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ABSTRACT

This thesis presents several novel results on the nonlinear and emergent collective dynam-

ics of crowds and populations in complex systems. Though, historically, the list of suspension

bridges destabilized by pedestrian collective motion is long, the phenomenon still needs to

be fully understood, especially regarding the effect of human-to-human interactions on the

structure, and often incorrectly explained using synchronization theory. We present a sim-

ple general formula that quantifies the effect of pedestrian effective damping of a suspension

bridge and illustrate it by simulating three mathematical models, including one with a strong

propensity for synchronization. Despite the subtle effects of gait strategies in determining

precise instability thresholds, our results show that average negative damping is always the

trigger of pedestrian-induced high-amplitude lateral vibration of suspension bridges. Further-

more, we show that human-to-human interactions of heterogeneous pedestrians can trigger

the instability of a bridge more effectively than crowds of identical pedestrians. We will also

discuss the role of crowd heterogeneity in possible phase pulling between pedestrians and

bridge motion. We also develop a model for the evolution of toxic memes on 4chan and

report a significant influence on Twitter’s anti-vaccine conspiracy discourse over a nine-year

period. We show that 4chan topics evolve according to an emergent process mathematically

similar to classic reinforcement learning methods, tending to maximize the expected toxicity

of future discourse. We demonstrate that these topics can invade Twitter and persist in an

endemic state corresponding to the associated spreading rate and initial distribution of post

rates and coexisting with a higher-traffic regime of dynamics. We discuss the implication of



this result for preventing large-scale disinformation campaigns.
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1
CHAPTER 1

Introduction

1.1 Collective Behavior in Complex Systems

In 1908, in one of the founding works of sociology, Giddings (1) coined the term “collective

behavior” to describe the kind of emergent human order that is not explained well by institu-

tional norms, by conscience, or by rational decision-making, but instead by the emergence of

self-organizing patterns or trends from the most basic interactions occurring on an individual

level, which could be fully quantified only using a multi-disciplinary and scientific approach.

This collective behavior is also widely observed in bacterial (2; 3), animal (4; 5; 6), political

(7), and economic (8; 9) systems.

Mathematical models of this type of effect frequently, though not always, take the form

of a continuous dynamical system on a complex network. Of these, we are particularly inter-

ested in those that apply nonlinear dynamical modeling to problems of emergent interaction

of populations, thereby determining precisely what about their initial organization most

influences their collective behavior. In particular, we study several questions in civil engi-

neering and social science, which exhibit various modes of collective behavior in which simple

changes to the initial distribution of population-level parameters lead to the coexistence of

multiple dynamical regimes.

In Chapters 2 and 3, we study the problem of crowds of pedestrians on suspension bridges

causing high-amplitude lateral vibrations due to the phase dynamics of their walking. It

is demonstrated in Chapter 2, using a biophysical model of human lateral gait, that the
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primary means of such instability is the independent interaction between the pedestrians

and the structure; yet, in Chapter 3, we introduce the experimentally-informed model of

human-human interaction and obstacle avoidance to the crowd dynamics and show that

the instability is amplified when the crowd’s movement speed is less coherent. In Chapter

4, we shift our attention to the data-driven study of social networks and show that the

effect of small social networks prone to political extremism and conspiracy theory belief on

mainstream networks that attempt to self-moderate is often quite large and mathematically

difficult to mitigate. Informed by the literature on social contagion, we propose and fit a

data-driven stochastic epidemic model to understand the different dynamical regimes of this

invasive phenomenon in anti-vaccine conspiracy theory content collected from Twitter and

4chan. We also discover a self-organizing effect like natural selection, which increases the

toxicity of 4chan posts over time, and discuss how a large-scale disinformation campaign

could exploit it in an automated manner.

These chapters represent only a sample of the author’s contributions to the scientific

literature during the degree program, albeit very substantial. In all cases, the author of

this dissertation was the primary contributor, having produced all experimental and numer-

ical results and figures in Chapter 2 (except for Tables 1-2 and the simulations of Figures

5-6), conceived of the heterogeneity-related study in Chapter 3, and produced all final nu-

merical results and figures based on technical input and literature suggestions from several

co-authors; and conceived of and carried out the study in Chapter 4 with complete inde-

pendence, deriving all results with occasional advice from a few collaborators. The results
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contained in this thesis have been published in three journal articles (10; 11; 12), and two

articles (one for Chapter 3 and one for Chapter 4) are at the final stage of preparation for

submission. Additionally, my research in the Belykh lab resulted in three published journal

articles (13; 14; 15).
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CHAPTER 2

Emergence of the London Millennium Bridge instability without
synchronization

Synchronization of coupled near-identical oscillators leads to emergent order in both natural

and engineered complex systems (16; 17; 18; 19; 20; 21; 22; 23). The pedestrian-induced

instability on the opening day of the London Millennium Bridge (24) is often used as the

canonical example; a threshold number of walkers enabled them to synchronize their footsteps

with each other at a bridge’s natural vibration frequency (25). In this work, we dispel the

synchronization myth and show that any synchronization of pedestrians’ foot placement is

a consequence of, not a cause of the instability, a result consistent with observations on over

28 bridges. Instead, uncorrelated pedestrians produce negative lateral damping on average

to initiate significant bridge vibration over a range of bridge natural frequencies. We present

a simple formula that quantifies the effective total negative damping per pedestrian and the

contributions towards it from three distinct effects. We also show how this effect predicts

the critical number of pedestrians in three distinct simulation models, including one that has

a strong propensity for synchronization (26). The models also point to an almost universal

frequency dependence of the instability criterion. More broadly than implications on design

criteria for safe human-structure interaction, our work points to an alternative mechanism

for the emergence of collective behavior in complex systems.

Kuramoto-like synchronization analysis has so far been unable to explain many of the

instability features observed on the London Millennium Bridge and many other bridges.

The main features of this instability are: bridges can exhibit large vibration amplitudes in
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more than one mode of vibration simultaneously, which need not be tuned to a particular

walking frequency (27; 28); a critical number of pedestrians is required in order to cause

an instability (29; 30); evidence of pedestrian footstep synchronization (23; 31) is scant,

with the most definitive study estimating only 20% of the crowd walked in time with the

bridge motion (32); engineering consultants Arup, who re-engineered the Millennium Bridge,

found that each pedestrian added, on average, effective negative damping (29); retrofitting

additional dampers successfully cures the problem (33).

One of the first to call into question the synchronization explanation of the London

Millennium Bridge instability was Nobel prize winner Brian Josephson, writing four days

after the bridge’s opening (34):

The Millennium Bridge problem has little to do with crowds walking in step: it

is connected with what people do as they try to maintain balance if the surface

on which they are walking starts to move, and is similar to what can happen if a

number of people stand up at the same time in a small boat. It is possible in both

cases that the movements that people make as they try to maintain their balance

lead to an increase in whatever swaying is already present, so that the swaying

goes on getting worse.

Intuitive reasoning, underlying Josephson’s argument and Arup’s observations suggests that,

to retain balance, each pedestrian should seek to lose angular momentum within their frontal

plane. Further, Barker (35) identified a stepping mechanism whereby forces to the left and

right do not necessarily average out. Therefore, on average, lateral vibration energy is
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transferred from the pedestrian to the bridge vibration mode. In effect, each pedestrian

applies negative damping to the bridge.

In fact, the situation is more subtle. The interaction force at the bridge vibration fre-

quency can be decomposed into components in phase with the bridge’s acceleration and

in phase with the bridge’s velocity. The former changes the effective inertia of the bridge

motion, whereas the latter changes the bridge’s effective damping (36; 37). Paradoxically,

for some specific combinations of the bridge vibration and pedestrian walking frequencies,

a theoretical argument suggests (38; 39) that the pedestrian can effectively extract energy

from the bridge, which has been confirmed in laboratory treadmill tests (40; 41; 42).

Until now, it has been hard to quantify this negative damping effect in a model-independent

way. Several theories have been proposed for its physical origin (35; 38; 39; 43); however, it

is not clear whether negative damping can be a consequence of synchronization (44) or vice

versa.

2.0.0.1 Results.

To solve this problem, we have established a general expression for the average contribution

to the bridge damping of the interaction force of a single pedestrian over one gait cycle. We
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have found that this increment can be written as the sum of three components (see Methods):

σ1 coefficient of lateral bridge velocity-dependent component of pedestrian foot force

on the bridge, ignoring gait timing adjustment,

σ2 coefficient of lateral bridge velocity-dependent component of force due to adjustment

of pedestrian lateral gait timing,

and σ3 coefficient of lateral bridge velocity-dependent component of force due to adjustment

to forward gait.

The terms σ2 and σ3 depend on the timing of the stepping behavior of pedestrians in

response to the bridge motion. However, in all our simulations, we have found σ1 to be

the most important effect in triggering large-amplitude vibrations. This effect is perhaps

counter-intuitive, since it may be imagined that, in the absence of phase synchrony between

the bridge and pedestrian, the lateral foot force on the bridge would average to zero. However,

this is not the case; see Fig. 2.1 for a detailed explanation.

The terms σ1, σ2, and σ3 should be evaluated individually for each pedestrian i and will

depend on that pedestrian’s stride frequency ωi as well as the vibration frequency Ω of the

bridge in the mode in question. Thus, we can write the total effective damping coefficient

cT of the bridge with N pedestrians as

cT = c0 +Nσ(ω,Ω) := c0 +
N∑
i=1

(
σ
(i)
1 (ωi,Ω) + σ

(i)
2 (ωi,Ω) + σ

(i)
3 (ωi,Ω)

)
, (2.1)
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Figure 2.1 Explaining the fundamental mechanism underlying the negative damping owing
to coefficient σ1. The figure contrasts the force transmitted to the bridge by two identical
pedestrians who, when they simultaneously place their stance foot on the bridge (at the
dashed positions in an absolute co-ordinate frame), have equal and opposite gaits. As they
place their feet, the lateral component of the foot force from each pedestrian is equal and
opposite, so there is no net lateral force on the bridge. Suppose that during a time increment
∆t the bridge moves to the left, so that the blue figure’s leg decreases its angle to the vertical
within the frontal plane, whereas the red figure’s leg angle increases. Thus, during this bridge
motion, the magnitude of the lateral component of the red figure’s lateral foot force increases
whereas that of the blue figure decreases. Thus there is, on average, a change in resultant
force in the direction of the bridge’s motion. Nevertheless, there can be large variations
depending on a pedestrian’s foot placement strategy.
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where c0 is the coefficient of natural (passive) damping of the bridge and ω represents

the mean pedestrian stride frequency.

We have found, over large ranges of pedestrian and bridge frequencies, that σ < 0 on

average. Imagine a thought experiment in which pedestrians are added to a bridge deck one

by one, then when we reach a critical number

N = Ncrit = −c0/σ (2.2)

of pedestrians, the overall modal damping cT of the bridge will become negative. Negative

damping will cause the amplitude of the bridge vibration mode to grow exponentially.

To test this theory we have performed simulations on three different mathematical models

describing a number of pedestrians coupled with a lateral bridge mode (see Methods for model

descriptions). In each case, we make a parsimonious assumption, justified in the relevant

literature, that walking is fundamentally a process in which the stance leg acts as a rigid

strut, causing the body center of mass (CoM) to act like an inverted pendulum in the frontal

plane (45; 46; 38; 39) during each footstep. Rather than fall over, the step ends when the

other leg strikes the ground and, ignoring the brief double-stance phase seen in realistic gaits,

the pedestrian switches to an inverted pendulum on that leg. We consider a single lateral

vibration mode of the bridge, forced by the motion of N pedestrians walking in a direction

perpendicular to this vibration. Any interaction between pedestrians other than indirectly

through the bridge motion is ignored.

The modeling and simulation process are illustrated schematically in Fig. 2.2. We have
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Figure 2.2 Outline of the mathematical model of pedestrian-induced lateral instability.
(Left): Simulations are run for a coupled bridge-pedestrians system with pedestrians added
sequentially at fixed time increments Tadd apart. The addition of the nth pedestrian
(n = Ncrit) causes the overall damping coefficient to become negative hence the amplitude
of motion to increase rather than diminish. (Right). Inverted pendulum model of bridge
mode and pedestrian lateral motion. Here y is the lateral position of the pedestrian’s center
of mass, while p defines the lateral position of the center of pressure (CoP) of the foot, both
relative to the bridge. L is the equivalent inverted pendulum length and m is the pedestrian
mass. The displacement x of the bridge in a lateral vibration mode is represented by an
equivalent platform with mass M , spring constant K, and damping coefficient C. H̃ is the
lateral component of the pedestrian’s foot force on the bridge deck. In return, the bridge
motion causes an inertia force −mẍ on the pedestrian’s center of mass.

simulated three different variants of the pedestrian model. Model 1 (38; 39) is the most

simple, based on linearizing the inverted pendulum in the frontal plane for small angles. It

assumes the sagittal-plane dynamics is independent of the lateral foot position and that foot

transitions occur at regularly spaced prescribed times. At each transition, the new lateral
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foot position is governed by a biophysically-inspired control law (47) that enhances stability

during horizontal ground motion. Model 2 is a new adaptation of Model 1, in which the

timing of the foot placement alters as a kinematic consequence of the lateral bridge motion

and foot placement. Finally, Model 3 (48; 26) assumes that the step timing is determined

solely by the frontal-plane dynamics and that leg transition occurs each time the pedestrian

CoM passes through a reference position defined as zero lateral displacement. A nonlinear

feedback mechanism enables stable limit cycle motion in the absence of ground movement,

and quasiperiodic motion on sinusoidally moving ground.

We choose parameters based on the set of controlled experiments on the London Millen-

nium Bridge before reopening (29). Up to N = 275 pedestrians were added individually at

equally spaced time intervals. It was found that significant lateral vibrations occurred for

N > 165.

