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Abstract

Understanding the stability of food webs is crucial for resource sustainability and conser
vation of ecosystems, especially in the context of climate change. Specific models describe 
the biomass flow in food webs by a set of ordinary differential equations that require the 
explicit reconstruction of a mathematical expression for each of the interactions or processes, 
like predator-prey interactions, primary production, and mortality. Although specific models 
are rich with time-evolution information, limited access for empirical observation of these 
typically immense systems induce uncertainty in the data and approximations in the corre
sponding models that can threaten robustness or relevance of results. Generalized models 
can produce the stability of all the equilibria of specific models that have the same vague 
structure and bypasses the requirement to specify every function by evoking a normalizing 
transformation. The analysis is subsequently computationally efficient and can be used to 
study large food webs with a great number of replicates.

Often generalized ecological network studies confine the scope to a small subset of the 
variable dynamical scenarios, but this limits the interpretations that can be inferred. With 
this in mind, we develop a deterministic food-web generator that can be used to compare 
large food webs that differ by only a single link and maintain an expansive dynamical scope. 
We found behavior that indicates the existence of critical links and a grander theory on 
topological equivalence. We explicitly show how we can create hypothetical paths the system 
may traverse upon enrichment of lower trophic levels using the expanded dynamical scope.

Generalized modeling is unable to produce evolution solutions among other things, but 
it has an unlimiting access to the stability of equilibria while specific models provide only 
a subset of stability data. Generalized modeling is a relatively new method and its relation 
to specific model outcomes/results is not clearly understood. Specific models can inform 
generalized modeling studies on properties like coexistence of fixed points or actually occur
ring relative weighting of flows between ecosystem members. We combined the methods and 
demonstrated the validity of the abstract technique of generalized modeling in emphasis to its 
usefulness/power for the analysis of network stability. The specific model provided a unify
ing explanation to a conglomerate of related microcosm experiments that showed conflicting 
results on enrichment and implied stabilization upon the hampering of predatory efficiency. 
We identified the conditions by which enrichment is stabilizing to a steady state when basal 
species are in a resource-deprived environment but destabilizing if resources become more 
abundant.

A prevalent issue in ecology involves discrepancies between simulation and empirical ob
servation about food-web stability such as how intuition says enrichment or complexity in 
some way are favorable to stability but mathematical models find it predominately the oppo
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site. A common rationalization for these discrepancies includes discourse on reductionistic 
versus holistic rhetoric. The idea being that as models become better representations of 
ecosystems that capture more intricacies and detail, they will help to resolve the issue. We 
constructed over a million food webs that reveal positive effects on fixed-point stability from 
the incorporation of more realistic ecosystem features that include species specialization, 
habitat modularity, and predator's prey preferences.

Arctic warming is a portent to changes in species composition and ecological theory pre
dicts the existence of key ecosystem members that have extraordinary influence on overall 
ecosystem function or the state of the system. Motivated by sea-ice loss and northward 
expansion of species distributions, ice-obligate species are removed from the food webs and 
southern competitors are introduced. Although it is common understanding that apex preda
tors can enhance biodiversity, we find the presence of “super killers” significantly destabilizes 
food webs.

Ecosystems have immense complexity with thousands of species, but ecosystem models 
condense and consider only a few species that are of the most interest or abundance, ne
glecting the many weak interactions comprising the larger ecosystem. Considering this, we 
suppose a food web is subsumed by a larger phantom ecological network that represents 
hypothetically rare species or predator-prey relationships. Each link from the phantom net
work contributes a variably weak perturbation, but collectively, induce a net positive effect 
on the average stability of the food webs, considerably so near the optimal perturbation 
strength.
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Chapter 1 Introduction

The vitalness natural ecosystems provide to human life cannot be overstated. The ben
efits they provide include materials (e.g. food security, lumber, biofuel, water treatment), 
supportive services (e.g. economic prosperity, genetic biodiversity, dilution of pathogens, 
decomposition of waste), and cultural services (Costanza et al.; 1997). They operate as 
powerful agents in global-scale carbon cycles and sequestration (Borges and Abril; 2011; 
Polimene et al.; 2017; Basu and Mackey; 2018), as well as, host a variety of organisms that 
offer cures for maladies and influence for technological advances (Drew et al.; 2007; Marmot- 
tant et al.; 2013). It is prudent that the conservation and understanding of these valuable 
marvels are among our most heightened concerns.

1.1 Ecological Background

An ecosystem (Jorgensen; 2009) is a natural environment that hosts a complex of inter
play between a variety of organisms and habitats. Matter and energy is held in the con
stituents and transfers may occur amongst each other or between the abiotic environment. 
A basic description of an ecosystem's biotic constituents includes producer organisms that 
create complex organic substances from simple inorganic substances through various biosyn
thetic processes and consumer organisms that get nutrients and/or energy from ingesting 
performed organic substances. Also, organisms are found to use the various combinations 
of sources for energy, electron donors, and carbon, and their distinctions make up the pri
mary nutritional groups. The ecosystem models in this work are a community network of 
Chemoorganoheterotrophs, e.g. predators, decomposers, and detrivores. Species traits fur
ther refine the species' description, namely, morphology and behavior can be unique to each 
member of the community. For instance, different types of predators include true predators, 
grazers, parasites, and parasitoids. Other member attributes can include, body size, habi
tat, cannibalism, etc. Nutritional groups and species traits are determinative of the possible 
connections and the physical/ecological processes that drive the flows. Some other types of 
interactions include competition and symbiosis.

Different environments host different species compositions and affect the topology or net
work structure. For instance, terrestrial environments are characterized with macrophytic 
producers that are marked with cellulose and lignin to support their structural integrity with 
typical trophic consumers (primary, secondary, tertiary, etc.) and decomposition, while ma
rine environments are dominated with microphtytic plankters and the subsequent consumer 
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agents. Marine and terrestrial systems both form a kind of monocyclic system, while lacus
trine environments are characterised by plankters and macrophytic pond weeds as primary 
producers forming a kind of bi-cyclic system (Hazen; 1975). In a furtherance of this dis
course, sympagic or partial sympagic systems could feature ice-algae as a primary producer 
(Hop and Gjøsæter; 2013).

Ecological networks (Pascual et al.; 2006; De Ruiter et al.; 2005; Winemiller and Polis; 
1996; Polis and Winemiller; 2013) are expressed by having the biotic constituents be the 
nodes of the network and the connections or links embody the flows of various ecological 
processes. A node of an ecological network could represent an individual organism that begins 
at birth and maintains a time-dependant in-flux and out-flux of energy until terminating 
in death. However, a macroscopic perspective, that permits autonomous modeling (not 
explicitly dependant on time) and intrinsically reduces the size of the system, treats nodes 
as populations. Albeit, a population has a life history in which different life stages may 
have different connections and processes. Often, modelers of animal communities attempt 
to resolve this aspect by segmenting the population into two or more nodes (e.g. adults and 
juveniles). Many ecological networks are described with a few hundred species (Elmgren and 
Hill; 1997; Gaichas and Francis; 2008). From this macroscopic perspective, the sizes of the 
networks would still be huge. There have been over five million animal species classified, with 
the most depauperate ecosystems (e.g. the Arctic marine ecosystem) recording thousands 
of species (Boenigk et al.; 2015). To combat the problem of too many nodes, subsets of 
the community are taken into consideration and the ignored constituents are assumed to be 
part of the ecosystem that has negligible impact to the functioning of the considered system. 
Additionally, some taxonomically different species may have very similar functions or roles 
in an ecosystem (e.g. similar prey, similar predators) so they can be coalesced into one node, 
these are referred to as trophospecies. Typically, few to a few tens of species are considered 
when ecosystems are modeled as dynamical systems. In light of this, some real systems that 
have a few species are found in agricultural systems, experimental ecosystems (microcosms) 
(Karam et al.; 2012), and natural systems in isolated areas.

Ecology is often concerned with understanding ecosystem functioning and the features 
that impact said functioning. For instance, consider an observation that predators are more 
generalists than prey. This motivates the claim that this feature, in effect, enhances the sur
vival of prey when predators are numerous and enhances the survival of predators when prey 
is scarce. This feature manifests in the topology; higher trophic levels become less discrete 
and the average chain length is shortened. Other topological features studied are network 
size (number of nodes) and connectance (link density). These two topological features and 
link-strength variance are also the main features of discourse on the complexity of ecological 
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networks.
In the study of ecological networks as dynamical systems, typical questions are concerned 

with how a particular feature in the ecological system impacts other features or the long-term 
fate of the system. For example: Does the presence of apex predators (e.g. wolf introductions 
(Ripple and Beschta; 2012)) or increasing a limiting nutrient (e.g. iron fertilization (Coale 
et al.; 1996)) impact the system's size (biodiversity), capacity (overall biomass), and/or 
likelihood it will approach a steady state? Will each species survive forever? There are 
examples of competitive exclusion (Lotka; 1932) which describes systems in which there 
will be one survivor of two competing species. On the other hand, change some of the 
parameters in such a system and it can be found that both survive at a stable steady state. 
Many ecological systems that allow each species to persist might exhibit stable steady state 
dynamics, cycles, or chaos.

In the study of ecosystems, population dynamics has demonstrated to be a prolific and 
eminent source of ecological insight. These mathematical simulations offer a means to study 
key processes and distinguished properties driving ecosystem behavior. The popularly stud
ied period-4 salmon population cycles in the Fraser river (with a high year, an intermediate 
year, and followed with 2 low years) is an exceptional example of how simple ecosystem 
models have met success in discerning that a periodic attractor imitates, in silico, the com
plicated cycles observed from nature (Guill et al.; 2011). However, ecosystems in general are 
too complex to make such accurate predictions from overly simplified models. The amount of 
computations and derivations required increases superlinearly as complexities are added to 
the models. However, the development of a framework in the analysis of generalized models 
offers a means to extensively gain local stability insights from large, multi-process ecological 
models (Gross et al.; 2009).

1.2 Dynamical Systems

Dynamical systems are used in a diverse group of disciplines, but have roots in physics. 
The sub ject was conceived in the mid-1600s, when Newton invented differential equations and 
solved the gravitating two-body problem. Later, efforts to extend the analytics to the three- 
body problem were unsuccessful. It was not until the late 1800s when Poincare provided 
the context of modern dynamical systems theory through geometric thinking. Instead of 
explicitly solving the problem, he instead asked qualitative question, like will the system 
remain for all time (Koon et al.; 2000). It is now a vast interdisciplinary field that has been 
extended to economics, ecology, chemical reactors, and engineering, to name a few.

A typical dynamical system is the mathematical formalization of a deterministic process,
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by which the present state of the system moves in accord with an evolution law (Kuznetsov; 
1998). An evolution operator ϕt : X → X acts on points in an n-dimensional state space X. 
Provided the initial state x0 ∈ X is known, the evolution operator maps x0 to the state xt 

after some continuous or discrete time t,

4

In discrete time, the evolution operator is an iterated map, in which, for integer timescale 
ϕ2x0 = ϕ1(ϕ1x0). In continuous time, the evolution operator is generally found by solving 
a set of differential equations called the flow. The forms of these differential equations 
may be partial differential equations that usually depict the state temporally and spatially 
or they may be expressed as an autonomous (time-independent) coupled set of ordinary 
differential equations of the velocities of the state variables and parameterized by a set of 
system parameters p,

where x ∈ X and f is generally a nonlinear function. If there exists a point x* ∈ X such 
that f (x*) = 0, then x* is an equilibrium point or fixed point. If a system is in the state 
x*, it will stay there for all time. At the fixed point, if the system receives a sufficiently 
small perturbing kick, the state will evolve in time and follow its trajectory, x(t). Numerical 
techniques estimate discretized solutions of x(t) with time step ∆τ. The crudest estimate 
has its nth element

known as the forward Euler method. The error of this estimation approaches zero as ∆τ → 0. 
If the trajectory eventually returns to the fixed point from any perturbation direction, then 
the fixed point is attracting. If trajectories do not eventually return but remain close, then 
the fixed point is Lyapunov stable. A fixed point can be either or, but if it is both attracting 
and Lyapunov stable, it is asymptotically stable (or just stable). A fixed point is unstable if 
it is neither.

A fixed point is a type of invariant set. An invariant set, S ⊂ X, is a subset of the state 
space such that any trajectory x(t) that starts in S stays in S for all time. More complicated 
than a fixed point, a closed cycle is also an invariant set. Also, there are invariant manifolds, 
such as the two-torus or chaotic attractor, that can contain an infinite number of periodic 
or nonperiodic orbits. When the invariant set attracts an open set of initial conditions and 
is minimal it is called an attractor.



1.2.1 Example: One-Dimensional Flows

Consider an organism's population x ≥ 0 such that the per-capita birth rate x/x is 
a constant, then the population will undergo exponential growth and the flow is linear. 
The only fixed point, x* = 0, is a repellor (unstable). If population is limited to a finite 
resource, then intraspecific competition would act to decrease the per-capita birth rate as 
the population increases. A per-capita birth rate that decreases linearly, becoming negative
after some population k called the carrying capacity, is known as logistic growth and has a
differential form

where r is a growth rate. Although the solution x(t) can be solved analytically with separa
tion of variables and direct integration, we can qualitatively gain insight with a geometrical 
analysis from just plotting the flow. If 0 < x < k, the flow is positive and x is increasing, 
for x > k the flow is negative and x is decreasing. In any case, x(t) approaches k as t → ∞ 
for any x0 > 0, Fig. 1.1a. For initial conditions 0 < x0 < k/2 the trajectory is accelerating 
until x = k/2 at the maximal growth after which the flow slows down and asymptotically 
approaches the fixed point. This yields a sigmoid curve in a time series diagram, Fig 1.1b. 
If k/2 < x0 < k, x(t) is slowing down and moving in the positive direction for all time. If 
x0 > k, x(t) is slowing down and moving in the negative direction.

Figure 1.1: Flow and time series. a) Logistic growth flow, Eq. (1.4) and b) time series x(t). 
(r, k) = (1, 3). The dashed horizontal line is x = k/2.

In an environment with predators, a loss term is added to the flow that imitates a predator 
response. If the predator response is linear, this describes a predator limited by search or 
wait time. This function fits well with filter-feeders and is called Lokta-Voltera or Holling's 
type I predator response. When prey becomes so abundant that search time goes to zero, 
predator consumption is limited by handling time (the time it takes to process the food)
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and the flow approaches a saturation (e.g. Holling's type II, Ivlev, Monod (Groβ; 2004)). At 
saturation, the predators are eating as much as they can. When predators require practice to 
be apt at the hunt or prey can hide in limited hiding spots (this behavior is also consistent 
with prey switching), then when prey is scarce hunting efficiency is low and continues to 
decrease for decreasing prey. Combining the functionalities discussed so far, the response 
would have an S-shape, (e.g. Holling's type III, sigmoid). The inflection point on a Holling's 
type III response is at a prey population for which the loss flow is half its saturation flow. 
When prey have tough outer tissue, this would increase the handling time and decrease the 
max loss. When prey have camouflage, the search time is increased but handling time is 
unaffected resulting in a larger prey population for the half saturation. When prey exhibit 
collective defense, then after some prey population an increase of prey will decrease the 
response, e.g. Holling's type IV.

A population's flow that has logistic growth and a loss from a Holling's type III predator 
response is

with carrying capacity k and growth rate r. Figure 1.2a depicts the flow increasing as the 
r values increase for fixed k. x* = 0 is an unstable fixed point. Nontrivial fixed points are
solutions to

The number of nontrivial fixed points will be one, two, or three. For small r, there is one 
nontrivial fixed point and it is stable at low population. For sufficiently large k, increasing 
r will result in the creation of two higher-population fixed points, the smaller of the two is 
unstable and the larger one is stable. A bistable configuration of three nontrivial fixed points 
is set, dark line in Fig. 1.2a. The large-valued stable point is referred to as outbreak, the 
small-valued stable point is the refuge point. Increase k or r enough and an annihilation of 
the unstable point and the refuge point will leave only the outbreak point. This outbreak 
phenomenon is known as a cusp catastrophe (Strogatz; 2018). When there are two nontrivial 
fixed points, one of those fixed points corresponds to a blue-sky bifurcation, also known as 
a saddle-node bifurcation.

Blue-sky bifurcations are the creation or annihilation of two fixed points as a parameter 
is varied and the stability of this fixed point is sometimes called half stable since it attracts 
some of the state space and repels some. Figure 1.2b is a bifurcation diagram that plots 
the nontrivial fixed points as the two parameters, r and k, are varied. The projection of the 
bifurcations on the rk-plane depicts two lines that form a cusp. If system parameters are 
set to values between the two lines, then the system has a bistable configuration.
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Figure 1.2: Logistic growth minus a predator response. (a) Flow of the population, Eq. 
(1.5), for different values of the intrinsic growth rate r ∈ {0.35,r1,0.41,0.45,0.5,r2,0.58}, 
where r1 and r2 are the bifurcation points and k = 10. (b) Bifurcation diagram with the 
fixed points as a function of system parameters, r and k. Fixed points are depicted with 
dark color and the bifurcations are depicted with red color and projected onto the rk-plane.

1.2.2 Example: Two-Dimensional Flows

Consider the two-species food chain with a Holling's type II predator response, species x 
has a logistic growth and its predator, species y, is affected with natural mortality 

η is called an assimilation coefficient, and h is the half-saturation parameter.
The trivial fixed points are (x*,y*) = (0,0) and (k,0). The nontrivial fixed points are 

calculated from the intersections of the two nullclines. The x-nullcline is the curve for which 
x = 0

The y-nullcline is the curve for which y = 0

The stability of these fixed points are acquired from the linearization of the system
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(Strogatz; 2018). Consider the system 

with a fixed point at (x*, y*). A Taylor expansion about the fixed point, using (x, y)=(x* + u, 
y* + v), yields the linearized system

The matrix of partial derivatives is known as the Jacobian matrix and has two eigenvalues, 
λ1 and λ2. If the eigenvalues are distinct, two linearly independent eigenvectors (v1 and v2) 
span the state space and the perturbation evolves as a linear combination of the eigenvectors,

If the eigenvalues are purely real and both negative, then the fixed point is a stable node and 
the system asymptotically approaches the fixed point at a rate corresponding to the largest 
eigenvalue (slowest eigendirection). If both eigenvalues are positive, the fixed point is an 
unstable node. If one eigenvalue is positive and the other is negative, then the fixed point 
is called a saddle point and a typical perturbation will move away from the fixed point. If 
the eigenvalues are complex, then they are conjugate to each other and the state will evolve 
in time t as logarithmic spirals near the fixed point. In other words, time series represent 
exponentially decaying oscillations, if the real part is negative, and exponentially growing 
oscillations, if the real part is positive (Strogatz; 2018). The imaginary part quantifies the 
angular velocity.

Figure 1.3a is a bifurcation diagram that plots the fixed points and their stability as the 
half-saturation h is varied. For small h, the fixed point is an unstable spiral and typical 
initial conditions approach the stable limit cycle. Increasing h decreases the size of the limit 
cycle until the limit cycle collides with the fixed point at the critical h value, where the fixed 
point suddenly becomes a stable spiral. This critical parameter is called a supercritical Hopf 
bifurcation point. At the Hopf bifurcation point the two conjugate eigenvalues cross the 
imaginary axis, Fig. 1.3b.
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Figure 1.3: Bifurcation diagram and eigenvalues of a two-species food chain. a) Bifurcation 
diagram, Eq. (1.8). The Hopf bifurcation occurs at h ≈ 0.292. Traj ectories for a set of nine 
initial conditions are shown as thin, black lines for two different values of h, {0.27,0.45}. b) 
Eigenvalues of the Jacobian in the complex plane for each value of h, with I m the imaginary 
part and Re the real part. k = 1, η = 0.333, and r = 1.

1.3 Lotka-Volterra Competition

Large or poorly-parameterized systems are unsuited for conventional analysis, but ab
stract techniques can be employed for some analysis such as generalized modeling (GM) 
(Gross and Feudel; 2006), the primary focus of this thesis. To become accustomed with the 
basic mathematical framework of GM and introduce how it can be employed for scientific 
analysis, we consider a system with two competing species. First, a conventional analysis of 
a specific model is conducted in both a geometric and an analytic way. Following that, an 
alternative approach is used on the specific model that mimics the mathematical framework 
of GM before the fully-generalized Jacobian of such systems is derived.
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1.3.1 Specific Model

In the early 20th century, Alfred Lotka, Vito Volterra, and Georgii Gause played sig
nificant roles in establishing modern ecology as a rigorous scientific discipline. They were 
the first to explore interspecific competition through quantitative methods (Volterra; 1926; 
Lotka; 1932) and these foundational contributions have been re-released in Gause (2019). 
The model that we discuss here is derived from these works and describes two species com
peting for resources, with each having logistic growth and a loss term that depends linearly 
on the competition. This model is known as the Lotka-Volterra competition equations.

where Xi ≥ 0 and ri, ki, ai > 0. The ri is the growth rate and ki is the carrying capacity of 
Xi. The competition coefficient, ai, represents the interspecific competitive impact Xj has 
on Xi relative to the intraspecific competitive impact Xi has on itself, with i,j ∈ {1, 2}|i = j. 
The trivial fixed points are (X1*, X2*) = (0, 0), (0, k2), (k1,0). An isocline is a curve for which 
all the solutions of the ordinary differential equation intersecting that curve have the same 
slope. The isoclines can be found with X2∕X1 = dX2∕dX1 = C, for some constant C. The 

Xi-nullcline is the curve for dXi = 0. The nullclines that determine the nontrivial fixed point 
are 

and yield a fourth fixed point

If a1 a2 = 1, the nullclines are parallel and the equations of motion can be written in the 
form

In this case, the species are competing for the same food source and both species together 
decrease the quantity of food by h1x1 + h2x2. Figure 1.4 displays three scenarios in which 
a1a2 = 1. In the first scenario, Fig. 1.4a, the nullclines are the same and a line of Lya
punov stable fixed points exists. In the other scenarios, if one species has even the slightest 
advantage over the other, then the superior species will ultimately displace the competition 
entirely and hold the field in absolute monopoly, a phenomenon referred to as competitive
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exclusion.

Figure 1.4: Isocline diagram and phase portraits for the competition model with single shared 
resource, Eq. (1.19). a) Nullclines are identical, b) parallel nullclines with a1 = a2 = 1 and 
increased k2, c) parallel nullclines with a1 < a2. Isoclines are black with slope constants 
±{1000, 100, 10, 1,0.1,0.01, 0.001} and the two nullclines are thickened. The trajectories are 
colored depending on which fixed point they are attracted to. Initial conditions of trajectories 
include 20 points at a radius of 0.1 from the origin and 20 points at a radius 2 from the 
origin.

Figure 1.5: Isocline diagram and phase portraits with the saddle point (a) and stable node 
cases for moderate disassociation (b) and largely disassociated with a1, a2 ≪ 1 (c). Isoclines 
are black with slope constants ±{1000, 100, 10, 1,0.1,0.01,0.001} and the two nullclines are 
thickened. The trajectories are colored depending on which fixed point they are attracted 
to. Initial conditions of trajectories include 20 points at a radius of 0.1 from the origin and 
20 points at a radius 2 from the origin.

If a1a2 = 1 then a fourth nontrivial fixed point exists. If that fixed point is in the negative 
space, competitive exclusion still occurs. If the fourth fixed point is in the first quadrant of 
the state space and a1a2 > 1, then it is a saddle point, Fig 1.5a. This may describe a system 
in which both species operate from some mechanisms in which an adversary's presence is
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Figure 1.6: Phase portraits of competition model featuring trajectories in black, X1-nullcline 
in blue, X2-nullcline in red, and shading of the domains of attraction for different fixed 
points. The blue shading covers the initial conditions attracted to the point (k1,0), the red 
shading covers the initial conditions attracted to the point (0,k2), and white covers the initial 
conditions attracted to the nontrivial fixed point. The arrows on the nullclines depict the 
flow at those points. a) The nontrivial fixed point, at the intersection of the nullclines, is a 
saddle point, b) X1 out-competes and eradicates X2, c) X2 out-competes and eradicates X1, 
d) The nontrivial fixed point is a stable node and both species coexist.

more inhibiting to growth than the presence of a member of its own tribe. Either species 
has a chance of monopolizing the system. If an invader wishes to overtake a system already 
populated by a native species, the non-native species must invade with large enough numbers 
otherwise the native species will overcome the threat and take back full control.

