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Abstract: Recent focused Monte Carlo and experimental studies on steady-state single-fiber 

reflectance spectroscopy (SfRS) from a biologically relevant scattering medium have revealed 

that, as the dimensionless reduced scattering of the medium increases, the SfRS intensity 

increases monotonically until reaching a plateau. The SfRS signal is semi-empirically 

decomposed to the product of three contributing factors, including a ratio-of-remission 

(RoR) term that refers to the ratio of photons remitting from the medium and crossing the 

fiber-medium interface over the total number of photons launched into the medium. The 

RoR is expressed with respect to the dimensionless reduced scattering parameter 
sμ fibd , 

where 
sμ  is the reduced scattering coefficient of the medium and 

fibd  is the diameter of the 

probing fiber. We develop in this work, under the assumption of an isotropic-scattering 

medium, a method of analytical treatment that will indicate the pattern of RoR as a 

function of the dimensionless reduced scattering of the medium. The RoR is derived in 

four cases, corresponding to in-medium (applied to interstitial probing of biological tissue) 

or surface-based (applied to contact-probing of biological tissue) SfRS measurements 

using straight-polished or angle-polished fiber. The analytically arrived surface-probing 

RoR corresponding to single-fiber probing using a 15° angle-polished fiber over the range 

of  2 3

sμ 10 10fibd    agrees with previously reported similarly configured experimental 

measurement from a scattering medium that has a Henyey–Greenstein scattering phase 

function with an anisotropy factor of 0.8. In cases of a medium scattering light 

OPEN ACCESS 



Photonics 2014, 1 566 

 

 

anisotropically, we propose how the treatment may be furthered to account for the 

scattering anisotropy using the result of a study of light scattering close to the  

point-of-entry by Vitkin et al. (Nat. Commun. 2011, doi:10.1038/ncomms1599). 

Keywords: light propagation in tissues; single-fiber reflectance spectroscopy; photon 

migration; functional monitoring and imaging 

 

1. Introduction 

Reflectance spectroscopy [1,2] is simple to setup, and the machinery is relatively low cost. 

Reflectance spectroscopy instrumented by using single-fiber probe, which is generally referred to as 

single-fiber reflectance spectroscopy (SfRS) [3–6], delivers light to a turbid medium and detects the 

light returning to the collection aperture of the same fiber after the photons have experienced some 

scattering/attenuation events in the medium. The use of fiber-optic probes of small tip profiles has 

allowed measurement of biological tissue through the lumen of small needles for interstitial or 

percutaneous probing to assist fine-needle aspiration procedures [7,8] and laser-based treatment 

protocols [9,10]. Fiber-probing that can be administered through the instrument channels of 

endoscopes has also shown the promise of assessing the deterioration of microvasculature in 

superficial tissue, like the wall of bladder [11]. 

The setup of SfRS (or reflectance spectroscopy using a small tip-profile) being simple, the return of 

spectroscopic information renders the evaluation of absorbing [5–8] or fluorescing [12–15] 

chromophores, assessment of changes in tissue scattering [9,10] and further analysis of sizing 

information of the scattering particles [16,17] within the interrogated medium. To quantitate the 

measurement by SfRS as the endpoint is to estimate tissue optical properties based on the 

measurements, it is imperative to have a working model of the dependence of SfRS signal intensity 

(which is spectrally resolved) upon tissue optical properties (also spectrally resolved). Such a model 

process also facilitates cross-system validations by the ability to reproduce or cross-exam absolute 

signals for the same set of measurands (tissue optical properties) across different SfRS systems. Some 

earlier studies have examined the fiber-optical aspect of the SfRS signal, necessitating removing the 

internal specular reflections from the collected signal [18] and accounting for the collection efficiency 

of a single fiber [19] as being limited by the numerical aperture. The relationship between SfRS 

intensity and optical properties was initially studied by Moffit and Prahl [3]; that yielded qualitative 

estimates of the dependence of the SfRS signal upon the optical properties of the medium. Recently, a 

series of studies, based on extensive Monte Carlo (MC) simulations and experimental validations, have 

quantitated the effect of optical properties on SfRS measurement [20–26]. Among these studies, 

Kanick et al. investigated the dependence of the effective photon path length, as well as sampling 

depth [20,21] on the optical properties of the sampled medium. Kanick et al. and Gamm et al. further 

studied the relationship between SfRS signal intensity and the scattering properties of the medium [22,23]. 

