
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

COMBINATORIAL ALGORITHMS IN THE APPROXIMATE COMPUTING
PARADIGM

A DISSERTATION

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

DOCTOR OF PHILOSOPHY

BY

Aditya Narasimhan
Norman, Oklahoma

2023

COMBINATORIAL ALGORITHMS IN THE APPROXIMATE COMPUTING
PARADIGM

A DISSERTATION APPROVED FOR THE
SCHOOL OF COMPUTER SCIENCE

BY THE COMMITTEE CONSISTING OF

Dr. Sridhar Radhakrishnan (Chair)

Dr. Charles Nicholson

Dr. Mohammed Atiquzzaman

Dr. Qi Cheng

© Copyright by Aditya Narasimhan 2023
All Rights Reserved.

Acknowledgements

I would like to take this opportunity to express my heartfelt gratitude to the

following individuals, without their support and encouragement, this Ph.D. dis-

sertation would not have been possible.

First and foremost, I express my sincere gratitude to my committee chair,

advisor, co-author, and mentor for research and life, Professor Sridhar Rad-

hakrishnan. His unwavering support, invaluable guidance, and encouragement

throughout my research journey have been instrumental in shaping my research

and developing my skills.

I would like to extend my heartfelt love and thanks to my beloved wife, Uma

Manognya Kaipa, for her unconditional love, unwavering support, and the sacri-

fices she made during this journey. Her encouragement and motivation kept me

going during the challenging times.

My family, including my father Dr. Narasimhan, mother Hema, sister Man-

asa, brother-in-law Kaushik, and dear niece Tara, and my wife’s parents, Sreeni-

vas and Jayshree, deserve a special mention for their love, support, and encour-

agement. They all have been a pillar of strength and a source of motivation for

me throughout my academic journey.

I am grateful to my roommate and fellow graduate, Sudhindra Gopal Krishna,

for his constant support and motivation. His presence has been a source of

iv

inspiration, and his insights have helped me throughout my research.

I express my gratitude to Dr. C R Subramanian for his valuable help and

support in guiding me through my research. His insights and inputs have been

of great assistance in shaping the trajectory of my study.

I would like to extend my appreciation to my committee members for their

invaluable feedback, insightful suggestions, and constructive critiques throughout

the entire process. Their expertise and perspectives have played a pivotal role in

enhancing the quality and refinement of my research.

Furthermore, I am grateful to my fellow lab mates, namely Ashesh Gaur and

Zuyuan Zhang, whose support and assistance have made this journey not only

productive but also enjoyable.

I am thankful to Nicola Manas, Virginie Perez Woods, Philip Johnson, and

Annettee Johnson for all their timely help and guidance as the people who have

helped me navigate the CS and DSA program.

Once again, I express my gratitude to all the family and friends along with

the individuals mentioned above for their invaluable support and encouragement

throughout my research and academic journey.

v

Abstract

Data-intensive computing has led to the emergence of data centers with mas-

sive processor counts and main memory sizes. However, the demand for shared

resources has surpassed their capacity, resulting in increased costs and limited

access. Commodity hardware, although accessible, has limited computational re-

sources. This poses a challenge when performing computationally intensive tasks

with large amounts of data on systems with restricted memory. To address these

issues, Approximate Computing offers a solution by allowing selective solution

approximation, leading to improved resource efficiency.

This dissertation focuses on the trade-off between output quality and com-

putational resource usage in sorting and searching problems. It introduces the

concept of Approximate Sorting, which aims to reduce resource usage while main-

taining an accepted level of sorting quality. Quality metrics are defined to assess

the ”sortedness” of approximately sorted arrays. The dissertation also proposes

a general framework for incorporating approximate computing into sorting algo-

rithms, presenting an algorithm for approximate sorting with guaranteed upper

bounds. The algorithms operate under a constraint on the number of comparisons

performed.

The dissertation continues to explore searching algorithms, specifically binary

search algorithms on approximately sorted arrays. It addresses cases where met-

vi

rics are given for the input array and cases where metrics are not available. Effi-

cient and optimal algorithms are developed for multidimensional range searches

and catalog searches on approximately sorted input. The dissertation further

proposes algorithms that analyze patterns in input order to optimize sorting.

These algorithms identify underlying patterns and sequences, facilitating faster

sorting approaches.

Additionally, the dissertation discusses the growing popularity of approxi-

mate computing in the field of High-Performance Computing (HPC). It presents

a novel approach to comparison-based sorting by incorporating parallel approx-

imate computing. The dissertation also proposes algorithms for various queries

on approximately sorted arrays, such as determining the rank or position of an

element. The time complexity of these querying algorithms is proportional to the

input metric.

The dissertation concludes by emphasizing the wide range of applications for

sorting and searching algorithms. In the context of packet classification in router

buffers, approximate sorting offers advantages by reducing the time-consuming

sorting step. By capping the number of comparisons, approximate sorting be-

comes a practical solution for efficiently handling the large volume of incoming

packets.

This dissertation contributes to the field of approximate computing by ad-

dressing resource limitations and cost issues in data-intensive computing. It

provides insights into approximate sorting and searching algorithms, and their

application in various domains, offering a valuable contribution to the advance-

ment of efficient, scalable, and accessible data processing.

vii

Contents

Acknowledgements iii

Abstract vi

List of Figures ix

1 Introduction 1
1.1 Overview . 1
1.2 Organization of the Dissertation 3

2 Literature Survey 6

3 Sorting 10
3.1 Quality Metrics . 10
3.2 Guaranteed bounds on various metrics for a given number of com-

parisons . 13
3.3 Modified Selection Sort . 15

4 Sequence Analysis 17
4.1 Approximate Sorting when the input is a concatenation of Maxi-

mal Increasing Chains . 17
4.2 Sorting residual Gamma subarray 20
4.3 Upper bounds based on partition into decreasing subsequences . . 23
4.4 Upper bounds based on partition into monotonic subsequences . . 23
4.5 Upper Bounds based on non-consecutive increasing subsequences . 24
4.6 Upper bounds based on number of local optima 31

5 Search 35
5.1 Modified Binary Search with known metrics 35

5.1.1 With maximum displacement 36
5.1.2 With distance . 41

5.2 Modified Binary Search with unknown metrics 45
5.2.1 With distance . 45

viii

5.2.2 With Maximum Displacement 46

6 Range Search 48
6.1 1D range search . 48

6.1.1 With maximum displacement 49
6.1.2 With distance . 53

6.2 Fractional Cascading on a set of approximately sorted catalogs . . 53
6.2.1 Construction of a Fractional Cascading Structure 55
6.2.2 Fractional Cascading using maximum displacement 55
6.2.3 Fractional Cascading using distance 58

6.3 2D range search . 59
6.3.1 With Maximum Displacement 60

6.4 Multidimensional range search on an Approximately Sorted d di-
mensional input . 62

7 Parallel Sorting and Searching 64
7.1 Multi-core Approximate Sorting 64
7.2 Determining Rank given Position 69

7.2.1 Case of known bound on md(τ) 69
7.2.2 Case of known bound on dis(τ) 70

7.3 Parallel Rank given Position . 71
7.4 Determining position given rank 73

7.4.1 Case of known bound on md(τ) 74
7.4.2 Case of known bound on dis(τ) 75

7.5 Parallel Position given Rank . 76
7.6 Multi Select in an approximate sorted array 78
7.7 Parallel Multi Select in an approximate sorted array 79

8 Network Packet Classification with Approximate Sorting 81
8.1 Introduction . 81

8.1.1 Decision Tree Based Packet Classification 83
8.1.2 Comparing Two Packets 85

8.2 Relationship between quality metrics and Traversing the Decision-
Tree . 86

8.3 Relationship between Bursty Throughput and maximum displace-
ment . 88

8.4 Approximate Sorting and Packet Classification 89
8.5 Improved Packet Classification using a Cache approach 95

9 Conclusion 101

Bibliography 103

ix

List of Figures

3.1 Example visualization of md and dis 12

4.1 Comparison between concatenation of chains and non-consecutive
increasing subsequences in an example - represented above and
below are indices . 25

5.1 Visualization of first partition of modBST() 40

6.1 Fractional Cascading on completely sorted catalogs 55
6.2 Fractional Cascading on an approximately sorted catalogs 56
6.3 Shows the x range tree and y-values stored as catalogs 63

7.1 Visualization of the sorting process across p processors. 68

8.1 The decision tree and R rules as leaf nodes. 84
8.2 Packet Classification with fully sorted versus unsorted packets list. 90
8.3 Conditions under which the approximate sorting is better than

fully sortedness . 93
8.4 Comparing Approximate Sort and Unsorted Methods for 1M num-

ber of rules for ACL/IPC/FW. The value of D = 4 94
8.5 Varying the value of D and showing the impact on gain in perfor-

mance. After certain values of D there are no gains 94

x

Chapter 1

Introduction

1.1 Overview

Donald Knuth, the renowned computer scientist, once described sorting as fol-

lows: ”Sorting is a fundamental and pervasive operation in computer science,

and its study has spawned a rich and diverse field of research.” These words

capture the essence of sorting, highlighting its significance and the wide range of

approaches that have been developed to solve this fundamental problem.

In the domain of sorting algorithms, comparison-based sorting techniques have

gained substantial attention due to their simplicity and generality. Comparison-

based sorting algorithms compare elements of a given sequence using pairwise

comparisons, and based on the outcomes of these comparisons, they rearrange the

elements to achieve the desired order. These algorithms offer a flexible and generic

framework for sorting, making them applicable to various problem domains.

A single comparison, at its core, is an operation that determines the relative

ordering of two elements. It takes two elements as input and outputs either a ”less

1

than,” ”equal to,” or ”greater than” relationship between them. This elementary

operation serves as the building block for a wide range of sorting algorithms, and

its efficient implementation is crucial for achieving optimal sorting performance.

In the context of comparison-based sorting, it is essential to understand the

various types of comparisons that can be performed. The most common type is

the key-based comparison, where the elements are compared based on a specific

attribute or key associated with each element. For example, when sorting a list of

integers, the key-based comparison could involve comparing the numerical values

of the integers.

Another type of comparison is lexicographic comparison, which is commonly

used when sorting strings or sequences of characters. Lexicographic comparisons

involve examining the characters of two elements from left to right and comparing

them based on their relative positions in the lexicographic order. This type of

comparison plays a crucial role in a variety of applications, including natural

language processing, text processing, and dictionary-based operations.

Additionally, there are specialized comparisons that take advantage of the

properties and structures of specific data types. For instance, interval compar-

isons are used when sorting intervals or ranges, where the ordering is determined

based on the start and end points of each interval. Similarly, geometric compar-

isons are employed in sorting geometric objects such as points, lines, or polygons,

where the order is determined by their spatial relationships.

Understanding the different types of comparisons and their implications is es-

sential for designing efficient and effective comparison-based sorting algorithms.

By leveraging the characteristics of the data being sorted, researchers and prac-

titioners can develop tailored approaches that optimize the sorting process for

specific problem domains.

2

In this dissertation, we delve into the field of combinatorial algorithms in the

approximate computing paradigm, focusing on the application of these algorithms

to sorting problems. We explore various techniques, strategies, and optimizations

that can enhance the performance of comparison-based sorting algorithms in sce-

narios where approximate solutions are acceptable. Through empirical evalua-

tions and theoretical analysis, we aim to provide valuable insights into the design

and implementation of efficient combinatorial algorithms, ultimately contribut-

ing to the advancement of approximate computing and its applications in sorting

paradigms.

By combining the power of combinatorial algorithms with the flexibility of

the approximate computing paradigm, we anticipate opening new avenues for

efficient sorting in domains where strict precision can be relaxed in favor of faster

and more scalable solutions. This research strives to push the boundaries of sort-

ing algorithms, offering novel perspectives and approaches that can significantly

impact the field of computer science and its practical applications.

1.2 Organization of the Dissertation

The dissertation first starts by explaining basic starting algorithms and the mo-

tivation behind why a comparison-bound sorting algorithm is warranted. We

present a sorting algorithm that takes in the number of comparisons as a con-

straint (input) and performs sorting as explained in Chapter 3. In the same

chapter, we continue to define the basic quality metrics that are used in the dis-

sertation for proving various constraints and bounds for the algorithms that are

defined. The chapter also gives a bound on all the metrics for the algorithm that

is provided for sorting. The chapter ends with a proposed modified selection sort

3

algorithm that completes sorting an input approximately sorted array when one

of the metrics is an input.

Chapter 4 in this dissertation gives algorithms for preprocessing a given ran-

dom array of elements, that finds sequences and patterns. The first algorithm

presented finds maximal increasing chains that are contiguous. There are opti-

mization approaches mentioned that make this algorithm better with respect to

the metrics that are mentioned. There are decreasing and monotonic subsequence

pattern recognition algorithms as well provided. There are also non-consecutive

increasing subsequence pattern recognition algorithms given along with local Op-

tima finding algorithms as well.

Now that we have covered a lot of sorting and sequence recognition algorithms

we jump into querying algorithms starting with search. In Chapter 5, The first

algorithm that is provided is a modified binary search algorithm that precisely

finds an element given an approximately sorted array with its metric. We continue

to Define and provide bounds for an algorithm where the metric is not an input

for the approximately sorted array but still be able to search the given array

precisely for a query element.

In chapter 6 the dissertation continues to explore range search algorithms.

given an approximately sorted array along with its metric algorithm for finding

the number of elements within a given range and finding the exact elements that

do fall within this given range are provided. These algorithms are given for a

one-dimensional input, two-dimensional input, or multidimensional input. One

of the important ideas that two-dimensional range search uses is the fractional

cascading structure that is also performed for an approximately sorted order.

The dissertation provides the construction of this fractional cascading structure

along with its use in the 2D and multi-dimensional range search algorithms.

4

In Chapter 7, There are parallel algorithms that are provided to approximately

start a given random set of elements. We also provide an algorithm to find the

exact position of an element in an approximately sorted array given its rank.

There are also algorithms defined that find the rank given the position of an ele-

ment in the approximately sorted array. There are parallel multicore algorithms

mentioned for each of these algorithms. The chapter ends with the Sequential

and parallel multi-select approach that is performed on an approximately sorted

array.

Chapter 8 of this dissertation heads into the application of approximate Com-

puting and approximate starting in the software defined Network Realm. There

are packet classification algorithms provided that make packet classification in a

router speed up by approximately sorting the incoming packets before processing

and classifying them into rule sets. We establish a relationship between the qual-

ity metrics and the decision tree approach that is used here. The comparisons are

made between traditional decision tree approaches and an approximately sorted

packet decision tree approach. Experiments prove the speed up and the searching

that can be done on an approximately sorted set of packets in the buffer of the

routers.

The last chapter of the dissertation concludes each of the above-mentioned

chapters and ends with future work.

5

Chapter 2

Literature Survey

The literature survey chapter serves as a pivotal foundation for the comprehensive

exploration of existing knowledge and research related to Approximate Sorting,

Quality Metrics for an approximately sorted order, and also existing techniques

that have been looked into. We also explore the applications where these tech-

niques have already been applied.

The world is moving into an era where everything is centered around data.

The large amount of data that is being generated by the second, needs to be

processed to get various insights from them. We are at a point where the de-

mocratization of such resources has become a necessity to process these large

amounts of data.

One way is to reduce the dependency on such resources. Specifically, for

applications where a very accurate or precise solution is not necessary, one can

leverage the quality of the solution/output for a reduction in the resources. This

idea is called Approximate Computing (Mittal, 2016).

One of the most fundamental problems in computer science is sorting. Broadly,

6

they can be classified into comparison-based and non-comparison-based sorting.

It has been established (Knuth, 1997) that it suffices to perform O(n log n)

pairwise comparisons (Knuth, 1997) to sort a given set of n unique elements in

increasing or decreasing order.

We can either measure the sortedness of a given order by how sorted it is or

by how disordered it is. The measure of disorder would be zero when it is fully

sorted. For a survey of measures of disorder, see (Estivill-Castro and Wood,

1992). The measure of number of inversions has been looked into by (Knuth,

1997; Mannila, 1985; Wang et al., 2015; Disser and Kratsch, 2017). A

closely related measure from (Wang et al., 2015) is the Kendall Tau rank dis-

tance defined as the number of pairwise adjacent transpositions of elements xi and

xi+1 that transforms one permutation to another. In (Wang et al., 2015), the

number of inversions inv(τ), the inversion vector and the Spearman’s Footrule

defines inversion-ℓ1 distance between two given permutations. In (Korba, 2018;

Diaconis, 1988), Hamming distance is mentioned, which is also a well-studied

metric that counts the number of elements that disagree between two permuta-

tions. Here, the two permutations are the approximately sorted output and a

completely sorted version of the same array.

Related to the maximum displacement that we define in this dissertation, is

the Spearman’s Footrule which is defined in (Diaconis and Graham, 1977)

and further analyzed in (Wang et al., 2015; Giesen et al., 2006). It is the

sum of the displacements for each xi in the given permutation τ with respect to

a sorted order.

Work has been done in the area of measuring the quality of an approximately

sorted array as seen above. Our approach for searching an approximately sorted

array using the maximum displacement (explained in later chapters) ends up with

7

a factor of complexity of 4L + 1 number of comparisons where L is the quality

metric. We point out that the term 4L+1 can be bought down to 3L by following

an approach that is taken by Disser and Kratch (Disser and Kratsch, 2017),

that starts to look for the element to be searched for from the center, looking

between L index positions to the left and the right. Then based on the comparison

made between these elements and the element to be found, we can either search

the L left out elements from either the left or the right half.

We further study the various metrics that this paper defines and explains.

One of the popular metrics that they use in their paper is ksum, which is the sum

of the displacements of an approximately sorted array. We were able to come

up with a counter-example (worst case input) for theorem 5 from their paper

that breaks the two-phase algorithm by having the ksum too large. Below is an

example array that we assume to prove this.

{160, 150, 140, 130, 120, 110, 90, 80, 70, 60, 50, 40, 30, 20, 10}

For the above example, the ksum metric adds to 128 and the algorithm goes

beyond the bounds for it to converge.

The paper also gives a proposition by comparing the ksum and kinv. The

metric kinv is the total number of inversions defined like how we define it. The

authors also define total adjacent inversions as kainv. The relationship established

between ksum and kinv is given by proposition 13 as,

kinv ≤ ksum ≤ 2kinv

The proof given takes two elements that get inverted and compares the dis-

placements of the two elements which adds to the number of inversions needed

8

to completely sort the order. This as a metric is not possible to be used in al-

gorithms or for providing bounds as it does not give any positional information

about the given order.

