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Abstract

Abstract Healthcare-associated Clostridiodides Difficile (C. diff.) infections are one of
the most common healthcare associated infections in the U.S., leading to thousands of deaths
per year. Machine learning algorithms have shown some ability to predict who is most vul-
nerable to C. diff. infection utilizing electronic health records obtained soon after admittance,
but these models have shown insufficient predictive capability. We extracted data from the
electronic medical records provided in the MIMIC-III Clinical Database which contains data
from the Beth Israel Deaconess Medical Center between 2001 and 2012, resulting in very large
predictor matrices. We aimed to predict which patients would receive a positive test for C.
diff. using a Bayesian logistic regression model. We examined the impact of three different
priors, a normal, double exponential, and regularized horseshoe prior to understand how prior
choice influenced predictive capability and the size of coefficients. We used cross-validation to
test the predictive capability of each prior, and compared results between models using ROC
and PR curves. Our results show that of the three priors, the regularized horseshoe prior
achieves the highest prediction accuracy.

Keywords: Bayesian, logistic regression, normal prior, double exponential prior, regularized
horseshoe prior, FIDDLE, C. diff.

1. Introduction

Clostridiodides Difficile (C. diff.) is a contagious spore-forming bacterium that mainly lives on
and spreads via surfaces. The main symptoms of C. diff. infections (CDI) are diarrhea and colitis,
and although not incredibly dangerous on an individual basis, its contagiousness and ability to
live on surfaces for extended periods of time can make it a big problem in healthcare settings.
In fact, C. diff. is the most contracted germ-related infection in healthcare, accounting for 12%
of all germ-related infections in healthcare settings (CDC, 2014). As a result, there were roughly
235,000-313,000 annual healthcare-related infections from 2011-2017, which led to 16,000-25,000
annual deaths (Guh et al., 2010).

Hospital-associated infections tend to impact people who are already of poor health who are also
sharing the same spaces. This gives C. diff. the opportunity to spread easily and quickly, which,
in severe cases, can lead to the shutdown of certain sections of a hospital (Blackwell, T., 2015).
Furthermore, CDI in hospitals leads to significant increases in health care costs, so preventing the
spread of C. diff. will save not only lives, but also money and other hospital resources. From
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1 INTRODUCTION 2

2005-2015 it is estimated that U.S. hospitals spent between 1.9 and 7 billion dollars which involved
roughly 2.4 million days of stay in the hospital (Zhang, 2016). Hospital resources have also become
much more limited with the increased demand for health care due to COVID, so reducing CDI can
stand to free up critical resources. Fortunately, preventative measures can alter the course of the
infection so catching infections early or better yet, preventing infections, is critical.

An important component of limiting the spread of C. diff. is being able to predict who is most
risk of contracting the infection. Thus, the goal of this thesis is to model who is most at risk for
C. diff. infection by learning which health factors leave patients most vulnerable to contracting
the infection. We use past electronic health records from the Beth Israel Deaconess Hospital in
Boston, MA, which have recorded included numerous health outcomes including positive C. diff.
cases. Using this data, we aim to use statistical machine learning to generate a model trained using
a labeled dataset. The training dataset should be able to teach our model which health factors are
most influential in determining if a patient is at risk for contracting CDI. From here, we will be
able to test whether these factors are good predictors of C. diff. using the testing dataset. Using
the testing dataset, the model will predict which patients tested positive for C. diff. which can
then be compared to the actual data.

Due to the threat C. diff. can pose to hospitals, there have been multiple studies that have
attempted to use machine learning to predict C. diff. cases. Li et al. studied 1,144 cases of C.
diff. from October 2010 to January 2013, the data for which was acquired from the University of
Michigan hospitals (Li et al., 2019). In their study, they used ℓ2 regularization and k-best feature
selection to predict C. diff. cases the day of, the day after, and two days after diagnosis (Li et al.,
2019). Results were compared between a model which used all EHR and a curated model which
contained a set of variables selected manually. In all instances, the model which used the EHR
data outperformed the curated model and the best predictions were made two days after diagnosis,
with results worsening as the time of prediction approached the day of diagnosis (Li et al., 2019).
The results from this study show how in our study, using all variables present in EHR can improve
our ability to predict cases of CDI.

Another study conducted by Ng et al. used data from 41 hospitals, which resulted in a study
of over 15,000 C. diff. infections. The goal of this study was not to predict which patients would
be infected by CDI. Rather, the goal of the study was to use machine learning to create a logistic
regression model that could predict which patients were most at risk for dying from CDI and which
patients were most likely to have a recurring infection soon after the initial recovery (Ng et al.,
2021). Their study found that the logistic regression model performed best when attempting to
predict which patients ultimately died because of C. diff. compared to predicting recurrence. In
addition, it was observed that these models did not see much difference in prediction results when
using all features versus the top 18 identified features (Ng et al., 2021). Since the ultimate goal of
this study is different from ours, we are not concerned by the fact that the results from this study
contradict the findings in the previous study regarding the benefit of using all available predictors
rather than a curated set of variables. This study by Ng et al. is important to us because it
demonstrates the effectiveness of using logistic regression when predicting cases of CDI.

Wiens et al. used ℓ2-regularized logistic regression in their study which aimed to predict positive
C. diff. cases. They used data from a large urban U.S. hospital where patient stays were greater
than 24 hours from April 2011 to April 2013, resulting in 69,568 admissions and 727 cases of C.
diff. (Wiens et al., 2014). Similar to the two studies described above, Wiens et al. wanted to see if
using all features from EHR resulted in improved predictions compared to a curated set of known
risk factors for CDI. The results from the study showed roughly a 10% improvement in the Area
Under the Receiver Operating Characteristic (AUROC) curve when comparing the EHR model to
the curated model (Wiens et al., 2014). Even though, like both studies described above, the results
obtained by Wiens et al. were unable to perfectly classify cases of C. diff., using these models could
significantly reduce the number of C. diff cases in hospital settings. In addition, Wiens et al. and
Li et al. have shown the benefits of using all features from EHR instead of commonly known risk
factors for CDI. The study by Wiens et al. shows us how using logistic regression and the entire
set of predictors present in EHR can be effective in predicting cases of CDI. Overall this study
combines the findings in the previous two studies and we aim to improve upon the study done by
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Wiens et al. via the introduction of priors and using ℓ1 regularization. Through the use of priors
and ℓ1 and ℓ2 regularization, we will be able to use the same general logistic regression model but
alter the way in which the model makes predictions and weights certain variables.

2. Project Goal

Although medical professionals have developed a list of health factors that leave individuals
vulnerable to contracting C. diff., using all of the variables present in electronic health records
could significantly improve the prediction of C. diff. infections. This project uses all available
variables present in electronic health records gathered within 24 hours of admittance time from
the MIMIC-III Clinical Database from the Beth Israel Deaconess Medical Center between 2001
and 2012. With this data, we plan to implement a Bayesian logistic regression model capable of
predicting which patients will contract CDI. Furthermore, using Bayesian logistic regression we
will also be able to observe which health factors the model found were most important in arriving
at its predictions.