As is expected, the scattering phase function [27–29] influences the SfRS signal intensity [22–26], because 

the photons to be collected by the single-fiber probe are scattered at or near the point-of-entry; but 

when the effect of the phase function is lumped into the reduced scattering coefficient 
sμ , the SfRS is 
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accurately quantitated with respect to a dimensionless reduced scattering term sμ fibd , where 
fibd  is the 

diameter of the probing fiber. Specifically, the MC and experimental measurements have confirmed 

that steady-state SfRS intensity increases monotonically versus μs fibd  until approximately μs fibd  > 10, 

when approaching an asymptotic limit [22,23]. The dependence of steady-state SfRS intensity upon the 

reduced scattering coefficient 
sμ  and absorption coefficient μa

 has been formulated [22–26] to a set of 

semi-empirical equations: 
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where 
1p  to 

6p  are fitted constants, some having a dependence on the scattering phase function of  

the medium, and limη  is determined by the acceptance angle of the fiber and the refractive index of  

the medium. This set of equations essentially decomposes the SfRS signal into the product of three 

contributing factors: (1) a reduced scattering-dependent term 
s(μ )remissionR   that accounts for the ratio of 

photons remitting from the medium and crossing the area of the fiber facet over the total number of 

photons launched into the medium, which will be referred to as the “ratio-of-remission” and 

abbreviated as RoR in this work; (2) a reduced scattering-dependent term 
sη (μ )collection
  that represents the 

collection efficiency of the fiber due to the limited numerical aperture; and (3) an absorption-dependent 

term exp μ (μ ,μ )a a sL     that is responsible for the attenuation of photons in the medium due exclusively 

to absorption and that is modeled using the modified Beer–Lambert law over an effective path length of 

(μ ,μ )a sL  , which is, however, mainly determined by the reduced scattering of the medium. 

It is noted that the dimensionless reduced scattering term μs fibd  appearing in the set of  

Equations (1)–(4) is a measure of the relative scale of the size of the probing fiber with respect to the 

transport scattering path length of the light in the medium. Intuitively, therefore, the bigger the fiber 

with respect to the transport scattering path length of the medium, the more scattered light the fiber 

will collect. The increased collection of the scattered light by the fiber will, however, approach a limit, 

when the scattering of the medium reaches the condition that the backscattering event occurs at 

positions very close to the fiber facet, making only the portion of the scattered light that is within the 

numerical aperture of the fiber collectable. Apparently, an increase of the absorption coefficient μa
 of 

the medium will reduce the light collected by the single-fiber probe. In establishing the set of  

semi-empirical Equations (1)–(4), the effect of the numerical aperture of the fiber on the collection of 

the scattering photons is taken care of by the η (μ )collection s
  term, leaving the 

s(μ )remissionR   term to 

exclusively account for the relative scale of the fiber diameter with respect to the reduced scattering 

path length. The empirical formula for 
s(μ )remissionR   has proven accurate and convenient for 

characterizing SfRS signal intensity in a variety of applications [7,8,24–26], with the need to only 

adjust the a few constants according to the scattering phase function, if known. Given that (μ )remission sR  , 

shown in Equation (2), is formulated empirically, other forms of (μ )remission sR   that are quantitatively very 
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close to the one shown in Equation (2) shall not be excluded in evaluating Equation (1). A more 

fundamental plausibility pertinent to 
s(μ )remissionR   is whether the 

s(μ )remissionR   term can be developed 

analytically, not empirically. 

An accurate analytical model of how the tissue optical properties affect (μ )remission sR   shall originate 

from the radiative transfer equation [29,30] that employs the scattering coefficient 
sμ  and takes into 

account the anisotropy g  of the scattering [31–37]. The successful use of the reduced scattering 

coefficient μ μ (1 )s s g    in the semi-empirical modeling of the RoR term (μ )remission sR  , however, suggests 

that the global pattern of (μ )remission sR   may be reached analytically by direct utilization of 
sμ . When 

many events of anisotropic scattering happening at a shorter scattering path length of 
s1/ μ  contribute 

to the detected photon fluence, the combined effect could be equalized to a lesser number of isotropic 

scattering events happening at a much longer path length of 
s1/ μ , as is the underlining motivation for 

introducing 
sμ  into describing the light propagation in the presence of scattering 

This work aims at developing an analytical pathway that may arrive at the quantitative pattern (but 

not necessarily the exact formulae) of the RoR that is displayed by Equation (2). The derivation will be 

illustrated in four cases, corresponding to in-medium or surface-based SfRS measurements by using 

straight-polished or angle-polished fiber. The angle-polished fiber is frequently used in experimental 