The work from (Kaligosi et al., 2005), gives a variation of the multiselection

problem to select R = r1, r2, ...rk rank for a given unsorted array. They provide

upper and probabilistic bounds for the number of comparisons (T (n,R)) needed

for the algorithm using the median of median pivot choosing strategy. (Cardinal

et al., 2010) also provides a generalized version of this for the partial ordering

production problem.

Range search is used in a variety of applications as well. In the field of com-

putational geometry, it has a multitude of applications in database searching and

geographical databases (Tao et al., 2007; Zhang et al., 2005; Asano et al.,

1985). The idea of fractional cascading was introduced in two parts, (Chazelle

and Guibas, 1986a) where the data structure was defined and (Chazelle and

Guibas, 1986b) where the various applications were listed, including finding

the intersection of a polygonal path with a line, computing locus functions and

the most popular problem of orthogonal range search. This idea was made into a

dynamic implementation by (Mehlhorn and Näher, 1990). Some real-world

applications of fractional cascading are in the problem of incoming packet classifi-

cation in routers (Buddhikot et al., 1999; Lakshman and Stiliadis, 1998).

They are also used in the data storage of sensor networks that are studied in

(Gao et al., 2004).

This lays the foundation for the work done in this dissertation. We continue

to the next chapter where we start exploring the quality metrics and approximate

sorting algorithms. More survey has been discussed in each of the chapters as

well.

9

Chapter 3

Sorting

In this chapter, the concept of measuring the quality of the sortedness of the

output order will be introduced along with specific metrics that we use with

examples. Provided is a simple algorithm to approximately sort a given array with

a constraint on the factor of number of comparisons that can be performed. With

this algorithm, we establish upper bounds for each of the metrics. We also provide

a modified selection sort approach that completes sorting an approximately sorted

order, given the metric.

3.1 Quality Metrics

We use rankτ (xi) (shortly rτ (xi)) to be the unique position occupied by the

element xi in the fully sorted version of the input τ .

The first measure is the number of inversions. It is defined as the number of

pairs (xi, xj) (i < j) in the output that is out of order, having xi > xj. Each of

these out-of-order elements is referred to as an inversion. We can represent the

10

quality of the output order of elements using the number of inversions, inv(τ)

(Knuth, 1997; Mannila, 1985; Wang et al., 2015; Disser and Kratsch,

2017).

The second metric is an extension of the first metric where we see look at

the farthest inversion among all inversions present in the given order. Maximum

distance (dis(τ)), is defined as max{j− i : i < j, xi > xj}, if there is at least one

inversion. This is zero if there are no inversions present.

We first define what is displacement before we jump to the third metric. Dis-

placement (dp(π, i)) of an element xi in a given permutation (π) is |k− i|, where

k = rπ(xi). The third measure of disorder here is the maximum displacement

(md(π)), which is defined as max1≤i≤n dp(π, i). When restricted to permutations

over {1, . . . , n}, the maximum displacement becomes the Chebyshev distancemea-

sure defined in (Wang et al., 2015).

All the measures described above are measures of disorder, meaning they

measure how far away the given array is from a completely sorted order. Hence,

all measures will be 0, when the array is completely sorted. This would be the

lower bound. The upper bound for the number of inversions (inv), would be(
n
2

)
in the worst-case scenario when there the array is reverse sorted. The upper

bound for the distance (dis) would be in the scenario when the greatest element

in the array is in the first index position or vice versa - the smallest element in

the last index position. This is the same for the maximum displacement (md) as

well.

Following is an example (figure 3.1) of an array (similar to the example from

(Wang et al., 2015)), that describes the maximum displacement and distance

11

visually. We represent the number of inversions as a set:

{(50, 40), (50, 20), (50, 30), (40, 20), (40, 30)} = 5

=⇒ inv(A) = 5

As seen in the figure, the farthest inversion is between the index positions 1 and

4, so dis(A) = 3.

To calculate the maximum displacement, we first need to calculate the dis-

placement for each of the values. This is listed in the figure. For example, the

displacement for 50 is 3 since its current position is index position 1, but when

sorted (AS), its rank is 4. Thus, we calculate the maximum displacement as the

maximum value amongst all displacements of each of the values, which would

give us md(A) = 3.

Figure 3.1: Example visualization of md and dis

The paradigm of approximate computing is taken to the space of sorting

algorithms as the idea of approximate sorting (assumed to be increasing order

without loss of generality).

12

3.2 Guaranteed bounds on various metrics for

a given number of comparisons

For simplicity in describing the algorithm, we assume that n is a power of 2.

Here, n denotes the number of packets in the input array A[1..n]. For i ≤ j,

we use A[i, j] to denote the subarray A[i..j] formed by the positions from i to j.

Let MedianRearrange(A[1..n]) be a O(n) time algorithm to find the median of

A[1..n] after which it rearranges A[1..n] following (A2) given below. The median

of A[1..n] is the n
2
-th smallest element of A. We assume the following about

MedianRearrange():

• A1: MedianRearrange() is an in-place algorithm, that is, it does not use

more than O(1) additional storage.

• A2: When the execution of MedianRearrange(A[i..j]) (where j − i + 1 is

even) is finished, it rearranges the packets of the array (buffer) A[i..j] in

such a way that any element x in the first half A[i, j+i−1
2

] and any element

y in the second half A[j+i+1
2

, j] satisfy x < y.

Consider the following algorithm.

Algorithm 1: ParSort(A[1..n],D)

input: An array A[1..n], n is a power of 2.
for i← 0 to D do

for j ← 1 to 2i do

MedianRearrange(A[(j−1)n
2i

+ 1, jn
2i
])

One can prove the following theorem/claim about ParSort().

13

Theorem 3.1. Let π be the order of the packets in A[1..n] when the execution of

ParSort(A[], D) ends. Then inv(π) ≤ n2

2D+2 and md(π), dis(π) ≤ n
2D+1 . Further-

more, PartSort() uses O(Dn) comparisons to produce π.

Proof. Analysis of measure of disorder:

An invocation of MedianRearrange([A[i, j]) uses at most c(j − i + 1) com-

parisons for some absolute constant c > 0. There are well-known algorithms

(such as the one based on the idea of “median of medians” discovered by (Blum

et al., 1973)) that achieve this. The resulting array after the execution of

MedianRearrange() is that the smallest half of the packets in A are placed be-

fore the largest half of the packets in A. Using this fact, one can deduce the

following claim.

For each k ∈ {0, 1, . . . D}, the following is true: The entries of A just after

the end of the iteration of the outer loop corresponding to i = k are such that

inversions can occur only between entries in each of the subarrays corresponding

to A[(j−1)n
2k+1 + 1, jn

2k+1] for j ∈ {1, . . . , 2k+1}.

Proof. This claim can be established by inductive proof based on increasing values

of i. The base case corresponding to i = 0 follows from the nature of Median-

Rearrange() explained above. For larger values of i, say i = k ≥ 1, we know

that induction up to i ≤ k− 1 has established that after the first k rounds corre-

sponding to i = 0, . . . k − 1, we have obtained an array A in which the inductive

hypothesis is true. By applying MedianRearrange() to each of these 2k subar-

rays of size n
2k

each, we further partition each of these subarrays into two smaller

subarrays of size n
2k+1 each and also satisfying the claim that inversions can occur

only in these 2k+1 subarrays of size n
2k+1 each. This establishes the claim.

Hence, after the end, for all D+ 1 iterations of the outer loop, the array A is

14

such that inversions can occur only within the 2D+1 subarrays of size n
2D+1 each.

Therefore, the total number of inversions in π is at most

2D+1

(
n(n− 2D+1)

2 · 22D+2

)
≤ n2

2D+2
.

This establishes the claimed upper bound on inv(π). Furthermore, it follows

immediately from the above claim that md(π), dis(π) ≤ n
2D+1 .

Run-time analysis :

MedianRearrange(A[]) uses at most cn comparisons (for some absolute con-

stant c > 0) on inputs of size n. Therefore, the total number of comparisons used

by ParSort(A[], D) is bounded by

∑
0≤i≤D

2i · c · n
2i
≤ (D + 1)cn.

3.3 Modified Selection Sort

In this section, we propose an algorithm to completely sort the given approx-

imately sorted array with a corresponding L quality metric using a selection

approach. We iterate through the array starting from the first position taking

one position at a time to find the element that will have the rank as the index

we currently are at.

Theorem 3.2. Let π be the order of the elements when the execution of

15

Algorithm 2: SortApproxArray(A[1..n], L)

Input: An array τ = A[1..n] and md(τ) ≤ L
Output: Completely sorted array π
for i← 0 to n− 1 do

S ← min{i+ 2L− 1, n} ;
A[i] = find min within window A[i : S] of length atmost 2L

return π = A

SortApproxArray() ends. Then inv(π),md(π), dis(π) ≤ 0, using O(nL) com-

parisons to produce π.

The algorithm runs through every index position in the given approximately

sorted order. With each element, we are able to determine the exact window

(i : S) within which the min element will occupy the current ith index position.

This window of elements is determined using the metric L that is given as an

input. So the exact length of this window of elements is 2L until we reach the

end of the array at which point the length becomes smaller as we approach the

very last element. Finding the min element with this window i : S will take 2L

amount of comparisons for each index position. By repeatedly performing this

operation of find the min element in each window for each index position (n), we

will be able to completely sort the given approximately sorted array in O(nL)

number of comparisons.

We conclude this chapter as we have defined the basic quality metrics along

with the ParSort sorting algorithm with which we establish the upper bounds for

each of the metrics. We then provide a modified selection sort algorithm that

takes in an approximately sorted order along with its metric and completely sorts

it. The following chapter dives into analyzing the input array for sequences and

patterns that will aid in the approximate sorting process.

16

Chapter 4

Sequence Analysis

In this chapter, we analyze the given input array for sequences that are consec-

utive and non consecutive. The goal with this knowledge of these patterns is

that we will be able to get a better bound on the quality metrics for each of our

approximately sorted output arrays. We look at consecutive increasing chains,

local minima and non-consecutive chains along with some variations for each of

these. There are also new quality metrics that will be introduced along the way.

4.1 Approximate Sorting when the input is a

concatenation of Maximal Increasing

Chains

Suppose we want to sort τ = A[1..n] into an increasing sequence. Write τ =

σ1σ2 . . . σr as a concatenation of sequences where each σi is increasing and is

maximal in the sense that the last number in σi is greater than the first number

17

of σi+1 for each i < r. For every τ , the values of r and σis are uniquely defined.

Define cic(τ) (concatenation of increasing chains) to be r. This is referred to as

Runs in (Mannila, 1985) and as Ascending Runs in (Barbay and Navarro,

2013). A simple scan of A[1..n] from left-to-right determines r and also σ1, . . . , σr

using n− 1 comparisons. r will be 1 if the order is already fully sorted and will

be equal to n when the order is reverse fully sorted. Below, we present an

algorithm Parsort(A,D), which produces an approximately sorted output using

O(Dn) comparisons.

Algorithm 3: Parsort(A[1..n],D)

input: An array A[1..n], n = 2k and D ≤ k.
Determine σ1, . . . , σr satisfying A[1..n] = σ1 . . . σr. %% r = cic(A[])
Compute M = min{2D, r}
Rearrange the sequences (using an extra array if required) so that
|σi| ≥ |σj| for every 1 ≤ i ≤M, M + 1 ≤ j ≤ r
Merge the first M sequences σ1, . . . , σM to get an increasing subsequence
σ of A[1..n] in the first

∑
i≤M |σi| positions

Output σ.

One can prove the following claim about Parsort(). For an ordering π =

(x1, . . . , xn), let lp(π) denote the longest increasing prefix of π. It is not a measure

of disorder, but it measures the length of the already sorted and consecutive

subsequence present in π. One can use this also as a measure of the quality of

sortedness that an algorithm achieves. The above measure of lp(π) is a variant

of the measure of longest ascending subsequence discussed in (Mannila, 1985),

where lp(π) is always the prefix of the order.

Theorem 4.1. Let τ denote the ordering A[1..n]. Let r denote cic(τ). Let π be

the ordering of elements in A[1..n] when an execution of Parsort(A[], D) ends. If

2D ≥ r, π is a fully-sorted (in increasing order) version of A[1..n]. Otherwise,

18

lp(π) ≥ n2D

r
and inv(π) ≤ n2(r2−22D)

2r2
. In addition, PartSort2() uses O(Dn)

comparisons to produce π.

Analysis of the number of comparisons :

Each of the Steps 1 and 2 can be implemented using O(n) comparisons.

For Step 3, we find the M -th largest element among {|σ1|, . . . , |σr|} using O(n)

comparisons. Once this is done, move the subsequences {σi}i within A[1..n] so

that the largest M subsequences occupy the first
∑

i≤M |σi| positions of A can be

achieved using O(n) comparisons (using possibly an extra array of length n).

Merging the first M sorted subsequences into a single sorted subsequence can

be accomplished using O(n(logM)) = O(Dn) comparisons. It follows from the

well-known fact that k sorted sequences of total length n can be increasingly

sorted in O(n(log k)) time by employing a min-heap structure. Thus, Parsort()

performs O(Dn) comparisons on the whole.

Analysis of the quality of the output :

Suppose 2D ≥ r. Then, M = r and hence all the r pre-sorted subsequences

will be merged into a single sorted sequence of length n.

Suppose 2D < r. Then, M = 2D. Let ni = |σi| for each i. We know
∑

i ni = n.

Hence, the M largest subsequences will have a total length |σ| ≥ nM
r

= n2D

r
.

19

Hence, inversion can occur only when either or both elements are part of the

subsequences σj where j > M . Let us refer to the subsequences σj where j > M

is γ. γ = σjσj+1σj+2...σr

Therefore, the total number of inversions is given by Equation 1, thereby

completing the proof.

4.2 Sorting residual Gamma subarray

The following are consequences of the above theorem. From the above theorem,

we can see that the subsequences γ are untouched and we are looking at them

as randomly ordered residual numbers. Hence, in Equation 1, the second term

counts all possible pair combinations possible for the number of inversions that

can occur within γ. We can do better and reduce the value of this second term

in Equation 1, by doing a ParSortMedianRearrange() algorithm.

For i ≤ j, we use A[i, j] to represent the elements in the subarray A[i...j].

ParSortMedianRearrange(A[1..n]) can be designed as a O(n) time algorithm (us-

ing (Blum et al., 1973)), which can find the median of A[1..n] and rearranges

A[1..n] following (A2) given below. The median of A[1..n] is the n
2
-th smallest

element of A when sorted. The following are assumptions about ParSortMedian-

Rearrange():

• A1: ParSortMedianRearrange() uses O(1) additional storage. Hence, it

is an in-place algorithm.

• A2: One execution of ParSortMedianRearrange(A[i..j]) (where j − i+ 1

is even), once it is done executing, the elements in the array A[i..j] are

rearranged such that, all the elements in the second half (A[j+i+1
2

, j]) are

20

greater than any element in the first half (A[i, j+i−1
2

]).

Consider the following algorithm.

Algorithm 4: ParSortMedianRearrange(A[1..n],D)

input: An array A[1..n], n is a power of 2.
for i← 0 to D do

for j ← 1 to 2i do

ParSortMedianRearrange(A[(j−1)n
2i

+ 1, jn
2i
])

Theorem 4.2. Let π be the ordering of elements in A[1..n] when an execution of

ParSortMedianRearrange(A[], D) ends. Then, inv(π) ≤ n2

2D+2 andmd(π), dis(π) ≤
n

2D+1 . Moreover, PartSortParSort() uses O(Dn) comparisons to produce π.

We now use this ParSortMedianRearrange() for the γ subsequence as shown in

ParsortwithGammaRearrange(). The algorithm ParsortwithGammaRearrange()

first calls ParSort(A[1..n]) followed by ParSortMedianRearrange(γ,D).

Algorithm 5: ParSortwithGammaRearrange(A[1..n], D)

input: An array A[1..n], n = 2k and D ≤ k.
ParSort(A[1..n]).
ParSortMedianRearrange(γ,D).

The algorithm ParSortMedianRearrange() is called with the subsequence γ

from Equation 1, which is of length n− |σ|. Once we call this algorithm with γ

performed in O(nD) time, we will be getting 2D number of subsequences within

γ, each of length n−|σ|
2D

. We can now rewrite theorem as the follows:

Theorem 4.3. Let τ denote the ordering A[1..n]. Let r denote cic(τ). Let π be

the ordering of elements in A[1..n] when the execution of ParsortwithGammaRe-

arrange(A[],D) ends. If 2D ≥ r, π is a fully-sorted (in increasing order) version

of A[1..n]. Otherwise,

21

lp(π) ≥ n2D

r
;

inv(π) ≤ n2(r − 2D)(r + 24D+2 + 2D)

2D+2r2
;

md() ≤ n− |σ|
2D

+ |σ|

In addition, ParsortwithGammaRearrange() uses O(Dn) comparisons.

The result of this theorem is changed with the second term of Equation 1

becoming more tight now that we have rearranged that with respect to the

ParSortMedianRearrange() in ParsortwithGammaRearrange(). This brings the

number of inversions that occur within γ as inv(γ) ≤ (n−|σ|)2
2D+2 . Taking Equation

1 again and substituting this value to it, we get,

inv(π) ≤ |σ|(n− |σ|) + (n− |σ|)2

2D+2
(2)

Substituting |σ|≤ n2D

r
,

≤ (nr − n2D)

r
×

(
n(24D+2 + r + 2D)

r2D+2

)

inv(π) ≤ n2(r − 2D)(r + 24D+2 + 2D)

2D+2r2

The above upper bound is for the number of inversions for π. ■

22

4.3 Upper bounds based on partition into

decreasing subsequences

Instead of partitioning into disjoint increasing subsequences, one can consider

partitioning into decreasing subsequences. The analogous Greedy-partitioning,

when applied to a permutation τ , will partition into a number nds(τ) disjoint and

decreasing subsequences. One can implement (as before) this greedy algorithm

with an analogous PartDecSubseq() procedure which is very similar to PartInc-

Subseq() and it can be shown that it uses O(n(log nds(τ))) comparisons on the

whole. If we employ PartDecSubseq in place of PartIncSubseq in ParSort4(), we

obtain ParSort4a() and also conclusions similar to Theorem ?? and Corollaries

?? and ?? which employ nds(τ) in place of nis(τ).