3. Data Preparation

Table 1: Datasets (Johnson et al., 2016)
Dataset Description
DIAGNOSES_ICD Maps subject ID and HADM ID to ICD9 code

PATIENTS Contains subject ID, Gender, date of birth, and date of
death

ADMISSIONS Contains categorical patient information and time and type
of admission

ICUSTAYS Maps subject ID and HADM ID to ICUSTAY ID and length
of stay in ICU

CHARTEVENTS Contains item ID, measured value, and charted time

LABEVENTS Contains laboratory test results for a patient

MICROBIOLOGYEVENTS Contains type of specimen collected

OUTPUTEVENTS Contains all measurements related to output for a given
patient

INPUTEVENTS_MV Contains inputs for patients monitored with the Metavision
system

PROCEDUREEVENTS_MV Contains information regarding the start and stop time for
various procedures for Metavision patients

DATETIMEEVENTS Contains charted time mapped to subject ID, HADM ID,
and ICUSTAY ID

Prior to creating the model, we needed to transform the data into feature vectors. The data
we used is in the MIMIC-III Clinical Database, which is a free database of cases admitted to the
Beth Israel Deaconess Medical Center between 2001 and 2012 with over forty-thousand patients
(Johnson et al., 2016). Of the 26 files provided, only 11 were necessary for our analysis and can
be found in Table 1 (Tang et al., 2020). To combine and format these 10 datasets (excluding
DIAGNOSES_ICD) to make feature vectors, we used FIDDLE. “FIDDLE (Flexible Data-Driven
Pipeline) [. . . ] systematically transforms structured EHR data into representations that can be
used as inputs to ML algorithms” (Tang et al., 2020, pp. 1922). FIDDLE is free to use, and all
the scripts can be found on GitHub. The authors of FIDDLE included an example for how to use
FIDDLE specifically for the MIMIC-III dataset, which is what we used to clean and format our
data. Once our data was cleaned, we used the dataset Diagnoses_ICD to discern which patients
contracted CDI. From this dataset, we extracted all rows which contained the ICD9 code for C.
diff., 008.45 (Dubberke et al., 2006). ICD codes are the official codes used for diagnoses and
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procedures in U.S. hospitals (CDC, 2021). With this subset of data, we created a column in our
data that encoded our target variable, CDI, during admission. Since our goal is to predict which
patients will contract C. diff in the hospital, we only used data gathered in the first 24 hours of
each patient’s stay. Unfortunately, using the ICD9 codes in the Diagnoses_ICD dataset, we cannot
obtain an accurate time for when patients tested positive for C. diff., thus we cannot remove cases
contracted prior to the patient was admitted to the hospital.

4. Methods

To model the relationship between our explanatory variables, X, and our response variable, yi,
we used logistic regression. The likelihood function for our Bayesian logistic regression model is

P (X, y|β) =
n∏

i=1

[(
eβ0+β1Xi,1+...+βkXi,k

1 + eβ0+β1Xi,1+...+βkXi,k

)yi (
1− eβ0+β1Xi,1+...+βkXi,k

1 + eβ0+β1Xi,1+...+βkXi,k

)1−yi
]

where X denotes our n x k matrix of explanatory variables for each patient, β represents a vector
of coefficients for each variable, and yi = 1 if a patient tests positive for C. diff. and is 0 otherwise.
We denote the sum of β0+β1Xi,1+ ...+βjXi,j as η for simplicity. To obtain our posterior, we need
a prior. With our Bayesian logistic regression model, we experimented with three different priors;
a normal prior, a regularized horseshoe prior, and a double exponential prior. Our motivation for
using multiple priors is to decipher which form of regularization produces the best results. There
are two types of regularization that we experimented with, ℓ1 and ℓ2. Regularization is important
because it helps prevent over-fitting from machine learning algorithms by incorporating some type
of penalty into the predictions (Pykes, 2022). We can observe how choice of prior impacts which
form of regularization we use by examining the log-posterior.

log(P (β|X, y)) = log(P (X, y|β)) + log(P (β))

the latter term, log(P (β)), serves as the penalty term and is determined by the prior we set on β.
If we consider a normal prior on β, for simplicity we set µ = 0, σ = 1,

P (β) =

(
1√
2π

)n

e−
1
2

∑n
i=1 β2

i

log(P (β)) = n log(
1√
2π

) +−1

2

n∑
i=1

β2
i

∝ −
n∑

i=1

β2
i

Since the penalty term arising from a normal prior on β penalizes the squared weights, the
2-norm of the vector of weights, a normal prior produces ℓ2 regularization.

Similar to the normal prior, the horseshoe prior also sets a normal distribution on β. Therefore
it appears that the horseshoe prior produces ℓ2 regularization (Larionov, 2019).

P (β) =

(
1√
2πτ

)n n∏
i=1

(
1

λi

)
e−

1
2

∑n
m=1 β2

i /λ
2
i

n log(
1√
2πτ

) + log

(
n∏

i=1

(
1

λi

))
− 1

2

n∑
m=1

β2
i /λ

2
i

∝ −
n∑

m=1

β2
i /λ

2
i
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However, unlike the normal prior, where the variance is constant, we have a hyper-parameter
set on λi which takes the form of a Half-Cauchy distribution (Larionov, 2019). More specifically,
λi ∼ Cauchy+(0, 1) which has the PDF

f(λi;µ, σ) =
2

πσ

1

1 + (λi − µ)2/σ2
−→ f(λi; 0, 1) =

2

π

1

1 + (λi)2
∝ 1

1 + (λi)2
= ki

(Bois, 2019). Now, ki ϵ [0, 1] and when we plot k, we get Figure 1, which is a density curve of all
ki which has a non-zero probability mass on zero (Larionov, 2019).

Figure 1. distribution of ki

Consequently, we have situations where ki ≈ 1 which results in complete shrinkage of the
coefficients and situations where ki ≈ 0 which results in no shrinkage of the coefficients (Larionov,
2019). Since some coefficients are completely shrunk towards zero while some coefficients remain
unshrunk, the horseshoe prior produces regularization most similar to ℓ1 regularization.

When we use a standard double exponential prior on β, we obtain a more explicit definition of
ℓ1 regularization.

P (β) =

(
1

2

)n

e−
∑n

i=1|βi|

n log(1/2)−
n∑

i=1

β2
i

∝ −
n∑

i=1

|βi|

Since the penalty term arising from a double exponential prior on β penalizes the absolute
value of the weights, the 1-norm of the vector of weights, a double exponential prior produces ℓ1

regularization.

4.1. Fake Data Simulation

To get a rough idea of how different priors would impact the sizes of coefficients we ran a
small simulation using fake data. We developed the plots shown in Figure 2 which track how
the coefficients change based on the choice of prior in two scenarios, one in which we generated
response variables with all but one coefficient being approximately zero and one with half of the
coefficients approximately zero and the other half set to a large value.