If the fourth fixed point is in the first quadrant of the state space and a1a2 < 1, then it is 
a stable node and both species will co-inhabit the system, Fig 1.5 b and c. This may describe 
a system in which the non-native species supplements its food with an alternative source 
that the native species has less preference for or less access to. The more they disassociate, 
the larger the populations get at steady state until they have no shared resource and become 
uncoupled at a1 = a2 = 0; both species populations approach their respective carrying 
capacities.

Geometric analysis of the nullclines, Fig. 1.6, reveals regions in the parameter space 
characterized by different dynamics. Analyzing the sign of the velocities on the nullclines 
allows a convenient way to visualize the qualitative flow. Figure 1.6a has the fourth fixed 
point in the first quadrant but the local flow is directed away from it and trajectories approach 
either the (0,k2) or (k1,0) fixed point depending on initial conditions. If the nontrivial fixed 
point does not exist in the first quadrant, then one species will out-compete the other and 
the system will come to rest at the carrying capacity of the winner; referred to as competitive 
exclusion, Fig. 1.6b and c. If it is stable, then both species coexist. The flow is directed 
toward the nontrivial fixed point when both conditions,
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where τ is the trace of J and also the sum of the eigenvalues of a square matrix, and ∆ is 
its determinant (product of eigenvalues),
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for i,j ∈ {1, 2}|i = j, are true. Then the nullcline intersection is in the first quadrant and 
both species persists for all time, Fig. 1.6d. Compactly written

1.3.2 Conventional Nondimensionalization

A traditional approach defines the nondimensional variables

and the equations of motion become

where ηi = aikj /ki. The nontrivial steady state is given by

and is positive in biological systems. The Jacobian in the steady state is

The characteristic equation is quadratic in λ with roots equal to the eigenvalues of J ,



A zero-eigenvalue bifurcation occurs when one of the eigenvalues is zero, i.e. ∆ = 0. There
fore, the bifurcation points have η1η2 = 1, Fig. 1.7a. The nontrivial fixed point is stable 
when η1η2 < 1 and it is a saddle point otherwise.

Conventional nondimensionalization reduces the number of parameters and finds higher 
order, effective parameters ηi that divide the parameter space into different dynamical re
gions.

1.3.3 Normalizing Nondimensionalization

For the familiarization with generalized modeling, a similar analytic is done for the specific 
model, but instead with the trademark transformation of generalized modeling. Assume 
Xi* = 0 and consider the nondimensional variable

which normalizes the state variables to the nontrivial fixed point. With this transformation, 
Xi* may be treated as unknown yet xi* = 1. The equations of motion, Eqs. (1.15) and (1.16),
become

Define four parameters μi ≡ Xi*/ki and μi ≡ aiXi*/ki for i,j ∈ {1, 2}|i = j and rewrite Eq.
(1.31),

In the steady state, total in-flow equals total out-flow, hence μi + μi = 1. The Jacobian has 
its diagonal elements ∂xi∕∂xi = ri(1 — 2μi — μi) = -riμi, and the matrix becomes

with determinant ∆ = r1 r2(μ1μ2 — μ1μ2) = r1r2(μ1 + μ2 — 1) and a negative trace for positive 
μ1 and μ2. The zero-eigenvalue bifurcation points have μ1 = 1 — μ2, Fig. 1.7b. The fixed 
points are stable when
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and saddle points otherwise. Equation (1.35) can be rewritten into Eq. (1.20). This approach 
compacts the entire set of nontrivial, positive fixed points into the space defined by μi ∈ [0,1].

Figure 1.7: Bifurcation diagrams of conventional and normalizing nondimensionalization. 
Saddle points are exhibited in regions 1 and 2, species X1 has a monopoly in 3 and 4, 
nontrivial stable nodes are found in 5 and 6, and species X2 has a monopoly in 7 and 8. a) 
Conventional nondimensionalization: The bifurcation line is gray and the black dot is the 
bifurcation point for direct transitions between saddle point and stable node. b) Normalized 
nondimensionalization: The zero bifurcation line is the thick black line, the red dot is the 
boundaries between regions 2 and 3 or regions 6 and 7, and the blue dot is the boundaries 
between regions 4 and 5 or regions 8 and 1.

1.3.4 Generalized Model

In a generalized modeling context, we expand the system to the general class of equations 
of the structure

with gain Si, intraspecific loss Mi, and interspecific loss Li. The gain and loss terms are 
unspecified, therefore the fixed points are unknown. Assuming there is a nontrivial fixed 
point, we consider the transformation of the state variables normalized to the fixed point
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and write the system in terms of the normalized functions,

to get the system in the form

with i ∈ {1,2}. The unknown steady state is now located at the point (x1*, x2*) = (1,1). The 
normalized functions at the steady are also known, s* = m* = li* = 1.

At the steady state, the sum of the gain terms equals the sum of the loss terms. Use this 
to define the characteristic timescales

These are the turnover rates. If the currency of the system is abundance, then αi is the per 
capita birth and death rates or the reciprocal of the average lifetime of an individual. If the 
currency is biomass, then the turnover rate corresponds to species' metabolic rates typically 
following allometric scaling laws. We factor out the timescale parameters and consequently 
the weighting of the flows is made explicit. The system is now in the form

where

σi =1 since it is the only gain term. μi is the proportion of total loss that is due to
intraspecific competition, and μi is the proportion from interspecific competition.

After rescaling time, Eq. (1.42), τ = αιt, and defining α = α2∕α1, we can reduce the
parameter space by one. The Jacobian evaluated at the steady state has elements
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The nonlinearity parameters are

The Jacobian is parameterized by only the proportional flows (scale parameters) and the non
linearity parameters that are determined from a suitable range from biologically motivated 
functional forms. The exact details of the functional forms do not enter.

1.3.5 Connecting the Generalized Model to the Specific Model

The feature that sets generalized modeling apart from other abstract analyses is that 
the set of generalized parameters can be made less abstract by assuming specific functional 
forms thus reducing the model to any degree of specificity. The entire set of generalized 
parameters can be completely determined for a specific model if so desired. The specific 
model of Eqs. (1.15) and (1.16) have
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with i,j ∈ {1, 2}|i = j. The normalized functions, Eq. (1.39), give

and nonlinearity parameters, Eq. (1.45), yield

Note, the coefficients, ri, ki, ai, do not appear in the normalized functions. The nonlinearity 
parameters of generalized modeling are the derivatives of these functions evaluated at the 
steady state and become the exponents of power laws; hence, they are sometimes called 
exponent parameters.

The timescale parameters, Eq. (1.41), are

which implies X* + aiXj* = ki. The other scale parameters, Eq. (2.10), that describe the 
relative weighting of interspecific and intraspecific competition out-flows to the total out-flow



are

respectively. Entering these parameters into Eq. (1.42), we regain the nondimensionalized 
equations of motion, Eq. (1.32), and the corresponding Jacobian, Eq. (1.33).

1.4 A Different View of the System: Combining Processes

In generalized modeling (GM), identifying the gain and loss terms is a fundamental 
component to interpreting generalized parameters and tracking details on the relative flow 
magnitudes for each process. For instance, consider the Lotka-Volterra (LV) competition 
model, Eqs. (1.15) and (1.16). The growth flow increases linearly as the quantity of the 
species increases. Two flows are contributing to the total loss of the species. The scale 
parameters are the relative weighting between the loss due to intraspecific competition and 
the loss due to interspecific competition. Increasing the size of a system increases the number 
of generalized parameters. Considering more complex functional forms, the nonlinearity 
parameters cover a range of possible values. Exploring the parameter space becomes more 
of a statistical problem. A number of assumptions can be made to reduce the parameter 
space for more tractable analyses. For example, assuming some causes of loss about a single 
species are orders of magnitudes greater than other causes permits the negation of some scale 
parameters, or assuming symmetry in the system such that many species share the same 
sensitivity to a common process. In effect, these assumptions narrow the dimensionality of 
the parameter space expediting physical inferences.

Another way to combat the size of the parameter space is to combine related terms from 
the original structure of the differential equations. For instance, combining processes of a 
population that are independent of any other population (uncoupled parts). The uncoupled 
parts of the previous example, Eqs. (1.15) and (1.16), are grouped into the logistic function, 
Eq. (1.4). The logistic function combines the linear gain term from exponential growth and 
the quadratic loss term from intraspecific competition into a single gain term that we call 
production. In general, it is good practice to avoid combining gain and loss terms since the 
combined function may become zero or flip sign which creates singularities in the parameter 
space. However, with caution to restrict the study within defined parameter regions, the 
model remains valid. Doing this to the competition example restructures the general class 
of equations into

Xi = Pi(Xi) - Li(Xi,Xj). (1.51)

Each species has a positive gain term that represents its own production and a loss term
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Figure 1.8: Production flow and exponent parameter functions. a) Production growth, Eq. 
(1.54), and b) corresponding exponent parameter of production, Eq. (1.55), for k = 3, r = 1, 
and varying c.

that captures the detrimental effects from the presence of its competition. The normalized 
nondimensionalized form is

with a Jacobian

where α = α2∕α1. Pi(Xi) could be any specific functional form. For instance, suppose 
both species face additional challenges to grow when populations are small. There are many 
mechanisms that can cause this effect: Cooperation in changing an environment to make for 
more suitable living conditions, safety in numbers from predation, difficulty finding mates in
under-crowded environments, overall fitness decreased from inbreeding, etc. These are some 
examples that can give an Allele effect. A typical form that simulates an Allele effect (Wang
et al.; 2020) is

where ci ≥ 0, Fig. 1.8a. The exponent parameter for the production term with Allele effect
is

Fig. 1.8b.
Additionally, suppose species 1 is so much more efficient at depleting the shared resource 

than species 2 that the amount of shared resources depleted by species 2 is negligible com
pared to the amount depleted by species 1. However, species 2 is still a cause of loss for
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species 1. Suppose species 2 is so much bigger than species 1 that species 2 is destructive 
for species 1 through trampling. Thus species 2 must have an encounter with species 1 to 
contribute to the loss of species 1. The number of encounters per-capita species 2 is directly 
related to the quantity of species 1. Thus, the nonlinearity of interspecific competitive loss 
of species 1 with respect to species 1 is one when species 1 is in low quantities. However, 
the foot size of species 2 is only so big, thus only a finite quantity of species 1 can fit under 
the feet of species 2. When the population of species 1 is very large, species 2 will be tram
pling as much as possible and further increase in species 1 population will not change how 
many individuals species 2 is trampling. In this extreme case, the loss of species 1 will have 
saturated and is no longer dependent on the quantity of species 1. This scenario results in 
a zero nonlinearity. It will be assumed that the nonlinearity of loss of species 1 with respect 
to itself, l1(x1) , can be anywhere from zero to one.

The rest of the processes are taken to be consistent with Lotka-Volterra competition. 
I.e., the loss of species 2 due to interspecific competition with species 1 is linear in X1 and 
linear in X2, l2(x1) = l2(x2) = 1. The loss of species 1 due to species 2 is linear in X2 as the 
number of encounters is directly related to quantity X2, l1(x2) = 1. After these assumptions, 

the Jacobian at steady state becomes

Determining when the determinant is zero, gives solutions of a zero eigenvalue; then a 
zero-eigenvalue bifurcation surface is at

Figure 1.9 displays the zero-eigenvalue bifurcation surfaces. The vanishing of the trace 
can lead to Hopf surfaces; but in this case, it does not since the determinant remains neg
ative, indicating a symmetric pair of real numbers. The plane described by l1(x1) = 1 and 
p(1x1) , p(2x2) ≤ 1 represents fixed points for the LV competition model, Eqs. (1.15) and (1.16), 

by varying ai and ki such that there is a fourth fixed point in the first quadrant of the state 
space.

(xi)When both species are in low quantities they have a nonlinearity of production, pi(xi), 
bigger than one and as large as two. If the Allele effect is strong on species 1, then their 
population can get bigger and still have a large p(1x1) . In such a scenario, there could be a 

nontrivial unstable node, a dynamic situation unreachable by the LV competition model. 
Built into this bifurcation diagram is any specific model that has these nonlinearities. That
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Figure 1.9: Bifurcation surfaces of a two-species competition system. Zero-eigenvalue bifur
cation surfaces (black) of competition between two species in which species 2 must actively 
disrupt the activities of species 1, otherwise there is no competitive effect from 2 on 1. The 
fixed points are stable nodes above the upper bifurcation surface, saddle points between the 
bifurcation surfaces in the middle region, and unstable nodes below the lower bifurcation 
surface. Points outside the region outlined by dotted edges are points potentially accessible 
if the species are subject to an Allele effect. Points inside the dotted region are points found 
in models with logistic growth or Allele affected growth. The planes depict stable nodes 
(green) and saddle points (purple) from the LV competition model.

includes logistic growth models, Allele effect models, other forms of production such as those 
in Chapter 3, linear competition terms as in LV competition, or other forms of competition 
that have nonlinearities less than one.

1.5 Synopsis

This thesis focuses on ecological networks as mathematical constructs called generalized 
models. Generalized models are a transformation of a system of differential equations for 
which the exact functional forms of the various processes need not be fully specified or 
parameterized, yet the local dynamics around fixed points is obtainable for any specific 
system that fits the overall class of equations.
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In Chapter 2*, a food-web structuring algorithm is developed that uses the size of the 
network and boundaries of feeding ranges for each species as inputs. An ensemble of abstract 
webs is gathered that consists of web sizes from two to sixty species and an organized range 
of topologies is constructed from varying feeding ranges. A generalized model is created for 
each web and the stability of fixed points is determined for a wide range of dynamically 
possible conditions. The resulting bifurcation diagrams are used to explore overarching 
structural features that strongly correlate to average stability, implications for when systems 
become enriched with a limiting resource, and impacts from small changes to topology from 
single-link additions.

*Chapter 2 is published in Chaos (Awender et al.; 2021)
†Chapter 3 is published in Chaos (Awender et al.; 2023)

Chapter 3† is designed to elucidate the relationship between generalized models and 
specific models on small food webs. Using a variety of specific production terms and two 
topologies , the fixed points of the specific models are transferred into a generalized modeling 
context. Those results are used to vet the validity of common assumptions made on purely 
generalized ecological networks and to discuss the limitations and strengths of a generalized 
modeling approach.

Chapter 4 is on realistic ecological networks derived from Arctic marine ecosystems in the 
Southern Beaufort Sea (SBS). From thirty carefully selected species thought to be ofthe most 
ecologically significant to the SBS ecosystem, thousands of food webs are probabilistically 
constructed based on body-mass ratios. Initially, the webs are constructed from the body
mass ratios based on a crude estimate observed in real food webs that predators often 
feed on prey within a similar relative body-size range. Overarching stability properties 
are tracked as more realistic features are applied to the models, namely the incorporation 
of specialized foraging traits, habitat constraints, and predator preference. Additionally, 
because of concerns that Arctic warming causes ecosystem restructuring, especially due to 
changes in species composition, the stability properties are followed as vulnerable species are 
removed and interloping candidates take their place. As a final piece to the SBS ecosystem 
models, communities are made to reside inside the larger ecosystem to reveal the stability 
effects of a perturbation on the primary web from a weakly-interacting ecological network 
that subsumes the primary web.
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Chapter 2 Stability of Generalized Ecological Network Models

2.1 Abstract

The stability of ecological networks of varying topologies and predator-prey relationships 
is explored by applying the concept of generalized modeling. The effects of omnivory, com
plexity, enrichment, number of top predators, and predatory response are discussed. The 
degree of omnivory plays a large role in governing web stability at steady state. Complexity 
as measured from connectance and network size is not a perfect indicator of stability; large, 
highly connected webs can be just as stable as smaller, less connected ones. Learning behav
ior as expressed in a Holling's type III predatory response is stabilizing for food webs and 
provides exceptions to the paradox of enrichment for some topologies.

2.2 Abstract Extension

Factors that control stability, instability and reorganization of real and model food webs 
are little understood. Food webs are described as ecological networks where the vertices 
represent species and the edges represent predator-prey relationships and encode dynamical 
equations of biomass. Specific functions and biomass initial conditions are largely unknown, 
but are required for conventional food web models to solve for trajectories. Generalized mod
eling requires less information and provides a powerful approach for understanding network 
stability in poorly characterized systems. A series of generalized models are developed to 
investigate how different factors like omnivory, network complexity, and types of predator
prey relationships either stabilize or destabilize a food web's steady state. Consequences of 
individual factors are not always unique across networks. E.g., while adding omnivory to 
a short food chain with three or four species has a stabilizing effect, omnivory destabilizes 
steady states in longer food chains.

2.3 Introduction

Ecological food webs can be represented as networks, and such representations are a cen
tral idea in ecology (Winemiller and Polis; 1996; Newman; 2018). Ecological networks may 
include sink nodes (top predators), source nodes (basal species), and relay nodes (interme
diate species). Basal species can represent autotrophic primary producers or heterotrophic 
herbivores while intermediate and top nodes represent different types of predators. Food 
webs show intermediary types of mixing by body-size (Williams and Martinez; 2000; Rohr 
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et al.; 2010). A predator usually eats prey that is one to four orders of magnitude smaller 
than itself (Woodward et al.; 2005). Larger prey are difficult to kill and smaller prey are not 
worth the effort. This results in body-size stratification of the network.

Ecosystem network models are typically described as a dynamical system using a set of 
ordinary differential equations that govern biomass flows throughout the network (Drossel 
and McKane; 2003; Stouffer and Bascompte; 2010; Fussmann and Heber; 2002). Modelers 
vary parameters or functional forms of the governing differential equations to explore different 
regimes of dynamical behavior such as steady state or oscillatory motion.

It is generally not possible to empirically determine complete descriptions of the processes 
and parameters controlling biomass flows between network nodes. Linear inverse modeling 
(LIM) is one common approach to deal with under-determined ecosystem models, which 
uses mass-balancing and biological constraints at an assumed steady state to estimate the 
unknown flows (Niquil et al.; 2011). In marine ecosystems, the most well-known imple
mentation of LIM is Ecopath (Christensen and Pauly; 1992), a software suite mostly used 
to evaluate ecosystem impact from fisheries (Pauly et al.; 2000). Although this approach 
does generate plausible networks and dynamics, results from inverse modeling techniques are 
highly uncertain (Stukel et al.; 2012).

Generalized modeling approaches, by contrast, have been developed to analyze network 
dynamics without the need to make specific assumptions about all the processes (Gross and 
Feudel; 2004, 2006; Kuehn et al.; 2013). They explore system dynamics across all biologically 
plausible behavior and weighting in the network and are efficient enough to handle large 
network sizes (Gross et al.; 2009; Yeakel et al.; 2014). Generalized modeling does not require 
that interactions between the nodes be well characterized; only the structure of the governing 
equations is presumed. The approach does not presume information about population sizes, 
initial conditions, or detailed functional forms for biomass flows, yet it can compute local 
asymptotic stability properties of steady states and provide a means for evaluating dynamics 
using high-dimensional bifurcation analysis (Gross and Feudel; 2004; Kuehn et al.; 2013).

A perennial issue in real and modeled food webs is understanding how “complexity” 
affects “stability” (Pascual and Dunne; 2006; Elton; 1958; May; 1972). In most cases, “com
plexity” is meant as structural complexity and usually quantified as N C, the size N of the 
network (species richness) times the connectance C (proportion of possible connections that 
actually occur). “Stability” on the other hand is much more ambiguously defined. A nonin- 
clusive list of interpretations of ecosystem stability is: local asymptotic stability, resilience, 
invasibility, persistence, reactivity, and robustness (Pascual and Dunne; 2006). Here, sta
bility describes the linear growth or decay of a perturbation from a steady state in phase 
space. Most observational evidence indicates that increased complexity increases stability,
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yet most mathematical models show that complexity destabilizes webs (Gross et al.; 2009; 
Allesina et al.; 2015).

This paper discusses impacts of topology and predator-prey relationships on the stability 
of ecological networks in a steady state. Section 2.4 introduces food web topology, food web 
dynamics, and the corresponding generalized models. The sensitivity of network stability to 
connectance is explored in Sec. 2.5 by changing prey body-size limits or adding one-link at a 
time. Changes to feeding dynamics (predatory response) affect stability (Sec. 2.6) and offer 
exemptions to the paradox of enrichment (Sec. 2.7). Impacts of the degree of omnivory in 
different sized food webs are discussed in Sec. 2.8. The ratio of intermediate to top predators 
is introduced as a defining property for the complexity-stability relationship, Sec. 2.9.

2.4 Model

2.4.1 Food Web Topology

A food web of N species (network nodes) is constructed by giving each species a unique 
rank, i, based on its body-size relative to all other network members. i = 0 represents the 
smallest body-size and i = N - 1 the largest. The prey body-size upper limit, U, defines the 
largest prey (i-U) that species i consumes, and the prey body-size lower limit, L, defines the 
smallest prey (i -L) that species i consumes, with i -U and i -L non-negative. Figure 2.1 
(a) shows an example for U = 3 and L = 5. Together, U and L describe the feeding range of 
a species. Species i is a predator (consumer) to species j, if their rank difference rij = i - j 
is greater than or equal to U and less than or equal to L. The linking probability between 
species i and j is given by 

with the condition that U ≤ L.
For U = L = 1, the nodes are linked as a chain; species i consumes only the next smallest 

species in the network and is consumed only by the next largest species. This linking rule 
holds across all members in the network, making it a food chain. For L > U , more than 
one prey is available for predatory species, and the connectivity in the network increases. 
More prey species become available as U and L become increasingly different. The upper 
limit U sets both the number of top predators and the number of basal species [Fig. 2.1 
(a)], which are the same. The ratio N/U = (2U + I)/U = 2 + I/U determines the ratio 
of intermediate species I to top predators U , a common measurement in food web studies 
(Briand and Cohen; 1984). Increasing the lower limit, L, increases the connectance and the
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Figure 2.1: Network diagram of a food web of N = 10 species, a prey body-size upper limit 
U = 3, and a prey body-size lower limit L = 5, (a) plotted by rank and (b) plotted by 
niche value. The number inside a node represents the rank of the species, a link represents a 
predator-prey interaction, and the different symbols mark the type of species: top predator, 
intermediate species, and basal species. The special case of a 10-trophic food chain, U = 
L = 1, is superimposed in (a) using the dashed, red links.

degree of omnivory in the system.
The niche value, ni, of species i measures the various paths and their lengths through 

which a species is connected to the bottom of a food web (Brinck; 2014). Basal species are 
defined to have niche values of zero. The niche value of a predator is the average of the niche 
values plus one of all its prey: ni = j(nj + 1)/kiin, where kiin is the in-degree or number of 

prey items for species i, and j is in the set of species ranks that are prey to species i. If the 
10-species food web from Fig. 2.1(a) is graphed instead for niche values, Fig. 2.1(b), the first 
two trophic levels and the niche value distribution can be visualized. Increasing the prey 
body-size lower limit, L, shifts the niche distribution to lower values as omnivory increases.
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2.4.2 Food Web Dynamics

In a food web of N species, the state variable Xi represents the biomass of species i, and 
i ∈ {0,1,...,N - 1}. The change in biomass is governed by a growth from production S 

and predation F and a loss from mortality M and predation L ,
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The state vector X = (X0, ...,XN-1) represents the biomass of each species and η is the as
similation coefficient. Only functional forms are discussed in the following, since generalized 
modeling does not require information on initial conditions or other model parameters.

The total resource Ti available to species i is given by

where Cik is the contribution of species k to the available resources for species i. This study 
assumes no self predation, setting Cii = 0. The functional form of Cik (Xk ) depends on the 
preference of the predator for specific prey and on the success rate of attacks (Gross and 
Feudel; 2006). If species i has no preference in prey types (passive prey switching), the con
tribution of species k is proportional to its population size Xk. Active prey switching or when 
predators must also learn to be more successful hunters introduces another proportionality 
to Xk.

