, the node that receives the flow from s would be the node

in the largest connected component. By properly setting the capacities of all the arcs,

the remaining network has a α-giant component if and only if the flow from s to t is

at least α× n.

For our problem, we need to ensure that the augmentation strategy, which is the

set of edges to be added, is applicable to all causalities. Hence, we create h copies, each

of which is for each causality, respectively. All copies share one augmentation strategy,

that is, adding edges from Ḡ to G. We denote the directed versions of Ḡ = (V , Ē) and

Gc = (V , Ec) by Ḡ = (V , Ā) and Gc = (V ,Ac), respectively, and present our optimization

model with the corresponding explanation as follows:

First, the objective function Eq. (6.1) minimizes the cost of the augmentation

strategy. Constraints (6.2) and (6.3) determine whether the edge uv is added. That

is, if edge uv is added, xuv = xvu = 1; otherwise, xuv = xvu = 0.

Second, for copy i ∈ H = {1, 2, · · · .h}, an extra edge (t, s) is added so that we just

need to guarantee the flow from t to s is at least α× n (Eq. (6.4)) while ensuring flow

conservation (Eq. (6.5)). Constraints (6.6) and (6.7) guarantee that only one arc from

the source node s has positive flow with capacity at most n. Constraints (6.8)-(6.11)
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require that all flow values going to and coming from the nodes in Ci are 0, indicating

that the nodes in causality Ci are removed. Each edge (u, v) in Ḡ also has its flow

value fi,uv in copy i, and its capacity is determined by whether this edge is added (Eqs.

(6.12-6.13)).

min
uv∈Ē

cuvxuv (6.1)

s.t. xuv, xvu ∈ {0, 1}, uv ∈ Ē (6.2)

xuv = xvu, uv ∈ Ē (6.3)

fi,ts ≥ αn, i ∈ H (6.4)∑
u:(u,v)∈Ac

fi,uv =
∑

u:(v,u)∈Ac

fi,vu, i ∈ H (6.5)

∑
u∈V

yi,u = 1, i ∈ H (6.6)

fi,su ≤ yi,un, u ∈ V , i ∈ H (6.7)

fi,uv = 0, u ∈ V(Ci), (u, v) ∈ A, i ∈ H (6.8)

fi,vu = 0, u ∈ V(Ci), (v, u) ∈ A, i ∈ H (6.9)

fi,su = 0, u ∈ V(Ci), i ∈ H (6.10)

fi,ut = 0, u ∈ V(Ci), i ∈ H (6.11)

fi,uv ≤ nxuv, (u, v) ∈ Ā, i ∈ H (6.12)

fi,vu ≤ nxvu, (v, u) ∈ Ā, i ∈ H (6.13)

yi,u, fi,ut ∈ {0, 1}, u ∈ V , i ∈ H (6.14)

fi,su ∈ N, u ∈ V , i ∈ H (6.15)

fi,uv, fi,vu ∈ N, uv ∈ E ∪ Ē , i ∈ H (6.16)
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Third, this formulation creates
(
n
2

)
− n binary variables (Eq. (6.3)) to indicate

whether an edge is added, and for each copy,
(
n
2

)
+ n integer variables (Eqs. (6.15)-

(6.16)) and binary variables 2n (Eq. (6.14)) are created to ensure that the flow

from s to t is at least α × n. Therefore, the time complexity of this formulation is

O(2n
2−n+hnnn2+n).

6.4.2 A Heuristic Algorithm

Given that it takes exponential time to run the optimization model, it is necessary to

design a polynomial-time heuristic algorithm to approximate the solution for practical

purposes. To make the designed algorithm work for each causality, we naively check

the application of each causality, respectively, to the network and augment the connec-

tivity of the network based on the remaining network, where there are clearly several

connected components. We start from the largest connected component and look for

possible connections to other connected components. A straightforward issue is how to

choose from the rest connected components. As mentioned above, every edge in Ē has

a cost associated with its addition. Hence, we define the cost to connect two connected

components based on that:

Definition 6.5. The cost between two connected components CCi and CCj (i ̸= j) is

the smallest c(uv) where u ∈ CCi and v ∈ CCj.

Definition 6.5 defines the cost of adding an edge between two connected compo-

nents. By using Definition 6.5, the remaining network could be converted to a complete

network with weighted nodes and edges. More specifically, suppose that there are p

connected components in the remaining network after applying one causality, then we

have the following rules:
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R1 Each connected component is converted to a supernode. The weight of the super-

node is the number of nodes in the connected component.

R2 The weight of each edge between any pair of super-nodes is the cost of adding

that edge by Definition 6.5.

Therefore, the augmentation could be performed on the completed network constructed

with p nodes and p(p− 1)/2 edges.

