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ABSTRACT

The ability to comprehend the dynamics of viruses’ transmission and their evolution, even to a lim-

ited extent, can significantly enhance our capacity to predict and control the spread of infectious

diseases. An example of such significance is COVID-19 caused by the severe acute respiratory

syndrome Coronavirus 2 (SARS-CoV-2). In this dissertation, I am proposing computational mod-

els that present more precise and comprehensive approaches in viral outbreak investigations and

epidemiology, providing invaluable insights into the transmission dynamics, and potential inter-

ventions of infectious diseases by facilitating the timely detection of viral variants. The first model

is a mathematical framework based on population dynamics for the calculation of a numerical mea-

sure of the fitness of SARS-CoV-2 subtypes. The second model I propose here is a transmissibility

estimation method based on a Bayesian approach to calculate the most likely fitness landscape for

SARS-CoV-2 using a generalized logistic sub-epidemic model. Using the proposed model I esti-

mate the epistatic interaction networks of spike protein in SARS-CoV-2. Based on the community

structure of these epistatic networks, I propose a computational framework that predicts emerging

haplotypes of SARS-CoV-2 with altered transmissibility. The last method proposed in this disser-

tation is a maximum likelihood framework that integrates phylogenetic and random graph models

to accurately infer transmission networks without requiring case-specific data.

INDEX WORDS: SARS-CoV-2, Fitness, Transmissibility, Sub-epidemic model,
Bayesian inference, Genomic surveillance, Haplotype forecasting,
Epistasis, Network community, Genomic epidemiology, Transmis-
sion network, Maximum likelihood inference
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CHAPTER 1

INTRODUCTION

Severe acute respiratory coronavirus syndrome 2 (SARS-CoV-2), which jumped into the human

population from an uncharacterized animal reservoir in late 2019, caused Coronavirus disease 2019

(COVID-19). The virus has gradually accumulated mutations leading to new strains of SARS-

CoV-2. So far five of these SARS-CoV-2 strains were labeled by the World Health Organization as

“variants of concern”: the Alpha, Beta, Gamma, Delta, and Omicron variants. COVID-19 was an

example of a global pandemic where respiratory virus infections resulted in substantial morbidity

and mortality as well as economic losses. The transmission mechanism and how easily respiratory

viruses spread (transmissibility) differ between respiratory viruses belonging to different families

but they can also be varied within a single family. It has been shown that some of the mutations that

occurred in SARS-CoV-2 such as D614G and P681R are associated with increased transmissibility

and virulence of the variants111,203.

Data from surveillance and observational epidemiological studies are usually used to estimate

transmissibility by estimating the basic reproduction number (R0). The basic reproduction num-

ber (R0) also known as the basic reproductive rate is defined as the average number of successful

transmissions per infected individual in a population at the start of an epidemic. In more precise

terms, R0 represents the average number of secondary infections caused by a primary infection49.

A mathematical or statistical model is often used to estimate the transmissibility of a respiratory

virus in a population, especially during pandemics. In this dissertation, I propose more efficient

and accurate fitness (growth rate) and reproduction number, and therefore transmissibility esti-
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mation models for SARS-CoV-2 lineages (mutations) and subtypes. Then I use these models to

predict the potential epistasis mutation networks of the SARS-CoV-2 spike protein. The com-

munity structure of epistatic networks within the SARS-CoV-2 spike protein offers a promising

avenue for efficiently detecting or predicting emerging haplotypes with modified transmissibility.

Notably, dense network communities related to these haplotypes become observable significantly

earlier than the prevalence of the corresponding viral variants. Here I propose a computational

framework that leverages this observation. This model identifies highly connected communities

of SAV alleles and merges them into haplotypes that accurately predicted known SARS-CoV-2

variants of concern (VOCs) and variants of interest (VOIs) months before they became noticeably

prevalent.

The last method proposed in this dissertation is a modeling and algorithmic framework to in-

fer viral transmission networks from genomic data by integrating phylogenetic and random graph

models. In this model, the social component of epidemics is considered by estimating the probabil-

ity that sampled networks are subgraphs of a random contact network (social networks of contacts

between individuals at risk) and summarizing them accordingly into a consensus network.

1.1 Assessment of the fitness landscape and transmissibility of SARS-CoV-2 variants and
subtypes

According to population genetics theory, the majority of mutations are neutral136, but some may be

advantageous or deleterious. Mutations that are highly deleterious will be rapidly removed from

the population; mutations that are only mildly deleterious may be retained, if only temporarily.

While neutral mutations, and especially advantageous mutations, can reach higher frequencies.
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The early detection of such mutations could potentially prove useful in controlling the COVID-19

pandemic. However, it can be difficult to distinguish neutral mutations from advantageous muta-

tions that directly increase the virus’ transmission.

It has been demonstrated that phylogenetic-tree-based analyses can lead to overinterpretation in

studying SARS-CoV-2 genomic variations and transmissibility115, and therefore a quantitative as-

sessment based on an epidemiological and evolutionary modeling framework is necessary.

Here, I propose a model for the calculation of a numerical measure of the fitness (growth rate) of

SARS-CoV-2 subtypes and lineages by adapting a measure of selective fitness which originally

was introduced for calculating differential interferon resistance coefficients for quasispecies using

HCV sequence data169. The fitness coefficient is an assessment of the selective fitness of a subtype,

based on the number of sequences in the corresponding lineage, and the rate at which it grows over

time.

Then I explore and examine a reproduction number estimation method based on a Bayesian ap-

proach using a generalized logistic sub-epidemic model32 which was previously used for epidemi-

ological forecasting of SARS-CoV-2 successfully157. Considering each variant of SARS-CoV-2 as

a subpopulation, we calculate the most likely fitness landscape for each subpopulation using the

generalized logistic sub-epidemic model. Using the proposed model we evaluate the transmissibil-

ity of SARS-CoV-2 variants, the obtained values are consistent with other studies105,43. For each

pair of mutations in SARS-CoV-2, our Bayesian model is used to assess epistasis interaction and

then build the epistatic networks of the spike protein.
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1.1.1 Problem formulation

This chapter addresses the following problem:

• Given nucleotide sequences of SARS-CoV-2 and the corresponding metadata including the

sequences’ collection dates:

(i) Estimate fitness/transmissibility of SARS-CoV-2 variants/lineages and subtypes.

(ii) Estimate the epistatic interaction networks of SARS-CoV-2.

1.2 Prediction of emerging variants of SARS-CoV-2 with altered phenotypes

Epistasis occurs when a mutation’s phenotypic effect is dependent on the presence of other muta-

tions in the genome. The genomes of RNA viruses display complex patterns of epistatic interac-

tions within and between genes despite their structural simplicity. These pathogens’ evolutionary

dynamics are profoundly affected by such complex patterns60.

Moreover, these interactions determine the complexity of the genotype-fitness landscape54. De-

pending on prior substitutions, epistasis can influence the order in which mutations can occur174.

Due to their combinatorial nature, epistatic interactions constitute a powerful influence at the pop-

ulation level, determining the long-term evolutionary trajectory of evolving populations54. The

combinatorial nature of epistatic interactions makes an exhaustive laboratory exploration difficult

and therefore limits our ability to predict long-term evolution160.

An essential component of the infectivity of SARS-CoV-2 is the spike protein, a homotrimeric

glycoprotein complex encoded by the S-gene. In the exposed regions of the spike protein, a large

number of mutations have led to variants that have a higher affinity for the human ACE2 receptor,
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are more transmissible, and are less neutralizing to antibodies3,113,142. I examine the mutation pairs

in spike protein in SARS-CoV-2 and build epistatic/coordinated substitution networks. An epistatic

network G is defined as a graph with nodes representing SAVs (single amino acid variations), and

two nodes being adjacent whenever the corresponding non-reference alleles are simultaneously

observed more frequently than expected by chance. I propose a novel computational framework

that predicts haplotypes of SARS-CoV-2 with altered phenotypes based on analyzing dense com-

munities of the epistatic networks of the spike protein. This approach which is called HELEN

(Heralding Emerging Lineages in Epistatic Networks), was validated by accurately identifying

known SARS-CoV-2 VOCs and VOIs up to 10-12 months before they reached high prevalences

and were designated by the WHO.

1.2.1 Problem formulation

This chapter addresses the following problem:

• Given nucleotide sequences of SARS-CoV-2 and the corresponding metadata including the

sequences’ collection dates.

• Predict the haplotypes of SARS-CoV-2 with altered phenotypes.

1.3 Viral outbreak investigation and transmission history reconstruction

Genomic epidemiology, which involves analyzing viral genomes to understand how viruses spread

and evolve, has become a vital tool for investigating outbreaks and tracking transmission dynam-

ics6,18. The development of efficient computational methods has enabled the rapid progress of
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genomic epidemiology, leading to the creation of transmission history inference tools such as Out-

breaker and Outbreaker 291,25, SCOTTI46, SeqTrack92, SCOTTI46, Phybreak95, and more95,195,47

196,45,53,81,171,170,74,102,112,24,162,163,51,200,121,52,122,41,26,80. These tools have successfully been applied to

various viruses, including SARS, MERS, and SARS-CoV-2191,150,205,146,99,23.

The extremely high genomic diversity of viruses resulting from their error-prone replication

means that each infected individual typically hosts a heterogeneous population of numerous ge-

nomic variants, known as viral quasispecies. The first generation of transmission inference meth-

ods largely ignored intra-host viral diversity, only considering a single sequence per host. Later,

it was demonstrated that taking intra-host diversity into account greatly enhances the predictive

power of transmission inference algorithms, allowing for the detection of viral evolution direction-

ality in situations where reliable phylogenetic rooting is not possible196,170,5,156,99. Several tools

have been developed specifically to address this issue, including TNeT51, TiTUS163, SharpTNI162,

and BadTrIP47.

Despite the progress made in the development of transmission inference methods, there are

still several computational, modeling, and algorithmic challenges that need to be addressed. These

challenges include the use of maximum parsimony principles, while maximum likelihood or Bayesian

models can be used for more accurate reconstruction of transmission links125. Using genomic data

alone. However, genomic data alone are not able to reverse transmission network ambiguities in

many cases, requiring additional evidence89,182,91. And the assumption of independent transmis-

sion network edges which means any person can infect any other person with the same probability.

Yet, this is not always the case71. We propose a maximum likelihood transmission networks infer-
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ence framework, SOPHIE (SOcial and PHilogenetic Investigation of Epidemics), that overcomes

these challenges by combining phylogenetic and random graph models. SOPHIE samples from

the joint distribution of phylogeny ancestral traits defining transmission networks, and estimates

the probabilities that sampled networks are subgraphs of a random contact network and summarize

them accordingly into the consensus network. This approach is scalable, accounts for intra-host di-

versity, and accurately infer transmissions without case-specific epidemiological data. We applied

SOPHIE to synthetic data simulated under different epidemiological and evolutionary scenarios,

as well as to experimental data from epidemiologically curated HCV outbreaks. The experiments

confirm the effectiveness of this methodology.

1.3.1 Problem formulation

This chapter addresses the following problem:

• Given a time-labelled phylogeny T = (V (T ), E(T )) with nl leafs corresponding to viral

haplotypes sampled from nh infected hosts; each leaf u is assigned the label λu ∈ [nh]

corresponding to its host.

• Estimate a transmission network.

1.4 Contributions

This dissertation discusses the following contributions:

• Estimation of a fitness coefficient for SARS-CoV-2 subtypes based on a measure of selec-

tive fitness which originally was introduced for calculating drug resistance coefficients for

quasispecies in HCV.
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• Designing a novel method that estimates the reproduction number of SARS-CoV-2 vari-

ants/lineages. This model is based on a Bayesian inference using a so-called generalized

logistic sub-epidemic framework, which is a growth model for forecasting epidemic trajec-

tories. We model SARS-CoV-2 variants as overlapping sub-epidemics (dividing the whole

population into the variants and the wild type). Using this model we estimate the transmis-

sibility of each sub-epidemic.

• Estimating the fitness coefficient and transmissibility of SARS-CoV-2 variants and lineages.

• Designing a novel computational framework that predicts the haplotypes of SARS-CoV-2

with altered phenotype. It identifies densely connected communities of SAV alleles and

merges them into haplotypes using a combination of statistical inference, population genet-

ics, and discrete optimization techniques.

• Designing a maximum likelihood framework based on the integration of phylogenetic and

random graph models. It infers transmission networks from viral phylogenies and expected

properties of inter-host social networks modeled as random graphs with given expected de-

gree distributions.

• Discussing validation of estimated values and obtained results.
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CHAPTER 2

Assessment of the fitness landscape and transmissibility of SARS-CoV-2 variants and
subtypes

As the COVID-19 pandemic continues its unabated global spread, it is critical to monitor the

relative transmissibility, severity, and resistance to pharmaceutical interventions of novel variants

of the coronavirus pandemic.

The lineage B.1.1.7 is defined by a specific family of 17 non-synonymous SNVs, that includes 8

SNVs in the spike protein147. Likewise, lineage B.1.617.2 includes 8 SNVs in the spike protein94.

The majority of these genomic alterations are known to have phenotypic effects175,82. The spike

mutation(s) such as P681R are responsible for the enhanced replication fitness of lineage B.1.617.2

over B.1.1.7.109 As well, the rapid lineage growth prompted indicates that the variants of B.1.1.7

and B.1.617.2 have altered transmissibility and a higher fitness with respect to other SARS-CoV-2

subpopulations147,105.

Currently measuring the transmissibility and fitness of a variant can be done only when a lineage

is large enough in the population which can be too late for controlling the spread of a variant.

Therefore, a quantitative assessment based on a sound epidemiological and evolutionary modeling

framework is required to evaluate the viruses’ fitness and transmissibility105. In this chapter, I am

proposing two models for measuring the fitness of SARS-CoV-2 haplotypes.

The first model is based on the quasispecies model for measuring differential interferon (INF)

resistance of HCV quasispecies presented in169. The INF-resistance method is built on an analysis

of HCV population dynamics considering the relative frequencies of variants during the first hours

of interferon therapy, at a set of observed time points. Where the abundance of different viral vari-
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ants is formulated as a system of differential equations based on the death rate and the replication

rate of each variant. Then the evolution of frequencies of quasispecies is modeled using this sys-

tem of differential equations. The frequencies are approximated using cubic spline approximation

at each time point. They define fitness functions gi(t) based on the approximated frequencies and

approximated titer which reflect changes of quasispecies fitness under the selection pressure.

Since this framework agrees with the standard population genetic models, we applied this mathe-

matical model to calculate a measure of fitness coefficient of SARS-CoV-2 variants and lineages.

In Section 2.1 this adaptation is explained in detail. We estimated the fitness coefficients of SARS-

CoV-2 variants and subtypes. The subtypes were obtained by clustering sequences into groups

using a CliqueSNV-based clustering model (Section 2.1) in order to identify novel variants and

subtypes of SARS-CoV-2. The fitness coefficients agree with R0 value of corresponding variants

and other validation metrics used in this study119,120, which indicates the accuracy of our estima-

tion model.

We also propose a Bayesian assessment for the fitness of SARS-CoV-2 variants and lineages based

on a generalized logistic sub-epidemic model32. This model which supports various epidemic

wave trajectories, has been successfully used for SARS-CoV-2 epidemiological forecasting157,158

and proved to be accurate and reliable. This framework tries to capture the heterogeneity of pop-

ulation and temporal changes that shape the incidence curves of the larger-scale epidemic wave

patterns. This is achieved by dividing the population into overlapping sub-epidemics. Each sub-

epidemic is modeled by a generalized logistic growth model (GLM) (2.1) which has been used

for short-term forecasting of the trajectory of infectious disease outbreaks effectively31,140. GLM
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equation is as follows:

dC(t)

dt
= rCp(1− C(t)

K0

) (2.1)

Where dC(t)
dt

, C(t), r, p ∈ [0, 1], K0 respectively denote the incidence curve of a sub-epidemic

over time t, the cumulative number of cases at time t, the growth rate, the scaling of growth

parameter, the final epidemic size. In Section 2.2 the Bayesian estimation of SARS-CoV-2’s fitness

and transmissibility using GLM differential equations is discussed in detail.

We also, use this method to find epistasis mutation pairs in spike protein and estimate the

epistasis networks for different countries. Epistasis is defined by an interaction of genetic vari-

ation in which the effect of a gene mutation depends on mutations in one or more other genes.

Epistatic analysis is paramount for drug and vaccine development, and prediction of many evolu-

tionary hypotheses21. Some studies already tried to predict epistasis interactions of SARS-CoV-2.

In152, a global phylogenetic tree was constructed over a global alignment of the whole genomes.

They found out more than 100 nonsynonymous mutations appeared multiple times on around 200

or more terminal branches and leaves in the phylogenetic tree. Which claimed to be evidence

of positive selections. An epistasis network was inferred based on the co-occurrence network of

these positively selected residues. The inferred epistasis interactions are mostly located in the

receptor-binding domain (RBD) of the spike protein and the region of the nucleocapsid protein.

No quantitative methods are suggested for epistasis interaction estimation, and the inferred net-

work is only based on the co-occurrence of mutations in the tree.

Another study201 used in vitro binding measurements to predict epistatic mutations in SARS-CoV-

2. In vitro evolution which is an experimental method for screening of large random-sequence
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libraries, was applied to select for higher affinity binding of the SARS-CoV-2 spike RBD to the

host cell receptor angiotensin-converting enzyme 2 (ACE2). They suggest that the spike muta-

tions such as S477N, E484K, and N501Y are positively correlated with increased binding affinity

to ACE2. Consequently, they are responsible for more transmissibility of viruses. As well, they

identified mutations N501Y and Q498R as epistatic pair.

A Genome-wide epistasis analysis over a global alignment is proposed in202 for epistasis pre-

diction. Pseudo-likelihood maximization for direct coupling analysis (DCA) is utilized to infer

epistatic interactions. DCA is a method to extract approximate information about coevolving

residues in a protein family from data. Since DCA is time-consuming for such a large dataset,

only the top 200 mutation pairs regarding pseudo-likelihood maximization score are considered

for epistatic analysis. Out of 200 pairs, 8 pairs are reported as potential epistatic which are located

in genes ORF3a, ORF8, nsp2, nsp6, nsp12, nsp13, and nsp14.