The production growth rate Si is constant when resources are limited and grows lin
early with the number of producers Xi when resources are not limited (Gross and Feudel; 
2006). The mortality Mi is usually modeled as a linear function (Lotka-Volterra predator
prey model) (Strogatz; 2018), a quadratic function (Lotka-Volterra model of competition) 
(Strogatz; 2018), or somewhere in between (Edwards and Bees; 2001).

The predatory growth rate is modeled as

with Ht(Ti) one of the Holling's type functional responses to prey abundance Ti (Fig. 2.2, 
Table 2.1). Predators that continuously search for prey (e.g. filter feeders) follow a Holling's 
type I functional response; H1(T) goes linear with prey abundance T. Predators that require 
additional handling time (e.g. for killing, eating, digesting) follow a Holling's type II func
tional response; H2(T) grows linearly at low prey abundance and smoothly saturates at high



Figure 2.2: Illustration of Holling's type functional responses H1(T), H2(T), and H3(T) to 
prey abundance T, Table 2.1.

prey abundance. Holling's type III functional response exhibits an S-shaped curve that sat
urates for high prey abundance; it applies in situations where predators learn to hunt more 
successfully with more practice or where predators have difficulty getting the remaining prey 
at good hiding spots (Rosenzweig; 1971; Dawes and Souza; 2013). The predatory growth 
term Fi is linear in the predator population Xi, which assumes no intraspecific competition 
(Gross and Feudel; 2006).

The predation loss Lij of prey item i is proportional to the predation growth Fj(Tj, Xj) 
of predator j and the fraction with which prey i contributes to the resources for predator j, 
(Gross and Feudel; 2006)

2.4.3 Generalized Modeling

Generalized modeling (Gross and Feudel; 2006; Gross et al.; 2009) assumes that the 
specific mathematical expressions for S , F, M , and L are unknown except for general 
functional forms. For a nontrivial fixed point X* of Eq. (4.2), i.e. Xi = 0 for any species i, 
the state vector is normalized to its fixed point by
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This maps the unknown fixed point X* ofEq. (4.2) to the known fixed point x* = (1, 1, . . . , 1) 
of the rescaled system, 

with the rescaled functions,

These rescaled functions are normalized to themselves at the fixed point x* = (1, 1, . . . , 1), 
i.e., xi* = si* = fi* = mi* = li*j = ti* = cj*i = 1. The total influx (growth) is equivalent to the 
total outflux (loss) at the fixed point [Eq. (2.6)]. This defines the characteristic time scale 
parameter αi, 

which has dimensionality of inverse time. This quantity can be thought of as the per capita 
birth or death rate, or the inverse of an individual's life expectancy. Pulling out the charac
teristic time scale from Eq. (2.6) yields
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and after inserting lij(x) becomes the working equation of motion in its “non-dimensionalized 
form”,

with σi,ϕi,μi,λi,βij,γij representing proportions of biomass flow, and αi the only dimen
sional term defining the time scale of the system.

The links in the web are weighted by the scale parameters,

source (production) growth to total growth of species i, andσi is the relative weight of the
ϕi is the relative weight of predatory growth to total growth of species i. μi is the relative 
weight of natural mortality to total loss of species i, and λi is the relative weight of predatory 
loss to total loss of species i. γij is the relative weight of predatory gain from species j to 
the total predatory gain of species i. βij is the relative weight of predatory loss from species 
j to the total predatory loss of species i. Each scale parameter is the scalar coefficient of 
some convex combination, i.e., a linear combination where non-negative coefficients sum to 

one. The coefficient sets of the convex combinations are {σi,ϕi}, {μi,λi}, {βi,ι,..., βi,N}, 
{γi,1, ..., γi,N}.

The stability of an equilibrium of the food web in Eq. (2.9) is determined by the sign of 
the real part of the eigenvalues of the Jacobian matrix evaluated at the fixed point x*. For 
the case of no cannibalism (cii = βii = γii = 0), the diagonal elements of the Jacobian at the 
steady state are
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and the off-diagonal elements are

The five exponent parameters are generally defined as

with ξ ∈ {xi, li}. They describe the nonlinearity of process G (X) with respect to ξ, where 
g(x) = G(X*x)∕G* analogous to Eq. (2.7). As an example for deriving an exponent pa
rameter, consider a growth term G(X, Y ) = aY X3. Then the rescaled function [Eq. (2.7)], 
g(x, y) = G(X, Y )/G(X*, Y *) = yx3, yields the exponent parameters g(x) = 3 and g(y) = 1 

from Eq. (2.13). Further examples are given in Table 2.1.

Table 2.1: Examples of functions G(X) and their corresponding exponent parameters g(x).

§ Generalized Parameters: Assumptions and Interpretation

The stability of the steady state of the food web [Eqs. (2.11) and (2.12)] depends only 
on the time scale parameter αi [Eq. (2.8)], the scaling parameters [Eq. (2.10)], the exponent 
parameters [Eq. (2.13)], and the topology of the web. Therefore, making assumptions on 
body-size distribution, proportion of biomass flows, nonlinearities of functional forms, and 
connectance of species determines this stability without the need for initial conditions or 
specific forms.

The characteristic timescale αi is the inverse of an organism's life expectancy, which 
is expected to increase with body-size mi. An exponential dependence, αi = αsmi and 

αs = 0.008, is commonly applied (Gross et al.; 2009). The body sizes are chosen such that 
their histogram fits a beta distribution B(a = 0.5, b = 2).
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The scale parameters [Eq. (2.10)] quantify the proportions ofbiomass fluxes at the steady 
state. The following assumptions are made: The biomass of basal species grows only from 
production (σ=1) and decreases only from predation (λ=1); growth from predation is absent 
(ϕ=0) and natural mortality is neglected in comparison to predation (μ=0). Populations 
of intermediate species grow from predation (ϕ=1) and decline from predation (λ=1). A 
top predator population grows only from predation (ϕ=1) and decreases only from natural 
mortality (μ=1). Hence the proportions for σ, φ, μ, and λ are either ones or zeros [Table 2.2]. 
βij (γij) represents the proportion of the jth species contribution to the predative loss (gain) 
of species i. Each predator (prey) species is assumed to contribute the same amount as its 
competitors to predative loss (gain). As an example, if X1 has 4 predators, each predator 
contributes 25% to the total predative loss of X1. Similarly, if X4 consumes X3, X2, and 
X1, then γ43 = γ42 = γ41 = 1/3. In other words, βij represents the inverse of the in-degree 
of node i, and γij represents the inverse of the out-degree of node i. The scale parameters 
are summarized in Table 2.2.

Table 2.2: Summary of the assumptions for the scale parameters for top, intermediate, and 
basal species. kiin is the in-degree of node i, and kiout is its out-degree. βij = 0 = γij in the 
absence of a link between i and j.

Parameter Value Node Type Proportion of Flux
σi ϕi μi λi

αi 0.008mi Top 0 1 1 0
βi-j1 k out Intermediate 0 1 0 1
γii-jj1

ij
kinki Basal 1 0 0 1
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(xi)The exponent parameter, S ≡ si(xi), describes the nonlinearity of the production rate 

Si(Xi) of basal species (Gross and Feudel; 2006). When production is limited by resources 
or nutrients, the production rate is constant with respect to the population of the basal 
species, S = 0. When resources are plentiful, production goes linear, S = 1. In this study, 
S takes on values between zero and one, S ∈ [0, 1].

The nonlinearity of natural mortality, M ≡ mi(xi), in top predators is often referred to as 

the exponent of closure (Edwards and Bees; 2001). Linear to quadratic mortality functions 
have been shown to describe biological systems (Edwards and Bees; 2001; Lan and Li; 2008). 
This corresponds to values for M between one and two, M ∈ [1, 2].

The predatory growth term Fi(Ti, Xi) [Eq. (2.3)] depends on the available prey Ti and 
on the predator itself Xi. Since Fi is linear in Xi, the nonlinearity of predation with respect 
to the predator itself, fi(xi), is equal to one. The prey dependence is of Holling's types 
and the nonlinearity of predation with respect to prey, fi(ti), follows from Table 2.1. The 

nonlinearity range of H3(T ) with p = 2 varies between two, when prey is scarce, and zero,



as prey becomes very abundant, F ∈ [0, 2]. Analogously, the nonlinearity range of H2(T) is 
given by F ∈ [0,1], and F = 1 for H1(T).

The nonlinearity of predator preference for prey, ci(kxk) , is one for passive prey switching 
and two for active prey switching. Here, ci(kxk) = 1 is used. The exponent parameters are 

summarized in Table 2.3.

Table 2.3: Summary of exponent parameters and their range of nonlinearities.

Exponent Parameter 
Parameter

Alias Nonlinearity of Range

s(xi) 
si S basal growth [0.1]
f(xi) - predation w.r.t. predator itself 1
fi(ti) F predation w.r.t prey [0,2]

(xi) mi(xi) M mortality (top species) [1,2]
c(xk)
cik - prey switching 1

§ Stability Profiles

Throughout this paper, steady states of a food web are discussed as a function of three 
main nonlinearity (exponent) parameters, basal growth (production) S, feeding (predation) 
gain F , and mortality of the top predator M. The stability profile color-codes the stability of 
the steady states as a function of two or more of these parameters for a given network topology 
[Fig. 2.3]. Since the dependence of the stability profiles on the mortality M is generally low 
compared to the dependence on the production S and feeding gain F parameters [Fig. 2.3 
(a)], a superimposition of two-dimensional profiles in S and F for several M values is used 
for the analysis [Fig. 2.3 (b)]. In some stability profiles M is fixed. The proportion of stable 

equilibria P of a particular food web topology is the number of stable equilibria divided by 
the total number of sample points.

2.5 Sensitivity to Topology

This section provides an overview of stability profiles as connectivity in the network 
changes by varying the prey body-size upper and lower limit (U, L). Small changes to 
topology can have a dramatic impact on a stability profile. A network that has no stable 
steady state (for all combinations of exponent parameters S, F, and M, Table 2.3) can 
switch to a network with a large portion (e.g., 50%) or an intermediate portion (e.g., 10%) 
of stable steady states by changing the prey body-size lower limit L by one. This sensitivity 
to L is visible from the proportion of stable equilibria P in Fig. 2.4(a) or from the stability
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Figure 2.3: Stability profile for equilibrium states as a function of the nonlinearity param
eters, basal growth S, feeding gain F , and mortality M for a network of N = 30 species, 
prey body-size upper limit U = 5, and prey body-size lower limit L = 12. Unstable (stable) 
equilibria are marked in light gray (dark gray). The three-dimensional plot (a) is simplified 
to a two-dimensional superimposition (b) of ten equidistant slices from (a) parallel to the 
S - F plane. Prey availability increases to the right on F -axis, and production increases 
upwards on S -axis.

profiles in Figs. 2.4(b)-(d). Some regularities in the fluctuations of stability exist. For the 
lower range of L-values, the peaks in the proportion of stable steady states P occur with a 
periodicity of (about) U ; this is why the stability profiles in Figs. 2.4(b)-(e) are arranged 
with the number of columns equal to U . For some intermediate L-values there is no stable 
steady state. As L increases further until it approaches its upper bound of N - 1, a certain 
proportion of stable steady states is regained.

Networks with more than one top predator (basal species), U > 1, have large portions of 
stable steady states for L-values near their upper and lower bounds (e.g., Fig. 2.4(b)). As 
the number of top predators (and basal species) U increases, larger portions of stable steady 
states appear for more intermediate L [Figs. 2.4(c) - (d)], until a large portion of stable 
steady states is reached for all L at (or near) the upper bound on U [Fig. 2.4(e)]. The upper 
bound on U is N/2 (truncated to integer value; otherwise the network is disjoint). For even 
N , the webs are comprised of top predators and basal species, and no intermediate species. 
Depending on the prey body-size lower limit L, a top predator consumes one or more basal 
species. For such webs the stability profiles are no longer sensitive to L, are (nearly) identical 
to that of a 2-trophic food chain, and have the largest portions of stable steady states among
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Figure 2.4: (a) Proportion of stable equilibria P for a network of N = 30 species and different 
topologies, defined by the prey body-size lower limit L, U ≤ L ≤ N - 1, and the prey body
size upper limit U . P is measured over the biological range of nonlinearities of the gain and 
loss mechanisms, (S, F , and M) from Table 2.3. Stability profiles for the webs from (a) for 
U = 3 (b), U = 4 (c), U = 5 (d), and U = 15 (e). The number of columns in each subfigure 
is U . L increases from left-to-right and top-to-bottom, following script directionality. For 
axes and color information see Fig. 2.3(b).

the webs explored in this research [Fig. 2.4(e)].
An increase of the prey body-size lower limit by just one, from L to L + 1 adds N - (L + 1) 

links to the network, which can substantially change the connectance for large N and small 
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L. If L is close to N, few links are added, and Figs. 2.4(b)-(e) demonstrate that the change 
in stability is small in these cases. Changing L by one, occasionally results in dramatic 
fluctuations in the stability profiles (discussed above) that are accompanied by larger changes 
in connectance. In the following, the topology is changed gradually (one link at a time) to 
test whether the proportion of stable steady states P changes gradually as well. From 
the numerous permutations to sequentially add a set of links to a network, two orders are 
considered [Fig. 2.5]. Either starting with the largest species and going sequentially down 
the ranks to add predatory links, or, starting with the predator that is ranked L + 1 near 
the bottom of the web and going sequentially up the ranks to add predatory links.

Figure 2.5: Two options to add links one at a time: The network (N, U, L) = (4, 1, 1) (left) 
evolves into the network (N, U, L) = (4, 1, 2) (right) by adding links from the top down 
(upper path) or from the bottom up (lower path).

Changing the network topology one link at a time can show smooth changes in P but also 
dramatic change. Figure 2.6 shows an example for a dramatic increase in stable steady states, 
from P = 0 to P ≈ 0.5 when the network topology changes from (N, U, L) = (30, 5, 17) to 
(30, 5, 18). If the twelve links are added one at a time and from the top down, the entire 
change in stability occurs with the very last link addition [Fig. 2.6(a)]. Ifthese links are added 
from the bottom up, the first link produces already measurable stability and the second link 
results in a profile that is qualitatively similar to the final profile [Fig. 2.6(b)]. The first 
link of the bottom up order and the last link of the top down order represent the same 
link, which indicates that this particular link is crucial for stability. Figure 2.7(a) shows an
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Figure 2.6: Sequence of stability profiles for a network change from (N, U, L) = (30, 5, 17) to 
(30, 5, 18). (Twelve) links are added one at a time (a) from the top down and (b) from the 
bottom up. For axes and color information see Fig. 2.3(b).

Figure 2.7: Sequence of stability profiles when links are added one by one from the top 
down. The network topology changes (a) from (N, U, L) = (30, 4, 9) to (30, 4, 10) and (b) 
from (N, U, L) = (30, 5, 14) to (30, 5, 15). For axes and color information see Fig. 2.3(b).

example where the proportion of stable steady states approximately triples with a topology 
change from (N, U, L) = (30, 4, 9) to (30, 4, 10). Adding the twenty links sequentially reveals 
a hidden and profound dip in stability after a few links are added. Figure 2.7(b) shows an 
example where the proportion of stable steady states is zero and stays zero when the topology
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is changed from (N, U, L) = (30, 5, 14) to (30, 5, 15). Adding the fifteen links sequentially 
reveals a hidden spike in stability over a large portion of the sequence.

2.6 Predatory Response and Stability

Stability profiles with the most occurrences amongst the different topologies are catego
rized by shape: “50/50 block” [Fig. 2.8(a)], “cantilever” [Fig. 2.8(b)], “3/4 block” [Fig. 2.9(a)], 
“tongue” (Fig. 2.7, top left), and “completely unstable profile” (Fig. 2.7, second row).

“50/50 blocks” [Fig. 2.8(a)] are characterized by stable steady states for greater than 
linear feeding responses F , which are accessible for a Holling's type III predatory response in 
low prey abundance (Fig. 2.2). Steady states are unstable for large prey abundance (F < 1 
in Holling's types III). If the predatory response in the network is modeled with a Holling's 
type II function where F ∈ [0, 1], steady states are unstable for both, low and high prey 
abundance. “50/50 blocks” and similar patterns show up throughout topologies and network 
sizes; they are typical for long food chains.

Figure 2.8: Typical stability profiles: (a) “50/50 block”, (N, U, L) = (5, 1, 2), and (b) “can
tilever”, (N, U, L) = (30, 6, 9). A path of enrichment (Sec. 2.7) is highlighted. Mortality is 
quadratic, M = 2.

“Cantilevers” [Fig. 2.8(b)] are stability profiles with stable steady states only near F = 1 
over a range of production nonlinearities S ; they represent food web topologies with a stable 
steady state only for a linear predatory response to prey (e.g., H1, filter feeders) and limited 
or somewhat limited production. “Tongues” (Fig. 2.7, top left) are fatter “cantilevers” 
that typically exist in the neighborhood of F = 1; in some cases the tongue is located 
in the range F > 1, which is accessible via a Holling's type III functional response. A 
“tongue” pattern has unstable fixed points for F = 2, to distinguish it from “50/50 block” 
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like patterns. A ”completely unstable profile” is defined by P = 0. “Cantilevers”. “tongues”. 
and “completely unstable profiles” are found in the more realistic web topologies which have 
intermediate values of U and L.

A “3/4 block” [Fig. 2.9(a)] has the largest proportion of stable equilibria. P ≈ 0.75 for a 
Holling's type III predatory response. “3/4 blocks” and similar stability profiles are obtained 
from short chains and webs with few to no intermediate species (U ≈ N/2). For a Holling's 
type II functional response. the stability diagram is restricted to F ∈ [0, 1]. and exhibits 
stable steady states for prey and production limited food webs.

2.7 Paradox of Enrichment

Figure 2.9: Stability profiles: (a) “3/4 block”. (N, U, L) = (2, 1, 1). and (b) a special profile. 
(N, U, L) = (30, 6, 8). Paths of enrichment (Sec. 2.7) are highlighted. Mortality is linear. 
M = 1.

Rosenzweig (1971) demonstrated that increasing yield to the exploiting predator. by in
creasing nutrients or carrying capacity of the prey. destabilizes the system in six two-species 
ecosystem models. He called this the “Paradox of Enrichment.” In experimental systems. 
enrichment has been demonstrated to destabilize. stabilize. or neither (Roy and Chattopad- 
hyay; 2007). Mathematical models have generally demonstrated that enrichment destabilizes 
large realistic food webs (Yeakel et al.; 2014). Various authors have presented exceptions 
to the apparent paradox (Abrams and Walters; 1996; Genkai-Kato and Yamamura; 1999; 
Jansen; 1995; Mougi and Nishimura; 2007; Gross et al.; 2004). One important study used 
generalized modeling to demonstrate stabilizing impacts of enrichment for special predatory 
responses (Gross et al.; 2004).

42



A system that is being enriched traces out a path in the parameter space of nonlinearity 
of production (S) and nonlinearity of predation (F ) such that basal production and prey 
availability increases (Fig. 2.9). As nutrients increase in a production-limited system (S = 0) 
the basal population increases and consequentially so do the prey populations. For typical 
Holling's type predatory responses (H2, H3) more abundant prey and a growth of predator 
populations from predation is expressed in a decrease of the nonlinearity parameter for 
predatory gain F , Fig. 2.9(b). For a different and hypothetical predatory response (Gross 
et al.; 2004) an “S-shaped” enrichment path is shown in Fig. 2.9(a); note that the increase of 
F with increasing S would not be consistent with enrichment for a Holling's type predatory 
response.

Stability profiles with a “cantilever” [Fig. 2.8(b)] or “tongue” pattern, or with the special 
pattern in Fig. 2.9(b) provide an exception to the paradox of enrichment in the case of a 
Holling's type III predatory response. A path of enrichment passes through a parameter 
regime with limited production and limited prey for which the stability of the web's steady 
state switches from unstable to stable. Such stabilization through enrichment exists for F - 
values larger than one, a parameter regime that is accessible for a Holling's type III response. 
In contrast, the enrichment path reaches unstable steady states in ecosystems with plenty 
of prey and production, consistent with the paradox of enrichment, and accessible for both 
Holling's type II and III predatory responses (where F ≤ 1)). The stable region of the 
cantilever pattern along the path of enrichment [Fig. 2.8(b)] is bounded on the left by a 
zero-eigenvalue bifurcation and bounded on the right by a Hopf bifurcation [Fig. 2.10(a)]. 
Crossing the zero-eigenvalue bifurcation as the system is enriched turns the fixed point stable. 
The stable region for the stability profile in Fig. 2.9(b) is bounded by Hopf bifurcations along 
the path of enrichment, Fig. 2.10(b).

The superimposition of stability profiles from over 4000 webs (Fig. 2.11) shows that 
the ratio of intermediate to top predators influences stabilization through enrichment. For 
low ratios (I/U < 2) overall stability P is high, and a stable steady state likely becomes 
unstable as enrichment takes place [Fig. 2.11(a)], consistent with the paradox of enrichment. 
For higher ratios, topologies provide exceptions to the paradox since a steady state becomes 
stable with enrichment for superlinear feeding characteristics [Fig. 2.11(b)], i.e. for H3 in 
low prey abundance (F > 1). As for the region encompassing the H2 functional response 
(F ∈ [0, 1]), enrichment causes a rapid decrease in the percentage of stable fixed points to 
yield only unstable fixed points for highly enriched systems, consistent with the paradox. 
Different functional responses would need to be postulated, as the hypothetical curve in 
Fig. 2.9(a), to construct an exception to the paradox in this F-regime.
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Figure 2.10: (real part of complex eigenvalues (green); real eigenvalues (black)) along the
diagonal path of enrichment: (a) for path in Fig. 2.8(b) and (b) for path in Fig. 2.9(b). The 
label “Z” marks a zero-eigenvalue bifurcation while “H” marks a Hopf bifurcation. Between 
“Z” and “H” as well as between “H” and “H”, is negative for all eigenvalues outside of 
the plotting range.

Figure 2.11: Proportion of stable equilibria (P ) versus nonlinearity of basal growth (S) and 
nonlinearity of predation growth (F), calculated from a superimposition of stability diagrams 
from webs of sizes N = 2, 3, ..., 19, 20, 25, ..., 55, 60, with upper limits 1 < U ≤ N/2 and lower 
limits U < L < N. The ratio of intermediate predators to top predators is (a) I/U < 2 
resulting in 2726 webs, and (b) 2 ≤ I/U < 6 resulting in 1745 webs. The vertical line 
represents the path of enrichment for H1 (F = 1). The two diagonal lines represent paths 
of enrichment for H3 (F ∈ [0, 2]) and H2 (F ∈ [0, 1]). Topologies with U = 1 and U = L 
are excluded; networks with U = L = 1 are disjoint, and networks with U = 1 have a long 
predatory pathway of length N - 1 for large N (Williams and Martinez; 2004).
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2.8 Omnivory: Food Chains to Food Webs

Omnivory allows species in a trophic network to feed on resources from multiple trophic 
levels (e.g., Fig. 2.12); its role in stabilization and destabilization of trophic webs is an 
important area of research (Vandermeer; 2006; Holyoak and Sachdev; 1998; Namba et al.; 
2008). For example, in a real invertebrate food web, Fagan found that abundant spider 
omnivores made the web more robust to perturbation (Fagan; 1997). In theoretical net
works, ominvory is the intermediate topology between any three-species networks organized 
as chain, polyphagy (generalist predator) or competition (Vandermeer; 2006); networks tran
sition through omnivory to move between any of these network types. Computer models of 
these three-species webs offer strong evidence that increased omnivory can have either a 
stabilizing or destabilizing impact (Vandermeer; 2006; McCann and Hastings; 1997; Gellner 
and McCann; 2011). Given the equivocal evidence, the role of omnivory to the stability is 
unclear.

