
University of Vermont University of Vermont

UVM ScholarWorks UVM ScholarWorks

UVM Honors College Senior Theses Undergraduate Theses

2022

Twitch Plays Simulated Soft Robotics Twitch Plays Simulated Soft Robotics

Sidhanth Kafley
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/hcoltheses

Recommended Citation Recommended Citation
Kafley, Sidhanth, "Twitch Plays Simulated Soft Robotics" (2022). UVM Honors College Senior Theses. 559.
https://scholarworks.uvm.edu/hcoltheses/559

This Honors College Thesis is brought to you for free and open access by the Undergraduate Theses at UVM
ScholarWorks. It has been accepted for inclusion in UVM Honors College Senior Theses by an authorized
administrator of UVM ScholarWorks. For more information, please contact schwrks@uvm.edu.

https://scholarworks.uvm.edu/
https://scholarworks.uvm.edu/hcoltheses
https://scholarworks.uvm.edu/ugetd
https://scholarworks.uvm.edu/hcoltheses?utm_source=scholarworks.uvm.edu%2Fhcoltheses%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/hcoltheses/559?utm_source=scholarworks.uvm.edu%2Fhcoltheses%2F559&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:schwrks@uvm.edu

Twitch Plays Simulated Soft Robotics

Sidhanth Kafley

skafley@uvm.edu

Supervisor: Josh Bongard

Thesis Committee members: Josh Bongard & Nick Cheney

Morphology, Evolution and Cognition Laboratory

Department of Computer Science

College of Engineering and Mathematical Science

University of Vermont

Burlington, VT 05405

UVM Honors College Senior Thesis

04/30/2022

Abstract

Scalability has been a long-standing open problem in the field of robotics and especially
in the field of soft robotics where there has never been a technology that allows for
crowdsourcing the creation and training of soft robots. The crowdsourced approach is
very advantageous because it strives to maximize the use of available resources, cut
expenses, diversify contributions, and promote transparency (Uhlmann et al., 2019). I
posit that by using Voxcraft1, Google Colab2 and Twitch3 we can not only create a way to
crowdsource the creation of simulations of soft robots but also do it in an accessible,
replicable, and scalable manner. I not only demonstrate that this can be done for the first
time ever but also demonstrate that soft robots can be collectively created using this
approach. The crowdsourced, low barrier to entry, replicability and scalability of this
approach suggests that Twitch Plays Simulated Soft Robotics (TPSS) can be replicated
and built upon in the future to not only get other user inputs such as fitness function or
mutation rate to train robots but also scaled up to possibly crowdsource the
crowdsourcing of soft robotics.

1. Introduction

1.1 The Scalability Problem

The scalability problem is a long-standing open problem in the field of robotics. It takes a while
for one person to set up a simulator, a robot, artificial neural networks, fitness functions and
mutation rates to start training and evolving robots. If we want our simulated robots to be more
complex, sophisticated, and capable, we’re going to need more complex simulation
environments, more and more simulations and more and more people building simulations or
collectively guiding the evolutionary trajectory of robots. Evidence from previous research done
by Joey Anetsberger and Josh Bongard (2016) suggests that crowdsourcing the training of robots
is possible using a platform like Twitch, which is one of the leading live-streaming platforms. In
their research, they try to teach robots to ground symbols in their felt, sensorimotor experiences.
They do this by crowd deploying Twitch Plays Robotics. David Matthews and Josh Bongard
(2020) later build upon this project to bypass the loss function by allowing users to supply their
own commands and provide rewards to obeying robots respectively. Inspired by their approach I
also used Twitch to create Twitch Plays Simulated Soft Robotics to crowdsource the creation of
simulated soft robots to non-experts via Twitch.

Soft robots are robots made from highly compliant materials similar to those found in living
organisms. And the main reason for using Twitch for this research is because Twitch’s chat
functionality makes it easier to get user inputs to create simulations of soft robots. Twitch also
makes it easy to stream this simulation created from user input and display it to any user on
Twitch in real-time.