The reason why we study nds is: there are permutations that may have a

high nis value but whose reversals will have a low nis value (for the decreasing

ordering). It does not matter if we can sort in the decreasing order because by

reversing this sorted order, we obtain (with no extra comparisons) the desired

sorted ordering. For example, permutations πR
1 and πR

s both have high (linear in

n) nis values but have nds values 1 and 2 respectively.

4.4 Upper bounds based on partition into

monotonic subsequences

Given a permutation τ = A[1..n] of [n], consider the following algorithm Part-

MonSubseq() for obtaining a partition of [n] into monotonic (increasing or de-

creasing) τ -subsequences. This is similar to the previous algorithm PartIncSub-

23

seq() for partitioning into increasing subsequences but then sometimes focusing

on partitioning into monotonic subsequences will help us get partitions into a

smaller number of increasing subsequences. The algorithm first partitions [n]

into a number of (not necessarily consecutive) monotonic subsequences and then

places them in A[] (after reversing decreasing subsequences) so that A becomes

the concatenation of increasing subsequences.

4.5 Upper Bounds based on non-consecutive

increasing subsequences

The first subsequence pattern that we analyzed was a concatenation of increasing

chains where the elements in each subsequence were next to each other in the

given array. However, what if we want to form an increasing subsequence where

the elements are not necessarily next to each other. Let us take an example to

explain this.

A = {10, 20, 15, 5, 25, 17, 30, 8, 35, 13}

The concatenation of increasing chains for the above array would be:

σ1 = {10, 20}

σ2 = {15}

σ3 = {5, 25}

σ4 = {17, 30}

σ5 = {8, 35}

σ6 = {13}

24

The non-consecutive increasing subsequence for the above array would be:

σ1 = {10, 20, 25, 30, 35}

σ2 = {15, 17}

σ3 = {5, 8, 13}

The non-consecutive increasing sequences can be made of numbers that are

not necessarily in adjacent index positions in the given array, A. The main reason

for the non-consecutive approach is that we will be reducing the scenarios in which

we would want to create a new subsequence, and instead concatenate the new

element into an already existing subsequence. The idea would be to concatenate

the new element with the subsequence having the greatest element lesser than

the new element. If that does not exist, we create a new subsequence with the

new element.

The following figure 4.1, visualizes the example from above showing the chains

and the subsequences.

Figure 4.1: Comparison between concatenation of chains and non-consecutive
increasing subsequences in an example - represented above and below are indices

25

The reasoning for finding a subsequence/pattern in the given array is so we

have some amount of information prior to sorting so that we can do the sorting

more efficiently with that knowledge. Moreover, in the paradigm of approximate

sorting, there is a constraint (D) which is the factor of the number of comparisons

that can be performed. This means that the sequence analyses must be done

within O(nD).

The algorithm explanation follows. We read one element at a time from the

given array A. This element A[1] is added to the first subsequence (σ1). The next

element A[2], if greater than the element in σ1, is concatenated to σ1. If not, the

A[2] creates a new subsequence σ2. This process keeps going, as we read in a

new number (A[i]) from our input array, we search for the greatest element less

than A[i] from TG (where, TG is the BST that maintains the greatest elements

from each of the subsequences). If found, we concatenate to the corresponding

subsequence σx that contains the greatest element less than A[i]. If not, we create

a new subsequence.

As we are using a BST to store and search the greatest elements from each of

the subsequences, it is important for us to keep the time to search and insert into

TG to be less such that the time complexity of the entire algorithm stays below

O(nD). This means that the number of elements in TG should be less than 2D.

Thus, the maximum number of subsequences that we can have is 2D.

To overcome this issue of being able to store only 2D elements, we store each

subsequence as a BST, maintaining the length of each of them to 2D, which means

we can store at most 22D number of elements.

This leads us to three cases that we can come across with the number of

elements (n) that are given:

Case 1: n ≤ 2D; Case 2: n ≤ 22D;

26

Case 3: n > 22D

In the event of cases 1 and 2, all elements from A will be put into the subse-

quences and result in non-consecutive increasing subsequences. In the case of the

third scenario, there will be n − 22D number of elements that would not be put

into subsequences. These residual elements are stored in an array γ as is. We

now call the Parsort() algorithm on these subsequences.

Algorithm 6: Parsort3(A[1..n], D)

input: An array A[1..n], n = 2k and D ≤ k.
ParBSTSort(A[1..n], D).
Parsort(A[1..n], D).

Theorem 4.4. Let τ denote the ordering A[1..n]. Let π be the ordering of ele-

ments in A[1..n] when an execution of ParSort3(A[],D) ends. If n ≤ 22D, π is a

fully-sorted (in increasing order) version of A[1..n]. Otherwise, inv(π) < n2−24D

2
.

In addition, ParSort3() uses O(Dn) comparisons to produce π.

Once the algorithm is complete, the subsequences are all concatenated to-

gether (σγ) where, σ = σ1σ2σ3... of length 22D (sorted) and γ holds all the

residual values and is of length n − 22D (not sorted). The inversions can only

occur with either element in σ and γ or if both the elements are in γ.

Hence proving the number of inversions. We can also take the idea of Par-

SortMedianRearrange and get to the following algorithm ParBSTsortwithGam-

maRearrange(). This, as proved before, will tighten the number of inversions

27

Algorithm 7: ParBSTsort(A[1..n], D)

input: An array A[1..n], n = 2k and D ≤ k.
Generate empty BSTs Tσ1 , Tσ2 , ... Tσ

2D
, to store the subsequences.

Generate empty BST TG, to maintain the largest element of 2D number
of subsequences (σs). Generate γ empty array to add the elements as is
if n > 22D. Insert A[1] into TG and Tσ1 .
for i← 2 to n do

if i ≥ 22D then
break;

Search TG for A[i] to obtain the closest element c to it and
corresponding Tσx ; c = max(Tσx)
if c > A[i] then

Insert A[i] to Tσx ; Balance Tσx ; Update corresponding node at TG

with max(Tσx)
If numNodes at Tσx ≥ 2D, delete corresponding node at TG

else if c < A[i] then
if ∃ an empty Tσy then

Insert A[i] to Tσy ; Balance Tσy ; Update corresponding node at
TG with max(Tσy)
If numNodes at Tσy ≥ 2D, delete corresponding node at TG

else
Insert A[i] to Tσx ; Balance Tσx ; ; Update corresponding node
at TG with max(Tσx)
If numNodes at Tσx ≥ 2D, delete corresponding node at TG

γ = A[2D + 1 : n] // copy n− 2D elements into γ; Output subsequences
as inorder traversal of BSTs Tσ1 , Tσ2 , ... Tσ

2D
and γ

and give us a maximum displacement bound. We will now have the function

ParBSTsortwithGammaRearrange(), where we will call ParSort3() followed

by ParSortMedianRearrange(γ,D).

Theorem 4.5. Let τ denote the ordering A[1..n]. Let r denote cic(τ). Let π

be the ordering of elements in A[1..n] when execution of ParBSTsortwithGam-

maRearrange(A[],D) ends. If 2D ≥ r, π is a fully-sorted (in increasing order)

version of A[1..n]. Otherwise, lp(π) ≥ n2D

r
and inv(π) ≤ (n−22D)(n+23D+2−22D)

2D+2

and md() ≤ n−22D

2D
+ 22D. In addition, ParBSTsortwithGammaRearrange() uses

28

Algorithm 8: ParBSTsortwithGammaRearrange(A[1..n], D)

input: An array A[1..n], n = 2k and D ≤ k.
ParSort3(A[1..n]).
ParSortMedianRearrange(γ,D).

O(Dn) comparisons to produce π.

To make this bound of the maximum displacement tighter, we can perform

a few steps before we do the algorithm above to reduce these upper bounds. It

is important that these steps still stay within O(nD). Consider the following

algorithm, ParBSTSort2().

Algorithm 9: ParBSTSort2(A[1..n],D)

input: An array A[1..n], n = 2k and D ≤ k.
for i← 1 to D do

for j ← 1 to 2i do

ParSortMedianRearrange(A[(j−1)n
2i

+ 1, jn
2i
])

for j ← 0 to 2D do

ParBSTSort(A[(j−1)n
2D

+ 1, jn
2D

])

ParBSTSort2() algorithm takes at most c × numberofelements number of

comparisons to swap elements such that all elements lesser than the median are

in the lower half and all elements greater than the median are in the upper half.

c is the constant corresponding to D for the outer loop. The median of medians

(Blum et al., 1973) is a very popular algorithm that can be used here, having

a time complexity of O(n). At each of the D number of steps that we perform,

we invoke ParSortMedianRearrange() for each of the partitions and call them

recursively. This can be proved similarly to our previous proofs. This means that

at the end of D steps, we will have 2D number of partitions each of length n
2D

.

We now call the ParBSTSort() algorithm for each of the 2D number of partitions.

29

Each partition is of length n
2D

and we call ParBSTSort() 2D times, and so each

invocation of ParBSTSort() takes O(n
2D

D) time. Therefore, ParBSTSort2() will

take O(nD) +O(n
2D

D2D), which reduces to O(nD).

Theorem 4.6. Let τ denote the ordering A[1..n]. Let π be the ordering of ele-

ments in A[1..n] when an execution of ParBSTSort2(A[], D) ends. If n
2d

< 22D,

π is a fully-sorted (in increasing order) version of A[1..n]. Otherwise, inv(π) ≤
n2−26D

2D+1 . In addition, ParBSTSort2() uses O(Dn) comparisons to produce π.

Claim: For each k ∈ {0, 1, . . . D}, the following holds true: the entries of

A just after the end of the iteration of the outer loop corresponding to i = k is

such that maximum displacement of A can be at most n
2D

(before we call ParB-

STSort()), which is the length of the subarray corresponding to A[(j−1)n
2k+1 +1, jn

2k+1]

for j ∈ {1, . . . , 2k+1}.

Proof. First, we prove the claim by using an inductive approach to increasing the

value of i. For the outermost for loop in ParBSTSort2(), the value i = 0 will

be the base case. This is proven to split the given array into two halves with any

element x in the first half lesser than any element y in the second half by definition

of the ParSortMedianRearrange() algorithm. The maximum displacement will

also n
2
as per the definition previously. When we extend the proof to when

i ≤ k, we will be having 2k number of partitions that would have followed the

ParSortMedianRearrange() assumptions with maximum displacement n
2
, as

per the inductive hypothesis. Calling the ParSortMedianRearrange() algorithm

for each of these 2k number of partitions each of length n, splitting each of them

into two sub partitions. We will end up with 2k+1 number of partitions each

following the ParSortMedianRearrange() assumptions each of length n
2k+1 .

30

Now, continuing with the second part of the algorithm, we call the ParB-

STSort() algorithm for each of the 2D partitions individually. One call to the

ParBSTSort() algorithm on an array of length n
2D

would sort the entire subarray

if n
2D
≤ 22D. This is proved using theorem 4.5. However, in the case that if

n
2D

> 22D, the ParBSTSort() algorithm will completely sort 22D number of ele-

ments and have n
2D
− 22D number of residual elements in this partition unsorted.

This will be the case in each of the 2D numbers of partitions/subarrays in A.

Hence, the displacement for each of the elements in each of the partitions would

be at most n
2D
− 22D. This means that the maximum displacement would also be

n
2D
− 22D. This proves the theorem.

We can call ParSortMedianRearrange() algorithm for the residual elements

as well and tighten the bounds even more, yet having O(nD). Having reduced

A[1..n] as non-consecutive increasing subsequences, we apply Parsort() to obtain

the Parsort4() algorithm that calls ParBSTSort2() and then ParSort().

Algorithm 10: Parsort4(A[1..n], D)

input: An array A[1..n], n = 2k and D ≤ k.
ParBSTSort2(A[1..n], D)
Parsort(A[1..n], D)

4.6 Upper bounds based on number of local

optima

For a sequence π = (x1, . . . , xn), an element xi is a local optimum if either

xi−1 < xi > xi+1 or xi−1 > xi < xi+1. Consider another measure lopt(π) which is

31

the number of local optima. That is,

lopt(π) = #{i : 2 ≤ i ≤ n− 1, xi is a local optimum}.

If xi1 , . . . , xis (for 2 ≤ i1 < . . . < is ≤ n − 1) form the local optima, then π

gets split into at most s + 1 maximal and monotone (ascending or descending)

subsequences determined by the following procedure.

ParSortLocOpt(A[1..n])

Input : An array A[1..n], n = 2k.

1 L← 1 ; beg[L]← 1 ;

2 for i← 2 to n− 1 do

2a – If A[i] is a local optimum then

2b —- end[L]← i ; L← L+ 1 ; beg[L]← i+ 1. endif endfor

3 end[L]← n.

4 for i← 1 to L do

5 —- if A[beg[i]..end[i]] is a decreasing sequence then reverse it. endfor

end

The following claim can be easily seen to be true. Claim: Each of the

collection of consecutive subsequences determined by {A[beg[i]..end[i]]}i≤L is a

maximal and increasing subsequence whose concatenation forms the sequence

τ = A[1..n] after Step 5. Also, L = lopt(τ) + 1. Also, ParSortLocOpt() performs

at most O(n) comparisons.

Having reducedA[1..n] as a concatenation of maximal increasing subsequences,

we apply ParSort2() to obtain the following algorithm.

32

ParSort3(A[1..n], D)

Input : An array A[1..n], n = 2k and D ≤ k.

1 ParSortLocOpt(A[1..n]).

2 ParSort2(A[1..n], D).

end

One can prove the following claim about ParSort3().

Theorem 4.7. Let τ denote the ordering A[1..n]. Let L denote lopt(τ) + 1. Let

π be the ordering of elements in A[1..n] when execution of ParSort3(A[], D) ends.

If 2D ≥ L, π is a fully-sorted (in increasing order) version of A[1..n]. Otherwise,

lp(π) ≥ n2D

L
and inv(π) ≤ n2(L2−22D)

2L2 . Also, PartSort3() uses O(Dn) comparisons

to produce π.

This follows from the fact that ParSorLocOpt(A[]) produces τ = A[] as a

concatenation of at most L ≤ lopt(τ) + 1 maximal and increasing subsequences.

As a consequence, we obtain the following corollary. Corollary: The fol-

lowing is true :

(a) Any input τ of n elements is sorted by ParSort3(A,D) usingO(n(log(lopt(τ)))

comparisons when 2D ≥ lopt(τ) + 1.

(b) Given any D = D(n) such that 1 ≤ D(n) ≤ log n, ParSort3(A,D) produces

a sorted ordering of any input τ satisfying lopt(τ) + 1 ≤ 2D using O(Dn)

comparisons.

To conclude this chapter, we analyzed the input array for various types of

sequences and patterns. This led to the introduction of new quality metrics

(longest increasing prefix). We established bounds for this new quality metric

along with the previous ones. There were new approaches that were defined for

33

when there are residual elements left after approximately sorting which resulted in

a better bound for the quality metrics. In the next chapter, we explore searching

these approximately sorted orders.

34

Chapter 5

Search

This chapter explores searching the approximately sorted order given the metric

as an input. We start by providing modified binary search approaches with the

maximum displacement or distance metrics as input. There are binary search

approaches provided that need not have the metric as an input.

5.1 Modified Binary Search with known

metrics

The well-known binary search problem reduces the search space by half at each

comparison. Given a sorted array A[1..n] = τ of n distinct elements from a

totally ordered set U , searching A for the presence of an element x (and also

finding its location in A) can be done using ⌊log2 n⌋+1 comparisons. We assume

the availability of access to an oracle which given two x, y ∈ U , determines if

x (<,=, >) y. It also assumes the availability of access to a membership oracle

for U .

35

5.1.1 With maximum displacement

What happens when A is not sorted but is only almost sorted in the sense that

md(τ) ≤ L. In this scenario, one can design a search algorithm (which is similar

to the binary search procedure) but has to take into account that an element in

A may not be in its corrected sorted position since md(τ) ̸= 0. When L = 0,

it reduces to the standard binary search. It is described below and its analysis

is given afterwards. We invoke modBST (A[1..n], L, x) to search for the presence

of x in A. The following theorem analyzes modBST(). We assume that a single

comparison query x (<,=, >)? y returns the correct answer depending on x and

y.

Algorithm 11: modBST(A[i..j], L, x)

input: An array τ = A[i..j] and md(τ) ≤ L. The presence of x is to be
searched.

if j − i+ 1 ≤ 4L then
search for x in A by a direct search procedure and output either
”x ̸∈ A[i..j]” or output s such that A[s] = x

r ← ⌈ j+i−1
2
⌉

if A[r] = x then
OUTPUT r

if A[r] < x then
OUTPUT modBST(A[r − 2L+ 1, j], L, x)

else
OUTPUT modBST(A[i, r + 2L− 1], L, x)

Theorem 5.1. modBST(A[i..j], L, x) correctly determines if x ∈ A[i..j] and

outputs its position in A if the answer is YES. For L ≥ 0, it uses at most

log2
m
4L
+4L+1 comparisons to correctly determine the answer. Here, m = j−i+1

is the number of elements in A[i..j].

Correctness :

36

It is clear from its description that modBST() outputs x ̸∈ A[i..j] when that is

the case. Hence, we assume that x ∈ A[i..j] and prove that it correctly outputs s

such that A[s] = x. For ease of explanation, we assume, without loss of generality,

that i = 1, j = n. The arguments for the more general case of A[i..j] are obtained

by redefining i = 1 and n = j − i + 1. Denote A[1..n] by τ . Step 5 correctly

determines the position of x in A when A[r] = x. We first observe the following

claims.

Claim A : Let τ1 = A[1..r + 2L]. We have md(τ1) ≤ L.

Claim B : Let τ2 = A[r − 2L..n]. We have md(τ2) ≤ L.

Let y = A[r]. We have r − L ≤ rτ (y) ≤ r + L. If A[r] < x, then rτ (x) ≥

rτ (y) + 1 ≥ r − L + 1. Hence, we need to search for x among elements with

rτ (z) ≥ r − L + 1. Since such elements are are all available in A[r − 2L + 1..n],

we have modBST() recursing on τ2 = A[r − 2L + 1..n]. We also have (by Claim

B) that md of this subarray is at most L. This explains steps 8-9.

