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Bioinformatics Tools for RNA-seq Data Analysis

by

Akram Sadat Hosseini

Under the Direction of Alex Zelikovsky, PhD

ABSTRACT

RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing

technologies. The availability of RNA-seq data encouraged computational biologists to develop

algorithms to process the data in a statistically disciplinary manner to generate biologically mean-

ingful results. Clustering viral sequences allows us to characterize the composition and struc-

ture of intrahost and interhost viral populations, which play a crucial role in disease progression

and epidemic spread. In this research we propose and validate a new entropy based method for

clustering aligned viral sequences considered as categorical data. The method finds a homoge-

neous clustering by minimizing information entropy rather than distance between sequences in

the same cluster. Moreover in this research, we present a novel pathway analysis method based



on Expectation-Maximization (EM) algorithm to study the enzyme expression and pathway ac-

tivity using meta-transcriptomic data. We will also discuss our approaches to generating unique

gene signatures to understand the role of sensory nerve interference in the anti-melanoma immune

response and study the racial disparity in Triple-negative breast cancer. Finally, we present our

method to detect the retained introns in RNA-seq data to develop a vaccine against cancer having

p53 mutations. In summary, this research provides novel approaches to exploring RNA-seq data

and their application to real-world biological research.

INDEX WORDS: Categorical data, Clustering, Entropy, Monte Carlo algorithm, Vi-
ral genomic sequences, RNA SEQUENCING, EXPECTATION-
MAXIMIZATION (EM), ENZYME EXPRESSION, Minimal spanning
network’ Genetic relatedness
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CHAPTER 1

INTRODUCTION

1.1 RNA-seq Data Analysis

the emergence of high-throughput next-generation sequencing (NGS) technologies and RNA-

sequencing (RNA-Seq) has revolutionized RNA-based research and its applications in various

fields. RNA-Seq has provided valuable insights into the transcriptome, enabling the detection

of gene expression levels, alternative splicing events, transcript isoforms, gene fusions, single nu-

cleotide variants (SNVs), and insertions/deletions. RNA-Seq technology has been widely adopted

due to its ability to provide both quantitative and qualitative information about the transcriptome.

The continuous improvement in RNA-Seq methodologies and the decreasing costs have further

amplified its usage in diverse studies involving prokaryotes and eukaryotes. This has facilitated

the exploration of different RNA species and their biological roles.

However, despite the advancements in RNA-Seq technology, there are challenges associated

with data processing, storage, and retrieval that need to be addressed. Computational biologists and

bioinformaticians play a crucial role in developing algorithms and data structures to handle these

challenges and extract high-quality results from RNA-Seq data. The field of computational biology

has made significant contributions to improving the analysis of RNA-Seq data. Researchers in this

field continuously work on developing innovative solutions to overcome biases and limitations in

data handling. They strive to enhance data processing pipelines, optimize storage and retrieval

methods, and refine computational algorithms for accurate and efficient analysis.

Computational biologists and bioinformaticians must stay updated with the latest research and
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development in the field. By keeping pace with the continuous advancements, they can address

the challenges associated with RNA-Seq data and ensure the generation of reliable and unbiased

results.

In summary, RNA-Seq has provided valuable insights into the transcriptome and has become

an indispensable tool in various research areas. Computational biologists and bioinformaticians

have played a key role in developing advanced algorithms and data structures to process, store,

and retrieve high-quality results from RNA-Seq data. Continuous research and development in

computational biology are necessary to address biases and improve data handling techniques in

RNA-Seq analysis.

In this work, I address three important issues in RNA-seq data analysis.

• Identifying viral variants via clustering is essential for understanding the composition and

structure of viral populations within and between hosts, which play a crucial role in disease

progression and epidemic spread. The objective is to identify haplotypes in a massively inter-

host viral population and utilize them as cluster centers in categorical clustering algorithms,

such as k-modes, to identify subtypes. In the absence of ground truth, clustering entropy

serves as the measure to assess the effectiveness of the clustering approaches.

• The unprecedented level of genome sequencing during the SARS-CoV-2 pandemic brought

about the challenge of processing this genomic data. However, the state-of-the-art phylo-

genetic methods were mostly designed for analyzing data that are significantly sparser and

require extensive subsampling of strains.
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• Estimating metabolic pathway activity in planktonic communities using meta-transcriptomic

data is challenging due to overlapping pathways and shared enzymes. Accurate pathway

assignment through database integration is vital, while pathway enrichment analysis and

network-based approaches provide insights into pathway dynamics. Integration with other

omics data enhances understanding of complex metabolic processes.

1.2 Contributions

The dissertation describes the following contributions:

• We show that Monte Carlo clustering improves the reconstruction of intra-host viral popula-

tions from sequencing data.

• We show that eMSF can accurately detect transmission events and build a genetic network

with significantly higher assortativity with respect to Continent and Country attributes of

SARS-CoV-2 samples.

• A novel pathway analysis method based on Expectation-Maximization (EM) algorithm to

study the enzyme expression and pathway activity using meta-transcriptomic data.

1.3 Articles

1. Roya Hosseini , Akshay Juyal , Daniel Novikov1, Mark Grinshpon2, and Alex Zelikovsky.

Entropy Based Clustering of Viral Sequences.

2. Roya Hosseini , Akshay Juyal , Daniel Novikov1,Mark Grinshpon2, and Alex Zelikovsky.

Reconstruction of Viral Variants via Monte Carlo Clustering.
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3. Rondel, F.M., Hosseini, R., Sahoo, B., Knyazev, S., Mandric, I., Stewart, F., Măndoiu, I.I.,

Pasaniuc, B., Porozov, Y. and Zelikovsky, A., 2021. Pipeline for Analyzing Activity of

Metabolic Pathways in Planktonic Communities Using Metatranscriptomic Data. Journal of

Computational Biology, 28(8), pp.842-855.

4. Rondel, F., Hosseini, R., Sahoo, B., Knyazev, S., Mandric, I., Stewart, F., Măndoiu, I.I.,

Pasaniuc, B. and Zelikovsky, A., 2020, December. Estimating Enzyme Participation in

Metabolic Pathways for Microbial Communities from RNA-seq Data. In International Sym-

posium on Bioinformatics Research and Applications (pp. 335-343). Springer, Cham.

5. F. M. Rondel, R. Hosseini, H. Farooq1, B. Bello, A. Juyal, S. Knyazev, B. Pasaniuc, S.

Mangul, A. S. Rogovskyy, and A. Zelikovsky. Estimating enzyme expression and metabolic

pathway activity in Borreliella-infected and uninfected mice.

6. Melnyk, A., Mohebbi, F., Knyazev, S., Sahoo, B., Hosseini, R., Skums, P., Zelikovsky,

A. and Patterson, M., 2020, December. Clustering based identification of SARS-CoV-2 sub-

types. In International Conference on Computational Advances in Bio and Medical Sciences

(pp. 127-141). LNCS

7. Melnyk, A., Mohebbi, F., Knyazev, S., Sahoo, B., Hosseini, R., Skums, P., Zelikovsky, A.

and Patterson, M., 2021. From alpha to zeta: Identifying variants and subtypes of sars-cov-2

via clustering. Journal of Computational Biology, 28(11), pp.1113-1129.

