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Abstract: Climate change and natural disasters caused by hydrological, meteorological, and climatic
phenomena have a significant impact on cities. Russia, a continental country with a vast territory of
complex geographic–ecological environments and highly variable climatic conditions, is subject to
substantial and frequent natural disasters. On 29 June 2019, an extreme precipitation event occurred in
the city of Tulun in the Irkutsk oblast, Russian Federation, which caused flooding due to the increase
in the water level of the Iya River that passes through the city, leaving many infrastructures destroyed
and thousands of people affected. This study aims to determine the flooded areas in the city of
Tulun based on two change detection methods: Radiometric Rotation Controlled by No-change Axis
(RCNA) and Ratioing, using Sentinel 2 images obtained before the event (19 June 2019) and during the
flood peak (29 June 2019). The results obtained by the two methodologies were compared through
cross-classification, and a 98% similarity was found in the classification of the areas. The study was
validated based on photointerpretation of Google Earth images. The methodology presented proved
to be useful for the automatic precession of flooded areas in a straightforward, but rigorous, manner.
This allows stakeholders to efficiently manage areas that are buffeted by flooding episodes.

Keywords: urban floods; Radiometric Rotation Controlled by No-change Axis (RCNA); Ratioing;
remote sensing; Tulun

1. Introduction

Global warming has increased the global average temperature, leading to elevated
evapotranspiration and humidity, as well as altered rainfall patterns [1]. This warming ef-
fect intensifies extreme rainfall events, resulting in more frequent and severe short duration
floods in urban areas [2]. Urban microclimates are also being impacted by global warming,
with future projections indicating worsening conditions [3].

Rapid urban growth, climate change-induced rainfall variations, heat island effects, and
inadequate drainage systems exacerbate the severity of high-intensity rainfall events, causing
disruptions in cities and significant socio-economic and environmental impacts [4–6]. Studies
suggest that urban flooding will likely worsen due to increasing urbanization, extreme rainfall
from climate change, expanding impermeable surfaces, and insufficient city planning [7–9]. Lack
of maintenance and upgrades to existing drainage infrastructure further worsen the problem. To
mitigate urban flooding, city planners and policymakers should consider implementing sustain-
able drainage systems (SuDS) and green infrastructure [10]. SuDS mimic natural processes and
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improve flood management, while enhancing stormwater quality [11,12]. Green infrastructure
provides additional storage capacity for stormwater runoff, enhancing the resilience against ur-
ban floods [13]. According to a technical report by TerraTech, an offshoot of the Roscosmos State
Corporation for Space Activities, Russia has an area of more than 400,000 km2 that is susceptible
to flooding, including around 700 cities and thousands of villages. Annual flood damage is
estimated to exceed EUR 500 million [14]. Tulun, a city developed during the Soviet Union
period, experienced a significant population influx, despite being located near the flood-prone
Iya River. Climate change has resulted in major flooding, with a return period of approximately
10 years for the Iya River [15]. The last sizeable flood occurred on 29 June 2019, significantly
damaging residential areas and infrastructure and leaving thousands homeless [16,17]. Tulun, a
city suffering from industrial decline in the post-Soviet period, faces numerous challenges that
have contributed to its current state of depression. However, it is crucial to focus on revitalizing
cities such as Tulun, with the potential for geographical and economic growth [18]. To achieve
this goal, it is essential to map the areas at risk of flooding, identify the flood-prone zones, and
monitor the extent of flooding to plan emergency operations and mitigate severe impacts. By so
doing, authorities can effectively respond to flood-related crises and implement measures to
restore the city’s prosperity.