The pedestrian parameters are drawn from distributions (see Table 2.1) and multiple

simulations are run for different bridge and mean pedestrian frequencies. The number of

pedestrians at which the vibration amplitude begins to increase rapidly is noted for each

simulation. Representative results are depicted in Fig. 2.3. For each simulation, in addition

to numerical evaluation of cT according to (2.1), we compute the well-established Kuramoto

order parameter (49), r, defined using

reiψ =
1

N

N∑
i=1

⟨eiφi⟩, (2.3)

where φi is the numerically calculated phase of the ith pedestrian’s CoM or CoP (the
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Figure 2.3 Example simulations showing the nature of the bridge instability for each of our
three models. See Methods for model details and parameter values. (Top row): Bridge
vibration amplitude as a function of the number of pedestrians N . The left-hand boundary
of the pink shaded portion indicates the value Ncrit where cT crosses zero, and the blue-
shaded portion is where a degree of synchrony is observed. Insets show illustrative bridge
x(t) (black) and a few representative pedestrian y(t)− p(t) (colored) oscillations over three
cycles. (Middle row): Computation of the total bridge damping cT given by Eq. (2.1) and the
Kuramoto order parameter r Eq. (2.3) calculated for the phases of pedestrians’ CoP (Models
1,2) and CoM (Model 3). (Bottom row): instantaneous computed bridge and pedestrian foot
placement frequencies.

distinction is made in Fig. 2.3), ψ is the average phase, and ⟨·⟩ denotes time average. r = 1

implies complete synchrony, and r = 0 implies uncorrelated motion.

The simulations in Fig. 2.3 show how the onset of large amplitude bridge motion coin-

cides with when the computed cT becomes negative, at N = Ncrit. For Model 1, in which
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there is no adjustment to the gait frequency, the bridge’s vibration amplitude grows unreal-

istically without bounds. In contrast, for Model 3, the onset of moderate amplitude motion

starts a process of increased coherence (or phase pulling (42)) between the pedestrians’ and

bridge motion. The order parameter and inset sample solution traces indicate that increased

synchrony then occurs between each pedestrian and the bridge. The amplitude of bridge

vibrations then saturates. Model 2, which is a more realistic version of Model 1 for higher

than moderate amplitude of bridge motion, shows similar amplitude saturation and coher-

ence after instability occurs. Further simulations of Models 2 and 3 for different frequency

parameters show that instability is at approximately N = Ncrit defined by (2.2), leading to

a varying amount of synchrony as the amplitude grows. Thus, the negative-damping crite-

rion can be understood as the cause of instability in all cases. Also, the varying degrees of

synchrony are a consequence, not the cause of the instability.

The final question we have solved explains how the negative-damping coefficient depends

on bridge and mean pedestrian stride frequencies Ω and ω, and whether it can be enhanced

or suppressed by resonance effects. Figure 2.4 shows the results of many ensemble runs. For

each model we show in an upper plot the computed value of σ1 as a function of the ratio

Ω/ω of bridge to average pedestrian frequency.

Note that Models 1 and 2 are effectively identical prior to the onset of any large-amplitude

bridge motion. For Model 1, McRobie (50) has derived an exact analytic expression for σ1

and Ncrit (shown as the red curve in the left-hand panel of Fig. 2.4). The theory (50) predicts

the much larger spread of σ-values we observe precisely at the resonance condition where
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ω = Ω (represented by the yellow dot). The hypotheses behind our general calculation of

σ fail precisely at this resonance. Also observe the paucity of data in certain regions of the

lower right-hand panel of Fig. 2.4 and the apparent bi-modality of the data. This is because,

for Model 3, limit cycle pedestrian motion is an emergent property of the simulations, rather

than essentially an input parameter as it is for Models 1 and 2. Also, note this model is

liable to hysteresis between limit cycles of different period (48).

For all three models, we find the value of the average value of σ to be mostly a function

of the frequency ratio, being only a weak function of the pedestrian or bridge frequencies

independently. Using this value in Eq. (2.2) gives the predicted critical number Ncrit of

pedestrians required to trigger an instability. The lower plots indicate the success of this

prediction, by comparing with the value of N at which the vibration amplitude begins to

increase rapidly in the simulations.

Also note the large spread of the model outputs for both σ1 and Ncrit, especially for Model

2. Our theoretical calculations only consider the long-term averages of the effective damping

coefficient cT . This is only part of the story because true walking behavior is transient and

involves changes to the trajectory of the walker’s CoM and the foot placement strategy. On

stationary ground, a walker’s CoM will oscillate laterally with a dominant component at

half the footfall frequency. Without changing the footfall frequency, the platform motion

introduces a second frequency inducing the walker to adopt a two-frequency quasiperiodic

pattern of footfall placement. Depending on the phase of this quasiperiodic pattern, we have

found that pedestrians can show large deviations from the long-term average.



15

Nevertheless, for all three models, note that Ncrit is minimised not when there is a

frequency match between the pedestrian and bridge frequencies, Ω/ω = 1, but when the

pedestrian frequency is less than the bridge frequency, Ω/ω ≈ 1.3 for Models 1 and 2 and

Ω/ω ≈ 1.1 for Model 3. Note, too, that there are some frequency ratios for which σ is

positive. If pedestrians walked at those frequencies, then their motion would enhance that

bridge mode’s stability rather than reduce it.

An explanation of this frequency dependence can be summarised as being a question of

timing. The argument in the caption of Fig. 2.1 implicitly assumes that the bridge is moving

in a single direction during each step and that the bridge and pedestrian stride frequencies

are similar. Particular tunings of this frequency ratio can in fact lead to a reversal of the

effect in Fig. 2.1. Nevertheless, over the frequency range considered, both the size of the

regions of pedestrian-induced negative damping and its average value greatly outweigh that

of positive damping.

In conclusion, we have shown that the fundamental mechanism behind pedestrian-induced

lateral instability of bridges is due to each pedestrian providing positive feedback to any

lateral motion of the bridge. This has been dubbed a negative-damping instability.

Mathematically, this is an example of a Hopf bifurcation and is characterized by a complex

conjugate pair of eigenvalues of the bridge dynamics, crossing the imaginary axis (51). An

analogous instability is well known in fluid-structure interaction, where it is called flutter.

Our results show that this negative-damping effect is intrinsic to humans trying to main-

tain balance without any requirement for synchronization of their footsteps. Any increased
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Figure 2.4 Average damping coefficient per pedestrian σ1 (top row) and the critical crowd size
Ncrit (bottom row) as a function of numerically calculated bridge and pedestrian frequencies
ratio [Ω/ω]. Simulations of Models 2 and 3 indicate the range of frequency ratio [Ω/ω] in
which σ1 is negative so that a single pedestrian, on average, contributes to bridge instability.
Each ratio of [Ω/ω] corresponds to different combinations of Ω and ω (blue dots). Black
dotted lines indicate the average of σ1 and Ncrit for a given ratio. The red curve is the
analytical expression (2.35) for σ1 (top plot) and analytical estimate (2.36) for Ncrit (bottom
plot), given in a subsequent section and calculated for Model 1 with identical pedestrians
with fixed ω = 5.655 and S.D. = 0. The pink dot corresponds to the initial ratio [Ω/ω] used
in Fig. 2.3, the yellow dot corresponds to Ω/ω = 1.
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coherence of foot placement or synchronization is a consequence of, not a cause of

the instability and is part of the process of the nonlinear adjustment to the amplitude of

vibration after the instability has been initiated, which may cause saturation of the vibration

amplitude or, in extreme cases, may further exacerbate the instability. These findings should

enable bridge designers and other structural engineers to develop more accurate design cri-

teria to avoid human-induced instability of a wide range of structures.

At a more general level, our results point to a new kind of emergent behavior among

autonomous agents. The usual theory of synchronization distinguishes between cases where

there is a master conductor that all other agents follow, and where synchrony emerges sponta-

neously without a leader. We have uncovered a third possibility, that there is an underlying,

albeit nascent, collective frequency that does not become excited until the individual agents

are sufficiently active. Each agent need not synchronize to the collective frequency nor to

another agent. Each agent simply needs to display some positive feedback effect. An intu-

itive yet erroneous argument might suggest that in the absence of coherence, the feedback

from all the agents would, on average, cancel each other out. But this is not how posi-

tive feedback works, it creates a bias that can lead to negative damping. This new kind of

emergent instability may actually be more prevalent in nature and society than previ-

ously thought. For example, both in the mammalian (52) and insect (53) hearing systems,

single-frequency instability of an active system can occur due to the beating of tiny inco-

herent neuro-mechanical oscillators. Also, macro-scale economic and financial systems tend

to develop characteristic cycles (54) without there being obvious causal synchrony at the
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microeconomic level.

2.1 Methods

2.1.1 Mathematical model

The displacement of the lateral bridge mode x(t) is assumed to be governed by a simple

second-order equation of motion

Mẍ+ Cẋ+Kx =
N∑
i=1

H̃(i)(x, y(i)), (2.4)

where M , C, and K are the mass, damping, and stiffness coefficients, respectively, of the

bridge mode. The forcing term H̃(i) is the lateral component of the ith pedestrian’s foot

force on the bridge deck. The lateral component of each single pedestrian’s center of mass

obeys the equation

mÿ(i) +mẍ = −H̃(i)(x, y(i)), i = 1, . . . N. (2.5)

In general H̃(i) is a function of exogenous variables associated with the pedestrian’s gait,

particularly the lateral motion, and will typically be a piecewise-smooth function with abrupt

changes at foot transitions. Specifically, we assume that foot transitions occur at a sequence

of times {t(i)s }, s = 1, 2, 3, . . ., where t(i)s+1 > t
(i)
s for all s. By definition, the angular pedestrian

stride frequency is [ωi] = 2π/[(t
(i)
s+2−t

(i)
s )], where [·] denotes possible adjustment due to bridge

motion. For definiteness, we assume even s corresponds to the touchdown of the right foot

and odd s to touchdown of the left.

Our analysis of negative damping is applicable to any model that can be written in the
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form (2.4), (2.5). It is helpful to scale parameters and introduce dimensionless parameters ε

and ζ measuring mass and damping ratios respectively:

H(i) = H̃(i)/m, Ω =
√
K/M, ε2 = m/M, ζ =

C

2MΩε
. (2.6)

Then the equations of motion can be written in the form

ẍ+ 2εΩζẋ+ Ω2x = ε2
N∑
i=1

H(i), ÿ(i) +H(i) = −ẍ, i = 1, . . . , N. (2.7)

Note the modeling choice that the bridge’s natural damping in (2.7) is assumed to be O(ε).

This is consistent with values of bridge damping and number of pedestrians N = O(ε−1)

required to trigger instability observed in practice.

Treating ε as a small parameter, a lengthy, but straightforward multiple-scale asymptotic

expansion (see subsection Asymptotic derivation of negative damping criterion) can be used

to evaluate the total bridge damping as the natural damping plus three additional terms:

cT = 2εζΩ + εν(σ1 + σ2 + σ3) = 2εζΩ +Nε2
N∑
i=1

(σ
(i)
1 + σ

(i)
2 + σ

(i)
3 ), (2.8)

with

σ
(i)
1 =

1

Ti

∫ Ti

0

∂H(i)

∂ẋ
dt, (2.9)

σ
(i)
2 =

1

TiΩ

(
y(i)s

∫ Ti

0

∂H(i)

∂y
dt+ Ω y(i)c

∫ Ti

0

∂H(i)

∂ẏ
dt

)
, (2.10)

σ
(3)
3 =

1

TiΩ

(
z(i)s

∫ Ti

0

∂H(i)

∂z
dt+ Ω z(i)c

∫ Ti

0

∂H(i)

∂ż
dt

)
. (2.11)
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Here, a subscript cmeans component in phase with the bridge instantaneous displacement

(c stands for cosine), and s means component in anti-phase with the bridge velocity (s stands

for sine). Also, an overline means a time average over many steps. Furthermore, z(t) is

the perturbation, due to the lateral motion, of the pedestrian’s forward position relative

to a constant forward speed. Because each function H(i) is in general nonsmooth, partial

derivatives should be interpreted in the distributional sense.

The particular pedestrian models we use in our simulations are distinguished only by

their choice of the foot force function H(i), which we assume to take an identical form for

each pedestrian, but to have parameters that can vary between pedestrians.

2.1.1.1 Model 1: Linearized inverted pendulum with step width control.

This model was developed by Macdonald, Bocian, and Burn (38; 39) and was shown to

exhibit similar features to those observed in four independent experimental studies (55; 41;

42; 56; 40). Here

H(i)(t) =
g

L
(p(i)(ts)− y(i)), (2.12)

with g being gravitational acceleration and L effective leg length, and p(i)(ts) is the

lateral center of pressure of the foot placed at time ts. At the beginning of each step,

p(i)(ts) is adjusted according to the self-balancing control law determined theoretically and

experimentally by Hof et al. (47; 57):
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p(i)(ts) = y(i)(t−s ) +

√
L

g
ẏ(i)(t−s ) + (−1)sbmin, (2.13)

where t−s is the time immediately before foot transition, and bmin > 0 is the margin of

stability, proportional to the natural gait width in the absence of any bridge motion. In

this model, the walking frequency that defines the switching times ts is given by an external

clock and is not adjusted due to bridge motion. Thus each ωi remains constant throughout

the simulation.

2.1.1.2 Model 2: Model 1 with step-timing adaptation.

We introduce adaptation to the step time ts due to the geometric nonlinearity associated with

the adjustment to the lateral gait width. Consider a rigid, three-dimensional inverted pendu-

lum of length L =
√
X2 + Y 2 + Z2, whereX, Y , and Z represent, respectively, displacements

of the center of mass, relative to the center of pressure (CoP) of the stance foot, in longitu-

dinal, transverse, and vertical pedestrian-centered coordinates. Suppose X(t−s ) = X0 +∆X,

where (X0, Y0, Z0) is the position of the center of mass at touchdown of the next foot for

unperturbed steady-state walking. Assume that, with perturbations from the bridge motion,

foot transition still occurs when Z = Z0, then in the limit of small ∆X, we can write

∆X =
1

2X0

(Y 2
0 − Y (t−s )

2), (2.14)

where Y (t−s ) = y(i)(t−s )−p(i)(ts−1) is the transverse position of the center of mass, relative

to the CoP, at touchdown, with p(i)(ts−1) from (2.13).

Introducing the mean forward velocity
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parameter meaning units default value mismatch S.D. source
a auxiliary m 0.047 0 Ref. (48; 26)

bmin margin of stability m 0.0157 0.002 Ref. (38)
C bridge damping Ns/m 29,251
g acceleration of gravity ms−2 9.81
L effective leg length m 1.17 0.092 Ref. (42)
m pedestrian mass kg 76.9 10 Ref. (42)
M bridge mass kg 113,000 Ref. (24)
pc auxiliary m 0.063 0 Ref. (48; 26)

Tadd pedestrian addition time s 20
X0 unperturbed half step length m 0.36 Ref. (45; 58)
Y0 unperturbed half step width m 0.047 Ref. (38)
λ damping due to walking sm−2 23.25 0
ω unperturbed angular rad/s 5.655 0.1 Ref. (26; 45)

stride frequency
Ω angular bridge rad/s 6.503 Ref. (24; 25)

natural frequency

Table 2.1 Default parameter values used in the simulations. Here, S.D. is the standard
deviation of parameter mismatch among pedestrians, which follows a normal distribution in
all cases.