If A[r] > x, then rτ (x) ≤ rτ (y)− 1 ≤ r + L− 1.

Hence, we need to search for x among elements with rτ (z) ≤ r+L− 1. Such

elements are all available in A[1..r + 2L − 1], we have modBST() running on

τ1 = A[1..r + 2L− 1]. We also have (by Claim A) that md of this subarray is at

most L. This explains steps 10-11.

Time complexity :

Let t{n, L} denote the worst-case number of element comparisons performed

by modBST() on inputs of length n and L. From its description, it follows that

(after extending the definition of t() to real values of n)

37

t{n, L} = 1 + t
{
⌊n
2
⌋+ 2L,L

}
if n > 4L

= n otherwise.

Extending t(,) to nonnegative real values and expanding the recurrence iter-

atively, we obtain,

t{n, L} ≤ 1 + t
{n

2
+ 2L,L

}
≤ 2 + t

{n

4
+ L+ 2L,L

}
≤

≤ k + t
{ n

2k
+ 4L− 2L

2k−1
, L

}
(5.1)

≤ log2
n

4L
+ 1 + t{4L,L}

≤ log2
n

4L
+ 1 + 4L (5.2)

We substitute k = log2
n
4L

because of the stopping criteria that we have in

place in our algorithm. This completes the proof for the case i = 1 and j = n.

For arbitrary i ≤ j, the proof is a generalization of the above arguments.

Proof: (of Claim A) For any element y of τ1, its τ1-rank is at most its τ -rank,

that is, rτ1(y) ≤ rτ (y). All those elements y with τ -rank rτ (y) ≤ r+L are surely

in A[1..r + 2L]. We call each of these a small element of τ1 and refer to each of

the remaining as a large element of τ1. Each large element y of A[1..r + 2L] has

its τ -rank rτ (y) lying between r + L + 1 and r + 3L. Moreover, since exactly L

elements of τ with τ -ranks between r+L+1 and r+3L are not present in τ1, it

follows that rτ1(y) ≥ rτ (y)− L for any such y. Each small element of τ1 has the

38

same value for its τ -rank and its τ1-rank and has same positions with respect to

both τ and τ1 and hence its displacement remains unaffected. For each large y of

τ1, its position (i such that τ(y) = τ1[i] = y) remains the same. For a large y if its

τ -position i is such that r+L < rτ1(y) ≤ rτ (y) ≤ i ≤ r+2L, then its displacement

in τ1 is at most L. For a large y if its τ -position i is such that 0 ≤ rτ (y)− i ≤ L,

then its displacement in τ1 satisfies L ≥ rτ1(y)− i ≥ rτ (y)−L− i ≥ −L. Hence,

the displacement of every y in τ1 is at most L and hence md(τ1) ≤ L. ■

Proof: (of Claim B) This case can be proved using analogous arguments as

for the case of τ1. One can work out such detailed proof arguments similar to

those worked out in the proof of Claim A. However, a simpler approach would

be to reverse the total order and the array. Suppose we reverse the array A as

B[i] = A[n − i + 1]. r in Step 2 is redefined as n − ⌈n
2
⌉ + 1. Then B can be

considered as an almost sorted (in descending) order with md(B) ≤ L. The rank

of an element in µ = B[1..n] is given by rµ(y) = n − rτ (y) + 1. Thus, when we

go from τ to µ, both rank and position go from a to n − a + 1 (a is the value)

for any y. Hence, the displacement remains the same for any y in both τ and µ.

The case A[r] < x corresponds to B[r] > x and hence we can apply Claim A to

µ to infer that displacement remains at most L. When we translate this to A,

we get Claim B. ■

The extra additive factor 4L + 1 cannot be brought down asymptotically

(in L) even if the other factor log2 n is allowed to be replaced by any function

f(n) satisfying f(n) = o(n). The following result shows that the above search

algorithm is optimal (up to constant multiplicative factors in the additive term

4L+ 1) with respect to the number of comparison queries made.

39

Theorem 5.2. There does not exist any deterministic search algorithm which,

given a permutation τ of n distinct elements and an element x and also the value

of L = md(τ), correctly determines whether x ∈ τ and if so, outputs a s such

that τ(s) = x and makes o(n) + o(L) comparisons. Here, L stands for md(τ).

Note: The two asymptotics are with respect to their respective variables n and

L.

Suppose there is such an algorithm A. This means that, given arbitrary τ

on n elements from an ordered universe U , A correctly determines the presence

and position of x in A by making at most o(n) + o(L) comparisons. Since L ≤ n

always, this implies that one can search for the presence of an arbitrary x in an

arbitrary permutation stored in an array of n distinct elements by making o(n)

comparisons, which is well-known to be impossible. This contradiction establishes

the theorem.

The following example (figure 5.1), shows the first partition step that takes

the additional elements from the median index position (r) to the index position

2×md away. The next iteration will take in the subarray B[1 : r + 2×md]. In

that iteration, we shall find the median index of B[1 : r + 2×md] and based on

the left or the right partition we go would need to go to, we would either add to

the left or the right, 2 ∗md().

Figure 5.1: Visualization of first partition of modBST()

We also have the following lower bound which shows that the additive term

40

log2 n cannot be brought down asymptotically even if we are allowed to replace

4L+ 1 by any f(L).

Theorem 5.3. For every f : N → N , there does not exist any deterministic

algorithm which, given a permutation τ of n distinct elements and an x and also

the value of L = md(τ), correctly determines whether x ∈ τ and if so, outputs a

s such that τ(s) = x and makes o(log2 n)+ f(L) comparisons. Here, L = md(τ).

The conclusion holds even if τ is required to satisfy md(τ) ≤ L, for every fixed

L.

Suppose there is such an algorithm A which makes o(log2 n) + f(L) compar-

isons to correctly answer the search query. In particular, this implies that one

can answer the search query using o(log2 n) + f(0) = o(log2 n) comparisons for

the fully-sorted permutation τ (corresponding to L = 0). This is not possible

since it is well-known that any search algorithm (for sorted arrays) is required to

make ⌊log2 n⌋ comparison queries in the worst case. This establishes the claim.

5.1.2 With distance

What happens when A is not sorted but is only almost sorted in the sense that

dis(τ) ≤ L. Recall that dis(τ) is the maximum separation distance achieved by

any inversion in τ . The search procedure is described below and its analysis is

given afterwards. We invoke modBSTdis(A[1..n], L, x) to search for the presence

of x in τ = A[1..n] with dis(τ) ≤ L. When L = 0, it reduces to the standard

binary search.

The following theorem analyzes modBSTdis().

Theorem 5.4. modBSTdis(A[i..j], L, x) correctly determines if x ∈ A[i..j] and

outputs its position in A if the answer is YES. For L ≥ 0, it uses at most

41

Algorithm 12: modBSTdis(A[i..j], L, x)

input: An array τ = A[i..j] and dis(τ) ≤ L. The presence of x is to be
searched.

if j − i+ 1 ≤ 2L+ 3 then
search for x in A by a direct search procedure and output either
”x ̸∈ A[i..j]” or output s such that A[s] = x

r ← ⌈ j+i−1
2
⌉

if A[r] = x then
OUTPUT r

if A[r] < x then
OUTPUT modBSTdis(A[r − L, j], L, x)

else
OUTPUT modBSTdis(A[i, r + L], L, x)

log2
m
2L
+2L+3 comparisons to correctly determine the answer. Here, m = j−i+1

is the number of elements in A[i..j].

Correctness : It is clear from its description that modBSTdis() outputs x ̸∈

A[i..j] when that is the case. Hence, we assume that x ∈ A[i..j] and prove that

it correctly outputs s such that A[s] = x. For ease of explanation, we assume,

without loss of generality, that i = 1, j = n. The arguments for the more general

case of A[i..j] are obtained by redefining i = 1 and n = j − i+ 1. Denote A[1..n]

by τ . Step 5 correctly determines the position of x in A. We first observe the

following immediate claims.

Claim C : Let τ1 = A[1..r + L]. We have dis(τ1) ≤ L.

Claim D : Let τ2 = A[r − L..n]. We have dis(τ2) ≤ L.

Let y = A[r]. If A[r] < x, then, we should have x ∈ A[r − L..n]. Otherwise,

dis(τ) > L contradicting our assumption about dis(τ) ≤ L. We also have (by

Claim C) that dis(τ1) ≤ L. This explains Step 4. Similarly, if A[r] > x, then we

should have x ∈ A[1..r+L] by our assumption about τ . In addition, dis(τ2) ≤ L

(by Claim D).

42

The time complexity can also be proved similarly. Let t{n, L} denote the

worst-case number of element comparisons performed by modBSTdis() on inputs

of length n and L. From its description, it follows that (after extending the

definition of t to real values of n)

t{n, L} = 1 + t
{
⌊n
2
⌋+ L+ 1, L

}
if n > 2L+ 3

= n otherwise.

Extending t{, } to nonnegative real values and expanding the recurrence iter-

atively, we obtain that

t{n, L} ≤ 1 + t
{n

2
+ L+ 1, L

}
≤ 2 + t

{n

4
+

3(L+ 1)

2
, L

}
≤ 3 + t

(
n

8
+

L

2
+ L+ 2L,L

)

≤ 4 + t

(
n

16
+ 4L− 2L

8
, L

)
≤ ...

≤ k + t
{ n

2k
+ 2(L+ 1)− L+ 1

2k−1
, L

}
≤ log2

n

2L
+ t{2L+ 3, L}

t(2L+ 2L+ L+
L

2
+ . . .+

8L2

n
, L)

≤ log2

(n

2L

)
+ t(6L,L)

43

t{n, L} ≤ log2
n

2L
+ 2L+ 3 (5.3)

This completes the proof for the case i = 1 and j = n. For arbitrary i ≤ j,

the proof is a generalization of the above arguments. ■

We have the following lower bounds on searching permutations with small

dis() values, similar to those presented before for the case of small md() values.

The proofs are identical and we present only the lower bound results.

Theorem 5.5. There does not exist any deterministic search algorithm which,

given a permutation τ of n distinct elements and an element x and also the value

of L = dis(τ), correctly determines whether x ∈ τ and if so, outputs a s such

that τ(s) = x and makes o(n) + o(L) comparisons. Here, L stands for dis(τ).

Theorem 5.6. For every f : N → N , there does not exist any deterministic

algorithm which, given a permutation τ of n distinct elements and an element x

and also the value of L = dis(τ), correctly determines whether x ∈ τ and if so,

outputs a s such that τ(s) = x and makes o(log2 n) + f(L) comparisons. Here,

L = dis(τ). The conclusion holds even if τ is required to satisfy dis(τ) ≤ L, for

every fixed L.

Similar to algorithm modBST(), this algorithm modBSTdis() can also be re-

placed with an index range instead of L and the algorithm will perform the same.

We can also design algorithms when the metrics are not input to the algorithm.

This means that we can start with an estimation of the metric and perform the

algorithm with a little overhead which would be a function of the metric itself.

44

5.2 Modified Binary Search with unknown

metrics

Both algorithms modBST() and modBSTdis() assume that the respective values

(or an upper bound) of md(τ) dis(τ) are known apriori and they are part of the

input. This assumption plays a crucial role in establishing the correctness of the

algorithm. However, if we only have an estimate L such that L < md(τ) (or

< dis(τ)), the algorithm may give a wrong answer ”x ̸∈ τ” when actually x ∈ τ .

For those x such that x ̸∈ τ , it will never give a wrong answer.

This leads us to the following question : How does one search if this knowledge

(of md, dis or inv) is missing? If the searched element is present in the array,

one can still search and find its position, but at a cost of increased running time.

However, if an element is not in the array, then one cannot do better than m

comparisons when no apriori knowledge of L is available. Consider the following

algorithm for searching with no apriori knowledge of L.

5.2.1 With distance

We present the algorithm only for the case of unknown dis() value. The analogous

algorithm for the case of unknown md() value is the same except that one applies

modBST() in Step 3 instead of modBSTdis().

Theorem 5.7. modBSTdisUnKn(A[i..j], x) correctly determines if x ∈ τ =

A[i..j] and outputs its position in A if the answer is YES. Let L∗ denotes the

smallest nonnegative power of 2 larger or equal to dis(τ). Let m = j − i + 1 be

the number of elements in A[i..j]. Moreover,

45

Algorithm 13: modBSTdisUnKn(A[i..j], x)

input: An array τ = A[i..j] and dis(τ) = L. L is unknown. The
presence of x is to be searched.

L← 1 ; found← FALSE
while L ≤ (j − i+ 1)/4 and NOT (found) do

ans← modBSTdis(A[i..j], L, x)
if ans = ”x ̸∈ A[i..j]” then

L← 2L
else

found← TRUE

if NOT (found) then
compare x with every member of τ to determine ans

Return ans

• If x ∈ τ , then it uses at most (log2 2L
∗)(log2

4m
L
) + 4L∗ comparisons.

• If x ̸∈ τ , then modBSTdisUnKn() will make at least m comparisons. More-

over, no deterministic algorithm can correctly certify this fact with less than

m comparisons.

5.2.2 With Maximum Displacement

Algorithm 14: modBSTmdUnKn(A[i..j], x)

input: An array τ = A[i..j] and dis(τ) = L. L is unknown. The
presence of x is to be searched.

L← 1 ; found← FALSE
while L ≤ (j − i+ 1)/4 and NOT (found) do

ans← modBST (A[i..j], L, x)
if ans = ”x ̸∈ A[i..j]” then

L← 4L
else

found← TRUE

if NOT (found) then
compare x with every member of τ to determine ans

Return ans

One can design an analogous algorithm modBSTmdUnKn() which is the same

46

as modBSTdisUnKn() except that in Step 3, we invoke modBST() (instead of

modBSTdis()).

Theorem 5.8. modBSTmdUnKn(A[i..j], x) correctly determines if x ∈ τ =

A[i..j] and outputs its position in A if the answer is YES. Let L∗ denotes the

smallest nonnegative power of 2 larger or equal to md(τ). Let m = j − i + 1 be

the number of elements in A[i..j]. Moreover,

• If x ∈ τ , then it uses at most (log2 2L
∗)(log2

m
L
) + 8L∗ comparisons.

• If x ̸∈ τ , then modBSTmdUnKn() will make at least m comparisons. More-

over, no deterministic algorithm can correctly certify this fact with less than

m comparisons.

We conclude this chapter as we have provided the algorithms for searching

for an element and its existence in an approximately sorted array. The binary

search algorithms provided have complexity that is comparable to the original bi-

nary search algorithms that search a completely sorted order. The binary search

algorithms that search without the metric as an input use an approach that esti-

mates the metric for the input approximately sorted array. In the next chapter,

we continue to explore searching with range search.

47

Chapter 6

Range Search

This chapter explores range search on an approximately sorted array. We first

establish a 1D range search to find the number of elements within a given range

and then also give an algorithm that returns all the elements that are within the

given range in an approximately sorted order. This idea is extended to a two-

dimensional space and later generalized to a multidimensional space. For the 2D

algorithm, we also use a modified fractional cascading approach that is explained

in this chapter.

6.1 1D range search

Given a completely sorted array A of n elements and x, y ∈ A, x < y, do a range

search to determine all elements in A between x and y. This would involve doing

a binary search to find the element x and iterating through all elements greater

than x until we find y. The time taken would be (log2 n) + k, where k is the

output length (the number of elements within the given range, including x and

48

y).

A simpler query would be to find the number of elements that fall within a

given range x and y. This would involve searching for each of these two values,

2 log2 n and then subtracting the index positions of the found elements’ positions.

6.1.1 With maximum displacement

What if the given array τ = A[1..n] is not completely sorted but only approxi-

mately sorted with an md(τ) ≤ L. We can still perform a range search on this

approximately sorted order and return a precise list of elements within the given

range by modifying the original range search algorithm. The given modified range

search algorithm will reduce to the normal range search algorithm when L = 0.

We give two algorithms.

Find the number of elements within the range

The first one, modRSNumElements (A[i..j], L, [x, y]) computes the precise num-

ber of elements in A which lie in the range [x, y] within an additive error of 4L.

The modBST function call used here is a modified binary search algorithm that

is presented in (Narasimhan et al., 2022c)(Narasimhan et al., 2022b).

modBST () algorithm performs at most log2
m
4L

+ 4L + 1 comparisons. This is a

novel algorithm that searches for the existence of a given value x in an approxi-

mately sorted array A[i..j] with a corresponding quality metric L.

Lemma 1: k − 1− 2L ≤ q ≤ k − 1 + 2L.

Proof. First, we prove the lower bound. From Steps 1 and 2, we have A[lRange] =

x and A[rRange] = y. But since τ is an approximately sorted order withmd(τ) ≤

L, we know that lRange− L ≤ rτ (x) ≤ lRange+ L and rRange− L ≤ rτ (y) ≤

49

Algorithm 15: modRSNumELements(A[i..j], L, [x, y])

Input:τ = A[i..j], md(τ) ≤ L and a range [x, y] where x, y ∈ A[i..j] and
x ≤ y.
q – an approximation of the number of elements in A within the range
[x, y].
Output: Number of elements in A which lie in the range [x, y] within an
additive error of 4L.

1: lRange = modBST (A[i..j], L, x)
2: rRange = modBST (A[i..j], L, y)
3: return (q = rRange− lRange)

rRange+ L, where rτ (x) represents the rankτ (x) and similarly for y. Moreover,

the actual number of elements within the range [x, y] is k = rτ (y)− rτ (x) + 1 in

the completely sorted order µ of τ . It follows that

q = rRange− lRange

≥ rτ (y)− L− (rτ (x) + L)

= rτ (y)− rτ (x)− 2L

= k − 1− 2L

For the upper bound, we have

q = rRange− lRange

≤ rτ (y) + L− (rτ (x)− L)

= rτ (y)− rτ (x) + 2L

= k − 1 + 2L

50

Theorem 6.1. The algorithm modRSNumELements(A[i..j], L, [x, y]) determines

the required number within an additive error of 4L using at most 2(log2
m
4L
+4L+1)

comparisons, where m is the number of elements in A, m = j − i+ 1, L = md().