From these graphs, we can see the regularized horseshoe prior favors sparsity the most compared
to all priors and the double exponential and normal priors produce similar coefficients. We only
used 10 covariates and 500 randomly sampled points using Normal ∼ (0, 5) for our simulation, so
we do not expect our final distribution of coefficient sizes to be identical, but it gives us a rough
guide to how our choice of prior will impact each model.
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Figure 2. Impact of prior on coefficient size

4.2. Formulation

The first full model we used had a normal prior which has the following formulation

Y ∼ BernoulliLogit(η)

β ∼ Normal(0, 22)

Since the normal prior incorporates ℓ2 regularization into its predictions, the coefficients will be
shrunk by a certain degree, but not all the way to zero (Pykes, 2022). This creates non-sparse
output (many variables have small weights) (Pykes, 2022).

The regularized horseshoe prior is a modification of the horseshoe prior. As stated in Section
4 above, the horseshoe prior has the following formulation

β ∼ Normal(0, τ2λ2
j )

λj ∼ Cauchy+(0, 1)

τ ∼ Cauchy+(0, 1)

A horseshoe prior which, as we stated before, produces ℓ1 regularization and is a sparse prior
meaning it amplifies the effects of a small number of variables and shrinks, or diminishes, the effect
of the remaining variables. In the horseshoe prior, λ is known as the local shrinkage parameter
and τ is referred to as the global shrinkage parameter (Carvalho et al., 2009). Setting Cauchy+

priors on both of the shrinkage parameters allows the most important variables to experience no
shrinkage while the least important variables are shrunk to 0 (the value of the individual βis = 0).
Since the horseshoe prior generally only produces a few nonzero coefficients, the prior includes a
near-infinite weight on 0 (Figure 3). This aspect of the prior is generally thought of as one of
its strengths, but it can also be problematic when paired with logistic regression because of the
flat likelihood function created by separable data (Piironen & Vehtari, 2017). The fact that some
extremely large coefficients will remain unshrunk (the value of some βis remains large) can lead
to the vanishing of posterior means of the βi (Piironen & Vehtari, 2017). To prevent the posterior
means of the βi from vanishing, Piironen and Vehtari developed the regularized horseshoe prior.
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Figure 3. Distribution of the size of βis, with a near infinite weight on βi ≈ 0 (Carvalho et al., 2009)

The regularized horseshoe prior has the following formulation

β ∼ Normal(0, τ2λ̃2
j )

λ̃j =
c2λ2

j

c2 + τ2λ2
j

λj ∼ Cauchy+(0, 1)

τ ∼ Student T(1, 0, τ0)

τ0 =
p0σ

(D − p0)
√
n

In order to prevent the posterior means of βi from vanishing, even the largest coefficients are
shrunk slightly, or regularized, while the smallest coefficients are still shrunk toward zero (Piironen
& Vehtari, 2017). This is accomplished by the introduction of λ̃j . With λ̃j , if τ ∗λj is much smaller
than c, the regularized horseshoe prior will approach the horseshoe prior because λ̃j will approach
λj , and thus the βi are still shrunk to zero. However, when c is much smaller than λj ∗ τ , λ̃j

approaches c2/τ2, thus βi ∼ Normal(0, c2). Therefore, the larger betas experience some shrinkage
but are not pushed to zero (Piironen & Vehtari, 2017).

The regularized horseshoe also improves the prior for τ . Previous methods have used the
prior τ ∼ Cauchy+(0, 1). Piironen & Vehtari demonstrate, however, that doing so puts too much
emphasis on larger and unshrunk coefficients. Instead, Piironen & Vehtari recommend using a
hyper-parameter for τ , τ0 = p0σ

(D−p0)
√
n

which is determined by the data. p0 is a prior guess for the
number of non-zero coefficients. In our study, we set p0 = 10 due to the assumption that we would
obtain roughly 10 influential coefficients while utilizing the horseshoe prior. D is the number of
covariates, n is the number of samples, and σ = 1√

E(Y )∗(1−E(Y )
(Piironen & Vehtari, 2017). Doing

so will result in a value much less than 1 for τ0, promoting the shrinking of more coefficients while
still allowing some larger values to escape while being loosely regularized.

Finally, the next prior we used was the double exponential prior.

β ∼ DoubleExponential(0, 82)

The double exponential prior is an explicit use of ℓ1 regularization, but the values of the result-
ing coefficients will be quite different than the regularized horseshoe prior. Like the regularized
horseshoe prior, the double exponential prior will also shrink the majority of the coefficients to
zero. However, instead of having only a few larger coefficients, the double exponential prior will
have numerous larger coefficients as well. In return, more variables are important, but it is more
difficult to discern which are truly the most impactful.
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Through our process of predicting C. diff. infections with the first twenty-four hours of electronic
health records, we aim to find whether ℓ1 or ℓ2 regularization, or sparse or non-sparse priors produce
the best results for sparse data.

4.3. Model Implementation into STAN

We used STAN to create each of our models, all of which can be found in Appendices A-C.
STAN uses a Hamiltonian Monte Carlo (HMC) algorithm, which is a Markov chain Monte Carlo
(MCMC) method, to generate samples encompassing the posterior (Stan Development Team, n.d.).
For the regularized horseshoe prior, we set the algorithm to run 4 chains with 1000 warm-up samples
and 1000 samples. For the normal and double exponential priors, we set the algorithm to run 4
chains with 800 warm-up samples and 800 samples. The reason for the differences in the number
of samples is because the models using a normal and double exponential prior took much longer
to run. Since we were allotted a limited amount of time to run our models we had to reduce the
number of samples so the models using the normal and double exponential priors could complete at
least one chain. Each chain is independent, so having all 4 chains finish running is not essential for
obtaining results. After our models finished running, we checked for issues regarding divergences
and large R hats for the coefficients, and across all models, 96% of R hats were equal to 1 and
there were no divergences (McElreath, 2016).

5. Results

After applying FIDDLE, our dataset contained 19,596 patients, 693 cases of CDI, and 11,489
explanatory variables. However, we wanted two datasets, one that contained all predictors and
one with specific variables removed to reduce the effect of reverse causation. This is because
certain variables could be present in our data because doctors had already diagnosed a patient
with C. diff., or had a strong suspicion that the patient had C. diff., and were taking actions to
combat the infection. After talking with clinical experts, we removed the antibiotics vancomycin,
metronidazole, and clindamycin. In addition, we removed variables associated with dextrose and
stool samples that were found to be influential in the testing of our model. Our resulting dataset
contained 11,416 predictors, allowing us to examine the effectiveness of our model without these
variables.

For each of our three priors, we used cross-validation in order to create a platform where we
could both evaluate the individual performances of each of our models and compare their relative
performances. We chose to divide the original datasets into training and testing datasets with an
80-20 split. For our model with removed features, we had a training dataset with 15,676 patients,
which included 553 cases of C. diff, and a testing dataset with 3,920 patients and 140 cases of
C. diff. For our model with all features, we had a training dataset with 15,676 patients, which
included 556 cases of C. diff, and a testing dataset with 3,920 patients and 137 cases of C. diff.