χ =
2X0

π/ωi
=

2

π
X0ωi, (2.15)

the perturbation to the timing of the next step is approximately ∆t = ∆X/χ, hence the

time of the next step is given by

ts = ts−1 +
π

ωi
+

∆X

χ
= ts−1 +

π

ωi

[
1 +

Y 2
0 − {y(i)(t−s )− p(i)(ts−1)}2

2X2
0

]
.

2.1.1.3 Model 3: Rocking inverted pendulum.

We have also implemented the autonomous walking model proposed and studied by Belykh

et al. (48; 26) that displays stable limit cycle motion without the need for any control. Here

H = λ
[
ẏ2 +

g

L

{
a2 − (y − pcsgn(y))

2
}]
ẏ − g

L
(y − pcsgn(y)), (2.16)
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where, in contrast to Models 1 and 2, the lateral position of the CoP of the foot p is a

fixed margin, denoted by constant pc. Here, λ is a damping parameter, a is a parameter that

controls the amplitude and the period of the limit cycle. In the absence of bridge motion,

the amplitude and period of the limit cycle can be calculated explicitly. (48)

Unlike Models 1 and 2, the times at which the system with foot force (2.16) switches legs

depends on the lateral motion of the center of mass, rather than the forward walking speed.

That is, leg transition occurs whenever y crosses zero. Thus, the walking frequency adapts

in the presence of bridge motion.

2.1.1.4 Asymptotic derivation of negative damping criterion.

Our aim is to derive a general expression for the total bridge damping for a general model of

the form (2.7), as a function of the number of pedestrians. Hence we seek to find the number

of pedestrians Ncrit required for instability. In this section all frequencies are assumed to be

angular frequencies in units of radians per second. We shall discover that Ncrit = O(ε−1),

hence it will be convenient in what follows to write

N = νε−1, where ν = O(1). (2.17)

We shall assume that the forward motion of the pedestrian’s center of mass can also be

described by a single degree of freedom z(i). Thus the general dimensionless model can be

written in the form:



24

ith-pedestrian lateral motion:

ÿ(i) +H(i)(x, ẋ, y(i), ẏ(i), z(i), ż(i)) = −ẍ, (2.18)

ith-pedestrian forward motion:

z̈(i) +G(i)(y(i), ẏ(i), z(i), ż(i)) = 0, (2.19)

single lateral bridge mode:

ẍ+ ε2ζΩẋ+ Ω2x = ε2
N∑
i=1

H(i)(x, ẋ, y(i), ẏ(i), z(i), ż(i)). (2.20)

Here G(i) is a general nonlinear function of its arguments and, like H(i), is typically

nonsmooth.

In the absence of bridge motion, we assume that the pedestrian dynamics

ÿ(i) +H(i)(0, 0, y(i), ẏ(i), z(i), ż(i)) = 0, z̈(i) +G(i)(y(i), ẏ(i), z(i), ż(i)) = 0

admits an asymptotically stable limit cycle with period Ti = 2π/ωi :

y(i) = y
(i)
0 (t), y

(i)
0 (t) = y

(i)
0 (t+ Ti), z

(i)
0 (t) = χt+ z

(i)
0 (t+ Ti).

where y0 and z0 are periodic functions of time, and χ is the average forward velocity of the

pedestrian’s center of mass. Moreover, we suppose that

H(i)(0, 0, y
(i)
0 , ẏ

(i)
0 , z

(i)
0 , ż

(i)
0 ) = h

(i)
0 (t), and G(i)(y

(i)
0 , ẏ

(i)
0 , z

(i)
0 , ż

(i)
0 ) = g

(i)
0 (t)

are Ti-periodic functions.

We begin with a technical, detuning assumption that simplifies the analysis, namely that
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each pedestrian has an independent frequency ωi, and that there exists a constant R > 0

such that

min
i ̸=j

|ωi − ωj| > Rε, min
i

|ωi − Ω| > Rε. (2.21)

We look for a coupled solution to the system (2.18)–(2.20) as an asymptotic expansion

in ε≪ 1 of the form

x = εx1(t) + ε2x2(t) + . . . , y(i) = y
(i)
0 (t) + εy

(i)
1 (t) + . . . , z(i) = χt+ z

(i)
0 (t) + εz

(i)
1 (t) + . . . .

For ease of notation, we shall let ẋ = u, ẏ = v, ż = w and drop the superscript (i) in what

follows, providing the meaning is clear. Also, let us define the vector ξ = (x, u, y, v, z, w)

and let ξ0 = (0, 0, y0, v0, χt+ z0, c+w0) be the unperturbed limit-cycle motion. Now we can

formally expand the functions H and G as power series

H = h0+
6∑

k=1

hξk(ξk−ξk0)+O(|ξ−ξ0|2), G = g0+
6∑

k=1

gξk(ξk−ξk0)+O(|ξ−ξ0|2). (2.22)

Note that the coefficients hξk , and gξk represent partial derivatives of H and G with

respect to their subscripted arguments, evaluated along the unperturbed solution y = y0(t),

z = χt+ z0(t). Hence each of these coefficients is a T -periodic function of time.

First-order solution. Substitution of the zeroth-order solution into (2.20) yields, to lead-

ing order,

ẍ1 + Ω2x1 = 0, (2.23)
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where we have used the assumption (2.21) that the pedestrians are uncorrelated to assume

N∑
i=1

h
(i)
0 (t) ≪ O(ε−1).

The solution to (2.23) is the free vibration of the bridge, which can be written in the

form

x1(t) = X(τ) cos(Ωt+ ϕ(τ)), (2.24)

where the amplitude X and phase ϕ are allowed to be functions of a slow time variable

τ = εt.

Substitution of x1 into (2.18) and (2.19) using (2.22) yields, to leading-order in ε,

(
ÿ1
z̈1

)
+

(
hy hz
gy gz

)(
y1
z1

)
+

(
hv hw
gv gw

)(
ẏ1
ż1

)
=

(
Ω2 − hx Ωhu

0 0

)(
X(τ) cos[Ωt+ ϕ(τ)],
X(τ) sin[Ωt+ ϕ(τ)].

)
.

(2.25)

This is a linear system with periodic coefficients and periodic forcing. It can be solved

as the sum of free and forced vibration terms. Under the assumption that ωi ̸= Ω, and that

the limit cycle in the absence of bridge motion is asymptotically stable, the free vibration

part must decay to zero for large times. The only non-decaying part comes from the forced

vibration. We find approximate expressions for this term by averaging the periodic functions

hξ and gξ. Let an overbar represent the average of a quantity over each period T . That is

h
(i)

ξk
:=

1

Ti

∫ Ti

0

∂H(i)

∂ξk

∣∣∣∣
x=0,y=y

(i)
0 ,z=χt+z

(i)
0

dt, g(i)xk :=
1

Ti

∫ Ti

0

∂G(i)

∂ξk

∣∣∣∣
x=0,y=y

(i)
0 ,z=χt+z

(i)
0

dt.
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Then the solution for the forced vibration problem can be written in the form

y1(t) = X(τ)(yc cos[Ωt+ ϕ(τ)] + ys sin[Ωt+ ϕ(τ)] + yr(t)), (2.26)

z1(t) = X(τ)(zc cos[Ωt+ ϕ(τ)] + zs sin[Ωt+ ϕ(τ)] + zr(t)) (2.27)

where yc,s, zc,s are constant amplitudes of cosines and sines of period T , and yr and zr are

remainder terms that contain all other harmonics.

Expressions for yc,s, zc,s can be written in closed form

yc =
DΩ2 −Dhx −BΩhu

AD −BC
, ys =

AΩhu − CΩ2 + Chx
AD −BC

,

zc = −Z2 yc + Z1 ys, zs = −Z2 yc + Z1 ys

where

A = hy − Ω2 − Z1hz − Z2Ωhw, B = Ωhv − Z1Ωhw + hzZ2,

C = −Ωhv + hwΩZ1 − hzZ2, D = hy − Ω2 − hwΩZ2 − hzZ1,

Z1 =
Ω2(gvgw − gy) + gygz

Ω4 + ω2g2w − 2Ω2gz + g2z
Z2 =

Ω2gv − Ω(gygw − gvgz)

Ω4 + ω2g2w − 2Ω2gz + g2z
.

Second-order solution. Substitution of the O(1) solution into bridge equation (2.20) at
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second order yields

ẍ2 + Ω2x2 =
N∑
i=1

h
(i)
0 + ε

N∑
i=1

h
(i)
1 − [ẋ′1 + 2ζΩẋ1], (2.28)

where ′ means differentiation with respect to the slow time τ and

h
(i)
1 = h(i)x x1 + h(i)u ẋ1 + h(i)y y

(i)
1 + h(i)v ẏ

(i)
1 + h(i)z z

(i)
1 + h(i)w ż

(i)
1 .

We can now substitute the form of x1 from (2.24) and of y(i)1 and z
(i)
1 from (2.27) for each

pedestrian i, and seek the general solution to the forced vibration problem.

In order to find a consistent asymptotic solution, under the formalism of the method of

multiple scales (59), we must avoid secular terms on the right-hand side of (2.28). That

is the components of cos(Ωt + ϕ) and sin(Ωt + ϕ) in the forcing term must vanish. Let us

consider the three terms on the right-hand side (2.28) in turn.

Consider first the term
∑N

i=1 h
(i)
0 . Here the assumption (2.21) about frequency separation

means that there can be no contribution to the secular terms from this sum. Next consider

the term ε
∑N

i=1 h
(i)
1 . At first, this seems to be at lower order and so is unlikely to contribute.

But, recalling the scaling (2.17) that N = O(1/ε) it may be that there is a cumulative

contribution from each term in the sum that can contribute at the required order. By

performing a spectral decomposition of the term h
(i)
1 we find the components of cos(Ωt+ ϕ)

and sin(Ωt+ ϕ) to be

cos(Ωt+ ϕ) : X
[
h
(i)

x + (h
(i)

y y
(i)
c − Ωh

(i)

v y
(i)
s ) + (h

(i)

z z
(i)
c − Ωh

(i)

w z
(i)
s )
]
= X

[
h
(i)

x + κ(i)y + κ(i)z

]
,

sin(Ωt+ ϕ) : X
[
−Ωh

(i)

u + (h
(i)

y y
(i)
s + Ωh

(i)

v y
(i)
c ) + (h

(i)

z z
(i)
c + Ωh

(i)

w z
(i)
c )
]
= X

[
−Ωh

(i)

u + σ(i)
y + σ(i)

z

]
.

Note that each of these coefficients is a constant for each pedestrian, because we already
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averaged out the period-Ti components in the definition (2.27). Therefore we can sum each

of these N terms individually so that

ε

N∑
i=1

[
h
(i)

x + κ(i)y + κ(i)z

]
= εN

[
ĥx + κ̂y + κ̂z

]
, ε

N∑
i=1

[
h
(i)

u + σ(i)
y + σ(i)

z

]
= εN

[
−Ωĥu + σ̂y + σ̂z

]
,

where .̂ means averaging over all pedestrians

ĥx =
1

N

N∑
i=1

h
(i)

x , ĥu =
1

N

N∑
i=1

h
(i)

u , etc.

Finally, the third term on the right-hand side of (2.28) is

ẋ′1 + 2ζΩẋ1 = −ΩX ′(τ) sin(Ωt+ ϕ(τ))− ϕ′XΩcos(Ωt+ ϕ(τ))− 2ζXΩ2 sin(Ωt+ ϕ(τ)).

Recalling that Nε = ν, the vanishing of the secular terms on the right-hand side of (2.28)

thus implies

component of cos(Ωt+ ϕ) : 0 = Ωϕ′X + νX
[
ĥx + κ̂y + κ̂z

]
,

component of sin(Ωt+ ϕ) : 0 = ΩX ′(τ) + 2ζXΩ2 + νX
[
−Ωĥu + σ̂y + σ̂z

]
.

(2.29)

We can rewrite (2.29) in the form

ϕ′ = − ν

Ω
(ĥx + κ̂y + κ̂z), (2.30)

X ′(τ)

X
= −2ζΩ− ν

Ω
(−Ωĥu + σ̂y + σ̂z). (2.31)

The right-hand sides of the equations (2.30) and (2.31) describe the slow adaptation to the

frequency and damping of the bridge due to the presence of the pedestrians.
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Each of these terms has three components. These represent respectively: (I) adaptation

due to direct dependence of the foot force H on the bridge motion, neglecting any change in

the timing of footsteps (the terms ĥx and ĥu); (II) the component at the bridge frequency

that is present in the adjustment to the pedestrian lateral foot placement (the terms κ̂y and

σ̂y); and (III) the component at the bridge frequency that is present in the adaptation to

the pedestrian’s forward motion (the terms κ̂z and σ̂z).

Let us examine the damping equation (2.31). Note that the term of the right-hand side

is the O(ε)-component of the total negative damping of the bridge. That is, in the notation

of (2.8)

σ1 = −ĥu, σ2 =
σ̂y
Ω
, σ3 =

σ̂z
Ω
.

Note that σ1 is identical to the condition derived in (38; 39) and expressed analytically in

Ref. (50) for the negative damping contribution for Model 1, here. The terms σ2 and σ3 are

other terms that should be considered at the same order for a general foot-force model.

2.1.1.5 Model implementation.

Parameters that characterize pedestrians’ walking frequencies were chosen in a biomechani-

cally realistic range. Bridge parameters were chosen close to those of the London Millennium

Bridge. Table 2.1 gives the complete set of parameter values used in the simulations. Nu-

merical simulations were performed using bespoke software written by us, mostly in Python,

with some use of MATLAB and Java. Discretization was performed using the default 4th-

order adaptive Runge-Kutta method of MATLAB and the LSODA implementation in scipy’s
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solveivp.

2.2 Review of observational and experimental evidence

When crossing a bridge, most people take for granted that the bridge will remain steady

and support them, but history shows that this is not always the case. The first documented

pedestrian bridge incident dates back to April 12, 1831 when one of Europe’s first suspension

bridges, England’s Broughton Suspension Bridge, collapsed due to dynamical instability

induced by marching troops. The prevailing wisdom since is that soldiers should avoid

marching in step, in case their stepping frequency might resonate with a natural (vertical)

vibration frequency of the bridge. It is now established practice that soldiers are given the

command to “break step” upon crossing a bridge to avoid just such a phenomenon. Vertical

vibrations of bridges due to random excitation from pedestrians are still of concern, but

prior to the year 2000 lateral vibrations were given little attention. This was because, for

normal walking, the lateral component of the ground reaction force is an order of magnitude

smaller than the vertical component, and, in the absence of coherence between pedestrians,

the resulting bridge responses were assumed to be negligible.