Proof. Lemma 1 establishes the additive approximation within an additive error

of 4L. Each of the two calls to the modBST() function in Steps 1 and 2 takes

(log2m+4L+1) comparisons as shown by algorithm 1. Thus, a total of 2(log2
m
4L
+

4L+ 1) comparisons occur. This concludes our proof.

An analogous algorithm using modBSTdis() (Narasimhan et al., 2022c,b)

instead of modBST() in Step numbers 1 and 2 would result in Theorem 2.

Theorem 6.2. The algorithm modRSNumELementsdis(A[i..j], L, [x, y]) deter-

mines the required number within an additive error of 4L using at most 2(log2
m
2L
+

2L+3) comparisons, where m is the number of elements in A, m = j− i+1, L =

dis().

Find the set of elements within the range

The second algorithm modRangeSearch(A[i..j], L, [x, y]) is the modified range

search algorithm that computes and returns exactly the set of elements of A

lying in the range [x, y].

Theorem 6.3. modRangeSearch(A[i..j], L, [x, y]) determines the exact list of el-

ements of A[i..j] that are within the given range [x, y] and performs a total of at

most log2
m
4L

+ 10L + k comparisons, where m is the number of elements in A,

m = j − i+ 1, L = md().

51

Algorithm 16: modRangeSearch(A[i..j], L, [x, y])

Input:τ = A[i..j], md(τ) ≤ L and a range [x, y] where x, y ∈ A[i..j] and
x ≤ y.
Output: Z - set of all elements of A lying within [x, y] is to be
determined.
1: lRange = modBST (A[i..j], L, x)
2: for loop through z = A[id] starting from id = lRange− 2L+ 1 in A: do
3: if x ≤ z ≤ y then

Append z to Z
4: else if z < x then

Ignore z
5: else if z > y then
6: for loop through from current id position to id+ 4L in A: do
7: Append z = A[id] to Z if z ∈ [x, y] else ignore z
8: end for
9: break;
10: end if
11: end for
12: Output Z

Proof. Step 1 which is a call to the modBST() function, takes log2
m
4L

+ 4L + 1

comparisons (Narasimhan et al., 2022b,c) to determine the position of the

given value x in the order τ = A[i..j]. This yields us A[lRange] = x. But since

md(τ) ≤ L, we have lRange−L ≤ rτ (x) ≤ lRange+L. For any z ∈ A[i..j] such

that z > x, we have rτ (z) > rτ (x) ≥ lRange − L. This implies that all such z’s

should only lie in A[lRange− 2L+ 1..j].

Let id = i∗ be the first value for which z = A[id] > y. Then, rτ (z) > rτ (y).

Moreover, i∗−L ≤ rτ (z) ≤ i∗+L. Combining, we obtain that rτ (y) ≤ i∗+L−1.

This, in turn, implies that any w ∈ A[i..j] such that w ≤ y must be in A[i..i∗ +

2L− 1]. Thus, it suffices to check all elements in A[lRange− 2L+1..i∗ +2L− 1]

to identify all elements of A[i..j] lying in [x, y].

Denote lRange−2L+1 and i∗+2L−1 respectively by X and Y . The number

of elements in A[X..Y] is exactly Y −X+1 = i∗+2L−1−(lRange−2L+1)+1 =

52

i∗− lRange+4L− 1. We claim that i∗− lRange ≤ k+2L where k is the actual

number of elements of A in the range [x, y]. Otherwise, since i∗ is the first index

position where we have an element greater than y, this implies that there are

more than 2L elements smaller than x in A[lRange..i∗]. This, in turn, implies

that we have an element z such that rτ (z) ≤ rτ (x) − 2L − 1 ≤ lRange − L − 1

but z = A[id] for some id ∈ [lRange..i∗]. This contradicts our assumption that

md(τ) ≤ L. Combining all, we deduce that the algorithm performs a total of at

most (log2m) + 10L+ k comparisons.

6.1.2 With distance

This idea of doing a 1D range search on an approximately sorted array can be

extended by using the metric as the distance as well. We can substitute step

1 with modBSTdis() with some minor changes that will result in an analogous

theorem.

Theorem 6.4. modRangeSearchdis(A[i..j], L, [x, y]) determines the exact list of

elements of A[i..j] that are within the given range [x, y] and performs a total of

at most log2
m
2L

+ 5L+ k comparisons, where m is the number of elements in A,

m = j − i+ 1, L = dis().

6.2 Fractional Cascading on a set of

approximately sorted catalogs

Fractional Cascading or Catalog Search is a technique used to search multiple

sorted arrays for the same single value. These multiple-sorted arrays are referred

53

to as catalogs. A simple approach would be to perform a binary search to find

the same element in all catalogs. This would take log n × K, where K is the

number of catalogs present. This approach of fractional cascading avoids the

multiple binary searches performed. The same idea can be extended to perform

multiple-range searches as well. This idea reduces the complexity of multiple

range searches that need to be performed on a list of catalogs as well. We shall

see how it works below.

Let us take an example of the following two catalogs:

A1 = {10, 20, 30, 40, 50, 60, 70}

A2 = {30, 40, 60, 70}

Let us assume that we are given a query to range search all catalogs for the

values between x : [20, 50]. A naive approach would be to do a binary search

followed by traversing the output falling within the range on A1 and A2 which

would take log n1 + k1 + log n2 + k2 time, where k1 is the numbers to be reported

in A1 of length n1 and k2 is the numbers to be reported in A2 of length n2, and

let k = k1 + k2.

A better approach would be to build a data structure that has pointers from

the elements in the ith catalog to the elements in the i + 1th catalog, such that

each element in Ai is pointing to the smallest element greater than or equal to

than itself in Ai+1.

An example of this representation for the above example is shown in Figure

6.1. Highlighted are the output elements (k of them) that do lie within the given

range.

54

Figure 6.1: Fractional Cascading on completely sorted catalogs

6.2.1 Construction of a Fractional Cascading Structure

The construction of these fractional cascading pointers takes Kn comparisons

(Chazelle and Guibas, 1986a). Here, we provide a theorem claiming the

construction cost for constructing the fractional cascading data structure for an

approximately sorted array.

Theorem 6.5. Construction of the fractional cascading data structure on an

approximately sorted set of K catalogs will take Kn ∗ 4L number of comparisons,

where n is the total number of elements and L = md().

6.2.2 Fractional Cascading using maximum displacement

We consider the quality metric of maximum displacement (md()) for the analyses

and assumptions. The input catalogs are not approximately sorted indepen-

dently. Assume that each of the catalogs has its own individual md() metric that

represents the specific maximum displacement.

We recall the modBST (A[i:j], L, x) algorithm where A is the input array/-

subarray, L is the quality metric and x is the element to be searched for in A.

A query to modBST() takes log n + 4L + 1 comparisons (Narasimhan et al.,

2022c,b).

55

Let us consider the following catalogs, for example:

S1 = {30, 20, 10, 50, 40, 80, 110, 60, 100, 90, 70}

S2 = {30, 20, 70, 110, 90}

S3 = {60, 110, 30}

where md(S1) = 4, md(S2) = 1 and md(S3) = 2.

In this modified fractional cascading algorithm, we construct the pointer be-

tween the approximately sorted catalogs in a slightly different way to compensate

for the elements not being in their rank position. The pointer from Si[u], will be

pointing to the rank(Si+1[v])− 2L, where v is the smallest element greater than

u and L = md(Si+1). This will make sure that when we are moving from Si[u] to

Si+1[v], we do not miss the element v since we do take into account the md(Si+1).

Figure 6.2 shows the pointers going from S1 to S2 and from S2 to S3 considering

the above example.

Figure 6.2: Fractional Cascading on an approximately sorted catalogs

In the above example, we see that if the pointer has to point to index positions

beyond the range of the catalog, we make it point to the front of the catalog.

Another edge case to look into is if the min and max ranges of a catalog Si are

56

not present in the next catalog Si+1. In the above example, we have taken it

such that all catalogs are a subset in terms of the same min and max range of

S1. Otherwise, we can still make sure that the pointer to the max range is out

of bounds by making it point to the last element of the catalog.

Theorem 6.6. A range search query to find all the elements between a given

range [x1, x2] among K number of approximately sorted catalogs/arrays built using

fractional cascading, will return the correct output of all the elements that lie

between [x1, x2], in log2
n
4L

+ 1 + 4KL + k, where n is the length of the longest

catalog, L is the upper bound to the maximum displacement of the catalogs and k

is the output size.

Proof. Let us start this proof by considering the time taken for the same if we

are going to take a naive approach to do a range query on such approximately

sorted catalogs. Our modBST() algorithm that would perform a binary search

on an approximately sorted array would return the position of the element that

we are searching for or the element closest to it. This takes log2
n
4L

+ 4L + 1

comparisons (Narasimhan et al., 2022c,b). Therefore, if the output length

of the first catalog is k1, it would take log2
n1

4L1
+ 4L1 + 1 + (4L1 + k1). Where,

4L1 constitutes to the excess elements the algorithm would need to check if they

fall within the range. We would have to repeat this step for all K catalogs. This

would become,
K∑
i=1

log2
ni

4Li

+ 1 + 4Li + (4Li + ki) (6.1)

= (K × (log2
n

4L
+ 1 + 8L)) +

K∑
i=1

ki (6.2)

Now considering the fractional cascading approach, we draw pointers for every

element (v) from an approximately sorted array Si[v] to rank(Si+1[v]−2L, where

57

v is the smallest element greater than u and L = md(Si+1), as mentioned earlier.

This would mean that we perform a binary search using modBST() for the

first catalog and continue to search the rest of the catalogs by following the

pointers and reading the ki output length for each of them.

log2
n1

4L1

+ 1 + 4L1 + k1 +
K∑
i=2

4Li + ki (6.3)

≤ log2
n

4L
+ 1 + 4KL+

K∑
i=1

ki (6.4)

Comparing the above two equations with approaches with and without using

fractional cascading, we can clearly see that the latter approach while we use

fractional cascading is going to take lesser time compared to the naive approach,

thus proving the theorem.

The equations above can be reduced to the following

= log2
n

4L
+ 1 + 4KL+ k (6.5)

where k is the output size of all catalogs put together.

6.2.3 Fractional Cascading using distance

An analogous algorithm using the distance metric can also be written.

Theorem 6.7. A range search query to find all the elements between a given

range [x1, x2] among K number of approximately sorted catalogs/arrays built using

fractional cascading, will return the correct output of all the elements that lie

between [x1, x2], in log2
n
4L

+ 1 + 2KL + k, where n is the length of the longest

58

catalog, L is the upper bound to the maximum distance of the catalogs and k is

the output size.

6.3 2D range search

A very popular structure that is used for a two-dimensional range search are

range trees. A range tree is a balanced binary tree where we essentially keep

track of the range of values that are in the leaves of the node’s sub-tree. In a 2D

range tree structure, there are y-trees attached to each of the intermediate nodes.

These y-trees are also range trees containing the y-values of the corresponding

x-values in the leaves of the intermediate node’s sub-tree.

When performing a 2D query [(x1, x2), (y1, y2)], we would first have to per-

form a binary search in the x-tree with x1. After which we will also have to do

the same thing for x2. Once this is done, there will be intermediate numbers

within this range of indices where we would need to search the corresponding

y-values to see if they fall within the given [y1, y2]. This y-value check has to be

done at every step of the traversal that leads to multiple binary searches in the

corresponding intermediate y-trees. To avoid this, we can store the y-values of

each of the intermediate nodes as catalogs (Chazelle and Guibas, 1986a,b).

Each intermediate nodes will have a catalog/array of corresponding y-values.

This idea reduces the multiple binary searches that would have to be per-

formed in the y-trees using the fractional cascading approach. We combine this

idea with our fractional cascading approach on approximately sorted arrays to

perform a 2D range search.

Let us take the following example (figure 6.3) where A is a set of coordi-

nates and we split and write the x and y coordinates separately as Ax and Ay

59

respectively.

A = {(3, 4), (2, 7), (1, 5), (5, 3), (4, 10), (7, 13), (6, 12), (8, 11)}

Ax = {3, 2, 1, 5, 6, 7, 6, 8} => md(Ax) = 2

Ay = {4, 7, 5, 3, 10, 13, 12, 11} => md(Ay) = 3

6.3.1 With Maximum Displacement

Now getting into how we can split the main/first y coordinate catalog, we need

to consider the md(Ay). So, the left child elements will be from 1 through n1y

2
+

md(Ay). Similarly for the right child, elements will be from n1y

2
+md(Ay) + 1 to

n1y.

At every level, there will be duplicate y values stored between siblings/cousins.

Claim 1: Every leaf node u will be of length < 2md(Au), where Au is the

subarray of A.

Claim 2: md(Ad) ≥ md(Ad+1) at depth d.

From the example figure 6.3, we can see that for every x coordinate value

that is approximately sorted, the corresponding y co-ordinate can be found at

the respective leaf u subarray in the y range tree, where we can do a linear

search of maximum 2md(Au) number of elements. The dotted arrows depict the

fractional cascading pointers going from one level of catalogs to a lower level.

We can now find the parent nodes that are completely within the ranges of

the index positions. We can find the intermediate nodes that completely have

the range within. This will enable us to do a 1D range search on the correspond-

ing y-coordinate values that are attached to that node. The construction of the

60

fractional cascading data structure for the second dimension will take 2Kn2 ∗ 4L

a number of comparisons (from theorem 6.5). This is still lesser than completely

sorting all the catalogs. The following theorem analyses the number of compar-

isons for a 2D range search on an approximately sorted array.

Theorem 6.8. 2D modified range search algorithm determines the exact list of

elements of A[(ai, bi)..(aj, bj)] that are within the given range [(x1, x2), (y1, y2)]

and performs a total of at most 5 log2
m
4L

+4L(2+3K)+k+3 comparisons, where

k is the number of elements in A, m = j − i+1 and K is the number of catalogs

to traverse (K ≤ log2m).

Proof. The x1 range value is first searched in the given approximately sorted

array. We use the modBST() algorithm that we have discussed previously in

(Narasimhan et al., 2022c). This will be taking log n
4L

+ 4L + 1 time to find

x1. Where L is the quality metric (consider it as the maximum displacement).

Once we find this number, we take the index position of this value as i. The

values from i− 2md to i+ 2md have to be linearly search to check if the x value

lies within our x range first and then search for the corresponding y value to

check if that lies within the given range. If they both are satisfied, then we are

going to be adding value to the output. This will take 4md amount of time.

We repeat the same for the x2 range as well. Let us refer to the position of x2

as j. So, in total, we have now taken (log n
4md

+4md+1)+(log n
4md

+4md+1)+8md.

We will also have to perform fractional cascading for the branch that we traverse

when searching for the x1 and x2 ranges. Let us assume that we have identified

k′ values in the above step.

The rest of the numbers that are certainly within the x range are going to

be within the index positions, i + 2md and j − 2md. The values between these

61

two ranges are all going to be within the given x range x1 and x2. We now

perform fractional cascading for the y values within this range. This will yield

the remaining elements in our output, k − k′ number of elements. All these

together yield 5 log2
m
4L

+ 4L(2 + 3K) + k + 3 comparisons, where L = md().

6.4 Multidimensional range search on an

Approximately Sorted d dimensional input

The approach taken for the 2D range search can be extended and generalized to a

multi-dimensional range search. Let us assume that we are given a d dimensional

input data to be searched given a d dimensional query. All the d− 1 dimensions

are approximately sorted and stored as the range trees. The last dimension is

stored as catalogs using fractional cascading.

Multidimensional range search algorithm determines the exact list of elements

that are within the given range [(x1, x2), (y1, y2), ..(d1, d2),], where d is the number

of dimensions and performs a total of at most (2 log2
n
4L

+8L+2)d−1+3(log2
n
4L

+

4KL+ k+1) comparisons, where n is the number of elements of the input data,

k is the output size and K is the number of catalogs to traverse (K ≤ log2m).

We conclude this chapter as we have defined range search approaches that

give precise output on an approximately sorted order of multiple dimensions. A

modified fractional cascading approach was also defined for an approximately

sorted set of catalogs that aids in the multidimensional range search reducing

the complexity of the search. The following chapter dives into some parallel

sorting and searching algorithms that can be performed on an approximately

sorted array.

62

Figure 6.3: Shows the x range tree and y-values stored as catalogs

63

Chapter 7

Parallel Sorting and Searching

In this chapter, we explore the parallel space where we can apply the approximate

sorting idea with the given constraint split between multiple processors. We

provide parallel algorithms for this and also provide algorithms to sequentially

and parallely search the rank of a given element in a position and vice versa. We

also provide multi-select algorithms that work on an approximately sorted array.

7.1 Multi-core Approximate Sorting

The algorithm ApproxSort() being a sequential algorithm results in an approxi-

mately sorted output depending on the input factor of the comparisons D. This

can be used and extended to a parallel setting, where we use some special tech-

niques to parallelize the approximate sorting.

Algorithm IncreasingChainSort() gives an approach to parallelize the ap-

proximate sorting technique, where a matrix A and a constraint D are given as

a factor of the number of comparisons that can be made as total work across the

64

number of processors p. The constraint with the number of comparisons is split

between all p processors.

Algorithm 17: IncreasingChainSort(A[1..n], D, p)

Input: An array A[1..n], of length n = 2q, D ≤ q, p processors
Output: Output array τ ′

do in parallel:
τpi = ApproxSort(A[i..j], D

p
)

L = inv(τpi) ≤
(n
p
)2

2
D
p +2

upper bound to inv(τpi)

In one sweep, find the set of concatenated increasing chains - Spi

Each processor will calculate the minV alpi and maxV alpi among all
increasing chains in |Spi | time.
All minV al and maxV al values from all p processors will go through
a tournament to fill the result output array from both ends - repeat
steps 5 and 6.

return τ ′ = result

Theorem 7.1. Let τpi be the order of the elements of the processor pi when

the execution of ApproxSort() ends. Then inv(τpi) ≤
(n
p
)2

2
D
p +2

, with each processor

using O(nD
p
) comparisons to produce τpi.

Invocation of IncreasingChainSort() starts by splitting the input arrayA[1..n]

into p processors. Each processor pi gets n/p number of elements. Once the func-

tion ApproxSort() is called, we refer to this returned subarray as τpi . Invocation

by a single processor to ApproxSort() takes O(nD
p
) comparisons. The number of

inversions inv(τpi) will have an upper bound based on the length of the subarray

and the factor of comparisons given to the processor pi.