Using the information learned in the training portion, each model calculates a probability that
the patient contracted CDI. By varying the classification probability, which can range anywhere
from 0 to 1, where we denote whether or not a patient will contract C. diff., we are able to
compare performance across each model using receiver operating characteristic (ROC) curves and
precision-recall (PR) curves. In addition to comparing model performance, we also compare the
most important health factors related to CDI identified by each of our models.

5.1. Priors and Impact on Results

For our model using all available predictors present in the EHR, we find the ten most important
variables for indicating positive and negative C. diff. cases for each prior in Table 2 and the resulting
area under ROC curves and area under the precision-recall (AUPR) curves for each prior in Table
3.

For our model with removed features, we find the ten most important variables for indicating
positive and negative C. diff. cases for each prior in Table 4 and the resulting AUROC and AUPR
curves for each prior in Table 5.
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We use ROC curves as a means to compare our results with the results from other studies, but
precision-recall curves to evaluate our model performance. Precision-recall curves have precision
on the y-axis and recall on the x-axis and ideally, the area under this curve is 1 meaning the model
was able to recall all "positive" points with perfect precision. Precision-recall curves better suit
our data because they are meant for studies attempting to detect rare events (Tran-The, 2021).
This is because precision-recall curves are not affected by data imbalances such as a comparatively
large amount of negative C. diff. cases compared to positive C. diff. cases. They accomplish this
by ignoring the true negative rate and varying the classification threshold until all positive cases
are identified (Tran-The, 2021). In each figure you will also see black dotted lines. These lines
indicate random baselines, or the area under the curve we would expect if our model made random
predictions.
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Table 2: Positive and Negative Betas for Each Prior (all predictors)

Normal Prior Positive Betas Value (95% C.I.) Normal Prior Negative Betas Value (95% C.I.)

1 Vancomycin Non-IV 14.8 (14.68,14.86) Vancomycin Drug Push -4.75 (-4.84,-4.66)
2 Multi Lumen Dressing Change 5.01 (4.92,5.10) Pain Cause Incision -4.19 (-4.28,-4.10)
3 Vancomycin dose (2.0, 1250.0] 5.01 (4.91,5.11) Gastric Meds -3.89 (-3.99,-3.79)
4 Osmolality, Urine (312.0, 360.0] 4.80 (4.70,4.90) Dextrose 5% -3.78 (-3.86,-3.69)
5 Safety Measures Lines and tubes con-

cealed
4.39 (4.30,4.49) Daily Wake up Deferred -3.53 (-3.62,-3.43)

6 STOOL 4.39 (4.32,4.47) Blood value LG -3.50 (-3.48,-3.28)
7 Stool Estimate Small 3.83 (4.03,4.17) Pain Location Neck -3.38 (-3.45,-3.25)
8 Fibrinogen, Functional (44.999,165.0] 3.78 (3.73,3.93) Mean Airway Pressure min(8.0,9.0] -3.35 (-3.36,-3.18)
9 Abdominal Assessment Distented 3.68 (3.71,3.86) CV - past medical history PVD -3.27 (-3.35,-3.16)
10 Incision Closure Staples 3.63 (3.59,3.78) Suptum Color Blood Tinged -3.26 (-3.29,-3.15)

Double Exponential Positive Be-
tas

Value (95% C.I.) Double Exponential Negative
Betas

Value (95% C.I.)

1 Vancomycin Non-IV 155.6 (154.7,156.5) Gastric Meds -39.6 (-40.9,-38.3)
2 Multi Lumen Dressing Change

(0.728, 3652.85]
47.7 (47.1,48.4) Pain Cause Incision -33.0 (-33.9,-32.2)

3 Safety Measures lines and tubes con-
cealed

37.9 (36.9,38.9) Cortisol -28.7 (-30.0,-27.3)

4 Osmolality, Urine (312.0, 360.0] 37.8 (37.0,38.6) Mean Airway Pressure min(8.0,9.0] -28.5 (-29.5,-27.5)
5 Fibrinogen, Functional (44.999,165.0] 35.8 (35.0,36.7) Pain Location Neck -27.8 (-28.7,-26.8)
6 Oral Cavity not Assessed 35.7 (34.5,36.9) Daily Wake up Deferred -27.5 (-28.3,-26.8)
7 Dressing Status Reinforced 33.0 (31.9,34.1) Impaired Skin Dressing Change -26.4 (-27.3,-25.4)
8 Incision Closure Staples 30.9 (30.0,31.8) Emesis Appearance -26.0 (-27.1,-24.9)
9 Acyclovir 29.7 (28.2,31.3) NaCl 0.9% -25.2 (-25.8,-24.6)
10 Impaired Skin - Dressing Removed 27.9 (26.3,29.5) Pulmonary Artery Pressure Alarm -

High
-25.0 (-26.3,-23.6)

Regularized Horseshoe Positive
Betas

Value (95% C.I.) Regularized Horseshoe Negative
Betas

Value (95% C.I.)

1 Vancomycin Non-IV 2.54 (2.50,2.58) Braden Friction/Shear No Problem -0.76 (-0.77,-0.75)
5 STOOL 0.83 (0.28,0.85) Skin Integrity: Intact -0.25 (-0.26,-0.24)
3 Metronidazole 0.63 (0.60,0.66) 16 Gauge -0.19 (-0.21,-0.18)
4 Metronidazole Drug Push 0.54 (0.52,0.56) Chest Tube Site Mediastinal -0.14 (-0.15,-0.12)
5 Stool Estimate Small 0.37 (0.35,0.39) Ciprofloaxin -0.10 (-0.12,-0.09)
6 CV - past medical history CHF 0.36 (0.34,0.37) Temporary Pacemaker Wires Ventic-

ular
-0.10 (-0.11,-0.09)

7 RDW (16.8,29.4] 0.29 (0.28,0.30) RL Strength/Movement Normal -0.07 (-0.07,-0.06)
8 Vancomycin Dose Value (2.0, 1250.0] 0.18 (0.16,0.20) 16 Gauge Site Appear -0.06 (-0.07,-0.05)
9 White Blood Cells (14.8, 462.6] 0.14 (0.13,0.15) Heart rate Alarm - High -0.05 (-0.06,-0.05)
10 Creatine Kinase (CK) 0.11 (0.10,0.12) OR Crystalloid Intake -0.05 (-0.06,-0.04)
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Figure 4. ROC curves for all three priors (all predictors)

Figure 5. Precision-recall curves for all three priors (all predictors)

Table 3: AUROC and AUPR for each prior (all predictors)

Model AUROC (95% C.I.) AUPR (95% C.I.)

Normal Prior 0.76 (0.71, 0.81) 0.17 (0.14, 0.20)
Double Exponential Prior 0.76 (0.72, 0.81) 0.19 (0.16, 0.22)
Horseshoe Prior 0.81 (0.77, 0.86) 0.30 (0.26, 0.34)



5.1 Priors and Impact on Results 12

Table 4: Positive and Negative Betas for Each Prior (subset of predictors)

Normal Prior Positive Betas Value (95% C.I.) Normal Prior Negative Betas Value (95% C.I.)