1 https://voxcraft.github.io/
2 https://colab.research.google.com/
3 https://www.twitch.tv/

1.2 Citizen Science: Crowdsourcing Soft Robotics

Crowdsourcing is a useful research technique that allows members of the public to contribute
ideas and time to projects even if they lack official expertise in that field (Lichten et al., 2018).
Many research projects have successfully employed this method of research. Picbreeder is one of
such collaborative art projects where using the methods of evolutionary arts, users are able to
evolve images. The user-selected image is evolved using Compositional Pattern Producing
Networks (CPPNs), which are neural networks that contain activation functions that allow them
to create and evolve images (Secretan et al., 2011). Another such project is Folding@home
which, using principles of crowdsourcing, enables any interested user to become a citizen
scientist by donating their unused computational power to help fight global health threats
(Beberg et al., 2009). One more popular example of a crowdsourcing project is the Red Balloon
Challenge by Darpa. They employed crowdsourcing and citizen science to investigate the role of
the Internet and social networking in the timely communication, wide-area team formation, and
rapid mobilization required to solve large-scale, time-critical challenges. For the task, they
deployed ten moored red weather balloons at ten different fixed and visible locations in the
United States and asked competitors to be the first to submit the locations of all ten different
balloons. The Red Balloon Challenge Team of the Massachusetts Institute of Technology (MIT)
found all ten balloons in less than nine hours (Tang et al., 2011). In fact, the crowdsourced
approach has been such a great asset to research that a popular platform called Zooniverse4 was
created to enable millions of volunteers to become citizen scientists and assist professional
researchers.

Twitch Plays Simulated Soft Robotics (TPSS) follows a similar principle of crowdsourcing
science that these projects follow. By crowdsourcing the creation of simulated soft robots to non-
experts, TPSS allows the public to contribute their ideas, resulting in diverse, unique, and
creative robot morphologies. Similar to the red balloon challenge, TPSS tasks the users with
creating a simulated soft robot that moves across the screen as fast as possible. However, TPSS
does not rely on evolutionary algorithms like Picbreeder and rather solely relies on the users and
their creativity to create simulated soft robots. Additionally, TPSS does not require users to
donate unused computational resources like Folding@home and instead uses Google Colab to
create simulations of soft robots. Also, unlike any of the above-mentioned projects, TPSS uses a
live streaming platform, Twitch, to stream the simulations of soft robots and get user input in
real-time.

1.3 The Goals of Twitch Plays Simulated Soft Robotics

Some of the main goals of Twitch Plays Simulated Soft Robotics was to attempt to lower the
barrier of entry and allow more and more people to collectively create, train and evolve more
robots. Additionally, we were also trying to make simulating soft robots cheaper by using
Google Colab, which provides access to computing resources like GPUs and TPUs free of
charge directly through the browser (Bisong, 2019). We were also trying to make simulating soft
robots more accessible by creating tutorials to scale up Twitch Plays Simulated Soft Robotics to
potentially crowdsource the crowdsourcing of soft robotics. As a result, we hoped that more

4 ttps://www.zooniverse.org/

people will be able to contribute to the field and realize the potential of soft robots. Another goal
was also to explore experimental design, how to deploy systems and how to improve the
interaction between humans and computers and finally make Twitch Plays Simulated Soft
Robotics scalable and replicable in other settings.

By creating Twitch Plays Simulated Soft Robotics, the main question that we wanted to answer
was, is it possible to create a software program that allows the crowd to collectively create soft
robots? If so, will showing the crowd the soft robots previously created by other users result in
the crowd innovating on the robots created by previous users to better fulfil the specified task?
Or will this design choice, act as a confounding factor and result in imitation rather than
innovation? Additionally, we were also trying to answer the questions of whether non-experts
can collectively build soft robots using Twitch Plays Simulated Soft Robotics? What kind of
technology and knowledge do they need to help build soft robots? How intuitive is our program
for non-experts to use and build soft robots? What sort of morphology can the users come up
with to achieve a specific task? We were planning to answer all these questions by crowd
deploying Twitch Plays Simulated Soft Robotics and potentially continue to investigate these
questions in the future by performing A/B testing with user interface design and scaling up
Twitch Plays Simulated Soft Robotics.

2. Methodologies

I used Voxcraft to simulate and visualize soft robots. Voxcraft is a GPU software consisting of
two parts namely, Voxcraft-sim and Voxcraft-viz. Voxcraft-sim is a GPU accelerated simulator
that I imported into Google Colab to create simulations based on inputs from the crowd, while
Voxcraft-viz is a visualization software that visualizes voxelbots in action. Voxels are hollow
silicone blocks that can expand and contract in volume (actuation). When multiple voxels are
attached together, they become a robot called a Voxelbot (Sida Liu et al., 2020).