8. Knyazev, S., Novikov, D., Grinshpon, M., Singh, H., Ayyala, R., Sarwal, V., Hosseini, R.,

Baykal, P.I., Skums, P., Campbell, E. and Mangul, S., 2021, November. A Novel Network
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Representation of SARS-CoV-2 Sequencing Data. In International Symposium on Bioinfor-

matics Research and Applications (pp. 165-175).
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CHAPTER 2

Entropy Based Clustering of Viral Sequences

2.1 Introduction

Clustering viral sequences allows us to characterize the composition and structure of intrahost and

interhost viral populations, which play a crucial role in disease progression and epidemic spread.

For intrahost populations, clustering allows us to detect the distinct viral variants present in the

patient, including minor low-frequency variants, which can cause immune escape, drug resistance,

and an increase of virulence and infectivity4,17,25,31,58,10,62. Furthermore, such minor variants are

often responsible for transmissions and establishment of infection in new hosts12,27,64.

In this paper we propose a Monte Carlo entropy minimization method for clustering of viral

sequences considered as categorical data. The method finds a homogeneous clustering by mini-

mizing information entropy rather than distance between sequences in the same cluster. We discuss

advantages and disadvantages of both entropy and distance based approaches, and further validate

the meaningful information content extracted by entropy based clustering. We demonstrate that

the proposed method is stable, moving towards the same minimal entropy configuration across

multiple runs. We also show that it is fast and scalable to hundreds of thousands of sequences.

By clustering viral populations across different hosts, we determine major strains of closely re-

lated viral samples, which is helpful for tracking transmissions and informing public health strate-

gies5. For transmission tracking, clustering can identify the source of an outbreak and whether

the source is present in the sampled population. It can also determine whether two viral samples

belong to the same outbreak, and whether one infected the other50. Therefore, using clustering to
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obtain an accurate characterization of viral mutation profiles from infected individuals is essential

for viral research, therapeutics, and epidemiological investigations.

Viral sequences are strings from a fixed nucleotide alphabet, and hence they can be viewed

as vectors of categorical data. In the best possible clustering, sequences in each cluster will be

as homogeneous as possible in each site. Typically, this is achieved by minimizing the Hamming

distances between sequences within the same cluster or the distances to the cluster’s consensus15.

However, Hamming distance carries the implicit assumption that all mutations at all sites are of

equal cost, and also it does not consider the distribution of values in a given category, counting

each mismatch equally.

In this paper we propose to use entropy based clustering for viral sequences. Entropy considers

the distributions of nucleotides in each site, allowing us to capture different kinds of mismatches.

Minimizing entropy instead of distance also avoids the need to introduce the abstraction of equal

transition costs, implicit in Hamming distance. Thus, entropy as an objective for clustering makes

fewer assumptions on the data and is more informative for clustering categorical data.

We have applied our entropy based clustering method to the viral sequencing data. The un-

precedented effort in sequencing its genome has created vast databases of sequences, such as GI-

SAID39. Clustering techniques can provide new insights into the evolution of the virus, assist

with phylogenetic and phylodynamic analyses, and offer new tools for constructing transmission

networks to help with understanding the spread of the pandemic5.

We validate effectiveness of the entropy based clustering of viral sequences on real datasets. We

measure the information content extracted from the sequences by the resulting clustering. We also
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demonstrate that our method converges to the same minimum-entropy clustering across different

runs, thus marking stability of the method. Finally, we describe a tag selection procedure, which

selects the highest entropy sites to represent sequences leading to a significant decrease in runtime

without major loss of information.

2.2 Methods

In this section, first we define the entropy and Hamming distance of clustering of a set of aligned

viral sequences. We use each of these two measures as an objective function to be minimized

for clustering. Then we describe a Monte Carlo clustering algorithm, which is a modification

of an algorithm proposed in45. Finally, we describe a tag selection preprocessing step, which

significantly reduces the runtime of the algorithm.

2.2.1 Entropy Based Clustering of Viral Sequences

Entropy of a category across a set of categorical vectors quantifies the heterogeneity of values in

the category. Entropy is low when a single value is highly frequent, and it is at its highest when

all values are equally frequent in the category. Since we are treating viral sequences as vectors

of categorical data, the categories here are sites along the sequence, and their values are from the

nucleotide alphabet. A clustering with minimal entropy will have the highest possible homogeneity

of nucleotides in each site for sequences in the same cluster.

Formally, we have a set S of aligned nucleotide sequences on a set X of genomic sites. Since

the sequences s ∈ S are aligned, they can be viewed as rows of a matrix, and the sites x ∈ X , can

be viewed as columns of this matrix. Let the alphabet be the four nucleotides, not counting the gap
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() character. Following45, the entropy H(Cx) of a site x ∈ X in cluster C is defined as

H(Cx) = −
∑
s∈C

∑
a∈

p(sx = a) · log p(sx = a). (2.1)

Note that p(sx = a), the probability that a sequence s ∈ C has nucleotide a ∈ at site x,

essentially amounts to the relative frequency of the nucleotide a in cluster C at site x (ignoring gap

characters).

The entropy H(C) of a cluster C of viral sequences on a set X of sites is then defined as

H(C) =
∑
x∈X

H(Cx), (2.2)

that is, we simply sum up the entropies at the individual sites.

Finally, given a clustering of the set S, the entropy of is defined as follows:

H() =
∑
C∈

|C|
|S|
·H(C) =

1

|S|
∑
C∈

|C| ·H(C). (2.3)

In other words, the entropy of clustering is the sum of cluster entropies weighted by their relative

sizes.

In45, the authors prove that the entropy defined in equation (2.3) is a convex function, allowing

any optimization procedure to reach a global minimum. It is because of this property that we can

use techniques aimed directly at minimizing clustering entropy as the objective.

2.2.2 Hamming Distance Based Clustering of Viral Sequences

Similarly, we define a different clustering objective as Hamming distance (HD) instead of entropy.

This objective is the sum of the Hamming distances from each sequence s to the consensus of the

cluster containing s.
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Formally, for a cluster C and for a site x ∈ X , the Hamming distance from the consensus letter

in this cluster at this site is

HD(Cx) =
∑
a∈

Cx(a)−max
a∈
{Cx(a)} (2.4)

where Cx(a) is the number of occurrences of the letter a ∈ in site x in cluster C.

Then the Hamming distance HD(C) of a cluster C of viral sequences on a set X of sites is

defined as

HD(C) =
∑
x∈X

HD(Cx), (2.5)

and the Hamming distance of the clustering is defined as

HD() =
∑
C∈

HD(C). (2.6)

2.2.3 Algorithm Description

In general, Monte Carlo methods optimize an objective by attempting random changes and ac-

cepting a change only if it improves the objective. In our case, the objective is to minimize either

the clustering entropy or the clustering Hamming distance, defined in subsections 2.2.1 and 2.2.2

above. A trial step consists of moving a randomly selected sequence to a different randomly se-

lected cluster, and accepting the move only if the objective function is reduced.

Algorithm 1, Monte Carlo based clustering, implements this approach, with several modifica-

tions intended to improve its runtime and the quality of its outputs.