Remote sensing through satellite imagery has proven to be an effective approach for
detecting flooded areas, providing critical information to delineate affected zones, evalu-
ate damage, and develop predictive models for vulnerability [19,20]. Several studies have
explored flood extent detection, the mapping of inundated areas, and the identification of
regions prone to rapid flooding using remote sensing techniques applied to Sentinel imagery.
These techniques include non-parametric and supervised learning classification algorithms,
unsupervised classification, multi-criteria techniques, and neural networks [21–25]. A review
by Shen et al. [26] discusses theories and algorithms of flood inundation mapping using syn-
thetic aperture radar (SAR) data. Another study by Anusha et al. [27] discusses thresholding
and unsupervised classification for flood detection and flood mapping using multi-temporal
synthetic aperture radar and optical data. A study by Tarpanelli et al. [28] evaluating the
effectiveness of Sentinel-1 and Sentinel-2 satellites for flood detection assessment in Europe
analyzed 10 years of river discharge data over nearly 2000 sites in Europe and extracted
flood events exceeding established thresholds as proxies of riverine inundations. Based on
the revisit time of the satellite constellations and cloud coverage, the authors derived the
percentage of potential inundation events that were observable by Sentinel-1 and Sentinel-2.
The results show that, on average, 58% of flood events are potentially observable by Sentinel-1,
while only 28% could be observed by Sentinel-2, due to cloud coverage. Qi Zhang et al. [29]
proposed an unsupervised approach for automated flooded area mapping using bi-temporal
Sentinel-2 multispectral images. The approach involves extracting spatial–spectral features
of the images, before and after the flooding, to construct a change magnitude image (CMI),
performing uncertainty analysis on the CMI to obtain certain flood pixels and non-flood pixels
as reliable classification samples, using a generalized regression neural network (GRNN) as
the core classifier to generate an initial flood map, and applying two-stage post-processing to
reduce mapping errors and generate a final flood map.

Based on Sentinel-2 imagery, this study aims to map the flooded area during the
extreme rainfall event of 29 June 2019 in Tulun using two change detection methods: Ra-
diometric Rotation Controlled by No-change Axis (RCNA) and the Ratioing. This study
identified asymmetries in the flooded area that affected mostly the central, southwestern,
and southeastern regions of Tulun City. The RCNA method achieved the highest accuracy
in classifying flooded and non-flooded areas. Furthermore, it also showed the different illu-
mination conditions of the images in a less sensitive manner. This methodology contributes
to helping the stakeholders quickly and accurately identify the boundaries of flooded areas
so that future structural interventions can be implemented.
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2. Materials and Methods
2.1. Study Area

Tulun is located on the extreme northwestern area of the Irkutsk-Cheremkhovo plain
in the oblast of Irkutsk, southeast of Siberia, Russian Federation, and it represents an area
of approximately 13,353 hectares. This city is crossed by the Iya river, a tributary of the Oka
river, and is susceptible to flooding when extreme precipitation events occur (Figure 1).
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Figure 1. Study area: the Iya River crosses Tulun.

According to the Köppen–Geiger climate classification, the study area is classified by
Dfc (subarctic climate), with long, cold (often very cold) winters, and short, warm to cool
summers. Tulun’s climate is characterized by an average yearly temperature of −2.2 ◦C and
an annual rainfall average of 438 mm. The heaviest precipitation occurs between May and
August. The relief within the city limits is hilly, with absolute elevations ranging from 455 m
to 546 m above sea level. Tulun’s geologic structure is dominated by sedimentary rocks,
which comprise a complex of sediments from the Ordovician, Jurassic, and Quaternary
systems. These rocks consist of mudstones, siltstones, limestones, sandstones, quartz
schists, and clays. The sedimentary complex is interrupted by eruptive rocks from the
Triassic system, including dolerites and dolerite porphyrites. In addition, the Quaternary
deposits in Tulun consist of eluvial–diluvial formations in catchments (clays, sandy clays,
and occasionally, sands) and alluvial deposits in river valleys (sandy soils) [30].

Tulun, originally a village in the Iya Valley, was founded in the latter half of the
18th century. The city’s strategic location along the Trans-Siberian railway and the Vilyuy
Federal Highway to Yakutsk enabled it to become a significant trade center, leading to its
elevation to city status in 1927. Tulun experienced a boost in its economy with the estab-
lishment of several industries, including wood, glass, coal, and a large hydrolysis factory
manufacturing chemical products for forestry and agriculture. In 1990, the population of
the town reached its peak. However, after the collapse of the Soviet Union, many of these
industries shut down, forcing people to emigrate, leading to a decrease in population [15].