In this study, we use our reliable fitness assessment to evaluate the fitness of mutation pairs that

occurred both independently and concurrently in the population (Section 2.2.3). If a pair of mu-

tations occurring together enhance or decline the fitness of the subpopulation over independent

occurrences of individual mutations, it is reported as a positive or a negative epistasis pair respec-

tively. If it did not affect fitness it is considered additive epistasis.
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Variant Region Lineage S/Gen. Source
Gamma Brazil P.1(B.1.1.28.1) 10 / 21 127
Zeta Brazil P.2(B.1.1.28.2) 1 / 5
Epsilon California B.1.427/B.1.429 3 / 5 204

Iota New York B.1.526 6 / 16 192

Beta S. Africa B.1.351 9 / 21 70
Alpha UK B.1.1.7 8 / 17
Kappa India B.1.167.1 8 / 17 197
Delta India B.1.167.2 8 / 17

Table 2.1 Some known variants of SARS-CoV-2. The five columns, starting from the left, are:
Variant (Greek name); Region where it was first identified; PANGOLIN Lineage identifier; Num-
ber of mutations on the S gene / entire genome; and Source.

2.1 Fitness coefficient estimation of SARS-CoV-2 subtypes

2.1.1 Datasets

In this section, we outline the datasets that we used in the fitness coefficient estimation of SARS-

CoV-2 subtypes. We first give a brief overview of subtypes, or variants we study here, and then

describe the datasets we use, which are known to contain different proportions of these variants.

2.1.1.1 Known variants

Since its emergence in November 201948, SARS-CoV-2 has evolved into different variants. Di-

vergences in mutation at the genomic level have been observed in different regions of the world as

new infectious variants are emerging. The following is a description of some of the well-known

variants to date. A more complete list can be found in Table 2.1.

Alpha variant (UK) The Alpha variant, also known as the B.1.1.7 variant of SARS-CoV-2

was first identified in Kent, UK, in late summer to early autumn 2020. The lineage was the most

transmissible of all those that appeared before, with a 50% to 100% reproduction rate185. The first
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case was reported on December 14, 2020, and this variant is now detected in over 30 countries,

with more than 15 thousand people affected worldwide70. Of the many genomic mutations that

characterize this variant, it has a 69/70 deletion and a mutation at position 501, which affects the

conformation of the receptor binding domain (RBD) of the spike protein of SARS-CoV-2. It has

17 mutations which include 14 amino acids and 3 in-frame deletions at open-reading frame (ORF)

1 a/b, ORF 8, spike (S), and N gene regions. These mutations have biological implications and

have resulted in diagnostic failures148.

Beta variant (South Africa) The first case of the Beta variant, also known as B.1.351, was

identified in Nelson Mandela Bay, South Africa, in October 2020. This lineage was predominant

by the end of November 2020 in the Eastern and Western Cape Provinces of South Africa. By

January 2021, there were 415 known cases of infection with this variant, were found in 13 dif-

ferent countries. This variant has eight mutations in the S gene region, including three mutations

SK417N, E484K, and N501Y that affect the RBD of the spike protein. These three mutations can

be the reason for increased transmissibility, and can also lead to alterations in conformation that

could pose a challenge for the effectiveness of vaccines70,207,178.

Gamma and Zeta variants (Brazil) The Gamma variant, also known as P.1(B.1.1.28.1), was

initially identified in February 2020, in Japanese travelers coming from Amazonas State, Brazil.

It was first reported in a 29-year-old female resident of Amazonas State. The P.1 lineage has

mutations K417T, E484K, and N501Y in the S gene region, which affects the RBD of the spike

protein. The Zeta variant, also known as P.2(B.1.1.28.2) was first identified in Rio de Janeiro,

Brazil. It shares the mutation E484K with the Gamma variant126.
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Dataset Database Start End No. Sequences
UK EMBL-EBI 2020-01-29 2020-12-29 88 008
GISAID 2 GISAID 2019-12-24 2021-04-04 1 000 982

Table 2.2 The datasets that are used in the experiments of Section 2.1.3. The five columns, starting
from the left, are: Name we use here; Database it is from (GISAID59 or EMBL-EBI61); Earliest
collection date of any sequence; Latest collection date; and number of sequences.

Epsilon variants (California, USA) In July 2020, the first case of the Epsilon variants, also

known as the CAL.20C or B.1.427/B.1.429 variants of SARS-CoV-2, was identified in Los Ange-

les County, California, USA. The Cedars-Sinai Medical Center (CSMC) reported that the second

B.1.429 Epsilon variant contains five mutations at ORF 1 an (I4205V), ORF 1 b (D1183Y), and S

gene mutations S13I, W152C and L452R. Mutation L452R is correlated with higher infectivity204.

The Epsilon variants are spreading in the US and in 29 other countries118.

2.1.1.2 Datasets

We use two different datasets, which are summarized in Table 2.2, and then each one is explained

in more detail in its corresponding subsection below.

UK The Uk data set consists of sequences submitted to the EMBL-EBI61 database from the

end of January 2020 to the end of December 2020. Since this database is in the UK, and given the

collection period, this dataset contains a sizeable portion of the Alpha variant.

GISAID 2 The second data set consists of all sequences submitted to GISAID up until April

2021. Since many of the known variants mentioned above have been well-documented by April

2021, this dataset contains a sizable portion of sequences annotated as being from the Alpha, Beta,

Gamma, Epsilon and Zeta variants. Such labels correspond to “ground truth clusters” for which we

can compute the precision, specificity, F1 score, etc., of clustering obtained with a given method.
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2.1.2 Methods

2.1.2.1 Fitness

An Interferon (IFN) resistance coefficient model is adapted here to calculate the fitness of SARS-

CoV-2 subtypes, based on how the rate of change in size (number of sequences it contains) varies

over time. For a set C1, . . . , Ck of clusters, Xi(t) denotes the size of subtype or cluster Ci at a

particular time t. The fitness coefficient is calculated using hi, which is the cumulative sum of the

Xi. It follows that h(t) =
∑k

i=1 hi(t) is the total infected population size at time t. Each hi(t) is

normalized over h(t), which is denoted by ui(t), that is,

ui(t) =
hi(t)∑k
i=1 hi(t)

. (2.2)

Using cubic splines, ui(t) and h(t) are interpolated over the time period and the derivatives u̇i(t)

and ḣ(t) are calculated. The fitness function gi, for each cluster Ci is then defined as

gi(t) =
u̇i(t)

ui(t)
+

ḣ(t)

h(t)
. (2.3)

The fitness coefficient ri, which is the average fitness over the time period T (composed of the

times t) for cluster Ci is then

ri =
1

T

∫ T

1

gi(t)dt . (2.4)

In order to reduce sampling error, we use the Poisson distribution to draw random samples. For

each cluster at time t, a sufficiently large number of random samples are drawn from the Poisson

distribution on Xi(t) as the expectation of the interval. Then Xi(t) is replaced by the mean value

of these random samples. This is repeated a sufficiently large number of times (e.g., 100) to cal-
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culate a set of Poisson-distributed sizes. The fitness coefficient calculation is then applied on each

repetition separately and a confidence interval of the fitness coefficient is obtained.

This framework is tested on SARS-CoV-2 variants (alpha and delta) where it correctly estimated

the growth rates and the R0 values calculated based on the growth rates. Then we applied it on

clusters obtained by clustering nucleotide sequences of the SARS-CoV-2 virus with a CliqueSNV-

based clustering method, which is explained in the following.

2.1.2.2 CliqueSNV

We are clustering viral sequences in order to identify subtypes. The idea is that we use, CliqueSNV

to find haplotypes in the massively interhost viral population, using them as cluster centers in cat-

egorical clustering algorithms such as k-modes (Huang, 1997) to find subtypes. We propose to

use currently existing tools that were developed to identify subtypes in intra-host viral populations

from next-generation sequencing (NGS) data reviewed in98, such as Savage11, PredictHaplo144,

aBayesQR2, etc. However, our setting is slightly different, where the data consists of large collec-

tions of inter-host consensus sequences gathered from different regions and countries around the

world59,61. We expect, however, that such tools are appropriate at this scale: now the “host” is an

entire region or country, and we reconstruct the subtypes, or variants, and their dynamics within

these regions or countries. The SARS-CoV-2 sequences in GISAID are consensus sequences of

approximate length 30K. Such sequences by quality and length have similar properties as PacBio

reads. We choose CliqueSNV since it performed very well on PacBio reads96.
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2.1.2.3 k-modes Clustering

We also considered known general techniques for clustering from the literature as a baseline for

comparison. Since we are clustering sequences, which are on the categories A, C, G, T (and –, a

gap), we chose k-modes84,85 for this purpose. This approach is almost identical to k-means4,116,

but it is based on the notion of mode (rather than Euclidean mean), making it appropriate for

clustering categorical data. Indeed, the Euclidean mean of three nucleotides has little meaning in

this context, and may not even be well-defined. An example of the latter is when the “distance”

from A to G is different than from G to A. A similar observation was made in the context cancer

mutation profiles37 in the form of absence/presence information. Treating these as categories in

using k-modes (rather than as 0’s and 1’s in using k-means) resulted in a clustering approach35

that, when used as a preprocessing step, allowed cancer phylogeny building methods to attain a

higher accuracy36, and in some cases with much lower runtimes88.

The mode q of a cluster C of sequences is another “sequence” (on A, C, G, T, –) which mini-

mizes

D(C, q) =
∑
s∈C

d(s, q) , (2.5)

where d is some dissimilarity measure (such as Hamming distance) between the sequences we are

considering. Note that q is not necessarily an element of C. Aside from finding the mode instead

of the Euclidean mean, the k-modes algorithm operates similarly to k-means, following the same

iteration:

1. Initialize cluster centers (or centroids);
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2. Assign each sequence to the closest center based on dissimilarity d;

3. For each cluster resulting from this assignment, find its (new) center ( 2.5); and

4. Return to step 2. until convergence (clusters do not change between 2. and 3.).

In this work, we use k-modes. We first initialize cluster centers (1.) by using the centers (the

subtypes) that were found by CliqueSNV.

Then, the dissimilarity d that we use is either the (i) Hamming distance, or (ii) TN-93 dis-

tance177.

2.1.2.4 Clustering entropy

Because of the lack of ground truth, we need to consider an internal evaluation criteria. The

clustering entropy106 ( 2.8 and 2.9) is an internal evaluation criterion that was shown to generalize

any distance-based criterion, and does not even require any notion of distance or dissimilarity.

Since sequences are objects on categorical attributes which take values A, C, G, T (and –, a gap),

the clustering entropy criterion is appropriate in our case. Moreover, clustering entropy naturally

reflects the fact that the population of viral sequences comes from a number of subtypes. Clustering

entropy can be formally derived using a likelihood principle based on Bernoulli mixture models. In

these mixture models, the observed data are thought of as coming from a number of different latent

classes. In106, the authors prove that minimizing clustering entropy is equivalent to maximizing

the likelihood that set of objects are generated from a set of (k) classes. This reflects the underlying

processes which generate a set of viral sequences: that they evolved from a set of (k) subtypes.
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This relates closely to the widely-used notion of sequence logo164: a graphical representation of a

set of aligned sequences which conveys at each position both the relative frequency of each base

(or residue), and the amount of information (the entropy) in bits. A clustering of viral sequences

of low entropy then relates to a reliable set of sequence logos (in terms of information), and can

hence shed light on the possible biological function of the viral subtype that each such logo (or

related motif) represents.

2.1.2.5 Monte-Carlo Based Entropy Minimization

We use clustering entropy106 to assess the clustering method. For this reason, we also employ a

technique aimed directly at minimizing clustering entropy as the objective. We first define cluster-

ing entropy in the following.

Formally, we have a set S of aligned nucleotide sequences on the set X of genomic sites. Since

they are aligned, sequences can be viewed as rows of a matrix and, when restricted to a site x ∈ X ,

can be viewed as columns of this matrix. Let N = {A, C, G, T} be the four nucleotides, not count-

ing the gap (–) character. Using the notation of106, the entropy Ĥx(C) of a subset C (a cluster) of

sequences from S at site x ∈ X is then

Ĥx(C) = −
∑
s∈C

∑
a∈N

px(s = a) log px(s = a) . (2.6)

Note that px(s = a) — the probability that a sequence s ∈ C has nucleotide a at site x —

essentially amounts to the relative frequency of nucleotide a ∈ N in C at site x. The entropy
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ĤX(C) of subset C of sequences on a subset X of sites is then

ĤX(C) =
∑
x∈X

Ĥ(x) , (2.7)

that is, we simply sum up the entropies at the individual sites. Since the set of sites will always

correspond to the SNV sites of our sequences, we will use simply Ĥ(C) for the entropy of a subset

(a cluster) of sequences from hereon in. The expected entropy106 of a clustering C = C1, . . . , Ck

of sequences is then

H(C) =
1

n

k∑
i=1

niĤ(Ci) , (2.8)

where ni = |Ci|, the number of elements in cluster Ci, and n is the total number of sequences. For

completeness, the total entropy of a clustering is simply the sum

T (C) =
k∑

i=1

Ĥ(Ci) (2.9)

of the individual entropies of each cluster (not weighted by ni).

In106, the authors prove that the entropy 2.8 is a convex function, allowing any optimization pro-

cedure to reach a global minimum. It is because of this property that we can use techniques aimed

directly at minimizing clustering entropy as the objective. The Monte-Carlo method is a broad

class of computational algorithms that rely on repeated random sampling to optimize some crite-

rion. In this context, we are randomly sampling clusterings of sequences in order to minimize 2.8.

The basic idea is that we start with some clustering — note that the clustering corresponding to

placing all sequences in the same cluster has maximum entropy, by definition. The Monte-Carlo

process then operates according to the iteration:
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• from the current clustering, randomly pick a sequence from some cluster and place it into

another cluster, resulting in a new clustering;

• compute the entropy ( 2.8) of the new clustering; and

• accept this new clustering, if the entropy has decreased, otherwise keep the current cluster-

ing;

until convergence, i.e., the clustering does not change after some number θ of iterations.

In106, the authors prove the concept of applying the Monte-Carlo method to entropy minimization

by implementing a very basic procedure similar to the above, and then demonstrate it on a small

dataset. Since our datasets are on a much larger scale (millions of sequences on 30K genomic sites),

the basic iteration which randomly samples a single sequence in each iteration would need many

iterations for a very small improvement. For this reason, we apply the following preprocessing

step, to improve the convergence. Rather than using all (30K) columns, we first sort the columns

according to their (unclustered) entropy value. We then select the n columns, or tags, with highest

entropy. Next, we then run the above Monte-Carlo process on the reduced dataset with the n tags.

This results in a clustering (of the rows), to which we then apply to the original set of all columns.

2.1.2.6 Filling gaps

Finally, the set of SARS-CoV-2 sequences that we deal with contains missing nucleotides, due to

gaps or deletions. This is particularly true with GISAID sequences collected from December 2019

to the end of March 2020, when sequencing, alignment, etc., were less refined. This is further

complicated by the presence of deletions, which could be confused with gaps.
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Figure 2.1 Subtype distribution (the UK dataset, weekly window, relative count), produced our
CliqueSNV-based clustering method. The subtype in red contributes to sequences that correspond
to the Alpha variant.

Here, we attempt to use the clustering obtained by some clustering methods in order to fill the

gaps. That is, rather than uniformly filling all sequences with, e.g., the reference genome, we fill

each sequence with the center of its cluster. The idea is that if a clustering performs well, then

the sequences of a cluster should correspond to a subtype. In this case, the center — a consensus

sequence of this subtype — should be much closer to any sequence of its cluster than the reference

genome, resulting in a more accurate filling of the gaps.
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2.1.3 Results

Our CliqueSNV-based clustering method was able to detect one subtype which tends to dominate

the population in the UK dataset, in attaining good entropy and F1 scores120. However, we wanted

to further validate if this is consistent with other independent measures of quality, such as the

cluster-based fitness coefficient. To compute this, we chose our time points t to be intervals of

one week over the period from the beginning of October to the middle of December, exactly as in

Figure 2.1. The size Xi(t) of each cluster Ci (of k = 15 clusters) for every week t was obtained,

and each fitness coefficient ri was computed according to 2.4. In order to reduce sampling error,

we drew 2000 random samples from the Poisson distribution on Xi(t). We repeated this 100 times,

and we report in Table 2.3 the 95% confidence interval of the top five clusters, sorted by interval

lower bound. We note that similar results are obtained with either Hamming or TN-93 distance,

with TN-93 distance corresponding to slightly higher fitness coefficients. We confirm that in either

case, the mostly highly ranked cluster in terms of fitness (with cluster ID 6) corresponds to the

cluster containing all of the sequences pertaining to the Alpha variant from above (specificity

> 99%).

The GISAID 2 dataset Since our CliqueSNV-based clustering approach was able to clearly pin-

point the Alpha variant within the UK dataset, we tested it also on the GISAID 2 dataset, which

contains many of the variants listed in Table 2.1. CliqueSNV-based clustering identified 36 sub-

types in this dataset. We first computed fitness coefficients ri ( 2.4) for these 36 clusters using

one-week time intervals t. Table 2.4 reports the 95% confidence interval due to subsampling of the

top and bottom five clusters, sorted by interval lower bound. One will notice immediately that the
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Distance Rank Cluster ID Int. Lower B. Int. Upper B.

Hamming
1 6 1.343 1.504
2 3 0.354 0.369
3 14 0.284 0.324
4 8 0.08691 0.0881
5 2 0.08690 0.0878

TN-93
1 6 1.390 1.510
2 2 0.789 0.795
3 3 0.351 0.364
4 14 0.353 0.390
5 8 0.086 0.0869

Table 2.3 The 95% confidence interval of the top five fitness coefficients, according to the interval
lower bound, of the 15 clusters of the UK dataset obtained using our CliqueSNV-based clustering
method with Hamming distance and TN-93 distance, respectively.

Rank Cluster ID Int. Lower B. Int. Upper B.
1 1 0.0601 0.0602
2 17 0.0486 0.0489
3 21 0.0463 0.0463
4 20 0.0456 0.0457
5 35 0.0440 0.0440
32 4 0.0143 0.0143
33 29 0.0138 0.0138
34 28 0.0120 0.0120
35 32 0.0118 0.0118
36 34 0.0110 0.0110

Table 2.4 The 95% confidence interval of the top and bottom five fitness coefficients, according
to the interval lower bound, of the 36 clusters of the GISAID 2 dataset were obtained using our
CliqueSNV-based clustering method. The mean (µ) ± standard deviation (σ) of the interval lower
and upper bounds are 0.0281± 0.0122 and 0.0281± 0.0122, respectively.

fitness coefficient is much more evenly distributed across the clusters of this dataset, compared to

the UK dataset (Table 2.3).