Figure 2.12: (a) Tri-trophic chain transition to omnivory, (N, U, L) = (3, 1, 1) → (3, 1, 2). 
(b) Six-trophic chain transition to omnivory, (N, U, L) = (6, 1, 1) → (6,1, 3). The segmented 
arrows are the added links.

A comparison of the stability profiles of a three-species chain to a three-species omnivo
rous web is shown in Fig. 2.13. In the omnivorous web steady states flip from unstable to 
stable over a range of basal production S and feeding gain F nonlinearities. Large increases 
in the real part of the largest eigenvalue are seen for most of the production-limited region 
(S ≈ 0) although this region remained stable, Fig. 2.13(b). Stability profiles for larger food 
chains and various degrees of omnivory are presented in Fig. 2.14. Adding omnivory (with 
prey body-size lower limit L = 2) to a food chain of four species yields a similar increase 
in stable steady states to the 3 species system [Fig. 2.14(a)], except that the region of high
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Figure 2.13: (a) Difference in stability of steady state and (b) difference in real part of 
the largest eigenvalue for a change in topology [Fig. 2.12(a)] from a tri-trophic chain to 
omnivory, (N, U, L) = (3, 1, 1) → (3, 1, 2). S (U) denote a stable (unstable) steady state. 
Positive and negative changes in are scaled differently. The nonlinearity of feeding gain is 
restricted to F ∈ [0, 1], since no change of stability occurred on [1, 2]. Quadratic mortality 
is used, M = 2.

prey abundance is unstable. In a five-species chain, Fig. 2.14(b), creating omnivores (L = 2) 
completely destabilizes all fixed points on this F -range, leading to a “50/50” block over the 
full Holling's type III range, F ∈ [0, 2]. Creating omnivores with L = 2 in a six-species 
chain, Fig. 2.14(b), results in a similar destabilization of fixed points to that of the five 
species case; however, making the omnivores more omnivorous by increasing the lower limit 
to L = 3 re-stabilizes the fixed points for low prey abundance (F ≈ 1 for H2), Fig. 2.14(d). 
The trend that creating omnivores destabilizes longer food chains continues but to a lesser 
degree as N gets large.

Figure 2.15 shows the proportion of stable steady states P for networks with up to sixty 
species and a variety of topologies, ranging from a chain (L = 1) to the maximum degree of 
omnivory (L = N - 1), and assuming a Holling's type III predatory response. Short chains 
have the highest number of stable steady states and their stability profiles are similar to 
a “3/4 block” (P ≈ 0.75); as chain length increases, steady states loose stability and the 
profiles asymptotically approach a “50/50 blo ck”, (P ≈ 0.5). Adding various degrees of 
omnivory to a chain generally destabilizes (a portion of the) steady states. For essentially all 
longer chains than four, creating omnivores (L = 2) makes networks with about a “50/50” 
stability profile, Fig. 2.15(a). As the degree of omnivory increases by increasing the prey 
body-size lower limit L, the portion of stable steady states P generally continues to decline, 
Fig. 2.15(b). For networks of more than twenty species, this decline reaches P = 0, where
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Figure 2.14: Stability flipping for topology change from chain to omnivory, (a) (N, U, L) = 
(4, 1, 1) → (4, 1, 2), (b) (5, 1, 1) → (5, 1, 2), (c) (6, 1, 1) → (6, 1, 2), (d) (6, 1, 1) → (6, 1, 3). 
Quadratic mortality is used, M = 2. The color coding (b) is the same in all panels.

all steady states are unstable. If the prey body-size upper limit U is changed, the trend to 
fewer stable steady states as L increases continues.

2.9 Complexity-Stability Debate and the Ratio of Intermediate to Top Predators

“Ecosystem complexity increases stability” was considered a core ecological principle 
(Pimm; 1984), where complexity is quantified with species richness N and connectance C . 
Still today, most observational evidence indicates that increased complexity increases sta
bility, yet most mathematical models show that complexity destabilizes webs (Gross et al.; 
2009; Allesina et al.; 2015). Law and Blackford (1992) argue that a more connected network 
has more reassembly pathways that allow it to persist. Some theoretical studies show that

47



Figure 2.15: Proportion of stable equilibria P versus network size N for topologies with prey 
body-size upper limit U = 1 and varying prey body-size lower limits L: (a) L = 1, 2. and (b) 
L ∈ [1, N - 1] (color coded). Black dots represent food chains. U = L = 1. Sample points 
for P are based on F ∈ [0, 2]. S ∈ [0, 1] and M ∈ [1, 2].

large connectance or high polyphagy reduces population fluctuations and allow diminishing 
prey populations to recover when predators switch to more abundant prey (Polis; 1998). 
In niche-modeled food webs with large prey abundance. generalized modeling reveals an 
increase of stability for larger networks and larger connectance (Plitzko et al.; 2012).

Figure 2.15 shows that more connectance (larger L) decreases the proportion of stable 
steady states for networks with prey body-size upper limit U = 1. This trend is consistent 
with results for the niche model (Gross et al.; 2009). In contrast. networks with larger prey 
body-size upper limit. U > 1. don't follow a consistent trend (Fig. 2.16). Networks with a 
large proportion of stable steady states P are interspersed with cases of low P over a range of 
complexities; the size of the web N and its connectance C cannot solely be used to predict its 
stability P . For a Holling's type II predatory response. Fig. 2.16(a). networks with large NC 
complexity have predominantly lower portions of stable steady states P . A Holling's type III 
predatory response leads to predominantly high values of P for a range of N C complexities. 
Fig. 2.16(b). A trend that maximum values of P decline linearly with increasing complexity 
persists for higher complexities. but is less pronounced than in food webs with Holling's 
type II predatory response. Large networks with intermediate N C complexity can have the 
stability of a di-trophic chain. the most stable configuration in these models.

A non-monotonic relation between stability and connectance consistently occurs through
out this study. Figs. 2.4(b)-(d) and Fig. 2.17. for large webs (N > 15) and intermediate values 
of U . As connectance increases with increasing prey body-size lower limit L. the stability 
profiles show a decrease in the proportion of stable steady states P to (or to almost) “com-
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Figure 2.16: Proportion of stable equilibria (P ) versus N C complexity for a Holling's type II 
(a) and III (b) predatory response. All networks from Fig. 2.11 with a ratio of intermediate 
predators to top predators, 0 ≤ I /U < 6, are used. Connectance describes the ratio of actual 
links to possible links in the network, C = kL=U (N - k)/(N (N - 1)). Each point has an 
opacity of 0.2.

Figure 2.17: Consistency in stability profiles for same N/U ratios, (a) (N, U) = (30, 3), (b) 
(40, 4), (c) (50, 5), and (d) (60, 6). L increases from U to N - 1 from top to bottom. 
Choosing U columns in each set of profiles demonstrates their similarity. For axes and color 
information see Fig. 2.3(b).

pletely unstable profiles” at intermediate values of L; continuing the increase of L leads to 
stability returning. Figure 2.17 shows this trend across four different sizes of webs. This 
figure also demonstrates that the ratio of N/U predicts the entire set of profiles as L is 
varied.
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A good indicator for stability is the ratio of intermediate predators to top predators. The 
ratio N/U is the ratio of intermediate predators to top predators I/U plus two (Sec. 2.4.1). 
Smaller ratios N/U correspond to webs (stability profiles) that have on average a larger 
portion of stable steady states, Figs. 2.4(b)-(d). If this ratio is minimized to two, i.e. no 
intermediate species exists, di-trophic webs are formed, where top predators consume one 
or more basal species depending on the value of L. The stability profiles have the largest 
portion of stable steady states, and look the same for all values of L, Fig. 2.4(e). This study 
confirms that, even for webs of sixty species, a di-trophic web has the same stability profile 
as a food chain with two species as claimed by Gross in 2004 (Groβ; 2004). While he studied 
webs where every species in a trophic level is connected to every species in the trophic levels 
above and below, this study shows that stability profiles are preserved for all values of L, 
Fig. 2.4(e). And more general, if the ratio of intermediate to top species is the same, then 
there is a similar web with the smallest amount of species such that N/U is constant.

Figure 2.18: Proportion of stable equilibria (P) versus ratio of intermediate to top predators 
(I/U) for a Holling's type II (a) and III (b) predatory response. All networks from Fig. 2.11 
with a ratio of intermediate predators to top predators, 0 ≤ I/U < 6, are used. Each point 
has an opacity of 0.2.

Figure 2.18 shows the relation of complexity and stability when complexity is measured 
by the ratio of intermediate predators to top predators I/U , in analogy to N C complexity in 
Fig. 2.16. For small ratios I/U (below about 2.5) only networks with larger proportions of 
stable steady states exist while mixing of large and small values of P prevails for increasing 
ratios of intermediate to top predators. This finding holds for both, Holling's type II and 
III predatory responses. A trend that maximum values of P decline linearly with increasing 
complexity persists, but is less pronounced for the Holling's type III predatory response.
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2.10 Conclusion

A series of generalized ecological network models is developed and implemented to inves
tigate how topology, particularly omnivory and complexity, and functional dynamics (preda
tory responses) stabilize and destabilize a steady state across a wide range of network shapes 
and sizes. The webs are generated in a way derived from the niche model (Williams and 
Martinez; 2000), but without the randomness. Each predator has a feeding range that is 
defined by a prey body-size upper and lower limit.

Holling's type predatory responses affect stability. Some webs have stable steady states 
only when predatory behavior is governed by a Holling's type I predatory response. A type 
II functional response yields stable steady states when the food web is prey and nutrient 
(production) limited, and a type III response yields stable steady states predominantly when 
predators are prey limited. In general, when systems become more nutrient limited, they 
tend to become more stable across all Holling response types. Thus, the paradox of enrich
ment (Rosenzweig; 1971) generally holds for each predatory response when both top down 
and bottom up forces are acting.

Some topologies, in which predators are governed by a type III predatory response, 
provide exceptions to the paradox of enrichment when steady states switch from unstable to 
stable as the system is enriched. They often have stability profiles that look like “tongues”
or “cantilevers”. They have a relatively small set of stable steady states, but nonetheless, 
these profiles belong to a considerable number of networks.

Figure 2.19: Proportion of stable equilibria (P) versus maximum niche value ( nmax ) for a 
Holling's type II (a) and III (b) predatory response. All networks from Fig. 2.11 with a ratio 
of intermediate predators to top predators, 0 ≤ I/U < 6, are used. Basal species in this 
paper are defined to have a niche value of zero, not one. Each point has an opacity of 0.2.
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The degree of omnivory plays a large role in governing web stability at steady state. 
Adding omnivory to short food chains with three or four species has a stabilizing effect. For 
longer food chains, increasing omnivory is destabilizing. For intermediate values of predators' 
prey body-size upper limit, increasing omnivory is destabilizing at first and then restabilizing. 
As predators' prey body-size lower limit increases, the degree of omnivory increases, which in 
turn decreases the average niche value. Lower average niche values usually have a stabilizing 
effect on steady states. Figure 2.19 exhibits a sharp increase in the proportion of stable 
steady states as the maximum niche value drops below a certain value (2.75). This increase 
is more pronounced for a Holling's type III predatory response.

Other papers have used generalized modeling to investigate ecosystem complexity. They 
have found that increasing structural complexity, with either network size or connectance 
(Landi et al.; 2018), decreases stability (Gross et al.; 2009). However, increasing complexity 
is stabilizing in prey limited systems when body-mass and intraspecific competition are 
incorporated (Plitzko et al.; 2012). We find that size and connectance cannot solely be used 
to determine stability, which is particularly obvious when a broader range of generalized 
parameters is considered that includes Holling's type III predatory responses. A strong 
indicator for stability turns out to be the ratio of intermediate predators to top predators. 
Increasing this ratio decreases the height of the web or maximum niche value and keeping 
this ratio constant results in a similar dependence of stability diagrams on omnivory.
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Chapter 3 Combining Generalized Modeling and Specific Modeling in the 

Analysis of Ecological Networks

3.1 Abstract

The complexity of real food webs involves uncertainty in data and in underlying ecolog
ical processes, and modeling approaches deal with these challenges differently. Generalized 
modeling provides a linear stability analysis without narrow specification of all processes, 
and conventional dynamical systems models approximate functional forms to discuss tra
jectories in phase space. This study compares results and ecological interpretations from 
both methods in four-species ecological networks at steady state. We find that a specific 
(dynamical systems) model only provides a subset of the stability data from the general
ized model, which spans many plausible dynamic scenarios, allowing for conflicting results. 
Nevertheless, both approaches reveal that fixed points become stable when nutrient flows to 
predators are fettered and even more when the basal growth rate approaches a maximum. 
The specific model identifies a distinct ecosystem response to bottom-up forcing, the en
richment of lower trophic levels. Enrichment stabilizes a fixed point when basal species are 
in a resource-deprived environment but destabilizes it if resources become more abundant. 
The generalized model provides less specific information since the infinitely many paths of 
enrichment are hypothetical. Nevertheless, generalized modeling of ecological systems is a 
powerful technique that enables a meta analysis of these uncertain complex systems.

3.2 Abstract Extension

Food webs describe biomass flow in an ecological system that is based on biological growth 
and loss processes like predator-prey interactions, primary production, or natural mortality. 
Complete empirical descriptions of the processes and parameters controlling biomass flows 
are unknown and mathematical models require abstraction and approximation. Factors that 
control stability of real and model food webs are not fully understood. Generalized model
ing presents a powerful mathematical framework to analyze network stability without the 
need for detailed assumptions about processes and initial conditions. Only the structure of 
the governing equations is presumed to explore the stability of steady states for infinitely 
many biologically plausible behaviors. Results and ecological interpretations from gener
alized modeling are compared to those from a deterministic dynamical system of coupled 
ordinary differential equations (specific model), where detailed functional forms need to be 
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assumed. One result shows that enrichment through the increase of carrying capacity can 
stabilize a system when basal species are in a resource-deprived environment but destabilizes 
a system if resources become more abundant.

3.3 Introduction

The complexity of real systems, like the climate system or ecological systems, provides 
challenges in data acquisition and modeling. Precision in data is affected, among others, by 
the resolution of time/spatial scales and limited access to the (sometimes huge number of) 
system players. The need to abstract and approximate in modeling is evident. Hierarchical 
modeling is necessary to gain insight into complex processes on different scales and from 
different dynamical aspects. Food web models describe biomass flow into and within a 
network of species, accounting for biological processes such as predator-prey interactions, 
primary production, parasitism, natural mortality, and respiration (Drossel and McKane; 
2003; Stouffer and Bascompte; 2010; Fussmann and Heber; 2002). But, ecological systems 
like food webs (Winemiller and Polis; 1996; Newman; 2018) are so big and dispersed that 
empirical observation of population sizes, rates of processes, and interaction characteristics 
induce an uncertainty in the data.

Progress can be made without precision in data and by avoiding narrow specification of 
all processes if generalized modeling approaches (Gross and Feudel; 2004; Gross et al.; 2005; 
Stiefs et al.; 2008; Gross et al.; 2009; Gross and Feudel; 2009; Kuehn et al.; 2013; Kuehn 
and Gross; 2013; Lade and Niiranen; 2017; Plitzko et al.; 2012; Stiefs et al.; 2009; Stiefs; 
2009; Yeakel et al.; 2011, 2014; Awender et al.; 2021) or random matrix models (May; 1972; 
Allesina and Tang; 2012) are used. Generalized models explore system dynamics across all 
biologically plausible behavior and are efficient enough to handle large network sizes; one 
study uses over a hundred million different network topologies (Gross et al.; 2009). Gener
alized modeling only presumes the structure of the governing equations, grouping processes 
into unspecified gain and loss terms that represent biomass flows into and within the net
work. The approach does not presume information about population sizes, initial conditions, 
or detailed functional forms for biomass flows, yet it can compute local stability of steady 
states and extract (higher co-dimension) bifurcation information that is based on steady 
states. Although the steady states per se are unknown, the dynamics can still be formally 
linearized around them after a normalizing coordinate transformation. This yields a param
eterization of the model in the Jacobian matrices. Whether a fixed point is stable or not 
depends on these generalized parameters and the network properties. Previous generalized 
modeling studies have explored how stability is affected by various attributes, including en
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richment, omnivory, specialization, predator-prey number ratios, niche-value distribution, 
and complexity in terms of network size, connectance, and link-strength variability (Gross 
et al.; 2009; Plitzko et al.; 2012; Awender et al.; 2021).

Specific food web models typically describe biomass flow throughout the network by a 
set of ordinary differential equations (Drossel and McKane; 2003; Stouffer and Bascompte; 
2010; Fussmann and Heber; 2002) and require the explicit reconstruction of a mathematical 
expression for each of the interactions or processes. Modelers vary initial conditions, param
eters or functional forms of these governing equations to explore trajectories, the stability of 
steady states, and ecosystem persistence in terms of periodic and chaotic attractors. When 
trajectories exhibit large biomass fluctuations, they can orbit into dangerously low popula
tion levels to make the species susceptible to stochastic extinctions; at small populations , a 
tiny perturbation can induce the extinction of species. Such complex behaviors as well as 
coexistence of fixed points and attractors can be assessed in a specific model in contrast to 
generalized modeling.

A perennial issue in real and modeled food webs is understanding the implications of 
bottom-up forcing, the enrichment of lower trophic levels, on ecosystem functioning. First 
gaining traction after a study by Rosenzweig (1971) that shows increasing the limiting nu
trient in order to increase the yield of an exploitable species - somewhat counterintuitively - 
destabilizes simple predator-prey models. Upon enrichment, a Hopf bifurcation changes the 
dynamics from stable steady state to oscillatory. Further enrichment increases the amplitude 
of the oscillations until species extinction occurs. Since then, the “paradox of enrichment” is 
widely studied (Gross et al.; 2004; Mougi and Nishimura; 2007; Jansen; 1995; Genkai-Kato 
and Yamamura; 1999; Abrams and Walters; 1996; Yeakel et al.; 2014). One review article 
supports the particularly relevant inference that destabilization is suppressed by inhibition 
of predatory growth (Roy and Chattopadhyay; 2007). Destabilization by enrichment has 
generally been predicted in mathematical models, but rarely been observed in real systems. 
This might be because the complexity of real biological processes is not fully captured in 
mathematical models or empirical observations cover only parts of the dynamical complexity 
theoretically possible.

This paper compares local food web stability derived from generalized modeling and 
specific modeling to assess implications on ecological interpretations. Section 3.4 introduces 
generalized and specific ecological network models that are analyzed in Sec. 3.5 for four- 
species food webs with varying topologies, feeding constraints and basal production processes. 
The stability of steady states is discussed for equal feeding nonlinearities across trophic levels 
(Sec. 3.6), a common assumption in generalized models, and for differing basal production 
terms (Sec. 3.7). The abundance of resources is shown to determine whether enrichment
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stabilizes or destabilizes (Sec. 3.8), offering exceptions to the paradox of enrichment. The 
stabilizing effect of adding an omnivorous link to a food chain is discussed in Sec. 3.9. 
Coexistence of fixed points is explored in Sec. 3.10. The impact of differing production 
forms on the distribution of feeding nonlinearities is explored in Sec. 3.11, and the weighting 
of links in steady states is presented in Sec. 3.12. Section 3.13 summarizes the main outcomes 
of the paper.

3.4 Model

The state of an ecological network with N species is x ∈ RN , with xi representing the 
biomass of species i and xi ≥ 0. The state evolves (Gross et al.; 2009; Awender et al.; 2021) 
by a growth rate from production S and predation F , and a loss rate from predation L 

and other mortality M , 

ηi is an assimilation coefficient. The total predatory resource Ti available to species i is given 
by 

where Cik is the contribution from xk to the diet of xi. The predatory loss Lij of prey i 
from predator j is proportional to the predatory growth of the predator Fj and the fraction 
with which prey i contributes to the resources of predator j ,

Λij is a constant. Only a fraction of the killed biomass from prey, xi, is incorporated into 
the predator biomass, xj.

3.4.1 Generalized Model

Generalized modeling (Gross et al.; 2009) does not restrict the processes S , F , M , and 
L in Eq. (3.1) to specific mathematical expressions. Normalizing the state vector to an 
unknown, nontrivial fixed point x*, and each unknown process of the form G to its value at
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the fixed point G * ≡ G (x*), gives following rescaled variables and functions, 

where γij = Ci*j/Ti* and X* is a diagonal matrix, Xi*j = xi*δij. This normalization maps the 

unknown fixed point x* to a known fixed point χ* = (1, 1, . . . , 1), and the unknown process 
to a known process value at the fixed point, g(χ*) = 1 in the rescaled system,

The time scale parameter (turnover rate) αi is determined from the steady state, where the 
total influx (growth) is equal to the total outflux (loss),

The scale parameters that describe the weighting of the flows of the network at the steady 
state are

The local dynamics near the fixed point is governed by the Jacobian matrix J* evaluated at 
the fixed point. The diagonal elements are
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and the off-diagonal elements are

The exponent parameters of the form g(ξ) in the Jacobian are defined as 

with ξ ∈ {χi,ti}. They describe the nonlinearity of process G (x) in Eq. (3.1) with respect 
to ξ. What is remnant of the unspecified functions S ,M, F,orL in the Jacobian is their 
nonlinearity parameters si(χi) , mi(χi) , fi(χi) , and fi(ti) . In generalized modeling, these nonlin

earity parameters are varied in a range of values to represent many different specific functions 
simultaneously.

3.4.2 Specific Models

To construct a specific model, a functional form for each process in Eq. (3.1) must be 
specified. The production term S is a growth term that allows matter to enter the system. 
It is linear near population sizes of zero, and it peaks when the population is big enough for 
intraspecific competition for limited resources to dominate. Five different functional forms 
are chosen [Fig. 3.1(a)]: 

with rate constant Di and constants b and R. All five production functions retain the same 
basic shape [Fig. 3.1(a)] featured by a root at zero population, a maximum productivity at 
an intermediate population size, and a monotonic decrease for the remainder of the domain. 
They differ, as a carrying capacity K is defined for the logistic, exponential, and Bellow's 
equations, while the carrying capacity is undefined (is at infinity) for the exponential map 
(Cook; 1965; Sinha and Sinha; 2005) and Bellow's map (Bellows; 1981). The production

61



forms [Eqs. (3.11d, e)] are included to test a larger range of functional forms, although they 
are typically used in discrete time population models. The exponential equation is derived 
from the exponential map in the continuous limit, and Bellow's equation is inspired from 
Bellow's map.

Figure 3.1: Basal production growth [S1*, Eq. (3.11), upper panel] and nonlinearity of 
production [S, Eq. (3.23), bottom panel] as a function of basal population at the fixed 
point (x1*). Maximal growth corresponds to a nonlinearity of zero (vertical dashed lines). 
The parameters are K = 3, D = 1/(K — 1) (logistic equation); K = 3, R = 2, D = 
[exp(R(K — 1 ) ) — 1]-1 (exponential equation); K = 3, b = (6 and 10), D = (Kb + 1 )/(Kb — 1) 
(Bellow's equation); K = 1, R = 2, D = exp(—R(K — 1)) (exponential map); and K = 1, 
b = (2 and 10), D = Kb + 1 (Bellow's map). The choice of D ensures that S1(1) = 1.

Predatory growth rate is modeled in the form of Holling's type II functional response,
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Ai is the reciprocal of the handling time. Hi is the half saturation constant (Mulder and 
Hendriks; 2014), which describes the prey population size for which the per capita predatory 
growth is half its maximum. Ti represents the total resources available to predator i, Ti = 

k aikxk with k aik = 1. Holling's type II predatory growth is linear at low prey abundance 
and smoothly saturates as prey abundance increases. It describes predators that experience 
limitations of growth from handling time (e.g. for killing, eating, digesting) when prey are 
abundant and no additional limitations when prey are scarce.

Natural mortality and respiration describe the matter that leaves xi due to processes 
other than predation, taken to be a simple power law,
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with constants Ωi and p. No detritivores are modeled hence resources leaving xi from mor
tality also leave the system.