2.2. Methodology

For this study, we used Sentinel 2 satellite imagery captured on 19th June and 29th June
2019. The imagery was sourced from Google Earth Engine, and a filter was incorporated
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into the script to download only images with a cloud cover of less than 30%. Specifically,
we downloaded the blue (B2), green (B3), red (B4), and near-infrared (B8) bands to create
the RGB images (true and false colors).

Flood areas were determined based on two change detection methods, Radiometric
Rotation Controlled by No-change Axis (RCNA) and the Ratioing. Both methods were
applied to the near-infrared (B8) band of the Sentinel 2 images before the event (19 June
2019) and during the flood peak (29 June 2019) (Figure 2).
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The RCNA method, initially proposed by Maldonado et al. [31], is a method for
detecting land cover changes based on analyzing radiometric values from two different
time periods. It is a flexible method for use with different radiometric conditions caused
by, e.g., weather or the effects of seasonal change on solar elevation angle, and it does not
require correction for atmospheric effects or sensor differences. Applying a linear regression
to areas where no changes have occurred makes it possible to establish a relationship
between the radiometric values of the two dates. In this study, the RCNA method was
applied to water surfaces through a systematic sampling approach. The resulting linear
regression, obtained from the points with no change, is defined by Equation (1):

imdate2 = m imdate1 + b (1)

where imdate1 is a radiometric of the no-change pixels obtained before the event, imdate2 is a
radiometric of the no-change pixels for the images obtained after the event, m = tan θ is a
slope of the no-change axis, θ is angle of the slope, and b is the origin intercept.

The angular parameter (θ) is calculated as the arc tangent of this coefficient. This value
represents the angle of the slope of the no-change axis. After calculating the parameter
θ and substituting it in Equation (2), the detection images (imdetec) and residual images
(imresid) are obtained. [

imresid
imdetec

]
=

[
cos θ sin θ
− sin θ cos θ

]
×

[
imdate1
imdate2

]
(2)

where imdetec is obtained by Equation (3):

imdetec = cos θ imdate2 − sin θ imdate1 (3)
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The imdetec, expressed in radiometric levels, shows the changes occurring between the
two different times. The lighter tones (high radiometric values) are the pixels that did not
exist in imdate1, but which appear in imdate2, and the darker tones (low radiometric values)
are the pixels that disappear between the two different times under analysis.

The Ratioing algorithm is a fast method for detecting changes between images at
different times by calculating the relationship between the pixels of two images [32]. Still,
the success depends on the quality of the atmospheric conditions [33].

Equation (4) expresses the relationship established between the images. The Ratioing
values will be significantly higher or lower than one, depending on the nature of the
changes between the imagery dates. If Ratioing values are equal to one, it means that no
changes were observed between the two times [34].

Rxk
ij =

xk
ij(d2)

xk
ij(d1)

(4)

where xk
ij(d1) is the pixel of row i and column j of band k and time 1, xk

ij(d2) is the pixel of
row i and column j of band k and time 2.

Equation (4) requires the application of the arctangent function due to the possibility
of encountering a pixel with a value of zero in image d1. Without this step, the quotient
would be undefined, resulting in incorrect outputs. By utilizing the arctangent function, the
resulting values are restricted to angles in radians ranging from 0 to π/2, ensuring accurate
and meaningful results.

In both change detection methods, a thresholding technique of the histogram of
the change image was applied. This approach allowed for the effective segmentation of
the areas that had experienced changes due to flooding, providing a clear and accurate
indication of the extent of the affected regions The pixel values that were shown on the left
side of the histogram, i.e., [minimum, x − σ], were reclassified as one, representing flooded
areas. The remaining values were reclassified as zero, i.e., areas with no change, or which
experienced change not due to flooding. A cross-classification table was used to compare
the results obtained by the two methods, and a spatial analysis was performed to determine
the percentage of similarity and difference between the two methods. Based on the Random
Points tool of QGIS (version Firenze 3.28.5.1), a set of 100 samples was selected in the study
area, and by photointerpretation of the Sentinel 2 image of 29 June 2019 (after the event), the
flooded and non-flooded areas were identified. To determine the best method, we extracted
the values of the classes obtained by the two change detection methods, constructed an error
matrix, and performed accuracy assessments, including overall accuracy, user accuracy,
producer accuracy, and Cohen’s kappa coefficient, as described by Walz et al. [35].