Theorem 7.2. Let τpi be the order of elements in processor pi when the execution

of ApproxSort() ends. Then the maximum number of increasing chains |Spi | ≤

2(inv(τpi)) + 1.

65

Once the call to ApproxSort returns with τpi , we now count the number of

increasing chains. We write Si = S1
i S

2
i S

3
i ...S

m
i as a concatenation of sequences

(Narasimhan et al., 2022b) where each Sj
i is increasing and is maximal in

the sense that the last number in Sj
i is greater than the first number in Sj+1

i for

each j < m. We define a new metric here cic(τpi), concatenation of increasing

chains, m (Mannila, 1985; Barbay and Navarro, 2013; Narasimhan et al.,

2022b). One scan of the n/p elements in τpi will determine Si = S1
i S

2
i S

3
i ...S

m
i .

This uses the n
p
− 1 number of comparisons. The lower bound for m will be 1 if

the subarray in pi is already sorted. The upper bound will be m = n/p if the

subarray is reverse sorted. The number of inversions will dictate the number of

increasing subsequences. For every inversion, m will increase by a factor of 2.

We also define the measure of the longest increasing prefix lp(τpi). Measures the

length of the already sorted and consecutive subsequence present in τpi . This can

also be used as a measure of the quality of sortedness that an algorithm achieves.

If lp(τpi) = n/p, then the subarray is completely sorted (Narasimhan et al.,

2022b). The above measure of lp(τpi) is a variant of the measure of the longest

ascending subsequence discussed in (Mannila, 1985), where lp(τpi) is always

the prefix of order.

We introduce an extension of the longest increasing prefix which is defined

here. We define the longest increasing affix (la(τ)), which is a combination of

the longest increasing prefix and longest increasing suffix. The upper bound for

la(τ) will be n/2 when the array is completely sorted.

Theorem 7.3. For each processor pi, given an array B[i..j] of size ni, and a

set of increasing chains Spi, steps 5 and 6 from IncreasingChainSort() will

approximately sort B in O(ni ∗ Di) where D ≤ |Spi |/2. Furthermore, if D =

66

|Spi |/2, we will completely sort B and k = la(B) = ni/2). If D = 0, then we end

up with an unsorted subarray B and k = la(B) = 0.

Taking a single processor pi, we have a B[i..j] subarray of size ni. In B there

are |Spi number of increasing chains. Each of the chains has a min and a max

value. In the |Spi number of comparisons, we can find the absolute min and max

value among all increasing chains. If we continue to do this for ni/2 times, we

will end up with a completely sorted version of B. The reason being that we are

filling the output array from both ends with the min and max values.

The longest increasing affix (la) will increase by a factor of 2 at each pass to

find the absolute min and max values. The constraint D when less than |Spi |/2

means that all the min and max values have not yet been analyzed. If D = 0, no

comparisons are made and we do not have any of the min and max values of Spi .

Theorem 7.4. Let τ ′[1..n] be the output array when IncreasingChainSort()

completes execution. The total work done in Steps 5 and 6 will be O(n∗D) where

D ≤ (|Sp| ∗ log2p)/2. If D = (|Sp| ∗ log2p)/2, then τ ′ is completely sorted with

k = la(τ ′) = n/2. If D = 0, then k = la(τ ′) = 0. Furthermore, md(τ ′), inv(τ ′) ≤

n− 2k.

When every processor gives a min and a max value, it will take log2p work in

a tournament-style work to determine the min and max in all processors at that

iteration. Assuming that the lengths of all subsequences are the same, it will

take (n/2) ∗ |S| ∗ log2p work to completely sort τ ′, where |S| is the total number

of chains across all processors. But when the constraint is D ≤ (|S| ∗ log2p)/2,

then the output array τ ′ will be approximately sorted. We would be filling the

output array from both ends with the min and max values after each tournament

outcome, but we will not go all the way, leaving a gap of n−2k, where k = la(τ ′).

67

This means that we would have to copy all the values as such in the middle of

the output array (n − 2k window) from each processor. The elements to the

left and to the right that were filled with the min and max values are already

in their original correct position (rank). Due to this, all inversions or maximum

displacement would occur only within the window n− 2k.

This is visually represented in the following figure 7.1.

Figure 7.1: Visualization of the sorting process across p processors.

Theorem 7.5. Let τ ′[1..n] be the output array when IncreasingChainSort()

completes execution. The total time will be O(c ∗ n ∗D), where c << n.

At each phase of the sorting process, we can see that the number of compar-

isons used in terms of time does not exceed O(nD). The constant factor of c is

introduced to show the use of this constraint in multiple phases. But c is a very

small value, much smaller than n.

68

7.2 Determining Rank given Position

Theorem 7.6. Given an array τ = A[1..n] of distinct elements and also the

value of L = md(τ) or L = dis(τ) (or an upper bound) and also a 1 ≤ I ≤ n, we

want to determine the rank(A[I]) in the sorted version of τ . As usual, rank(x)

is the number of elements in τ that are at most x.

When τ is known to be sorted, the answer is I without comparison. When τ is

arbitrary, one cannot determine rank with comparisons of less than n comparisons

in the worst case. To the best of our knowledge, this problem has not been studied

in the literature.

7.2.1 Case of known bound on md(τ)

Consider the following algorithm for the RfromP problem with a known bound

on md(τ).

Algorithm 18: RfromPmd(A[1..n], L, I)

Input: An array τ = A[1..n] and md(τ) ≤ L ; 1 ≤ I ≤ n.
Output: rank(A[I])
s← max{1, I − 2L+ 1}
S ← min{I + 2L− 1, n} ;
rank ← s− 1 ;
for q ← s to S do

if A[q] ≤ A[I] then
rank ← rank + 1

return rank

We have the following claim on RfromPmd().

Theorem 7.7. (i) RfromPmd(A,L, I) makes at most 4L− 1 comparisons to

correctly determine the rank of A[I] in A[1..n]. (ii) There exists no deterministic

algorithm for RfromP which makes at most L comparisons where L = md(τ).

69

(i) Let x = A[I]. From the assumption about A, we have I − L ≤ rank(x) ≤

I + L. This, in turn, implies that A[I] < A[I] for each q ≤ I − 2L and also that

A[q] > A[I] for each q ≥ I + 2L. Hence rank(A[I]) is exactly s − 1 plus the

number of entries in A[s..S], which is at most A[I]. This number is computed by

Step 2 and the for loop of Steps 3 and 4. The number of comparisons made is

at most 4L− 2.

(ii) It is not hard to see that there is no deterministic algorithm for RfromP

that always makes fewer comparisons than n. Since md(τ) ≤ n− 1 always, this

implies the non-existence of an algorithm making at most L comparisons.

Statement (ii) establishes that the algorithm RfromPmd() is optimal (with

respect to the number of comparisons in the worst-case) up to a multiplicative

factor of four. We can extend this to using the dis() metric which will result in

the following theorem.

Theorem 7.8. (i) RfromPdis(A,L, I) makes at most 2L + 1 comparisons to

correctly determine the rank of A[I] in A[1..n]. (ii) There exists no deterministic

algorithm for RfromP which makes at most L comparisons where L = dis(τ).

7.2.2 Case of known bound on dis(τ)

Consider the following algorithm for the RfromP problem with a known bound

on dis(τ).

We have the following claim on RfromPdis(). Using arguments similar to

those employed in the proof of Theorem 7.7, one can establish the claim.

Theorem 7.9. (i) RfromPdis(A,L, p) makes at most 2L + 1 comparisons to

correctly determine the rank of A[p] in A[1..n]. (ii) There exists no deterministic

algorithm for RfromP which makes at most L comparisons where L = dis(τ).

70

Algorithm 19: RfromPdis(A[1..n], L, p)

Input: An array τ = A[1..n] and dis(τ) ≤ L ; 1 ≤ p ≤ n.
Output: rank(A[p])
s← max{1, p− L} ; S ← min{p+ L, n} ;
rank ← s− 1;
for q ← s to S do

if A[q] ≤ A[p] then
rank ← rank + 1

return rank

The statement (ii) establishes that Algorithm RfromPdis() is optimal (with

respect to several comparisons in the worst-case) up to a multiplicative factor of

two.

When no knowledge of the exact (or a bound) value of the two parameters is

available, one can still try to determine the rank of an element in a given position

by using the increasingly doubled estimates of the values of these parameters.

While this will determine rank(A[p]) when the estimate on L = md(τ) becomes

equal to L∗ defined in (Narasimhan et al., 2022c), there is no known rank

verification algorithm which makes O(L) comparisons. This would be interesting

to design an algorithm for determining (while making O(L), L = md(τ) compar-

isons) the rank with no knowledge of md(). The situation is similar with respect

to dis(τ) knowledge.

7.3 Parallel Rank given Position

The natural next step to improve the performance of the RfromPmd algorithm

is to parallelize it.

Theorem 7.10. Given an array τ = A[1..n] of distinct elements and also the

value of L = md(τ) or L = dis(τ) (or an upper bound) and also a 1 ≤ I ≤ n

71

with p processors, we want to determine rank given the position I (and also the

element A[I]) in τ . Note that we do not allow write access for the array, but only

read access.

The following algorithm shows the parallel approach that can be taken to find

the rank.

Algorithm 20: RfromPmdParallel(A[1..n], L, I, p)

Input: An array τ = A[1..n] and md(τ) ≤ L ; 1 ≤ I ≤ n.
Output: rank(A[I])
s← max{1, I − 2L+ 1}
S ← min{I + 2L− 1, n} ;
nP = S − s+ 1
rank ← s− 1 ;
rankPi

= 0
do in parallel: for each chunk of size nP/p

q = i× nP/p
if A[q] ≤ A[I] then

rankPi
++

q++

rank+ = sum of rankPi

return rank

Theorem 7.11. The RfromPmdParallel algorithm finds the rank of the given

element A[I] in position I in τ = A[1..n]. Also given are L = md(τ) and 1 ≤ I ≤

n with p processors, in O(nP) number of comparisons in time and work performed

O(L).

The algorithm first splits the window of A[s..S] where we know that rank

of A[I] exists into equal chunks of nP among p processors. We also initialize

the rank to the index position pointing to the left more index of the window.

Each processor has an individual variable rankPi
that keeps track of the number

of elements that are less than A[I]. As these processors calculate rankPi
, in

72

parallel, we count the total number of elements that are less than A[I] in each

chunk. Once all processors are completed counting, we add them and sum them

with the original rank. This will give us rank of A[I] in τ . This algorithm is

also naturally load balanced as every processor performs the same number of

comparisons.

7.4 Determining position given rank

Consider the following dual computational problem of determining the position

of an element with a given rank.

Theorem 7.12. Given an array τ = A[1..n] of distinct elements and also the

value of L = md(τ) or L = dis(τ) (or an upper bound) and also a 1 ≤ r ≤ n,

we want to determine the position s (and also the element) in τ of the unique

element whose τ -rank is r. Note that we do not allow write access for the array,

but only read access.

This problem is the same as the famous search problem of finding the k-

smallest element in an array except that we ask for extra information on L

and make use of it to determine the answer using fewer comparisons. The very

popular algorithm for finding the k-smallest element is quick select (?).

When τ is known to be sorted, the answer is (r, A[r]) without comparison.

When τ is arbitrary, one cannot determine the position with fewer than n com-

parisons in the worst case. For arbitrary τ (without knowledge of L), there are

known algorithms (like the one based on finding the median of the medians) that

determine the position and the element by making O(n) comparisons. For those

τ whose values md() or dis() are small, we present an algorithm that makes far

73

fewer comparisons. To the best of our knowledge, this problem has not been

studied in the literature.

7.4.1 Case of known bound on md(τ)

Consider the following algorithm for the PfromR problem with a known bound

on md(τ). Below, Find(B[i..j], r) is an algorithm to find, given an array µ =

B[i..j] and a r ≥ 1, the position (and also the element) whose µ-rank is r.

Again, we do not allow write access to the array, but only read access on B. It is

known that the best-known candidates (such as the median of medians algorithm)

(Blum et al., 1973)) for Find() make at most O(j − i+ 1) comparisons.

Algorithm 21: PfromRmd(A[1..n], L, r)

Input: An array τ = A[1..n] and md(τ) ≤ L ; 1 ≤ r ≤ n.
Output: Position I of element x
s← max{1, r − L+ 1}
S ← min{r + L− 1, n} ;
(I, x)← Find(A[s..S], L) ;
return (I, x).

We have the following claim for PfromRmd().

Theorem 7.13. (i) PfromRmd(A,L, r) makes at most O(L) comparisons to

correctly determine the element whose τ -rank is r and also its position in A. (ii)

There exists no deterministic algorithm for PfromR which makes at most L

comparisons where L = md(τ).

(i) Let x = A[I] be the unique element whose τ -rank is r. From the assumption

about A, we have A[q] < x for every q < s. Similarly, A[I] > x for every q > S.

Hence x ∈ A[s..S]. In addition, x is the L-th smallest element in the subarray

A[s..S]. Its value and also its position are found in Step 2 by an invocation of

74

Find(A[s..S], L) and returned in Step 3. The number of comparisons is essentially

determined by the number of comparisons made by Find() which is O(L).

(ii) It is not hard to see that there is no deterministic algorithm for PfromR

that always makes fewer comparisons than n. Since md(τ) ≤ n− 1 always, this

implies the non-existence of an algorithm making at most L comparisons.

The statement (ii) establishes that Algorithm PfromRmd() is optimal (with

respect to the number of comparisons in the worst-case) up to a constant multi-

plicative factor. We can extend this to using the dis() metric which will result in

the following theorem.

7.4.2 Case of known bound on dis(τ)

Consider the following algorithm for the PfromR problem with a known bound

on dis(τ).

Algorithm 22: PfromRdis(A[1..n], L, r)

Input: An array τ = A[1..n] and dis(τ) ≤ L ; 1 ≤ r ≤ n.
Output: Position p of element x
s← max{1, r − 2L} ; S ← min{r + 2L, n} ;
(p, x)← Find(A[s..S], 2L) ;
return (p, x).

We have the following claim on PfromRdis(). Using arguments similar to

those employed in the proof of Theorem 7.7, one can establish the claim.

Theorem 7.14. (i) PfromRdis(A,L, p) makes at most O(L) comparisons to

correctly determine the rank of A[p] in A[1..n]. (ii) There exists no deterministic

algorithm for PfromR which makes at most L comparisons where L = dis(τ).

(i) Let x = A[p] be the unique element of τ -rank r. We claim that p ≥ r − L.

Otherwise, some element whose τ -rank is at most r− 1 should occupy a position

75

s ≥ r. This gives rise to an inversion (A[p], A[s]) with a separation at least

s − p ≥ r − (r − L − 1) = L + 1 violating our assumption about dis(τ) ≤ L.

Similarly, p ≤ r + L. As a consequence, it follows that A[q] < x for every

q < r− 2L and also that A[q] > x for every q > r+2L. Hence, x is precisely the

(2L + 1)-th smallest element in the subarray A[s..S] and its value and position

are found by the invocation of Find() in Step 2. The number of comparisons

made is O(L).

(ii) Follows from arguments employed in Statement (ii) of Theorem 7.13 and

from L = dis(τ).

Statement (ii) establishes that Algorithm PfromRdis() is optimal (with re-

spect to several comparisons in the worst-case) up to a constant multiplicative

factor.

7.5 Parallel Position given Rank

This approach to finding the position of elements that have a rank r in an ap-

proximately sorted array can be extended to be implemented in a parallel setting

to improve the performance of the query.

Theorem 7.15. Given an array τ = A[1..n] of distinct elements and also the

value of L = md(τ) or L = dis(τ) (or an upper bound) and also a 1 ≤ r ≤ n with

p processors, we want to determine the position s (and also the element) in τ of

the unique element whose τ -rank is r. Note that we do not allow write access for

the array, but only read access.

The following algorithm shows the parallel approach that can be taken to find

the position s along with the element in τ with rank r.

76

Algorithm 23: PfromRmdParallel(A[1..n], L, r, p)

Input: An array τ = A[1..n] and md(τ) ≤ L ; 1 ≤ r ≤ n; p number of
processors.

Output: Position I of element x
do in parallel:

si ← max{1, r − L+ 1}
Si ← min{r + L− 1, n}
(I, x)← FindParallel(A[si..Si], L)

return (I, x).

Theorem 7.16. The PfromRmdParallel algorithm finds the position I (and

also the element whose τ -rank is r) in τ = A[1..n] given L = md(τ) and also a

1 ≤ r ≤ n with p processors, in O(L/p + p) number of comparisons in time and

work performed O(L).

The FindParallel algorithm used here takes the subarray B[i..j] of length

t = j − 1 + 1, and divides it into a t/p number of elements per processor Pi.

Each processor will perform the best known median-of-medians algorithm (Blum

et al., 1973)) and send it to the master where the algorithm is performed again

to find the position p and the element s. As is known, the median-of-medians

algorithm finds the median of the subarray in a single processor Pi in O(t/p)

comparisons. And the next phase of this algorithm will take place O(p) to find

the median among all the medians of each processor Pi. This results in a total

of O(t/p + p) number of comparisons where t = 2L. One may also use more

sophisticated approaches to find the median that involves multilevel parallelism

(??).

77

7.6 Multi Select in an approximate sorted

array

Assuming that these values in the given array K all have a window independent

of each other (without overlaps) in the given approximately sorted array A, we

can come up with a simple approach to parallelize this. We present the following

algorithm.

Algorithm 24: kithPfromRmdParallel(A[1..n], L,K[1..q], p)

Input: An array τ = A[1..n], md(τ) ≤ L, array K = [1..q] with indices
and 1 ≤ q ≤ n.

Output: xi and its position Ii in τ .
do in parallel: for each element in K

s← max{1, ki − L+ 1}
S ← min{ki + L− 1, n}
(Ii, xi)← PfromRmd(A[s..S], L, r)
output (Ii, xi)

Theorem 7.17. kithPfromRmdParallel() does at most O(qL) work and O(L)

comparisons in time to correctly determine the element whose τ -ranks are ki from

K[1..q] and also their corresponding positions in A, where 1 ≤ i ≤ q ≤ n.

Each rank Ki is assigned to a processor of its own to perform the PfromRmd

algorithm. Every processor will receive a subarray of size 2L. As the total work is

divided between p processors, the time taken becomes O(L) to find each element

xi in rank ki.