The algorithm takes an existing clustering as its starting point. In our experiments, we use

clusterings generated by the CliqueSNV tool43 from the datasets described in subsection 2.3.1.
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Algorithm 1 Monte Carlo based clustering
Input:
Initial clustering (by default, from CliqueSNV)
Number of rejected moves: I (by default, I = 800)
Relative difference: K (by default, K = 0.00001)
Output:
Clustering with reduced entropy or Hamming distance
Initializations:
Compute nucleotide counts for each column in each cluster
Compute entropy (resp., Hamming disatnce) for each cluster and H , clustering entropy (resp.,
clustering Hamming distance)
Initialize number of rejected moves T = 0
Iteration:

while T ≤ I do Pick a random sequence s
Move s from its cluster A to a randomly selected cluster B, B ̸= A
Update the nucleotide counts for A and B
Compute ∆, overall entropy (resp., Hamming distance) reduction after moving s from A to B
∆/H ≥ K Accept the move
H = H −∆
T = 0 T = T + 1
Move s from B back to A

We supply such clustering as an input to the algorithm in order to generate a new clustering with

reduced clustering entropy H() or reduced Hamming distance HD(). Additional inputs to the

algorithm are two parameters I and K, where I defines the number of consecutive rejected trials

before stopping, and K defines the relative objective function reduction threshold for accepting a

move.

To achieve the goal of finding a new clustering with reduced entropy or Hamming distance

as the objective, the algorithm applies Monte Carlo optimization by repeatedly trying to move

a randomly selected sequence from its current cluster to another randomly selected cluster; any

such move is accepted only if the relative improvement to the objective function is higher than the
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threshold value K.

In the initialization phase, lines 1–3 of the algorithm, it starts by computing nucleotide counts

for each column in each cluster, which are then used to compute the values of the entropy and

the Hamming distance for each cluster, as well as the overall clustering entropy or Hamming

distance, H .

2.2.4 Tag Selection

To improve runtime, we apply a preprocessing tag selection step that allows us to represent se-

quences by a smaller subset of sites. Preferring tags with highest variability, the procedure chooses

the n sites with highest entropy, where n is some predefined value. Then clustering proceeds with

each sequence now of length n corresponding to the selected sites.

2.3 Settings for Validation of Clustering Methods

We validate entropy based clustering by estimating improvement over an existing clustering tech-

nique. To that end, we apply this Monte Carlo based algorithm to the clustering obtained by the

CliqueSNV tool43.

2.3.1 Datasets

For validation, we use two of the datasets of sequences that were also used by Melnyk et al in52.

For both datasets, an initial clustering was obtained by the CliqueSNV-based method.

D1: This dataset includes all sequences submitted to the global GISAID viral database39 from the

beginning of the pandemic up until the beginning of March 2020. It consists of 3688 aligned
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sequences, all sequences 29891 nucleotides long. CliqueSNV produced an initial clustering

of this dataset consisting of 28 clusters.

D2: This dataset includes all sequences submitted to the UK-based EMBL-EBI database from

the end of January 2020 to the end of December 202019. It consists of 148000 aligned

sequences, all sequences 29903 nucleotides long. CliqueSNV produced an initial clustering

of this dataset consisting of 15 clusters.

2.3.2 Tag Selection Effects on Runtime

To measure the effects of tag selection on runtime, the proposed method was run on the D1 dataset

of 3688 sequences, using the initial clustering generated by CliqueSNV as a starting point. The tag

selection procedure was employed to produce four subdatasets consisting of the same sequences,

but of reduced lengths of 100, 1000, 3000, and 5100 tags. We expect that the Monte Carlo method,

when applied to a dataset consisting of shorter sequences, will be able to take more trial steps in

the same amount of time, and thus reduce its clustering entropy quicker. The total number of SNPs

in the input data was exactly 5100; all other positions did not mutate. Thus, this largest number of

tags contains information equivalent to the full length sequences for the purposes of clustering.

The program was run on each length of sequences. Every hour, the current clusterings of each

run were evaluated by their entropy on the full-length sequences. These hourly entropy values are

shown on an entropy-over-time graph, Figure 3.5, which compares the speed of entropy reduction

for different sequence lengths.
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2.3.3 Discerning Signal from Noise with Monte Carlo Based Clustering Optimization

We estimate the amount of meaningful information extracted by the clusterings obtained by our

entropy minimization method. To distinguish between sample-specific noise and meaningfully

extracted information, we run our method on a perturbed version of the input with the same starting

entropy. For this experiment we use the D1 dataset with 3688 sequences, alongside the initial

clustering from CliqueSNV of 28 clusters.

The permutation procedure is as follows. Within each cluster, every site is shuffled into a

random permutation. Importantly, by respecting clusters during permutation, the initial nucleotide

frequencies within each site in each cluster stay the same. Thus, the permuted input has the same

starting entropy as the original input. What changed is the haplotypes being clustered.

We run the program on both of these inputs for exactly 100000 Monte Carlo trials each, ac-

cepting all moves that reduce entropy. We compare the resulting entropy reductions between the

two runs. Any entropy reduction present in the permuted data is sample-specific noise extracted by

our method, while the difference in resulting entropies between the original and permuted inputs

corresponds to the amount of meaningful information extracted by our method.

2.3.4 Stability of Optimized Clustering

Now we evaluate the robustness of our method against slight permutations of the input data as well

as changes in random seed. Rather than completely shuffling each site as in 2.3.3, we only shuffle

a small percentage p of nucleotides at each site. We still respect clusters when permuting the data,

to ensure that nucleotide frequencies in each site in each cluster remain unchanged.
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We chose two values of p to create slightly permuted data sets for validation, p = 1% and

p = 5%, to be compared with the original data with 0% permutation. For each of the three datasets

(two permuted and one original), we run our method three times, on two different objectives:

first minimizing entropy, and second minimizing Hamming distance between sequences and their

cluster consensus. As a result, for each degree of permutation and for each Monte Carlo objective,

we obtain three minimum entropy clusterings.

The Rand index, measuring the degree of agreement between two clusterings, is measured be-

tween the initial clustering and all resulting clusterings, to get a sense of how far away the resulting

clusterings have moved from the initial one under varying degrees of permutation. Further, we

also measure the Rand index between the resulting clusterings, to determine whether the proposed

method converges to similar clusterings across multiple runs.

2.4 Validation Results

We ran the proposed method on the cluster hardware consisting of 128 cores IntelXeonCPU E7-

4850 v4 CPU @ 2.10GHz, with 3 TB of RAM, running Ubuntu 16.04.7 LTS.

We ran our entropy based Monte Carlo clustering algorithm on different selections of tags

(selected based on highest entropy contribution). Figure 3.5 shows the results for different numbers

of tags. When the number of tags is 1000, using tag selection yields better results of reducing

entropy for some time durations (up to 3 hours). But in general, the effect of using tags on reducing

entropy is not significant.

Compared to previous work52, we were able to reduce the runtime by 95.83%. For accom-
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Figure 2.1 Entropy reduction over runtime for different numbers of selected tags. After 1 hour, the 1000
tags representation was able to reach the lowest entropy. The maximum number of tags, 5100, corresponds
to all SNP positions present in the input data. All other sites were homogeneous. Homogeneous sites have
zero entropy and thus can be ignored. Therefore, the yellow line corresponds to using all sites.

plishing this, we initially stored the counts of each nucleotide across a given tag in a cluster of

sequences.