The London Millennium Bridge was designed as a collaboration between engineers, ar-

chitects, and artists, as a very low-profile suspension bridge. Without visually intrusive

vertical cables, the intention was that the structure would appear from the side to be like

a mysterious long blade, spanning the river with little visible support. The slenderness of

the span contributed to the bridge having greater flexibility than most bridges in the lateral
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direction, giving natural frequencies similar to typical pedestrian stride frequencies, while its

relatively low mass also made it susceptible to significant vibrations.

In fact, this same phenomenon of a lateral instability of pedestrian bridges had been seen

before, and there is evidence going back to 1972. The complete list of pedestrian bridges

that are known to have developed lateral oscillation due to pedestrian motion runs to at

least 28 separate examples; see Table 2.2 for a list of those for which there are detailed

scientific reports and Table 2.3 for others for which quantitative evidence is not available.

Note in the final column of these tables the scant evidence for pedestrian synchronization

being observed.

The geography of such crowd-induced instability events is truly worldwide. It includes

the massive Bosphorus Bridge linking Asia and Europe (60) and an icon of Lower Manhattan,

the Brooklyn Bridge which started swaying as a crowd of pedestrians trudged across during

the 2003 blackout. When packed shoulder to shoulder with pedestrians, the bridge started

vibrating making pedestrians lose balance and feel seasick (61). The Brooklyn Bridge repeat-

edly experienced crowd-induced instabilities during the 2011 protest and 2011 New Year’s

celebration (44) raising the concern that “Manhattans’s emergency exit” - as the bridge is

sometimes called – is not built for crowds.

Coincidentally, one of the more recent examples of lateral pedestrian instabilities is Squibb

Park Bridge, also in Brooklyn (it is a city of bridges, after all) (62). Opened in 2013, this

$3.9-million wooden park bridge was purposefully designed to bounce lightly but over time

the increased bouncing and lateral swaying became a safety concern for pedestrians (63).
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Three years after it was initially closed for $2.5-million repairs, the Squibb Park Bridge

reopened in April 2017 (64) but was later demolished in 2019 amid concerns of its structural

integrity.

While the evidence of bridge instabilities is often anecdotal, some direct measurements

of bridge response characteristics are available for recent crowd-induced instability events

involving the Toda Park Bridge in Japan (66), Solférino Bridge in Paris (76), the London

Millennium Bridge (29), the Maple Valley Great Suspension Bridge in Japan (32), Singapore

Airport’s Changi Mezzanine Bridge (28), the Clifton Suspension Bridge in Bristol, UK (27),

and the Pedro e Inês Footbridge in Portugal (30).

A particularly notable observation was the instability due to crowds returning from an

annual hot-air balloon festival across Bristol’s iconic Clifton Suspension Bridge (27). Since

vibrations of the bridge had been observed during previous crowd events, Macdonald was

commissioned by the bridge’s operating trust to fit accelerometers to record the vibrations

as the instability occurred. Observations showed that two lateral modes of vibration were

excited simultaneously by the large pedestrian crowd, neither of which was tuned to the

average walking frequency. Since then, the trust has stipulated that the bridge must remain

closed to all pedestrians and other traffic at peak times during the balloon festival.

2.3 Video evidence of pedestrian-bridge interaction in Nepal

Figure 2.5 provides evidence from the personal experience of Prof. Belykh while crossing

Dudh Kosi River bridges on the way to Mount Everest in Nepal. These unstable bridges
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Bridge Country Year re-
ported

Bridge
type

Length
(m)

Frequency
(Hz)

Observation Sync evidence

Erlach Footbridge (65) Germany 1972 several
span con-
tinuous
girder;
main span
supported
by arch

110 1.12 strong response with
300-400 crossing
pedestrians

no evidence

Toda Park Bridge (66) Japan 1993 cable
stayed;
steel box-
girder
deck

179 0.9 ≤2000 pedestrians
(2.1 ped/m2); am-
plitude in excess of
0.01m; increase of
vibration frequency
during moderate
occupancy

≤ 20% synchronized
pedestrians estimated
from video analysis

Léopold-Sédar-
Senghor Footbridge
(67)

France 1999 shallow
steel arch

140 0.81 exponential growth
once amplitude
reached 0.1 to 0.15
m/s2

no evidence

London Millennium
Bridge (29; 24)

UK 2000 shallow
suspension

325 0.5, 0.8,
1.0

1.3 to 1.5 ped/m2;
1.86 to 2.45 m/s2 max
acceleration; pedestri-
ans alternately tuned
and detuned their pace
with lateral bridge mo-
tion

no direct evidence;
vertical pedestrian
force random while
lateral force correlated
with bridge motion

Lardal Footbridge (68) Norway 2001 shallow
glue-
laminated
timber
arch

91 and
two ap-
proach
spans of
13

0.83 > 1m/s2 for 40 pedes-
trians

no evidence; evi-
dence of saturation
(self-limiting) effect

Maple Valley Great
Suspension Bridge
(69)

Japan 2002 suspension 440 0.88, 1.02 0.045m max displace-
ment (1.35m/s2);
0.7 − 1.3ped/m2

frequency synchro-
nization and “tuned
and not tuned” effect
from accelerometers
on pedestrians’ waist

Geneva Airport Foot-
bridge (70)

Switzerland 2002 reinforced
concrete
multi-span

94.5 1.0 one-directional traffic;
“bordered on panic”
while rapidly evacuat-
ing bridge

no evidence

Changi Mezzanine
Bridge (28)

Singapore 2002 shallow
steel arch

140 0.9 0.055m (0.17m/s2) no evidence

Clifton Suspension
Bridge (27)

UK 2003 suspension 214 0.53, 0.77 1.1 ped/m2; max 0.2
m/s2 = 0.011m

evidence of a lack of
synchronization

Pedro and Ines Foot-
bridge (30)

Protugal 2006 multispan
with shall
steel main
arch

275 0.91 abrupt amplitude
increase once critical
number of pedestrian
reached; max 0.2 m/s2

for 73 ped and 1.2
m/s= 0.04m for 145
ped

no evidence

Simone de Beauvoir
Footbridge (71)

France 2006 shallow
arch with
tension
links

304 0.56, 1.12 0.03m for 80-100
pedestrians with 20
synced; 0.06m for 60
synced pedestrians

tests with imposed
synchrony showed
saturation effect

Cragside Bridge (72) UK 2006 wrought
iron arch

69 2.8 increase of vibration
frequency during
pedestrian loading;
max. acceleration am-
plitude 13.9 m/s2 for
9 pedestrians walking
at 110 steps/min

tested under inten-
tional synchronization

Weil-am-Rhein Foot-
bridge (73)

Switzerland 2007 arch 230 0.95 1.7m/s2 = approx.
0.08m peak-to-peak
with 800 people

limited tuning effect
during crowd load
testing and argued
to propagate in the
crowd

Squibb Park Bridge
(63; 74)

USA 2013 underslung
suspension

122 0.84 N/A N/A

Luiz I Bridge (75) Portugal 2020 double-
deck
metallic
truss incor-
porating
parabolic
arch

391.5, 172 0.73, 0.95 instability can be trig-
gered independently
at two vibration
modes

no evidence

Table 2.2 Reported cases of lateral bridge instability due to the action of walking pedestrians.
The final column documents any evidence presented for pedestrian synchronization.
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Bridge Country Year Observation
Angers Bridge (77) France 1850 collapsed while a battalion of soldiers was marching across the bridge,

killing 226 of them; the bridge movement "involuntarily gave the soldier
a certain cadence"

Brooklyn Bridge (78) USA 1880 swaying of catwalks during construction
Wuhan Yangtze Bridge (79) China 1957
Kiev suspension bridge (80) Ukraine 1958
Bosporus Bridge, Istanbul (60) Turkey 1973 100,000 pedestrians on opening day caused it to sway
Auckland Harbour Bridge (29) New Zealand 1975 0.67Hz oscillation during public demonstration
Groves Bridge, Chester (29) UK 1977 100m suspension bridge filled with rowing regatta spectators
NEC, Birmingham (29) UK 1990 0.7Hz oscillations of 45m bridge linking exhibition center to railway

station after major events
Expo 1998 footbridges, Lisbon
(81)

Portugal 1998 “acceleration in horizontal vibrations can go over adequate limits with
just a few pedestrians.”

Alexandra Bridge, Ottawa (24) Canada 2000 crowd due to firework display
Brooklyn Bridge (61) USA 2003 “Packed shoulder to shoulder with pedestrians” during blackout; “feeling

seasick, having to weave as they walked”, couldn’t keep balance if stood
still.

Bosphorus Bridge, Istambul
(82)

Turkey 2010

Bassac River Bridge (83) Cambodia 2010 456 people died in stampede after panic caused by swaying of bridge
filled with over 7000 pedestrians trying to reach popular water festival

Westminster Bridge, London
(44)

UK 2010

Brooklyn Bridge (44) USA 2011

Table 2.3 Other reported instances of lateral pedestrian-induced bridge vibrations

are prone to significant lateral swaying which forces trekkers to adjust their footsteps, often

in an unusual way (see the videos corresponding to Fig. 2.5 a,b; yet, showing no signs of

trekkers’ phase locking. (see the video corresponding to Fig. 2.5 c).

2.4 Numerical simulation algorithms

2.4.1 Procedure for adding pedestrians on the bridge

Initially, the bridge-pedestrian system is simulated with a crowd size of two pedestrians.

Every Tadd of simulation time, we insert another pedestrian with a uniform random phase

initialized to the limit cycle solution of the model in the absence of bridge motion. Subse-

quently, we advance the simulation Tadd seconds, compute the maximum amplitude of the

bridge and mean order parameter of the pedestrians over the current interval, and save the

entire state.



36

a b

c

Figure 2.5 Snapshots from videos of trekkers crossing unstable bridges over the Dudh Kosi
River in Nepal. The full videos are available in the repository at https://doi.org/10.5281/
zenodo.8132826 (84). A trekker places the feet in a highly irregular manner in response to
lateral bridge movement (video 2). Notice the right foot traveling beyond the midline of the
body; this leg crossing is an uncommon behavior, yet, it is accounted for in Models 1 and
2. (b). A trekker with a heavy backpack struggles to move forward on a laterally unstable
bridge and makes significant foot placement adjustments to maintain his balance (video 3).
(c). A group of trekkers walking across the same unstable bridge as in (b), with no visible
signs of phase-locking in their stepping behavior (video 4).

https://doi.org/10.5281/zenodo.8132826
https://doi.org/10.5281/zenodo.8132826
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2.4.2 Implementation of negative damping criterion

2.4.2.1 To compute σ1:

According to the formula (2.9), for each pedestrian, we need to compute

hu =
1

T

∫ T

0

∂H

∂u
dt,

where u = ẋ. We consider specifically the case of Models 1 and 3 in which there is a jump

in the force H. Specifically, for t ∈ (ts−1, ts+1) we can write

H(y, t) = Hs(y) + Θ(t− ts)J(y; ts, ts−1),

where Θ is the Heaviside step function,

Hs(y) =

√
g

L
(p(ts−1)− y(t)) , J(y(t); y(ts), ẏ(ts)) =

√
g

L
(p(ts)− p(ts−1))

and p(ts) is given by (2.13). The principle is easily generalized to any function H(y) with

jumps at t = ts. That is H during step s is given by Hs and J = Hs+1−Hs. For the specific

case of Models 1 and 2, we can write

∂H

∂u
=
∂H

∂y

∂y

∂u
+

∂H

∂t
ẍ = −

√
g

L

∂y

∂u
+ δ(t− ts)J(ts)ẍ.

Hence ∫ t−s+1

t+s−1

∂H

∂u
dt = J(y(ts))−

∫ t−s+1

t+s−1

√
g

L

∂y

∂u
(t) dt .

That is, we compute the integral as if the singularity were absent, provided we add an extra

jump term every time t = ts for s = 1, 2, 3, . . .
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It remains to show how to compute

η(t) :=
∂y

∂u
(t) from ts−1 to ts.

Note that

d2η

dt2
=

∂

∂u

(
∂2y

∂t2

)
=

∂

∂u
(−ẍ−H(y)) = −u̇ ü− ∂H

∂y
η

Hence η(t) satisfies the variational differential equation

η̈ =

√
g

L
η − ü u̇ subject to η(ts−1) = η̇(ts−1) = 0. (2.32)

To compute σ1 for the particular case of Model 3, we proceed similarly; in this case, note

that the jump term

δ(y)J(y, ẏ, t) = δ(y) lim
ε→0

[−λ2ν2ẏ(y(t+ ε)− pcsgn(y(t+ ε)))2 +
g

L
(y(t+ ε)− pcsgn(y(t+ ε)))

+ λ2ν2(y − pcsgn(y(t))2 − g

L
(y(t)− pcsgn(y(t)))]

= δ(y)
[
4λ2ν2pcysgn(ẏ) + 2

g

L
(pcsgn(ẏ))

]
= δ(y)

[
2
g

L
(pcsgn(ẏ))

]

is due to the presence of the discontinuity in sgn(y) at each step and takes a similar form

to that of the jump term of Model 1 in the case of a fixed step width pc.
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Likewise, we may formulate a second-order variational equation, akin to (2.32), for the

continuous part of Hẋ using the multivariate chain rule:

η̇(t)− u̇ü− ηHy − η̇Hẏ, where η(t) = ∂uy(t).

Within the pedestrian step, Hẏ and Hy have closed form and may be used to compute

σ2 (see next section).

2.4.2.2 To compute σ2.

Here, according to (2.10), for each pedestrian we need to compute yc ys, hy and hv. By

definition, yc and ys would be the Fourier cosine and since coefficients, respectively, of the

O(ε) components of y(t), assuming that the dominant bridge motion is cos(Ωt). Thus, given

bridge motion x(t), we have

yc =
1

AT

∫ T

0

x(t)y(t)dt, ys = − 1

ΩAT

∫ T

0

ẋ(t)y(t)dt, (2.33)

where

A2 =

∫ 2π/Ω

0

x(t)2dt.

The integrals hy and hv can be computed similarly to hu. In particular, for Models 1 and

3 we get

∂H

∂y
=
dH

dy
+

∂H

∂t
ÿ = −

√
g

L
+ δ(t− ts)J(ts)ẏ.
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and

∂H

∂v
=
∂H

∂y

∂y

∂v
+

∂H

∂t
ÿ = 0 + δ(t− ts)J(ts)ÿ.