Table 2.5 reports some of the variants found by our CliqueSNV-based approach in terms of speci-

ficity, F1 score, and fitness rank (Table 2.4). Notice that specificity/F1 score generally decreases

with rank and cluster size, as would be expected. Exceptions to this trend are the Gamma/Zeta

variant in F1 score vs. Rank (having a high F1 score for its rank) and the Epsilon variant (having a

large cluster size for its F1 score and rank). 50% and F1 scores ≥ 0.5.
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Variant ID Specificity F1 Rank Size
Alpha (UK) 1 93.16% 0.96 1 265 255
Gamma & Zeta (Brazil) 25 51.21% 0.68 7 1892
Beta (S. Africa) 21 45.85% 0.62 3 2754
Epsilon (California) 13 41.08% 0.58 13 9251

Table 2.5 Specificity, F1 score and fitness rank (Table 2.4) of the cluster containing the largest
number of sequences of the corresponding variant.

2.2 Bayesian assessment of the fitness landscape of SARS-CoV-2

2.2.1 Datasets

We obtained the genomic data and associated metadata analyzed in this section from GISAID167.

The earliest date when genomes that belong to the B.1.1.7 lineage were sampled is September,

20147. Thus, we analyzed the sequences from the UK generated after September, 13 (one week

before the detection of B.1.1.7) and before December 17. 2021. All genomes were separated

into two groups based on the presence of the set of 8 SNVs in the spike protein identified in147,

which includes two codon deletions and 6 point mutations. Similarly, for B.1.617.2 lineage, the

sequences from the UK were clustered into two groups based on the presence of the 7 SNVs in the

spike protein from April first, 2021 to May 31, 2021 (the first two months that B.1.617.2 lineage

spread throughout the UK). The total SARS-CoV-2 case counts for the analyzed time period were

obtained from COVID-19 Data Repository by the Center for Systems Science and Engineering

(CSSE) at Johns Hopkins University55.

For epistasis analysis, a global multisequence alignment up to July 25th, 2021 is downloaded from

GISAID. The spike protein is extracted from the whole genome. Ambiguous characters were re-

placed by blanks. Then Gaps with a 90% threshold over the whole alignment were removed. The
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consensus of this reduced alignment is 99.8% identical to the spike protein reference. Eventu-

ally, the sequences belonging to each country were separated using the metadata, which is also

downloaded from GISAID.

2.2.2 Methods

2.2.2.1 Growth rate estimation

In this section, we describe our method for estimation of growth rates and basic reproduction

numbers for subpopulations of SARS-CoV-2 genomes spreading in the population of susceptible

individuals. In what follows, vectors are highlighted in bold. Formally, we are given a viral pop-

ulation P = P1 ∪ ... ∪ Pn consisting of n subpopulations with different phenotypic features, and

the goal is to estimate the most likely fitness landscape f : Pi 7→ fi. In this study, n = 2, but

the framework described below is applicable for any number of subpopulations. We assume that

the viral population has been sampled over the discrete time interval τ = (τ1, ..., τS). For each

time-point τj , we consider the observed subpopulation counts kj = (k1(τj), ..., kn(τj)), the total

number of sequenced cases l(τj) =
∑n

i=1 ki(τj) and the observed incidence c(τj). Each subpopu-

lation Pi also has its first sampling time ti ≤ min{τ : ki(τ) > 0}.

We describe the spread of viral subpopulations using a generalized logistic sub-epidemic model32.

We consider the overall epidemic consisting of n overlapping sub-epidemic waves correspond-

ing to the spread of particular haplotypes. The waves are described by the system of differential

equations
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d

dt
Xi(t) = fiαi(t)X

d
i (t)

(
1− Xi(t)

Qi

)
, i = 1, ..., n. (2.10)

where X(t) = (X1(t), ..., Xn(t)) are the cumulative numbers of infections for the ith sub-epidemic

and αi(t) is the indicator function for the onset timing of the ith sub-epidemic:

αi(t) =

{
0, if t < ti;
1, if t ≥ ti.

(2.11)

Besides the growth rates fi, another model parameters are “scaling of growth” parameter d and the

maximum sub-epidemic size Qi = Q0e
−qti , where Q0 is the initial sub-epidemic size and q is the

rate of sub-epidemic decline caused by public health interventions or population behavior changes

that mitigate transmission32. In addition, in what follows we consider the vector of sub-epidemic

daily incidences Y (τj) = (Y1(τj), ..., Yn(τj)), where Yi(τj) = Xi(τj)−Xi(τj−1), i = 1, ..., n.

We estimate the model parameters f , Q0, d, q by maximizing p(f , d,Q0, q, t|C,k), the posterior

probability of model parameters given the observed incidence data C = (c(τ1), ..., c(τS)) and

sampled subpopulation data k = (k1, ...,kS) in a Bayesian way:

p(f , d,Q0, q, t|C,k) ∝ p(C|f , d,Q0, q, t)p(k|f , d,Q0, q, t)

(
n∏

i=1

p(fi)p(ti)

)
p(d)p(Q0)p(q)

(2.12)

The likelihoods p(C|f , d,Q0, q) and p(k|f , d,Q0, q) are defined by assuming that for each time-

point τj

(a) the observed incidence c(τj) is drawn from the Poisson distribution with the mean equal to



30

the model-based estimated total incidence Y (τj) =
∑n

i=1 Yi(τj).

(b) the observed subpopulation counts kj = (k1(τj), ..., kn(τj)) follow the multinomial distri-

bution with sampling probabilities pj = (pj1, ..., p
j
n), where pji =

Yi(τj)

Y (τj)
(similar to183).

In this study, the priors p(fi), p(d), p(Q0),p(q) and p(ti) were defined by assuming that the corre-

sponding parameters are distributed uniformly on the intervals [0, fmax], [0, pmax], [0, Qmax
0 ],[0, qmax]

and [τ1,min{τ : ki(τ) > 0}], respectively. Thus, after transition to log-likelihoods and the drop-

ping of constant terms, the parameters were estimated by solving the following constrained opti-

mization problem:

(f ∗, d∗, Q∗
0, q

∗, t) = argmax
f ,p,Q0,q,t

C · log(Y ) +
S∑

j=1

kj · log(Y (τj))− 1 · Y − l · log(Y ) (2.13)

subject to constraints 0 ≤ fi ≤ fmax, 0 ≤ p ≤ pmax, 0 < Q0 ≤ Qmax
0 , 0 ≤ q ≤ qmax and

τ1 ≤ ti ≤ min{τ : ki(τ) > 0}. Here Y and Y are functions of f , p, Q0, q, t; the symbol ”·”

denotes a scalar product of vectors and log is a coordinate-vise natural logarithm. To solve the

problem (2.13), we used the gradient-free pattern search approach10, as implemented in Matlab

2019b (MathWorks, Natick, MA).

The inferred model parameters were used to estimate the reproduction numbers associated with

each subpopulation. The generation interval of SARS-CoV-2 was modeled assuming gamma dis-

tribution with a mean of µ = 5.2 days and a standard deviation of σ = 1.72 days. Then, if ρ(t) is a

probability distribution of the generation interval t and Y ∗
i (τj) is the model-based incidence of the

i-th subepidemic calculated using optimal parameters, then the i-th effective reproduction number

was calculated using the renewal equation133,68 as follows:
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Ri
τj
=

Y ∗
i (τj)∑j

l=1 Y
∗
i (τj − τl)ρ(τl)

(2.14)

Here the numerator represents the total number of new cases at a given time τj , and the denominator

represents the total number of cases that contribute (as primary cases) to generate the new cases

at τj . Note that we consider only the first wave of each subpopulation because later waves usually

arise when the genomic variants under consideration are ”passenger mutations” of other variants.

To do so,

2.2.3 Evaluating epistasis interactions

Epistasis networks of the spike protein for each country were built using our growth rate estimation

method. A pair of mutations can be evaluated as an epistasis pair if the mutations happened both

independently and concurrently in the population. Therefore we consider only the mutation pairs

for which all four haplotypes 00, 01, 10, and 11 occurred significantly in the population. In order

to find pairs that meet this requirement, a zero-one mutation matrix is calculated. A m.n matrix,

where m is the number of sequences in the population and n is the number of positions in the

spike gene (1274 amino acids or 3822 nucleotides). Each sequence is compared to the spike gene

extracted from the reference. A zero is placed at (i, j) entry of the matrix, if the character at a

position j in sequence i agrees with the character at the position j in the reference, and a one if

they don’t agree. Blanks and ambiguous characters were ignored. In other words, non-reference

alleles are one, and reference alleles are zero in the matrix. To make sure low-quality sequences

are not considered, rows with more than the average number of mutations plus 10 are removed.
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Also, the identical columns (almost all zeros or all ones) with a threshold of 200 got removed.

Considering the permutation of remaining alleles in the matrix, the count of haplotypes 00, 01, 10,

and 11 are calculated for each pair (i, i′) in the spike gene. Then pairs with a frequency of more

than 100 for each haplotype are passed to the next step, which is to estimate the fitness values.

For each haplotype ab ∈ {00, 01, 10, 11} of pair (i, i′), all sequences are divided into two clus-

ters, one including all the sequences having haplotype ab, Yab and the other including the rest of

sequences, Nab. The daily frequencies (subpopulation counts) for each cluster are obtained over

the time period (up to July 25th, 2021) using the collection date of each sequence extracted from

the metadata. Growth rate values F (Yab) and F (Nab) are computed and Fab = F (Yab)/F (Nab) is

considered as a fitness value of the pair ab at (i, i′). To generate parameter distributions, we used

parametric bootstrapping with k = 500 bootstraps and a Poisson noise added to the observed total

numbers of cases and the observed subpopulation counts.

The final step is to evaluate the epistasis interactions using ∆ = F11 − F00 − F01 − F10 for

each position pairs (i, i′)67,166,16,42. ∆ indicates positive epistasis if bigger than zero and negative

epistasis if less than zero. ∆ = 0 indicates no epistasis (additive epistasis). Figure 2.2 demonstrates

the pipeline of epistasis mutation analysis.

An epistasis network G = (V,E) is defined for each country. Where, V is a set of nodes including

the positions in the spike protein, associated with epistasis pairs and, E is a set of edges showing

their epistasis interactions where ∆ ̸= 0.
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Sequences: 

11 

00 

10 

01 

𝐹!! 
 

𝐹"" 
 

𝐹!" 
 

𝐹"! 
 

Positive Epistasis between 2 and 6       𝐹!! − 𝐹"" − 𝐹"! − 𝐹!" > 0 
 
No Epistasis between 2 and 6      𝐹!! − 𝐹"" − 𝐹"! − 𝐹!" = 0 
 
Negative Epistasis between 2 and 6     𝐹!! − 𝐹"" − 𝐹"! − 𝐹!" < 0 

2 6 

Figure 2.2 Pipeline of Epistasis interaction analysis of SARS-CoV-2 sequences. The sequences
including each pair of haplotypes are separated and the fitness values of the four groups are esti-
mated using our Bayesian model. Then the value of F11 − F00 − F01 − F10 determines if there are
any epistasis interactions between the considered positions.
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2.2.4 Results

2.2.4.1 The structure of S-gene epistatic network

The obtained networks for the USA and the UK are shown in figures 2.4 and 2.3. The structure of

both networks is pretty similar. Interestingly, each network contains a single ”giant” component

that includes 126 (11.1%) vertices. In addition, there are components of sizes 3 and 2. The s-

gene epistatic network appears to be scale-free, with the right-skewed degree distribution. Degree

distributions of such networks follow power-law (i.e. the probability of having a particular degree

is proportional to the power of that degree), and they are often the result of a preferential attachment

process, where a vertex joining a network gets connected to an existing vertex with the probability

proportional to the degree of that vertex - the model is often described by the metaphor ”the rich

get richer”. We fitted negative binomial, beta negative binomial, Poisson, Yule-Simon, Generalized

Pareto, and Pareto distributions to the observed degree distribution of the transmission network. To

compare the goodness of fit yielded by different models, we used the Akaike (AIC) and Bayesian

(BIC) Information Criteria (Table 2.6). The Yule-Simon distribution, which represents the classical

power-law, demonstrated the best fit. The exponent of the Pareto distribution was estimated to be

1.20 (95%CI = [1.12, 1.34]), which is lower than for most complex scale-free networks studied in

the literature, thus indicating the higher tendency of vertices to be connected to hubs (high-degree

vertices).
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Distribution UK USA
AIC BIC AIC BIC

Negative binomial 658.7643 654.7643 1340.8 1336.8
Beta negative binomial 484.8638 478.8638 889.6 883.6

Poisson 627.5770 625.5770 1467.7 1465.7
Yule-Simon 396.6424 394.6424 765.1 763.1

Pareto 425.7476 423.7476 871.6 869.6
Generalized Pareto 476.4723 472.4723 891.8 887.8

Table 2.6 The Akaike (AIC) and Bayesian (BIC) Information Criteria for the largest connected
component in positive epistasis networks of the UK and the USA
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Figure 2.3 Estimated epistasis network for USA. The red edges indicate the negative epistasis
interactions and the green edges indicate positive epistasis interactions.

2.2.4.2 Validation of fitness inference model on known Variants of Concern

Maximum a posteriori basic reproduction numbers R0(1) and R0(2) were estimated for non-

B.1.1.7 and B.1.1.7 lineage, and similarly for non-B.1.617.2 and B.1.617.2 lineage subpopula-

tions using the methods described above. A parametric bootstrapping with k = 500 bootstraps

was generated and a Poisson noise was added to the observed total numbers of cases and the

observed subpopulation counts. The upper bounds for the Bayesian inference were: fmax = 2,

pmax = qmax = 1, Qmax
0 = 108. Basic reproduction numbers were calculated using equation 2.14
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Figure 2.4 Estimated epistasis network for Uk. The red edges indicate the negative epistasis inter-
actions and the green edges indicate positive epistasis interactions.

and the gamma distribution parameters µ = 5.2 days and σ = 1.72 days taken from72.

The estimated mean maximum a posteriori ratio of basic reproduction numbers of B.1.1.7 and non-

B.1.1.7 subpopulations was R0(2)/R0(1) = 1.641 (95% percentile bootstrap CI = [1.615, 1.754]),

see Figure 2.5. Thus, the estimated transmissibility of SARS-CoV-2 variants of B.1.1.7 lineage is

approximately ∼ 64% higher than for non-B.1.1.7 variants (p < 0.001, Kruskal-Wallis test). This

estimation agrees with the estimations of relative transmissibility of emerging UK-based SARS-

CoV-2 variants presented in other early studies43,105. It can be forecasted, that within 21 day period

from the day of the last observation, B.1.1.7 variants may constitute ∼ 58.7% of all new cases in

the UK (Figure 2.5). As well, the estimated transmissibility of B.1.617.2 lineage is approximately

∼ 36% more than B.1.1.7 lineage (R0 95% percentile bootstrap CI = [2.069, 2.070]).
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Figure 2.5 Upper left: violin plot of basic reproduction number ratios for B.1.1.7 and non-B.1.1.7
subpopulations. Upper right: total case counts. Lower left and right: relative incidence of non-
B.1.1.7 and B.1.1.7 subepidemics (between September 20, 2020, and December 17, 2020, as well
as forecasted to 21 days after the latter date). Circles depict frequencies of B.1.1.7 variants obser-
vation among sequenced genomes. Different predicted relative incidence trajectories are depicted
by grey curves
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CHAPTER 3

Prediction of emerging variants of SARS-CoV-2 with altered phenotypes

Understanding the predictability of evolution and the relative impact of random and deterministic

factors in evolutionary processes is a fundamental problem in life sciences. This problem gains

an applied significance in the context of viruses and other pathogens, as even a modest degree of

predictability of pathogen evolution can enhance our ability to forecast and, therein, control the

spread of infectious diseases104,87,117,154.

The most evident example of the importance of this problem is the case of severe acute res-

piratory syndrome coronavirus 2 (SARS-CoV-2). The successive waves of COVID-19 are driven

by the emerging variants of interest (VOIs) or variants of concern (VOCs) that have been associ-

ated with altered phenotypic features, including transmissibility44,175,82,203, antibody resistance and

immune escape186,83,73,142. Each variant is defined as a phylogenetic lineage characterized by a

specific combination of single amino acid variants (SAVs) and/or indels acquired over the course

of SARS-CoV-2 evolution. For instance, lineages B.1.1.7 (alpha variant by WHO classification)

and B.1.617.2 (delta variant) are defined by distinct families of 7 SAVs in the spike protein147,94,

many of which have been linked to enhanced fitness compared to preceding SARS-CoV-2 lin-

eages175,82,203,184,109,147,105.

Genomic epidemiology has been crucial for monitoring the emergence and spread of SARS-

CoV-2 variants since the start of the COVID-19 pandemic. SARS-CoV-2 genomes sampled around

the globe and produced using high-throughput sequencing technologies have been analyzed by a

plethora of phylogenetic, phylodynamic, and epidemiological models101 to detect spreading lin-
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eages and measure their reproductive numbers and other epidemiological characteristics. However,

these methods, powerful and valuable as they are, are primarily applied retrospectively. In other

words, they allow to detect growing lineages and measure their fitness only when these lineages are

already sufficiently prevalent. Moreover, existing phylogenetic and phylodynamic approaches are

computationally expensive. They must use subsampling, simplifying assumptions, and heuristic

algorithms without performance guarantees to handle the vast amounts of available genomic data

(e.g., more than 14 million sequences in the GISAID database167 at the time of submission of this

paper). These considerations can impact their power, accuracy, and reliability.

In contrast to retroactive detection, the task of early detection or forecasting involves the proac-

tive identification of SARS-CoV-2 genomic variants that have the potential to become prevalent

in the future. This problem is more challenging as it is intertwined with the fundamental question

of whether viral evolution can be predicted or whether one can ”replay the tape of life” for the

global SARS-CoV-2 evolution, using the metaphor of S.J. Gould76. For viruses, the possibility of

evolutionary predictions remains a topic of debate14. Nevertheless, studies attempting to address

the SARS-CoV-2 evolutionary forecasting problem have emerged117,154,12,1,199,135. Most of these

studies have focused on the emergence of individual mutations, with some methods assuming that

mutations accumulate independently or that the effects of their interactions can be averaged out

over their genomic backgrounds117,135.

Meanwhile, a number of studies have highlighted the significance of epistasis, i.e., the non-

additive phenotypic effects of combinations of mutations, for SARS-CoV-2202,152,201,154,153,128,124.

Using various methodologies, including phylogenetic analysis152,128, direct coupling analysis154,
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and in vitro binding measurements201,124, these studies suggest the existence of an epistatic network

that includes many genomic sites in the receptor-binding domain of the spike protein that is asso-

ciated with increased binding affinity to angiotensin-converting enzyme 2 (ACE2) receptor3,113,142.

Epistasis is closely linked to the complex structures of viral fitness landscapes16,154,124,202, which

determine the evolutionary trajectories of SARS-CoV-2 lineages and contribute to the high non-

linearity of its evolution, making forecasting challenging. The emergence of new Variants of Con-

cern, such as the lineage B.1.1.529 (Omicron variant), is an example of such non-linear phenom-

ena124. Its rapid emergence does not align with the gradual mutation accumulation hypothesis and

is still a topic of debate, with hypothesized origins including immune-suppressed hosts and reverse

zoonosis137,39,103,187,124.