Predatory loss of prey i depends on the predatory growth Fj of predator j [Eq. (3.3)],

with Λij = ηi = ri-1 assuming a hierarchy of relative time scales, and r ∈ [0,1] the base 
of the assimilation coefficient (Groβ; 2004). If a predator j attacks prey i with a niche or 
trophic level difference of j - i, then rj-i is the proportion of killed biomass from prey xi 

that remains in the network locked in xj .

3.5 Four-species food web and analysis

A four-species food web, consisting of top and intermediate predators and a basal species, 
is built with gradient control between a food chain and an omnivorous web by adding a 
link of intraguild predation (Fig. 3.2). More generally, such species can be interpreted as 
trophospecies that combine species with similar ecological function into one unit to represent 
larger and more complex networks. Although there are reports of long chain lengths in 
observed webs (Lafferty et al.; 2006), chain lengths above four are considered uncommon 
from aggregated data of over hundred real food webs (Cohen et al.; 1986; Pimm et al.; 
1991). Intraguild predation with a chain length of three has been explored using generalized 
models (Yeakel et al.; 2011).



Figure 3.2: Four-species food web topologies with top predator (triangle), intermediate 
predators (square), and basal species (circle). The link-strength c is used to switch between 
a food chain and an omnivorous web. This study considers c = 0 and c = 1/2.

3.5.1 Specific Model and Steady States

The four-species network model, consistent with the topologies in Fig. 3.2, is derived 
from the specific model in Sec. 3.4.2. For these topologies, the prey available to the top 
predator (biomass x4) is T4 = cx2 + (1 - c)x3, while the intermediate predators only feed on 
one prey species, Ti = xi-1 for i = 2, 3. c ∈ [0, 1) controls the proportionate link strength of 
x4 with x2 and x3. This study considers c = 0 and c = 1/2. At c = 0, the system describes a 
food chain. At c = 1/2, species 4 is a balanced omnivore that feeds on x2 and x3 with same 
preference. It is assumed that only basal species show growth from production, Di = Dδ1i 

[Eq. (3.11)], and only top predators show loss from mortality, Ωi = Ωδ4i [Eq. (3.13)]. After 
setting the half-saturation constants equal for each species, Hi = H, and the rate constants 
Di,Ai, and Ωi to
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equations (3.1) and (3.11-3.14) result in following equations of motion, 

with S1(1) = 1 [Eq. (3.11), Fig. 3.1] and T4 = cx2 + (1 - c)x3.
The nontrivial fixed points (x* = 0) of the food web can be determined fast and convenient 

due to the symmetry of Eqs. (3.15) - (3.18), not requiring a convergence algorithm such as 
Newton's method. Summing up these equations at the steady state, gives 

and Eq. (3.15), Eqs. (3.16) and (3.17), and Eq. (3.18) yield 

respectively. An intersection of the two resulting curves, x* 4 versus x1*, determines x*1 and 
subsequently all coordinates of the fixed point. Trivial fixed points exist at x* = (0,0,0,0), 

,x2,0, 0), (0,0, x3,0), and also at (K,0,0,0) and (K, 0,x3,0) when a carrying capacity 
is defined. They describe steady states with one or more species extinctions. These fixed 
points are not stable in the parameter regime under study and are not considered further, 
since generalized modeling does not define trivial fixed points.

3.5.2 Generalized Parameters

To compare steady states in the specific and the generalized four-species food web model, 
the generalized parameters are calculated for the specific model. The nonlinearity of pro
duction, S ≡ s(χ1) , for the different functional production forms in Eq. (3.11) is determined
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from Eq. (3.10) 

and plotted in Fig. 3.1(b). The nonlinearity of production S is one at zero population size 
and monotonically decreases as population size increases. S becomes infinitely more negative 
as population size approaches the end of the domain, except for the Bellow's map, where 
S → (1 — b) as X1* → ∞.

The nonlinearity ofpredation Fi with respect to prey (nonlinearity of feeding) for Holling's 
type II predatory response [Eq. (3.12)] is

It depends on the half-saturation constant H and prey abundance Ti*, and ranges from zero 
at high prey abundance to one at low prey abundance.

(χi)The nonlinearity of predation with respect to the predator itself is fi(χi) = 1. The 
nonlinearity of mortality m(χi) is the exponent p of the mortality term [Eq. (3.13)], and the 
nonlinearity of the contribution c(kχk) is one, since Ti is linear in xk.

To complete the mapping from the specific model to generalized coordinates, the scale 
parameters are determined from Eqs. (3.6) and (3.7),
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3.5.3 Generalized Versus Specific Model: Parameter Scenarios

This study of the generalized model focuses on varying the nonlinearity of production 
S = s(1χ1) and the nonlinearity of feeding Fi = fi(ti) . These parameters show up in the 

Jacobian matrix and influence the stability of the rescaled fixed point. χ* = (1,1,1,1). They 
are not related to any particular functional form but represent infinitely many functional 
forms. The parameters of the specific model [Eqs. (3.15) - (3.18)] are chosen such that 
their range of generalized parameters S and Fi mostly spans the dynamically possible range. 
The nonlinearity of feeding Fi for Holling's type II ranges from 0 to 1 [Eq. (3.12)]. which 
is achieved in the specific model by varying the half-saturation constant H ∈ (0.01, 100). 
The base of the assimilation coefficient is r = 0.3 and the exponent of the mortality term is 
p = 2 unless noted otherwise. Two types of feeding scenarios are considered for comparing 
generalized models with specific models: the nonlinearity of feeding for each predator is 
equal across trophic levels (type 1). and no such restriction (type 2).

§ Feeding Nonlinearities Equal Across Trophic Levels

Generalized ecological models commonly assume equal feeding nonlinearities (Fi = F) 
(Gross and Feudel; 2006. 2009; Plitzko et al.; 2012; Yeakel et al.; 2014; Awender et al.; 
2021). In the specific models. equal feeding nonlinearities [Eq. (3.24)] require equal prey 
abundance (T2* = T3* = T4*) at the fixed point. When the reciprocal of the handling time is 
set to A = (H + 1). x* = (1,1,1,1) is a fixed point for all parameters that also fulfills Fi = 
F. Other nontrivial fixed points can coexist that have non-identical feeding nonlinearities.
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Table 3.1: Color legend for the stability properties of fixed points in Figs. 3.3 to 3.6, using 
four base colors for the four types of eigenvalues. Positive (negative) real eigenvalues are 
represented by a ”+” (”-”) symbol and contribute a dark red (light red) color to the total 
color, and complex eigenvalues with a positive (negative) real part are represented by ”+j” 
(”-j”) and contribute a dark blue (light blue) color. A fixed point with more stable manifolds 
is represented with a more faint color.

All nontrivial fixed points of Eqs. (3.15) - (3.18) for a given specific model (H,S1), and 
their corresponding nonlinearities of feeding Fi [Eq. (3.24)] and nonlinearity of production 
S [Eq. (3.23)] are determined. To output the appropriate range of S for the fixed point 
(1,1,1,1), the production terms are varied: K ∈ [1.3,101] for the logistic equation, K = 3 
and R ∈ [0.01,3] for the exponential equation, K = 1 and R ∈ [0.01,3] for the exponential 
map, K = 3 and b ∈ [0.0001, 20] for Bellow's equation, and K = 1 and b ∈ [0.0001, 20] for 
Bellow's map.

§ Feeding Nonlinearities Not Constrained

When feeding nonlinearities are not forced to be equal, the reciprocal of the handling 
time A is a free parameter. All nontrivial fixed points of Eqs. (3.15) - (3.18) are numerically 
determined for a given set of parameters (A, H) and a given production term S1. Each 
fixed point corresponds to nonlinearities of feeding Fi [Eq. (3.24)] and a nonlinearity of 
production S [Eq. (3.23)]. A is varied linearly over the empirically determined interval 
A ∈ [0.001,2(H + 1)] to achieve the desired range of production nonlinearities S. Only 
production terms from Fig. 3.1 are considered in this scenario.

3.6 Interface of Specific and Generalized Model

Fixed point stability of the specific models is displayed in the generalized modeling pa
rameter space to compare both modeling approaches and resulting interpretations. Type

68



Figure 3.3: Stability of fixed points (color coding in Table 3.1) versus feeding nonlinearities 
Fi for a type 1 specific model with logistic production (a-c). For each panel, the fixed points 
off the diagonal are shown in the panel beneath (d-f) positioned by nonlinearity ofproduction 
(S) and the average nonlinearity of feeding (Favg). The fixed points on the diagonal (panel 
a, b) are unfolded in Fig. 3.4. The mortality exponent p ∈ (1,2] is varied in panel (c) and 
(f) and K = 3. In panels d-f, the vertical axis is scaled linearly above the red line, and 
logarithmically (log10) below. The horizontal dashed line marks S = 0.

1 specific models always have a fixed point, (1,1,1,1), for which all feeding nonlinearities 
are equal (Fi = F) and possibly coexisting, nontrivial fixed points for which the feeding 
nonlinearities differ across trophic levels. This holds for both topologies, the food chain 
and the omnivorous web. Fixed point stability is plotted as a function of the three feeding 
nonlinearities in Fig. 3.3(a) for the food chain and in Fig. 3.3(b) for the omnivorous web in 
the case of a logistic production of basal species. Much of this feeding nonlinearity space 
is not accessible to the specific model, while it would be filled for a generalized model with 
varying feeding nonlinearities. The simulation results don't exhibit stable fixed points that 
coexist.

Any point off the diagonal represents a coexisting fixed point with unequal feeding non
linearities Fi. The stability of these coexisting fixed points is delineated in the nonlinearity 
space of production S and (average) feeding Favg, Figs 3.3(d) and 3.3(e). While there is some 
overall similarity regarding eigenvalue characteristics, stable coexisting fixed points exist for 
the omnivorous web and not for the food chain. All of these coexisting fixed points go un
explored in generalized modeling, if the typical assumption (Gross and Feudel; 2006, 2009; 
Plitzko et al.; 2012; Yeakel et al.; 2014; Awender et al.; 2021) of equal feeding nonlinearities
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is made; the corresponding ecological implications are unclear.

Figure 3.4: Stability ofthe fixed point (1,1,1,1) as a function ofthe nonlinearity ofproduction 
(S) and the nonlinearity of feeding (F) for the food chain (a) and the omnivorous web (b). 
These data are aligned along the diagonal in Fig. 3.3(a) and 3.3(b), respectively. Hopf 
bifurcation (H, black) and zero-eigenvalue bifurcation (Z, gray) lines are shown. The higher 
co-dimension bifurcations include a Takens-Bogdanov bifurcation [(a), yellow star] and two 
Gavrilov-Guckenheimer bifurcations [(b), green star]. The stable fixed point with the lowest 
F value ( Fmin ) is marked by the red dot. For color coding, see Table 3.1.

Figure 3.4 shows the stability of the fixed point x* = (1,1,1,1) in the nonlinearity space of 
production S and feeding F . This fixed point is characterized by equal feeding nonlinearities 
and represented by data on the diagonal in Fig. 3.3(a) and 3.3(b), respectively. Stable 
fixed points exist for larger F values and the boundary separating unstable from stable fixed 
points shifts to larger F as the absolute value of S increases. The point on the stable/unstable 
boundary with the smallest F coordinate (red dot in Fig. 3.4) marks the largest range of 
half-saturation constants H for which the system has a stable fixed point. The omnivorous 
link increases stability: The stable/unstable boundary shifts to smaller F to increase the 
percentage of stable fixed points and the number of Hopf-bifurcation lines decreases from 
two to one. Comparing Fig. 3.4(b) with Fig. 3.3(e) reveals that nonlinearity regimes with 
stable fixed points correlate well if the (uniform) feeding nonlinearity F is replaced with 
the average value Favg in the case of unequal feeding nonlinearities across trophic levels. 
This indicates that ecological implications derived from a reduction of model complexity 
by assuming equal feeding nonlinearities across trophic levels can be relevant for the more 
general case.
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Figure 3.5: Stability of fixed points versus nonlinearity of production S and average nonlin
earity of feeding Favg for a type 2 specific food chain model and different production terms: 
(a) logistic equation, (b) exponential equation, and (c) Bellow's equation, b = 6. The vertical 
axis is scaled linearly above the red line, and logarithmically (log10) below. The horizontal 
dashed line is at S = 0, denoting maximum production rate. For color coding, see Table 3.1.

In Figs. 3.3(c) and 3.3(f) the nonlinearity of production S is varied by keeping the carry
ing capacity constant and instead varying the mortality exponent p. Varying p means varying 
the fixed point x*, which enters S [Eq. (3.23)a] and Fi. The surface in the 3-dimensional Fi 

space consists of two branches, and stable fixed points exist for equal and unequal feeding 
nonlinearities across trophic levels. The stable fixed points with unequal feeding nonlin
earities coexist with unstable fixed points. Simulations show that these stable fixed points 
have a small basin of attraction in which all four species stabilize at nonzero biomass values; 
outside of this basin a three-level food chain persists in stable oscillations.

3.7 Robustness of stability for various basal production

The nontrivial fixed points and the associated nonlinearities of production S and feeding 
Fi are determined from a range of type 2 specific models. Figure 3.5 shows the stabil
ity of fixed points in the food chain model for the three production forms with a defined 
carrying capacity (logistic, exponential, and Bellow's equation). The stability patterns are 
qualitatively similar for the three production terms: The stable/unstable boundaries are 
homologous and the eigenvalue characteristics of the fixed points depends similarly on the 
nonlinearity parameters S and Favg. For example, along the top boundary of the nonlin
earity space (near S=1 in Fig. 3.5), the eigenvalue characteristics follows the sequence, 
(+ + +-) → (+j + j + -) → (+j + j + +) → (+j + j + j + j) → (+j + j - j - j), with 
increasing Favg. On the other hand, the regime where the bifurcation lines are intersect
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ing is more variable. For the omnivorous web (not shown), the stability patterns are also 
qualitatively robust when varying the basal production terms.

Stable fixed points appear for larger average feeding nonlinearities, which indicates eco
logically that prey populations far from saturation is stabilizing. A larger nonlinearity of 
feeding results from a smaller prey abundance Ti* at steady state [Eq. 3.24]. More details in 
Sec. 3.8.

The similarity ofFigs. 3.5 and 3.4(a) supports again that the average feeding nonlinearity 
parameter Favg plays a similar role for web stability as F in the case of equal feeding non
linearities across trophic levels, motivating studies of generalized models with equal feeding 
nonlinearities.

3.8 Enrichment stabilizes and destabilizes

The system is enriched by increasing the amount of limiting nutrients for basal growth, 
which effectively increases the carrying capacity K. Figure 3.6(a) shows half-saturation 
contours for the omnivorous web (type 2) with logistic growth [Eq. (3.23)a] in the nonlinearity 
space of production S and average feeding Favg. Along each contour the carrying capacity 
K increases in the direction of the arrows, and the system gets enriched. Increasing the 
carrying capacity predominantly decreases the nonlinearity of production S and the average 
feeding nonlinearity Favg.

Figures 3.6(b) and 3.6(c) show the steady state basal species population x* 1 and carrying 
capacity K along these contours. Enriching the system through the increase of carrying 
capacity K typically increases the exploited species population χ1* to asymptotically approach 
x* 1 = K from below. For smaller half-saturation constants, e.g. contour (1) [Fig. 3.6(b)], 
a coexisting fixed point x1* = 0 is also asymptotically approached for infinite K. Contours 
with a smaller half-saturation constant have population sizes x* 1 farther away from K. Stable 
fixed points arise in a regime of smaller carrying capacity K and smaller basal population 
size X1*.

Five representative contours with qualitatively different changes in stability arise (Fig. 3.6). 
They describe diverse findings on enrichment and stabilization in the literature (Roy and 
Chattopadhyay; 2007) in a single model. For the larger half-saturation constants H [contour 
(5)], a stable fixed point eventually destabilizes via a Hopf bifurcation as the carrying capac
ity K increases. Lowering H reveals contours along which an unstable fixed point stabilizes 
and then destabilizes with increasing K [contour (4)]. If H is lowered further, the system 
exhibits three nontrivial coexisting fixed points for a range of carrying capacities [contours 
(3) and (2)]. These contours reveal a stable branch where increasing the carrying capacity

72



Figure 3.6: Half-saturation contours for steady states of the type 2 omnivorous web with 
logistic production: a) Contours in the nonlinearity space of production S and average feeding 
Favg with the carrying capacity K increasing in the direction of the arrows. b) Contours as 
a function of steady state basal species x*1 and carrying capacity K, with c) a zoom of b). 
Representative contours are highlighted in bold and correspond to half-saturation constants 
H = 0.25 (1), H = 0.449 (2), H = 0.476 (3), H = 0.585 (4), and H = 0.818 (5). Light 
colors mark stable equilibria. For color coding, see Table 3.1. Zero eigenvalue bifurcations 
(Z, open circle) and Hopf bifurcations (H, full circle) are labeled. The two vertical lines 
mark the saddle node bifurcation for curve (2) and (3), after which only one nontrivial fixed 
point exists. The diagonal black line in b) and c) shows x1* = K. Figure a) is analogous to 
contours for the food chain, Fig. 3.5(a).
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first stabilizes a fixed point and then destabilizes it after further enrichment. Simulations 
of the specific model show that the basin of attraction for the coexisting nontrivial fixed 
point is small [contour (2) and (3)] and suddenly increases for carrying capacities beyond 
the saddle node bifurcation. when the stable fixed point is the only nontrivial fixed point of 
the system [contour (3)]. For small half-saturation constants [contour (1)] the steady states 
are unstable regardless of carrying capacity.

Destabilizing a fixed point due to enrichment is referred to as the paradox of enrichment 
(Rosenzweig; 1971; Veilleux; 1979; Gounand et al.; 2014). Previous studies ofdiverse systems 
have reported that enrichment either stabilizes or destabilizes a system (Roy and Chattopad- 
hyay; 2007). This omnivorous web [and similarly. the type 2 food chain. Fig. 3.5(a)] exhibits 
both. behavior that is consistent and that is not consistent with the paradox of enrichment 
depending on the degree of enrichment. A stable fixed point becomes unstable when the sys
tem is relatively enriched and resources are more abundant. An unstable fixed point can be 
stabilized by increasing the carrying capacity when basal species are in a resource-deprived 
environment.

While a specific model exhibits a defined path of enrichment. as for example along a 
contour line. generalized modeling allows for infinitely many hypothetical paths of enrichment 
that may be consistent or not consistent with the paradox of enrichment. These hypothetical 
paths might be accessible by a specific model or not. As a consequence. interpretations from 
the generalized models and specific models might differ.

Increasing the feeding nonlinearity leads to stable fixed points in the generalized models 
and the specific models. as seen in Figs. 3.4 and 3.5 or from the successive contours in Fig. 
3.6(a). For a Holling's type II functional form. the nonlinearity of feeding is controlled by 
changing the half-saturation constant. which is analogous to controlling the hunting con
ditions (cost of capturing prey) or nutritional value of prey. If the hunting conditions are 
hampered (e.g. mobility reduction from more viscous medium (Harrison; 1995)). success
ful hunting is harder and prey would need to be of higher density to allow predators the 
same growth. Similarly. if prey are less nutritious (e.g. inedible. unpalatable. invulnerable. 
defensive prey individuals (Roy and Chattopadhyay; 2007)) a higher prey density would be 
required. Therefore. impairing hunting conditions or reducing a prey's nutritional value ef
fectively reduces the available prey Ti* or effectively increases the half-saturation constant. 
Both of these increase the nonlinearity of feeding Fi. which is stabilizing in the considered 
specific models.
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Figure 3.7: Stable/unstable boundary comparison of the food chain (dark grey) to the om
nivorous web (grey) for type 2 specific models with (a) logistic. (b) exponential equation. 
(c) Bellow's equation (b = 6) production term and for (d) type 1 specific models (Fig.3.4) 
for the fixed point (1. 1. 1. 1) and generalized models.

3.9 Adding the omnivorous link stabilizes

Omnivory is predation on multiple trophic levels. Its role in stabilization and destabi
lization of trophic webs is an ongoing area of research (Vandermeer; 2006; Awender et al.; 
2021). Figure 3.7 compares the stable/unstable boundary of food chain and omnivorous web 
for type 1 and 2 specific models with various basal production terms. Adding the omnivo
rous link always shifts the stable/unstable boundary toward smaller feeding nonlinearities. 
This makes the omnivorous webs more stable. since their area of stable fixed points in the 
nonlinearity space of production and feeding is larger. When feeding nonlinearities are equal 
across trophic levels. Figure 3.7(d) is identical for all basal production forms in type 1 spe
cific models as well as for generalized models. since the fixed point is at (1.1.1.1) and the 
production terms cover the same nonlinearity range S. Fig.3.1(b).

The shift of the stable/unstable boundary is quantified by the shift of its vertex in the 
direction of the feeding nonlinearity. The point on the stable/unstable boundary with the 
lowest average feeding nonlinearity (Fmin) is plotted in Fig.3.8 for all boundaries in type 1 
and 2 specific models and segregated by topology. The stabilizing effect of the omnivorous 
link in these specific models and the typical generalized models (Fi equal) is evident. The 
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average Fmin decreases by 0.15 when going from food chains to omnivorous webs; the relative 
change ∆Fmin/ ( 1 -Fmchianin ) is 23%, one way to express the increase in stability. Figure 3.8 also 

reveals that the nonlinearity of production S for all the vertices is centered around S = 0, 
where the basal production rate has its maximum value (Fig. 3.1). Thus, the range of feeding 
nonlinearities that yield a stable equilibrium is the largest near peak basal production. The 
average S-value is about 0.0008 for food chains and about -0.0517 for omnivorous webs.

Figure 3.8: Lowest (average) feeding nonlinearity Fmin that corresponds to a stable fixed 
point (e.g., red point in Fig.3.4) for type 1 and type 2 specific models together with the 
stable/unstable boundary from Fig.3.7(d) near Fmin. The dashed lines intersect at the 
average coordinates for the food chains (dark grey) and the omnivorous webs (grey). There 
are fewer dark circles than light circles, since some food chains don't have coexisting stable 
fixed points.

3.10 Coexisting fixed points

Generalized modeling efficiently quantifies local stability of each nontrivial fixed point 
in infinitely many models, but which of the fixed points are in coexistence with others 
is unknown. A stable, single fixed point is globally stable in the absence of non-attracting 
manifolds or basin boundaries. Global stability can be challenging to prove in specific models, 
but is conceptually elusive/undefined in generalized modeling.

Since generalized models cannot determine the coexistence of fixed points, specific mod-
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Figure 3.9: A superimposition of the number of nontrivial fixed points sorted by model 
type and topology: (a) type 1 food chain, (b) type 2 food chain, (c) type 1 omnivorous 
web, and (d) type 2 omnivorous web. The color coding represents the number of nontrivial 
fixed points. The grey points lie on the stable/unstable boundary. The production term, 
exponential equation, is excluded for type 1 models, since the space of nonlinearity is only 
partially covered by fixed points.

els are used to identify regions in the generalized parameter space where a single non-trivial 
fixed point is prevalent and regions where coexisting fixed points are prevalent. Such analysis 
with enough statistics from many specific models might provide supplementary information 
to generalized models where to likely expect coexistence or not. Figure 3.9 shows superim
positions of the number of nontrivial fixed points for type 1 and 2 specific models. For both 
topologies , the food chain and the omnivorous web, coexistence of nontrivial fixed points is 
common for small feeding nonlinearities, Favg less than about one half. Most single fixed 
points have Favg greater than one half and are also stable. Some stable fixed points with 
small feeding nonlinearities are coexistent fixed points and have a small basin of attraction. 
Coexistence of two stable fixed points is not found. Adding an omnivorous link to the food 
chain does not qualitatively change where coexistence occurs, but typically reduces the num
ber of coexisting fixed points from three to two or two to one. The stabilizing shift of the 
stable/unstable boundary to lower feeding nonlinearities (Fig. 3.7) creates more stable fixed 
points in regions of coexistence.