3. Results and Discussion

The no-changes axes line is defined by an area of 1.5 km2 located in the southeastern
region of the city, as shown in Figure 3.

Equation (5) defines the linear regression shown in Figure 4, where the X-axis rep-
resents the radiometric values on 19th of June, and the Y-axis represents the radiometric
values on the 29th of June. The model has an adjustment coefficient of 0.982289, indicating
a strong correlation between the two variables.

Y = −15.419030 + 0.984043X (5)

The results obtained from the Ratioing and RCNA methods are presented in Figure 5.
Grey tones in the figure indicate areas where no changes occurred, black indicates flooded
areas, and white represents areas that changed from darker to lighter tones. Figure 5a
shows the results obtained through the Ratioing method, which reveals changes in the
water line and some water bodies. The shift from black to white tones indicates that the
method was able to identify the presence of debris (lighter tones) in these areas during
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peak flooding, in contrast to the dark color of the water before the flood. Figure 5b presents
the results obtained through the RCNA method, which classifies the water line and pre-
existing water bodies as unchanged (grey tones). However, changes from dark to white
tones can be observed in the agricultural area located in the northwest of the city, possibly
due to the growth of vegetation (grass) during this period. Both methods were similar
in their classification of flooded areas, as indicated by the dark tones. The histogram of
the RCNA image presents a normal distribution, unlike the slightly positively skewed
Ratioing histogram. Overall, both methods provide valuable insights into the changes that
occurred in the study area, with the Ratioing method being more suitable for identifying
debris in flooded areas, and the RCNA method being more effective in detecting changes
in vegetation.

Figure 6 hows the flooded area delineation obtained from the two change detection
methods: (a) using the RCNA and (b) the Ratioing method. The results show similarities
between the two methods, as the Ratioing methodology only classified a 2% greater area as
flooded relative to the results of the RCNA.

To compare the results obtained by the two methods, the CROSSTAB tool of TerrSet
(version 19.0.6) was used Figure 7. The grey color represents the non-flooded areas classified
in both methods (89.5%). The blue color shows the flooded areas classified in both methods
(8.6%). Green and red colors relate to the flooded areas classified by only one of the methods,
green by RCNA (0.6%) and red by Ratioing (1.3%).
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Figure 8 displays the random spatial distribution of samples used to validate the
results obtained by the two change detection methods. Each sample was associated with a
flooded or non-flooded area through photointerpretation. Using the Point Sampling tool of
ArcGIS Desktop 10.8 (version 10.8.0.12790), the flooded or non-flooded attribute obtained
from each method was also associated with these sampled locations.
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For each method, a confusion matrix was constructed to display the classification results.
The rows represent the classes that were determined by the methods, while the columns
represent the classes that were obtained through photointerpretation. Tables 1 and 2 present
the confusion matrices for Ratioing and RCNA, respectively.
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Table 1. Confusion matrix: Ratioing method.

Classes Flooded
Pixels (1)

Non-Flooded
Pixels (0) Total Errors of

Commission
User

Accuracy (%)

Flooded (1) 56 27 83 0.33 67.47
Non-flooded (0) 6 111 117 0.05 94.87

Total 62 138 200
Errors of
omission

0.10 0.20

Producer
accuracy (%)

90.32 80.43

Table 2. Confusion matrix: RCNA method.

Classes Flooded
Pixels (1)

Non-Flooded
Pixels (0) Total Errors of

Commission
User

Accuracy (%)

Flooded (1) 52 15 67 0.22 77.61
Non-flooded (0) 10 123 133 0.08 92.48

Total 62 138 200
Errors of
omission 0.16 0.11

Producer
accuracy (%) 83.87 89.13

Regarding the accuracy of the classification of the “non-flooded” areas, the methods
differ by about 2.4%. However, the RCNA method proved to be more reliable in identifying
flooded areas, with 77.61% user accuracy, compared to 67.47% using the Ratioing method.
When it comes to correctly detecting all flooded areas, the Ratioing method showed better
precision, achieving a 90.32% producer accuracy, while the RCNA method achieved 83.87%.
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On the other hand, for the non-flooded class, the RCNA method outperformed the Ratio-
ing method, achieving a higher producer precision score of 89.13% compared to 80.43%
obtained by the Ratioing method.