Given the role of epistasis, it can be argued that selection often acts on combinations of muta-

tions, or haplotypes, rather than on individual mutations. Therefore, effective forecasting should

focus on viral haplotypes instead of solely on SAVs. However, predicting haplotypes is a signifi-

cantly more challenging problem than predicting individual SAVs – in particular, simply due to the

exponential increase in the number of possible haplotypes with genome length. This complexity

precludes the use of traditional approaches utilized in most mutation-based studies, where a feature

vector of epidemiological, evolutionary, and/or physicochemical parameters is calculated for each

SAV, and a statistical or machine learning model is trained to predict SAV phenotypic effects. As

a result, even studies that account for epistatic effects usually focus on assessing the phenotypic

effects of individual mutations154.

This paper focuses on predicting haplotypes of SARS-CoV-2 using a novel approach based
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on analyzing dense communities of the coordinated substitution networks of the spike protein,

which reflects potential positive epistatic interactions153,128,27. We demonstrate that emerging hap-

lotypes with altered phenotypes can be accurately predicted by leveraging these communities and

introduce HELEN (Heralding Emerging Lineages in Epistatic Networks) - a variant reconstruc-

tion framework that integrates graph theory, statistical inference, and population genetics methods.

HELEN was validated by accurately identifying known SARS-CoV-2 VOCs and VOIs up to 10-

12 months before they reached high prevalences and were designated by the WHO. Importantly,

the majority of predictions were derived from data collected independently from different coun-

tries, further supporting their credibility. These results demonstrate that network density is a more

precise, sensitive, and scalable measure than lineage frequency, allowing for reliable early detec-

tion or prediction of potential variants of concern before they become prevalent. For instance, our

approach suggests that the spread of the Omicron haplotype or a closely related genomic variant

could have been predicted as early as the beginning of 2021, almost a year before its designation

as a VOC. Furthermore, the computational complexity of our method depends on genome length

rather than the number of sequences, making it significantly faster than traditional phylogenetic

methods for VOC detection and enabling it to handle millions of currently available SARS-CoV-2

genomes.

Our approach to the early detection of viral haplotypes utilizes a certain methodological sim-

ilarity with the problem of inference of rare viral haplotypes from noisy sequencing data, partic-

ularly when produced by long-read sequencing technologies like Oxford Nanopore and PacBio.

This problem has gained significant attention in recent years, with several new tools appearing
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each year97,100,110,22,90. Some of these tools accurately infer rare haplotypes with frequencies com-

parable to the sequencing noise level. In particular, several tools developed by the authors of this

paper achieve such results by identifying and clustering statistically linked groups of SNV alle-

les100,7,8,120. Although this approach is not directly transferable to haplotype prediction, it provided

a foundation for this study.

3.1 Methods

3.1.1 Rationale

3.1.2 Construction of coordinated substitution networks

Following other studies (e.g.152,128,27), we consider networks of potential positive epistatic interac-

tions or, in other terms, coordinated substitution networks. Specifically, given a multiple sequence

alignment consisting of N genomes of length L, we define a coordinated substitution network G as

a graph with nodes representing SAVs, and two nodes being adjacent whenever the corresponding

non-reference alleles are simultaneously observed more frequently than expected by chance.

To formalize this definition, we extend the idea proposed in our previous studies8,100. Specif-

ically, let U0, U1 and V0, V1 be the reference and SAV alleles at two particular genomic positions

U, V ∈ {1, ..., L}, respectively. Let further Et
ij and Ot

ij be the expected and observed counts of

allele pairs (or 2-haplotypes) (Ui, Vj) at a time t.

We assume that viral evolution is driven by mutation and selection, where (a) 2-haplotypes

(Ui, Vj) have replicative fitnesses fij; (b) allele transitions at positions U and V are random, and

transitions between alleles i and j happen at rates qUij , q
V
ij . Thus, expected 2-haplotype counts can
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(a)

(b)

(c)

Figure 3.1 The model of an epistatically-constrained sequence space and fitness landscape. (a)
The epistatic network G. Edges of maximal cliques are displayed in blue, black, and purple. (b)
Genotypes that are viable under the constraints imposed by the epistatic networks. Stars represent
1-alleles, and colors denote loci. (c) The viable space is depicted alongside the corresponding
fitness landscape. Surface and vertex colors represent fitness values on a scale from blue (low fit-
ness) to red (high fitness). Sub-hypercubes corresponding to three maximal cliques of the epistatic
network G are highlighted in blue, black in red, respectively, with edges belonging to two sub-
hypercubes colored in intermediate shades. The circled vertices represent local maximums within
each sub-hypercube.

be described by the quasispecies model134,58 (or mutation-selection balance model in the classical

population genetics terms194) in the following form:

Et
ij =

∑
k,l=0,1

fklq
U
kiq

V
ljE

t−1
kl (3.1)

We do not make any assumptions about the rate values, except that the rate of allelic change is
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smaller than the rate of no-change, i.e.

qUij < qUii , q
V
ij < qVii , i, j = 0, 1. (3.2)

We use the model (3.1) to devise a statistical test that decides whether the 2-haplotype (U2, V2)

is viable or its observed appearances can be plausibly explained by random mutations. The pro-

posed test is based on the following fact:

Theorem 1. Suppose that the 2-haplotype (U2, V2) is not viable, i.e. f11 = 0. Then

Et
11 ≤

Et
01 · Et

10

Et
00

(3.3)

Proof. The proof follows the same lines as the proof in8. Given that f11 = 0, we have

Et
00 · Et

11 =

( ∑
k,l=0,1

fklq
U
k0q

V
l0E

t−1
kl

)( ∑
k,l=0,1

fklq
U
k1q

V
l1E

t−1
kl

)

= qU00q
V
00q

U
01q

V
01(f00E

t−1
00 )2 + qU10q

V
00q

U
11q

V
01(f10E

t−1
10 )2 + qU00q

V
10q

U
01q

V
11(f01E

t−1
01 )2+

+(qU00q
V
00q

U
01q

V
11 + qU00q

V
10q

U
01q

V
01)f00f01E

t−1
00 Et−1

01 +

+(qU00q
V
00q

U
11q

V
01 + qU10q

V
00q

U
01q

V
01)f00f10E

t−1
00 Et−1

10 +

+(qU00q
V
10q

U
11q

V
01 + qU10q

V
00q

U
01q

V
11)f01f10E

t−1
01 Et−1

10

(3.4)

and
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Et
01 · Et

10 =

( ∑
k,l=0,1

fklq
U
k0q

V
l1E

t−1
kl

)( ∑
k,l=0,1

fklq
U
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V
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kl

)

= qU00q
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01q
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(3.5)

It is easy to see that the terms in (3.4) and (3.5) except for the last ones are equal. Thus we

have

Et
01 · Et

10 − Et
00 · Et

11 =

= (qU00q
V
11q

U
11q

V
00 + qU10q

V
01q

U
01q

V
10 − qU00q

V
10q

U
11q

V
01 − qU10q

V
00q

U
01q

V
11)f01f10E

t−1
01 Et−1

10 =

=

(
1− qU01q

U
10

qU00q
U
11

)(
1− qV01q

V
10

qV00q
V
11

)
qU00q

V
11q

U
11q

V
00f01f10E

t−1
01 Et−1

10 ≥ 0,

(3.6)

where the last inequality follows from (3.2). Thus, the inequality (3.3) holds.

We use Theorem 1 to approximately evaluate the probability of the event that there exist a

large number of genomes with the 2-haplotype (U1, V1) given that this 2-haplotype is not viable.

Considering the density of sampling and the number of available genomes, we assume that ob-

served and expected numbers of 2-haplotypes are close to each other. Then, by (3.3), the value

p = O10·O01

O00·N approximates the largest probability of observing a genome containing 2-haplotypes

(U1, V1) among N sequenced genomes given that f11 = 0. Then we can assume that the number
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of such genomes X follows the binomial distribution B(N, p), and the probability that X ≥ O11

can be calculated as

p(X ≥ O11|f11 = 0) = 1− FX(O11 − 1) = 1−
O11−1∑
i=0

(
N

i

)
pi(1− p)N−i, (3.7)

where FX is the cumulative distribution function of the binomial distribution. We assume that

SAVs U1 and V1 are linked (i.e. adjacent in the coordinated substitution network G), when the

probability (3.7) is low enough, i.e.

p(X ≥ O11|f11 = 0) ≤ ρ(
L
2

) , (3.8)

where ρ is a predefined p-value (in this study we used ρ = 0.05) and the denominator
(
L
2

)
is a

Bonferroni correction.

3.1.3 Sampling of connected k-subgraphs and estimation of density-based p-values of viral
haplotypes

In what follows, we will use the standard graph-theoretical notation: V (G) and E(G) are the sets

of vertices and edges of the graph G, respectively; NG(v) is the set of neighbors of a vertex v in G;

the subgraph of G induced by a subset S is denoted by G[S].

We use the statistical test (3.8) to construct temporal coordinated substitution networks Gt

for different time points t using SARS-CoV-2 sequences sampled before or at the time t. These

networks have the same set of vertices but different sets of edges. A viral haplotype thus can be

associated with a subset of vertices H ⊆ V (Gt) of a network Gt. The density of a haplotype H is
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thus defined as the density of the subgraph of Gt induced by H , i.e.

dGt(H) =
|E(Gt[H])|

|H|
(3.9)

We hypothesize that viral haplotypes corresponding to potential VOCs and VOIs form dense

subgraphs of Gt. Below we describe how we verify and exploit this hypothesis.

The first step is to demonstrate the statistical significance of our hypothesis by producing

density-based p-values of known VOC and VOI haplotypes H . The simplest way to assess these

p-values is to randomly sample subgraphs of Gt of the size |H| and calculate the proportion of

sampled subgraphs with densities higher than H . However, SARS-CoV-2 temporal coordinated

substitution interaction networks are relatively sparse, and thus many sampled subgraphs will be a

priori disconnected and, consequently, also sparse. As a result, such a sampling scheme is inher-

ently biased towards assigning low p-values to haplotypes corresponding to connected subgraphs

and subgraphs with few connected components. Known VOCs and VOIs at most time points have

these properties, and thus their statistical significance could be overestimated.

To overcome this problem, we utilize a more sophisticated randomized enumeration subgraph

sampling scheme based on the network motif sampling algorithm introduced in189. This scheme

uniformly samples only connected subgraphs and can be described as follows. Let us assume that

all vertices of Gt are labeled by the unique integers 1, ..., L. The sampling is performed using a

recursive backtracking algorithm that, starting from each vertex v ∈ V (Gt), iteratively extends

previously constructed connected subgraph S by adding a random new vertex w from the set of

allowed extensions W . After that, the set of allowed extensions is updated by adding the neighbors
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of w that do not belong to the set of avoided extensions X . The set of avoided extensions at each

iteration contains the vertices that are neighbors of vertices previously added to S and the vertices

with labels larger than v. These steps allow the algorithm to avoid double-sampling189. Extension

stops, when a subgraph of the given size k is produced. Generation of k-subgraphs containing a

given vertex v continues until the pre-defined sample size is achieved.

Given the subgraph sample S∗ = {S1, ..., S|S∗|}, p-value of a haplotype H in the network Gt is

defined as

pGt(H) =
|{Sj ∈ S∗ : dGt(Sj) ≥ dGt(H)|

|S∗|
(3.10)

If, at some point, the subgraph induced by H is disconnected, we replace H with its largest

connected component. For each analyzed spike coordinated substitution network Gt, the sampling

was performed until k = min{3000, ηGt(v)} subgraphs for each vertex v are generated, where

ηGt(v) is the total number of connected subgraphs containing v.

3.1.4 Inference of viral haplotypes as dense communities in coordinated substitution networks

We propose to infer viral haplotypes as dense communities of coordinated substitution networks.

Community detection is a well-established field of network science, with numerous algorithmic

solutions proposed over the last two decades30,151,130. Typically (though not always), the collection

of communities in a network is defined as a partition181. However, in the case of viral genomic

variants, there can be overlaps, as observed in known VOCs and VOIs. Additionally, most existing

algorithms are heuristics designed to scale to the sizes of extremely large networks rather than to
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produce optimal solutions. S-gene coordinated substitution networks, although containing hun-

dreds of vertices, are typically smaller than most networks studied in applied network theory. Thus

we use our own community detection approach, which extends our previously developed method-

ology100. This approach uses exact algorithms rather than heuristics and is tailored to account for

the characteristics of viral data.

Firstly, we use a Linear Programming (LP) formulation29 to find the densest subgraphs of

networks Gt at each time point t. This formulation contains variables xi for each vertex i ∈ V (Gt),

variables yij for each edge ij ∈ E(Gt), and the following objective function and constraints:

∑
ij∈E(Gt)

yij → max (3.11)

yij ≤ xi, yij ≤ xj, ij ∈ E(Gt) (3.12)

∑
i∈V (Gt)

xi ≤ 1 (3.13)

xi, yij ≥ 0, i ∈ V (Gt), ij ∈ E(Gt) (3.14)

Note that the variables xi, yij are continuous rather than integer since it can be shown that the

value of the optimal solution of the LP (3.11)-(3.14) and the maximum subgraph density of Gt

coincide29; furthermore, if U ⊆ V (Gt) is the vertex set of the densest subgraph, then (xi =
1
|U | , i ∈
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U ;xi = 0, i ̸∈ U ; yij = 1
|U | , i, j ⊆ U ; yij = 0, i, j ̸⊆ U) is the optimal solution of (3.11)-(3.14).

Thus, densest subgraphs of the networks Gt can be found in a polynomial time.

The single densest subgraph can, however, provide only a single haplotype per time point. We

need to generate multiple dense communities to infer multiple haplotypes that could correspond

to VOCs and VOIs. Our method produces these communities is as follows. We iterate through a

given range of fixed subgraph sizes k ( k = kmax, kmax − 1, ..., kmin); at each iteration, we generate

a set Sk of up to nmax densest subgraphs of size k that are not contained in subgraphs generated

in the previous iterations. Here kmax,kmin and nmax are parameters of the algorithm. However,

finding the densest subgraph of a given size is an NP-hard problem64,9. Therefore, for each value

of k, we use the following Integer Linear Programming formulation:

1

k

∑
ij∈E(Gt)

yij → max (3.15)

yij ≤ xi, yij ≤ xj, ij ∈ E(Gt) (3.16)

∑
i∈V (Gt)

xi = k (3.17)

∑
i∈V (Gt)\S

xi ≥ 1, S ∈
kmax⋃

k′=k+1

Sk′ (3.18)
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xi, yij ∈ {0, 1}, i ∈ V (Gt), ij ∈ E(Gt) (3.19)

The problems (3.11)-(3.14) and (3.15)-(3.19) are solved using Gurobi78; for the latter, we used

an option to continue the search until the pool of up to nmax optimal solutions is produced.

Now, let Ŝt = St,1, ..., St,|Ŝt| be the set of generated densest subgraphs with sizes ranging

from kmin to kmax. This set does not necessarily have a one-to-one correspondence with the true

haplotypes due to two reasons. First, some haplotypes may consist of more than kmax SAVs, so

the generated subgraphs only cover parts of these haplotypes. Second, many generated subgraphs

overlap significantly, and thus most likely correspond to the same haplotypes. To obtain full-

length haplotypes, we employ an algorithmic pipeline described below. Initially, we split the

generated dense subgraphs into clusters such that each cluster ideally corresponds to a single true

haplotype. Then, we locate the corresponding haplotype for each cluster by finding the densest core

community in a subgraph induced by the union of elements of that cluster. Figure 3.2 illustrates

the pipeline, which we describe in detail in the following Algorithm.

Algorithm 2: inference of viral haplotypes.

Input: the set of dense subgraphs Ŝt = {St,1, ..., St,|Ŝt|}

Output: the set of haplotypes Ht = {Ht,1, ..., Ht,|Ht|}.

1) Construct an intersection graph L(Ŝt), whose vertex set is Ŝt, and two vertices St,i and St,j

are adjacent, whenever |St,i ∩ St,j| ≥ min{|St,i|, |St,j|} − 1.

2) Partition L(Ŝt) into clusters Lt,1, ..., Lt,r:
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2.1) Split L(Ŝt) into connected components and then subdivide each component into (κ +

1)-connected components, where κ denotes the vertex connectivity. To achieve this, we

use a modified version of the algorithm proposed by62, which computes the vertex con-

nectivity and corresponding vertex cut as the smallest of (s, t)-cuts between specifically

chosen vertices of the graph. The algorithm computes these (s, t)-cuts using network

flow techniques63. We further augment this algorithm by adding an extra step. Consider

a pair of vertices (s, t) for which the minimal vertex cut of size κs,t has been found,

and P 1
s,t, ..., P

κs,t

s,t are the corresponding internal vertex-disjoint (s, t)-paths (which can

be found using network flows63 and whose existence is guaranteed by Menger’s theo-

rem193). If a vertex s′ is adjacent to the internal vertices of all of these paths, then we

can exclude the pair (s′, t) from further consideration because κs′,t ≥ κs,t. This step

significantly accelerates the connectivity calculation for graphs with many high-degree

vertices, and the connected components of L(Ŝt) typically exhibit this property.

2.2) Suppose that Lt,1, ..., Lt,r′ are the components produced at the previous step. Further

subdivide each component Lt,i as follows: first, find an embedding of the subgraph

L(Ŝt)[Lt,i] into R3 using a force-directed graph drawing algorithm69; second, cluster

the obtained embedded graph by a spectral clustering algorithm131 using the largest

Laplacian eigenvalue gap to estimate the number of clusters.

Each cluster produced at steps 2.1)-2.2) is supposed to correspond to a single haplotype.

3) For every cluster Lt,i, we examine the induced subgraph Gt,i = Gt[
⋃

St,j∈Lt,i
St,j], which

consists of the SAVs covered by the subgraphs that correspond to the vertices of Lt,i.
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3.1) Suppose that Dt,i is the degree sequence of Gt,i. We cluster the elements of Dt,i using

the k-means algorithm and select the subset of vertices Ct,i that corresponds to the

cluster with the largest mean value. The goal of this procedure is to identify the ”core”

of Gt,i consisting of high-degree vertices. To choose the number of clusters k, we use

the gap statistics180.

3.2) Find the densest subgraph Ht,i of Gt,i[Ci] using the LP formulation (3.11)-(3.14). If

the subgraph is large enough (by default |Ht,i| ≥ 5), then output Ht,i as an inferred

haplotype.