The next step is to choose the edges. Intuitively, we start from the super-node

with the largest weight and add its minimum-weighted edge, resulting in one giant

component containing two super-nodes. Then we update the cost between other super-

nodes and this giant component and add the minimum-weighted edge and so on. It

is worth noting that added edges should compose a tree of super-nodes because an

edge resulting in a cycle increases the cost but not the number of nodes. Therefore,

when searching for and adding edges, we need to ignore those that would generate a

cycle. A solution is to remove this edge and look for the next edge at a minimum cost.

The algorithm, named as GREEDY-MIN-CRA, terminates when we obtain an α-giant

component for the original network. The details are listed below.

Complexity analysis: In line 2, it takes O(n2) to find the size of the largest connected

component when applying one causality and O(h log h) to sort the causalities. For lines

3-24, when considering each causality, it takes O(n2) to check all possible edges to be

added. Therefore, in the worst case, the time complexity of the algorithm is O(hn2).
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Algorithm 6 GREEDY-MIN-CRA

Input: graph G = (V , E , C) and its complement graph Ḡ = (V , Ē) with edge costs;
Output: minimum cost of adding edges from Ḡ to G, s.t. when any causality is applied
to G, there exists at least one α-giant component.

1: cost← 0; //the initial cost
2: Sort causalities based on the size of the largest connected component when applying

each of them individually to the network
3: for C in (sorted) C do
4: H ← G; // Copy G
5: H ← H− C; // Apply C to H
6: S ← the size of the largest connected component;
7: if S > α× |V| then
8: continue;
9: else
10: Convert H to the corresponding complete graph Hc by using R1 and R2;
11: vc ← the super-node with size S;
12: while S < α× |V| do
13: e← argmine∈E(vc) c(e);
14: if vc + e has a cycle in Hc then
15: continue;
16: else
17: vc ← vc + e;
18: cost← cost+ c(e);
19: H ← H + e;
20: G ← G + e;
21: end if
22: end while
23: end if
24: end for
25: return cost;
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6.5 Experimental Results

In this section, we conduct experiments on synthetic networks to test the performance

of the MILP model and the approximation algorithm. The Erdős–Rényi model (62) is

used to generate the networks and all algorithms are coded in Python. The Gurobi (21)

and NetworkX (20) libraries are used specifically for the MILP and greedy algorithms.

All programs were run on a laptop with 16GB RAM and an Apple M1 Pro chip.

6.5.1 Comparison of MILP and GREEDY-MIN-CRA

We randomly generate an Erdős–Rényi network with 150 nodes. The probability that

each pair of nodes has an edge is set to 0.02. The generated network has 223 edges.

We also generate 20 causalities. For each causality C : V1 ⇒ V2, the number of nodes

in V1 or V2 is sampled from a discrete uniform distribution between 0 and 5. After

determining the number of nodes in each causality, we randomly assign nodes to each

causality from all nodes in the network. To be specific, the numbers of nodes in the

causalities are 4, 8, 9, 5, 8, 3, 5, 6, 8, 6, 5, 5, 8, 6, 6, 8, 5, 10, 5, and 4, and the numbers

of nodes in the largest connected component of the remaining networks after applying

each causality individually are 137, 131, 128, 137, 134, 136, 136, 133, 131, 134, 132,

136, 133, 133, 136, 132, 136, 128, 136, and 137, respectively. Therefore, the range of

α is between 0.86(= 128/150) and 0.93(= (150 − 10)/150). It is worth noting that if

α > 0.93, whatever edges we add to the network, the network would not always have a

connected component with at least 140 nodes because one causality removes 10 nodes

from the network. Moreover, the cost of each edge in the complement graph of the

generated network is sampled from a continuous uniform distribution between 0 and

100.
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Table 6.2 compares the performance of the heuristic algorithm with the optimization

model.

First, the time consumed by the heuristic algorithm is much less than that of the

optimization model. For example, for α = 0.86, the heuristic algorithm only spends

0.342 seconds looking for the edge to be added, while it takes over 11 seconds for

the optimization model to find the added edge. Similarly, for α = 0.88, the heuristic

algorithm succeeds in finding the same solution as the optimization model, but the

time it spends is only 3% of the time the optimization model consumes.

Second, it is not always true that the larger the α-giant component specified, the

more edges the networks need to add. The results for α = 0.88, 0.89 are in agreement

with this claim. For α = 0.88, the optimization model finds five edges to be added while

it finds only four edges to be added for α = 0.89. However, it is generally true that a

larger connected component leads to more added edges using the heuristic algorithm.

We could see this trend from the No. of added edges column for the GREEDY-MIN-

CRA algorithm.