Hence

h(y) = −
√
g

L
+

1

ts − ts−1

J(ts)ẏ(ts)

and

hu =
1

ts − ts−1

J(ts)ÿ(ts).

2.4.2.3 To compute σ3.

The formula (2.11) requires evaluation of the forward dynamics, specifically a function z(i)(t)

which is the fluctuating component of the pedestrian’s progress Z(i)(t):

Z(i)(t) = χ(i)t+ z(i)(t),

where χ(i) is their average forward velocity. However, none of the models we consider have

an equation for the forward dynamics z(t).

Instead, Models 2 and 3 have an update rule that generates the time ts+1 as a function

of ts. Because everything is averaged over a cycle, we can assume that z(t) is a continuous

variable that at t = ts gives the perturbation to the position along the bridge span of the

pedestrian’s center of mass from its position if it were walking at a constant velocity.

That is, we can assume that for t ∈ [ts, ts+1)

ż = ws, where ws =
ts−1 − 2ts + ts+1

ts+1 − ts
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So that z becomes a piecewise-linear function of time

z(t) = z(ts) + ws(t− ts), for ts ≤ t < ts + 1.

Then the functions zc and zs can be defined similarly to yc and ys above. Also

∂H

∂z
=
∂H

∂t

∂z

∂t
= δ(t− ts)J(ts)w for t = ts

and

∂H

∂w
=
∂H

∂t

∂w

∂t
= 0.

Hence we need only consider the first term in (2.11), which necessitates computation of zs.

Analogously with (2.33), we have

zs = − 1

ΩAT

∫ ts

ts−1

wẋ(t)tdt.

2.4.3 Calculations of the scatter plots and analytical curves in Fig. 2.4.

To generate the scatter plots Fig. 2.4 (top) and estimate average damping coefficient per

pedestrian σ̄1, we simulate the pedestrian system (2.5) with imposed bridge motion, wherein

the bridge is taken to be sinusoidal at its natural frequency, i.e.,

x(t) = Xb sinΩt,

where Xb = 0.006m is the constant amplitude of the imposed bridge motion. Only a

single pedestrian is placed on the bridge and the bridge’s acceleration is fixed to the second

derivative of the sinusoid: ẍ = −XbΩ
2 sinΩt, regardless of the pedestrian’s foot force. This

scenario accurately describes the case for a low mass ratio, such that the force from an
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individual pedestrian has a negligible effect on the structure. We perform this simulation

over a uniform 1200-point grid of the pedestrian and bridge natural frequencies ω and Ω,

where Ω ranges from 0.25 to 3 Hz and ω ranges from 0.6 to 1.2 Hz. At each point of the grid,

we compute the mean frequency of the pedestrian and bridge movement. This numerically

calculated frequency ratio [Ω/ω] may differ from the ratio of natural frequencies Ω/ω due to

the adaptation of the pedestrian stride to the bridge motion. This yields the non-uniform

distribution of the blue points across parameter range [Ω/ω] in Fig. 2.4 as the pedestrian

frequency adaptation promotes specific frequency ratios of [Ω/ω] .

For each frequency ratio [Ω/ω], we numerically compute the force H(1) by simulating

equation (2.5) for ÿ1 over 50 footsteps for Model 2 and over 10,000 steps for Model 3. To

calculate the component of H(1) in phase with the bridge velocity, we modify the formula

(9) from Ref. (39) so that:

Ĥu =
2

ts − ts−1

ts−ts−1∫
0

H(1) cosΩt dt.

We then compute a histogram of Ĥu, parametrized by a discrete set of numerically computed

phase offsets φ of the pedestrian step time. To calculate the damping coefficient of the

pedestrian, we use the histogram to calculate the expected value Hu of Ĥu for each φ. We

then apply the scaling in equation (11) from Ref. (39) to the resulting average. Thus, we

obtain the following formula:

σ1 = − Hu

XbΩ
= − 1

πXbΩ(ts − ts−1)

2π∫
0

ts−ts−1∫
0

H(1) cosΩt dtdφ. (2.34)
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This formula is used to generate the blue points in the top panels of Fig. 2.4 for different

frequency ratios [Ω/ω].

The analytical curve for σ1 depicted by the red solid line in the top plot of Fig. 2.4 is

calculated via

σ1 =
mg

L
A2 ω

πΩ2

(
Ω

√
L

g
a2 − a1

)
, (2.35)

where A = 1
1+ g

LΩ2
, a1 = 1− e

π
ω

√
g
L cos πΩ

ω
, and a2 = e

π
ω

√
g
L sin πΩ

ω
.

Formula (2.35), derived in Ref. (50), estimates the negative damping contribution of

the pedestrian described by Model 1. As a result, it does not account for the effect of step

timing adaptation and, therefore, it yields estimates that differ from the numerical results

for Model 2 that does allow for pedestrian step timing adaptation.

We also use formula (2.35) to estimate the critical crowd Ncrit as a function of the

frequency ratio Ω/ω (the red solid line in the bottom plot of Fig. 2.4). This is done by setting

the total bridge damping cT = 0 in (2.8) and neglecting the other damping coefficients σ(i)
2

and σ(i)
3 . Therefore, we obtain the condition

2εζΩ +Ncritσ1/M = 0

which yields the following estimate for the critical crowd size

Ncrit = −2εζΩM

σ1
, (2.36)
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where σ1 is estimated via (2.35). The analytical expression (2.36) estimates the critical

number of pedestrians Ncrit described by Model 1 rather precisely. However, it becomes

less accurate for pedestrians described by Model 2, and especially by Model 3 in which σ
(i)
2

plays a significant role (see Fig. 2.6 for the comparison of the damping terms σ(i)
1 and σ(i)

2 in

Models 2 and 3). For this reason, the curve (2.36) is plotted in the bottom plot of Fig. 2.4

for Model 2 only.

2.5 Further simulation results

2.5.1 Faster addition of pedestrians to the bridge

To better understand the role of time interval Tadd at which pedestrians are added sequen-

tially to the bridge, we perform numerical simulations similar to those reported in Fig. 2.3

but with shorter time interval Tadd = 10 s. In this case, the pedestrian-bridge system has

a narrower time window for transient effects before the addition of the next pedestrian. As

a result, one can expect that the crowd will have grown larger by the time the vibrations

have increased in amplitude significantly. The simulations displayed in Fig. 2.6 confirm this

intuition and indicate the widening of the instability region (pink) preceding the onset of

weak (Model 2) and strong synchronization (Model 3).

To elucidate the contributions of the damping per pedestrian terms σ1, σ2, σ3, we also

include the additional plots (third row) in Fig. 2.6. These plots indicate that while σ1

is the only factor that matters for the onset of instability for non-adaptive Model 1, σ2,

that accounts for the adjustment of pedestrian lateral gait timing contributes to the overall
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Figure 2.6 Simulations as in Fig. 2.3 in which pedestrians are sequentially added at shorter
intervals of Tadd = 10 s. Notice the widening of the pink region corresponding to the
onset of bridge oscillations without pedestrian phase locking. The plots for the damping per
pedestrian terms σ1,2,3 specify the contribution of each term to the onset of bridge instability.
Other parameters are as in Fig. 2.3.

negative damping to a lesser (Model 2) and greater (Model 3) degree. In all cases, we find

that σ3 makes little contribution.
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2.5.2 Extreme worst-case, complete resonance

To provide further evidence that pedestrian synchronization is not necessary for bridge in-

stability, we consider the worst-case scenario in which the pedestrians have identical natural

stride frequency ω (but initially random phase) which also coincides with the bridge natural

frequency Ω. It seems to be the ideal resonance scenario for the emergence of synchronization

among the pedestrians and with the bridge, and therefore, we could expect synchronization

to emerge at smaller crowd sizes and coincide with the onset of bridge instability. We also

note that this case violates the central assumption (2.21) that underlies the above asymptotic

derivation of the coefficients σ1,2,3.

The results are shown in Fig. 2.7. Despite violating the above assumption, observe that

the negative damping criterion still predicts the onset of bridge instability for Models 1 and

2. In particular, note how significant synchronization now occurs, after the onset of large

vibrations, for Model 2 with an order parameter greater than 0.5. For Model 3, the negative

damping criterion no longer provides accurate information, but note that the large increase in

negative damping at around 50-100 pedestrians precedes the onset of significant instability,

which in this case leads to complete synchrony (order parameter r = 1).

2.6 Role of different foot placement strategies: negative vs. positive damping

Figure 2.1 explains how bridge motion breaks the symmetry of the loading applied by mirror-

imaged walkers such that long-term averages need not equal zero. That is only part of the

explanation, as it does not consider the motion of the walkers’ centers of mass nor the
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Figure 2.7 Simulations as in Fig. 2.3 but for the worst-case scenario of pedestrians with the
same ω = 5.655 rad/s (S.D. = 0) and the perfect resonance ratio Ω/ω = 1 corresponding to
the yellow point in Fig. 2.4. Other parameters are as in Fig. 2.3 .

various foot placement strategies that may be adopted to maintain balance. On a stationary

platform, a walker’s center of mass will oscillate laterally with a dominant component at

half the footfall frequency. Without changing the footfall frequency, the platform motion

introduces a second frequency inducing the walker to adopt a two-frequency quasiperiodic

pattern of footfall placement (Fig. 2.8).
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Figure 2.8 Upper figures show foot placement patterns (short black lines left foot, short blue
lines right foot) for Model 1. The first is for a stationary platform, whilst the second and
third are for a bridge oscillating at 6 mm amplitude at 0.4 Hz, with walkers adopting Hof’s
balance laws based on relative and absolute velocity respectively. The bridge motions induce
quasiperiodic placement patterns. (The walker’s center of mass and the bridge displacements
are shown in red and green respectively.) The lower figures show the corresponding forces
applied to the bridge.

The corresponding forces applied to the bridge in these three cases are also shown in

Fig. 2.8. Since bridge motions are small, the forces are similar in all three cases. By taking

the difference in forces, Fig. 2.9 highlights the small change in the applied forces that are the

result of the bridge motion and correlates these with bridge velocity. The walker adopting

the relative velocity control law creates forces that are negatively correlated with bridge

velocity, leading to a positive damping effect. By contrast, the additional forces generated

by the walker adopting the absolute velocity balance law are positively correlated with the

bridge velocity, leading to the negative damping effect which feeds energy into the bridge.

In summary, the bridge motions cause the walkers to adjust their foot placements which

induces small quasiperiodic forces which have a component at the bridge frequency. Depend-
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Figure 2.9 Upper: the change in forces that are the result of the bridge motions for the
walkers of Fig. 2.8. The bridge velocity is shown in red. Lower: the correlation between the
bridge velocity and the induced forces. The red lines indicate the average effective damping
coefficient σ1.

ing on the balance law adopted (and the frequency of bridge motion and other parameters),

the phases of these additional forces can either add or extract energy to/from the bridge.

Experimental evidence is limited as to which balance law is more realistic for a walker on a

moving platform, but the laboratory experiments augmented with Virtual Reality by Bocian

et al. (42) provide some evidence for the absolute velocity control law. Walkers following ei-

ther law could be present on the bridge. Also, the energy flows vary within different regimes

of the quasiperiodic motions, such that the short-term effective damping may vary markedly

from its theoretical long-term average value. Bridge designers should thus be aware that

there could be dangerous instances of the negative damping effect at any bridge frequency.

This is the underlying cause of the instability of footbridges and does not entail walkers

making any change to the frequency of their footsteps. Instead, gait widths are amplitude
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modulated, introducing complicated phase relationships between foot placements and bridge

motions, many of which have the effect of negative damping and feed energy into the bridge.

As bridge amplitudes grow, adjustment of footfall timing is an additional possibility and

this is included in Models 2 and 3. Potential outcomes include the now-classical Kuramoto

transition to synchronization, as well as phase-pulling phenomena where footfalls do not

fully synchronize to the bridge motions but spend proportionally longer at some relative

phase offsets (42; 44). Walkers who synchronize or exhibit phase pulling can add differing

amounts of energy to the bridge, depending on how their footfall phases relate to that of

the bridge’s velocity. Phase synchronization can be triggered by bridge motions excited by

the more fundamental mechanism of amplitude-modulated gait width, and this can lead

to dangerous amplification of the bridge motions. It may also be noted that there exist

parameter regimes where walkers synchronize at phases that lead to energy absorption or

where they synchronize with a certain phase but the amplitude of the forcing does not grow

indefinitely with the bridge amplitude, thereby limiting the bridge response. However, there

is insufficient evidence for this to be relied upon in bridge design.
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CHAPTER 3

Crowd Heterogeneity-Induced Instabilities of Footbridges

3.1 Introduction

The effects of human-to-human interaction on the onset of instability described in the previ-

ous chapter need to be better understood. Here, we demonstrate, using the model introduced

in (85) and modified to fit actual crowd data in (86), that, in the presence of such inter-

actions, increased heterogeneity of the footfall frequencies of a crowd of pedestrians on the

bridge (described via (2.12)) both significantly decreases the threshold crowd size required

for the onset of high-amplitude lateral vibration and leads to more significant partial syn-

chronization of the pedestrians’ step.