In addition to the set of haplotypes Ht, Algorithm 2 returns a support s(Ht,i) for each inferred

haplotype, that is defined as a relative number of elements (i.e. candidate dense subgraphs) in the

cluster Lt,i: s(Ht,i) =
|Lt,i|∑
j |Lt,j | .

The entire computational framework based on methods described in Subsections 3.1.2-3.1.4 is

called HELEN (Heralding Emerging Lineages in Epistatic Networks).

3.2 Results

3.2.1 Data

Genomic data and associated metadata analyzed in this study were obtained from GISAID167. Our

focus was on analyzing amino acid genomic variants of the SARS-CoV-2 spike protein, which

is used for identifying Variants of Concern (VOC) and Variants of Interest (VOI) by standard

genomic surveillance tools adopted by WHO138. We extracted the spike protein alignment from

the whole genome multiple sequence alignment, replacing ambiguous characters with gaps, and
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Figure 3.2 General scheme of HELEN. Step 1: construction of a coordinated substitution net-
work (CSN) from aligned sequences. Step 2: generation of candidate dense subgraphs of CSN
(highlighted in different colors). Step 3: construction of an intersection graph of subgraphs. Each
colored vertex represents a subgraph of the same color; two vertices are adjacent whenever the
corresponding subgraphs have sufficiently many common vertices (in this example - two). Step
4: decomposition of the intersection graph into clusters (depicted as ovals). Each cluster reflects a
single haplotype. Step 5: construction of the haplotype for each cluster. The haplotype is found as
a densest community in the union of the CSN subgraphs forming that cluster (e.g. the haplotype
H1 is found as the union of the blue and the red subgraphs that form the cluster C1).
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focused solely on SAVs while ignoring long indels. In order to better validate the predictive power

of our approach, especially with respect to the Omicron lineage, we analyzed only sequences

sampled before November 1, 2021, approximately 1 month before the designation of Omicron

as the Variant of Concern by WHO). For defining VOCs and VOIs, we used the notations and

lists of SAVs established by WHO179: a variant defined by SAVs at k fixed genomic positions

was associated with a k-haplotype with minor alleles (with respect to the standard Wuhan-Hu-1

(NC 045512.2) reference) at that positions. Variants epsilon (B.1.427), iota (B.1.526) and zeta

(P.2), defined by 3− 4 SAV, were excluded due to their short lengths.

The detection of linked pairs of SAVs and dense communities in coordinated substitution net-

works is affected by the number of sequences. Thus we focused on data from countries with the

largest sample sizes, while maintaining geographic diversity. To do this, we selected two coun-

tries per continent (excluding Oceania) with the largest numbers of spike amino acid sequences

sampled over the considered time period: the United Kingdom and Germany for Europe, USA

and Canada for North America, Brazil and Peru for South America, South Africa and Kenya for

Africa, and Japan and India for Asia. Additionally, we included Australia to represent Oceania

and 5 extra countries with the largest samples, namely France, Denmark, Sweden, Spain, and Italy.

Sequences from the selected countries were identified using GISAID metadata and analyzed sep-

arately. Thus, a total of 160 test cases (16 countries × 10 VOCs/VOIs) have been considered.

Figure 3.3a shows the analyzed sample sizes, which were not distributed uniformly, with the USA

and United Kingdom accounting for approximately 64% of all sequences.
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3.2.2 The structure of S-gene coordinated substitution networks

We utilized the method outlined in Subsection 3.1.2 to construct coordinated substitution networks

for 16 countries at 37 uniformly distributed time points between May 1, 2020, and November

1, 2021 (with a 14-day difference between consecutive points). Initially, we evaluated the basic

properties of these networks. We found that the majority of networks contained a single ”giant”

connected component that could include up to 70% of the vertices. Other connected components

were significantly smaller (p < 10−100, Kolmogorov-Smirnov test) and made up an average of

0.3% of the network size (Figure 3.3b). Most of these smaller components consisted of isolated

vertices.

Coordinated substitution networks of the S-gene tend to gradually evolve towards becoming

scale-free, with a right-skewed power-law degree distribution. This type of network structure is

often a result of a preferential attachment process, where a new vertex joining the network has a

higher probability of connecting to an existing vertex with a higher degree. Indeed, to determine

the best distribution fit for the observed degree distribution of the networks, we fitted negative bino-

mial, beta negative binomial, Poisson, Yule-Simon, Generalized Pareto, and Pareto distributions,

and compared their goodness of fit using the Bayesian Information Criteria. We found that the

Yule-Simon, Pareto, and generalized Pareto distributions, all describing a power-law, provided the

best fit for 50.3%, 21.1%, and 16.4% of networks, respectively. Additionally, in all countries, the

Yule-Simon distribution eventually became the best fit for the latest networks, i.e., for all networks

sampled after a specific date t∗ (with the median date being January 11, 2021).

The aforementioned observations indicate that the temporal networks inferred in this study



57

Figure 3.3 (a) Numbers of analyzed spike amino acid sequences per country. (b) Relative sizes
of the largest and second largest connected components of coordinated substitution networks over
time. Solid and dashed lines depict median and maximum/minimum values over 16 countries at
each time point, respectively. (c) An example of a giant component of a coordinated substitution
network for the USA on January 11, 2021. The vertices highlighted in green correspond to SAVs
of the Omicron variant (lineage B.1.1.529.1). Most of these SAVs form a dense community, which
was observed 320 days before the WHO designated the variant, emphasizing the key discovery and
an algorithmic concept in this study.

have a sufficiently rich community structure139,168 that can be analyzed and utilized to evaluate and

forecast the SARS-CoV-2 evolutionary dynamics.



58

3.2.3 Dense communities in S-gene coordinated substitution networks as indicators of variant
emergence

We analyzed communities within temporal coordinated substitution networks in search for evi-

dence in support of the following hypotheses:

(H1) known VOCs/VOIs emerge as dense communities in temporal coordinated substitution net-

works;

(H2) conversely, dense communities within temporal coordinated substitution networks corre-

spond to haplotypes with altered phenotypes;

(H3) such communities can be detected before the corresponding lineages achieve significant fre-

quencies.

To validate the hypotheses (H1)-(H3), we used a two-pronged approach. First, we performed

a retrospective statistical analysis of densities of known VOCs and VOIs in temporal coordinated

substitution networks. Second, we evaluated the ability to accurately infer haplotypes with altered

transmissibilities, both known and unknown, from collections of candidate dense communities. We

specifically assessed the promptness of identifying emerging viral haplotypes as dense communi-

ties, by measuring so-called forecasting depth. This quantitative measure is defined as the time

between the first variant call and the occurrence of a specific epidemiological benchmark event b.

In this study, we used two benchmark events: the variant’s designation by WHO (b = des) and the

moment its prevalence reaches 1% (b = prev, the similar benchmark was used in117)1. The value

of FDb(h) can be positive or negative, thus indicating early or late prediction, respectively.
1The event was assigned to the last time point if the variant’s prevalence always stays below 1%
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It’s worth noting that the presence of a viral variant as a dense community does not necessarily

indicate its circulation at that time. In the context of this study’s model, this fact should be rather

interpreted as an indication that the corresponding SAVs are linked densely enough to suggest the

variant’s viability. In particular, detecting the variant as a dense community in a particular country

at an early time point does not necessarily mean that the variant originated there. As demonstrated

below, while there are instances where this is true, more often the variants are detected earlier in

countries with larger sample sizes that provide greater statistical power for inferring coordinated

substitutions.

3.2.3.1 VOCs/VOIs as communities in coordinated substitution networks

To validate hypotheses (H1)-(H3), we estimated density-based p-values of known VOCs and VOIs

for each country and each time point using the algorithm described in Subsection 3.1.3. The al-

gorithm produces uniform samples of connected communities of each temporal epistatic network,

and compares their densities with those of the VOCs/VOIs to calculate p-values. As a result, for

each country and each VOC/VOI we obtained a time series of p-values. The series were adjusted

by calculating FDR and applying the Benjamini-Hochberg procedure17. The resulting time series

of adjusted p-values are illustrated in Figure 3.4A and Supplemental Figures A.1-A.10.

Our analysis of time series data showed that a significant proportion of cases exhibited variant

expansion either succeeding or concurrent with a decrease in density-based p-values. To quantify

this relationship, we employed sample cross-correlation19 to measure the connection between p-

values and variant prevalences throughout the growth period of the variant. We considered a range

of positive and negative lags for the prevalence series in relation to p-value series and identified the
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optimal lag l∗ with the maximum absolute cross-correlation.

In 75% of all test cases, we detected a non-negative optimal lag and a medium-to-strong sta-

tistically significant negative correlation between p-values and lagged prevalences (95% CI for ρ:

(−0.93,−0.41), 95% CI for l∗ (in days): (0, 140)). Focusing solely on VOCs, we observed this

effect in 86% of cases (95% CI for ρ: (−0.88,−0.37), 95% CI for l∗: (0, 140)).

We defined a variant as ”significantly dense” when its adjusted p-value falls below 0.05 and

at least 80% of its SAVs belong to the network’s giant component. In our analysis, 52% of

VOCs/VOIs, analyzed separately for different countries, became significantly dense at some mo-

ment in time. This percentage increased to 76% when only considering VOCs. Moreover, these

variants were identified as significantly dense at low cumulative frequencies (median value µ =

4.2 · 10−4, Figure 3.4d) and low prevalences (µ = 1.4 · 10−3, Figure 3.4e).

We assessed forecasting depths, FDprev and FDdes, with respect to times when the variants

reached significant density. In general, VOCs/VOIs that achieved significant density tended to do

so early. In particular, such variants were identified before reaching 1% prevalence in 64% of cases

and before WHO designation times in 46% of cases. For early calls (i.e. given that FDprev > 0 or

FDdes > 0), the median forecasting depths were 120 and 78 days, respectively.

In genomic surveillance, decisions are typically made based on agglomerate information from

multiple countries. In this context, it is important to note that all Variants of Concern (VOCs) and

Variants of Interest (VOIs) have positive forecasting depths (FDprev) in at least one country (Figure

3.4a); the same applies to FDdes with the exception of the theta variant (Figure 3.4b).

In particular, the Omicron variant (lineage B.1.1.529.1) becomes significantly dense in 7 coun-
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tries as early as the beginning of 2021, with forecasting depths ranging from 199 to 319 days for

FDdes and 165 to 285 days for FDprev. Notably, all predictions were made before the actual Omi-

cron haplotypes emerged, at a cumulative frequency of 0. The Delta variant (B.1.617.2) serves as

another example of multiple early predictions, as it becomes significantly dense in ten countries

(FDdes ∈ [15, 360] and FDprev ∈ [30, 375]).

Sample size seems to significantly impact haplotype detection. A strong positive correlation

exists between the number of significantly dense VOCs/VOIs and the number of sequences per

country (ρ = 0.71, p < 0.01). Specifically, in the United States, which has the highest number of

sequences, all 10 variants reached significant density.

3.2.3.2 Inference of viral variants as dense communities in coordinated substitution networks

The most straightforward way to partially assess the validity of hypotheses (H2)-(H3) is to retrieve

the densest subnetworks of coordinated substitution networks and compare them to known SARS-

CoV-2 variants. This task is made easier by the fact that finding the densest subgraphs, based on

our density definition, is a polynomially solvable problem (see Subsection 3.1.4). We used the

f -score as a metric for detection accuracy, which in our context is defined as:

Rt,i =
|Ct ∩ Vi|

|Vi|
, Pt,i =

|Ct ∩ Vi|
|Ct|

, Ft,i = 2
Rt,i · Pt,i

Rt,i + Pt,i

(3.20)

Here Rt,i, Pt,i and Ft,i are the recall, precision and f -score for the SAVs of the VOC Vi found

within the dense community Ct at the time t.

In total, 28% of densest communities were at least 80% identical to the known variants, all of
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Figure 3.4 Density-based adjusted p-values of VOCs/VOIs. (a) p-values (blue) and prevalences
(red) of 8 VOCs and VOIs in the USA coordinated substitution networks (refer to appendix A for
plots of all VOCs/VOIs across all countries). Black, green, and magenta lines represent the times
of VOC designation, achieving 1% prevalence, and becoming significantly dense, respectively. (b)
and (c): Forecasting depths (y-axis) in relation to the 1% prevalence time and WHO designation
time for each analyzed VOC/VOI across different countries. (d) and (e): Cumulative frequencies
and prevalences for VOCs/VOIs across various countries at the times when they become signif-
icantly dense (in a logarithmic scale). Dashed lines at the bottom of the plot indicate that the
variants reached significant density at frequencies/prevalences of 0.
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Figure 3.5 Comparison between VOCs and densest subnetworks of temporal coordinated substi-
tution networks (results for individual countries are shown in Figure A.11-A.13). Each bar plot
depicts the comparison results for a particular VOC; at each time point, bars correspond to the
densest subgraphs from different countries closest to that VOC, and the bar heights are equal to the
respective f -scores. Colored dashed lines mark times when the VOCs were designated by WHO.

which were VOCs. Notably, 86% of these communities were identified before the VOCs were of-

ficially designated by WHO, and 67% before the variants reached a 1% prevalence (Figure 3.5 and

Figure A.14). Furthermore, these communities emerged when the corresponding VOC haplotypes

had low cumulative frequencies (median value µf = 3.8 ·10−4, Figure A.14c) and low prevalences

(median value µp = 7.8 · 10−4, Figure A.14d). Every VOC was detected with at least 0.8 accuracy

in at least one country as early as 231, 111, 135, 285 and 319 days before their designation times,

and 255, 30, 255, 300 and 319 days before achieving 1% prevalences, respectively (median values

FDdes = 111 and FDprev = 60, Figure 3.5 and Figure A.11-A.14). The most prominent example is

the Omicron haplotype, which corresponds to 94 of the densest subnetworks across six countries.
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While the examination of the densest subnetworks lends support to hypotheses (H2)-(H3), a

more advanced algorithmic approach is essential for a comprehensive forecasting framework, as

well as for stronger hypotheses confirmation. Indeed, generally, only a single densest subnetwork

can be constructed per time point, even though multiple haplotypes with altered phenotypes might

coexist at each specific moment. Additionally, we observed that, as coordinated substitution net-

works become denser over time, the densest subnetworks expand and may ultimately encompass

several haplotypes, leading to decreased variant inference accuracy.

To overcome these problems, we developed a more complex algorithm for inferring viral hap-

lotypes as dense network communities (Subsection 3.1.4). Briefly, the algorithm generates a pool

of distinct dense subnetworks of varied sizes, partitions them into clusters, and assembles a hap-

lotype from each cluster using graph-theoretical techniques. For every assembled haplotype, the

algorithm also returns its support defined as the percentage of candidate subnetworks correspond-

ing to that haplotype. As before, we used a 80% f -score threshold to declare variant detection.

The proposed algorithm demonstrated greater sensitivity in detecting known SARS-CoV-2

variants compared to the densest subgraph-based method (Figure 3.6). Specifically, it identified

90% (9 out of 10) of the analyzed variants in at least one country, with the Theta variant being

the only exception. All Variants of Concern (VOCs) that were spreading during the study period

(Alpha, Beta, Gamma, and Delta variants) were detected in 12-16 (out of 16) countries, while the

Omicron variant was found in 6 countries.

A significant proportion of these detections were early, with 67% of VOCs/VOIs first identified

before reaching a 1% prevalence in their respective countries and 49% detected prior to the WHO
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designation times. In absolute terms, this represents a 2-fold and 2.9-fold increase in early de-

tections compared to the densest subgraph-based method. When first detected, the median variant

frequency was µf = 4.8·10−4 (Figure 3.6d) and the median variant prevalence was µd = 2.2·10−3,

Figure 3.6e).

Concerning forecasting depths, 8 out of 10 known variants exhibited non-negative FDprev, and

9 out of 10 showed non-negative FDdes in at least one country (Figure 3.6b,c). Specifically, all

VOCs had positive forecasting depths and were detected as early as 231, 111, 150, 360, and 319

days before their designation times and 255, 300, 255, 375, and 319 days before reaching 1%

prevalence, respectively (median values given the early prediction: FDdes = 108 and FDprev =

75).

While the forecasting results for VOIs were somewhat less remarkable, Lambda, Mu, Eta, and

Kappa variants were first identified as early as 124, 36, 5, and 23 days before WHO designation

and 195, -45, 210, and 0 days before attaining a prevalence of 1% (median values given the early

prediction: FDdes = 29.5 and FDprev = 195).

Similar to the case with significantly dense subgraphs, sample sizes, and geographic diversity

influence variant detection. A strong positive correlation was observed between the number of

sequences per country and the number of variants with positive forecasting depths (ρ = 0.80,

p < 0.01 for FDdes and ρ = 0.69, p < 0.01 for FDprev). Some of the earliest forecasts, although

not all, were made in the countries of origin for specific variants: notably, Beta, Gamma, and

Lambda variants were detected in South Africa, Brazil, and Peru 111, 150, and 124 days before

their designation times (Figure A.15-A.20).
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Figure 3.6 (a) Summary of comparison between VOCs/VOIs and inferred haplotypes (results
for individual countries are shown on Figure S15-S20). Each bar plot depicts the comparison re-
sults for a particular VOC/VOI; at each time point, bars correspond to inferred haplotypes from
different countries closest to that VOC, and the bar heights are equal to the respective f -scores.
Colored dashed lines mark times when the VOCs were designated by WHO. (b) and (c): forecast-
ing depths (y-axis) with respect to the 1% prevalence time and WHO designation time for each
analyzed VOCs/VOIs over different countries. (d) and (e): cumulative frequencies and preva-
lences of VOCs/VOIs over different countries at first variant call times (in logarithmic scale).
Dashed lines at the bottom of the plot signify that the corresponding variants were detected at cu-
mulative frequencies or prevalences 0.
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Figure 3.7 Precision of haplotype inference. Blue box plot: summary statistics of matching simi-
larity at each time point over different countries. Red: median matching similarity over time.

To assess the precision of HELEN, it is important to consider that the true positive network

communities identified by the algorithm might not only correspond to known VOCs/VOIs but

also to variants exhibiting increased transmissibility that failed to become VOC/VOI due to fac-

tors such as genetic drift or containment through public health measures before achieving a high

global prevalence. Consequently, we classify a haplotype v identified by HELEN at a specific time

as spreading, if v is a known VOC/VOI or if the prevalence of variants highly similar to v has

increased or will increase by a factor of 10 in the past or future. Note that a similar fold-based cri-

terion was employed to define spreading mutations in117. A variant v′ is considered highly similar

to v if it contains at least 80% of v’s SAVs; this definition encompasses variants genetically close

to v and their descendants.