In the nonlinearity regime with a stable, single fixed point, the feeding nonlinearities 
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are larger, representing more hungry predators. These four-species food webs might appear 
globally stable for an observer of a real system. From a mathematical point of view the 
stable, single nontrivial fixed point is not a globally stable fixed point, since coexisting 
trivial fixed points (saddles) exist that can be reached from non-typical initial conditions. 
Non-typical initial conditions, however, are not accessible in a real food web. Preliminary 
simulation results for the type 1 and 2 specific models show that trajectories with various 
initial conditions reach the stable nontrivial fixed point. Therefore, ecosystem persistence 
in form of a chaotic or periodic, coexisting attractor is not evident. In rare exceptions, for 
parameters close to the stable/unstable boundary, trajectories do not approach the nontrivial 
stable fixed point. Further studies would need to investigate this in more detail.

3.11 Feeding nonlinearities and stability

Generalized modeling often assumes equal feeding nonlinearities Fi for each predator 
across trophic levels to reduce the dimensionality of the generalized parameter space (Gross 
et al.; 2009; Yeakel et al.; 2014; Awender et al.; 2021). Plitzko et al. (2012) determines the 
distribution of Fi in steady state in specific 30-species food webs generated with the niche 
model (Williams and Martinez; 2000). They find that stable fixed points typically have 
larger feeding nonlinearities for larger trophic levels. Similar to Plitzko et al. (2012), we 
analyze the distribution of Fi in the type 1 and 2 specific models and find distributions that 
are sensitive to production forms.

Figure 3.10(a) shows stable fixed points distributed in the nonlinearity-of-feeding space 
(F2, F3) for three basal production forms. Logistic production yields stable fixed points with 
comparatively smaller feeding nonlinearities and (predominantly) F2 < F3 in the type 1 
omnivorous web. Production due to the exponential map and Bellow's map in the type 2 
food chain yield stable fixed points that cover a larger range of feeding nonlinearities and the 
ranking of F2 and F3 is less distinct. The corresponding histograms of feeding nonlinearities 
F2, F3, and F4 are presented in Figs.3.10(b)-3.10(d). The exponential map [Fig.3.10(b)] 
yields a histogram with no clear ranking in Fi for stable fixed points; its shape is similar 
to most histograms for type 1 and 2 specific models with other combinations of production 
term and topology. The histogram for the logistic case [Fig. 3.10(c)] exhibits a unique shape 
with feeding nonlinearities predominantly ranked as F2 < F4 < F3; the order with respect 
to peak location of F3 and F4 is switched in comparison to Plitzko et al. (2012).

When the production term is Bellow's map, the histograms for each trophic level are the 
same [Fig. 3.10(d), S ≈ 0], which is also a unique result. All the stable points that are near 
maximal production growth (S = 0) have sets of equivalent feeding nonlinearities Fi = F,
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Figure 3.10: (a) Stable fixed points positioned by the nonlinearities of feeding, F2 and F3, 
for (black) the type 1 omnivorous web with logistic production [data from Fig. 3.3(f)], (dark 
grey) the type 2 food chain with exponential map production , and (grey) for the type 2 food 
chain with Bellow's map (b=2) production. The diagonal line is for reference. Histograms 
of the nonlinearities of feeding for each predator (F2, F3, F4) for the data from panel (a) for 
(b) the exponential map, (c) the logistic case, and (d) the Bellow's map. n is the number of 
points per bin. For (d), only data with |S| < 0.001 corresponding to the white line in panel 
(a) are used.

Fig. 3.10(a).
This section compares the typical assumption in generalized models that feeding non

linearities are equal for all species with the actually occurring feeding nonlinearities in the 
specific food web models. The results show that occurring feeding nonlinearities depend on 
the specific functional forms for production and have broad distributions; feeding nonlin
earities are equal in the special case of fixed points at maximum production for Bellow's 
map.

3.12 Weighting of links in steady state

In the omnivorous web, species 2 is preyed upon by species 3 and 4, and species 4 is 
a predator of species 2 and 3 (Fig. 3.2). Thus, the biomass flow from x2 is divided onto 
the two paths. In generalized ecological models the weighting between two such links is 
often assumed to be an even split. Other approaches incorporate variability in the link 
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strengths, such as random choices drawn from a distribution (Gross et al.; 2009) or scaling 
the weightings such that more probable links have higher flows (Yeakel et al.; 2014). It is 
investigated whether such assumptions are consistent with the actually occurring weights in 
the specific models at steady state.

Figure 3.11: Histograms of proportionate biomass growth and proportionate biomass loss (y) 
in type 2, specific omnivorous webs with various production terms. n is the number of fixed 
points per bin for the (a) 200-bin histogram that includes all fixed points (about 3.54 million 
fixed points with about 25% of them stable), and for the (b) 200-bin histogram that only 
includes the stable fixed points. y = β23 - β24 (transparent blue) represents the difference 
in proportionate loss of biomass from x2 to x3 and x2 to x4, and y = γ42 - γ43 (transparent 
orange) represents the difference in proportionate growth of biomass x4 from predation of x2 

and x3. The productions terms include Bellow's equation (b=6,10), exponential map, and 
Bellow's map (b=2,10). The third color represents the data where both histograms overlap.

Proportionate link strengths are extracted from the type 2 specific models at steady state. 
The proportionate flows out from the biomass x2 are β23 and β24, which are non-negative 
and sum up to one; similarly for the proportionate flows into x4, γ42 and γ43. Figure 3.11(a) 
shows the distribution of the difference of proportionate flow out of x2, β23 - β24, and the 
distribution of the difference of proportionate flow into x4, γ42 - γ43, for all fixed points. The 
fixed points show any possible scenario of relative weighting, i.e., the differences in the scale 
parameters cover the entire range from [-1, 1]. The most common scenario has perfectly even 
flows out from x2, but most of these fixed points are unstable. The most common scenario 
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for stable fixed points [Fig. 3.11(b)] has about twice the flow going from x2 to x3 than from 
x2 to x4, β23 -β24 = 0.3 or (β23, β24) = (0.65, 0.35). Overall, networks with larger flows from 
x2 to x3 compared to x2 to x4 are more likely to result in stable steady states. These results 
can inform assumptions in future generalized modeling efforts.

The difference of weightings on predatory gains for x4, γ42 - γ43, show a symmetric 
distribution to that of the difference of weightings on predatory loss of x2, β23 - β24. More 
outflow from biomass x2 to x3 results in proportionately more inflow of biomass into x4 

via x3. This symmetry in the distribution of out-flows from the bottom predator and the 
distribution of in-flows to the top predator needs to be explored in future studies; it might 
not exist in larger, more connected webs.

3.13 Conclusion

It is not possible to empirically determine complete descriptions of processes and param
eters controlling biomass flow in real ecological systems. Specific models (e.g., coupled-ODE 
models) assume explicit functional forms and initial conditions to discuss trajectories and 
dynamics in abstractions of the ecological system. Generalized models make no such assump
tions and efficiently capture the stability of nontrivial steady states for an infinite number of 
specific ecological models (Gross et al.; 2009). However, specific models provide information 
on trajectories, coexistence of fixed points, and more complex attractors, while generalized 
models can not. This study compares results and ecological implications from generalized 
modeling and specific modeling in a four-species trophic network where the top predator is 
omnivorous or not.

Generalized parameters, with a particular focus on feeding and basal production nonlin
earities in this study, can span all plausible dynamic scenarios, but some of this parameter 
space may not be accessible to a particular specific model. Nevertheless, generalized mod
eling and specific modeling reveal some common ecological interpretations. Stable fixed 
points generally exist for hungry predators, a condition when the prey density is less than 
the half saturation of the predatory growth (larger feeding nonlinearities). Stable fixed points 
culminate over a range of feeding nonlinearities when the basal production rate is near its 
maximum (nonlinearity of production near zero). In short, good conditions for stability arise 
when basal growth rate approaches a maximum and nutrient flows to predators are fettered. 
These stability trends are qualitatively similar for the various production processes.

Adding an omnivorous link to the food chain has a stabilizing effect. The range of 
stable fixed points extends to smaller feeding nonlinearity parameters, which means that 
steady states with larger prey populations relative to the half-saturation constant in the 
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predatory response functions become stable. This finding is consistent across specific and 
generalized models and the two topologies. The role of omnivory for food web stability is an 
important area of research and studies report that increasing omnivory can have a stabilizing 
or destabilizing effect (Vandermeer; 2006; Awender et al.; 2021). Awender et al. (2021) show 
that adding omnivory to short food chains with three or four species has a stabilizing effect, 
while increasing omnivory in longer food chains is destabilizing.

Previous studies have reported that enrichment either stabilizes or destabilizes ecosys- 
tems(Roy and Chattopadhyay; 2007; Gross et al.; 2004; Awender et al.; 2021) with the later 
known as paradox of enrichment (Rosenzweig; 1971). The system is enriched by increasing 
the amount of limiting nutrients for basal growth, which effectively increases the carrying 
capacity. The four species food chain and the omnivorous web reveal that fixed points can 
stabilize from enrichment when the basal species are in a resource-deprived environment but 
become unstable when the basal species are in a more resource-rich environment. While 
a specific model exhibits a defined path of enrichment, a generalized model has infinitely 
many hypothetical paths of enrichment that may or may not be accessible by a specific 
model. Smaller prey densities relative to their predator's half-saturation constants (in gen
eralized and specific models) also drive fixed points into the stable region where feeding 
nonlinearities are increased. Real systems are driven into this condition by the hampering of 
hunting conditions or less nutritious prey, a concept prevalent in a conglomerate of mesocosm 
experiments (Roy and Chattopadhyay; 2007; Harrison; 1995).

Generalized modeling approximates the distribution of flows to and from a multi-degree 
network node, assuming links with equal weights, or random weights, or weights that are 
scaled with link probability (Gross et al.; 2009; Yeakel et al.; 2014). In the specific model, 
however, the fixed points of the omnivorous web reveal any possible scenario of relative 
weighting. The most likely scenario has the flow to the top predator equally divided between 
the two flows, but most of these fixed points are unstable. The most likely scenario for stable 
fixed points has two-thirds of the flow go to the nearest trophic level and one-third of the 
flow go to the top, skipping a level. These results from the specific model can inform future 
generalized modeling efforts.

Global stability can be challenging to prove in specific models, but is conceptually elu- 
sive/undefined in generalized modeling. Specific models are used to identify regions in the 
generalized parameter space with one or more non-trivial fixed points. A stable fixed point is 
often the only nontrivial fixed point for larger feeding nonlinearities, representing ecosystems 
with hungry predators. For an observer such ecosystems might appear globally stable, since 
non-typical initial conditions are not accessible in a real food web. Coexistence of nontrivial 
fixed points is common for small feeding nonlinearities, i.e., when prey densities are larger 
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than predator's half-saturation constants. Further studies are needed to explore coexistence 
patterns in larger webs and different specific models with the goal to derive statistical infor
mation on coexistence that might be relevant for the interpretation of generalized models.

The four-species webs might behave similar to some larger and more complex food webs if 
the four species are interpreted as trophospecies that combine species with similar ecological 
function into one unit. If omnivory is uncommon enough, larger food webs are stratified to 
create a network of trophospecies to resemble the trophic levels of food chains. For example, 
one study shows that webs consisting of thirty basal species and thirty top predators and 
no intermediate predators have the same stability profile as a two species food chain (Gross 
et al.; 2005; Awender et al.; 2021), alluding to the scientific fertility simpler networks have 
in the development of foundational principles governing food web dynamics. Adding further 
complexity to these models is imperative for the refinement of these principles.
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Chapter 4 How Realistic Features Affect the Stability of an Arctic Marine 

Food Web Model

4.1 Introduction

Ecosystems are large, nonlinear dynamical systems that embody the interactions among 
community members and the abiotic environments that contain them. They are character
ized with immense complexity from species richness, interconnectedness, and nonlinear pro
cesses that describe the flows of matter and energy to and from constituents. Until recently, 
work to understand and manage wild populations has focused on individual populations , but 
in the past few decades it has become increasingly clear that understanding the mechanics of 
ecosystems is essential for sustainable exploitation and conservation of ecosystem members, 
either collectively or individually (Plaganyi; 2007).

Arctic ecosystems are of special interest for ecosystem modeling, because they are nat
urally among the least biodiverse, making them good candidates for more realistic mathe
matical representations. These depauperate systems are also special in that the organisms 
composing them are often uniquely adapted to the extreme conditions of cold temperatures 
and sea ice; and subject to long periods of day and night, and fast transitions of intense 
seasonality.

Ecosystems in the far north provide cultural and provisioning services to the human 
communities that live there. The resources of marine ecosystems are the most important 
natural resource to Alaska native subsistence and commercial harvest in the Arctic. For 
example, the harvest of bowhead whales accounts for more of the harvested biomass by 
weight than all the combined land mammals in the North Slope Federal Subsistence Region 
(Smith et al.; 2017). The Arctic is also at the front lines of climate change, and has seen 
more intense warming than any other region on Earth (Serreze and Barry; 2011). Arctic 
species with high degrees of specialization to polar conditions are most likely to face adverse 
effects from a changing environment. Understanding Arctic ecosystems and their dynamics 
is thus important for predicting the consequences of a changing climate on the system level 
and acquiring effective insight for conservation.

Ecosystems are often represented both conceptually and mathematically as intercon
nected networks called food webs. Such mathematical representations are useful to both 
theoretical and empirical ecology. Ecosystem network models are composed of nodes (species 
or aggregate trophic units) linked by consumer-resource interactions; some coupling can be 
from non-transfer interactions as well, such as competition. In this study, some links rep

87



resent flows of resources (matter or energy) into or out of the system (natural mortality 
and primary production). but most represent energy transfers between species within the 
community (predator-prey interactions).

Realistic network representations of diverse ecosystems can become extremely compli
cated and include thousands of links between hundreds of trophic nodes. Even in simpler 
systems representing a few tens of nodes and a few hundred links. empirical biomass or flow 
estimates are unlikely to be available. In these circumstances. a relatively new modeling 
approach has been introduced known as ”generalized modeling”(Gross and Feudel; 2006; 
Kuehn et al.; 2013). Generalized modeling is a powerful modeling technique that does not 
require specific functional formulations of processes nor initial conditions of the system. By 
contrast. in conventional dynamics modeling approaches. both the mathematical functional 
forms and their parameters must be specified. Instead of specifying exact mathematical 
forms to describe the various ecological processes. the terms that represent the ecosystem 
processes are merely classified into a series of gain or loss terms. A normalizing coordi
nate transformation maps the unknown fixed points (equilibria) to a known. rescaled fixed 
point from which local stability and bifurcation information is extracted. The transformed 
parameterization comprises the relative weighting of the flows between each process and 
the functional nonlinearities of each process at these fixed points. collectively referred to as 
generalized parameters.

In this analysis. we use generalized modeling to explore the impact of various ecosystem 
characteristics on overall stability of the Southern Beaufort Sea (SBS) ecosystem. We assess 
how incorporating foraging traits of ecosystem members. constraining the connections from 
habitat modularity. and adjusting predatory weights impacts the stability regions in the 
nonlinearity space of the systems' production processes and node-to-node transfers. We also 
assess how the addition or removal of a single species from SBS food webs is potentially 
stabilizing or destabilizing Lastly. we introduce a method to add “ecosystem background 
noise” in food web models to assess the collective impacts of numerous latent ecosystem 
members on overall stability. with the idea that ecosystem models often focus on abundant 
species and/or species of particular management interest.

4.2 The Beaufort Sea Food Web

The region of the Arctic Ocean directly adjacent to Alaska's North Slope and Canada's 
most western Arctic is the Southern Beaufort Sea (SBS). This sea freezes completely over 
in the winter. but the timing. thickness. and extent of the sea ice varies from year to year. 
Sea ice is a critical force in this ecosystem; it controls the plankton blooms and its presence
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is critical for ice-obligate species, including walrus, polar bear, arctic cod and most of the 
region's seals. Sea ice also serves as a geographical northern boundary for many species, 
including killer, grey and humpback whales. Sea ice degradation and recession is changing 
this boundary, permitting the possible invasion and colonization of the system by subarctic 
and temperate species, allowing them to penetrate farther north and reside for longer periods 
(Breed et al.; 2013; Divine; 2016). The SBS also hosts a declining polar bear subpopulation, 
serves as a migratory corridor and breeding location for bowhead whale, and its fish biomass 
is predominately arctic cod (Thorsteinson and Love; 2016; Smith et al.; 2017).

In the analyses presented here, we use the SBS ecosystem as a motivating example and 
model ecosystem. Food webs representing the SBS were constructed from a species pool 
comprising thirty species or trophospecies, groups of species with similar ecological function 
that are collectively represented by one state variable. These thirty were selected with the 
expectation that they have the greatest ecological significance. Each species or trophospecies 
node has an associated set of ecological attributes, including a specified body mass and a 
set of habitats to which the species is most tightly associated within the larger ecosystem. 
The overall ecosystem has five modules, defined by habitat, that physically prevent some 
network connections as some species do not share the same habitat. Table 4.1 displays these 
species along with their mass and habitat associations. Table 4.1 also includes a plot of the 
size spectrum of masses in kilograms, which spans nearly 13 orders of magnitude.

Body size is a key trait because it strongly controls the probability one species will 
consume another, and a great deal of work has been undertaken to understand how body size 
spectra impact food web structure (Woodward et al.; 2005; Stouffer et al.; 2011). Predators 
are usually 1 to 4 orders of magnitude larger than their prey. Prey less than one order of 
magnitude smaller than predators are difficult or dangerous to capture, while prey smaller 
than four orders of magnitude can require too much effort for the small caloric rewards. 
Structuring a food web based solely on body size can predict the majority of real ecosystem 
links. As these representations are modified to incorporate increasingly detailed the foraging 
traits of ecosystem members (where available), the predictions become increasingly accurate 
(Rohr et al.; 2010).

Given that body size spectra are a key element structuring ecosystems, we begin our mod
elling effort by representing the probability pij a link is present between any two ecosystem 
members as a function of the predator-to-prey body-mass ratio mi/mj ,
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Table 4.1: Thirty species in the model SBS ecosystem sorted by estimated average mass, 
the set of habitats most frequented by each species, and the masses plotted on a logarithmic 
scale. The killer whale is added as introductory species. (Thorsteinson and Love; 2016; 
Smith et al.; 2017; Majewski et al.; n.d., 2017; Gray et al.; n.d.; Loseto; 2008).

Name Latin name Mass [kg] Habitats
30 Bowhead Whale Balaena mysticetus 4.9 × 104 1,2
29 Beluga Delphinapterus leucas 1.4 × 103 3
28 Pacific Walrus Odobenus rosmarus divergens 1.0 × 103 2,3,4
27 Polar Bear Ursus maritimus 4.0 × 102 1,2,3
26 Bearded Seal Erignathus barbatus 2.5 × 102 2,4
25 Ringed Seal Pusa hispida 7.5 × 101 2,4
24 Dolly Varden Salvelinus malma 2.2 × 100 1,2,3
23 Arctic Cisco Coregonus autumnalis 1.0 × 100 1,2,3
22 Shorthorn Sculpin Myoxocephalus scorpius 1.0 × 100 4
21 Bering Cisco Coregonus laurettae 8.6 × 10-1 1,2,3
20 Saffron Cod Eleginus gracilis 6.5 × 10-1 4,5
19 Bering Flounder Hippoglossoides robustus 4.3 × 10-1 4
18 Fourhorn Sculpin Myoxocephalus quadricornis 3.1 × 10-1 3,4
17 Arctic Smelt Osmerus dentex 2.8 × 10-1 1,2
16 Nebulous Snailfish Liparis bathyarcticus 7.6 × 10-2 4
15 Polar Eelpout Lycodes polaris 7.0 × 10-2 4
14 Arctic Cod Boreogadus saida 6.3 × 10-2 1,2,4,5
13 Arctic Sand Lance Ammodytes hexapterus 3.7 × 10-2 1,2,5
12 Arctic Staghorn Sculpin Gymnocanthus tricuspis 3.5 × 10-2 4
11 Slender Eelblenny Lumpenus fabricii 2.8 × 10-2 4
10 Pacific Capelin Mallotus catervarius 5.5 × 10-3 3
9 Hamecon Artediellus scaber 5.3 × 10-3 4,5
8 Ninespine Stickleback Pungitius pungitius 2.0 × 10-3 1,4
7 Snow Crab Chionoecetes opilio 1.8 × 10-3 4,5
6 Large Crangonid Shrimps Habitats 1.7 × 10-4 4
5 Amphipods 1 Oceanic 1.6 × 10-4 1
4 Euphausiids 2 Neritic 8.2 × 10-5 1,4,5
3 Bivalves 3 Littoral 4.5 × 10-5 4
2 Mysids 4 Benthic 2.6 × 10-5 1,4,5
1 Copepods 5 Shelf/Midwater 2.0 × 10-8 1

Killer Whale Orcinus orca 3.5 × 103 1,2,3,4,5

m
as

s [
kg

]
where logit-1(x) := ex/(1 + ex). The linking probability pij is the probability that xi preys 

on xj (Fig. 4.1). Though the body mass ratio is a good starting point, linking probabilities 
also depend on the foraging traits of xi, which can be specialized to avoid certain prey or 
target prey larger or smaller than that predicted from body mass ratios alone.

Here, we estimate the connections only from the perspective of the predators' foraging 
traits or feeding specialization; hence, the constants of Eq. (4.1), which represent the traits, 
apply only when a node is acting as the predator. The constants ai, bi, ci, di are determined 
from xi's foraging traits. In the base model, we apply the assumption that every species has 
the same foraging traits, and set (ai, bi, ci, di) = (a, b, c, d) for all ecosystem members i. The
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Figure 4.1: General linking probability pij versus predator prey mass ratio mi/mj for the 
standard parameters (ai, bi, ci, di) = (1.41, 3.73, -1.87, 1) in Eq. (4.1). For any potential 
prey item one to four orders of magnitude smaller than the predator, there is at least a 60% 
chance for a link.

choice of parameters used here is adopted from the parameters used in Yeakel et al. (2014). 
This base model has each of the species with the same feeding parameters, all members have 
the same chance for connection with any other species, and with no prey preference other 
than that determined by body mass ratios.

4.3 Food Web Dynamics

The mathematical framework of generalized ecological models was initially developed in 
Gross and Feudel (2006) and is summarized here. The state of an ecological network with 
N species at time t, x(t) ∈ RN, is represented as a network of connections between species, 
with xi representing the biomass of species i and xi ≥ 0. The state evolves by a growth rate 
from production S and predation F , and a loss rate from predation L and other mortality 
M,
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ηi is an assimilation coefficient. The predatory loss Lij of prey i from predator j is pro
portional to the predatory growth of the predator Fj and the fraction with which prey i



contributes to the resources of predator j

Tj is the total prey resources destroyed by predator xj,

where γij∙ = Cij/Ti* and X* is a diagonal matrix, Xij* = xi*δij∙. This normalization maps
the unknown fixed point x* to a known fixed point χ* = (1,1,..., 1), and the unknown 
process to a known process value at the fixed point, g(χ*) = 1 in the rescaled system. The 
N equations of motion in non-dimensionalized form are

The time scale parameter (turnover rate) αi is determined from the steady state, where the 
total influx (growth) is equal to the total outflux (loss),

The primary scale parameters that describe the relative weighting of the main process flows 
of the network at the steady state are
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where Cjk is the contribution from xk to the diet of xj.

4.3.1 Generalized Ecological Model

Starting with Eq. (4.2) and normalizing the state vector to an unknown, nontrivial fixed 
point x*, and each unknown growth or loss process of the form G to its value at the fixed 
point G* ≡ G(x*), gives following rescaled variables and functions,



The secondary scale parameters that describe the relative weighting between the sums of 
predatory out- or in-flows at steady state are

The local dynamics near the fixed point is governed by the Jacobian matrix J* evaluated at 
the fixed point. The diagonal elements are

and the off-diagonal elements are

The exponent parameters (nonlinearity parameters) of the form g(ξ) in the Jacobian are 

defined as

with ξ ∈ {χi, ti}. They describe the nonlinearity of process G (x) [Eq. (4.2)] with respect to 
ξ at the fixed point and are measures of elasticity.