1 RSBI Deferred 4.73 (4.61,4.84) Pain Cause Incision -21.6 (-4.02,-3.84)
2 Less Restrictive Measures 4.13 (4.03,4.23) Endoscopy -3.93 (-3.95,-3.71)
3 Ventilator Tank #2 4.12 (4.03,4.21) LLE Color Pale -3.83 (-3.94,-3.72)
4 Pain Type Cramping 4.02 (3.92,4.11) Pain Location Right Lower Quadrant -3.79 (-3.92,-3.67)
5 Pain Management Local/regional

Anaesthetic
3.98 (3.86,4.10) Pressure Reducing Device Multipodis

Boots
-3.72 (-3.83,-3.60)

6 Furosemide (Lasix) 3.92 (3.81,4.04) Minute Volume Alarm - Low -3.49 (-3.59,-3.39)
7 Osmolality, Urine 3.90 (3.80,4.00) GU Catheter Insertion Date -3.44 (-3.55,-3.32)
8 Pain Location Lower Left Quadrant 3.77 (3.65,3.90) Multi Lumen Insertion Date -3.33 (-3.45,-3.21)
9 Stool Guaiac QC 3.65 (3.56,3.73) Cough Type Congested -3.29 (-3.39,-3.20)
10 Riker-SAS Scale Sedated 3.61 (3.49,3.72) NaCl 0.9% -3.29 (-3.36,-3.21)

Double Exponential Positive Be-
tas

Value (95% C.I.) Double Exponential Negative
Betas

Value (95% C.I.)

1 Pain Location Lower Left Quadrant 42.2 (41.2,43.3) Pain Location Lower Right Quadrant -50.7 (-52.4,-49.0)
2 RSBI Deferred 40.6 (39.5,41.7) Pressure Reducing Device Multipodis

Boots
-37.3 (-38.3,-36.3)

3 Pain Type Cramping 33.0 (32.3,33.6) Multi Lumen Insertion Date -34.7 (-36.1,-33.3)
4 Pain Management Local/regional

Anaesthetic
32.8 (31.8,33.7) GU Catheter Insertion Date -32.9 (-34.1,-31.7)

5 Furosemide (Lasix) 31.0 (30.1,31.8) Edema Amount 8mm -29.5 (-30.9,-28.2)
6 Riker-SAS Scale Sedated 29.5 (28.7,30.4) Dextrose 10% -28.8 (-30.5,-27.1)
7 BiPap O2 Flow (3.0,4.0] 29.1 (27.6,30.7) LLE Color Pale -28.6 (-29.7,-27.6)
8 Ceftazidime Drug Push 29.1 (27.4,30.7) Endoscopy -28.4 (-29.3,-27.5)
9 Less Restrictive Measures 28.5 (27.8,29.2) Urobilinogen -27.5 (-28.8,-26.2)
10 Cardiac Index (CI NICOM) 28.4 (26.6,30.1) Pain Cause Incision -26.9 (-27.6,-26.3)

Regularized Horseshoe Positive
Betas

Value (95% C.I.) Regularized Horseshoe Negative
Betas

Value (95% C.I.)

1 RDW (16.8, 29.4] 0.61 (0.61,0.62) Chest Tube Site Mediastinal -0.51 (-0.55,-0.47)
2 White Blood Cells (14.8, 462.6] 0.57 (0.56,0.57) Temporary Ventricular Capture -0.45 (-0.48,-0.42)
3 Atypical Lymphocytes 0.55 (0.55,0.56) Self ADL -0.19 (-0.20,-0.18)
4 Cefepime 0.50 (0.49,0.51) 16 Gauge placed in outside facility

value 0
-0.18 (-0.20,-0.17)

5 Stool Management 0.47 (0.45,0.48) LL Strength/Movement Normal -0.16 (-0.17,-0.15)
6 Calcium, Total max(4.6,7.8] 0.33 (0.32,0.34) 18 Gauge placed in the field mean (-

.001,1.0]
-0.14 (-0.15,-0.13)

7 Stool Culture 0.28 (0.27,0.29) Incision Dressing Ace Wrap -0.10 (-0.12,-0.08)
8 Self ADL 0.26 (0.24,0.28) 16 Gauge Dressing Occlusive value

1.0
-0.06 (-0.07,-0.05)

9 Skin Integrity Impaired 0.19 (0.18,0.20) Braden Friction/Shear No Problem -0.05 (-0.06,-0.04)
10 Heart Rhythm AF 0.13 (0.12,0.14) 18 Gauge placed in the field max 0.0 -0.04 (-0.05,-0.04)
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Figure 6. ROC curves for all three priors (subset of predictors)

Figure 7. Precision-recall curves for all three priors (subset of predictors)

Table 5: AUROC and AUPR for each prior (subset of predictors)

Model AUROC (95% CI) AUPR (95% C.I.)

Normal Prior 0.72 (0.68, 0.77) 0.10 (0.08, 0.12)
Double Exponential Prior 0.73 (0.67, 0.77) 0.10 (0.08, 0.12)
Horseshoe Prior 0.79 (0.74, 0.83) 0.13 (0.11, 0.15)

6. Discussion

6.1. Impact of Data Used

Comparing the results between the models which use all of the available predictors versus the
models using the subset of predictors, we can see drastic differences in predictive capability favoring
the model using all predictors. With the normal prior, there is a 4% reduction in the AUROC
curve and a 7% reduction in the AUPR curve. For the double exponential prior there is also a
4% reduction in the AUROC curve in addition to a 9% reduction in the AUPR curve. With the
regularized horseshoe prior, there is a 2% reduction in the AUROC curve and a 17% reduction in
the AUPR curve. Here we can clearly see the over-optimistic characteristic of ROC curves since
the difference in the AUROC curves is extremely small compared to the difference seen between
the AUPR curves.

6.2. Impact of Regularization

Disregarding the data given to the model, we can clearly see the impact our choice of prior had
on predictive capability. Originally we were curious to see if ℓ1 or ℓ2 regularization had an impact
on prediction capability, and there is some evidence pointing towards using ℓ1 regularization.
However, the aspect of the priors that appears to have the largest impact on predictive capability
is the sparsity of predictions. The regularized horseshoe prior is a sparse prior, meaning most of
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the coefficients will be zero and there will be a few non-zero coefficients. The normal prior and
double exponential priors are not sparse priors and thus they will have many non-zero coefficients.
The differences in coefficient size can be seen in Figures 8 and 9.

Figure 8. Plots for the distribution of betas for all three priors with all predictors

Figure 9. Plots for the distribution of betas for all three priors with subset of predictors

6.3. Impact of Sparsity

For the model with all predictors included, we see a 5% improvement in the AUROC curve
when using the regularized horseshoe prior compared to both the normal and double exponential
priors. In addition, with the regularized horseshoe prior we see a 13% improvement in the AUPR
curve over the normal prior and a 11% improvement over the double exponential prior. For the
model with the subset of predictors, we see a 7% improvement in the AUROC curve when using
the regularized horseshoe prior compared to both the normal and double exponential priors. With
the regularized horseshoe prior we also see a 3% improvement in the AUPR curve over both the
normal and double exponential priors.