Third, the edges found by the heuristic algorithm are almost the same as those

obtained from the optimization model. As illustrated above, both algorithms return

the same results for α = 0.86, 0.88. For α = 0.91, the heuristic algorithm finds seven

edges that are also found by the optimization model. The difference is that the heuristic

returns three extra edges, while the optimization model gives another edge.

Fourth, the heuristic ratios with respect to the cost of the edges to be added are less

than two. From the approximation ratio (cost) in the column, the highest is 1.642 for

α = 0.87. Furthermore, we perform the same experiment 10 more times and show the

corresponding approximation ratios with respect to the values of α in Table 6.3. From

Table 6.3, we observe that a higher α generally leads to a lower approximation ratio on
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average. For α ranging from 0.89 to 0.93, the approximation ratio almost drops from

1.155 to 1.072 on average.

Combining Tables 6.2 and 6.3, we could see the efficiency of the heuristic algorithm

in terms of running time and the efficacy of the heuristic algorithm in terms of the

approximation ratio.

6.5.2 Scalability Analysis

In this subsection, we generate Erdős–Rényi networks with 300, 500, and 1000 nodes to

test the scalability of the proposed algorithms. The cost of each edge in the complement

graph of each network is sampled from a continuous uniform distribution ranging from

0 to 100. Other network settings are listed as follows:

• For a network with 300 nodes, the probability that there exists an edge between

a pair of nodes is 0.01 and the network has 452 edges. For each causality C :

V1 ⇒ V2, |V1| or |V2| is sampled from a discrete uniform distribution from 1

to 10. We generate 20 causalities and the number of nodes in the causalities

is 11, 17, 15, 17, 11, 10, 11, 9, 18, 7, 20, 15, 11, 11, 16, 15, 14, 15, 6, and 4.

Correspondingly, the number of nodes in the largest connected component after

applying each causality individually is 262, 260, 261, 256, 257, 267, 266, 267, 255,

269, 252, 258, 263, 261, 261, 257, 264, 259, 271, and 272, respectively. Hence,

the value of α is between 0.86 and 0.93. We choose α = 0.86, 0.88, 0.90, 0.92 in

this experiment.

• For a network with 500 nodes, the probability that two nodes are connected is

0.0075. The generated network has 953 edges. For each causality C : V1 ⇒ V2,

|V1| or |V2| is sampled from a discrete uniform distribution from 1 to 20. We also

generate 20 causalities with 21, 16, 16, 18, 9, 16, 13, 16, 17, 13, 5, 21, 23, 19,
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14, 27, 15, 26, 30, and 21 nodes. After applying them individually, we have 468,

472, 473, 470, 481, 473, 477, 477, 474, 476, 485, 468, 467, 472, 477, 461, 474, 460,

453, and 468 nodes in the largest connected component, respectively. Therefore,

we choose α = 0.91, 0.92, 0.93.

• For the network with 1000 nodes, we set the probability to 0.0035, and the

random network has 1688 edges. Similarly, 20 causalities are generated since |V1|

or |V2| is sampled from a discrete uniform distribution from 1 to 30. The number

of nodes in the causalities is 23, 6, 26, 24, 32, 30, 19, 21, 14, 40, 32, 32, 23, 45, 29,

28, 32, 25, 18, and 29. The number of nodes in the largest connected component

is 918, 943, 917, 925, 913, 920, 934, 930, 936, 903, 916, 916, 928, 900, 915, 918,

914, 924, 929, and 917, respectively, if each causality is applied to the network

individually. Therefore, the values of α are set to 0.91, 0.92, 0.93, and 0.94.

Table 6.4 shows the results of the above three networks. From the perspective of

running time, it can be seen that with increasing network size, the time consumed by the

optimization model grows exponentially. For example, for α = 0.92, the optimization

model spends 62.761, 124.342, and 943.203 seconds looking for the solution for the three

network sizes, respectively. Taking into account the time it spends on the 150-node

network for the same α in Table 6.2, which is 13.069 seconds, we could easily observe

the trend. On the other hand, it takes much less time for the heuristic algorithm to

obtain the solution. For α = 0.92, the time spent by the heuristic algorithm is only

2.8%, 2.2%, 3.1%, and 1.9% of the time consumed by the optimization model for the

four networks.

Meanwhile, the heuristic algorithm maintains the approximation at less than two

for the experiments in Table 6.4. The highest is 1.973 for α = 0.86 and the network
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with 300 nodes, because the heuristic algorithm returns six edges to be added, while

the optimization model shows only two edges.