3.2 Methods

We further augment the inverted pendulum model introduced in Chapter 2, specifically

(2.12) with the step timing adaptation in (2.14): first, we introduce the variable z = [zx, zy]
T

of the pedestrian with sagittal COM position zx and lateral position zy. The base stride

frequency ω of each pedestrian then becomes time-dependent and is given by the polynomial

relationship observed in (87):

ω = fv(|| ż ||) = π
(
0.35 || ż ||3 −1.59 || ż ||2 +2.93 || ż ||

)
. (3.1)

Then in (2.14) the unperturbed step width

Y0 =
| bmin |

1− tanh(

√
g
L

2
π
ω
)
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and length

X0 =
0.36

f−1(E[ω0])
żx

are computed from the frequency and velocity. Exactly as in (86), zi, the position of the ith

pedestrian, evolves according to the second-order system:

z̈i = α(vd,i[0, 1]
T − żi) +

N∑
j=1,i ̸=j

Fdyn(zj − zi)[zi − zj] +
∑

w∈{1,−1}

Fstat(zx,i + wzwall)[w, 0]
T ,

where α is a relaxation coefficient, vd,i denotes the desired forward velocity of the ith pedes-

trian, zwall is equal to half the bridge’s span width (2 meters in the case of the London

Millennium Bridge), and

Fdyn(∆) = Ade
2r−||∆||

Bd

(
λ+

1− λ

2
(1 + ∆ · [0, 1]T )

)
+ Ae

2r−||∆||
Bd (3.2)

denotes the repulsive force on each pedestrian due to close interactions with other visible

pedestrians, and finally

Fstat(d) = Ase
r−|d|
Bs (3.3)

denotes the repulsive force due to the bridge railings as a function of their lateral displace-

ment d from the pedestrian COM (whose position is given by [zx, zy + y]). The parameter

r determines the desired avoidance radius of each pedestrian. The first term of Fdyn corre-

sponds to the repulsion of the pedestrian COM due to other pedestrians in its visual field,
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while the second term is due to very short-range interactions such as shoving. The remaining

system is unchanged from Chapter 2. Figure 3.1 depicts the magnitude of Fdyn as a function

of the position offset of pedestrian j from pedestrian i. The simulated bridge and crowd

were initialized using the same parameters and distributions as in Table 2.1. The Newton-

Raphson method was used to determine vd,i = f−1
v (ωi) from the initial pedestrian frequency

determined as in the previous chapter, which was also taken to be the initial forward velocity

of each pedestrian. For a range of crowd sizes from 80 to 190 pedestrians and for a range

of standard deviations σ of the pedestrian frequency in Hz from 0 (identical initial step fre-

quencies) to 1 (extreme heterogeneity), the pedestrian-bridge system with social force was

simulated for 20 seconds for each of 10 trials in which the initial crowd density, frequency,

state, and other parameters were randomly sampled from the distributions in Table 2.1. The

resulting bridge amplitudes and pedestrian step phase coherence were taken as distributions

over the 10 trials.

3.3 Results

Figure 3.2 shows the dependence of the structure’s lateral vibration amplitude and the

Kuramoto order parameter of the pedestrian step phase on both the number N of pedestrians

and the heterogeneity σ of the initial crowd stepping frequency. Figure 3.3 displays the

simultaneous dependence of the sample mean amplitude (over each trial) on both crowd

size and σ. It can be observed that the threshold effect for N reported in the previous

chapter and similarly in (26) exhibits a bistability that, in the presence of social force terms,
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Figure 3.1 Dynamic social forcing term Fdyn on the pedestrian i from pedestrian j as a function
of lateral (horizontal axis) and sagittal (vertical axis) displacement of the jth pedestrian from the
ith one. The effect of the ith pedestrian’s visual field is determined by the parameter λ. Here, as
in (86), Ad = 1.7, r = 0.31, Bd = 0.28, α = 0.5, Bs = 0.1, As = 5, and λ = 0.31; these parameters
are used throughout this chapter.

becomes highly sensitive to the precise initial configuration of the crowd. Furthermore,

the instability is more frequent and more pronounced when the pedestrian frequencies are

nonidentical; that is, the median amplitude and phase coherence of the bridge and crowd

grow directly as σ. This counter-intuitive phenomenon, an instance of disorder-promoted

synchrony, can be explained using the frequency-damping relationship depicted in Fig. 2.4.
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The degree of tuning of pedestrians to the bridge frequency is modified by the presence of

slow pedestrians, which inhibit the velocity of the pedestrians behind them in a cascade,

leading to a transient regime of “traffic jams” resulting in an adjustment of the pedestrian

velocity, and thus (by the relationship in (3.1)) a tuning of the pedestrian frequency to one

at which the pedestrians give more energy to the bridge. The precise temporal evolution

of the bridge-pedestrian frequency ratio distribution for a set of sample trajectories that

exhibit lateral vibration and its relationship to the curve in Fig. 2.4, is depicted in Fig.

3.4a as a ridge plot. A noticeable shift occurs directly before the onset of high-amplitude

oscillation of the bridge displacement, depicted in Fig. 3.4b over the same duration. This

shift causes most pedestrians to be negative dampers (i.e., having tuning ratios between the

two vertical lines). It places the most frequent pedestrian tuning ratio at almost exactly

the red dashed line, which corresponds to the most negative damping per pedestrian. After

the bridge becomes sufficiently unstable, the step timing adaptation shifts the tuning ratio

distribution to the left but still well within the regime of negative damping. The distribution

of velocities due to the social force determines the frequency shift and thus the instability;

these dynamics and the resulting traffic jams are depicted as snapshots in Fig. 3.5.
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(a) (b)

(c) (d)

Figure 3.2 (a) Bridge displacement amplitude distributions and (b) distribution of the Kuramoto
order parameter r of the phase t−ts

ts+1−ts of each pedestrian step as a function of number of pedestrians
N , each over ten trials. The initial stride frequency standard deviation σ = 0.3 and all other initial
crowd parameters are identical to those used in Fig. 2.3 except that the simulations were reinitialized
for each N . Note that while the instability of the bridge and the resulting phase coherence are now
highly dependent on the exact initial configuration of pedestrian positions and velocities due to
the crowd forcing, the bridge instability may occur at values of N as low as N = 140 and lead to
phase coherence at values as low as N = 150, which was not observed previously from an initially
still bridge. Furthermore, (c) depicts the bridge amplitude distribution and (d) the distribution of
Kuramoto order parameters as a function of σ when N = 160. Note the significant increase in mean
and maximum order and amplitude as a function of the heterogeneity of the crowd initial frequency
even when compared to the case of pedestrians with identical initial stride frequencies (i.e., when
σ = 0), in which case the phase coherence is significant but not as pronounced as when σ = 0.4,
and high-amplitude bridge movement is not observed.
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Figure 3.3 The general relationship described in Fig. 3.2a-d using a surface plot of the mean
bridge displacement amplitude Ax (over each of ten sample initial conditions) as a function
of σ, the standard deviation of the initial stride frequency distribution, and N , the number
of pedestrians on the bridge.
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Figure 3.4 (a). Sample evolution of the distribution of bridge-to-pedestrian-stride frequency ratios
Ω/ω sampled over time (vertical axis) using Gaussian kernel density estimation; blue dashed vertical
lines correspond to roots and red dashed vertical line to the minimum of the curve in Fig. 2.4a. A
shift in the frequency distribution occurs close to the instability due to the change in crowd velocity.
(b). The corresponding bridge motion x. Parameters are N = 155, σ = 0.5.
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(a)

(b)

(c)

Figure 3.5 The trails of pedestrian motion are plotted in color according to sagittal velocity,
with dark blue corresponding to no forward motion and bright pink being the maximum
forward velocity (3.2 m/s), each for a duration of 1 second from (a) 0-1 seconds, (b) 1-2
seconds, and (c) 2-3 seconds. Note the formation of several “traffic jams” in the sagittal
direction (horizontal axis).
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CHAPTER 4

A data-driven model of invasive social pathogens from 4chan

4.1 Introduction

Online imageboards such as 4chan, 8kun, and others host various conspiracy theories and

extremist far-right content (88; 89) and have outsized influence on mainstream social media

and political opinion despite their relatively low traffic. Such imageboards are characterized

by the ability to post anonymously and engage in discussion with other users in reply to

their posts in the form of an extended comment thread beginning with an initial post;

content is generally uncensored and promotes topics such as hate speech, misinformation,

and harassment. The study of the viral spreading of memes on social media has primarily

considered more mainstream networks such as Twitter and Facebook as isolated systems.

Previous work suggests they are extremely prone to social contagion and epidemic; in (90),

Kucharski estimates the basic reproduction number R0 of Facebook to be between 1.9 and

2.5 for widely disseminated memes, while Skaza et al. have estimated that of Twitter to

be between one and 1, 000 (91). In both instances, extreme viral spreading was found to

occur. The basic reproduction number is a property of populations with uniform mixing and

recovery; such epidemiological models may also be refined to incorporate network effects. For

example, Jiang et al. (92; 93) and Zhang et al. (94) modeled social spreaders as replicator

agents (95) playing a two-strategy evolutionary game on a network with non-uniform degree

distribution and derived a mean-field ordinary differential equation for the evolution of the

ratio of spreaders to the total population. In fact, for a particular form of the payoff function,
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this viewpoint is dynamically similar to the epidemiological one since the dynamics of both

the replicator model with uniform mixing and constant payoff and the classic SI model

reduce to a low-order polynomial ODE with no constant term when, respectively, expanded

and normalized to the population size (96). Conspiracy theories are known empirically to be

highly intrinsically contagious phenomena; Jolley et al. (97) report that single exposure to a

racial conspiracy theory promoted general bias towards multiple out-groups, while Van Der

Linden et al. (98) found a similar effect with anti-climate-change conspiracy theories; further

significant results were confirmed by Balafoutas et al. (99) though, in this case, they were not

central to the results of the study. Cinelli et al. (100) have found COVID-19 misinformation

highly contagious in social networks. The dynamical evolution of misinformation has been

documented in (101), who likens its spread to a game of telephone, in which every message

slightly differs from the previous.

Using time-series data of the occurrence of anti-vaccine keywords on /pol/ and Twit-

ter, which we determine to be causally linked, we hypothesize an invasive epidemiological

mechanism for spreading conspiracy theories from online imageboards to mainstream social

networks. We formulate this system as a one-dimensional stochastic differential equation

(SDE) in contrast to Hindes et al. (102), who stochastically vary the transmission rate pa-

rameters; this approach is taken due to the significant measurement error associated with

the approximation of the infection ratio, measured in scaled number of users, of relevant

conspiracy theories by the short-time frequency, measured in tweets per hour, of each key

phrase. We assume that this measurement error is roughly stationary and contains no in-
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formation useful to the model (i.e., it is entirely noisy). We simultaneously fit the epidemic

and noise parameters using maximum likelihood estimation from the time series data. We

validate this model on the data and show analytically and numerically that the probability

measure associated with a fixed initial distribution is an invariant measure under the evolu-

tion of the Fokker-Planck equation corresponding to the SDE model when the transmission

rate of the Twitter network exceeds a value directly proportional to the external coupling.

We further attempt to characterize the deterministic evolution of the 4chan topic-frequency

parameter (the input current) as an optimization process. We use the pre-trained language

model DistilBERT (103) and K-means clustering to detect and distinguish topics in the full

archive of /pol/posts and regression with a labeled subset of the data to determine the tox-

icity. The fitness of each topic is observed to follow an emergent optimization process like

temporal-difference learning with the toxicity of the content as the primary reward mech-

anism. This mirrors the reported behavior of individual 4chan users, termed “trolling,” in

which incendiary content is posted to elicit a strong reaction (104).

4.2 Data and Methods

We have obtained an archive of all 4chan posts to the board /pol/ between January 1, 2013

and January 23, 2022. From these, we filter out posts before November 20, 2019, due to the

sparsity of anti-vaccine sentiment in prior years. We derive the full set of sparse orthogonal

bigrams (105) collocated with the word “vaccine” at a maximum distance of three words. We

order these sparse bigrams by frequency and remove stop phrases and skips to determine a set
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of search key phrases, which we filter to include the most frequent conspiracy-theory-related

key phrases. These phrases were as follows:

big pharma, refuse get, trying force,

people shilling, bill gates, forced take,

cause autism, side effects, and deaths swine.

These keywords, several of which refer to specific well-known conspiracy theories (106; 107;

108), are used to quantify network traffic in similar conspiracy theories on other social

networks. In particular, we search for each key phrase (prepending the word “vaccine” for

specificity) over the same duration using the Twitter v2 counts API and use the hourly

frequency of key phrase occurrence as a proxy for the infection ratio βI/N . To model

this quantity, we construct a population-based nonlinear drift-diffusion system describing

cross-social-network disinformation spreading, taking the form of a normalized stochastic

SIS model with 4chan as a noisy driving current.

4.2.1 Model and Validation

First, we determine the causal relationship between the occurrences of the anti-vaccine key-

words in the Twitter and 4chan datasets. The corresponding multi-year hourly time series

were deseasonalized with the R msts package using periods of 365.25 days (the mean dura-

tion of one year), 30.4375 days (1/12 the mean duration of one year), 7 days, and 24 hours.

After extracting the seasonal periodicity and the trends, the remaining time series for Twit-

ter and 4chan were evaluated for significant transfer entropy in either direction. Transfer
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entropy, introduced in (109), is an information-theoretic measure that describes the degree to

which a source time series (in this case, 4chan anti-vaccine content in posts per hour, which

we denote Y ) reduces the future uncertainty associated with a target time series (in this

case, Twitter anti-vaccine content in posts per hour, which we denote X) when conditioned

on the history of the target. In this case, using the symbolization of each time series by

quantile function into three equally-sized partitions of the unit interval, TY→X = 0.0058 is

the transfer entropy value. It corresponds to the significance value p ≤ 10−3 when a shuffle

test is performed with respect to Y , with a characteristic delay of 3 hours sufficient to detect

causality. No direct linear correlation was found between the two time series. Still, the

reciprocal of Y was found to be highly inversely correlated to X, which is considered in the

subsequent model.

We consider the following one-dimensional stochastic differential equation of an Itô pro-

cess:

dρ =

[
βρ(1− ρ)− γρ− κ

Ymax
Y

]
dt+ σdB0 < ρ ≤ 1. (4.1)

Here, ρ represents the mean infection density of Twitter I/N according to the formalism

of a susceptible-infected-susceptible (SIS) model; γ, β are the network-adjusted mean decay

and transmission rates, and κ is a coupling coefficient describing in a nonlinear way the degree

of effect that the hourly 4chan conspiracy post rate Y has on ρ (the exact nature of this

nonlinear relationship was determined empirically by ranking a set of power transforms of Y

by Pearson correlation with ρ). Ymax represents the maximum value of Y over the entire time-

series and is used as a normalizing factor. B is a standard Brownian motion process, of which
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dB is the differential in the usual formalation of a Wiener process. The diffusion parameter

σ characterizes the shape of the estimation noise and nondeterminism of the model, which is

subject to an absorbing boundary condition at ρ = 0 and a reflecting condition at ρ = 1. The

drift term of the SDE (4.1) is derived from the mean-field SIS model for the infection density

in a homogeneous network (110). Pseudo-maximum likelihood estimation of the parameters

using the Euler approximation of the infinitesimal transition density via the R programming

language’s “Sim.DiffProc” package yields β = 0.3119747,γ = 0.3223287, κ = 2.843189×10−5,

and σ = 0.004616367. We numerically verify (Fig. 4.1) that the distribution of points

along sample paths of the evolution of this SDE (generated by numerical integration using

the method in (111)) fits the final distribution of the data with minimal error. Note that

the mean is neither 0 nor 1 but corresponds to the existence of a small subpopulation of

conspiracy-believing users that represent an endemic state (actually, a set of states) of the

system. This phenomenon is unique to the stochastic, driven form of the model, and we will

show that this regime of the dynamics represents a stationary state of the system.