SfRS as a result of the need to abate excessive specular reflection from the fiber-tissue interface that 

impairs measurement from the medium of interest. The analysis shown in this work provides insight to 

the difference of SfRS intensities between two different geometries of probing the tissue, probing 

interstitially and probing by surface-contact of the medium. The effect of the geometry of probing the 

tissue-medium by the single fiber probe, i.e., interstitial or contact-based, on SfRS intensity has to the 

authors’ knowledge not been attended previously. It is demonstrated that the analytically computed 

SfRS corresponding to a 15° angle-polished fiber in a semi-infinite medium geometry over the range 

of  2 3

sμ 10 10fibd    agrees with the previously reported experimental results performed in a surface-

probing configuration, for a medium that presented a Henyey–Greenstein (HG) scattering phase 

function with an anisotropy factor of 0.8. In cases of medium scattering light anisotropically, we will 

discuss how the analytical treatment may be furthered to account for the scattering anisotropy. 

2. Analytic Development 

An ideal light source for SfRS has a uniform intensity profile across the broad spectrum of interest, 

as is schematically illustrated in Figure 1. With such a light source, what is measured out of the single 

probing fiber represents exclusively the spectrally-resolved tissue reflectivity (λ)SfRSR  that was 

formulated semi-empirically in Equation (1). To derive the (λ)remissionR  of (λ)SfRSR , we refer to the inset 

in Figure 1 for a hypothetical examination of the path of a single photon in the medium between 

leaving the fiber and reaching the fiber after experiencing scattering events. By treating the light 

launched by the fiber to the tissue as originating from a spatially impulsive source, using the same 

fiber to deliver light to tissue and to collect light from tissue can be assimilated to either of the 

following two configurations, as long as the collection of one photon is concerned: (1) a dual-fiber 

configuration with a photon of interest being launched by a delivery fiber then collected by another 

fiber and letting the distance between the delivery and collection fibers approaching the size of the 

single-fiber probe; and (2) a single-fiber dual-point configuration, wherein the photon of interest is 
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launched into the medium at the center point of the fiber facet, then collected by the same fiber at an 

off-center point of the fiber facet, as revealed by the hypothetical “magnified” view of the inset. 

Although either of these two approximations could possibly facilitate analysis of (λ)remmissionR , the 

second one hypothesizing single-fiber dual-points will be shown in this work in expressing (λ)remmissionR  

as a function of 
sμ  and the fiber dimensional parameters (fiber diameter and polishing angle of the 

fiber tip). The analytical evaluation will be conducted in an infinite geometry and a semi-infinite 

geometry of the medium. Distinguishing between the two geometries is necessary, because when the 

fiber probe is placed in contact with the surface of the medium, as in cases of MC or the associated 

experiments [21–23], the tissue to the photon propagation is a half-space with a planar boundary that 

essentially conforms to a semi-infinite medium geometry. When the fiber probe is inserted into the 

medium, such as in cases for fine-needle aspiration procedures [7,8] or laser-based treatment protocols 

[9,10], the tissue to the photon propagation is more suitable to be described by an infinite-medium 

geometry than a half-space or semi-infinite geometry. Note that the effect of the limited numerical 

aperture of the fiber to the collection of photon flux has been separately accounted for in (λ)SfRSR  by 

ηcollection . Consequently the (μ )remission sR   term stands for the ratio of photons remitting from the medium 

and crossing the area of the fiber facet over the total number of photons launched into the medium, but 

not the ratio of photons collected by the fiber over the total number of photons launched into the 

medium, as the latter has to involve the numerical aperture, which is addressed by ηcollection . The 

different refractive indices of the fiber and the tissue across the tissue-fiber interface, however, will 

cause part of the photon flux at the fiber-tissue interface to be bounced back to the tissue; the amount 

of photons returning to the tissue is readily modeled by Fresnel reflection as is shown in the following 

derivations of (μ )remission sR  . 