Among the methods tested for classifying flooded and non-flooded areas, the RCNA
demonstrated the highest level of credibility, achieving a Cohen’s kappa coefficient of
0.71 and an overall accuracy of 88%. The Ratioing method also performed well, with a
Cohen’s kappa coefficient of 0.65 and an overall accuracy of 84%. Both methods showed a
moderate level of agreement in detecting flooded and non-flooded areas, as determined
by McHugh’s [36] classification, with reliable data comprising between 35% and 63% of
the total.

Other studies estimated the flood zone using Modified Normalized Difference Water
Index [37] and Modified Shuttle Radar Topography Mission (SRTM) data [38], obtaining
results in agreement with ours. The total flood area of Tulun city was estimated to be
12.1 km2 using the Ratioing method, while the RCNA method estimated it to be 11.2 km2.
The disparity in the estimated flood area values is attributed to the higher precision of
the RCNA method in identifying water bodies that existed before the flooding event (see
Figure 9).

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 15 
 

 

Regarding the accuracy of the classification of the “non-flooded” areas, the methods 

differ by about 2.4%. However, the RCNA method proved to be more reliable in identify-

ing flooded areas, with 77.61% user accuracy, compared to 67.47% using the Ratioing 

method. When it comes to correctly detecting all flooded areas, the Ratioing method 

showed better precision, achieving a 90.32% producer accuracy, while the RCNA method 

achieved 83.87%. On the other hand, for the non-flooded class, the RCNA method outper-

formed the Ratioing method, achieving a higher producer precision score of 89.13% com-

pared to 80.43% obtained by the Ratioing method.  

Among the methods tested for classifying flooded and non-flooded areas, the RCNA 

demonstrated the highest level of credibility, achieving a Cohen’s kappa coefficient of 0.71 

and an overall accuracy of 88%. The Ratioing method also performed well, with a Cohen’s 

kappa coefficient of 0.65 and an overall accuracy of 84%. Both methods showed a moderate 

level of agreement in detecting flooded and non-flooded areas, as determined by McHugh’s 

[36] classification, with reliable data comprising between 35% and 63% of the total. 

Other studies estimated the flood zone using Modified Normalized Difference Water 

Index [37] and Modified Shuttle Radar Topography Mission (SRTM) data [38], obtaining 

results in agreement with ours. The total flood area of Tulun city was estimated to be 12.1 km2 

using the Ratioing method, while the RCNA method estimated it to be 11.2 km2. The disparity 

in the estimated flood area values is attributed to the higher precision of the RCNA method in 

identifying water bodies that existed before the flooding event (see Figure 9). 

This study yielded flooded area values that differ slightly from those published in 

the technical report by TerraTech. According to their report from June 29, 2019, the inun-

dated area value was 13.1 km2. However, we have discovered that, unlike in our study, 

the flood boundary presented in the report contains non-flooded zones within its limits. 

When accounting for these regions, the Ratioing method and the RCNA method indicate a 

total flooded area of approximately 13.6 km2 and 12.7 km2, respectively. 

 

Figure 9. Example of the differences of flooded area detection in southeastern Tulun using the two 

methods: (a) false color image before flooding (19 June 2019); (b) false color image after flooding (29 

June 2019); (c) flooded area detection with Ratioing; (d) flooded area detection with RCNA. In figures 

(c) and (d), the flooded areas are highlighted in blue. 

An accurate knowledge of the boundaries of flood-prone areas is necessary to de-

velop an urban landscape plan that harmonizes with the natural landscape and incorpo-

rates protective engineering structures in order to minimize the flood risk areas in Tulun 

Figure 9. Example of the differences of flooded area detection in southeastern Tulun using the two
methods: (a) false color image before flooding (19 June 2019); (b) false color image after flooding
(29 June 2019); (c) flooded area detection with Ratioing; (d) flooded area detection with RCNA. In
figures (c) and (d), the flooded areas are highlighted in blue.