Moreover, from the perspective of the number of edges to be added, we could see

that the closer the numbers of edges found by both algorithms are, the lower the

approximation ratio will be. For example, for α = 0.91 in a network with 1000 nodes,

both algorithms find 10 edges, but only 8 edges are found by both. Similarly, we

have an approximate ratio of 1.050. For α = 0.92 in the network with 300 nodes, the

heuristic algorithm finds 20 edges, while the optimization returns 19 edges. In this

case, the approximation ratio of 1.021 is also as low as expected.

6.6 Conclusion

In this chapter, we consider the augmentation of weighted-edge network connectivity in

the face of causal failures. Given a graph and predefined causalities, the proposed prob-

lem aims to find a set of edges added with the minimum cost such that the augmented

network maintains at least an α-giant component if each causality is applied to the

network individually. We provide the NP-hardness proof of the proposed problem and

construct a mixed-integer linear programming model based on the flow network to find

the solution to the problem. Given that the optimization model takes exponential time,

we design a heuristic algorithm to approximate the solution. By performing multiple

experiments on synthetic networks, we observe that the heuristic algorithm achieves

an approximation ratio of less than 2 and takes significantly less time compared to the

optimization model.

For future work, we would like to consider the network augmentation strategy where

the network could maintain a α-giant component if any < k causalities are applied to

the network. In addition, we would like to introduce probability to causal failures (i.e.,
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the failure of one node causes the failure of another node with some probability) and

construct a probabilistic model for causal failures and network augmentation.
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Chapter 7

Conclusions

7.1 Summary

This dissertation proposes a new failure model in one network. We formally define

causal failures and investigate the impact of causal node failures on the robustness by

measuring the maximum number of applied causalities when maintaining an α-giant

component (Chapter 2), vulnerability by measuring the minimum number of causalities

to obtain at least k connected components (Chapter 3), and shortest path by measuring

the maximum number of applied causalities to keep the distance between node s and

node t at most a given number(Chapter 4), the impact of causal edge failures on the

maximum flow by measuring the maximum number of applied causalities to maintain

the flow from s to t at least d(Chapter 5), and network augmentation when facing

causal node failures (Chapter 6).

In each chapter, we propose a discrete optimization problem, prove the NP-hardness

of the problem, construct the corresponding MILP model, and design a heuristic al-

gorithm. The experiments show the efficiency and efficacy of the heuristic algorithm

when compared with the MILP model in each chapter.
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7.2 Future Work

Causal failures can be extended to more versions and problems. In future work, we

consider more problems related to deterministic and probabilistic causal failures.

For deterministic causal failures, we will investigate the following problems:

• An α-giant component indicates a significant proportion of nodes that are in-

cluded in one connected component. The existence of one α-giant component

guarantees a significant proportion of network performance, especially when there

are cascading failures in the network. Further, node failures may increase the dis-

tance between any pair of nodes. For example, node failures might increase the

power loss in the power network and affect the quality of communication in a

communication network, etc. It is not enough to guarantee the existence of an

α-giant component. Moreover, we hope the diameter of the giant component is

not too large so that all nodes in the giant component could be ”close” to each

other.

• Service degradation means impacted customers’ use of the service. It will occur

when the service is not meeting the criteria for Measured Throughput and Backup

Service Availability. We assume that each node v ∈ V has service level 100

initially. The degradation of the service of a node is triggered by that of another

node. For instance, a causality C : u ⇒ v with a service degradation mapping

f : [0, 100]⇒ [0, 100] (e.g. f(50) = 20 means that 50 service level of node u can

only maintain 20 of node v). Generally, if the causality is defined on two node sets,

i.e. C : V1 ⇒ V2, the service degradation mapping is denoted as f : [0, 100]|V1| ⇒

[0, 100]|V2|. Hence, we would have causal partial failures in networks and consider

new versions of giant components and connected component problems.
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• Failures of Vi,1 in causality Ci : Vi,1 ⇒ Vi,2 do not trigger failures of nodes in Vi,2

at once. It takes some time for nodes in Vi,2 to fail completely. As a result, we

will consider causal failures with time effects.

For random cases, we will consider causal failures by introducing functioning prob-

ability to each node. More specifically, we suppose that p = 1 − q(0 < p < 1) is

the probability that each node v ∈ V is functioning. For short, we denote by sv the

state of vertex v and s(v) = 1(0) means vertex v is functioning (failed). As a re-

sult, we have Pr(s(v) = 1) = p, Pr(s(v) = 0) = 1 − p = q. For each causality, say

C : V1 ⇒ V2, where V1 = {v11, v12, · · · , v1n1}, n1 = |V1| is the number of nodes in V1 and

V2 = {v21, v22, · · · , v2n2}, n2 = |V2| is the number of nodes in V2. Then the probability

that a causality C is applied is Pr(s(C) = 0) = qn1 = (1 − p)n1 . Hence, we consider

the probability that there exists an α-giant component when facing probabilistic causal

failures.
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