We consider the tissue to be modeled for steady-state RoR to have the following homogeneous and 

wavelength-dependent optical properties (for convenience, these properties are presented without the 

argument of wavelength λ  in their respective symbols): absorption coefficient μa , reduced scattering 

coefficient sμ , diffusion coefficient  s1 3μD   and effective attenuation coefficient μ μeff a D . 
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Figure 1. An ideal light source for single-fiber reflectance spectroscopy (SfRS) has a 

uniform intensity profile across the broad spectrum of interest. With such a light source, 

what is measured out of the light collected from the single probing fiber represents 

exclusively the tissue reflectivity as a function of wavelength, with which the optical 

properties, including absorption and reduced scattering coefficients of localized bulk 

tissue, may be recovered. The inset enclosed by the dashed circle indicates that the  

single-fiber configuration can be approximated by a dual-fiber configuration in its limites 

case or a dual-path configuration: (1) a dual-fiber configuration with separate delivery and 

collection fibers, by letting the distance between the delivery and collection fibers 

approaching the size of the fiber; (2) a single-fiber dual-point configuration, wherein the 

points of light delivery and light collection are different, but both are located at the facet of 

the fiber tip. Either of these two treatments would facilitate analytical evaluation with the 

assumption of photon-diffusion principles. 

 

2.1. Ratio-of-Remission Associated with Steady-State Probing in an Infinite Tissue Geometry Using a 

Straight-Polished Fiber 

The single-fiber dual-point configuration to represent SfRS by using a straight-polished fiber 

embedded in the tissue is schematically illustrated in Figure 2A. The associated path of a single photon 

trajectory is hypothesized in Figure 2B. Under cylindrical coordinates of (ρ,φ, )r z , the following 

symbols and notations are introduced: 

 The center of the fiber facet is located at )0,0,0(cr


. A point at the fiber facet is (ρ,φ,0)dr , at 

which the position-specific photon fluence rate and flux are evaluated. 

 The light that is initially directionally-launched into the medium along the direction of the fiber 

axis is represented by an equivalent isotropic point source, with the same intensity of the 

incident light, that is located at ),0,0( areal zr


, where 1 μa sz   [38]. Note that the positive 

direction of the z-axis points away from the fiber or downward hereinafter through Figures 3–5. 

 The distance between the equivalent isotropic point source realr


 and the detector point (ρ,φ,0)dr  

is 2 2ρreal real d al r r z    . The acute angle formed by the line of reall  with respect to the axis 

of the fiber is  1θ tan ρreal az . 
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 The radius of the fiber is denoted as fibr , or 2fibrib dr  , for convenience.  

 The refractive indices of the fiber and tissue are fibn  and tissn , respectively. Generally tissfib nn  . 

Figure 2. (A) Schematic of an idealized geometry for placing a fiber with a diameter of 
fibd  

and a straight-polished tip within a turbid medium. The same fiber is used for launching light 

into and collecting light from the medium. A dual-point configuration approximates the light 

leaving and returning to the fiber. (B) The light that is initially directionally-launched into the 

medium is represented by an equivalent isotropic source that is located at ),0,0( areal zr


, 

where 1 μa sz  . The distance between the equivalent source 
realr
  and a detector point 

(ρ,φ,0)dr  is reall . The acute angle formed by the line of reall  with respect to the axis of 

the fiber is θreal . 

 

For a light of unit intensity that is launched into the medium at the center of the fiber facet, the 

photon fluence rate evaluated at (ρ,φ,0)dr  as a result of the equivalent isotropic point source of unity 

intensity at ),0,0( areal zr


 is: 
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The photon flux evaluated at (ρ,φ,0)dr  is proportional to the spatial gradient of the photon fluence 

rate as the following: 
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where reall̂  is the unit vector pointing from realr


 to dr


. The components of the photon flux that are 

parallel to the fiber facet will not contribute to the signal collected by the fiber, and only the axial 

component along the ẑ  direction will have the chance to cross the fiber facet. The photon flux at the 

medium side and reaching the fiber facet at point (ρ,φ,0)dr  in a direction normal to the fiber facet is: 
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The ratio of this normal component of photon flux that is transmitted across the fiber facet will be 

determined by the Fresnel formula of 
normnorm RT 1 , where     2fibtissfibtissnorm nnnnR  . The 

resulting photon flux at point (ρ,φ,0)dr  that is normal to and crosses the fiber facet is: 
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The total remission over the dimension of the fiber is then obtained by integrating )(inf d

fib rJ


 over the 

total area of the fiber facet as: 

  
fibr

d

fib

sremission drJdR
0

inf

2

0

inf )( 
 

 
  

fibr

realeffrealeff

real

a

norm dll
l

z
dT

0 2

2

0
)exp(1

4

1





 

(9) 