After further improving our entropy based Monte Carlo clustering algorithm and implementing

parallel computing, we made it scalable for running on large data sets. This version performs 12K–

13K iterations on average per hour, which is approximately 10 times faster than all our previous

implementations.

Interestingly, after running the algorithm for 83K iterations on the D2 dataset (which contains

148000 aligned sequences each 29903 nucleotides long) originally distributed across 15 clusters,
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we came to the conclusion that in instances where sequence data is clustered into a smaller number

of clusters there are some clusters where sequences are more dense than in others. For instance,

after this run, in the output clustering the biggest cluster consisted of 34995 sequences, while the

smallest had only 3571 sequences.

Therefore, moving one sequence at a time is not always beneficial for overall entropy reduction.

We tried to tackle this problem by updating our move acceptance threshold to accept even smaller

positive changes to entropy, from our previous relative difference threshold of K = 10−5 to K =

10−7. Although this change made our algorithm run for many more iterations before stopping

(recall that the algorithm stops when it reaches the stopping threshold of I = 800 unsuccessful

moves), the reduction to the overall entropy was still very small.

We believe that moving similar sequences together within clusters rather than moving just one

could be a possible way of overcoming the problem we face here.

2.4.1 Picking signal over noise in clustering

By minimizing entropy on the permuted data, we find that the method reduces entropy to 29.6,

while on the original, unshuffled data the method reaches a much lower entropy of 24 (see Ta-

ble 2.1). This difference in entropies, 29.6 − 24 = 5.6, of resulting clusterings accounts for the

amount of meaningful information, which is not noise, that our method was able to extract from

the real data.
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Entropy MC reduced Hamming distance MC reduced
Initial Original Permuted Initial Original Permuted
31.524 Avg Min Avg Min 1008.41 Avg Min Avg Min

24.77 24.7 29.62 28.65 373.14 369.61 770.39 689.97

Table 2.1 Results after running Monte Carlo for 1000 tags selected in decreasing order of entropy across
100 datasets obtained by applying the random permutation procedure described in section 2.3.3 to the D1
dataset 100 times. Average Iterations in Monte Carlo: 53804.39. Average successful moves: 615.31.

2.4.2 Stability of Monte Carlo Output

Table 2.2 shows the results of stability validation, in which we compare clustering similarity for

varying degrees of permutation of the input data (see subsection 2.3.4).

The first column compares resulting clusterings to the initial clustering. Without any permuta-

tions, the resultant clustering moves significantly further away from the initial one, giving a Rand

index of 0.93. As the permutation degree increases, we observed that the clusterings produced by

the Monte Carlo algorithm do not move as far away from the initial clustering; in other words,

even after Monte Carlo was applied, the resulting clusterings had high degree of agreement with

the initial clustering.

The second column in Table 2.2 gives the average Rand index between multiple runs of Monte

Carlo for a given permutation. We see that for all degrees of permutation the method stably con-

verges towards similar clusterings, with Rand index scores of 0.97–0.98. The same trends can be

observed when using Hamming distance to cluster consensus as the objective.

2.4.3 Results for Large Datasets

Running our entropy based Monte Carlo method on the large dataset D2, which consist of 143000

aligned sequences, we get the initial entropy for our initial clustering from CliqueSNV of 80.2750171.

After 82786 iterations, the final entropy for the resultant clustering was 79.509444, and the total
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% permutation
Cluster similarity(Rand index)

Entropy Hamming
With original With runs With original With runs

0 0.936476 0.970195 0.936114 0.970135
1 0.978898 0.979435 0.936126 0.970374
5 0.980458 0.980688 0.936180 0.970616

Table 2.2 Clustering similarity (Rand index) across three choices of degree of permutation. The proposed
method was run three times for each permuted instance, each run consisting of 100, 000 Monte Carlo trials.
Reported are average Rand index similarity of the resulting clusterings to the initial clustering, as well as
between resulting clusterings.

runtime for this was 9 hours 15 minutes.

2.5 Conclusions

We have developed a scalable method to find minimum-entropy clusterings of datasets viral ge-

nomic sequences. The method is scalable to hundreds of thousands of sequences, and is made

even faster without significant loss of accuracy by picking a subset of tags with maximum entropy

to represent the sequences. We estimate the amount of meaningful information extracted by the

method. We also show that our method converges toward similar minimum-entropy clusterings

across multiple runs, demonstrating its stability.

For future directions, we believe the Monte Carlo entropy minimization approach can be im-

proved by using simulated annealing, whose tolerance of suboptimal moves can allow us to escape

local minima. We are also going to add Monte Carlo entropy minimization method to CliqueSNV’s

clustering of intrahost populations.
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CHAPTER 3

A Novel Network Representation of SARS-CoV-2 Sequencing Data

3.1 Introduction

The tendency of RNA viruses to rapidly change their genomes is the major reason for vast inter-

host and intra-host viral diversity and fast viral evolution59. This evolution can be tracked with

high precision thanks to the rapid growth of capacity for viral genome sequencing that has been

occurring over the past decade32. To see what that data can reveal about viral evolution and trans-

mission, numerous analytical methods have been proposed20,3,57,11,26,63,70,41,49,42,51,7. One of the

essential tasks in analysis of viral genomic data is representation of genetic relatedness between

viral samples. For this purpose, standard phylogenetic methods as well as network-based methods

that were initially applied only to specific viruses such as HIV56 and HCV46 have been proposed

for SARS-CoV-2 analysis too.

The standard approach for representation of viral genomic data is based on phylogenetic trees.

In general, finding an optimal phylogenetic tree that fits a biologically relevant model of evolution,

e.g., using maximum likelihood approaches, is an NP-hard problem22. As a result, tools for phy-

logeny reconstruction are too slow or inaccurate on large datasets. Indeed, the quality of advanced

phylogeny tools’ outputs significantly decreases with the growth of the number of input sequences.

For this reason, these methods rely heavily on subsampling to maintain the acceptable quality of

phylogeny reconstruction.

Network-based methods, designed to represent the most likely pairs of connected viral genomes

rather than viral evolution, offer an alternative approach to phylogenetic tree reconstruction20,3.
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This is convenient because establishing genetic relatedness between viral samples is the basic step

in viral outbreak investigations. Furthermore, network-based methods are more promising in the

era of big genomic data because they are much more simple and scalable than phylogenetic meth-

ods. The success of using networks-based method for HCV and HIV outbreak investigations9,6,1,2

motivated the Centers of Disease Control and Prevention (CDC) to adopt them for wider use.

Currently, the CDC is actively advancing the following two alternative approaches for tracing

genetic relatedness:

1. The Global Hepatitis Outbreak and Surveillance Technology (GHOST) is a cloud-based sys-

tem that allows users to analyze and visualize data regardless of computational expertise.

It uses the intra-host viral haplotypes for tracing HCV epidemics, the Hamming distance

between genomic sequences as a metric for genetic relatedness, and k-step networks (intro-

duced as minimal spanning networks in20) for choosing genetically related vertices9,13,46.