This approach can be extended to multiple levels of parallelism. We could use

the PfromRmdParallel algorithm in line 4 which would reduce the time even

further.

78

7.7 Parallel Multi Select in an approximate

sorted array

Assuming that these values in the given array K all have a window independent

of each other (without overlaps) in the given approximately sorted array A, we

can come up with a simple approach to parallelize this. We present the following

algorithm.

Algorithm 25: kithPfromRmdParallel(A[1..n], L,K[1..q], p)

Input: An array τ = A[1..n], md(τ) ≤ L, array K = [1..q] with indices
and 1 ≤ q ≤ n.

Output: xi and its position Ii in τ .
do in parallel: for each element in K

s← max{1, ki − L+ 1}
S ← min{ki + L− 1, n}
(Ii, xi)← PfromRmd(A[s..S], L, r)
output (Ii, xi)

Theorem 7.18. kithPfromRmdParallel() does at most O(qL) work and O(L)

comparisons in time to correctly determine the element whose τ -ranks are ki from

K[1..q] and also their corresponding positions in A, where 1 ≤ i ≤ q ≤ n.

Each rank Ki is assigned to a processor of its own to perform the PfromRmd

algorithm. Every processor will receive a subarray of size 2L. As the total work is

divided between p processors, the time taken becomes O(L) to find each element

xi in rank ki.

This approach can be extended to multiple levels of parallelism. We could use

the PfromRmdParallel algorithm in line 4 which would reduce the time even

further.

79

We conclude this chapter with the observation and bounds for the various

metrics that we defined earlier in the parallel space when the constraint of the

number of comparisons is split between various processors. In the next chapter,

we dive into one of the applications of approximate sorting, packet classification

in software defined networks.

80

Chapter 8

Network Packet Classification

with Approximate Sorting

In this chapter, we explore one of the applications of approximate sorting, packet

classification in software defined networks. We define what comparing a packet

means and provide algorithms to approximately sort a set of packets in a buffer,

that leads to gains in the speed of classification. We also provide analysis by

comparing fully sorted and unsorter approaches.

8.1 Introduction

Packet buffers are part-and-parcel of any packet switching network. With in-

creases in the availability of 100 Gbit networks or more and with a plethora

of available applications, the traffic volume on the Internet has exceeded 130K

petabytes in some estimates (Clement, Feb 28, 2020). A buffer is allocated

for each of the router interfaces. The router CPU processes each of these queues

81

simultaneously or sequentially, depending on the number of processors available.

This processing involves determining which outgoing queue a packet from the

input queue must be placed in or filtering to remove packets altogether. This

may involve some packet classification.

Routers employ a set of rules that each packet is subject to (Fuchino et al.,

2021a; Daly et al., 2019). For example, a simple rule would be to search

the routing table based on the destination address of each incoming packet. Of

course, rules are usually more complicated, such as those deployed for discarding

to prevent the spreading of worms. Many modern routers allow for new net-

work paradigms, such as software-defined networking (SDN) through OpenFlow

(Hakiri et al., 2014) and virtualization of network functions (NFV) (Han

et al., 2015). These paradigms are highly dependent on packet classification,

which is performed by executing each of the rules (classifier) on the information

contained in the header of each packet and sometimes in the payload as well

(Daly et al., 2019; Gupta and McKeown, 2001).

Packet classification algorithms often preprocess the set of rules by ordering

rules (Hamed and Al-Shaer, 2006; Fuchino et al., 2021b), decision tree

approaches (Li et al., 2018b), or partition methods such as (Daly et al.,

2019; Yingchareonthawornchai et al., 2018). Each packet, one by one, is

processed through all rules after the rules have been preprocessed. Processing

packets one by one; no matter how the rules are organized, this will be a slow

process. If the packets in the buffer are ‘similar’, we can execute the rule on the

first, obtain the result and use it for all the others. Say that we have k similar

groups of packets in a buffer with n packets, then we need to execute the rules

only on k packets.

Taking into account constant traffic, the number of packets n in a single input

82

interface buffer depends on the input line rate. Based on our earlier observations,

one can assume that there will be many packets in each of the interface buffers.

These observations on buffer sizes have previously been thoroughly examined

(Abbas et al., 2016; Prasad et al., 2009).

8.1.1 Decision Tree Based Packet Classification

LetR be a set of rules, commonly known as a set of classes. LetA = {a1, a2, ..., ak}

be the set of attributes of the packet headers referred to in the rules. A packet

could satisfy multiple rules, in which case it is not uniquely classified. Rather

than assigning multiple classes, we can uniquely assign one class (the first rule

that satisfies).

Often a decision tree-based packet classifier is used, where the root node covers

the entire search space that contains all R rules. The space corresponding to the

node (root, for example) is partitioned into two smaller subspaces, assuming that

we are constructing a decision tree that is a binary tree. This is often the case,

and therefore the height of the decision tree is O(logR). Recursive partitioning

of the rule space continues until we have a leaf node that contains a single rule.

In cases where the subspace split overlaps because of a rule(s), the rule(s) are

replicated (certainly undesirable). A packet traverses this decision tree until it

reaches a leaf node where it satisfies the single rule that it is the leaf node.

Numerous approaches have been used to create decision tree-based packet

classification, including well-studied CutSplits (Li et al., 2018a) and HiCuts

(Gupta and McKeown, 2000) and its improved version, HyperCuts (Singh

et al., 2003). PartitionSort (Yingchareonthawornchai et al., 2018) is an

approach that sorts the ruleset, which we assume and use in our paper. Parti-

83

tionSort defines the comparison of packets as follows: Consider ≤ which defines

the total ordering of a set of n given rules r1...rn. To classify a packet Px, we

compare Px with rule ri and determine Px > ri. This means that the packet Px

may match some rules among ri+1...rn and will not match rules from r1 through

ri. In our paper, we take a similar approach to the comparison of two packets,

elaborated more in Section 8.1.2. This sorted list of rules becomes the leaf nodes

on which a decision tree is built. We have illustrated the decision tree and the

path the packet takes in Fig. 8.1.

Figure 8.1: The decision tree and R rules as leaf nodes.

Each packet that needs to be classified has to spend O(logR) time traversing

the binary decision tree. Sorting can help reduce the traversal time by looking at

the classification of the previous packet. Once this node is determined, we move

from that node to a leaf node that applies to the packet. Given that sorting is

a time-consuming step, we have developed algorithms for approximate sorting

and then provide techniques for packet classification based on the metrics on

84

approximate sorting.

• This section proposes an approximate sorting technique that requires O(δ×

D × n) time to complete the sorting, where D is the number of allowed

comparisons and δ > 0 is a constant, and is the cost of comparing a packet

pair. Keeping D ≪ log n will reduce the overall time to preprocess the

packet, but at the expense of not being sorted. To measure sortedness of

the output as a result of the algorithm, we discuss some metrics. We show

that as D increases, the metrics we measure decrease and move closer to

sorted. The discussion of approximate sorting is provided in Section II.

• Once the set of packets is approximately sorted, we show how to classify

the packets without having to subject the packet to the entire decision

tree from the root. We show the overall effectiveness of our approximate

sorting methods for packet classification and examine them by varying the

values of D, n, and δ. We can determine the optimal values for which the

approximate sorting will be helpful through these evaluations. These are

discussed in Section III.

• We relate the bursty throughput time to one of the metrics that we define

later (maximum displacement - md). Our analysis provides us with a clear

proportionality of md with the duration of the bursty traffic. We explain

this correlation in Section 8.3.

8.1.2 Comparing Two Packets

Let Pi and Pj be two packets containing fields Pi = (ai1, ai2, ...aim) and Pj =

(aj1, aj2, ...ajm). When we compare lexicographically packets Pi and Pj, we can

85

say that packets Pi = Pj, if for all r, 1 ≤ r ≤ m, air = ajr. We can say Pi > Pj, if

for some r, 1 ≤ r ≤ m, air > ajr and for all s, 1 < s < r, ais = ajs. The operator

less than < (Pi < Pj) can be defined similarly.

One can define more complicated relational operators with an eye toward the

rules for classification. Let us say a compound classification rule that involves

more than one packet attribute, for example, destination address and port num-

ber. More precisely, we say that a packet belongs to class C1 if its destination

address is in the set S of the destination address and its destination port is the

given range of port numbers. The packets can be presorted only by destination

address. Here we will say that two packets are the same if both the packet’s

destination addresses are in the set S. The relational operators > and < can

be defined by comparing the destination address of the packets with the smallest

and the largest addresses in the set S. In general, we can presort (or approximate

sort) based on the partial set of attributes and with the corresponding logic to

determine the results of the relational operators (Narasimhan et al., 2022a).

8.2 Relationship between quality metrics and

Traversing the Decision-Tree

The packets that arrive at a router belong to many flows, whereas a flow is a

sequence of packets that belong to a source and a destination pair. All packets

that belong to a particular flow do not need to be consecutive in the input buffer.

Packets belonging to a particular flow may also not be classified similarly.

When we completely sort the packets in the input buffer, adjacent packets in

the sorted list could belong to the same class or a class that is closest to it. Here

86

is the reason. Consider the decision tree in which the leaves are the classification

of the packets and the path from the root to the leaf places the conditions on the

attributes (a1, a2, ...am) in order 1, 2, ...m. We need to sort each packet Pi based

on attributes (ai1, ai2, ...aim) (again in that order). Two packets Pi and Pj are

closer in the sorted list if Pi = (ai1 = aj1, ai2 = aj2, ...aik = ajk or Pi and Pj agree

on most of the attributes starting from a1 (in the order) until ak. The packets Pi

and Pj will be next to each other in the completely sorted array if there exists no

other packet Ps that agrees on more attributes (a1, a2, ...am) of Pi in comparison

with the same attributes of Pj. The basic idea of our approach is to determine

the packet classification for some of the packets in the input buffer and to use

the sortedness of the set to reduce the search space. This is shown below for all

three metrics.

As defined above, dis(π) is the maximum distance (in array locations) between

the locations of the packet pairs that are out of order. Given a list of n packets,

the maximum distance is n− 1. In this case, an approach to packet classification

would be to find the classification for the first packet. Let us say that this packet

Pi belongs to class r, that is, it is the rth leaf node in the decision tree. To find

the class for the second packet Pi+1, we climb the tree from the leaf node r, until

we find the node k that matches the rules for that node. Once it matches, we

traverse the tree from node k. The process continues for all other packets, where

we start climbing the tree for the next packet based on the leaf position (packet

classification) of the previous packet. The maximum climb to the tree is given by

dis(π) and the sum value of all the distances between inversions can be shown to

be n× (n− 1)/2. This will be valid in the case where the number of packets in

the buffer is less than the number of rules for packet classification.

For the case of md(π), consider this. Let a packet Pi be classified as i, that

87

is, in position i among the leaf nodes when read from left to right. The packet

Pj that follows Pi in the approximately sorted list could be in the wrong place

(with respect to total sortedness) by at most md(π) to the right and to the left

by the same distance. Therefore, the packet Pj could belong to any class between

i−md(π) and i+md(π). Assuming that the decision is a binary tree, we need to

start the search for the Pj class from a subtree where the number of leaf nodes is

2×md(π)+1. The minimum height of a binary tree with 2×md(π)+1 leaf nodes

is h = log(2×md(π)+1). This implies that we need to search for the height tree

h, which could be considerably smaller than the binary tree of minimum height

with all leaf nodes (equal to the number of packet classifications).

8.3 Relationship between Bursty Throughput

and maximum displacement

In a network, there may be an unexpected or sudden surge in the number of

packets received. This may be due to various seasonal factors. This can contribute

to the packet not being received in a sorted or expected manner. Some packets

may not be arriving in the sequences that they are expected to arrive in and will

only be off by a certain amount of packets as long as the burstiness is prolonged.

Let us assume that bursty throughput occurs and is present for a time tb. This

means that packets (nb number of packets) that arrive in this time frame may

not be ordered or arrive in the expected order.

All packets that are out of order will occur within these nb packets and will

not go beyond the burst time frame. This makes the maximum displacement

(md) of this set of packets at most nb. This observation shows that md is directly

88

proportional to tb.

8.4 Approximate Sorting and Packet

Classification

We will consider a list of packets n in the buffer B and let C be the number of

packet classes. We will also assume that there are R = C rules, which implies

that each rule produces a unique class for the packet. Each of these rulesets has

been chosen from the simulated sets created by (Taylor and Turner, 2007).

We test on three types of rulesets: ACL (Access Control Lists), IPC (IP Chain)

and FW (Firewall), each of sizes ranging from 100 to 1 million rules from (Taylor

and Turner, 2007). These have been widely accepted as a tool for simulating

benchmark rulesets. When we do not sort the packets (unsorted case), each

packet will have to go through the decision tree, and the total time consumed

will be O(n×logR). We set this as a baseline calculation and compare the results

with this.

When we fully sort the packets, we will consume O(n × log n) time to sort.

After sorting, take the first packet and we will take O(logR) time to find its

classification. If the first packet is classified at l (l the leaf node), then the next

packet will be classified on or after the l classification. In this case, the tree for

which we need to search will have only R − l leaf nodes, giving us a height of

log(R− l). But in the worst case, l could be as small as 1. Given this approach,

the worst-case number of computations after sorting will be Σn−1
i=0 (log(R − i)),

given a total time of

89

0 50 100 150

0

50

100

150

n

R

For values of R and n in the
shaded region fully sorting is
better than no sorting for
packet classification using
decision trees.

Figure 8.2: Packet Classification with fully sorted versus unsorted packets list.

C =
n−1∑
i=0

(log(R− i)) + n× log n [FullySorted]

For the case of fully sorted packets, we need to show C < n × logR. This

equation can be rewritten as log(R!
(n−2)!

) + n × log n < n × logR. In further

rewriting, we will have R!
(n−2)!

< (R
n
)n. The graph in Fig. 8.2 shows the values

for R and n that this condition will be true. As you can see, for example, when

n = 100 and R = 50 the fully sorted ones perform between the unsorted ones.

Note that these can be scaled proportionally and that the condition will still hold.

Next, we focus our attention on the case of approximately sorted packets A.

The Algorithm 2 presented is explained below. In Step 1 we perform the approxi-

mate sorting of the packets in A. This consumes O(D×n) time. We assume that

we have |R| = m rules and that m > n. We further assume that these rules are

in sorted order on the decision tree left-to-right as leaf nodes (Yingchareontha-

90

wornchai et al., 2018). In line 3 of the algorithm, we determine the position

of the first packet sPos. The second packet could be in position sPos −md to

some position k > sPos that is based on the result of the approximate sorting

of the packets. If the second packet is less than R[sPos +md] then this packet

is between sPos − md and sPos + md, the decision tree is to search within

this window in line 16. On the other hand, if the second packet is greater than

R[sPos+md] we move the search window by 2×md from our current sPos. We

compare the third packet with the rule at the new position sPos and continue

the processing similar to the one we did for the second packet. The SearchDe-

cisionTree at any given time looks at a window of 2 × md rules to search (leaf

nodes). Each of these searches costs log(2 ×md) time. We need to do this for

n − 1 packets. The searches on the decision tree are skipped if the condition in

line 10 is true. The total of such comparisons is at most n− 1. The initial search

for the first packet will consume log |R| time. The total time for the approximate

sorting-based approach is given below.

T1 = n×D + logR + n− 1 + log(2× n

2D+1
) [ApproxSorted]

Next, we focus on comparing the approximate sorting with the unsorted case.

We can show that T1 < T2 = n× logR.

By comparing T1 with T2 we have

T1 − T2 = nD +
R

2D+1
+ logR + (n− 1) log

n

2D
− n logR

=
R

2D+1
+ (n− 1) log n+D − (n− 1) logR

=
R

2D+1
+D − (n− 1) log

R

n

91

Algorithm 26: PacketClassify (A[1..n], R[1..m], D)

Input: An array of packets P [1..n], n is a power of 2, an array of rules
R[1..m] that are assumed to be already sorted, D being the
factor for the number of comparisons

ParSort (P [1..n], D)
md = n

2D+1

sPos = SearchDecisionTree (R[1..m], m− 1, P [1])
i = 2
while i < n do

if (sPos+md) > m then
ePos = m− 1

else
ePos = sPos+md

if P [i] > R[ePos] then
sPos = sPos+ 2×md

else
if (sPos−md) < 0 then

sPos = SearchDecisionTree(R, 0, sPos+md, P [i])

else
sPos = SearchDecisionTree(R, sPos−md, sPos+md, P [i])

sPos = sPos+ (2×md)
i++

92

Figure 8.3: Conditions under which the approximate sorting is better than fully
sortedness

If T1 < T2, then
R

2D+1 +D < (n− 1) log R
n
.

Furthermore, if we check the improvement of T1 in percentage compared to

T2, we have the following.

1− T1

T2

=
(n− 1) log R

n
− R

2D+1 −D

n logR

=
n− 1

n
−

(n− 1) log n+ R
2D+1 +D

n logR

The graph in Fig. 8.3 shows areas in which the values of |R| and n could

improve the approximate sorting. In the graph in Fig. 8.4 we have provided

a comparison between unsorted and approximate sorted methods in terms of

actual values (in time units) for the 1 million number of rules and the percentage

of improvement for various values of R, n and D.

93

Figure 8.4: Comparing Approximate Sort and Unsorted Methods for 1M number
of rules for ACL/IPC/FW. The value of D = 4

Figure 8.5: Varying the value of D and showing the impact on gain in perfor-
mance. After certain values of D there are no gains

94

8.5 Improved Packet Classification using a

Cache approach

In the previous section, we provided a packet classification algorithm that utilized

the maximum displacement metric as an input to classify the incoming packets in

the buffer. One of the issues with this approach was that the packets in the buffers

were approximately sorted and this maximum displacement was used in the rule

tree to categorize the packets. This led to some issues with the classification.

Hence in this section, we provide an improved approach to packet classification

using an approximate sorting approach of packets in the buffer.

To establish the premise, we analyze the complexity of classifying a packet

when the packets are not sorted in the buffer of the router. This is observed to

be the following.

T1 = n× logd2 r

The above means that each packet (n of them) has to go through the entire

rule tree of r rules and d dimensions to get classified. We now present a simple

algorithm that sorts the packets fully.