4.2.2 Analysis of metastable and stationary states

For this analysis, we restrict our attention to the case where ρ > 0; ρ = 0 is not an

equilibrium of the system due to the nonzero y and diffusion term; we also fix Y . Then, the

Fokker-Planck equation corresponding to (4.1) reads:

∂tp(t, ρ) = −∂ρ
[(

(γ − β)ρ+ (β − κYmax
Y

)

)
p(t, ρ)

]
+σ∂2ρp(t, ρ) = −∂ρ[µ(ρ, t)ρ]+σ∂2ρp(t, ρ).

(4.2)



66

(a) (b)

(c)

Figure 4.1 Comparison of limiting probability density histograms derived from the sample paths
of (a) the model and (b) the time series data under the assumption of near-stationarity of the
noise. (c). The plot of the corresponding probability masses for each binned value of ρ sampled
from the time-series (vertical axis) vs. from the sample paths of the SDE (horizontal axis). Our
model reproduces the distribution of ρ almost exactly. Note that the mean is neither 0 nor 1 but
corresponds to the existence of a small subpopulation of conspiracy-believing users that represent
an endemic state of the system.
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Here, p(t, ρ) is the time-evolving probability density function of ρ with support on (0, 1].

The moment generating function, M(s) = E[eρs], is precisely the scaled inverse Laplace

transform of the PDF of ρ, to which we apply the Fokker-Planck equation in (4.2):

Ė[esρ] = −
∫ 1

0

∂ρ[µ(ρ)p]e
sρdρ+ σ

∫ 1

0

∂2ρ [pe
sρ]dρ

= s

∫ 1

0

[µ(ρ)p(ρ)esρ]dρ+ σs2
∫ 1

0

p(ρ)esρdρ

= s(β − γ)E[ρesρ]− βsE[ρ2esρ]− (sκ
Ymax
Y

+ s2σ)E[esρ].

So by Leibniz’s rule

∂t∂sE[e
sρ] = (β − γ)E[ρesρ] + s(β − γ)E[ρ2esρ]

− βE[ρ2esρ]− sβE[ρ3esρ]− (sκ
Ymax
Y

− s2σ)E[ρesρ]− (κ
Ymax
Y

− 2sσ)E[esρ]

∂t∂
2
sE[e

sρ] = (β − γ)E[ρ2esρ]− (β − γ)E[ρ2esρ] + s(β − γ)E[ρ3esρ]− βE[ρ3esρ]

− sβE[ρ4esρ]− (κ
Ymax
Y

− 2sσ)E[ρesρ] + (2σ)E[ρ2esρ]

− (κ
Ymax
Y

− 2sσ)E[ρesρ] + 2σ)E[esρ]

∂t∂
3
sE[e

sρ] = 3(β − γ)E[ρ3esρ]− 2βE[ρ4esρ]

− 2κ
Ymax
Y

E[ρ2esρ] + 4σE[ρ2esρ]− 4σE[ρesρ]

∂t∂
n
sE[e

sρ] = 3(β − γ)E[ρnesρ]− 2βE[ρn+1esρ]

− 2κ
Ymax
Y

E[ρn−1esρ] + 4σE[ρn−1esρ]− 4σE[ρn−2esρ], n > 3,
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and setting s = 0, we obtain that

Ė[ρ] = (β − γ)E[ρ]− βE[ρ2]− (κ
Ymax
Y

+ 2σ)

Ė[ρ2] = 2(β − γ)E[ρ2]− βE[ρ3]− 2(κ
Ymax
Y

)E[ρ] + 2σ(E[ρ2] + 1)

Ė[ρ3] = 3(β − γ)E[ρ3]− 2βE[ρ4]− 2κ
Ymax
Y

E[ρ2] + 4σE[ρ2]− 4σE[ρ]

Ė[ρn] = 3(β − γ)E[ρn]− 2βE[ρn+1]− 2κ
Ymax
Y

E[ρn−1] + 4σE[ρn−1]

− 4σE[ρn−2], n > 3.

The existence of an equilibrium is determined by the norm

∆ =
∞∑
i=1

Ė[ρn]
2
= Ė[ρ]

2
+Ė[ρ2]

2
+

∞∑
i=1

[
3(β − γ)E[ρ3+n]− 2βE[ρn+4]− 2(κ

Ymax
Y

− 2σ)E[ρn+2]

]2
.

(4.3)

Expanding and using Jensen’s inequality, the infinite series term in (4.3) is bounded below

by zero and above by

(9β2 − 18γβ + 9γ2)E[
∞∑
n=3

ρ2n]

−(6β2 − 6γβ)E[ρ
∞∑
n=3

ρ2n] + (24βσ − 24γσ − 12(β − γ)κ
Y 2
max

Y 2
)E[

1

ρ

∞∑
n=4

ρ2n]

+β2E[
∞∑
n=4

ρ2n]− (8βγ + 4βκ
Y 2
max

Y 2
)E[

∞∑
n=2

ρ2n]

+[16σ(σ − κ
Y 2
max

Y 2
) + 4κ2

Y 4
max

Y 4
]E[

1

ρ

∞∑
n=1

ρ2n]

which can be further simplified using the well-known formula for the sum of an infinite
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geometric series in ρ2.

We next choose a Lyapunov candidate function for the first two moments of the system:

let δ = 1
2−m1

(E[ρ]−m1)
2 + 1

2−m2
(E[ρ2]−m2)

2 for initial first and second moments m1,m2.

Then δ > 0 and

δ̇ = Ė[ρ]E[ρ] + Ė[ρ2]E[ρ2].

Here, we can again use Jensen’s inequality for the moments of order higher than two. The

mean and variance of ρ are locally Lyapunov-stable where δ̇ < 0 holds in a neighborhood

of an equilibrium. The terms of the Lyapunov function can be written for higher-order

moments (n ≥ 3) and generally take the form

δ̇3 =
∞∑
n=3

E[ρn]Ė[ρn].

In a neighborhood of the equilibrium, Ė[ρn] can be kept smaller than some arbitrary constant

ε due to continuity, so that

δ̇3 ≤ εE[
ρ2

1− ρ
].

Hence, the destabilizing effect of the higher-order moments can be accounted for locally by

increasing the threshold slightly below 0.

The boundary of the intersection of the existence and stability conditions as a function of

E[ρ], E[ρ2], and β is displayed as an isosurface in Fig. 4.2a; and, with respect to E[ρ], E[ρ2],

and κ, in Fig. 4.2b. In both instances, we note the coexistence of a metastable epidemic

and a stable endemic state for the same value of the parameters, which is mathematically
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counter-intuitive and unique to the stochastic, driven version of the model. The upper,

metastable branch of the surface represents the spread of the conspiracy theory through the

entire susceptible population; even though it is not a permanent regime of the system, its

effect can be politically significant, as we will discuss. For some values of the moments there

are also multiple metastable equilibria as a function of β; however, this effect is not present

when we consider the dependence on κ, though the dependence is qualitatively similar.

This surface represents a subset of the equilibria, which are locally asymptotically stable in

some small neighborhood of the isosurface; larger amplitude noise may destabilize the top

branches. The resulting diagram depicts multiple states, such as an epidemic state, which

is metastable (a sufficiently large perturbation to the distribution can result in immediate

loss of stability), and an endemic state of smaller magnitude; the two states collide when the

variance is sufficiently high. We emphasize that this diagram potentially does not represent

an exhaustive enumeration of the stable regimes of the system but only a sufficient condition

for (meta)stability and existence. Note that we have also restricted ourselves to the case

where the parameters are all constant, and the input from /pol/ itself is either constant

or stationary. As we will discuss in the next section, this situation does not represent

reality even on shorter timescales; instead, 4chan content is continually optimizing itself to

become more toxic, which has implications for both the design and prevention of large-scale

misinformation campaigns.
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Figure 4.2 Region for which the moment-stability conditions for the existence and local stability
of stationary states are satisfied as a function of the mean and variance of ρ (vertical axis and
rightmost horizontal axis) and (a) β (the spreading rate) and (b) κ (the coupling strength); all
parameters other than those on the axes were those estimated from the model. The color of each
surface represents the value on the z-axis and is used to orient the figure visually in three dimensions.

4.3 Optimality of the effect of “trolling”

4chan users have been observed to engage in hyperbole and controversial posting to elicit

a reaction (104). Using recently developed techniques in natural language embedding and

classification (112; 113), we discover that this behavior significantly impacts the frequency

of topics due to the spontaneous and collective emergence of a temporal difference learning

process (114). We demonstrate the result as follows: beginning with the full archive of text

posts to /pol/ from January 1, 2013 to January 23, 2022, we tokenize each post using the

NLTK python package’s Casual tokenizer (115). Subsequently, we fine-tune the transformer-

type natural language model DistilBERT (103), training it to predict a partially-masked

copy of a random sample of posts (359,609 posts were chosen uniformly for the training

set from the nearly one billion posts in the overall dataset). This class of natural language
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model, which works by learning to encode distributions of words in a recurrent model using

a neural network, has achieved remarkable accuracy in natural-language classification tasks

(116; 117) from a few training examples; for precise implementation details, we refer the

reader to (103; 112; 118). The fine-tuned transformer model was then combined with a

two-layer neural network used as a regression head; the resulting model was trained on

a balanced random training split of the Jigsaw Unintended Bias in Toxicity Classification

dataset to detect toxicity and then evaluated on the testing split, and the automatically

generated labels in the dataset reported in (119). Individually, each of these resulted in

an F1-score consistently greater than 0.8 (and a thresholded classification accuracy of at

least 80%), which we deemed sufficient for our purposes since we are primarily concerned

with trends in toxicity aggregated by topic. To aggregate posts by topic, the 784-dimensional

embeddings given by the fine-tuned DistilBERT without the classification or prediction heads

were clustered using K-Means with 1,000 centroids, and each cluster was taken to be a topic.

A sample set of topic vectors colored by cluster and visualized using the UMAP algorithm

in two dimensions is plotted in Fig. 4.3; note that, to a high degree of accuracy, each topic

cluster occupies a distinct and connected region of space; this property is desirable for the

remainder of our analysis.

The topic clustering and the classification were applied to the chronological series of

4chan posts over a sliding window of 300,000 posts, and the toxicity of each post in the

window was estimated using the DistilBERT classifier. The separability of topics projected

using the UMAP embedding algorithm (113) is depicted in Fig. 4.3. Subsequently, a value
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Figure 4.3 DistilBERT embeddings of a sample of 300,000 posts, projected onto two dimen-
sions using the UMAP algorithm (113) and colored by topic (that is, by K-means cluster
obtained from the unprojected embeddings). The visualization shows that separate topics
are well separated by the projected embedding, even though much of the semantic informa-
tion is lost.

function tabulated over the set of topics was trained on the current window using the TD(0)

algorithm introduced by Sutton (114) with the estimated toxicity of the next post as the

reward. TD(0) is a temporal difference reinforcement learning algorithm hypothesized to be

similar to the effect of dopaminergic reinforcement in the animal brain. Given a Markov

decision process over discrete time t with state sequence st and instantaneous reward per
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state r(s), the algorithm iteratively estimates the expected state-value function (hereafter

referred to as the TD-value)

V (s) = E

[
∞∑
τ=t

r(sτ )γ
τ

]
(4.4)

representing the expected future reward resulting from the transition to state s discounted

over time exponentially by a factor of γ. The estimate to (4.4) is obtained iteratively from a

time series of visited states and observed rewards using the Bellman optimality principle as

Vi+1(st) = Vi(s) + λ ((r(st, t) + γV (st+1))− V (st)) , (4.5)

where i is the current iteration of the update algorithm and λ is a learning rate, usually less

than one. Note that the effect of the resulting TD-value function is invariant under a uniform

scaling or other monotone transformation since it is only used to rank topics. Due to the

mechanism of temporal difference learning, this value function informs the choice of topic,

which would maximize the time-discounted expected future toxicity of every subsequent

post. We determine that, for every window analyzed, the probability distribution over the

mentioned topics in the dataset faithfully reproduces the theoretical probability distribution

that would maximize the obtained value function (see Fig. 4.4 and the caption for a detailed

explanation of the evaluation used). This theoretical distribution, corresponding to the black

dashed curve in Fig. 4.4a-b, was generated as follows: first, 40 uniformly distributed random

values were sampled from the real numbers between 0 and 21, and second, the maximum of

these 40 numbers was chosen to be the result of the trial. This process roughly corresponds

to the selection of the one with the highest toxicity TD-value from a list of relevant topics.
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The resulting curve was a close match to the scatter-plot representing each topic’s empirical

normalized frequency of occurrence by TD value (except at the extreme tail, where they

differed by small orders of magnitude). A closed-form curve of the form

P̂ (V ) =
[
eka1V+kb1 + eka2V+kb2

] 1
k

was fit using maximum-likelihood estimation to the points of the scatter-plot and retains

the shape of the tail. This striking result indicates that posts to the anonymous image-

board /pol/can self-organize to increase the degree of toxicity of the resulting discourse.

The method was tested over a large number of intervals spanning almost eight years, and all

other results were consistent with what is reported in this figure except for slight scaling of the

TD-Value function and re-embedding of the topics. Moreover, as observed in Fig. 4.4d, the

relationship between topic occurrence frequency and the learned value function is destroyed

when the value function is learned from a random time-reordering of the posts. Shuffling

the order of the posts 100 times, reproducing the entire optimization method for the shuffled

time series of DistilBERT embeddings, and selecting the trial which produces the highest

expected TD-value per post destroys the significant relationship between topic frequency

and TD-value; the observed self-optimization is a dynamical process and cannot be observed

if the posts do not exist in the correct chronological order.

4.4 Discussions

The existence of misinformation as both an organic and externally-organized phenomenon

poses a grave risk to the political sphere, and our model, though by no means complete, has
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Figure 4.4 (a). Log-probability associated with each detected topic in the 4chan dataset for 300,000
posts plotted as learned TD-value (expected discounted future toxicity of the discourse). The black
dashed curve indicates the logarithm of a histogram-estimated PDF Pmax(V ) determined from a
random sample of TD values V . The analytic (red) curve indicates the value of P̂ . (b). Probability
density curves Pmax and P̂ and sample topic frequencies (blue scatter plot points) corresponding to
the values in the log-scale plot in (a). (c). Temporal difference value time-series plot corresponding
to the interval of posts used in (a) and (b). Note that the expected TD value increases over time, as
is typical of a reinforcement learning algorithm. (d). Equivalent scatterplot to (b) in the event that
the order of the time series is permuted 100 times and the trial maximizing the expected TD-value
is taken. The correlation is destroyed by the time-reordering.
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several implications for its prevention. First, there is the matter of preventing the passive

spread of misinformation once it has reached the endemic stage. Note that the stability of

the endemic and epidemic states and their magnitudes all depend on the variance of the

number of infected individuals and the spreading parameter β. This suggests the feasibility

of varying the connections of the network and, therefore β in a stochastic manner to limit the

instantaneous reach of users may work to mitigate the spread of misinformation, particularly

during a “storm” when the influx of users or content from the external source (/pol/, for

instance) is strong.