2.1 The Task

The crowd was called to make a simulated soft robot that moves across the screen as fast as
possible. I allowed users to create simulated soft robots using three different types of materials:
red, green, and blue voxels. The blue voxel represents a passive material whereas the red and
green voxels represent actuating materials that actuate at different phases based on the
temperature of the environment. I used only three materials for simplicity and to minimize
confusion for the crowd. Users can create a voxel at any x, y, and z coordinates between 0 and 9
for each x, y and z coordinate. To place a voxel at a certain x, y, z coordinate, the user must enter
an exclamation mark “!” followed by the initials of the color of the voxel that they want to
create, followed by the x, y and z coordinate. An example command: !r,0,0,0 would place a red
voxel at (0,0,0) x, y and z coordinate. The users can remove voxels from certain coordinates by
entering in “!” followed by the x, y, and z coordinates. For example, entering !0,0,0 in chat,
would remove any voxel located at (0,0,0) x, y, and z coordinate. Users can make the robot move
by strategically placing the three different materials.

2.2 Phase I: Crowd Deployment

Figure 1: Summary of Crowd Deployment

2.2.1. Getting user input from Twitch and storing it in the local machine

To get the user input from the crowd to build simulations of soft robots, I created a Twitch
chatbot using node.js. Upon entering a valid input, users get a response from the Twitch chatbot
indicating that their input has been accepted and will be digested and that the simulation will be
displayed shortly. The Twitch chatbot would then store these user inputs in a text file on the local
machine.

2.2.2. Uploading robot.vxd and base.vxa files to Google Drive

I created a python program that then automatically reads in those user inputs and, using the Julia
programming language and voxcraft.jl framework, it creates robot.vxd and base.vxa files, which
are necessary for creating the simulations of soft robots. The python program then automatically
uploads these two files to a Google Drive account. To do so I just used the Google Drive desktop
app. The Drive app can be mounted onto the local machine and upon doing so, it acts like a
regular folder on the machine and automatically syncs with the Google Drive cloud account. I
went for this method to upload the two files to Google Drive because it does not require using
Google’s APIs and makes it easier for anyone to replicate this process without needing to have
preexisting knowledge of APIs.

2.2.3. Moving the files from Google Drive to Colab

I then created a python program on Colab that automatically mounts Google Drive onto the
Google Colab notebook. After importing Voxcraft-sim, Colab creates a simulation using the
robot.vxd and base.vxa files. This results in the creation of a .history file, which is required to
visualize the simulation of the soft robot created by the users.

2.2.4. Moving .history file from Colab to Google Drive

The python program then automatically moves the .history file back to Google Drive.

2.2.5. Moving .history file from Google Drive to Laptop/Local Machine

The python program then automatically moves the .history file from Google Drive back to the
local machine and the .history file is then visualized using Voxcraft-viz. The visualization shows
the voxelbot created by the users in action.

2.2.6. Streaming the simulation on Twitch

The visualization of the simulated soft robots created by the user is then streamed to Twitch
using OBS (Open Broadcaster Software)5.

I automated this entire loop using a python program and it takes approximately thirty seconds
from getting user input to displaying the simulation to the users on Twitch.

3. Discussion and Results

3.1 Limitations of Google Colab

Google Colab notebooks run by connecting to virtual machines with a maximum lifetime of 12
hours, after which the notebook will have to be reconnected to the virtual machine again. The
maximum lifetime can be extended to 24 hours by subscribing to Colab Pro, but that defeats the
purpose of this research. Google Colab also enforces usage limits on GPU usage and
automatically disconnects from runtime if the connected GPU remains idle for a couple of hours
or if users exceed GPU usage limits which are dynamically assigned. These limits are not
disclosed by Google for security reasons and to prevent people from misusing Google Colab. If
users exceed the usage limit, Google enforces a cool-down period before the user can connect to
the GPUs again. This cool-down period can last from a few minutes to a few hours. However, if
users remain well within the limits posed by Google, then they would probably not face any such
limitations and issues.

For my research, to mitigate these limitations, I firstly created two accounts and alternated
between them if either of the accounts exceed the usage limit. To prevent my program from

5 https://obsproject.com/

running idle and disconnecting from the GPU, I created a placeholder voxel at x, y and z
coordinates: 15,15,0 and created a Twitch chatbot that refreshes this voxel every 30 minutes.