4.3.2 Generalized Parameters for the Base Model

Steady state stability [Eqs. (4.10) and (4.11)] depends on the time scale parameter αi 

[Eq. (4.7)], the scaling parameters [Eqs. (4.8,4.9)], the exponent parameters [Eq. (4.12)], 
and the topology of the web. Making assumptions on body-size distribution, proportion of 
biomass flows, nonlinearities of growth and loss processes, and the predatory links between 
species determines these generalized parameters without the need for specifying initial con
ditions or specific functional forms.

The characteristic time scale, αi, is a species' turnover rate or the reciprocal of an indi
vidual's average lifetime. Allometric regressions show that this attribute, as well as many 
other processes such as respiration and water absorption, is well predicted by species' body 
mass, αi = mi-0.3 (Hendriks; 1999).

The primary scale parameters [Eq. (4.8), summarized in Table 4.2] describe the propor
tional biomass flow between different source processes and between different loss processes,
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Table 4.2: Primary scale parameters [Eq. (4.8)] for top, intermediate, and basal species.

each forming the convex combination σi + ϕi = 1 and λi + μi = 1. E.g., the proportion of 
predatory gain to that of total gain is ϕi = 1 — σi. For a species without prey (basal species) 
the production process is assumed to be the only source process, σi= 1. For a species with 
predators all loss is assumed to be due to predation, λi= 1. For a species with no predators 
(top predator) all loss is due to other mortality (Gross and Feudel; 2006), μ =1.

The secondary scale parameters describe the relative weighting of predatory out-flows 
βij and the relative weighting of predatory in-flows γij. βij is the portion of the flux that 
predator j takes from prey i relative to all predatory loss of i. If all predatory loss terms are 
equal, βij only depends on the number of predators Cithat species i has.

Similarly, if all predatory gain terms for predator i are equal, γij only depends on the number 
of prey items Ri of predator i. If i does not prey on j, then γij = 0, and analogously, if j is 
not a predator of i, then βij = 0.

The production process S is often approximated with the logistic growth model, but 
many homologous functional forms follow the same nonlinearity range (Awender et al.; 2023). 
The nonlinearity of production si(χi) approaches one as the (basal) population approaches 

zero, since production grows linearly with population for low populations. The nonlinearity 
decreases as basal population increases due to increased intraspecific competition. For the 
production processes with a defined carrying capacity, the nonlinearity approaches -∞ as the 
population approaches its carrying capacity. The nonlinearity of production is chosen within 

(χ )the range si(χi) ∈ [—1, 1] to exclude systems with basal populations close to their carrying 

capacity.
Predatory growth processes F are often represented with a growth function that depends 

on tactics and attributes of the species regarding evasion or capture. The predatory response 
is the per capita growth and saturates at high prey density. Implying processes similar 
to Holling's type functional responses, the nonlinearity of predation with respect to prey 
population (nonlinearity of feeding) is chosen within the range fi(ti) ∈ [0.5, 2]. The lower 

limit excludes food webs with high prey availability, since prey abundance is scarce in Arctic 
food webs, especially at steady state. The upper limit includes predator responses that
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incorporate hunting skill requirements or evasive prey behavior. motivated from a Holling's 
type III response. The predatory growth is assumed to be linearly proportional to the

(χi)predator biomass. fi(χi) = 1.

Mortality processes M are often modeled as linear or quadratic functions. e.g.. in Lotka- 
Volterra predator and competition models. but non-integer exponents between one and two 
might more accurately represent nature (Edwards and Bees; 2001; Lan and Li; 2008). In this 
study. the nonlinearity of mortality is set to mi(χi) = 1.6. consistent with Gross et al. (2005).

The contribution Cij of prey species j to the diet of predator i is assumed to be propor
tional to the abundance of prey (Gross and Feudel; 2006). The nonlinearity of contribution 
(χj ) (χj )cij j = 1 if species i is a predator of species j. and cij j = 0 otherwise.

4.3.3 Measuring Stability

Two generalized parameters that determine food web dynamics are varied in this study. 
the nonlinearity of production si(χi) and the nonlinearity of feeding fi(ti). The stability of 

one web. P (Awender et al.; 2021). is given by the percentage of stable equilibria out of 900 
fixed points that evenly span the nonlinearity space. si(χi) ∈ [-1, 1] and fi(ti) ∈ [0.5, 2]. A 

completely unstable web is defined by P = 0.
The stability of a set of webs. typically a set of topologies. is quantified by Pavg(y). It 

averages the web stability P over a range of networks with attribute y. with y (for example) 
representing network size N or network connectance C. Other measures of stability that 
apply to particular results are introduced in their context.

4.4 Impact of Refined Species Characteristics on Stability

In the “base model” the probability for a predatory link exclusively depends on the preda
tor to prey body-mass ratio and follows the same function. Fig. 4.1. for all species; predatory 
in-flows (and out-flows) are equally weighted. Eq. (4.13). Realistic species characteristics 
based on phylogeny. prey preference and habitat compartmentalization are introduced to 
modify the base model and to assess their impact on network stability.

4.4.1 Adjusting the Base Model

§ Foraging Traits

Body size is a fundamental trait predicting a predator-prey interaction probability and 
strength for many species (Akin and Winemiller; 2008). However. models constrained only 
with body size predict the structure of real food webs with only limited accuracy. Better 
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prediction requires constraining with additional species-specific traits, where they are avail
able (Naisbit et al.; 2012; Rohr et al.; 2010; Williams et al.; 2010). In this study, we only 
consider predator-specific traits and refer to them as “foraging traits”.

The evolutionary history has shaped a diverse set of species in which a relatively small 
number of species underwent specialized behavioral and physiological adaptations that shift, 
expand, or restrict their foraging niche. For instance, not every predator has the same mouth- 
to-body size ratio. The bowhead whale, for example, is the largest species in the Southern 
Beaufort Sea (SBS) food web and generally considered to have considerable ecosystem im
portance. If we use only its body size to predict which species it is likely to ingest as food, we 
would predict its most likely prey is any of the large mammals in the SBS. However, we know 
bowhead whales are equipped with specialized feeding morphology, having evolved baleen 
and an oversized mouth to feed on very small but enormous energetic supply of plankton, 
which are far smaller than mass ratios would predict. Figure 4.2 compares bowhead whale 
prey size spectra to other species.

Figure 4.2: Linking probability, pij , that species i will prey on species j based on their body
mass ratio mi/mj , Eq. (4.1). The parameters ai, bi, ci, di for the species are (1, 12, -8, 1e-7) 
bowhead whale, (0.4, 8.9, -3.3, 1e-2) beluga, (6, 3, -3, 5e7) pacific walrus, (70, 14, -20, 1e3) 
polar bear, (0.4, 4, -1.8, 1e-2) bearded seal and ringed seal, and the standard parameters 
(1.41, 3.73, -1.87, 1) for everything else (Fig. 4.1). For the walrus, mi/mj is also exchanged 
with mj/mi due to its preference of primarily eating mollusks(Dehn et al.; 2007).

In our system, six species are classified as “specialized species” and they each have unique 
linking probabilities [Eq. (4.1)] in comparison to the standard species in the base model, 
Fig. 4.2. These six species are the filter-feeding megafauna (bowhead whale), gape-limited 
cetacean and pinnipeds (beluga, walrus, bearded and ringed seal) and the super predator 
(polar bear). The gape-limited species have relatively small mouth-to-body size ratios and 
their linking probabilities are shifted to smaller prey. A ”super predator” is a predator that 
feeds on the largest species in the system. The polar bear, being the only land species, is
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an example that only eats the mammals in our model; we exclude any fish prey that may 
otherwise be of an appropriate mass for foraging. The linking probabilities of every species 
in a foraging traits model are shown in Figure 4.2.

§ Adjusting Weights of Predator-Prey Links

Once network links are probabilistically determined from body-mass ratios [Eq. (4.1)], 
the secondary scale parameters describing relative weights between predatory in-flow γij or 
out-flow βij, Eq. (4.9), can be assigned. In the base model, flows into a predator are evenly 
distributed across all prey species connected to that predator. E.g., a predator connected to 
two prey species receives 50% of predation gain from each prey for its growth. Similarly, the 
outflow from a prey species into all of its predators is equally weighted.

Figure 4.3: Proportional flows of predatory loss βij from prey i to predator j in a 16-species 
network with a) even weights (base model) and b) after adjusting the weights [Eq. (4.14)]. 
The indices are not species identifiers as in Table 4.1. The colored squares represent links 
and the value of βij .

In the adjusted weights model, link weights are proportional to the linking probability, 
pij [Eq. (4.1)]. This may better represent a predator's prey preference by enhancing the 
link weight for prey that are closer to the optimal prey body size (Yeakel et al.; 2014). The 
relative weights for predatory in-flow γij and out-flow βij are defined as
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where κ is in the set of prey items for xi (in-degree of node xi) and k is in the set of predators 
of xi (out-degree of node xi). Note, n γi,n = n βi,n = 1, with n in the entire set of N 
species.

Figure 4.3 depicts the structural change of a network before and after adjusting the 
weights βij. For predatory outflow with equal weights the colors within a row are equal, 
while including prey preference can induce significant changes in the weights. This example 
has a rather large discrepancy, about 28%, in the norm of each weight matrix with elements 
βij. More typical examples for 16-species networks have a closer to 10-15% discrepancy.

§ Habitat Constraints

To our knowledge, no generalized modeling efforts have considered topologically structur
ing ecological networks into connected modules that represent the kind of modularity caused 
by habitat specialization from environmental differences across land or seascapes. Different 
habitats are spatially segregated within the larger ecosystem. Most species frequent a sub
set of available habitats, which inhibits some members from one habitat to interact with 
members from another habitat. Based on the limited number of species and the most en
compassing and frequent habitat descriptions, we classify five habitat types within our larger 
ecosystem model, Table 4.1. Near or at the ocean surface, the photic zone is segmented into 
three zones based on distance to the coast; from farthest to closest, they are oceanic (open 
ocean), neritic (shelf), and littoral (tidal, sub-tidal) zones. The remainder of the marine 
ecosystem is divided into benthic (sea floor) and midwater habitats.

Figure 4.4: 30-species adjacency matrices superimposed from 100 topologies for (a) the base 
model [Eq. (4.1)], (b) the base model with foraging traits (Fig. 4.2), and (c) the base model 
with habitat constraints [Table 4.1] and foraging traits. A darker color represents more link 
occurrences and white represents no occurrences.

Habitat constraints are imposed with the assertion that any two species obey the linking 
probability [Eq. (4.1)] if they are members of a common habitat. If they do not have a
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Table 4.3: Stability measures for the different models: Total average stability P over 280,000 
webs (independent of network size) for each model, and corresponding relative changes ∆Pay 

in integral web stability [Eq. (4.16)] for y being N, C, or R. The N column is exact, while 
the C and R columns show averages from arbitrary binning into 10 to 30 intervals (Fig. 4.6).

Model P ∆Py [%]
Base 0.26 N C R
Foraging Traits 0.30 17 2 -21
Adjusted Weights 0.31 20 6 21
Habitats 0.38 49 11 16
Full 0.45 82 49 4

habitat in common the linking probability is set to zero. Thus habitat constraints decrease 
the total number of realized connections in a network. This is graphically expressed by the 
frequency of link occurrences in accumulated adjacency matrices (Fig. 4.4). While adding 
foraging traits of specialized species to the base model rearranges elements in the matrix 
(Fig. 4.4b), a decrease in connectance is inferred once the habitat constraint is imposed 
(Fig. 4.4c). Since some species are members of multiple habitats, cross-habitat links occur 
to generate a connected network with a degree of modularity instead of disjoint modules. 
The link occurrence density in Fig. 4.4 also reflects the linking probability curves from 
Fig. 4.2 for the individual species.

4.4.2 Results

Network stability is discussed for five models, the “base model” (Sec. 4.3.2), the “foraging 
traits model” (Sec. 4.4.1), the “adjusted weights model” (Sec. 4.4.1), the “habitat constraints 
model” (Sec. 4.4.1), and the “full model”, which combines all three realistic characteristics 
into a single model. A data set of 280,000 webs, consisting of 10,000 webs for each size from 
N =3 to N =30, is generated for each model.

The total average stability, P, is the average of P, a single web's proportion of stable 
equilibria (Sec. 4.3.3), over all 280,000 webs (independent of network size) for a given model. 
Each realistic feature increases network stability in terms of P in comparison to the stability 
of the base model, summarized in Table 4.3. While adjusting foraging traits or weights 
increases stability by 15% to 19%, the habitat constraints increase stability by 46%. The 
full model has almost twice as many stable equilibria than the base model.

Figure 4.5 shows network stability Pavg(N) as a function of network size N for the dif
ferent models, averaging over 10,000 webs for each N. Each refined species characteristics, 
whether it is foraging traits, prey preference, of habitat constraints, leads to an increase in 
web stability Pavg(N) over a particular range of network sizes and an overall gain in network

99



Figure 4.5: Comparing average stability. Pavg. of the base model to the added-feature models 
against network size N for a) the “foraging traits model”. b) the “adjusted weights model”. 
c) the “habitat constraints model”. and d) the “full model”. The text shows the percent 
change of the areas under the curves. 10.000 webs are used for each network size. N ∈ [3, 30]. 
resulting in 280.000 webs for each model.

stability. The largest individual gain in stability is reached from habitat compartmentaliza
tion. Fig. 4.5(c); integrating over all network sizes the stability is increased by about 50% 
in comparison to the base model. Combining all the refined species characteristics in the 
full model. the number of stable webs almost doubled in comparison to the base model. 
Fig. 4.5(d).

The average web stability Pavg is also affected by different aspects of network topology. 
The connectance C represents the overall density of links in a network. the proportion of 
possible connections that actually occur. Webs with small connectances are less stable for 
the “full model” than for the base model. and webs with large connectances are more stable 
for the full model. Fig 4.6(a). The findings for the “habitat model” are similar to the “full 
model”. while the “foraging traits model” and the “weights model” show little difference in 
Pavg(C) to the base model. Pavg(C) closely agrees for all models at intermediate connectances
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Figure 4.6: Comparing average stability, Pavg, of the “full model” to the base model against 
a) connectance C and b) intermediate-to-top predator ratio R, using all webs from Fig. 4.5. 
A lower value in R corresponds to fewer mesopredators in the network. The average stability 
depends on the number of bins; the solid curves correspond to 22 bins, and the scattered 
data correspond to between 10 and 30 bins. The text shows the average integral percent 
change from all the different binning choices.

around C = 0.25. Connectedness between predators is expressed by the number of interme
diate predators (mesopredators) to the number of top predators, R. The intermediate-to-top 
predator ratio R largely agrees for the “full model” and the base model, but shows a small 
increase of Pavg(R) for 13 < R < 20 and a small decrease for 10 < R < 13 for the “full 
model”, Fig. 4.6(b). Deviations from the stability of the base model vary for each “added- 
feature model”. For the “foraging traits model”, Pavg(R) decreases for 0 < R < 10, for 
the “adjusting weights model” Pavg(R) increases for all R, and for the “habitat constraints 
model” Pavg(R) increases for 12 < R with minimal difference elsewhere.

The integral web stability is defined as
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with y being network size N , connectance C, or intermediate-to-top predator ratio R, and 
a, b the bounds of the domain of y such that Py represents the area under the corresponding 
curves in Figs. 4.5 and 4.6. Relative changes in Py between the base model and any of the 
four models with realistic modifications are given by

and summarized in Table 4.3. For each realistic feature and all network specifiers N, C, and 
R the integral web stability Py increases in comparison to the base model, except for the



foraging traits model” with respect to the predator ratio R.

Figure 4.7: Comparative number histograms from 280,000 web realizations of the base model 
and the full model for a) a web's proportion of stable equilibria P , b) connectance C, and 
c) intermediate-to-top predator ratio R. The total average stability P is written in (a).

In an attempt to explain why webs tend to be more stable when realistic characteristics 
are in effect, we study histograms of a web's proportion of stable equilibria, P, connectance, 
C, and intermediate-to-top predator ratio, R, for 280,000 realizations of the base model and 
the full model, Fig. 4.7. These histograms reveal that the base model has significantly more 
completely unstable webs (P = 0) and larger connectances than the full model. Additionally, 
the distribution of intermediate-to-top predator ratios is relatively even in the base model, 
but heavily concentrated toward smaller ratios in the full model.

It is well established that more connected networks tend to be less stable (May; 1972; 
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Gross and Feudel; 2006). Incorporating habitat constraints decreases the number of realized 
links and therefore connectance, and thus habitat compartmentalization presents one way 
real ecosystem networks might have lower connectances and therefore higher stability. The 
habitat constrained model has a similar distribution of connectances than the full model 
[Fig. 4.7(b)], but with a slightly larger median. This is consistent with lower average web 
stability in the habitat constrained model in comparison to the full model, but both models' 
stability is significantly higher than for the base model, Table 4.3.

The other important topological feature that positively impacts stability is a lower 
intermediate-to-top predator ratio R (Awender et al.; 2021). Decreasing the number of 
intermediate predators relative to the number of top predators tends to increase overall sys
tem stability for the full model versus the base model, Fig. 4.7(c). The simulations also 
reveal (not shown) that the foraging trait model has more web realizations with R < 5 than 
with 6 < R < 23, and the habitat constraints model has more realizations with R < 14 than 
with large ratios, R > 14. The prevalence of smaller intermediate-to-top predator ratios for 
both models and their increase in overall stability is consistent with the stability trend about 
R.

The decrease in mean connectance and mean intermediate-to-top predator ratio helps to 
explain why the webs become more stable, but they do not explain the increase in stability 
from adjusting the weights since that modification does not affect these measures.

4.5 Impact of Species Introduction and Removal on Stability

Arctic sea-ice extent has been trending downward for nearly four decades, resulting in 
30% less ice in the month ofSeptember (Box et al.; 2019). As ice declines, ice-obligate species 
such as polar bear, arctic cod, and walrus are likely to decline and/or become extirpated 
from some areas of the Arctic, and thus would no longer be members of the ecosystem in 
those regions. Sea-ice loss also permits more temperate species to move into Arctic habitats 
(Moore and Huntington; 2008). One such prominent, recent addition to some Arctic regions 
are killer whales; declining sea ice has allowed these southern visitors to penetrate farther 
north and stay longer during summers (Higdon and Ferguson; n.d.). Also, sea-ice loss and 
generally warmer sea waters may allow more southerly distributed forage fish species, such 
as saffron cod to become formidable competitors to arctic cod (Deary et al.; 2021).

To understand how ecosystems might be impacted by such species introductions and 
removals, we construct a series of generalized models to assess how changes in species com
position affect patterns of ecosystem stability, Fig 4.8. Specifically, we assess the impacts 
of loss of polar bear by sorting webs into groups with and without polar bears and evalu-
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Figure 4.8: Comparing the average stability of webs Pavg grouped by network size N for webs 
with and without select species. a) webs with polar bear (green), webs without polar bear 
(black), and webs with killer whale instead of polar bear (red), b) webs with bowhead whale 
(green) and without bowhead whale (black), c) webs with copepods (green) and without 
copepods (black), and d) webs with arctic cod and no saffron cod (green), webs without 
either cod (black), and webs with saffron cod and no arctic cod (red).

ate differences in average stability with respect to network size. Additionally, we compare 
networks where killer whales are replacing polar bears as top predators, Fig 4.8a.

The removal of polar bears results in a strong increase in food-web stability for networks 
with ten or more species, Fig 4.8a. As a top predator, polar bear feed on other large mammals 
(e.g. seals, walrus) in the ecosystem, which in turn primarily feed on smaller species such as 
fish and bivalves. In the absence of polar bears, these seal and walrus mesopredators become 
top predators (Fig 4.9). In effect, the loss of polar bears from an ecosystem with multiple 
large mesopredators creates a system that is effectively more diverse in top predators, which 
lowers the intermediate-to-top predator ratio, R. In theoretical ecosystems, lowering R
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Figure 4.9: An example of a significant decrease in the intermediate/top predator ratio, 
R, due to the absence of a super predator. a) A 7-species topology present in the set of 
webs with a polar bear, R = 4/1, and b) a 7-species topology present in the set without the 
polar bear, R = 2/3. The symbols represent top predators (triangle), intermediate predators 
(square), and basal species (circle).

improves overall system stability (Awender et al.; 2021).
When killer whales are added to replace polar bears, the increase in stability is reversed. 

Here, killer whales are assumed to be a standard species with normal size-selective predatory 
behavior [Eq. (4.1)]. As killer whales are large, they become a new, single top predator able 
to prey upon most of the largest ecosystem members, and the system has a lower diversity of 
top predators. This effectively lowers the intermediate-to-top predator ratio R considerably, 
and stability declines markedly. Our findings imply that a lack of a fierce top predator 
(super predator: killer whale or polar bear) produces more stable equilibria from the effect 
of generating less completely unstable webs (P = 0).

Similarly, the ratio of intermediate to basal species also impacts stability and in real 
webs may be a useful indicator of average stability. The very small copepods may serve 
a similar function as a super predator, but imposing stability from a perspective of flows 
coming into the system rather than out. In our SBS webs, when copepods are present, fewer 
basal species appear in the generated ecosystem networks. Removing copepods results in a 
decline in average stability for smaller webs, N < 16, but has no effect on larger webs (Fig. 
4.8 c).

Finally, we explore the impact of replacement of arctic cod with saffron. Removal of 
arctic cod increases average stability for small networks, and the introduction of saffron cod 
overall increases average stability further (Fig 4.8 d). The presence of bowhead whale, too, 
creates more stable points over all N (Fig. 4.8 b). The effects of removal of bowhead whales, 
copepods, and replacement of arctic with saffron cod on stability, however, are much smaller 
than the impacts from the presence of super predators.

105



4.6 Impact of Background Species on Stability

A significant difficulty of accurate food web modeling, assuming enough computational 
power and time, is empirically sampling and enumerating all ecosystem members of real 
webs, along with their vital rates and ecological properties. Real webs often contain too many 
organisms with differing birth, death, and other vital rates and unique feeding behaviors, to 
collect and include such information for every species. In most ecosystems, however, the vast 
majority of these species represent minor members that contribute little to the total biomass 
and have minimal influence on ecosystem dynamics or function. Such members are typically 
not included in ecosystem models for they are assumed to have effectively no impact; however, 
ignoring their potential collective impact on stability may lead to incorrect conclusions, and 
they may have a moderating influence on the effects of major ecosystem members that are 
of explicit interest. Thus, in our final set of analyses, we assess if the collective impact of 
minor ecosystem members potentially impart ecosystem stability that differs from models 
which include only major ecosystem players and ignore all minor members.

Even the depauperate Arctic ecosystems we model here contain thousands of identifiable 
species, but biomass differences create an ecosystem primarily forced by a much smaller 
number of the most abundant species. Rare species with very small abundances interact by 
the same processes, but each of these thousands of minor species have essential no ecosystem 
impact when considered individually.

4.6.1 Adjusting the Model

A “background food web” is constructed with all thirty species from Table 4.1 and ac
cumulating the predatory links from 1000 realizations of topologies that include habitat 
constraints and foraging traits with the goal to represent every practically possible predator
prey connection in the SBS model ecosystem, Fig. 4.4c. This background food web and 
the corresponding adjacency matrix is the same for each simulation. A “main food web” 
consists only of major species. It is composed of 15 random species that are connected based 
on foraging traits and habitat constraints.

Both food webs are combined to generate a 30 species web with major and minor species 
and main links and background links. The 15 species that are not major species are minor 
species (“background species”). The modifications to the scaling parameters for the main 
web that result from background links are determined; they affect the Jacobian matrix and 
thus the stability of the main web. The links that the background has that the main web 
does not are given proportional flows of predatory gain γback or predatory loss βback , and set 
to a small positive number, b ≪ 1,
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The links of the main web have proportional flow weights γiMj and βiMj . in analogy to 
Eq. (4.13).