2. For HIV outbreaks, the current tool of choice is HIV-TRACE, which performs high-scale

analysis of genomes in HIV surveillance systems56,29. It identifies groups of closely related

genomes using the Tamura-Nei 93 (TN93) genetic distance metric68. HIV-TRACE accepts

either a Sanger sequence or a consensus sequence from NGS sequencing experiment for

each individual. These sequences are then used to look for evidence of relatedness between

them. Relatedness is suspected when the genetic distance between sequences is below a

certain threshold (we will refer to this construction as τ -networks). This simple approach

has demonstrated high reliability for detecting rapidly growing outbreak clusters55.
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In this paper we introduce a novel network-based method for constructing genetic similarity

networks, which generalizes both GHOST and HIV-TRACE.

First, we present , an algorithm that generalizes the methodology implemented in GHOST.

Given a set of genomic sequences along with distances between them, builds a network that in-

cludes the union of all minimal spanning trees (MST), as well as some additional edges: those

that were close to being included in an MST, i.e., edges whose weights are just a little (within a

specified parameter ε) more than the largest edge weight in a path connecting its endpoints in an

MST.

We further improve by incorporating the τ -networks of HIV-TRACE. This second tool, , effec-

tively builds an first, but then removes all edges that are too heavy, i.e. all edges whose weight is

more than a specified parameter τ .

We compare our tool with minimum spanning networks (MSN) and τ -networks28,56 and demon-

strate that and results are of better quality in terms of attribute assortativity, recall, and precision.

Our method allows us to construct phylogeny networks and report results for SARS-CoV-2 se-

quence datasets having up to more than hundred thousand strains, with a potential of being scalable

to much larger datasets.

3.2 Methods

When analyzing evolutionary relationships in a set of genomes, the first step may be to create

the complete graph of the genomes and measure the distances between them. Such a complete

graph incorporates all those relationships that we would like to see, but it has too many edges,
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making it impossible to discern the useful information from it. In fact, as a complete graph, it

contains all possible edges, including those between really distant genomes, i.e., edges whose

weights represent very long genetic distances. To extract edges connecting related genomes only,

we introduce a threshold parameter τ and remove edges with length greater than τ , thus getting rid

of edges that are too long.

Another idea for improving the graph is to use minimal spanning trees (MST). Generally, the

standard greedy algorithms for building MST’s always pick the shortest of available edges towards

the closest neighbor genomes. However, if one neighbor of a vertex (genome) is just slightly closer

than some others, the MST would include the shortest edge only and leave the rest out, even though

all of them have a close enough genetic relationship with each other. Thus we introduce another

parameter ε that allows us to include edges that are only slightly longer than the closest neighbors.

In summary, our goal is to build a graph G = (V,E), where each vertex v ∈ V represents a

viral genomic sequence, and where an edge e ∈ E connects two vertices u and v whenever u and

v represent genetically related viral genomes. Previous studies proposed to take G as the union of

all possible MST’s in the weighted graph whose nodes are the viral genomes and whose edges are

weighted by a genetic distance between these genomes20,9. We extend this approach and propose

to include some additional edges.

[] Given an ε ≥ 0, is a graph in which two vertices u, v are connected if d(u, v) ≤ (1 + ε) ·

d(x, y), where d(x, y) is the weight of the heaviest edge on the u-v path in an MST.

An efficient algorithm for constructing is given in Algorithm 2.

Following the τ -network methodology, we allow setting a threshold τ for additionally filtering
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out edges that are too long.

[] Given an ε ≥ 0 and a τ > 0, is a graph in which two vertices u, v are connected if they are

connected in and d(u, v) ≤ τ .

is a generalization of both the MSN and τ -network methods. Indeed, MSN is a special case

of if we set the parameters to ε = 0 and τ = ∞. Similarly, τ -network is a special case of when

ε =∞.

An implementation of the algorithm as a software tool is freely available on GitHub at https:

//github.com/Sergey-Knyazev/eMST. The software can accept sequences in FASTA

format and compute using either of the two genetic metrics of choice, Hamming distance or TN93.

The user can also provide their own distance matrix in the list of edges format.

For efficiently computing Hamming distance between sequences, we implemented the follow-

ing speed up technique54. Initially, we infer a consensus of all input sequences. Then, for each

sequence in the input, we determine a set of positions where each sequence has mutated from the

consensus. Finally, for each pair of sequences the Hamming distance is computed in two steps.

First, we initialize the value of Hamming distance to be the size of the symmetric difference be-

tween the two sets. Second, for each position in the intersection of the two sets, we check if the

sequences differ at this position, and if they do, we increment the value of Hamming distance by

one.

3.3 Results

To demonstrate the usability of the methodology, we benchmarked it against other methods.

https://github.com/Sergey-Knyazev/eMST
https://github.com/Sergey-Knyazev/eMST
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Algorithm 2 ()
1: MSA: Multiple Sequence Alignment of Strains
2: G: Fully connected distance graph obtained from strains
3: ε: ε ≥ 0, parameter for
4: function ADDEPSILONEDGES(MST , LongestEdge, E, ε)
5: for (x, y) ∈ E do
6: if d(x, y) ≤ (1 + ε) · (LongestEdge(x, y)) then
7: add (x, y) to MST

8: return MST
9: function GETLONGESTEDGES(MST , E)

10: for (x, y) ∈ E do
11: LongestEdge(x, y)← max(ei) ∀ei ∈MSTx→y

12: return LongestEdge

13: procedure EMSN(A = MSA or G, ε)
14: If A = MSA, obtain G(V,E) using a distance metric (e.g.,

Hamming, TN93, etc)
15: MST ← getMST (G)
16: LongestEdge← getLongestEdges(MST,E)
17: eMST ← addEpsilonEdges(MST,LongestEdge, E, ε)

=0

First, we compared and with the two state-of-the-art methods for constructing τ -networks (used

in HIV-TRACE) and minimum spanning networks (used in GHOST) on COVID-19 sequences

available from GISAID using assortativity analysis.

Second, we examined , , τ -networks, and MSN on their ability to infer transmission events

and compared them with other available tools including CS-phylogeny65, NETWORK5011CS23,

RAxML66, outbreaker8, and phybreak40. For this test, we used a SARS-CoV-2 sequencing dataset

with known ground truth about infective transmission events, and we measured precision and recall

of each of the methods when applied to infer these events from the sequencing data.

Third, we showed the scalability potential of to process networks up to a size of more than

hundred thousand of sequences.
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3.3.1 Datasets

1. For comparison of the methods via assortativity analysis, we used the coast-to-coast (C2C)

dataset, which contains 168 SARS-CoV-2 sequences collected from different countries, in-

cluding 9 sequences from COVID-19 patients identified in Connecticut21. Each sample in

this dataset has geographical attributes named Continent, Country, and Division.

2. For comparison of precision and recall of the methods in inferring transmission links we

used the Early Transmission Links (ETL) dataset, which consists of 293 global SARS-CoV-

2 sequences collected before March 9th, 2020. Each sequence has a known country of

origin. This dataset was constructed to match the 25 known country-to-country transmission

links that were collected from news articles detailing transmissions prior to the pandemic

declaration, in the MIDAS 2019 Novel Coronavirus Repository65.