3.2 Analyzing user-generated data

We streamed on Twitch for 8 days with an average stream time of just a little more than 6 hours
every day. Over these eight days, we were able to garner 100 unique views and get chats from 15
unique chatters and creation of 10 different soft robots. Of the 10 robots, 3 of them were
collectively created by two or more people whereas the remaining 7 were created by individual
users on Twitch. I anonymized the usernames of the users for privacy reasons.

Table 1: YouTube links to the soft robots that were collectively and individually created.

Soft robots that were collectively created by
users.

https://youtu.be/0mzC8K3Y__w

Soft robots that were individually created by
users.

https://youtu.be/-05tMgS7nmI

Fig. 2a) collective1 Fig. 2b) collective2 Fig. 2c) collective3

Figure 2: Collectively created robots. The soft robot shown in Fig. 2a) was collectively created
by two people and it took them approximately 34.68 minutes to create the robot. The soft robot
shown in Fig. 2b) was collectively created by three people and it took them 18.97 minutes to
create the robot. The soft robot shown in Fig. 2c) was collectively created by two people and it
took them 52.27 minutes to create the robot.

There was a vast gap between the distribution of contributions to create the robots for both Fig.
2a) and 2b) with one of the two people contributing to create a little more than 90% of the robot
shown in Fig. 2a) and with one of the three individuals creating a little more than 70% of the
robot shown in Fig. 2b). The distribution of contribution for creating the robot shown in Fig. 2c)
was much more uniform with each of the two people contributing nearly equally.

Fig. 3a) Individual1 Fig. 3b) Individual2 Fig. 3c) Individual3

Fig. 3d) Individual4 Fig. 3e). Individual5

 Fig. 3f) Individual6 Fig. 3g) Individual3

Figure 3: Individually created robots. The soft robot shown in Fig. 3a) was created in 10.5
minutes. The soft robot shown in Fig. 3b) was created in 11.7 minutes. The soft robot shown in
Fig. 3d) was created in 2 minutes. The soft robot shown in Fig. 3e) was created in 20.47 minutes.
The soft robot shown in Fig. 3f) was created in 48.23 minutes. The soft robot shown in Fig. 3g)
was created in 24.2 minutes.

Figure 4: Number of voxels added by users to create their soft robots

Figure 5: Number of voxels removed by users

From the Fig. 4 we can see that there seems to be a correlation between the number of users
creating the robots and the number of voxels used, with users who collectively created the soft
robots on average, using more voxels to create the simulation of robots. The two cases where the
individuals used a similar number of voxels to those used collectively by two or more people
were because both the users had already interacted with Twitch Plays Simulated Soft Robotics
(TPSS) to create robots previously and were familiar with the system. As you can see from Fig.
4, individual 3 had created a robot twice and individual 6 was involved in the creation of two of
the collectively created robots. So, it seems like they were already familiar with the system and
as a result, used more voxels when they used TPSS again. While Fig. 5 shows that only a small
amount of the users used the functionality to remove voxels. Due to the small amount of data that
we had collected, we weren’t able to definitely say as to why this was the case. So, we could
only predict that improving the user interface design and making our program more intuitive
would likely lead to more users using the functionality.

Figure 6: No. of voxels used to create robot vs time spent creating robot

Fig. 6 also seems to depict somewhat of a correlation between time spent creating the robots and
the number of voxels used. So, it seems like the more voxels that the users used, the more time
they spent creating the soft robot.

Figure 7: Unique Viewers

Figure 8: Unique Chatters

Fig. 7 and 8 show that a lot of people just looked at TPSS and only a small minority of people
participated in chat to create simulations of soft robots. From Fig. 7 and 8, the implication that I
came up with was that we could potentially entice more people to participate by improving the
user interface design and by making TPSS more intuitive.

4. Conclusion and Future Work

Here we have demonstrated that it is possible to crowdsource the creation of soft robots and have
done so successfully for the first time ever. We have also demonstrated that it is possible for the
crowd to collectively create soft robots using Twitch Plays Simulated Soft Robotics.