The reasoning behind why sparse priors such as the regularized horseshoe prior perform better
in this study is due to the nature of our data. Our dataset with all predictors contains 19,596
patients and 11,489 predictors and our dataset without all predictors contains 19,596 patients and
11,416 predictors. Therefore, our data is very wide (large amount of predictors for the number of
patients) which can lead overfitting (Zhang, 2014). Since we have a large number of predictors and
both the double exponential and normal priors produce numerous comparatively large coefficients,
these two models can be negatively impacted by the overfitting of the training dataset. The
regularized horseshoe prior, on the other hand, combats the issue of overfitting by only allowing a
small number of coefficients to be comparatively large. We can see from the box and whisker plots
in Figures 8 and 9 that nearly all of the mass is on zero for this prior. To assess overfitting in our
models, we can run a posterior predictive check to see how well our models fit our training data
(Gelman et al., 2020). To perform the posterior predictive check, we used all ηi from the training
dataset and took the expit(ηi), giving us a probability, described in Section 6.5, that a patient
tested positive for CDI. With this probability, p, we randomly selected a 1 with probability p or
0 with probability (1-p). We then compared our new vector of 1s and 0s to the training vector
of C. diff. cases using confusion matrices shown in Tables 6 and 7. In Tables 6 and 7, we can
see that the models using the normal prior classify all patients nearly perfectly and the models
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using the double exponential prior classify all patients perfectly. Due to the number of predictors
we have and the fact that these models performed quite poorly when evaluated on the testing set
we have reason to believe that both of these models suffer from overfitting. On the contrary, the
models using the regularized horseshoe prior are much less effective in classifying the patients in
the training dataset. Although this does provide evidence that performance on the testing dataset
will not be spectacular, it does show how the regularized horseshoe prior helps prevent overfitting
when there are a relatively large number of predictors and a relatively small number of patients.

Table 6: Posterior Predictive Checks (subset of predictors)
Normal Double Exponential Regularized Horseshoe

Predicted Predicted Predicted
Pos Neg Pos Neg Pos Neg

Actual Pos 548 8 Actual Pos 556 0 Actual Pos 112 444
Neg 0 15,120 Neg 0 15,120 Neg 383 14,737

Table 7: Posterior Predictive Checks (all predictors)
Normal Double Exponential Regularized Horseshoe

Predicted Predicted Predicted
Pos Neg Pos Neg Pos Neg

Actual Pos 539 14 Actual Pos 553 0 Actual Pos 40 513
Neg 0 15,123 Neg 0 15,123 Neg 467 14,656

6.4. Interpolation of Coefficients
In addition to having a smaller number of large coefficients, the regularized horseshoe prior

also produces coefficient values closer to zero which is beneficial in improving prediction accuracy.
If you recall from earlier, η was the resulting sum from the product of Xβ. Therefore, larger
coefficients (in absolute value) seen in the vector β will result in more extreme values for η. Our

Figure 10. Expit graph showing how ex-
treme etas result in a probability of 1 or
0

model then takes the expit(η), or the inverse-logit(η),
in order to obtain a probability that the patient will
contract CDI. The problem with extreme coefficients
and thus extreme values of η can be seen in Figure
10. With large coefficients, it can be extremely easy to
obtain an large value for η, and this large value may
only be influenced by one variable. For example, in
the model with all predictors which uses a double ex-
ponential prior, the βi for vancomycin non-IV is 155.6.
Given that β0 for this model is -0.102, a value of 155.6
increases the probability of a positive C. diff. case by
expit(β0 + 155.6)− expit(β0) = .99− .47 = .53 meaning
the variable vancomycin non-IV increases the probabil-
ity of the model predicting C. diff. by 53% over the
baseline (expit(β0)). Furthermore, to decrease this value
to 52% over the baseline, we would need to decrease η
to 4.60 (expit(4.60) = .99). Since the largest negative βi for the same model is -39.6 and
expit(β0 + 155.6 − 39.6) = .99 as well, it seems reasonable to assume that if a patient takes
vancomycin not through an IV then this model will classify them as contracting CDI. With the
regularized horseshoe prior, β0 = 3.49 and the largest βi = 2.54 for the model using all predictors
and for the model using the modified set of predictors, β0 = −3.93 and the largest βi = 0.61. With
these coefficient sizes, our model is mush less likely to make predictions based on only one variable
since small changes in η will have a noticeable impact on expit(η).

6.5. All Predictors versus Censored Model
Of the two sets of data we used, fitting a model to the modified set of predictors provides

us with the most valuable information about which variables are most important. However, the
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benefit of also fitting a model which uses all EHR data is that our results from this model provide
an upper bound for predictive capability. Being aware of the upper bound on predictive capability
shows how much of an impact a set of variables has on each model. It also helps visualize how
difficult the problem is that we are trying to predict.

The reason behind why the model with all predictors was substantially more accurate can be
attributed to reverse causation. Given a dataset with a large number of predictors, we are unaware
of what all of the predictors are in our data. Therefore, when we use all of the predictors we will
be including variables which are present because doctors have either begun treating a patient for
C. diff. or have a strong suspicion that the patient has C. diff. and are taking actions accordingly.
For example, all three priors identified vancomycin non-IV as being the most important predictor
for identifying a positive C. diff. case. This, however, is due to the fact that vancomycin, which is
an antibiotic, taken orally is one of the most common treatments for C. diff. (Shen et al., 2008).
The fact that vancomycin is generally taken orally could explain why vancomycin administered
through an IV (vancomycin drug push) was the most important variable in determining negative
C. diff. cases for the normal prior. In addition to vancomycin, the regularized horseshoe prior
found metronidazole, which is also one of the main antibiotics used to treat CDI, to be positively
associated with CDI (Shen et al, 2008). The other variable present in the top ten positive coeffi-
cients for each model which also implies reverse causation is STOOL. A stool sample involves the
collection of fecal matter which can then be sent to the lab and analyzed for different medical con-
ditions (Stool Tests, n.d.). Stool tests can be used for the detection of many different conditions,
but it is also one of the main methods for diagnosing patients with C. diff. (MedlinePlus Medical
Encyclopedia, n.d.).

Apart from these variables, when using the dataset with all predictors the normal and double
exponential priors picked up on similar variables, but very few seem to be related to CDI. The
normal prior found that the variable abdominal assessment distented, which signifies a swollen
abdomen, to be positively associated with CDI and research has shown that abdominal distention
can be caused by CDI (Cowan & Kutty, 2018). Apart from this variable, the remaining positive
coefficients do not have apparent commonalities with CDI. This trend can also be observed with
the negative coefficients for these two priors. The negative coefficients should theoretically have
nothing in common with C. diff., but they are rather uninformative. For instance, if a patient comes
in with neck pain or they have pain due to an incision, which could imply a surgical procedure, it
is clear the patient’s issue is not that they have C. diff., but these variables do not inform us about
the patient’s susceptibility to CDI.