RiM is the number of main prey items to xi and its number of background-prey connections 
is RiB. CiM is the number of main predators of xi and its number of background-predator 
connections is CiB. The total number of predators to xi is CiM + CiB = Ci while its total 
number of prey items is RiM + RiB = Ri. If γiMj < γback or RiM = 0. then γij = 1/Ri for all 
predatory inflows to species i. If βiMj < βback or CiM = 0. then βij = 1/Ci for all predatory 

outflows from i.
In special cases. the primary scaling parameters for the main web also need to be adjusted 

in the presence of background species. If xi represents a basal species in the main web and 
an intermediate predator with the background. the growth parameters are adjusted to

If xi represents a top predator in the main web but is an intermediate predator with the 
background. then the loss parameters become

All other parameters declarations are unchanged. The stability is computed from the Jaco
bian matrix for the main food web; it has elements Jij. where i and j are main members. 
The deterministic noise from the minor species on the main web is the collective effect of the 
perturbed scale parameters from an increasing background pressure. b. that values between 
zero and 0.02. The upper limit for b is determined from the condition that the norm of the 
difference matrix of the main web's Jacobian with a background perturbation has at most a 
10% discrepancy to the norm of the Jacobian when b = 0.

4.6.2 Results

This study considers 6710 main-web topologies. and each topology considers 900 different 
nonlinearity parameters. P(b) describes the percentage of stable webs for a given main-web 
topology and a given background pressure b. with b ∈ [0, 0.02].
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Figure 4.10: Main-web stability in the absence of background species, P0 = P(b = 0) in 
comparison to P(b = 0.02) in the presence of background species. The number of main 
webs (color coded), out of 6710 topologies, is scattered by unperturbed stability P0 and the 
change in stability, ∆P = P(b = 0.02) - P(b = 0).

The background pressure has varying perturbation effects on the main-web's stability. 
For some main webs, the stability P (b) increases, for some it decreases, and for some it 
switches from completely unstable P(b) = 0 to having stable webs, P(b) > 0. Figure 4.10 
shows the effect of background pressure of b = 0.02 for the 6710 webs. For most topologies 
the stability fluctuates within 10% when adding background species. Some webs have well 
over a 200% stability increase. About one third of the webs with a zero unperturbed stability, 
P(b = 0) = 0, are stabilized through the background pressure, i.e. P(b = 0.02) > 0. Also, 
about 2.5% of the webs that have a nonzero unperturbed stability, P(b = 0) > 0, are 
completely destabilized with the full perturbation, i.e. P(b = 0.02) = 0, visible in form of 
the diagonal line in Fig. 4.10.

The average stability P(b)avg, which is P(b) averaged over the 6710 main-web topologies, 
reveals a significant and steep increase of stability for already small background pressure b, 
Fig 4.11. The average stability exhibits a maximum value around b = 0.003 that represents 
an about 8% increase in average stability from the unperturbed web. This maximum is a 
consequence of two competing effects. Most of the completely unstable webs, P (b = 0) = 0, 
stabilize quickly on the b-scale, from very small background pressure on, b ≈ 10-4. This 

dominates the steep increase in P(b)avg. Overall, increasing background pressure decreases
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Figure 4.11: Average stability Pavg of main webs for 6710 main-web topologies as a function of 
background link weight b near b = 0 and for the entire b-range (inset). Without background 
species, Pavg(b = 0) = 0.455.

stability, although background pressure both increases stability on some main webs and 
decreases stability on others.

4.7 Conclusion

Discrepancies between theoretical and empirical evidence on food-web stability is common 
in ecological literature, especially about how empirical systems appear to exhibit greater 
stability properties than related mathematical simulations. Topics with such discourse, with 
particular application of generalized ecological models, are known as “paradox of enrichment” 
(Roy and Chattopadhyay; 2007) and “complexity-stability debate” (Belgrano et al.; 2005). A 
central ground that many believe holds the key to resolving such discrepancies lies in rhetoric 
about reductionistic versus holistic approaches (Polis; 1998). That is to say, refining models 
with more realistic detail to account for the complex intricacies of the nature and operation of 
ecological systems may bridge the gap between simulation and empirical observation. With 
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this premise, we investigate food-web models that resemble those found in an Arctic marine 
ecosystem and follow the stability implications after sequential refinements are incorporated 
as more realistic hypotheses are considered.

Thirty species from the Southern Beaufort Sea (SBS) are deliberately chosen based on 
high ecological significance in this Arctic marine environment. Over a million food webs are 
reconstructed from five different probabilistic food-web generating algorithms that take body
mass ratios as arguments. The first algorithm is the “base model” that permits predator-prey 
connections between any pair of species and every species has the same foraging behavior. 
Modifications to the algorithm are intended to better reflect reality. These modifications 
include specialized species that are known to form predator-prey connections that would not 
normally be predicted to exist, predator's prey preference that enhances the dependence on 
particular prey that should be more suitable and weakens dependence on prey that is less 
suitable, and restricting realized connections to be between species that share a common 
habitat. The stability of these systems is defined from the local stability of fixed points as 
a function of “nonlinearity” space, obtained with a powerful modeling technique known as 
generalized modeling (Gross and Feudel; 2006; Kuehn et al.; 2013).

In the base model (generic structuring algorithm), the webs are constructed with the 
assumption that every species shares the same general feeding trend of consuming species 
within a certain size range relative to that of the predator, this is referred to as the generic 
linking probability. In real food webs, specialized species diverge from the generic linking 
probability. For instance, a generalist would indicate an expansion of the linking probability 
to feed on a wider variety of prey body sizes, while a specialist would indicate a narrowing 
of the feeding trend. Only six species (the marine mammals) are developed as specialized 
species. The food webs that are realized with specialized feeders increase the total number 
of stable fixed points by 15%.

The second modification is an adjustment of the flow distribution to account for a preda
tor's prey preference. In the base model, if a particular predator has multiple prey items 
(or a particular prey species has multiple predators), the in-flows (out-flows) of that partic
ular species are evenly distributed. To incorporate prey preference, the balance of flows is 
redistributed to reflect that the most likely links hold the most weight and the less likely 
links hold the least weight. The food webs that are realized with prey preference increase 
the total number of stable fixed points by 19%.

The last modification to the base model uses five different species pools that represent 
five different marine habitats. Only species that share a common habitat can potentially 
form a link. This habitat constraint creates food webs with smaller connectances (link 
density), a measure with a negative relationship to stability in random and niche-model 
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networks (Gross and Feudel; 2006; May; 1972). The food webs that are realized with habitat 
constraints increase the total number of stable fixed points by 46%.

We find the food webs with more realistic structures have more stable fixed points than 
those from the less realistic (more generic) structuring algorithm. The largest increase in 
the number of stable fixed points is when all three modifications are used in conjunction. 
increasing the number of stable fixed points by 73%. Most of the increase in the number 
of stable fixed points arises from the creation of fewer completely unstable webs. The habi
tat constraint decreases connectance although it is inconclusive how much the decrease in 
connectance contributes to the increase in stable fixed points. Also. both specialized species 
and habitat constraints decreases the average intermediate-to-top predator ratio. another 
measure with a negative relationship to stability of ecological networks (Awender et al.; 
2021). However. proportioning the weights to simulate prey preference has no effect on the 
structural measurements. connectance and predator ratio. yet stability still increases.

Arctic amplification is causing the Arctic to warm faster than the global-warming rate 
(Rantanen et al.; 2022). Rising temperatures in the Arctic causes less sea ice and warmer 
waters. Sea ice is a critical habitat for the many sympagic species populating the Arctic and 
serves as a physical barrier for many other species. Warmer waters change the efficiencies 
and rates of various biological processes of each species differently. Thus. as sympagic species 
experience habitat loss and some southern species compete better in the warmer waters. the 
ecosystem is anticipated to restructure by means of a changing species composition and re
distribution of biomass. Motivated from this portent of a changing species composition. we 
investigate how the presence and absence of some species affect overall stability. Ice-obligate 
species (polar bear and arctic cod). mass-outliers (bowhead whale and copepods). and “in
vasive” species (killer whale and saffron cod) are investigated. The presence of each species 
has little effect to overall stability (< 10% change). except for the large-bodied predators. 
The polar bear's presence decreases overall stability by 28% and the killer whale's presence 
decreases stability by 40%. Although apex predators are thought to enhance biodiversity 
(Wallach et al.; 2015). super killers in general may have a destabilizing impact on fixed-point 
stability.

In spite of the harsh Arctic conditions. the real SBS ecosystem is much bigger than 30 
species. For instance. one network node represents a trophospecies named bivalves. but there 
could be as many as 30 bivalve taxa (Carey Jr et al.; 1984) and thousands of zoobenthos in 
the SBS (Bluhm et al.; 2011). Dynamical ecological models often only include up to tens of 
species and try to include the most important players; however. infrequent or rare species or 
otherwise rare predator-prey interactions are a forcing on the focused system. We suppose 
a 15-species network. referred to as the main web. is subsumed by the larger 30-species 
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ecosystem that effectively represents all the possible links. The added links and added species 
that are needed to create the complete web from the main web are collectively referred to as 
the “background” network. The relative weighting of the links in the background network 
contribute the same weak characteristic perturbation strength. Applying this perturbation 
of a phantom network to over six thousand realized main webs stabilizes (more stable fixed 
points) a third of the completely unstable main webs from a weak perturbation strength. 
This perturbation strength can be one part in a hundred thousand (1 × 10-5) yet increases 

average stability by 7%. Increasing the perturbation strength past three parts in a thousand 
(3 × 10-3) begins a slow descent of the average stability, defining an optimal perturbation 

strength.
Suggested improvements or furtherance of this work - Improving the species composi

tion for a more complete picture improves the accuracy about real webs and makes new 
research opportunities. The smallest organism in these models is zooplankton (copepods), 
thus, the ecological networks in this paper are animal communities. A smaller-bodied but 
diverse Arctic taxonomic realm is primary producers, ice algae and phytoplankton; other 
primary producers are seaweeds (Bluhm et al.; 2011). A few other species candidates are 
the widespread brittle star, subsistence hunters, and invading gray whale (Stafford et al.; 
2007). Obtaining a more comprehensive design of the taxonomic realms opens another study 
with modularity (Newman; 2018) in ecological networks (Allesina; 2008). Different modules 
containing entire taxon groups (e.g. primary producers, zooplankton and sea-ice fauna, fish, 
marine mammals and seabirds, zoobenthos, etc. (Bluhm et al.; 2011)) can be identified. 
Not to be confused with the similar idea of trophospecies, the grouping of many taxa into a 
single network node. Focusing on taxon modules and keeping in mind how busy food webs 
can operate in the same way as simplified, counter-part webs or chains (Gross et al.; 2005; 
Awender et al.; 2021) is a prospect for interesting discoveries.

Other suggestions for improvements and furtherance include more accurate depiction of 
the actual food-web links and explicit incorporation of climate. More empirical studies of 
stomach contents and stable isotopes refine our knowledge of the actual predator-prey con
nections and their flow magnitudes. This would impel the development of more specialized 
species and reformation of the linking probabilities. Explicit use of a climatic function would 
create ecological networks that entangle the physical environment into the organism commu
nities, a concept not yet explored with generalized models as far as we know. For instance, 
a sea ice function may represent ice-sea extent or thickness, and has a positive effect on 
ice-obligate species (Moore and Huntington; 2008) and a negative effect on others.
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Chapter 5 Conclusion

Introduced by Thilo Gross. Ulrike Feudel. and Wolfgang Ebenhooh in 2004. generalized 
modeling is a relatively new approach for the analysis of dynamical systems. Its power lies 
in its ability to analyze systems that are large and complex. and where it is generally not 
possible to know or explicitly define every process in the system. Generalized modeling 
has been especially developed for analyses of ecological networks. Real ecological systems 
are extremely large and can comprise thousands of interacting species for which biomass 
estimates. flow magnitudes. and interaction-process functionality are impractical or impos
sible to measure for every connection. Such measurements would be needed for conventional 
dynamical-system modeling techniques. Generalized modeling. in contrast. does not require 
the position of fixed points in the state space of the system. but assumes such points exist and 
transforms the state variables by normalizing them to the fixed point. The subsequent trans
formed parameters are interpretable and become the relative weighting among processes and 
the “nonlinearity” of each process. The relative weightings are interpreted as the proportion 
a particular process contributes to the total flow of like-processes and the nonlinearity of a 
process. or exponent parameter. are measures of a process's sensitivity. In this thesis. the 
linearized stability of fixed points from generalized ecological networks is used to explore 
how ecosystem features impact functioning and stability of the systems.

Generalized Models for Ecological Insight - There is a perennial interest in understanding 
how enrichment impacts food web dynamics. especially as many food webs world wide expe
rience anthropogenic eutrophication. There is also motivation for understanding the impact 
of increased productivity in exploited systems. as increasing the productive capacity of the 
food web increases the abundance of an exploited species. The first mathematical analyses 
exploring the effects of “enrichment” began with Rosenzweig in 1971. where he warned that 
attempting to increase food yield by increasing the supply of a limiting resource may have 
devastating consequences to the stability of the system (Rosenzweig; 1971). However. in 
real systems. this destabilizing effect from enrichment remains largely unobserved (Roy and 
Chattopadhyay; 2007). Nonetheless. most mathematical food-web models have shown that 
the destabilization of a steady state occurs when the system is enriched. pushing the system 
into a fluctuating state. However. many recent theoretical explorations of ecosystem behavior 
have demonstrated stability behavior after enrichment that differs from the destabilization 
Rosenzweig warned of. as the complexities of the real systems on which now theoretical anal
yses are based are better understood and those details are taken into account (Gross et al.; 
2004; Awender et al.; 2021). Many theoretical studies have found that the presence of less 
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profitable prey (inedible, unpalatable, invulnerable, etc.) effectively reduces the amplitude 
of oscillations or renders unstable condition unreachable from enrichment (Genkai-Kato and 
Yamamura; 1999; Abrams and Walters; 1996). Alternatively, empirical studies have pro
posed that the hampering of the ability of a predator to exploit prey could induce stability 
(Veilleux; 1979; Luckinbill; 1973), later supported with a mathematical analysis and theo
retical reasoning (Harrison; 1995).

From this dissertation, the impacts from enrichment are examined by building food webs 
containing anywhere from 2 to 60 species and using these model webs to test how the sta
bility of a fixed point changes due to enrichment mechanisms. Such fixed points are traced 
as they change coordinates and enter different dynamical stability regimes. The stability 
profiles (bifurcation diagram) can be sensitive to different topologies in large networks, how
ever, most stability profiles assumed one of the few general patterns. Among these patterns, 
and belonging to a considerable proportion of the topologies, is a stable region centrally lo
cated within the nonlinearity space indicating that a theoretical path of enrichment will cross 
through the stable region thereby describing systems that are stabilized by enrichment in a 
resource-deprived environment and subsequently destabilized as the systems become “overly 
enriched”. Using a four-species food web as a specific, deterministic model and transferring 
the fixed points into a generalized modeling context such that actual paths of enrichment can 
be determined (which cannot be done in the generalized modeling framework). In that case, 
the stable region is not in a centrally-isolated location like the profiles discussed previously. 
Instead, the stable region has a centrally-located protrusion and, with the right system pa
rameters, paths move across the protrusion to describe the same stabilizing-then-destabilizing 
effect as the system is enriched. Additionally, the four-species food webs (Chapter 3) and the 
thousands of large webs (Chapter 2) support the observed phenomena (Roy and Chattopad- 
hyay; 2007) that predators in a hunting-hampered environment or offered less profitable prey 
favor a stable steady state. This is inferred from the fixed points having a large value for the 
nonlinearity (sensitivity) of the predator response, a condition that generally favors a stable 
steady state. As hunting conditions or nutritional quality of prey is made less profitable, a 
larger prey population is required to support the same predator growth as when conditions 
were more profitable, effectively increasing the half saturation of a predator response. When 
prey populations are fixed, increasing the half-saturation constant increases the sensitivity 
of the predator's response. Predator responses are most sensitive when prey populations are 
lowest, thus hungry predators may be indicative of a stable steady state.

Southern Beaufort Sea Ecosystem - In Chapter 3, a series of generalized models is de
veloped to explore the Southern Beaufort Sea Ecosystem. This is motivated by ecosystem 
changes that are underway and expected under climate change. Arctic sea-ice extent has 
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been trending downward for nearly 4 decades, resulting in 30% less ice from the months of 
September in 2019 from initial recording year (1980) (Box et al.; 2019). As ice declines, 
ice-obligate species such as polar bear, arctic cod, and walrus are likely to decline and/or 
become extirpated from some areas of the Arctic, and thus would no longer be members of 
many Arctic marine ecosystems. A reduction in the sympagic (associated with ice) habitat 
is also permitting more temperate species to move into Arctic habitats (Moore and Hunting
ton; 2008). One such pertinent, recent addition to some Arctic regions related to sea-ice loss 
have been killer whales. As sea ice declines, it allows these southern visitors to penetrate far
ther north and stay longer (Higdon and Ferguson; n.d.). Sea-ice loss and warmer sea surface 
temperatures are also believed to allow more southerly distributed forage fish species, such 
as saffron cod, to become formidable competitors to arctic cod and other endemic ecosystem 
members (Deary et al.; 2021).

A changing climate is a portent of ecosystem restructuring and changes in Arctic com
munity composition. In ecology, trophic cascade theory encapsulates the notion of key 
ecosystem players, the idea that some members of the ecosystem play an extraordinary role 
that dramatically influences overall ecosystem function or the state of the system. Exam
ples of such key species may include those of interest in invasion biology and large-bodied 
apex predators. Invasive species may cause extinctions of native species through competitive 
exclusion (Mooney and Cleland; 2001) while the presence of super predators is thought to 
enhance biodiversity by limiting population irruptions of both native and non-native species 
permitting coexistence (Wallach et al.; 2015). To identify species with powerful ecological 
influence is to permit efficacious prediction of climate warming impacts and better develop 
appropriate conservation policy under climate change.

Thus, in Chapter 3, thirty species are carefully selected that are estimated to be the most 
ecologically significant in the functioning of the Southern Beaufort Sea ecosystem, mostly 
based off of recorded abundances and biomasses in wild catches and stomach contents. They 
compose a species pool that spans over 12 orders of magnitude of body masses. We selected 
a few candidate species that may serve important functions to the ecosystem in the Beaufort 
Sea and investigate the stability differences from their presence and absence. The chosen 
included those with unique qualities, such as: Super predators (polar bear and killer whale), 
body mass outliers (bowhead whale and copepods), and a known species with a notably high 
biomass dominance and a partly sympagic life history (arctic cod). From the GM approach, 
biomass has no notion and the only explicitly-modeled species traits are foraging traits, body 
mass, and frequented habitats. In any case, no major impact is detected from the bowhead 
whale, copepods, or cod; however, a large destabilizing impact is observed when either super 
predator is present.

119



In addition to the species compositions, the effects of other realistic system features on 
stability are explored. These include the aforementioned foraging traits which predict the 
existence of a particular predator-prey connection. The foraging traits typically follow a 
general trend that most species forage for prey within the same body-size range relative to 
that of the predator. Specialized feeding traits allow species to prey more frequently or less 
frequently than would otherwise be predicted from the general body-mass ratio trend. An 
amiable example would be baleen whales, the largest species feeding on some of the smallest 
ones. Another incorporated realistic feature is adjusting the relative weightings between a 
species' outflows or inflows based on how close the relationships are to the optimal mass 
ratio. As a last extension to better replicate nature, we organize the food-web structure to 
simulate the modularity of ecological networks due to habitats and niches. For this, we set 
the probability of any two species forming a connection to zero if they do not share a habitat 
in common. Each realistic modification to the food webs results in a net stabilizing effect.

Advantages of Generalized Modeling - Over the past several decades, a variety of abstract 
analysis methods of dynamical systems have been introduced. Random matrix models is one 
approach that randomly generates the studied systems. One renowned piece (May; 1972) 
that labels a random matrix with a mean value of zero minus the identity matrix as the 
Jacobian of an ecological network and finds an unstable system when the product of the 
square of the variance of the random matrix, size, and connectance, becomes large enough. 
This product feature is often referred to as the “complexity” of a system, thus this work 
illustrates how structural complexity is inherently a destabilizing feature of random systems. 
The only way to incorporate the physics into random matrix models, one must control the 
probability distribution from which the random samples are drawn to replicate the details 
and intricacies of real systems. In the work of May, this is touched on by modularizing the 
system into three disjoint submatrices, leaving all other elements of the larger matrix zero 
(i.e. no link) and finds that these networks can be stable for larger complexity. Generalized 
modeling (GM) is considered an abstract analysis as well, but instead of random matrices, 
the elements of the linearized system are founded by ecological motivation and constraints 
and can be reduced to fit any specific model with the same class of equations of motion. 
GM transforms the more tangible state variables and system parameters to a more abstract 
framework, but it preserves the Jacobian (Kuehn et al.; 2013) so we really do draw inferences 
from real fixed points of the ecological networks. By comparison, conventional modeling is 
considered more computationally limited and relies heavily on accurate empirical estimates 
of system parameters, and often varies a single system parameter for insight into the different 
dynamical regimes and interpretation. That GM is far more computationally efficient and 
minimally reliant on empirical observations affords much greater versatility.
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Understanding Food Webs as Complex Dynamical Systems - In this thesis and in analyses 
published elsewhere, chaotic dynamical regions in the space of model ecosystem parameters 
can be found even in small, simple food webs, along with two-tori, three-tori, and multiple 
attractors (Hastings and Powell; 1991; Gross et al.; 2005) (Chapter 3). The dynamical 
regions show sensitivity to small changes in topology: For example, adding a single link 
to a network with 258 connections and connectance of 0.3 altered the bifurcation diagram 
so much that it made a completely unstable web across the parameter space into a largely 
stable one (Awender et al.; 2021). In another example, introducing a very weak perturbation 
on food webs, that simulates the effect of a larger weakly-interacting ecological network 
subsuming the food web, creates large stable regions in the parameter space from completely 
unstable webs when the perturbation strength is null. In the latter example, increasing the 
characteristic strength of the perturbation continues to impart a net stabilizing impact until 
further increase begins a destabilizing effect, leaving an optimal characteristic strength that 
maximizes the average size of stable regions in the system's generalized parameter space.

On the other hand, despite sometimes extreme sensitivity resulting from small structural 
changes, there is notion of topological equivalence in food webs. Early on in GM research, 
it was noticed that food webs with distinct trophic levels (i.e. no omnivory) have identical 
bifurcation diagrams, i.e. the same local dynamics throughout the system's generalized 
parameter space, as food chains with the same number of trophic levels (Gross and Feudel; 
2009). Furthermore, when food webs have omnivorous species but the omnivory is regularly 
dispersed to every species, equivalence patterns in the bifurcation diagrams also emerge 
(Awender et al.; 2021).

Overall Perspective and Outlook for Future Development - Just as mathematical models 
that include ever increasing levels of realistic detail begin to predict patterns observed in 
real systems as they become enriched, so too, may the stability of highly complex (large and 
highly connected) mathematical systems better reflect what is hypothesized from empirical 
observation. An addition to the models presented in this dissertation, a viable next consid
eration would be to incorporate more species types, especially of those that complete cycles 
in the network. Ecological cycles of material, such as water and carbon dioxide, are required 
for long-term self-sustainability of life. The anti-symmetric forms between the chemical reac
tions of photosynthesis and cellular respiration is a powerful testament to the validity of this 
claim. Nutrient recycling from decomposers and nutrient waste reduction from detrivores 
would be species types for incorporating the cyclic nature of real systems into the commu
nity networks studied here. These have been incorporated into other ecosystem modeling 
frameworks, but have not yet been included in analyses using generalized modeling.

Generalized modeling is predominantly used for linearized stability analysis. Although 
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GM is computationally efficient and has practical use for the investigation of overarching 
features that favor stability and meta-analysis, more detail can be gathered from specific 
models, such as: transient dynamics, multiple fixed points, multiple attractors, identification 
of complex invariant sets, or global bifurcations. This appears to be a major limitation for 
GM research. How much insight could we possibly gain from knowledge of all the fixed 
points? Perhaps, the continued research that combines GM with specific models will make 
this more clear.
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