We measure precision using the matching similarity metric, denoted as AI→S . This metric

evaluates the agreement between inferred haplotypes (I) and spreading haplotypes (S) by taking

into account haplotype support as a proxy for haplotype call confidence and measuring the ex-

tent to which inferred haplotypes, weighted by their support (σi : i ∈ I), are matched by their
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nearest spreading haplotypes. Formally, the matching similarity is the average f -score for inferred

haplotypes in relation to their closest spreading haplotypes:

AI→S =
∑
i∈I

σi max
s∈S

fi,s (3.21)

A similar measure, in the reverse form of a matching error, was used, e.g., in100.

The summary statistics for matching similarity at each time point across different countries are

summarized in Figure 3.7. HELEN achieved a median matching similarity above 75% from July

30, 2020, and above 85% - from December 27, 2020. Initially, there was a considerable variation

in matching accuracy among countries, but it noticeably declined by early 2021. These observa-

tions are associated with the density dynamics of coordinated substitution networks in different

countries, whereas the precision increases as more epistatically linked SAVs are identified.

Finally, it is noteworthy to compare the accuracy results of this study with those of128, that

similarly identified clusters of concordantly evolving spike protein sites in coordinated substitution

networks using an alternative approach. That study identified 13 clusters, with f -scores ranging

from 0% to 66.7% (median value µ = 4.8%) in relation to the nearest VOCs. Conversely, VOCs’ f -

scores in relation to the closest clusters spanned from 13.3% to 66.7% (median value µ = 16.7%).

Specifically, 30% and 50% of Alpha variant sites were part of two clusters. Beta and Delta variant

sites did not cluster together. Two distinct clusters covered 33.3% and 17.7% of Gamma variant

sites, while 11%, 5.6% and 5.6% of Omicron sites were distributed across three clusters.
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3.2.4 Running time and scalability

The computational methods employed in this study are reasonably efficient and scale to millions

of sequences. The largest dataset analyzed, consisting of approximately 1.66 · 106 USA sequences

sampled up to the final time point, provides an upper bound for the running times. For this dataset,

constructing the coordinated substitution network took ∼ 1 hour, estimating the p-values of 10

VOCs/VOIs took ∼ 1.8 hours, and inferring viral haplotypes took ∼ 38.6 hours. These computa-

tions were carried out on a workstation equipped with a 3GHz Intel Xeon E5 CPU and 64GB of

RAM.

3.3 Discussion.

This study explores the hypothesis that viral variants with higher transmissibility can be associated

with dense communities in coordinated substitution networks. Specifically, we investigated this

idea in the context of SARS-CoV-2 spike protein genomic variants and found strong support for

it. Our results indicate that network density can serve as a dependable indicator for the timely

detection or prediction of emerging SARS-CoV-2 variants. As a result, we proposed an accurate,

interpretable, and scalable method that can anticipate emerging SARS-CoV-2 haplotypes several

months in advance, leading to early detection and improved forecasting.

These results were obtained using a synthetic approach that combines methods from statistics,

combinatorial optimization, and population genetics. Firstly, we employed a sensitive statistical

test that relies on a quasispecies population genetics model to identify linked pairs of SAVs that

are jointly observed more often than expected if the corresponding 2-haplotype is inviable. This
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method allowed us to construct coordinated substitution networks with rich community structures,

providing a foundation for meaningful network-based inference. Secondly, we validated our hy-

pothesis by estimating network density-based p-values of SARS-CoV-2 haplotypes. This allowed

us to identify haplotypes with low p-values as potential variants of concern and demonstrate that

known VOCs achieve low p-values significantly earlier than they reach frequencies high enough

to be detected using conventional methods. Lastly, we utilized these findings to design an algo-

rithm for the early detection of viral variants that identifies dense communities of SAV alleles and

combines them into haplotypes. We demonstrate the efficacy of this algorithm by retrospectively

identifying known VOCs and VOIs with high accuracy up to 10-12 months before they reached

high prevalence and were designated by the WHO.

Compared to traditional phylogenetic lineage tracing, the proposed methodology offers several

advantages. In particular, it can detect viral variants as dense communities at very low frequen-

cies or even when actual variant sequences are not sampled - the latter is possible when there

are sufficiently many well-covered variant’s SAV pairs. This feature is naturally inherited from our

prior methods8,100 for reconstructing intra-host viral populations from noisy NGS data, which have

demonstrated the ability to accurately detect viral haplotypes with frequencies as low as the level

of sequencing noise. Additionally, the computational complexity of our network-based methods is

a function of genome length rather than a sequence number. For SARS-CoV-2 data, the number

of available sequences in GISAID is up to 4 orders of magnitude larger than the number of amino

acid positions in the SARS-CoV-2 s-gene (∼ 1.5 · 107 sequences versus 1.27 · 103 amino acid posi-

tions). This feature makes the proposed algorithms considerably more scalable than phylogenetic
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methods.

It is important to note that there are limitations to this study, as the comprehensive forecasting

of viral evolution is inherently an intractable problem. While the proposed methods have shown

promising prediction results, caution should be exercised when interpreting them. Our findings by

no means suggest that viral evolution is a deterministic process that can be predicted using mecha-

nistic models. Instead, they demonstrate how to identify several potential evolutionary trajectories

among exponentially many possibilities. These trajectories can guide further investigation and

prioritization of functional screening. Moreover, the links between SAVs identified by HELEN

represent putative or potential positive epistatic interactions152, and their primary purpose is to

serve as features for our prediction model. These links should be viewed as a statistical ensemble

rather than individually, with our findings suggesting that haplotypes with altered phenotypes ex-

hibit a significantly higher number of potential epistatic pairs compared to background haplotypes.

Consequently, research focused on examining the biological mechanisms of specific SARS-CoV-2

epistatic interactions should incorporate more comprehensive structural data.

The utilized coordinated substitution/epistasis model is another limitation of this study as it

only considers the interactions between SAV pairs, thus reflecting ”pairwise” or ”second-order

epistasis”. Although combinations of mutations can have more complex fitness effects involving

higher orders of epistasis188, this model is justifiable for several computational reasons. Firstly, it

is the minimal model that enables the detection of multiple overlapping haplotypes, which is an

improvement over the mutation independence assumption used in other studies117 that, in general,

only allows ranking and prioritization of mutations. Secondly, k-haplotypes with k ≥ 3 may
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not have sufficiently high frequencies to be detected, thereby affecting the method’s predictive

power. In contrast, pairs are always covered by more sequences and can be detected earlier. Lastly,

accounting for higher-order combinations of mutations can increase the computational complexity

of the problem while the second-order model remains computationally tractable.

Furthermore, our method is based solely on genomic data, and its effectiveness could be en-

hanced by incorporating epidemiological and structural biology data and models. Additionally, our

results highlight the significance of robust and diverse sampling practices, as early detections were

predominantly made in countries with larger sample sizes, and some variants were only detected

early in their countries of origin.

We believe that the methodology proposed in this study is not limited to SARS-CoV-2 and can

be extended to other pathogens. The high sensitivity of HELEN should make it particularly suitable

for detecting emerging and circulating strains of pandemic viruses, such as HIV or Hepatitis C.
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CHAPTER 4

Viral outbreak investigation and transmission history reconstruction

Continuing advances in sequencing technologies are vitalizing genomic epidemiology – an in-

terdisciplinary area of research that uses analysis of pathogen genomes to understand how they

evolve and spread6,18. Inference of transmission histories is one of the fundamental problems

of genomic epidemiology and a major driving force behind new developments in the field. The

list of existing transmission network reconstruction tools includes Outbreaker and Outbreaker

291,25, SeqTrack92, SCOTTI46, Phybreak95, Bitrugs195, BadTrIP47, Phyloscanner196, StrainHub45,

TransPhylo53, STraTUS81, TreeFix-TP171, QUENTIN170, VOICE74, HIVTrace102, GHOST112,

MicrobeTrace24, SharpTNI162, TiTUS163, TNeT51 and others200,121,52,122,41,26,80. These tools have

been successfully applied for investigation of outbreaks and surveillance of transmission dynamics

of HIV, hepatitis C (HCV), SARS, MERS, SARS-CoV-2 and other viruses191,150,205,146,99,23. The

majority of existing methods (although by no means all of them) utilize the phylogenetic approach,

where transmission network reconstruction is considered as a character optimization problem, with

characters being infected hosts. This paper also follows this paradigm (see Figure 4.1).

The hallmark of viruses as species is an extremely high genomic diversity originating from their

error-prone replication. As a result, each infected individual usually hosts a heterogeneous popula-

tion of numerous genomic variants. The first generation of transmission inference methods largely

ignored intra-host viral diversity and considered only a single sequence per host (usually consen-

sus). Later, it has been demonstrated that taking viral diversity into account greatly enhances the

predictive power of transmission inference algorithms196,170,5,156,99. In particular, it allows to detect
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the viral evolution directionality in situations when a reliable phylogenetic rooting is not possi-

ble170,156,74 – such situation is very common for HIV, HCV, and other long-standing epidemics, as

well as for the regional epidemics of SARS-CoV-2 characterized by multiple introductions of the

virus. First phylogenetic approaches to infer transmission directions using viral genomic diversity

appeared independently in156 and74. Later, the ideas of156 and74 were incorporated into full trans-

mission network inference frameworks Phyloscanner196 and QUENTIN170, respectively. These

tools were followed by TNeT51, TiTUS163, SharpTNI162, BadTrIP47, all of which are specifically

tailored to take into account intra-host viral diversity.

Despite the significant progress achieved with the appearance of the next generation of trans-

mission inference methods, a number of computational, modeling, and algorithmic challenges still

need to be addressed.

1) Most recent tools utilize a maximum parsimony principle and many of them are based on

various extensions of classical Fitch and Sankoff labeling algorithms. This is in part due to

the need to scale to the sizes of large genomic datasets. The maximum likelihood or Bayesian

phylogenetic models are richer and incorporate additional inferred temporal information that

can be used for more accurate reconstruction of transmission links125. However, the methods

based on parameter-rich models lead to computationally hard optimization problems. To find

transmission networks and estimate other parameters, such methods mostly rely on Markov

Chain Monte Carlo (MCMC) sampling from the model parameter space47,170,46. Given that

the parameter spaces are enormous81, such a strategy is computationally expensive and may

produce sub-optimal results.
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Figure 4.1 Approaches and challenges for transmission history reconstruction using genomic data. (a) Example of a
viral outbreak and its transmission network consisting of 4 individuals (highlighted in light green, blue, dark green, and
red) and 3 transmission links (blue arrows). The transmission network is part of a larger unobserved social network
of contacts between susceptible individuals (the unobserved part is highlighted in gray). Social networks serve as
conduits for the infection spread, and thus transmission networks reflect the properties of social networks. Due to the
high virus mutation rates, each infected individual hosts a population of related but distinct viral genomic variants. (b)
First step of genomic epidemiology investigation. Intra-host viral variants are sequenced, de-noised and aligned; the
obtained viral haplotypes are used to construct a viral phylogeny. Leaves of this phylogeny correspond to sampled viral
variants and labeled by their hosts (colors of the leaves correspond to the colors in (a)). (c) Phylogenetic inference
of transmission networks. Labels of leaves are extended to internal nodes, and every tree edge with multi-labeled
end nodes defines a transmission between the corresponding hosts. Two possible ancestral label assignments are
depicted. Tree edges defining transmissions are dashed, the corresponding transmission network is shown below each
assignment. Note that both assignments have the same number of such edges, i.e. the same parsimony score. Thus,
parsimony does not allow to rank the obtained transmission networks. (d) Resolution of phylogenetic ambiguities
using case-specific epidemiological data proposed in prior studies. One possibility is to consider patient exposure
intervals (upper figure): in this example, the intervals for the red and green patients do not overlap, thus ruling out the
second network containing a link between these patients. Another possibility is to take into account sampling times
(lower figure): the light green patient was sampled earlier thus making more probable the first network, where it is a
root. Unfortunately, such information often has limited use for many real outbreaks of HIV, HCV, SARS-CoV-2, etc.
(e) Resolution of phylogenetic ambiguities using the prior knowledge about social network properties. We propose to
integrate phylogenetic and random graph models: first, we sample transmission networks from the phylogeny-based
distribution and then measure their agreement with the expected properties of the distribution of inter-host social
networks. In this example, the depicted social network distribution favors the first candidate transmission network that
has more ”star-like” structure.

2) Several studies demonstrated that in many cases genomic data alone do not allow to resolve

ambiguities in transmission network inference, and so the incorporation of additional ev-

idence is necessary89,182,91. Such evidence most often comes in the form of case-specific
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epidemiological information. However, the most common types of such information are

useful only in particular settings. For example, many tools use sample collection times to

identify the order of infections. However, HIV, HCV, and many other infections tend to be

initially asymptomatic, and consequently, sampling times may not accurately reflect the ac-

tual infection times. Other tools rely on exposure intervals for the same purpose. However,

in outbreaks with high transmission rates (e.g. in HIV/HCV outbreaks associated with injec-

tion drug use or during the global pandemic of SARS-CoV-2/Influenza), many susceptible

hosts are almost constantly exposed to the virus, thus effectively making exposure intervals

useless.

3) Most methods implicitly assume that transmission network edges are independent. Such

an assumption is associated with random mixing models, which suppose that differences

between individuals are negligible and any person can infect any other person with the same

probability. However, this is not always the case, as, for example, certain hosts infect more

people than an average individual71.

In this study, we propose to address these challenges by integrating phylogenetic and ran-

dom graph models. Our major idea is to bring into consideration the social component of the

epidemics. Infectious diseases spread over the social networks of contacts between susceptible

individuals, and transmission networks to a significant degree mirror the properties of these social

networks107,190,86,155. Social networks are almost never known explicitly; however, their general

features are well defined in network theory, sociology and classical epidemiology129. In light of

this, we propose to infer transmission networks by integrating two components: the evolutionary
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relationships between viral genomes represented by their phylogenies and the expected structural

properties of inter-host social networks. Frequently cited properties of social contact networks in-

clude power law degree distribution, small diameter, modularity and presence of hubs13,129. All of

them are reflected by network vertex degrees. Thus, we model social networks as random graphs

with given expected degree distributions (EDDs). They are commonly scale-free190,20, but our

method can handle more specific EDDs of needle-sharing networks, sexual-contact networks or

networks obtained by epidemiological contact tracing or respondent-driven sampling. The goal is

to find transmission networks that are consistent with observed genomic data and have the highest

probability to be subnetworks of random contact networks.

This methodology is implemented within a maximum likelihood algorithmic framework SO-

PHIE (SOcial and PHilogenetic Investigation of Epidemics). SOPHIE samples from the joint dis-

tribution of phylogeny ancestral traits defining transmission networks, estimates the probabilities

that sampled networks are subgraphs of a random contact network and summarize them accord-

ingly into the consensus network. This approach is scalable, accounts for intra-host diversity and

accurately infers transmissions without case-specific epidemiological data. We applied SOPHIE to

synthetic data simulated under different epidemiological and evolutionary scenarios, as well as to

experimental data from epidemiologically curated HCV outbreaks. The experiments confirm the

effectiveness of the proposed methodology.
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Figure 4.2 Joint phylogenetic and random graph-based approach for transmission history reconstruction imple-
mented in SOPHIE. Input: a labeled phylogeny with leaves corresponding to viral haplotypes from 4 infected hosts
(highlighted in different colors); expected degree distribution of a contact network that contains the true transmission
network as a subgraph. (b) Generalized Random Graph (GRG) model of a contact network depicted as a complete
graph with edge thicknesses proportional to their probabilities. It is accompanied by the expected degree counts
of contact network vertices. (c) SOPHIE samples from the joint distribution of ancestral label assignments using
dynamic programming. First, the algorithm performs a post-order traversal and calculates, for each internal node,
conditional likelihoods of observing the labels of its descendants given a label of this node. On a figure, the widths
of colored strips are proportional to the conditional likelihoods given the hosts with the corresponding color-codes.
After all conditional likelihoods are calculated, the algorithm performs a pre-order traversal and samples a label for
each node from the corresponding posterior distribution given its parent’s sampled state (see Subsection 4.5.2.1). (d)
Two sampled ancestral label assignments λ1 and λ2, the corresponding transmission networks and their phylogenetic
likelihoods. Tree edges defining transmissions are dashed. The networks are obtained by contracting the tree nodes
with the same labels. (e) SOPHIE calculates network likelihoods of sampled transmission networks by embedding
them into random contact networks. To find an embedding, SOPHIE maps the transmission network vertices to their
degrees in the contact network. It is done via the reduction to a generalized uncapacitated facility location problem
with convex costs, where the hosts serve as clients and their possible expected degrees in – as facilities. On the left
side of the panel, the instances of the facility location problem for two sampled networks are depicted. Optimal client
assignments are highlighted in red, next to them the corresponding embeddings of transmission networks into contact
networks are shown. See Subsection 4.5.2.2 for details. Output: a consensus of sampled transmission networks.
Edges represent possible transmission links, their thicknesses are proportional to their inferred likelihood supports.
See Subsection 4.5.2.3 for details.

.
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4.1 Methods

We developed SOPHIE - a modeling and algorithmic framework to infer viral transmission net-

works from genomic data by integrating phylogenetic and random graph models. Within this

framework, we define the transmission network inference problem as follows. We are given a

time-labelled phylogeny T = (V (T ), E(T )) with nl leafs corresponding to viral haplotypes sam-

pled from nh infected hosts; each leaf u is assigned the label λu ∈ [nh] corresponding to its host.

Such tree can be constructed using standard phylogenetic tools such as RAxML173, PhyML77 and

IQ-Tree132. The goal is to extend λ to internal nodes in an optimal way. In this model, every

multi-labelled tree edge uv corresponds to a direct or indirect transmission between the hosts λu

and λv. Thus, the transmission network G = G(T,λ) with the vertex set V (G) = [nh] can be

constructed by contracting the vertices with the same label80 (Figure 4.2). The simplest variant of

this problem is the maximum parsimony label inference where the goal is to minimize the number

of transmission events. It can be easily solved using e.g. Fitch or Sankoff algorithms161,66 and their

modifications. However, straightforward maximum parsimony approach alone often leads to epi-

demiologically unrealistic results196; furthermore, there are usually many most parsimonious solu-

tions50,163. Within maximum likelihood framework, ancestral labels can be inferred using so-called

“migration model”159. In this case, Fitch or Sankoff algorithms can be replaced by the dynamic

programming algorithm of Pupko et.al.145 or its extensions159. However, as mentioned above, phy-

logenetic signal alone can be insufficient for accurate transmission network reconstruction89,182,91.

In particular, in the absence of reliable estimations of transmission rates between individual hosts,

migration-based approaches have to rely on simple substitution models; as a result, similarly to the
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case of maximum parsimony, the numbers of near-optimal solutions can be high.