Future work will involve scaling up Twitch Plays Simulated Soft Robotics by creating a tutorial
so that we can have more people using the tutorials to create their own versions of Twitch Plays
Simulated Soft Robotics and stream it on Twitch. As a result of which we will be crowdsourcing
the crowdsourcing of simulated soft robotics. Additionally, we also wish to integrate all the
different pieces of Twitch Plays Simulated Soft Robotics into a Colab notebook such that any
user can just click run on the Colab notebook and be able to successfully run and stream Twitch
Plays Simulated Soft Robotics on Twitch. By doing so, we not only hope to expand the search
space but also get more citizen scientists and non-experts to get involved and contribute their
unique, creative and diverse ideas to the field of soft robotics. Additionally, from this research,
we found out that, although we had a lot of unique viewers, only a small minority of them
participated to create simulations of soft robots. So, we wish to investigate further into user
interface design, user engagement, user retention and how to make Twitch plays simulated soft
robotics intuitive enough to entice more viewers to participate and create simulations of soft
robots. My recommendation to do so is to perform A/B testing using different user interface
designs based on the principles of Human-Computer Interaction, to further investigate the
intuitiveness of TPSS. And try to figure out what elements, technology and user interface designs
would make TPSS more intuitive for non-experts to use and create simulations of soft robots by
performing quantitative tests against various functional and non-functional requirements along
with randomized the allocation of users to each version.

For future iterations of Twitch Plays Simulated Soft Robotics, we are planning to get user-
inputted fitness functions or mutation rates to evolve and train soft robots rather than getting x, y,
and z coordinates as inputs from users. Other possibilities that can be explored include, getting
user inputs and using natural language processing to help users build simulations of soft robots
rather than having them enter x, y, and z coordinates. Finally, we also wish to explore open-
endedness and creative differences in the symmetry, functionality, complexity, and morphology
between simulated soft robots created by humans and those that are automatically generated and
evolved.

References:

Anetsberger, J., & Bongard, J. (2016). Robots can ground crowd-proposed symbols by forming
theories of group mind. Proceedings of the Artificial Life Conference 2016, 684– 691.
https://doi.org/10.7551/978-0-262-33936-0-ch109

Beberg, A. L., Ensign, D. L., Jayachandran, G., Khaliq, S., & Pande, V. S. (2009).
Folding@home: Lessons from eight years of volunteer distributed computing. 2009 IEEE
International Symposium on Parallel & Distributed Processing, 1–8.
https://doi.org/10.1109/IPDPS.2009.5160922

Bisong, E. (2019). Google Colaboratory. In: Building Machine Learning and Deep Learning

Models on Google Cloud Platform. Apress, Berkeley, CA. https://doi.org/10.1007/978-1-
4842-4470-8_7

David Matthews, Josh Bongard; July 13–18, 2020. "Crowd grounding: finding semantic and
behavioral alignment through human robot interaction." Proceedings of the ALIFE 2020:
The 2020 Conference on Artificial Life. ALIFE 2020: The 2020 Conference on Artificial
Life. Online. (pp. pp. 148-156). ASME. https://doi.org/10.1162/isal_a_00317

Lichten, C.A., Ioppolo, B., d’Angelo, C., Simmons, R., & Jones, M.M. (2018). Citizen Science:
Crowdsourcing for Research.

Secretan, J., Beato, N., D’Ambrosio, D. B., Rodriguez, A., Campbell, A., Folsom-Kovarik, J. T.,
& Stanley, K. O. (2011). Picbreeder: A Case Study in Collaborative Evolutionary
Exploration of Design Space. Evolutionary Computation, 19(3), 373–403.
https://doi.org/10.1162/EVCO_a_00030

Sida Liu, Matthews, D., Kriegman, S., & Bongard, J. (2020). Voxcraft-sim, a GPU-accelerated

voxel-based physics engine (3.0) [Computer software]. Zenodo.
https://doi.org/10.5281/ZENODO.3835152

Tang, J. C., Cebrian, M., Giacobe, N. A., Kim, H.-W., Kim, T., & Wickert, D. “Beaker.” (2011).

Reflecting on the DARPA Red Balloon Challenge. Communications of the ACM, 54(4),
78–85. https://doi.org/10.1145/1924421.1924441

Uhlmann, E. L., Ebersole, C. R., Chartier, C. R., Errington, T. M., Kidwell, M. C., Lai, C. K.,
McCarthy, R. J., Riegelman, A., Silberzahn, R., & Nosek, B. A. (2019). Scientific Utopia
III: Crowdsourcing Science. Perspectives on Psychological Science, 14(5), 711–733.
https://doi.org/10.1177/1745691619850561

	Twitch Plays Simulated Soft Robotics
	Recommended Citation

	Microsoft Word - Twitch Plays Simulated Soft Robotics.docx