Note that 
2 2 2ρ real al z  , then ρ ρ real reald l dl   , so Equation (9) changes to: 
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By expanding the exponential functions in Equation (10) up to the first order term in their 

respective Taylor series, the absorption dependence is removed to give the following RoR that is 

associated with the use of a straight-polished fiber in an infinite domain of tissue medium: 
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2.2. Ratio-of-Remission Associated with Steady-State Probing in a Semi-Infinite Tissue Geometry 

Using a Straight-Polished Fiber 

The single-fiber dual-point configuration to represent a straight-polished fiber in contact with the 

surface of a half-plane tissue is schematically illustrated in Figure 3A. The associated path of a single 

photon trajectory, now in a semi-infinite medium geometry, is hypothesized in Figure 3B. The symbols 

introduced in Section 2.1 are used here whenever applicable. Additional symbols/entities in association 

with the semi-infinite geometry are given in the following section: 

  



Photonics 2014, 1 573 

 

 

Figure 3. (A) Schematic of an idealized geometry for placing a fiber with a diameter of 
fibd  

and a straight-polished tip at the surface of a turbid medium. The same fiber is used for 

launching light into and collecting light from the medium. A dual-point configuration 

approximates the light leaving and returning to the fiber. (B) The light that is initially 

directionally-launched into the medium is represented by an equivalent isotropic source 

that is located at ),0,0( areal zr


. The distance between the equivalent source realr


 and a 

detector point (ρ,φ,0)dr  is reall , and the acute angle formed by the line of 
reall  with respect 

to the axis of the fiber is 
realθ . An “extrapolated” boundary is located at bz  away from the 

physical boundary of the medium. The image of the source realr


 with respect to the 

“extrapolated” boundary is located at ))2(,0,0( baimag zzr 


. The distance between the 

image source 
imagr


 and the detector point dr


 is 
imagl . The acute angle formed by the line of 

imagl  w.r.t the axis of the fiber is θimag . 

 

 The air-tissue interface is a semi-infinite planar boundary to the photon propagation. The 

boundary effect to the photon propagation in the medium can be accounted for by introducing 

an “extrapolated boundary” [38–41] on which the photon fluence rate is set zero. 

 The “extrapolated boundary” is located at a distance of 
bz  from the air-tissue interface, with 

ADzb 2     A 1 ξ 1 ξ   , 2 1

rel rel relξ 1.440n 0.710n 0.668 0.0636n       and airtissrel nnn  , 

where airn  is the refractive index of the air.  

 The equivalent isotropic point source is located at ),0,0( areal zr


. The image of the isotropic 

point source realr


 with respect to the extrapolated boundary is located at ))2(,0,0( baimag zzr 


. 

The “image” source has the opposite intensity of the “real” source at realr


. 

 The distance between the “real” source realr


 and the detector point (ρ,φ,0)dr  is 

2 2ρreal real d al r r z    . The acute angle formed by the line of reall  with the axis of the fiber is 

 1θ tan ρreal az . The distance between the “image” source imagr


 and (ρ,φ,0)dr  is 

 
22ρ 2imag imag d a bl r r z z     . The acute angle formed by the line of 

imagl  with the axis of the 

fiber is  1θ tan ρ 2imag a bz z     . 

The steady-state photon fluence rate at (ρ,φ,0)dr  is: 
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The photon flux at (ρ,φ,0)dr  is: 
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As only the axial component of the photon flux along the ẑ  direction will cross the fiber facet, the 

photon flux at the medium side and normal to the fiber facet at (ρ,φ,0)dr  is:  
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Then, the total remission crossing the dimension of the fiber facet is: 
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Note that setting fibr  to infinity in Equation (15) arrives at the total diffuse reflectance from a  

semi-infinite boundary, which was previously derived in [39] as Equation (20), scaled by 
normT , as is 

shown in the following equation:  

  )2(exp)exp(
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1
)( baeffaeffnorms
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remission zzzTR    (16) 

By expanding the exponential functions in Equation (15) up to the first order term in their 

respective Taylor series, the absorption dependence is removed to give the following RoR that is 

associated with the use of a straight-polished fiber in a semi-infinite domain of tissue medium:  
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2.3. Ratio-of-Remission Associated with Steady-State Probing in an Infinite Tissue Geometry Using an 