Again, disregarding variables related to stool, vancomycin, and metronidazole, the regularized
horseshoe prior appears better able to find positive predictors that are associated with CDI which
do not result from reverse causation. RDW, or red blood cell distribution width, measures the size
distribution amongst red blood cells (Fava et al., 2019). RDW generally ranges from 12%-15%,
but our model picked up on a RDW of 16.9%-29.4% which is abnormally high (Fava et al., 2019).
High RDW can be a sign of anemias and a study conducted by Othman et al. found that patients
with pernicious anaemia have an increased risk of CDI (Fava et al., 2019)(Othman et al., 2017).
The regularized horseshoe prior also found that patients with low white blood cell (WBC) counts
(148 to 4,626 WBCs per microliterare) were more likely to contract CDI. For reference, a normal
WBC count is 4,500 to 11,000 WBCs per microliter (WBC Count, n.d.). Low WBC counts, called
leukopenia, reduce the body’s ability to fight infections, thus leaving patients more predispositioned
to C. diff. (Mayo Clinic Staff, n.d.). Furthermore, the regularized horseshoe prior found Creatine
Kinase (CK) to be important in identifying positive C. diff cases. CK is a muscle enzyme which
can be produced after Rhabdomyolysis (RBD), and RBD has been reported to have been caused
by C. diff. (Dungan et al., 2022). Therefore, the presence of CK does not leave patients susceptible
to C. diff., but its presence could potentially help doctors detect CDI.

Examining the models which do not use the entire set of available predictors, we notice reverse
causation is still an issue, but it has much less of an impact on our results. We ran our model twice
before, and after both runs we removed all of the important variables which clearly produced reverse
causation. However, looking at the positive betas for the regularized horseshoe and normal prior
there are three variables associated with stool which most likely result in some reverse causation.
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These variables, however, are not as influential in this model. Aside from the variables associated
with stool, the regularized horseshoe model using the subset of predictors also found RDW and low
WBC count important in determining positive C. diff. cases. In addition, the regularized horseshoe
model found positive associations between C. diff. and atypical lymphocytes, cefepime, and calcium
levels. Atypical lyphocytes can be found in a patient’s blood, and there presence signifies an
immune response to numerous medical conditions including some bacterial infections (Shiftan &
Mendelsohn, 1978). Since CDI is a bacterial infection, the presence of atypical lyphocytes could be
a sign of CDI. Cefepime is an injection which has been used to treat bacterial infections (Cefepime
(Injection Route) Side Effects—Mayo Clinic, n.d.). However, a study done by Muldoon et al. found
that increased use of cefepime led to significantly increased rates of C. diff. (Muldoon et al., 2013).
Lastly, our regularized horseshoe model found that a calcium level maximum of 4.6-7.8 mg/dL was
important in determining positive C. diff. cases. The normal range for ionized calcium is 4.4-5.2
mg/dL, therefore a calcium level maximum of 4.6-7.8 mg/dL is implying a relatively high level
of ionized calcium (Normal Calcium Levels, n.d.). The significance of this is that Kochan et al.
found that increased levels of ionized calcium, which implies increased concentrations of intestinal
calcium, can promote the growth of C. diff. spores (Kochan et al., 2017).

Unlike the positive coefficients identified by the regularized horseshoe prior, the normal and
double exponential priors most influential positive coefficients, seven of which are shared between
the two models, do not provide much valuable information about patient characteristics which
would leave them vulnerable to CDI. This could be the product of the overfitting we saw with
these two priors. Both priors found pain in the lower left quadrant, which corresponds to pain in
the lower left corner of the abdomen, and cramping to be important predictors of C. diff. These
variables could be a signal to doctors that a patient has C. diff. since symptoms of C. diff are
abdominal pain and cramping, but they would not provide doctors with information about which
patients are more likely to test positive for C. diff. (C. difficile infection—Symptoms and causes,
n.d.).

The negative coefficients for all three priors also do not provide us with valuable information
about patient characteristics that provide "defense" against CDI. Similar to what we observed
from the results gathered using all predictors, the negative coefficients tell us the patient’s issue is
not C. diff., but they do not provide us with any information regarding a patients susceptibility to
CDI.

7. Model Limitations

The main criticisms we have about our model can be attributed to the data we are using, the
first of which is reverse causation. Given we have a very large number of predictors, we do not know
the nature of all of the variables in our model. Therefore the best way for us to reduce the effect of
reverse causation is by repeating the process of running our model, looking at the most important
predictors our model found, and then removing any variables that cause reverse causation. This
process can reduce the impact of reverse causation, but it cannot remove the entire effect.

Another issue with having a large number of predictors is overfitting. Looking at Tables 6 and
7, we can see the effect of overfitting when using the normal and double exponential priors. Since
the models are so well fit to our training datasets, their ability to make accurate predictions on
our testing dataset is hindered.

The next issue we have with the data is our inability to identify the timing of ICD9 codes. Due
to our inability to discern the timing of ICD9 codes, we cannot tell when in their stay patients
tested positive for C. diff., which prevents us from removing any patients who were admitted to
the hospital with CDI. This is an issue because our goal is to predict which patients will contract
C. diff. during their stay, so individuals who are admitted with C. diff. may negatively impact our
results.

An additional area where we would like to improve our data is we would like to be able to use
data that has hourly entries per patient from 0-24 hours rather than one entry per patient from
the time of admission to 24 hours after admission. We predict that having this data will improve
predictions due to repeated instances of certain variables that would be present with hourly entries.
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However, we lacked the computational ability and the time to run a model with this much data.

8. Conclusion

We showed that Bayesian logistic regression is able to make predictions in regard to whether
or not a patient will contract C. diff. during their stay. Using a regularized horseshoe prior, we
were able to obtain an AUROC curve of 0.81 and an AUPR curve of 0.30 when using all predictors
and an AUROC curve of 0.79 and an AUPR curve of 0.13 when using a modified set of predictors.
Our results showed our model had a similar predictive capability compared to previous studies
such as the study by Wiens et al. in "Learning Data-Driven Patient Risk Stratification Models
for Clostridium difficile", thus we did not see any clear improvements using a Bayesian approach
with the data we used (Wiens et al., 2014). It is important to note that although we do not see
an improvement in predictive capability, we cannot compare our results directly to those obtained
by Wiens et al. since we used different datasets. Furthermore, our main tool for evaluating our
results was using precision-recall curves, which have not been used in prior studies. Precision-
recall curves are much better suited for evaluating the predictive capability of our models since
precision-recall curves are much better suited for unbalanced data. Unbalanced data is similar to
the idea of a sparse matrix in that we had an extremely small percentage of C. diff. cases. ROC
curves are generally over-optimistic when used to evaluate predictions on unbalanced data since an
additional true positive case will increase the true positive rate by a significantly larger margin than
one additional false positive case will increase the false positive rate. Precision-recall curves avoid
this issue by decreasing the classification threshold and evaluating the precision of our model’s
predictions at each classification level until all positive cases have been recalled. Since previous
studies have not used precision-recall curves in their analysis we cannot compare the performance
of our model to other studies using this metric but were able to show the benefit of using a sparse
prior with a Bayesian model to predict C. diff. infection.