In light of this, we extend a maximum likelihood approach by integrating a phylogenetic model

with a model of social networks of susceptible individuals. Under this methodology, a transmission

network is defined by two properties: it is a contraction of the phylogeny and, at the same time,

a subgraph of a inter-host contact network of susceptible individuals (Figure 4.2). In reality, the

contact network is not directly observed. Therefore, we model it as a random graph with the ex-

pected degree distribution (EDD). EDD carries information about structural and spectral properties

of contact networks33,129,34, and can be adjusted to reflect specific epidemiological settings.

The general scheme of our approach is as follows (Figure 4.2):

1) We consider phylogeny node labels as discrete traits and sample from the joint distribution

of label assignments under the selected substitution model ( Subsection 4.5.2.1).

2) For each sampled label assignment λ, we construct the corresponding transmission network

G(T,λ) and estimate its network likelihood, which is defined as the maximum probability

that this network is a subgraph of a random contact network with the given EDD (Subsection

4.5.2.2)

3) Estimate the final transmission network as a weighted consensus of sampled networks. The

edge weights here represent the inferred joint likelihood network-based and phylogeny-based

likelihood support for the corresponding transmission links.

Each of these steps is described in detail in Star Methods section 4.5.
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4.1.1 Algorithm benchmarking

We validated SOPHIE on synthetic and experimental data with known transmission networks. To

evaluate the accuracy of inferred networks, we estimated sensitivity (i.e. the fraction of inferred

transmission edges among true transmission edges), specificity (i.e. the fraction of true transmis-

sion edges among inferred transmission edges) and f -score (i.e. the harmonic mean of sensitivity

and specificity). The latter parameter has been used as the principal evaluation metric.

In this study, SOPHIE was compared with Phyloscanner and TNet. Both methods are based

on maximum parsimony principle: Phyloscanner reconstructs ancestral labels using a Sankoff

algorithm with specially adjusted parsimony scores, while TNet uniformly samples from the space

of most parsimonious label assignments that minimize the number of back transmissions. Other

published phylogeny-based tools that account for intra-host viral diversity, TiTUS and BadTrIP,

utilize case-specific exposure intervals as an additional source of information. Theoretically, in

the absence of exact exposure dates, both tools can work with arbitrarily large exposure intervals.

However, as noted by the authors of BadTrIP47, such an assumption has a significant negative

effect on in the accuracy of their method. We observed the similar effect for TiTUS: its average

f -score was quite low (mostly within a range of ∼ 0.10 − 0.20), thus suggesting that non-trivial

exposure intervals are essential for it. Therefore, for the sake of fairness TiTUS and BadTrIP were

excluded from further comparison.
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Figure 4.3 Comparative results of SOPHIE (best exponent), TNet and Phyloscanner on simulated
data under different epidemiological and evolutionary scenarios with the true tree simulated by
FAVITES

4.2 Data

4.2.0.1 Simulated data

To generate synthetic data, we used FAVITES123 – a flexible tool that can simultaneously simulate

viral sequences, phylogenies, contact networks and transmission networks under different evolu-

tionary and epidemiological scenarios. In our case, we assumed that the virus spread over a contact



83

Figure 4.4 Comparative results of SOPHIE (best exponent), TNet and Phyloscanner on simulated
data under different epidemiological and evolutionary scenarios with the tree reconstructed by
RAxML

network of 100 susceptible individuals generated using the Barabasi-Albert model13. Transmission

networks and data sampling were simulated under two epidemiological scenarios:

E1) Susceptible-Infected (SI) transmission model and simultaneous sampling of all infected in-

dividuals at the end of the simulation. This scenario corresponds to the typical settings of

HIV or HCV outbreaks146,141.
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E2) Susceptible-Infected-Recovered (SIR) transmission model, with each individual sampling

time being chosen from its infection time window. This scenario describes epidemics and

surveillance of Influenza, SARS-CoV-2 and other viruses that are associated with acute

rather than chronic infections.

Inside each host, viral phylogenies evolved under a coalescent model with two effective popu-

lation size growth modes:

I1) Exponential effective population growth.

I2) Logistic effective population growth.

For each of the four combinations of scenarios E1-E2 and I1-I2, 100 simulated datasets have

been generated, with 10 genomes sampled per infected host. For each dataset, we applied SOPHIE,

Phyloscanner and TNet to two trees: a true phylogeny provided by FAVITES and a phylogeny re-

constructed by RAxML173. For a network likelihood calculation with SOPHIE, we used a power-

law distribution as an expected degree distribution. In this case, the algorithm has a power-law

degree exponent α as a hyperparameter. We analyzed SOPHIE performance with the best expo-

nent from the interval (1, 2] and with the exponent randomly drawn from the gamma distribution

with the mean 1.6. For each test instance, 100, 000 internal label assignments were sampled, and

the final network calculated as a maximum-weight arborescence of the consensus network (see

Subsection 4.5.2.3). Further details can be found in Star Methods section.

The results of SOPHIE evaluation and comparison with other methods are shown in Tables

4.1-4.2 and on Figures 4.3 - 4.4. First, the value of the exponent α does not significantly affect
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the results. This demonstrates that accounting for the general shape of the expected degree distri-

bution plays the most important role here, while guessing the best exponent allows for a moderate

improvement. Second, for all eight experiments (four combinations of scenarios and 2 types of

trees), we found that SOPHIE allows for a statistically significant improvement over TNet and

Phyloscanner (p < 0.05, Kruskal-Wallis test). The average f -score of SOPHIE over all datasets is

0.71 (standard deviation 0.17) and can be as high as 0.92 and 0.90 (for SIR transmission models

with the exponential and logistic coalescent and the true phylogeny). The average best absolute

f -score improvement with respect to existing methods were 0.22 (standard deviation 0.09) over

TNet and 0.25 (standard deviation 0.07) over Phyloscanner.

The accuracy of SOPHIE was negatively affected by the phylogenetic inference noise and

was generally lower when RAxML tree was used. This effect is less pronounced for TNet and

similarly pronounced for Phyloscanner. It is not surprising, since TNet, as a strictly parsimony-

based method, depends only on the tree topology, while SOPHIE and Phyloscanner also utilize

branch lengths. Still, the accuracy of SOPHIE for RAxML trees remains higher than for other

tools.

The results of SOPHIE for different evolutionary and epidemiological scenarios are compara-

ble, with the exception of the Susceptible-Infected transmission model with the logistic intra-host

population growth. In that case, the accuracies of all methods were significantly lower.

As described in Methods, all algorithmic subroutines of SOPHIE are polynomial. Thus, the

method is not too computationally expensive: the experimental average running time of SOPHIE

on the analyzed data was 106.5s (standard deviation 285.4s). It somewhat slower than TNet (with
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the running times measured in seconds) and Phyloscanner (that stops within 1-2 minutes), but it is

to be expected, given that the SOPHIE’s model is richer than for other tools.

4.2.0.2 Experimental data

We used a ”gold standard” experimental dataset that has been previously utilized for benchmarking

of transmission network inference algorithms in several studies170,74,51. It consists of 74 intra-host

HCV populations sampled and sequenced during the investigation of 10 outbreaks by the Centers

for Disease Control and Prevention. Viral populations contain from several dozen to several hun-

dred sequences of lengths 264bp covering Hypervariable Region 1 (HVR1) of the HCV genome. In

each outbreak, a single primary host identified by the investigators using epidemiological evidence

infected all other hosts. Thus, transmission networks for that outbreaks are known.

Similarly to simulated data, the algorithms under consideration were applied to phylogenies

reconstructed by RAxML. For all outbreaks, the uniform equilibrium label distribution, the rate

µ = 1 and the power-law exponent α = 2 has been used. SOPHIE yielded the average f -score of

0.70, while TNet and Phyloscanner showed f -scores of 0.58 and 0.37, respectively (Table 4.1).

True tree RAxML tree
SIR exp SIR log SI exp SI log SIR exp SIR log SI exp SI log Real

SOPHIE (best α) 0.92 0.90 0.82 0.41 0.68 0.67 0.78 0.48 0.70SOPHIE (α ∼ Γ) 0.89 0.86 0.75 0.33 0.63 0.61 0.73 0.42
TNet 0.57 0.63 0.50 0.24 0.53 0.55 0.50 0.36 0.58
Phyloscanner 0.75 0.71 0.48 0.03 0.49 0.45 0.50 0.29 0.37

Table 4.1 Mean f-scores of SOPHIE, TNet, and Phyloscanner for different simulated and real
datasets.
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True tree RAxML tree
SIR exp SIR log SI exp SI log SIR exp SIR log SI exp SI log

SOPHIE vs TNet 1.6e-12 1.4e-7 2.1e-19 7.1e-7 3.0e-3 4.7e-2 8.4e-16 4.7e-3
SOPHIE vs Phyloscanner 1.2e-4 6.3e-5 4.7e-21 0 4.2e-4 1.2e-4 6.3e-16 3.0e-6
TNet vs Phyloscanner 5.3e-3 4.4e-1 9.3e-1 1.3e-13 8.6e-1 1.9e-1 9.9e-1 1.9e-1

Table 4.2 p-values of multiple comparison for Kruskal-Wallis test.

4.3 Case study: HCV/HIV outbreak in rural Indiana, 2015

We utilized SOPHIE to analyze genomic data from the large HIV/HCV outbreak in Indiana141,146,75

23,38. The first 11 HIV infection cases associated with this outbreak have been discovered by the

Indiana State Department of Health (ISDH) in a small rural community in Scott County, IN in early

2015. This triggered a further investigation by the ISDH and the CDC38 that led to the detection of

several hundred HIV and HCV infections and precipitated a declaration of a public health emer-

gency by the state of Indiana38. The investigation linked the outbreak to unsafe injection use of

the opioid oxymorphone141, providing an important example of the rapid spread of viral infections

associated with the nationwide epidemic of prescription opioid abuse206,176.

Deep sequencing of intra-host viral populations has been carried out only for HCV; therefore,

we focused this evaluation on the HCV genomic data. Each HCV dataset consists of viral haplo-

types covering the E1/E2 junction of the HCV genome, which contains the hypervariable region 1

(HVR1). We sampled and analyzed transmission networks of the largest HCV transmission cluster

identified previously146. It includes 116 persons infected with the HCV subtypes 1a and 3a; some

persons were infected with both subtypes. The HCV subtypes are phylogenetically distinct. Given

that, we first constructed and analyzed maximum likelihood phylogenies for each subtype sepa-

rately. In addition, these phylogenies were post-processed using TreeTime159 to infer time labels
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of their internal nodes. The obtained time-scaled phylogenetic trees were used as inputs of SO-

PHIE and, after obtaining sampled transmission networks and their probabilities, provided times

of inferred transmissions. Finally, transmission networks for both subtypes sampled by SOPHIE

were joined into a single network. Further data processing details can be found in Star Methods

section.

The inferred joint consensus transmission network of both subtypes is shown in Figure 4.5(a).

When reconstructed transmission links have both the person’s metadata and phylogenetic data,

they tend to agree with each other. The subcluster of persons infected with subtype 1a is large,

established earlier, and is likely to serve as a source for the 3a subcluster. This finding matches the

observation that the inferred primary case of the 3a subcluster (the only vertex with the expected

in-degree below 1 in the 3a network) is coinfected with both subtypes. In addition, both persons

with known acute infection from the analyzed cluster (detected by the HCV seroconversion test)

have low expected outdegrees (< 10−4), confirming that they carried secondary rather than primary

infections.

The output from SOPHIE was used to estimate key epidemiological parameters directly from

the inferred transmission networks. Such estimates can be more realistic than more traditional as-

sessments based on random mixing models applied to incidence statistics108. Furthermore, we used

time labels of the viral phylogenies to estimate timing of each link in each sampled transmission

network to assess the outbreak dynamics.

The dynamics of incident case numbers (i.e. the numbers of inferred transmissions within a

specified time interval, in our case, 1 month) suggest that the outbreak started in the middle of
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(b)

(d)(c)

(a)

Figure 4.5 Computational analysis of the Indiana HCV outbreak. (a) Consensus transmission
network. The thickness of each edge is proportional to its inferred likelihood support. Only edges
with the support above 0.0005 are shown. Nodes infected with subtype 1a, 3a and both are shown
in red, blue and black, respectively. Squared nodes are co-infected with HIV. (b) Distribution of
the generation times by month. (c) The dynamics of incident cases over time. The blue line is the
expected number of incident cases at a given time. The grey area shows incident cases for sampled
networks. Vertical lines depict major public health events. (d) Effective reproduction numbers Rt

for the exponential stage of the outbreak. Vertical lines depict major public health events.
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2012, and transitioned to the exponential stage in 2014 (Figure 4.5(c)). The incidence rapidly

declined after the declaration of the state public health emergency. The exponential stage largely

coincides with the timeline of HIV spread in the same community23. In addition, 35 persons from

the analyzed cluster were co-infected with HIV, and 25 of them form a connected subgraph of

the consensus subnetwork formed by edges with the high support shown in Figure 4.5(a). These

findings suggest that the HIV outbreak and the larger part of the HCV outbreak were triggered by

the same epidemiological mechanism; however; HCV preceded HIV by several years, and the HIV

spread might have been facilitated by the pre-established HCV transmission network.

The inferred incidence (Figure 4.5(c)) and the inferred distribution of generation times (time

intervals between the infection times of the sources and recipients, Figure 4.5(b)), were used in

EpiEstim40 to estimate the effective reproduction number Rt (virus transmissibility at a given

time) over a 1-month sliding window during the exponential phase of the outbreak. The mean

values of Rt varied between 1.81 and 2.33 before the emergency declaration, indicating sustained

transmissions. Following the declaration, they rapidly dropped below the epidemic threshold of

Rt = 1. We also directly measured the basic reproduction number R0 as an average degree of

transmission sources in sampled networks. An estimation R0 = 2.71 (95% CI: (2.63, 2.79)) close

to the estimates for Rt was obtained. The estimates produced by SOPHIE are more moderate and

seemingly more realistic than, for example, the values R0 = 6.6 (95% CI: (3.2, 9.9)) and R0 = 5.1

(95% CI: (1.7, 9.2)) produced by the birth-death skyline phylodynamics model172 with the uniform

reproduction number prior implemented in BEAST57. Moreover, the SOPHIE-based values agree

better with the estimate of R0 = 3.8 for the parallel HIV outbreak obtained using contact tracing23.
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4.4 Discussion

Analysis of viral transmission networks is essential for epidemiological and evolutionary studies

of pathogens, as it allows to assess and monitor the transmission dynamics6,18, understand the

mechanisms of transmission, infection establishment and emergence of drug resistance and vaccine

escape143,114, as well as to design efficient public health intervention strategies28. Hence, inference

of viral transmission networks is one of the most fundamental problem of genomic epidemiology

and a major driving force behind new developments in the field.

In this paper, we introduce a method for transmission network reconstruction based on the

integration of a phylogenetic maximum likelihood (ML) model and a random graph model. The

idea to implant social networks into the phylogenetic framework was proposed in our prior study170

and implemented in a tool QUENTIN. SOPHIE substantially differs from QUENTIN in several

ways: (1) it is fully based on maximum likelihood paradigm, (2) it is phylogenetic rather than

network-based, and (3) it uses more general and comprehensive random graph model. In general,

SOPHIE re-evaluates phylogeny-based candidate transmission networks according to their match

to the expected properties of an unobserved contact network and prioritizes the networks, which fit

to both the viral phylogeny and these properties.

We showed that the proposed approach is capable of achieving a substantial accuracy improve-

ment over the state-of-the-art phylogenetic transmission inference methods based on maximum

parsimony principle, while retaining their scalability and speed. This improvement is likely asso-

ciated with the relative sampling efficiency of parsimony and likelihood-based methods. Indeed,

for most of the simulated test examples the total numbers of optimal parsimonious solutions (as
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calculated by TiTUS163) were exceedingly large, with the median number of solutions over all

tests being 3.9 · 1015. Representative uniform sampling from such large set is challenging. In

contrast, SOPHIE samples from a more informative distribution. Furthermore, the network-based

part of the proposed model allows to optimize the search in the solution space by employing a

polynomial-time combinatorial optimization machinery. This distinguishes SOPHIE from other

phylodynamics models that are often less computationally tractable and have to rely on the MCMC

sampling.

Our case study of HCV/HIV outbreak in rural Indiana demonstrates how SOPHIE can be used

to analyze viral transmission dynamics and assess the effects of public health interventions. We ex-

pect that the our methodology will be useful for other studies of bloodborne and airborne pathogens

that spread via human contacts. However, it should be noted that in general the advantages of our

approach are more pronounced for bloodborne pathogens, where the role of social contacts is

stronger, while for airborne pathogens many contacts could be episodic.

Despite the aforementioned advantages, the proposed methodology has a room for further ex-

pansion and improvement. First, its phylogenetic component is currently based on trait substitu-

tion models with fixed between-host transmission rates. Incorporation of rate inference via EM

or other iterative algorithms can potentially enhance our approach. Such a technique proved to be

useful for nucleotide substitution models within traditional phylogenetics and phylodynamics159.

In our case, however, its application is more challenging due to smaller numbers of ancestral trait

changes. Second, ideally the label sampling scheme should simultaneously account for both parts

of the joint likelihood. However, use of MCMC or other similar approach for such sampling is
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non-scalable, while development of the scheme based on combinatorial optimization seems to be

challenging. One possible combinatorial approach envisioned by us is the utilization of spectral

techniques. Third, as suggested by computational experiments, SOPHIE is sensitive to potential

phylogenetic inference inaccuracy, especially, in respect to branch lengths estimation. This can be

addressed by allowing for length updates, similarly to transmission rates. Finally, the experiments

also revealed the decreased accuracy of SOPHIE (and other methods), when applied to data pro-

duced by the SIR transmission model with the intra-host logistic coalescent. This suggests that in

this case the method’s accuracy may benefit from replacement of the ML phylogenetic model with

the Bayesian coalescent or other appropriate phylodynamic model. Such models are, however, less

computationally tractable; therefore their incorporation into our framework will require innovative

algorithmic solutions.