This study yielded flooded area values that differ slightly from those published in the
technical report by TerraTech. According to their report from 29 June 2019, the inundated
area value was 13.1 km2. However, we have discovered that, unlike in our study, the
flood boundary presented in the report contains non-flooded zones within its limits. When
accounting for these regions, the Ratioing method and the RCNA method indicate a total
flooded area of approximately 13.6 km2 and 12.7 km2, respectively.

An accurate knowledge of the boundaries of flood-prone areas is necessary to develop
an urban landscape plan that harmonizes with the natural landscape and incorporates
protective engineering structures in order to minimize the flood risk areas in Tulun City.
According to Bolshakov [39], the principle of landscape harmony includes urban zoning
based on the following considerations: (i) maximum urbanization in flat top areas; (ii) min-
imal urbanization in floodplains, prioritizing green and leisure spaces; and (iii) moderate
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urbanization in slopes, depending on their steepness and the intensity of city development.
To replace the constructions located in flood-prone areas, two types of residential areas
have been proposed and are currently under construction: (i) family houses in Birch Grove,
located on the top of the southern hill on the left bank of the Iya River, between the altitudes
of 539 m and 577 m; and (ii) apartments in Coal Miners, located on the right bank between
the altitudes of 526 m and 555 m (Figure 10).
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The JSC Hydroproject Institute has designed protection structures to safeguard Tu-
lun City from potential flooding. Two dams, each standing at 15 m high, have been
constructed—one located on the north side of the left bank, and the other on the south
side of the right bank (see Figure 11). The construction of these dams began in 2020 and is
expected to be completed by December 2023, according to the RusHydro group [40].

The R255-Siberia Federal Highway runs through a floodplain area, and the Trans-
Siberian Railway follows along the Azey River (Figure 12). According to Kalugin [41] both
these infrastructures contribute to an increase in flooding in the urban area and a decrease
in the longitudinal slope of the water surface, resulting in a lower streamflow velocity. The
road crosses the flooded area and acts as a barrier on the southern zone, while the railway
line acts as a barrier on the north, limiting the flooded area from west to east. To address
this issue caused by the highway, the JSC Institute of Transportation has proposed a plan
for a northern bypass of the city [15]. Although this plan has not yet been implemented,
it would be a beneficial sustainability measure, as eliminating this section of the highway
could contribute to improved drainage and enhance the landscape conformity.
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4. Conclusions

In this study, we aimed to determine flood-prone areas following an extreme precipita-
tion event that occurred in Tulun, oblast of Irkutsk, Russian Federation, on 29th June 2019,
using the RCNA and Ratioing classification methods. The total flooded area of the city was
estimated to be 12.1 km2 with the Ratioing method and 11.2 km2 with the RCNA method.
The delimitation of the flooded area was similar between the two methods, with Ratioing
classifying a 2% greater area compared to that determined using RCNA. We found that
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the best method for classifying flooded and non-flooded areas was RCNA, with a Cohen’s
kappa coefficient of 0.71 and an overall accuracy of 88%.

The Ratioing method classified some areas as flooded that were actually water bodies
(e.g., in the city center) or rivers (e.g., SE zone) before the event. In these areas, there
was a slight decrease in near-infrared reflectance at the peak of the flood, which may be
explained by differences in illumination and atmospheric conditions during the acquisition
of the two images. The positive asymmetry of the histogram of the Ratioing image and the
adopted thresholding may have contributed to the results. The results obtained using the
RCNA method showed good accuracy in identifying flood boundaries, which is essential
for developing a sustainable urban plan for Tulun City. In the future, we plan to acquire
Synthetic-Aperture Radar (SAR) images from Sentinel 1, as they can be obtained under any
weather conditions, day or night, and are independent of lighting conditions. Additionally,
the reflectance of radar images depend on macroscopic surface characteristics, namely
roughness and dielectric properties (related to moisture content). Specifically, to assess
the flood depth and the free surface width in rivers and channels, we propose coupling
a digital surface model (during the flood, e.g., using Shuttle Radar Topography Mission
(SRTM) data) with a DTM (in dry conditions).
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