Our goal in developing a model which predicts C. diff. infection is to create a model that can
be used in conjunction with healthcare settings. Implementing such a model which can detect
patients who are susceptible to CDI could significantly decrease the rates of CDI in a healthcare
setting. For instance, if there was an interface where doctors could enter all variables associated
with a patient which was connected to the model, as doctors enter patient information the model
could instantaneously identify patients most at risk for C. diff. and alert medical professionals prior
to infection. As a result, doctors would be able to take the necessary precautions to limit said
patient’s exposure to C. diff. infection. There are numerous challenges associated with this task,
such as a lack of collaboration between medical centers and statisticians and how we should label
and structure medical data, which prevent models from being easily implemented in healthcare
settings. In addition to improving the data collection process, we also need to improve our model’s
predictive capability. More specifically, we need to improve upon our Bayesian approach to logistic
regression with a regularized horseshoe prior. We have shown the regularized horseshoe prior
outperforms the normal and double exponential priors, so in the creation of a new model, we
should strive to improve upon our model using a regularized horseshoe prior. We also do not
know how this model performs using different datasets, so it would be wise to compare all new
models with our current regularized horseshoe model using the same data. Once we create a
model which demonstrates sufficient predictive capability to be effectively used in a healthcare
setting, we can begin the process of integrating our model into a healthcare setting. It is also
important to note that we can use the same model to predict numerous conditions in addition to
C. diff. infection. However, we must be aware of the issue of reverse causation and collaborate with
medical professionals to create unique training datasets for each condition we are aiming to predict.
During the formation of predictor datasets, it may also be useful to include admission diagnosis
(why the patient is at the hospital). Our model only used the ICD9 codes to identify which
patients tested positive for C. diff., but using the entirety of the ICD9 code dataset may provide
valuable information regarding which conditions can leave patients susceptible to CDI. Ultimately,
our model using a Bayesian approach to logistic regression with a regularized horseshoe prior was
able to make predictions about C. diff. infection, but there are numerous approaches that can
produce improved predictive capability which will hopefully lead to a model robust enough to be
implemented in a healthcare setting.
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A. STAN: Normal Prior

data {
int<lower=0> n_train;
int<lower=0> n_test; // number of units
int<lower=0> d; // number of covariates
int<lower=0,upper=1> y_train[n_train]; // binary responses
matrix[n_train, d] x_train; // covariates for each entry, including the

↪→ intercept covariate
matrix[n_test, d] x_test; // covariates for each entry, including the intercept

↪→ covariate
int do_prior_predictive;

}
parameters {
vector[d] beta; // the coefficients
real beta0;

}
transformed parameters {
vector[n_train] eta_train; // linear predictors
eta_train = beta0 + x_train * beta;
vector[n_test] eta_test; // linear predictors
eta_test = beta0 + x_test * beta;

}
model {
beta ~ normal(0, 2);
beta0 ~ normal(0, 5);
if (do_prior_predictive != 1) {
y_train ~ bernoulli_logit(eta_train);

}
}
generated quantities {
vector[n_test] p_test;
p_test = inv_logit(eta_test);

}
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B. STAN: Double Exponential Prior

data {
int<lower=0> n_train;
int<lower=0> n_test; // number of units
int<lower=0> d; // number of covariates
int<lower=0,upper=1> y_train[n_train]; // binary responses
matrix[n_train, d] x_train; // covariates for each entry, including the

↪→ intercept covariate
matrix[n_test, d] x_test; // covariates for each entry, including the intercept

↪→ covariate
int do_prior_predictive;

}
parameters {
vector[d] beta; // the coefficients
real beta0;

}
transformed parameters {
vector[n_train] eta_train; // linear predictors
eta_train = beta0 + x_train * beta;
vector[n_test] eta_test; // linear predictors
eta_test = beta0 + x_test * beta;

}
model {

beta ~ double_exponential(0,8);
beta0 ~ normal(0, 5);

if (do_prior_predictive != 1) {
y_train ~ bernoulli_logit(eta_train);

}
}
generated quantities {
vector[n_test] p_test;
p_test = inv_logit(eta_test);

}
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C. STAN: Horseshoe Prior

data {
int < lower =0 > n_train ; // number of observations
int < lower =0 > n_test ; // number of observations
int < lower =0 > d ; // number of predictors
int <lower = 0, upper = 1> y_train[n_train]; // outputs
matrix [n_train ,d] x_train; // inputs
matrix [n_test ,d] x_test; // inputs
real < lower =0 > scale_global ; // scale for the half -t prior for tau
real < lower =1 > nu_global ; // degrees of freedom for the half -t prior

// for tau
real < lower =1 > nu_local ; // degrees of freedom for the half - t priors

// for lambdas
real < lower =0 > slab_scale ; // slab scale for the regularized horseshoe
real < lower =0 > slab_df ; // slab degrees of freedom for the regularized

// horseshoe
int do_prior_predictive;

}

parameters {
vector [ d] z;
real beta0;
vector < lower =0 >[ d] lambda ; // local shrinkage parameter
real < lower =0 > caux ;
real <lower = 0> tau;

}

transformed parameters {
vector < lower =0 >[ d] lambda_tilde ; // ’truncated’ local shrinkage

↪→ parameter
real < lower =0 > c; // slab scale
real <lower = 0> tau0;
vector [ d] beta ; // regression coefficients
vector [n_train] f_train; // latent function values
vector [n_test] f_test; // latent function values
c = slab_scale * sqrt ( caux );
lambda_tilde = sqrt ( square(c) * square ( lambda ) ./ (square(c) + square(

↪→ tau)* square ( lambda )) );
tau0 = scale_global ;
beta = z .* lambda_tilde * tau0 ;
f_train = beta0 + x_train * beta ;
f_test = beta0 + x_test * beta ;

}

model {
// half -t priors for lambdas and tau , and inverse - gamma for c ^2
z ~ normal (0 , 1);
lambda ~ student_t ( nu_local , 0, 1);
tau ~ student_t (nu_global , 0, scale_global);
caux ~ inv_gamma (0.5* slab_df , 0.5* slab_df );
beta0 ~ normal(0, 5);
if (do_prior_predictive != 1){

y_train ~ bernoulli_logit(f_train);
}

}
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generated quantities {
vector[n_test] p_test;
p_test = inv_logit(f_test);

}
(Piironen \& Vehtari, 2017)


	Risk Analysis of Clostridiodides Difficile Infections in a Hospital Setting and the Impact of Prior Choice on Predictive Capability
	Recommended Citation

	Introduction 
	Project Goal
	Data Preparation
	Methods
	Fake Data Simulation
	Formulation
	Model Implementation into STAN

	Results
	Priors and Impact on Results

	Discussion
	Impact of Data Used
	Impact of Regularization
	Impact of Sparsity
	Interpolation of Coefficients
	All Predictors versus Censored Model

	Model Limitations
	Conclusion
	References
	STAN: Normal Prior
	STAN: Double Exponential Prior
	STAN: Horseshoe Prior