Angle-Polished Fiber 

We consider the case of interstitial SfRS tissue probing using a fiber with the tip polished at an 

angle β fib , as conceptually illustrated in Figure 4A. The single-fiber dual-point treatment to the photon 

trajectory, as is shown in Figure 2B, needs to be modified to that shown in Figure 4B. The symbols 

introduced in Section 2.1 are used here whenever applicable. Additional symbols/entities in association 

with the angled fiber facet are given in the following section. 
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Figure 4. (A) Schematic of an idealized geometry for placing a fiber with a diameter of 
fibd  

and an angle-polished tip within a turbid medium. The same fiber is used for launching 

light into and collecting light from the medium. A dual-point configuration approximates 

the light leaving and returning to the fiber. (B) The light that is directionally-launched into 

the medium along the fiber axis within the fiber refracts to an off-axis direction in the 

medium. As a result, the equivalent isotropic point source is located at an off-axis position 

of ( sinβ ,π, cosβ )real a real a realr z z , where  1β sin sinβreal fiber tiss fibn n  
 

. The distance 

between the equivalent point source 
realr


 and a detector point (ρ,φ,0)dr  is reall . 

 

 The on-axis light leaves the fiber facet at an angle of  1β sin sinβreal fiber tiss fibn n  
  . The 

equivalent isotropic point source is located at ( sinβ ,π, cosβ )real a real a realr z z . 

 The distance between the equivalent isotropic point source 
realr


 and the detector point (ρ,φ,0)dr  is 

2 2ρ 2ρ sinβ cosφreal real d a a reall r r z z     . 

The steady-state remission crossing the fiber facet is found by following the approaches of  

Section 2.1 and after some algebraic derivations to be: 

normsremission

ang TR
2

1
)(inf 

















 )sin2exp(

sin2
)exp( 22

22
realafibafibeff

realafibafib

a
aeff zrzr

zrzr

z
z 


  

(18) 

As the angle of the fiber polishing β fib  approaches zero, the RoR represented by Equation (18) 

expectedly reaches the one in Equation (10) that corresponds to the RoR of a straight-polished fiber. 

By expanding the exponential functions of Equation (17) up to the first order term in their respective 

Taylor series, the absorption dependence is removed to give the following RoR that is associated with 

the use of an angle-polished fiber in an infinite domain of tissue medium:  
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2.4. Ratio-of-Remission Associated with Steady-State Probing in a Semi-Infinite Tissue Geometry 

Using an Angle-Polished Fiber 

We consider the case of surface SfRS tissue probing using a fiber with the tip polished at an  

angle β fib
 as conceptually illustrated in Figure 5A. The single-fiber dual-point treatment to the photon 

trajectory in a semi-infinite tissue medium as is shown in Figure 3B needs to be modified to that shown 

in Figure 5B. The symbols introduced in Section 2.2 are used here whenever applicable. Additional 

symbols/entities in association with the angled fiber facet are given in the following section. 

 The equivalent isotropic point source is located at ( sinβ ,π, cosβ )real a real a realr z z . The 

image of the isotropic point source with respect to the extrapolated boundary is located at 

 ( sinβ , , cosβ 2 )imag a real a real br z z z   . 

 The distance between the “real” point source realr


 and 
dr (ρ,φ,0)  is 

2 2ρ 2ρ sinβ cosφreal real d a a reall r r z z     . The distance between the image source imagr


 and the 

detector point (ρ,φ,0)dr  is 2 2ρ 2ρ sinβ cosφimag imag d imag a reall r r z z     , where 

 
22 2 (2 )cosβ 2imag a a b real bz z z z z   . 

Figure 5. (A) Schematic of an idealized geometry for placing a fiber with a diameter of 
fibd  

and an angle-polished tip at the surface of a turbid medium. The same fiber is used  

for launching light into and collecting light from the medium. A dual-point configuration 

approximates the light leaving and returning to the fiber. (B) The light that is  

directionally-launched into the medium along the fiber axis within the fiber refracts to  

the off-axis direction in the medium. As a result, the equivalent isotropic source is located 

at ( sinβ ,π, cosβ )real a real a realr z z . The distance between the equivalent source 
realr
  and a detector point 

)0,,( dr
  is 

reall . An “extrapolated” boundary is located at 
bz , away from the physical 

boundary of the medium. The image of the source 
realr
  w.r.t the “extrapolated” boundary is 

located at  ( sinβ ,π, cosβ 2 )imag a real a real br z z z  . The distance between the image source 
imagr
  and the 

detector point 
dr
  is 

imagl . 
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The steady-state remission crossing the fiber facet is found to be: 
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(20) 

As the angle of the fiber polishing β fib  approaches zero, the RoR represented by Equation (20) for 

the semi-infinite domain of medium geometry expectedly reaches the one in Equation (15) that 

corresponds to the RoR of a straight-polished fiber in the same domain. By expanding the exponential 

functions in Equation (18) up to the first order term in their respective Taylor series, the absorption 

dependence is removed to give the following RoR that is associated with the use of an angle-polished 

fiber in a semi-infinite domain of tissue medium: 
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3. Numerical Evaluation 

By replacing fibr  with 2/fibd  and az  with s1/ μ  in the set of Equations (11), (17), (19), and (21), 

the RoR becomes a function of the dimensionless reduced scattering coefficient sμ d , as represented, 

respectively, in the following for the four cases of probing the tissue with a single fiber: 

 The fiber with a straight-polished tip is inserted into the medium to form an infinite domain. 