3. For scalability analysis, we created datasets consisting of the initial 100, 200, 500, 1000,

2000, 5000, 10000, 20000, 50000, and 100000 SARS-CoV-2 sequences from the masked

multiple sequence alignment from GISAID. To generate these datasets, we ordered se-

quences by date, and picked the earliest date when the number of sequences exceeds the

desired number.

3.3.2 Assortativity analysis

We ran MSN, , τ -network, and on the C2C dataset using TN93 as measurement of genetic related-

ness, and we evaluated attribute assortativity for continent, country, and division.
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Figure 3.1 Attribute assortatitivity on the
C2C dataset for different values of edge
threshold τ , using τ -network with TN93 dis-
tance.

Figure 3.2 Attribute assortativity on the C2C
dataset for different values of ε, using with
TN93 distance and edge threshold τ =∞.

Figure 3.3 Attribute assortatitivity on the
C2C dataset for different values of ε, us-
ing with TN93 distance and edge threshold
τ = 0.0001. The maximum assortativity oc-
curs when ε = 0.0002.

Figure 3.4 Attribute assortatitivity on the
C2C dataset for different values of ε, using
with Hamming distance.
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Figure 3.1 shows the dependence of attribute assortativity on τ ∈ [0, 1] for τ -network. The

optimal value for continent assortativity is 0.702 when τ is 0.0001. Figure 3.2 shows the depen-

dence of attribute assortativity on ε ∈ [0, 1] for . The optimal value for continent assortativity is

0.661 when ε is 0.0002. Figure 3.3 shows the dependence of attribute assortativity on ε ∈ [0, 1]

for , with fixed threshold τ = 0.0001 that maximized assortativity in the τ -network analysis from

Figure 3.1. The optimal value for continent assortativity is 0.7573 when ε is 0.0002. Figure 3.4

shows the dependence of attribute assortativity on ε ∈ [0, 1] for with Hamming distance instead of

TN93. The optimal value for continent assortativity is 0.546 when ε is 0.002.

Table 3.1 shows that the maximum assortativity on the C2C dataset was achieved by ’s mixture

of both parameters, with ε = 0.0002 and τ = 0.0001. The resulting continent assortativity value of

0.753 is higher than the other methods, and the same is seen for country and division assortativity.

Method ε τ No. of edges
Assortativity

Continent Country Division

MSN 0 ∞ 717 0.626 0.581 0.360

τ -network ∞ 0.0001 2056 0.702 0.631 0.351

0.0002 ∞ 821 0.661 0.625 0.342

0.0002 0.0001 727 0.753 0.706 0.374

Table 3.1 This table shows the attribute assortativity values for optimal choices of ε and τ for MSN, , , and
threshold-based network, each using TN93 distance.

We find that performs the best in terms of country, continent, and division assortativity values

across all four methods.
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3.3.3 Transmission network analysis

We evaluated the precision and recall of on the ETL dataset. To evaluate the transmission network

quality of , we define an undirected transmission link to be the pair of sequence locations of the

two vertices connected by an edge in . The set of all unique undirected transmission links forms

the transmission network.

For each method shown in Table 3.2, we produced its transmission network and evaluated the

precision and recall against the known links provided in the ETL dataset. We calculate precision

as the ratio of the number of known true links predicted by the method and the total number of

predicted links, and we calculate recall as the ratio of the number of known true links predicted

and the total number of known true links in the ETL dataset.

Table 3.2 shows that MSN performed best in Precision and F1-Score. τ -network performed

best in Recall but not as well in precision or F1-score. and performed comparably well to MSN,

and together these network based methods all outperformed the other standard methods being

compared.

3.3.4 Scalability analysis

To examine scalability of the proposed methods, we applied the tool to datasets of increasing sizes

of up to several hundred thousand sequences. For each of these datasets, we ran in TN93 mode and

Hamming distance mode separately and recorded the running times. Figure 3.5 shows the results

of the analysis. We see that has a quadratic runtime in both modes, but that Hamming distance is

significantly faster because of its efficient implementation.
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Figure 3.5 Runtime analysis of on increasing input sizes. is a quadratic algorithm in both TN93
and Hamming distance modes, although Hamming distance, with its efficient implementation, is
much faster.

3.4 Conclusion

We have developed two versions of a new network-based tool, and , which generalize the minimal

spanning networks and τ -network approaches to representing genetic relationships.

We compared the proposed tools with other network-based methods using attribute assorta-

tivity values. The experiments show that Hamming distance does not perform as well as with

TN93 distance. With TN93, outperforms all the other methods in continent, country, and division

attribute assortativity.

Further, we validated multiple tools, including the proposed ones, on known transmission net-

works. We evaluated recall, precision and F1-score for each tool. We found that network-based

tools perform better than the others, including those that are phylogeny-based.

The results validated the network and showed that the structure of the network correlates with

phylogenetic trees. is interpretable, integrable and scalable.
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Tool Recall* Precision* F1-Score*

MSN (ε = 0, τ =∞,TN93) 80% 7.6% 0.139

τ -network (ε =∞, τ = 0.0001,TN93) 96% 2.5% 0.049

(ε = 0.0002, τ =∞,TN93) 80% 7.4% 0.135

(ε = 0.0002, τ = 0.0001,TN93) 72% 6.6% 0.121

CS-phylogeny 80% 4.76% 0.090

NETWORK5011CS 72% 4.99% 0.093

RAxML 64% 4.26% 0.080

Bitrugs 52% 3.38% 0.063

outbreaker 28% 5.83% 0.097

phybreak 4% 0.83% 0.076

Table 3.2 Recall and precision comparison across different methods ran on the ETL dataset. MSN methods
were ran using the TN93 distance metric. Recall is defined as the ratio of known true links formed by the
tool to the total number of known true links. Precision is defined as the ratio of known true links formed
by the tool to the total number of links formed by the tool. F1-Score is defined as the twice the product of
precision and recall divided by the sum of precision and recall. * The ground truth is only partially known.

Users of our proposed tools can fit the parameters ε and τ to any dataset using the same method-

ology we used in our analysis, namely, fixing one parameter and varying the other, then fixing the

other and varying the first.

Our methodology is implemented in MicrobeTrace7, a tool currently in use by the CDC for

viral outbreak investigation.
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CHAPTER 4

Bioinformatics Tools for RNA-seq Data Analysis

4.1 Introduction

With the arrival of next-generation sequencing technology, there are significant methodologies de-

veloped by bioinformatics communities to study the activity and interaction of metabolic pathways

in microbial communities. Despite many advances in methods to process the RNA-seq data, there

are still challenges in retrieving information from the community-level data, which often gener-

ates unstable pathway activity information. Apart from standard pathway activity information,

there is always a need for a single unit (e.g., enzyme contribution in case of metabolic pathway

activity)67,18,53,61,53,69,16,35,44,71,60.