4.5 Star Methods

4.5.1 Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER
Deposited data
Simulated data This paper https://doi.org/10.5281/zenodo.6792964

https://github.com/compbel/SOPHIE/
HCV benchmarking data https://doi.org/10.5281/zenodo.6792964

https://github.com/compbel/SOPHIE/
Case study data 146 Available from the CDC upon request
Software and Algorithms
SOPHIE This paper https://doi.org/10.5281/zenodo.6792964

https://github.com/compbel/SOPHIE/
Phyloscanner 196 https://github.com/BDI-pathogens/phyloscanner
TNeT 51 https://compbio.engr.uconn.edu/software/TNet/
FAVITES 123 https://github.com/niemasd/FAVITES
RAxML 173 https://cme.h-its.org/exelixis/web/software/raxml/
TreeTime 159 https://github.com/neherlab/treetime
EpiEstim 40 https://github.com/mrc-ide/EpiEstim
BEAST 57 https://beast.community/
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4.5.2 Method details

4.5.2.1 Sampling of ancestral label assignments

Suppose that the Markov chain-based substitution model for labels is fixed, i.e. we are given the

equilibrium patient probabilities (πi)
nh
i=1 and the rate matrix Q = (qi,j)

nh
i,j=1, where qi,j is the trans-

mission rate between hosts i and j for i ̸= j, and qi,i = −
∑nh

j=1 qi,j . In most cases, transmission

rates between specific hosts are unknown. Therefore usually the substitution model will be the

fully-symmetric substitution model (similar to Jukes-Cantor model for DNA) with πi = 1/nh and

qi,j = µ/(nh−1), where µ is the general transmission rate. In certain cases, however, between-host

transmission rates can be assessed from epidemiological contact tracing or comparison of expo-

sure intervals, if such information is available. In that case, more general substitution model can

be employed.

Given the substitution model, we sample from the joint distribution of ancestral label assign-

ments using an extension of the Felsenstein pruning65 - a standard dynamic programming algo-

rithm for phylogeny likelihood calculation. It is a dynamic programming algorithm that performs

a post-order traversal of the phylogeny T and computes, at each node v ∈ V (T ) and for each host

i ∈ [nh], the conditional likelihood L(v, i) of observing the labels of leafs that are descendants of

v, given that λv = i. The computations are based on the following recurrent relation65:

L(v, i) =


(∑nh

j=1 Pvx(i, j)L(x, j)
)
×
(∑nh

j=1 Pvy(i, j)L(y, j)
)
, if v is an internal node

with children x and y;
1, if v is a leaf and λv = i;
0, if v is a leaf and λv ̸= i.

(4.1)
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Here Pvx = exp(tvxQ) is an nh ×nh transition matrix for an edge vx ∈ E(T ), where tvx is the

length of vx.

After all conditional likelihoods L are calculated, we perform a pre-order traversal of T and

sample a label for each node from the corresponding posterior distribution given its parent’s sam-

pled state. The sampling is repeated ns times. The sampling procedure is formally described

by Algorithm 1. For each sampled label assignment λ = (λv)v∈V (T ), its phylogenetic likelihood

L(T,λ) is calculated as L(T,λ) = πλr

∏
uv∈E(T ) Puv(λu, λv), where r is the root of T .

Algorithm 1 Ancestral label sampling
1: Calculate conditional node likelihoods L(v, i) using Felsenstein pruning.
2: for s = 1, ..., ns do
3: for each internal node v in a pre-order traversal of P do
4: if v is a root then
5: assign v the label λv = i with the probability πiL(v,i)∑nh

j=1 πjL(v,j)

6: else
7: let p be the parent of v
8: assign v the label λv = i with the probability Ppv(λp,i)L(v,i)∑nh

j=1 Ppv(λp,j)L(v,j)

For large phylogenies, the number of ancestral label assignments with comparable likelihoods

can be large. Thus, in order to facilitate sampling of the assignments that potentially produce

transmission networks with high network likelihoods, we employ several heuristic adjustments of

the general sampling scheme. First, we reduce the tree before sampling by iteratively removing

sibling leafs with the same label and assigning that label to their parent. This procedure replaces

all monophyletic clades with their most recent common ancestor. This modification decreases the

dimensionality of the ancestral label space, thus allowing to obtain a representative sample with

fewer iterations. In addition, it speeds up likelihood calculations and decreases the number of

likelihood re-scalings198 required to resolve the numerical precision issues. Next, it is known that
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intra-host viral population diversity can serve as a marker of the population age15, and therefore

hosts with more diverse populations are more likely to be sources of transmissions170,196,156. We

account for that by multiplying the likelihoods L(v, i) calculated for the reduced tree by the number

of descendants of v with the label i.

The total running time of the sampling step is O(nsnln
2
h)

4.5.2.2 Estimation of the network likelihood

Likelihood definition. We assume that the transmission network G = G(T,λ) is a subgraph (not

necessarily induced) of a random contact network Gc on nc ≥ nh vertices. We model Gc as a

random graph with the given degree distribution p = (p1, p2, ...), where pk is the probability that a

randomly selected vertex has a degree k.

Every vertex i ∈ V (G) has a degree di in G and a degree Di ≥ di in Gc. Let us call a mapping

D : V (G) → [nc − 1], that assigns a degree D(i) = Di to a vertex i, an embedding of G into Gc.

Then we approximate the network likelihood L(G|Gc) via the probability of the best embedding:

L(G|Gc) = max
D

p(G,D|Gc) (4.2)

To define the conditional probability p(G,D|Gc), we can factorize it as

p(G,D|Gc) ∝ p(G|D)p(D|Gc). (4.3)

The first factor p(G|D) is the probability of the subgraph G given the degrees of its vertices in

the contact network Gc. It can be calculated by assuming that nc is large enough and Gc follows
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the Generalized Random Graph (GRG) model33,34 – a general and widely used model of a random

graph with given expected degrees. According to this model, edges are independently assigned to

pairs of vertices (i, j) with probabilities pij =
DiDj

2mc
, where mc = nc

2

∑nc−1
k=1 kpk is the expected

number of edges of GC . Using this definition, we get

p(G|D) =
∏

ij∈E(G)

DiDj

2mc

=
1

(2mc)mh

nh∏
i=1

Ddi
i , (4.4)

where mh is the number of edges of G.

To define the second factor p(D|Gc), consider the vector of expected degree counts C =

(C1, ..., Cnc−1) of Gc, i.e. Cj = ⌈pjnc⌉ is a rounded expected number of vertices of degree j.

Then p(D|Gc) is the probability that the degrees (D1, ..., Dnh
) are sampled without replacement

from the population C. Thus, p(D|Gc) is described by the probability mass function of the multi-

variate hypergeometric distribution:

p(D|Gc) =
1(
nc

nh

) nc−1∏
k=1

(
Ck

σk

)
, (4.5)

where σk = |D−1(k)| = |{i : Di = k}|.

Likelihood calculation. To calculate the network likelihood, we need to solve the optimization

problem (4.2). After logarithmic transformation, it is equivalent to the following problem:

max
D

(
nh∑
i=1

di log(Di) +
nc−1∑
k=1

log

(
Ck

σk

))
. (4.6)

In turn, this problem can be reduced to a generalized uncapacitated facility location problem with
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convex costs56, where the vertices of G serve as clients and their possible expected degrees in Gc

– as facilities. More specifically, we consider the set of clients K = [nh] and the set of facilities

F = [nc − 1]; if the client i is served by the facility k (i.e. Di = k), where k ≥ di, then the profit

bik = di log(k) is generated. Furthermore, the assignment of σk clients to a facility k produces a

profit fk(σk) = log
(
Ck

σk

)
. The objective is to assign all clients to facilities in such a way that the

total profit is maximized.

The crucial property of the obtained problem is the fact that the functions fk(σ) are concave

(or, if we are using more standard minimization formulation, −fk(σ) are convex). Thus, we can

use the scheme proposed in79 to reduce our problem to the maximum-weight matching problem

for bipartite graphs, which is solvable in polynomial time165. Namely, we construct a bipartite

graph H with the parts (X, Y ), where the part X coincides with the set of clients K, and the

part Y contains Ck vertices y0k, ..., y
Ck−1

k for each facility k. The vertices i ∈ X and yjk ∈ Y are

adjacent whenever di ≤ k, and the weight of this edge is set to wiyjk
= bik + fk(j + 1) − fk(j).

Then maximum-weight matching of H gives us the solution of (4.6). This fact follows from the

concavity of the function fk, which implies that any maximum-weight matching that covers the

vertex yjk ∈ Y should also cover all vertices ylk for l ≤ j.

It is easy to see that the number of edges in the bipartite graph H is nh(nc + 1) − 2mh.

Therefore, the described reduction approach combined with the generalized Hungarian algorithm

for the matching problem149 calculates the network likelihood in time O(n2
hnc − 2mh).

Finally, it should be noted that the model (4.3) contains the size of the contact network nc as a

parameter. In our calculations, we used the value that is large enough to guarantee the existence of
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a feasible solution of (4.6), i.e. nc = maxi⌈ci/pi⌉, where ci = |{j : dj = i}| are degree counts of

G. In particular, if the expected degree distribution of Gc follows the power law with the exponent

α, then nc can be estimated as nc = maxi⌈ζ(α)ciiα⌉, where ζ(α) is the Riemann zeta function.

4.5.2.3 Distribution and consensus of sampled networks

The output of the algorithms described above is the set of N sampled solutions, where each solution

consists of the label assignment λi, the corresponding transmission network G(T,λi) and the

joint likelihood L(T,λi)L(G(T,λi)|Gc). The distributions of transmission networks and labels,

as well as derivative epidemiological parameters, can be further analyzed directly – an example

of such analysis for a particular case study is presented in Subsection 4.3. In particular, sampled

networks can be summarized into the weighted consensus network with the adjacency matrix W =

(wij)
N
i,j=1 =

∑N
i=1 piAi, where Ai is the adjacency matrix of the network G(T,λi), and pi =

L(T,λi)L(G(T,λi)|Gc)∑N
j=1 L(T,λ

j)L(G(T,λj)|Gc)
is the probability density value estimate for that network. In this case, wij

is an inferred likelihood support for an edge ij, and d+(i) =
∑n

j=1wji and d−(i) =
∑n

j=1 wji are

expected in- and out-degrees of a vertex i, respectively. When a specific output network is needed

(e.g. for benchmarking, see Subsections 4.2.0.1-4.2.0.2), then we calculate it as the maximum-

weight arborescence of this weighted network.

4.5.3 Quantification and statistical analysis

4.5.3.1 Simulation and algorithm comparison details.

Synthetic data used in this study was generated by FAVITES123. Viral genomes of length 2640bp

(that roughly corresponding to lengths of HIV gap and pol polyproteins) were assumed to evolve
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under the GTR+Γ substitution model. The GTR rate matrix and gamma parameter were bor-

rowed from171, where they were estimated based on real HCV data. Inside each host, viral

phylogenies evolved under a coalescent model with exponential or logistic effective population

growth. We assumed that the virus spread over a contact network of 100 susceptible individuals,

that was produced using the Barabasi-Albert model13. Two epidemiological scenarios were used:

Susceptible-Infected (SI) transmission model and simultaneous sampling of all infected individu-

als and Susceptible-Infected-Recovered (SIR) transmission model, with each individual sampling

time being chosen from a truncated normal distribution of the individual’s infection time window.

The full lists of FAVITES parameters are available in configuration files provided with simulated

datasets in SOPHIE repository.

For each of four combinations of evolutionary and epidemiological models, 100 simulated

datasets have been generated, with 10 genomes sampled per infected host. Simulations that pro-

duced no transmission links were discarded. For each dataset, we considered a true phylogeny

provided by FAVITES and a phylogeny reconstructed by RAxML173. The latter was run with the

GTR+Γ substitution model, and with optimization of substitution rates and site - specific evolu-

tionary rates.

TNet was run with the default settings. For Phyloscanner, we set the within-host penalty param-

eter to 0 (otherwise, it produced no transmission links). For SOPHIE, at the label sampling stage

we used the uniform equilibrium probability distribution and fixed transmission rates µ = 0.0001

and µ = 0.005 for all Favites and RAxML trees, respectively. For each test instance, 100, 000

internal label assignments were sampled. The f -score has been used as an evaluation metric.
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To compare the distributions of f -scores for different algorithms, we utilized a non-parametric

Kruskal–Wallis test.

4.5.3.2 Analysis of HCV outbreak in rural Indiana

Analyzed HCV datasets consist of viral haplotypes sampled from infected individuals and se-

quenced using GS FLX Titanium Sequencing Kit (454 Life Sciences, Roche, Branford, CT). The

haplotypes cover the E1/E2 junction of the HCV genome (264 bp), which contains the hypervari-

able region 1 (HVR1). For our analysis, we used haplotypes that were sampled at least 5 times

in each infected person. In total, 4167 viral haplotypes (or ≈ 36 haplotypes per person) have

been considered. Prior to phylogenetic analysis, the sequences have been aligned using MAFFT93.

Next, maximum likelihood phylogenies were constructed for each subtype; in addition, these phy-

logenies were time-labeled using TreeTime159 run with default parameters. The obtained time-

scaled phylogenetic trees were processed by SOPHIE, for which we used the uniform equilibrium

label distribution, the rate µ = 1, and the power-law exponent α = 2. For each phylogeny,

2, 000, 000 label assignments were sampled.
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A Supplementary figures

Figure A.1 p-values (blue) and prevalences (red) of Alpha variant in the analyzed countries. Black,
green, and magenta lines represent the times of VOC designation, achieving 1% prevalence, and
becoming significantly dense, respectively.
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Figure A.2 p-values (blue) and prevalences (red) of Beta variant in the analyzed countries. Black,
green, and magenta lines represent the times of VOC designation, achieving 1% prevalence, and
becoming significantly dense, respectively.
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Figure A.3 p-values (blue) and prevalences (red) of Gamma variant in the analyzed countries.
Black, green, and magenta lines represent the times of VOC designation, achieving 1% prevalence,
and becoming significantly dense, respectively.
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Figure A.4 p-values (blue) and prevalences (red) of Delta variant in the analyzed countries. Black,
green, and magenta lines represent the times of VOC designation, achieving 1% prevalence, and
becoming significantly dense, respectively.
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Figure A.5 p-values (blue) and prevalences (red) of Omicron variant in the analyzed countries.
Black, green, and magenta lines represent the times of VOC designation, achieving 1% prevalence,
and becoming significantly dense, respectively.
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Figure A.6 p-values (blue) and prevalences (red) of Eta variant in the analyzed countries. Black,
green, and magenta lines represent the times of VOC designation, achieving 1% prevalence, and
becoming significantly dense, respectively.
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Figure A.7 p-values (blue) and prevalences (red) of Kappa variant in the analyzed countries. Black,
green, and magenta lines represent the times of VOC designation, achieving 1% prevalence, and
becoming significantly dense, respectively.
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Figure A.8 p-values (blue) and prevalences (red) of Lambda variant in the analyzed countries.
Black, green, and magenta lines represent the times of VOC designation, achieving 1% prevalence,
and becoming significantly dense, respectively.
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Figure A.9 p-values (blue) and prevalences (red) of Mu variant in the analyzed countries. Black,
green, and magenta lines represent the times of VOC designation, achieving 1% prevalence, and
becoming significantly dense, respectively.
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Figure A.10 p-values (blue) and prevalences (red) of Theta variant in the analyzed countries. Black,
green, and magenta lines represent the times of VOC designation, achieving 1% prevalence, and
becoming significantly dense, respectively.
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Figure A.11 Comparison between VOCs and densest subnetworks of temporal epistatic networks
for selected countries (part 1). At each time point, bar color code corresponds to the VOC closest
to the inferred densest subnetwork, and the bar hight is equal to the respective f -score. The number
at the top of each bar is the frequency of the corresponding VOC among sequences sampled at the
current time interval, measured in percent and rounded to closest integer value. Colored dashed
lines mark times when specific VOCs were designated by WHO.
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Figure A.12 Comparison between VOCs and densest subnetworks of temporal epistatic networks
for selected countries (part 2). At each time point, bar color code corresponds to the VOC closest
to the inferred densest subnetwork, and the bar hight is equal to the respective f -score. The number
at the top of each bar is the frequency of the corresponding VOC among sequences sampled at the
current time interval, measured in percent and rounded to closest integer value. Colored dashed
lines mark times when specific VOCs were designated by WHO.
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Figure A.13 Comparison between VOCs and densest subnetworks of temporal epistatic networks
for selected countries (part 3). At each time point, bar color code corresponds to the VOC closest
to the inferred densest subnetwork, and the bar hight is equal to the respective f -score. The number
at the top of each bar is the frequency of the corresponding VOC among sequences sampled at the
current time interval, measured in percent and rounded to closest integer value. Colored dashed
lines mark times when specific VOCs were designated by WHO.
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Figure A.14 Summary of comparison between VOCs and densest subnetworks of temporal
epistatic networks for all countries. (a) and (b): forecasting depths (y-axis) with respect to the
1% prevalence time and WHO designation time for each analyzed VOCs over different countries.
(c) and (d): cumulative frequencies and prevalences of VOCs over different countries at earliest
times when they are at least 80% identical to densest subgraphs of epistatic networks (in log-
arithmic scale). Dashed lines at the bottom of the plot signify that the variants were found at
frequencies/prevalences 0.
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Figure A.15 Comparison between VOCs and inferred haplotypes for selected countries (Part
1). At each time point, each bar represents an inferred haplotype closest to a particular VOC, the
bar height is equal to the respective f -score. The results are displayed for 13 uniformly distributed
timepoints to avoid overcrowding of the figure. Colored dashed lines mark times when specific
VOCs were designated by WHO.
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Figure A.16 Comparison between VOCs and inferred haplotypes for selected countries (Part
2). At each time point, each bar represents an inferred haplotype closest to a particular VOC, the
bar height is equal to the respective f -score. The results are displayed for 13 uniformly distributed
timepoints to avoid overcrowding of the figure. Colored dashed lines mark times when specific
VOCs were designated by WHO.
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Figure A.17 Comparison between VOCs and inferred haplotypes for selected countries (Part
3). At each time point, each bar represents an inferred haplotype closest to a particular VOC, the
bar height is equal to the respective f -score. The results are displayed for 13 uniformly distributed
timepoints to avoid overcrowding of the figure. Colored dashed lines mark times when specific
VOCs were designated by WHO.
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Figure A.18 Comparison between VOCs and inferred haplotypes for selected countries (Part
4). At each time point, each bar represents an inferred haplotype closest to a particular VOC, the
bar height is equal to the respective f -score. The results are displayed for 13 uniformly distributed
timepoints to avoid overcrowding of the figure. Colored dashed lines mark times when specific
VOCs were designated by WHO.
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Figure A.19 Comparison between VOCs and inferred haplotypes for selected countries (Part
5). At each time point, each bar represents an inferred haplotype closest to a particular VOC, the
bar height is equal to the respective f -score. The results are displayed for 13 uniformly distributed
timepoints to avoid overcrowding of the figure. Colored dashed lines mark times when specific
VOCs were designated by WHO.
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Figure A.20 Comparison between VOCs and inferred haplotypes for selected countries (Part
6). At each time point, each bar represents an inferred haplotype closest to a particular VOC, the
bar height is equal to the respective f -score. The results are displayed for 13 uniformly distributed
timepoints to avoid overcrowding of the figure. Colored dashed lines mark times when specific
VOCs were designated by WHO.
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