  


















2

inf

4

2
1

2

1
)(

fibs

normsremission

d
TR


   (22) 

 The fiber with an angle-polished tip is inserted into the medium to form an infinite domain. 
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 The fiber with a straight-polished tip is placed in contact with the surface of the medium to 

form a semi-infinite domain. 
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 The fiber with an angle-polished tip is placed in contact with the surface of the medium to form 

a semi-infinite domain. 
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The four cases of analytically-derived RoRs as represented by the set of Equation (19) are evaluated 

in Figure 6 in comparison to the semi-empirical model of the RoR of Equation (2) over a range of 

 2 3

sμ 10 10fibd   . The parameters for the semi-empirical RoR are chosen as p1 = 6.82, p2 = 0.969, 

p3 = 1.55, corresponding to those fitted for an HG scattering phase function with g = 0.8 [22]. Fitted 

parameters corresponding to the HG scattering phase function with other values of g (0.5, 0.7, 0.9) and 

a modified HG scattering phase function of g = 0.9 are tested. The chosen set of parameters associated 

with the HG phase function of g = 0.8 leads to the closest patterns between estimation by the empirical 

equation and estimation by the one specific equation that corresponds to surface probing of the 

medium using angle-polished fiber (i.e., 25). The red solid line pointed by two arrows corresponds to 

the “previous semi-empirical” model developed based upon MC studies and experimental 

measurements from a scattering medium, as specified by Equation (2). The two other solid lines 

correspond to using a straight-polished fiber in either in-medium probing or surface-probing 

configurations. The dashed line corresponds to using a 15° angle-polished fiber in an in-medium 

probing configuration, and the dotted line a surface-probing configuration. 
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Figure 6. (A) Comparisons of analytically-derived ratios-of-remission (RoRs) 

corresponding to surface-probing or interstitial-probing using a straight- or angle-polished 

fiber probe, against semi-empirical RoR corresponding to an Henyey–Greenstein (HG) 

scattering phase function with g = 0.8. (B) The zoomed-up view of the plots enclosed by 

the dashed rectangle, as shown in (A). The red solid line with two arrows pointing at it 

corresponds to the “previous semi-empirical” model developed based on MC studies and 

experimental measurements from a scattering medium. The two other solid lines correspond to 

using a straight-polished fiber in either in-medium probing or surface-probing configurations. 

The dashed line corresponds to using a 15° angle-polished fiber in in-medium probing 

configuration, and the dotted line is the surface-probing configuration. The values 

corresponding to in-medium probing and surface-probing with the fiber of the same tip 

geometry merge at smaller values of the dimensionless reduced scattering coefficient. The 

values correspond to a straight-polished fiber and a 15° angle-polished fiber in the same 

condition of fiber placement with the medium converging at higher values of the 

dimensionless reduced scattering coefficient.  
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4. Discussion 

Several observations can be made from Figure 6, wherein the plot corresponding to the  

semi-empirical RoR is marked as the solid red line with the two long line-arrows point at it. Firstly, all 

of the four analytically-derived RoRs show a pattern of monotonic increase versus μs fibd  until 

approximately 
sμ fibd  > 10, when approaching an asymptotic limit for high dimensionless, reduced 

scattering values. Secondly, the surface-probing RoR and interstitial-probing RoR are 

indistinguishable (at the scale shown) at relatively low dimensionless, reduced scattering values of 

sμ fibd  < 1, but differ significantly at high dimensionless, reduced scattering values of μs fibd  > 10. At 

high dimensionless, reduced scattering values, the surface-probing RoR can be as high as twice f the 

interstitial-probing RoR. The existence of the medium boundary in the surface-probing configuration 

will cause some photons reaching the boundary to be back-reflected into the medium, adding to the 

total number of scattering occurring within the medium domain in the vicinity of the probing fiber. The 