In this research, we proposed a Maximum Likelihood-based model considering the annotation

information from KEGG and MAP databases to predict the metabolic pathway activity using en-

zyme expression and participation coefficients37,34. Our model works as follows; first, it accepts

the meta-transcriptomic data, an organism-specific pathway list from KEGG. Next, it merges the

enzymes sharing the same contigs, estimates the individual enzyme participation level in each

pathway using the Expectation-Maximization algorithm, and uses the calculated values for a more

accurate prediction of pathway activity. Finally, the model computes the correlation between path-

ways and environmental parameters to generate the final results. We tested the model on meta-

transcriptomic data from a marine microbial community collected at different time points with

different environmental parameters.
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4.2 Dataset

This study considers a meta-transcriptomic dataset with 26 samples of a bacterioplankton commu-

nity from surface waters of the Northern Gulf of Mexico. The data was accompanied by environ-

mental parameters collected in July 2015 at two different depths, 2 and 18 meters, every four hours

for 48 hours. The six environmental parameters are PAR (photosynthetic active radiation), seawa-

ter dissolved oxygen concentration, density, salinity, temperature, and chlorophyll concentration.

4.2.1 Metabolic pathway database

We considered a microbial community-specific metabolic pathway list from KEGG. We also re-

moved high-level metabolic pathways such as ec01100, ec01110, ec01120, and ec01130 from our

list. Finally, we only considered 69 micro-organism-specific metabolic pathways for the current

research33,24,36.

4.2.2 Algorithm

In this research, we proposed an enhanced algorithm published in48 to infer the enzyme expression

and participation levels in a metabolic pathway by repeatedly applying the maximum likelihood

model. The solutions for these models were achieved using the Expectation-Maximization (EM)

algorithm Figure 4.2.2.

Step 1: Estimation of the abundance of the assembled contigs.

The abundances inferred by RNA-seq quantification tool (here, we used IsoEM47.)

Step 2: Estimation of the enzyme expression

The enzyme expression estimated using contigs abundance and mapping of contigs onto en-
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Figure 4.1 Pipeline of metabolic pathway analysis for a microbial community sample. The meta-
transcriptomic data obtained from microbial community samples are sequenced, and raw reads
are assembled into contigs. The genes containing obtained contigs are further mapped into the
enzyme-pathway database. Contig frequencies are obtained using IsoEM247. The direct EM es-
timates pathway activity levels using directly contig frequencies. Alternatively, we first estimate
the enzyme expressions, then cluster enzymes, and simultaneously estimate enzyme participation
in each pathway and pathway activity levels.

zymes.

Step 3: Calculation of metabolic pathway activity

The Estimation-Maximization algorithm used for pathway activity levels calculation based on

inferred enzyme expression and metabolic pathway annotation. Here we proposed two different

way to calculate metabolic pathway activity.

a) Direct EM for pathway level estimation

b) The Global loop for pathway activity

Step 4: Direct EM for pathway activity level estimation

The EM for pathway activity levels is based on inferred enzyme expression and metabolic

pathway annotation. Each enzyme is initialize a participation level of 1/|w|. |w| is the total amount
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of enzymes in the pathway w.

Step 5: The Global loop for pathway activity

The global loop for pathway activity updates the enzyme participation level by fitting expected

enzyme expressions to the expressions estimated by EM for enzyme expression. The global loop

computes the pathway activity and replaces the Pathway activity estimated by Direct EM. Which

directly estimates pathway activity from contig abundances bypassing enzyme expression and par-

ticipation coefficients.

4.3 Results

Our results consist of empirical and statistical validation of estimated enzyme expression, enzyme

participation, and pathway activity estimations. We first analyze the stability of enzyme participa-

tion levels and then check the number of enzyme expressions and pathway activities that correlate

with environmental parameters.

4.3.1 Enzyme participation coefficients

We estimate the participation level of individual enzymes in each pathway separately for each data

point. We found that the participation level does not significantly change from one data point to

another, i.e. the standard deviation is significantly smaller than the mean for all enzymes. Table

4.1 presents the participation level of all expressed enzymes in the pathway ec00561.
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ec00561 D1:12 D1:16 D1:20 D2:00 D2:04 D2:08 D2:12 D2:16 D3:00 D3:04 D3:12 AVE STD
EC:1.1.1.2 56.43 52.43 43.04 46.68 51.86 41.29 65.25 39.34 46.54 37.81 0.00 48.07 8.10
EC:1.2.1.3 98.96 136.18 95.66 69.85 79.35 69.48 112.58 60.23 80.19 83.30 208.15 99.45 40.11
EC:1.1.1.21 61.63 62.54 48.77 46.64 50.41 39.57 55.37 34.04 49.16 40.73 77.37 51.47 11.72
EC:2.7.7.9 60.17 55.14 50.26 39.73 44.57 45.06 62.68 38.50 45.22 41.12 131.96 55.86 25.27
EC:3.2.1.22 47.41 47.43 38.91 41.32 42.99 35.23 0.00 30.73 41.31 38.90 0.00 40.47 5.07
EC:2.3.1.20 90.96 77.07 0.00 61.58 59.41 61.75 57.87 52.78 56.58 76.46 0.00 66.05 11.86
EC:2.7.1.31 94.47 131.20 99.82 119.04 122.46 0.00 0.00 0.00 119.22 122.29 0.00 115.50 12.28
EC:2.3.1.51 58.79 90.73 75.29 75.97 69.66 59.05 79.23 59.45 80.74 65.96 0.00 71.49 10.22
EC:3.13.1.1 0.00 90.59 81.77 59.46 69.55 68.97 76.55 59.72 69.07 75.58 0.00 72.36 9.46
EC:1.1.1.156 90.96 0.00 0.00 0.00 0.00 0.00 0.00 52.78 0.00 0.00 0.00 71.87 19.09
EC:1.1.1.6 0.00 0.00 0.00 0.00 0.00 0.00 57.87 52.78 0.00 0.00 0.00 55.33 2.54
EC:2.3.1.15 50.80 66.09 55.42 55.00 49.67 49.59 65.75 44.20 60.25 54.64 149.56 63.72 27.90
EC:2.3.1.22 90.96 77.07 63.98 61.58 59.41 0.00 0.00 52.78 0.00 0.00 0.00 67.63 12.72
EC:2.4.1.241 0.00 0.00 0.00 61.58 0.00 61.75 57.87 52.78 56.58 0.00 0.00 58.11 3.35
EC:2.4.1.315 0.00 0.00 0.00 61.58 59.41 0.00 0.00 0.00 0.00 0.00 0.00 60.49 1.08
EC:2.4.1.336 0.00 0.00 0.00 0.00 0.00 61.75 0.00 0.00 0.00 0.00 0.00 61.75 0.00
EC:2.4.1.337 0.00 0.00 0.00 0.00 59.41 0.00 0.00 0.00 0.00 0.00 0.00 59.41 0.00
EC:2.4.1.46 0.00 77.07 63.98 0.00 0.00 61.75 57.87 52.78 56.58 0.00 0.00 61.67 7.77
EC:2.7.1.107 50.80 66.09 55.42 55.00 49.67 49.59 65.75 44.20 60.25 54.64 0.00 55.14 6.77
EC:2.7.1.29 0.00 0.00 108.83 78.85 74.39 82.41 77.92 65.58 75.45 78.86 0.00 80.29 11.74
EC:2.7.1.30 90.96 77.07 63.98 61.58 59.41 61.75 57.87 52.78 56.58 76.46 0.00 65.84 11.27
EC:2.7.8.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 56.58 0.00 0.00 56.58 0.00
EC:3.1.1.23 0.00 0.00 63.98 61.58 59.41 61.75 57.87 52.78 56.58 76.46 0.00 61.30 6.59
EC:3.1.1.3 90.96 77.07 63.98 61.58 59.41 61.75 57.87 52.78 56.58 76.46 390.20 95.33 93.86
EC:3.1.1.34 0.00 0.00 63.98 0.00 0.00 0.00 0.00 0.00 0.00 76.46 0.00 70.22 6.24
EC:3.1.3.4 43.19 50.83 42.05 44.04 43.19 37.42 64.52 33.09 46.99 40.50 51.36 45.20 7.95
EC:3.1.3.81 0.00 0.00 0.00 0.00 0.00 49.59 0.00 0.00 0.00 54.64 0.00 52.12 2.53

Table 4.1 Enzyme participation levels for all enzymes across all data points for 2m depth in the metabolic

pathway ec00561.