In the PacketClassifyFullSort algorithm, P are all the packets that have to be

classified and R are all the rules that are existent. These rules are maintained as

a range tree with d dimensions.

We start by sorting the packets fully in the buffer. We assume that all the

packets fit in the buffer. If the buffer is too small to fit all the packets, another

approach would be to take chunks of packets and perform the same algorithm.

Rcurrent maintains the most recent rule into which a packet was classified into.

95

Algorithm 27: PacketClassifyFullSort (P [1..n], R[1..r])

Input: An array of packets P [1..n], n is a power of 2, an array of rules
R[1..r] built as a range tree with d dimension attributes

Sort (P [1..n])
Rcurrent = SearchRangeTree (R[1..r], pathMarkers[1..d], P [1])
i = 2
while i < n do

if P [i] gets classified into Rcurrent then
i++

else
j = d
while j > 1 do

Rcurrent = SearchRangeTreeBottomUP(R[1..r],
pathMarkers[1..j], P [i])
if Rcurrent > −1 then

break;

else
j −−

So, we first classify the first packet running through the entire rule tree.

Inside the while loop, we start with the second packet and before we proceed

to immediately run through the rule tree, we first check if the current packet

gets classified into the previous rule into which the previous packet was classified

into. Since these packets are all sorted in the buffer based on the same set of

attributes/dimensions as the rules, if at all the packets are getting classified into

the same rule, it will happen at this step.

If they do not match, then the packet goes through the rule tree using a

bottom-up approach to classify itself into the new rule. This new rule is then

updated with Rcurrent. A bottom-up approach is used utilizing the pathMarkers

that maintains the root of the tree at each dimension. Starting from the innermost

dimension where the previous Rcurrent was present makes the average case of

finding the new rule much faster.

96

The complexity of this approach is analyzed to be the following.

T2 = dn log2 n+ s logd2 r + nd

The first component in the above equation is the time taken to table-sort the

packets in the buffer. The second component is the time taken for the s set of

packets that get classified into a new unique rule. This is the worst-case time

taken for any packet to run through the entire tree to get classified into a rule.

The third component is the time taken to check each packet to see if it matches

the rule (Rcurrent) into which the previous packet was classified into. One way to

think about this approach is as if there is a cache of size one that is maintained

with only Rcurrent.

In the next algorithm, we provide a case for approximately sorting the packets

in the buffer and still being able to precisely classify them into their corresponding

rules.

The algorithm starts with approximately sorting the packets in the buffer

with the factor of a number of comparisons D as an input as well. We also

immediately calculate the upper bound for the maximum displacement metric

that is dependent on D. In this algorithm, we maintain the Rcurrent as a cache

of recent rules into which packets are classified into. The number of rules in this

cache will only be 2md. This is proved to be enough as the packets that are

approximately sorted in the buffer would not differ from an adjacent packet by

more than 2md along with the corresponding rule. The cache is also maintained

as a d dimensional tree for easier searching, but not to forget the additional

insertion cost that this structure comes with.

Similar to the previous algorithm, we classify the first packet and add the

97

Algorithm 28: PacketClassifyApproxSort (P [1..n], R[1..r], D)

Input: An array of packets P [1..n], n is a power of 2, an array of rules
R[1..r] built as a range tree with d dimension attributes, D being
the factor for the number of comparisons

ParSort (P [1..n], D)
md = n

2D+1

Rcurrent = [] - cache memory to store most recent 2md packets and their
classified rules as a d dimensional tree
Rcurrent = SearchRangeTree (R[1..r], pathMarkers[1..d], P [1])
i = 2
while i < n do

if P [i] gets classified into a rule in the cache (Rcurrent) then
i++

else
j = d
while j > 1 do

Rcurrent = SearchRangeTreeBottomUP(R[1..r],
pathMarkers[1..j], P [i])
if Rcurrent > −1 then

break;

else
j −−

98

rule to the cache. As we run through all the packets, we first check the cache to

see if the packet gets classified into an existing rule into which another packet

was classified into. If not, we run through the entire rule tree with the bottom-

up approach to classify the new packet into a new rule. This new rule that is

nonexistent in the cache will now be added and swapped into the cache with the

oldest rule that was in the cache.

The following is an analysis of the complexity of this algorithm.

T3 = dnD + s logd2 r + sd log2(2md) + n logd2(2md)

The first component is the time taken to approximately sort the d dimensions

of packets. The second component is the same as T2 which is the time taken to

classify the new packets into new unique rules. The third component here is the

insertion cost of inserting a new rule into the cache. The final component is the

time taken to search for a matching rule for a new packet in the cache of 2md

rules. This has to be done for every packet.

When we compare T2 and T3, we derive the following optimality and observe

that approach of approximately sorting the packets is better than fully sorting

them.

T2 > T3

dn log2 n+ s logd2 r + nd > dnD + s logd2 r + sd log2(2md) + n logd2(2md)

dn log2 n+ nd > dnD + sd log2(2md) + n logd2(2md)

99

When D approaches log2 n for optimality, at first the sorting times get canceled,

nd > sd log2(2md) + n logd2(2md)

But now the maximum displacement md becomes 1 and the log components on

the right-hand side are completely gone and vanish. This makes the left-hand

side with the nd component that proves that the fully sorting approach is indeed

more time taking than the approximate sorting approach.

We conclude this chapter by revisiting the gain in resources that we have when

approximately sorting compared to fully sorting or no sorting. The improved

approach proves this with the analyses that have been performed. We proceed

to conclude the dissertation in the next chapter.

100

Chapter 9

Conclusion

In this dissertation, we embarked on a comprehensive exploration of approximate

sorting algorithms and their applications. We began by defining fundamental

quality metrics and establishing upper bounds for each metric using the ParSort

sorting algorithm. Additionally, we introduced a modified selection sort algorithm

capable of completely sorting an approximately ordered array based on its metric.

Building upon these foundations, we delved into analyzing the input arrays for

sequences and patterns, leading to the identification of novel quality metrics, such

as the longest increasing prefix. Through rigorous analysis, we derived bounds for

both new and existing metrics, enhancing our understanding of the approximate

sorting process.

Our investigation into searching algorithms for approximately sorted arrays

yielded promising results. We developed efficient binary search algorithms that

rival the complexity of traditional binary searches on fully sorted arrays. Addi-

tionally, we proposed a novel approach for estimating metrics in an approximately

sorted array, enabling the application of binary search without explicitly provid-

101

ing the metric as an input. Furthermore, we extended our exploration to include

range search in multidimensional approximately sorted orders. The introduction

of modified fractional cascading proved valuable in reducing the complexity of this

multidimensional range search, demonstrating the practicality of our findings.

To expand the applicability of approximate sorting, we investigated parallel

sorting and searching algorithms. Through careful observation and analysis, we

derived valuable insights into the behavior of various metrics in parallel processing

environments with constraints on the number of comparisons allocated to each

processor. Our work in this area lays the groundwork for future developments in

parallel approximate sorting and searching algorithms.

Lastly, we showcased a real-world application of approximate sorting in the

context of packet classification for software-defined networks (SDNs). Our im-

proved approach in approximate sorting revealed significant resource savings com-

pared to fully sorting or performing no sorting, as supported by the thorough

analyses conducted.

In conclusion, this dissertation presented a comprehensive study of approx-

imate sorting algorithms and their applications. We introduced novel quality

metrics, developed efficient and optimal searching and range search algorithms,

and explored parallel sorting approaches. Our work demonstrates the potential

of approximate sorting in various scenarios, offering resource-efficient solutions

while maintaining reasonable acceptable performance. The findings from this

research contribute to the advancement of sorting and searching techniques and

open up new possibilities for optimizing various applications, including those in

SDNs. As we move forward, this work lays the foundation for further research

and advancements in the field of approximate sorting and its diverse applications.

102

Bibliography

Ghulam Abbas, Zahid Halim, and Ziaul Haq Abbas. Fairness-driven queue man-
agement: A survey and taxonomy. IEEE Communications Surveys Tutorials,
18(1):324–367, 2016. doi: 10.1109/COMST.2015.2463121.

Takao Asano, Masato Edahuroe, Hiroshi Imai, Masao Iri, and Kazuo Murota.
Practical use of bucketing techniques in computational geometry. In God-
fried T. TOUSSAINT, editor, Computational Geometry, volume 2 of Machine
Intelligence and Pattern Recognition, pages 153–195. North-Holland, 1985. doi:
https://doi.org/10.1016/B978-0-444-87806-9.50011-6.

Jérémy Barbay and Gonzalo Navarro. On compressing permutations and adaptive
sorting. Theoretical Computer Science, 513:109–123, 2013.

Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and
Robert Endre Tarjan. Time bounds for selection. J. Comput. Syst. Sci., 7
(4):448–461, 1973.

Milind M Buddhikot, Subhash Suri, and Marcel Waldvogel. Space decomposition
techniques for fast layer-4 switching. In International Workshop on Protocols
for High Speed Networks, pages 25–41. Springer, 1999.

Jean Cardinal, Samuel Fiorini, Gwenaël Joret, Raphaël M Jungers, and J Ian
Munro. An efficient algorithm for partial order production. SIAM journal on
computing, 39(7):2927–2940, 2010.

Bernard Chazelle and Leonidas J Guibas. Fractional cascading: I. a data struc-
turing technique. Algorithmica, 1(1):133–162, 1986a.

Bernard Chazelle and Leonidas J Guibas. Fractional cascading: Ii. applications.
Algorithmica, 1(1):163–191, 1986b.

J. Clement. Global data volume of consumer ip traffic 2017-2022. Statista,
Retreived, April 17, 2022, Feb 28, 2020.

James Daly, Valerio Bruschi, Leonardo Linguaglossa, Salvatore Pontarelli, Dario
Rossi, Jerome Tollet, Eric Torng, and Andrew Yourtchenko. Tuplemerge:

103

Fast software packet processing for online packet classification. IEEE/ACM
Transactions on Networking, 27(4):1417–1431, 2019. doi: 10.1109/TNET.2019.
2920718.

Persi Diaconis. Group representations in probability and statistics. Lecture notes-
monograph series, 11:i–192, 1988.

Persi Diaconis and Ronald L Graham. Spearman’s footrule as a measure of
disarray. Journal of the Royal Statistical Society: Series B (Methodological),
39(2):262–268, 1977.

Y. Disser and S. Kratsch. Robust and adaptive search. In Proceedings of the
34th International Symposium on Theoretical Aspects of Computer Science
(STACS), page 26(14), 2017.

Vladmir Estivill-Castro and Derick Wood. A survey of adaptive sorting algo-
rithms. ACM Computing Surveys (CSUR), 24(4):441–476, 1992.

Takashi Fuchino, Takashi Harada, and Ken Tanaka. Accelerating packet classi-
fication via direct dependent rules. In 2021 12th International Conference on
Network of the Future (NoF), pages 1–8, 2021a. doi: 10.1109/NoF52522.2021.
9609820.

Takashi Fuchino, Takashi Harada, and Ken Tanaka. Accelerating packet classi-
fication via direct dependent rules. In 2021 12th International Conference on
Network of the Future (NoF), pages 1–8, 2021b. doi: 10.1109/NoF52522.2021.
9609820.

Jie Gao, Leonidas J Guibas, John Hershberger, and Li Zhang. Fractionally cas-
caded information in a sensor network. In Proceedings of the 3rd international
symposium on Information processing in sensor networks, pages 311–319, 2004.

Joachim Giesen, Eva Schuberth, and Miloš Stojaković. Approximate sorting.
In Latin American Symposium on Theoretical Informatics, pages 524–531.
Springer, 2006.

P. Gupta and N. McKeown. Classifying packets with hierarchical intelligent
cuttings. IEEE Micro, 20(1):34–41, 2000. doi: 10.1109/40.820051.

P. Gupta and N. McKeown. Algorithms for packet classification. IEEE Network,
15(2):24–32, 2001. doi: 10.1109/65.912717.

Akram Hakiri, Aniruddha S. Gokhale, Pascal Berthou, Douglas C. Schmidt, and
Thierry Gayraud. Software-defined networking: Challenges and research op-
portunities for future internet. Comput. Networks, 75:453–471, 2014.

104

Hazem Hamed and Ehab Al-Shaer. Dynamic rule-ordering optimization for high-
speed firewall filtering. In Proceedings of the 2006 ACM Symposium on Infor-
mation, computer and communications security, pages 332–342, 2006.

Bo Han, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee. Network function
virtualization: Challenges and opportunities for innovations. IEEE Communi-
cations Magazine, 53(2):90–97, 2015. doi: 10.1109/MCOM.2015.7045396.

Kanela Kaligosi, Kurt Mehlhorn, J Ian Munro, and Peter Sanders. Towards opti-
mal multiple selection. In International Colloquium on Automata, Languages,
and Programming, pages 103–114. Springer, 2005.

Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd Ed.):
Fundamental Algorithms. Addison Wesley Longman Publishing Co., Inc., USA,
1997. ISBN 0201896834.

Anna Korba. Learning from ranking data: theory and methods. PhD thesis,
Université Paris-Saclay (ComUE), 2018.

T. V. Lakshman and D. Stiliadis. High-speed policy-based packet forwarding us-
ing efficient multi-dimensional range matching. SIGCOMM Comput. Commun.
Rev., 28(4):203â214, oct 1998. ISSN 0146-4833. doi: 10.1145/285243.285283.
URL https://doi.org/10.1145/285243.285283.

Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. Cutsplit: A decision-tree com-
bining cutting and splitting for scalable packet classification. In IEEE INFO-
COM 2018-IEEE Conference on Computer Communications, pages 2645–2653.
IEEE, 2018a.

Wenjun Li, Xianfeng Li, Hui Li, and Gaogang Xie. Cutsplit: A decision-tree com-
bining cutting and splitting for scalable packet classification. In IEEE INFO-
COM 2018-IEEE Conference on Computer Communications, pages 2645–2653.
IEEE, 2018b.

H. Mannila. Measures of presortedness and optimal sorting algorithms. IEEE
Transactions on Computers, C-34(4):318–325, 1985. doi: 10.1109/TC.1985.
5009382.

Kurt Mehlhorn and Stefan Näher. Dynamic fractional cascading. Algorithmica,
5(1):215–241, 1990.

Sparsh Mittal. A survey of techniques for approximate computing. ACM Com-
puting Surveys (CSUR), 48(4):1–33, 2016.

Aditya Narasimhan, Sridhar Radhakrishnan, Mohammed Atiquzzaman, and C. R
Subramanian. High-speed packet classification: A case for approximate sorting.
IEEE GLOBECOM, 2022a.

105

https://doi.org/10.1145/285243.285283

Aditya Narasimhan, Sridhar Radhakrishnan, and C. R Subramanian. Approxi-
mate sorting and sequence analysis. 18th International Conference on Funda-
mentals of Computer Science, 2022b.

Aditya Narasimhan, Sridhar Radhakrishnan, and C. R Subramanian. On search-
ing an approximately sorted array. 21st International Conference on Informa-
tion and Knowledge Engineering, 2022c.

Ravi S. Prasad, Constantine Dovrolis, and Marina Thottan. Router buffer sizing
for tcp traffic and the role of the output/input capacity ratio. IEEE/ACM
Transactions on Networking, 17(5):1645–1658, 2009. doi: 10.1109/TNET.2009.
2014686.

Sumeet Singh, Florin Baboescu, George Varghese, and Jia Wang. Packet classi-
fication using multidimensional cutting. In Proceedings of the 2003 conference
on Applications, technologies, architectures, and protocols for computer com-
munications, pages 213–224, 2003.

Yufei Tao, Xiaokui Xiao, and Reynold Cheng. Range search on multidimensional
uncertain data. ACM Transactions on Database Systems (TODS), 32(3):15–es,
2007.

David E Taylor and Jonathan S Turner. Classbench: A packet classification
benchmark. IEEE/ACM transactions on networking, 15(3):499–511, 2007.

Da Wang, Arya Mazumdar, and Gregory WWornell. Compression in the space of
permutations. IEEE Transactions on Information Theory, 61(12):6417–6431,
2015.

Sorrachai Yingchareonthawornchai, James Daly, Alex X. Liu, and Eric Torng. A
sorted-partitioning approach to fast and scalable dynamic packet classification.
IEEE/ACM Transactions on Networking, 26(4):1907–1920, 2018. doi: 10.1109/
TNET.2018.2852710.

Jun Zhang, Dimitris Papadias, Kyriakos Mouratidis, and Zhu Manli. Query
processing in spatial databases containing obstacles. International Journal of
Geographical Information Science, 19(10):1091–1111, 2005.

106

	Acknowledgements
	Abstract
	List of Figures
	Introduction
	Overview
	Organization of the Dissertation

	Literature Survey
	Sorting
	Quality Metrics
	Guaranteed bounds on various metrics for a given number of comparisons
	Modified Selection Sort

	Sequence Analysis
	Approximate Sorting when the input is a concatenation of Maximal Increasing Chains
	Sorting residual Gamma subarray
	Upper bounds based on partition into decreasing subsequences
	Upper bounds based on partition into monotonic subsequences
	Upper Bounds based on non-consecutive increasing subsequences
	Upper bounds based on number of local optima

	Search
	Modified Binary Search with known metrics
	With maximum displacement
	With distance

	Modified Binary Search with unknown metrics
	With distance
	With Maximum Displacement

	Range Search
	1D range search
	With maximum displacement
	With distance

	Fractional Cascading on a set of approximately sorted catalogs
	Construction of a Fractional Cascading Structure
	Fractional Cascading using maximum displacement
	Fractional Cascading using distance

	2D range search
	With Maximum Displacement

	Multidimensional range search on an Approximately Sorted d dimensional input

	Parallel Sorting and Searching
	Multi-core Approximate Sorting
	Determining Rank given Position
	Case of known bound on md()
	Case of known bound on dis()

	Parallel Rank given Position
	Determining position given rank
	Case of known bound on md()
	Case of known bound on dis()

	Parallel Position given Rank
	Multi Select in an approximate sorted array
	Parallel Multi Select in an approximate sorted array

	Network Packet Classification with Approximate Sorting
	Introduction
	Decision Tree Based Packet Classification
	Comparing Two Packets

	Relationship between quality metrics and Traversing the Decision-Tree
	Relationship between Bursty Throughput and maximum displacement
	Approximate Sorting and Packet Classification
	Improved Packet Classification using a Cache approach

	Conclusion
	Bibliography