net effect is the essential increase of the number of photons to be scattered into the probing-fiber in 

surface-probing configuration when comparing to in-medium probing configuration for otherwise 

identical medium optical properties. Thirdly, the RoR using angle-polished fiber and RoR using 

straight-polished fiber are indistinguishable (at the scale shown) at high dimensionless, reduced 

scattering values of 
sμ fibd  > 10, but differ significantly at relatively low dimensionless, reduced 

scattering values of 
sμ fibd  < 1. At low dimensionless, reduced scattering values, the RoR using  

angle-polished fiber can be significantly higher than the RoR using straight-polished fiber. The 

increased remission associated with using 15° angle-polished fiber compared to using straight-polished 

fiber has been suggested to relate to the increased fiber face, as the 15° angle-polished fiber has an 

elliptical cross-section that is about 3% larger than the circular cross-section [22]. We note that as the 

angle-polished fiber pulls the effective isotropic source closer in depth to the fiber face, the remission 

obtained by an angle-polished fiber will increase beyond the increase rendered by the bigger fiber face 

of an elliptical cross-section compared to a circular cross-section of a straight-fiber. Lastly, the 

analytically-derived RoR corresponding to surface-probing using a 15° angle-polished fiber nearly 

coincides with the semi-empirical RoR corresponding to an HG scattering phase function with g = 0.8. 

The observation of the agreement between analytical RoR of surface-probing using a 15°  

angle-polished fiber and semi-empirical RoR corresponding to an HG scattering phase function with  

g = 0.8 is particularly interesting. It is noted that the experimental reports in [21] that validated the 

empirical RoR were performed at a semi-infinite surface-probing geometry that was in accordance 

with the geometry of the MC [42]. It is therefore not surprising that it is the RoR derived from surface-

probing, not interstitial-probing, medium geometry that shall agree with the semi-empirical results 

over the range of 
sμ fibd  > 10. 

Given the agreements between the analytically-derived RoR, with the semi-empirical one 

notwithstanding, the current analytical treatment is based on isotropic scattering, thereby being 

incapable of modeling the effect of anisotropic scattering phase function on the remission of photons, 

particularly in the position near the point-of-entry, as is the case of SfRS. Vitkin et al. [43] recently 

introduced a method to accurately model photon diffusion near the point-of-entry in anisotropically 

scattering media. Their approach decomposes the diffuse reflectance associated with a semi-infinite 
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medium-boundary to one part resulting from diffusion approximation and a new part derived for 

correcting the anisotropic phase function. The phase function-dependent term of the photon fluence 

rate at a position of (ρ, ,0dr  ) can be derived from [43] as: 
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where p is the actual phase function. It is straightforward to anticipate that incorporating Equation (20) 

into the analytical approach presented in this work to account for the anisotropic portion of the 

scattering may result in an analytically-originated formulation of the RoR that responds to the 

difference in the scattering phase function and anisotropy factor. It is, however, noteworthy to argue 

that Equation (20) was derived in association with a semi-infinite medium geometry in [43]. It is 

therefore speculated that a term like Equation (2) that accounts for the anisotropic scattering would 

have the boundary effect built-in. Once such a boundary-effect term is identified, the contribution to 

the remission in different SfRS configurations by anisotropic scattering can be isolated according to 

the analytical procedures demonstrated in this work to possibly reach a set of closed-form solutions. 

On the other hand, the analytical procedures explored in this work in the condition of isotropic medium 

scattering are extendable to SfRS in time-of-flight measurements and the fluorescence domain, which 

may be reported in future publications. 

5. Conclusions 

In conclusion, this work has presented an isotropic-scattering-based analytical treatment to the  

ratio-of-remission (RoR) factor that quantifies the ratio of photons remitting from the medium and 

crossing the fiber face over the total number of photons launched into the medium in steady-state SfRS 

measurement. This analytically-originated approach is implemented for two fiber-probing geometries, 

including in-medium SfRS measurement that applies to liquid medium or interstitial probing of 

biological tissue and surface-based SfRS measurement that applies to solid medium or contact-probing 

of biological tissue. This analytically originated approach is also conducted for SfRS using  

straight-polished or angle-polished fiber. It is found that the analytically-computed surface-probing 

SfRS using a 15° angle-polished fiber over the range of  2 3μ 10 10s fibd    agrees with the previously 

reported MC and experimental studies from a (semi-infinite) medium that has a Henyey–Greenstein 

scattering phase function with an anisotropy factor of 0.8. 
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