4.3.2 Correlation of pathway activity levels

The goal of regression-based validation is to check our hypothesis that there exist enzymes and

pathways whose expression and activity level variation across data points can be explained (i.e.

correlate with) certain environmental parameters. For each environmental parameter, we check

whether it significantly correlates (P < 5%) with each enzyme across 11 data points for the 2-

meter depth (see Table 4.2). In the row 2, we give 95% CI for the number of significantly correlated

enzymes with a randomly permuted parameter. Since the upper bound of 95% CI for salinity is 190
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(row 2), we conclude that there is no evidence of enzymes significantly correlated with salinity.

We also report the enzyme that correlates the most with salinity, i.e. EC 1.2.1.59. From Table 4.2

we see that most parameters do not correlate well with enzymes, except perhaps PAR.

Table 4.3 is the same as Table 4.2 but reports correlation significance of pathway activities in-

stead of enzyme expressions. In contrast to enzymes it is clear that the many metabolic pathways

correlate with each environmental parameter and this correlation is not by chance. Indeed, path-

way activity is supposed to be more stable than enzyme expression since generally metabolism

is much less affected by the current. For each environmental parameter, we also cross-check the

PUBMED database whether the most correlated pathway is known to depend on this parameter.

For instance, fatty acid degradation is well correlated with salinity, and several studies reported that

fatty acid degradation is often altered by salinity at sea surface environments30,38,14. The citric acid

pathway’s role is to provide the energy required for the growth and division of microorganisms by

breaking organic molecules in the presence of oxygen33. Additionally, it plays a central role in

regulating other metabolic processes in microorganisms. The occurrence of fatty acid biosynthe-

sis is diverse in the microbial community, which controls lipid homeostasis and biogenesis. Fatty

acid biosynthesis supports the membrane biogenesis and controls the usages of ATP, crucial for

microbial metabolism24,36.
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Salinity Temp Oxygen Chl PAR Density MLR
1. # enzymes 146 110 117 93 97 138 156
2. 95% CI 80-190 79-114 62-94 58-92 36-63 82-123 70-107
3. EC number 1.2.1.59 2.6.1.1 3.1.3.11 2.2.1.7 3.5.1.16 2.4.1.16 1.1.1.136

Table 4.2 1. The number of enzymes significantly correlated with each of 6 environmental parameters

and their linear combination (via multiple linear regression (MLR)). 2. The number of enzymes strongly

correlated with randomly permuted parameter values (95% CI). 3. The EC number of the metabolic enzyme

which is the most strongly correlated with the corresponding parameter.

Salinity Temp Oxygen Chl PAR Density MLR
1. # pathways 31 22 19 18 14 30 22
2. 95% CI 1-8 0-8 0-6 0-6 0-6 1-8 0-7
3. Pathway ec00071 ec00195 ec00622 ec00460 ec00360 ec00071 ec00626

Table 4.3 Global Loop EM. 1. The number of pathways significantly correlated with each of 6 envi-

ronmental parameters and correlated via multiple linear regression. 2. The number of pathways strongly

correlated with randomly permuted parameter values (95% CI). 3. The EC number of the metabolic pathway

which is the most strongly correlated with the corresponding parameter.

Table 4.4 is the same as Table 4.3. The only exception for this table being Direct EM used to

compute metabolic pathway activity directly from contigs, as opposed to Global Loop EM, which

uses enzyme expression and enzyme participation coefficients to compute pathway activity. While

there is significant correlation between metabolic pathway activity and temperature, chlorophyll, as

well as all environmental parameters bundled together, some other pathways may have correlated

with the rest of the environmental parameters by chance. The statistical regression validation
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used to evaluate our model clearly demonstrates Global Loop EM’s ability to calculate metabolic

pathway activity more accurately than Direct EM.

Salinity Temp Oxygen Chl PAR Density MLR
1. # pathways 5 14 5 8 1 4 10
2. 95% CI 1-10 1-11 1-8 0-7 0-6 1-8 0-8
3. Pathway ec00364 ec00310 ec00281 ec00281 ec00740 ec00623 ec00623

Table 4.4 Direct EM. Similarly to Table 4.3 this table presents the results of the statistical validation, the

only difference is the Direct EM from contigs to pathway activity being used here.

4.3.3 Cyclic changes of enzyme expressions and pathway activities

We hypothesize that we will be able to observe the cyclic changes in enzyme expression and

pathway activity level during 36 hours from 00:00 am on day 2 until 12:00 am on day 3. The

cyclic changes should manifest themselves as a higher similarity between two respectively mid-

days and mid-nights which are 24 hours apart than the similarity between two data points that

are 12 hours apart. We measure similarity between two data points by the correlation between

all estimated enzyme expressions or, alternatively, all estimated pathway activity levels. Figure

4.3.3.(a) (respectively, Figure 4.3.3.(b)) shows the correlation between enzyme expressions in 3

time points at the depth of 2m (respectively, 18 m). Similarly, Fig.4.3.3.c, d show the correlations

between pathway activity levels. For the enzyme expressions and the pathway activity levels,

the correlation between midnight samples (24 hours gap) is higher than the correlation between

midnight and noon samples (just 12 hour gap). It is also important to notice that as expected

pathway activity levels are more stable than enzyme expressions. Indeed, correlations between

enzymes expression are significantly lower than correlations between pathways activity levels.
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Figure 4.2 Correlations between enzyme expressions for 3 time points (time 00:00 of the day 2,
00:00 of the day 3, and 12:00 of the day 2) at 2 m-depth (a) and, respectively, at 18 m depth (b).
Correlations between pathway activity levels for 3 time points (time 00:00 of day 2, 00:00 day 3,
and 12:00 of day 2) at 2 m-depth (c) and, respectively, at 18 m depth (d).

4.4 Conclusion

The proposed Estimation-Maximization (EM) based metabolic pathway enrichment analysis method-

ology significantly predicts the participation of enzyme levels that do not vary across the data

samples. The model validates the enzyme expression and metabolic pathway activity with envi-

ronmental parameters with regression. The results show that pathway activity levels significantly

correlate with environmental parameters compared to the enzyme expression. The 3-way metabolic

pathway correlation analysis predicts the daytime samples are more closely related than the night

samples.
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