We now focus on how such a misinformation storm may be optimized for maximum effect.

In addition to the classification of text, large language models may be used to generate large

quantities of text with remarkable success predictively (120; 121; 122); for ethical reasons, we

did not use such a model, as it would need to be trained on 4chan data to work, and would

thus be capable of generating toxic content and hate speech. However, the controversial GPT-

4chan generative language model was trained using an open-source natural language model

with only 6 billion parameters on the data of (119) and then deployed on 4chan to imitate an

actual user. The 4chan site allows users to bypass CAPTCHA verification for a small fee, and

it was observed that users on 4chan could not immediately distinguish GPT-4chan, whose

generative capability has now long since been superseded by newer models, from a human

user (123; 124). Notably, many newer generative language models employ reinforcement

learning to target their generation to a reward function (125); primarily, this method is

used to increase the realism of the output, but in principle, any target could be used. It
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is, therefore, conceivable that a hostile actor or organization could launch a disinformation

campaign using 4chan as a “petri dish” to increase the spread of conspiracy theory content in

a purely automated fashion, exploiting the emergent optimization mechanism on 4chan that

results from a frequent and strong reaction to a particular category of post, and then time

the release of the resulting content into the mainstream where it could influence elections or

destabilize the geopolitical landscape. To provide insight into how to mitigate this type of

threat, our model requires augmentation in multiple ways. For example, first, we need to

consider the effect of the intentional recruitment of users by promoters of a conspiracy theory,

particularly those with a high degree centrality in the target network. Second, our model

must be updated to quantitatively reflect the optimization process that could drive both

the spread rate of the content and its influx from /pol/. Third, to estimate the parameters

of the augmented model, we must experimentally or numerically determine the maximum

efficiency and speed of such an optimization process, which we expect to depend heavily on

the maximum post rate that allows a bot to evade detection, but which may also depend on

the sparsity of the reward due to the interactions and therefore on the volume of engagement

on /pol/.

4.5 Conclusions

We have introduced a data-driven epidemiological model of the spread of conspiracy theo-

ries from /pol/ to Twitter. The model fits the distribution of time series data of Twitter

conspiracy theory content well and can be analytically shown to exhibit multiple stationary
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states for each value of the parameters, especially those related to the spreading rate of the

content and its prevalence on 4chan, the latter of which we find is related in a counter-

intuitive and striking way to the evolution of the toxic discourse on 4chan. This result and

the corresponding method have novel implications for protecting against political misinfor-

mation campaigns and radicalization. As future work, we propose to consider the effect of

intentional recruitment and organized misinformation campaigns, to extend our results on

toxicity to a mathematical model of the evolution of the rate parameters, to incorporate the

degree distribution of the network, to experimentally validate the scenario described in the

previous section in a controlled and ethical setting, and to extend our analysis to multiple

types of conspiracy theories in various social networks and compare their effectiveness.
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CHAPTER A

Appendix for Chapters 2 and 3

A Python source code for Chapter 2 simulations and damping coefficient
calculations

import numpy as np, sys, os

from autograd import numpy as jnp, make_jvp

import random

from scipy.integrate import odeint as ode, solve_ivp as ode2

#commandline arguments

#usage is python negative_damping.py MODEL INTERVAL_TO_ADD_PEDESTRIANS [

↪→ WHETHER_TO_GENERATE_FOR_SUPPLEMENT]

#this code generates the data for plotting the multi-panel figures (4,5,6)

#the scatter plots (fig 3) can be generated by running this code for n=1 and

↪→ a sinusoidally forced bridge (see comments in the integrand function

↪→ )

#and then sweeping over bridge and pedestrian frequencies

#with long interval while binary searching over the final amplitude to find

↪→ the max_n_walkers value for which max_amplitude exceeds a particular

↪→ value.
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#sample traces are included for a single pedestrian and sinusoidally forced

↪→ bridge (with slightly a different output format), which were used to

↪→ generate the

which_model=int(sys.argv[1]) #1,2,3

walker_addition_interval=int(sys.argv[2]) #try 20 (seconds)

if len(sys.argv)>3:

use_supplemental_fig_params=int(sys.argv[3])!=0

else:

use_supplemental_fig_params=False

#default params

max_n_walkers=600

walker_masses=np.random.randn(max_n_walkers)*10.0+76.9

normalized_leg_lengths=np.random.randn(max_n_walkers)*0.092+1.17

stability_margin_hof=np.random.randn(max_n_walkers)*0.002+0.0157

stability_margin_hof*=1.0-2.0*(np.random.rand(max_n_walkers)>0.5) #pick a

↪→ random foot to be down

if which_model!=3:

step_frequency_hz=np.abs((1.04 if use_supplemental_fig_params else

↪→ 0.9)+np.random.randn(max_n_walkers)*0.0)
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else:

step_frequency_hz=(1.04 if use_supplemental_fig_params else 0.9)*np.

↪→ ones(max_n_walkers)

COP_lateral_offsets=stability_margin_hof*(1.0-np.tanh(0.25*np.sqrt(9.8/

↪→ normalized_leg_lengths)/step_frequency_hz))

inverted_pendulum_frequency_unadjusted_radians=np.sqrt(9.8/1.17)*(1.0 if not

↪→ use_supplemental_fig_params else 1.04/0.9)+0.0*np.random.randn(

↪→ max_n_walkers)

stability_margin_hof*=-1

t_next_step=(np.random.rand(max_n_walkers)*0.5/step_frequency_hz)

bridge_frequency_hz=1.03

bridge_frequency_radians=bridge_frequency_hz*2*np.pi

bridge_mass=113e3

COP_offset_fixed=.63

limit_cycle_amplitude_parameter=0.47

bridge_damping_ratio=0.04

bridge_damping_coefficient=bridge_frequency_radians*bridge_damping_ratio

bridge_frequency_squared=bridge_frequency_radians*bridge_frequency_radians

limit_cycle_damping_parameter=23.25

break_on_crit=False
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t=0

def jacobian(F,N,x):

identity=np.eye(N)

Jcols=[]

jvp=make_jvp(F)(x)

for i in range(N):

Jcols.append(jvp(identity[i])[1])

return np.concatenate(Jcols).reshape(identity.shape)

def integrand_model1_2(state,n_walkers,COP_lateral_offsets,

↪→ sagittal_velocity_perturbed,normalized_leg_lengths,walker_masses):

y=state[2:n_walkers+2]

ydot=state[n_walkers+2:2*n_walkers+2]

foot_force=9.8*(COP_lateral_offsets[:n_walkers]-y[:n_walkers])/

↪→ normalized_leg_lengths[:n_walkers]

Fdot=-9.8*ydot/normalized_leg_lengths[:n_walkers]

xdotdot=(jnp.sum(walker_masses[:n_walkers]/bridge_mass*foot_force)-

↪→ bridge_damping_coefficient*state[1]-state[0]*

↪→ bridge_frequency_squared)
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xdotdotdot=(jnp.sum(walker_masses[:n_walkers]/bridge_mass*Fdot)-

↪→ bridge_damping_coefficient*xdotdot-state[1]*

↪→ bridge_frequency_squared)

yddot=-foot_force-xdotdot

eta=state[3*n_walkers+2:4*n_walkers+2]

sagittal=state[9*n_walkers+2:10*n_walkers+2]

deriv=jnp.concatenate([jnp.array([state[1],xdotdot]),ydot,yddot, jnp.

↪→ zeros(n_walkers),9.81/normalized_leg_lengths[:n_walkers]*eta-

↪→ xdotdotdot*xdotdot,y*state[1], y*state[0],eta,

↪→ sagittal_velocity_perturbed,sagittal*state[1],sagittal*state[0],

↪→ state[:1]**2])

return deriv

def sgn(x):#not really limit_cycle_amplitude_parameter signum function

↪→ because it has sgn(0)!=0

return 1-2*(x<0)

def integrand_model3(state,N,omegas,Ms):

n_walkers=N

w0=omegas[:n_walkers]

walker_masses=Ms[:n_walkers]

nu=w0
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y=state[2:n_walkers+2]

ydot=state[n_walkers+2:2*n_walkers+2]

p=COP_offset_fixed

r=walker_masses/(bridge_mass+jnp.sum(walker_masses))

foot_force=limit_cycle_damping_parameter*(ydot**2+nu**2*(

↪→ limit_cycle_amplitude_parameter**2-(y-p*sgn(y))**2))*ydot-w0

↪→ **2*(y-p*sgn(y))

xdotdot=1/(1-jnp.sum(r))*(jnp.sum(foot_force*r)-

↪→ bridge_damping_coefficient*state[1]-state[0]*

↪→ bridge_frequency_squared)

yddot=(-foot_force-xdotdot)

dHdydot=limit_cycle_damping_parameter*(3*ydot**2+nu*nu*(

↪→ limit_cycle_amplitude_parameter**2-(y-sgn(y)*p)**2))

dHdy=limit_cycle_damping_parameter*ydot*(-nu**2*(2*y-2*p*sgn(y)))-w0

↪→ **2

Fdot=dHdy*ydot+dHdydot*yddot

mu=state[2*n_walkers+2:3*n_walkers+2]

eta=state[3*n_walkers+2:4*n_walkers+2]

hu=dHdy*eta+dHdydot*mu

xdotdotdot=1/(1-jnp.sum(r))*(jnp.sum(Fdot*r)-

↪→ bridge_damping_coefficient*xdotdot-state[1]*
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↪→ bridge_frequency_squared)

deriv=jnp.concatenate([jnp.array([state[1],xdotdot]),ydot,yddot, -

↪→ xdotdot*xdotdotdot-hu,mu,y*state[1],y*state[0],hu,jnp.zeros(

↪→ n_walkers),dHdy,dHdydot,state[:1]**2])

# dx=jnp.concatenate([jnp.array([state[1],xdotdot]),ydot,yddot, jnp.zeros(8*

↪→ n_walkers),state[:1]**2])

return deriv

bridge_displacement=np.zeros(2)

inverted_pendulum_frequency_radians=np.sqrt(9.81/normalized_leg_lengths)

if which_model!=3:

COM_displacement=np.zeros(1)

COM_velocity=COP_lateral_offsets[:1]*

↪→ inverted_pendulum_frequency_radians[:1]*np.tanh(

↪→ inverted_pendulum_frequency_radians[:1]*0.5/step_frequency_hz

↪→ [:1])

else:

COM_velocity=np.zeros(1)

COM_displacement=(COP_offset_fixed-limit_cycle_amplitude_parameter)*

↪→ np.ones(1)



87

#forward_speed=(step_frequency_hz*normalized_leg_lengths/1.34/1.352)**2*

↪→ step_frequency_hz

forward_speed=0.36*np.ones(max_n_walkers)

t=0

t_prev_step=t_next_step-0.5/step_frequency_hz

tprevL=(stability_margin_hof<0)*t_prev_step+(stability_margin_hof>=0)*(

↪→ t_prev_step-0.5/step_frequency_hz)

COM_displacement_prev=np.zeros(max_n_walkers)

t_prev_COM_period=np.zeros(max_n_walkers)

t_prev_prev_COM_period=np.zeros(max_n_walkers)

t_prev_prev_step=np.zeros(max_n_walkers)

t_prev_prev_prev_step=np.zeros(max_n_walkers)

for n_walkers in range(2,max_n_walkers):

t_prev_prev_step[n_walkers-1]=t

n_periods_COM=0

t_prev_prev_prev_step[n_walkers-1]=t-t/0.9

step_last=np.zeros(n_walkers)

step_first=np.ones(n_walkers)*1.0e9

step_interval=0.5/step_frequency_hz[:n_walkers]

time_average_d_foot_force_d_bridge_velocity=np.zeros(n_walkers)

COM_sin_component=np.zeros(n_walkers)
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COM_cos_component=np.zeros(n_walkers)

sagittal_sin_component=np.zeros(n_walkers)

sagittal_cos_component=np.zeros(n_walkers)

mu=np.zeros(n_walkers)

eta=np.zeros(n_walkers)

d_foot_force_d_COM_velocity=np.zeros(n_walkers)

d_foot_force_d_COM=np.zeros(n_walkers)

bridge_mean_amplitude=0

inverted_pendulum_freq_squared=(9.81/normalized_leg_lengths[

↪→ n_walkers-1])

t_next_step[n_walkers-1]+=t #account for the fact that the current

↪→ most recently added walker has his next footfall way in the

↪→ past, since he was initialized at the beginning of the

↪→ simulation.

t_prev_step[n_walkers-1]+=t

if which_model!=3:

COM_velocity=np.concatenate([COM_velocity,

↪→ COP_lateral_offsets[n_walkers-1:n_walkers]*

↪→ inverted_pendulum_freq_squared*np.tanh(

↪→ inverted_pendulum_freq_squared*0.5/step_frequency_hz[

↪→ n_walkers-1])])
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COM_displacement=np.concatenate([COM_displacement,np.zeros

↪→ (1)])

else:

random_side=random.choice([-1,1])

COM_velocity=np.concatenate([COM_velocity,np.zeros(1)])

COM_displacement=np.concatenate([COM_displacement,

↪→ random_side*(COP_offset_fixed-

↪→ limit_cycle_amplitude_parameter)*np.ones(1)])

d_foot_force_d_bridge_velocity=np.zeros(n_walkers)

jump_term_1=np.zeros(n_walkers)

jump_term_2=np.zeros(n_walkers)

jump_term_3=np.zeros(n_walkers)

jump_term_4=np.zeros(n_walkers)

sagittal_velocity_perturbed=np.zeros(n_walkers)

num_steps=np.zeros(n_walkers)

t_prev_addition=t

has_zero_cross=False

n_footfalls=0

tfirstp=t_prev_addition

sagittal=np.zeros(n_walkers)

saggital_prev=np.zeros(n_walkers)
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t_first_bridge_zero=walker_addition_interval+t_prev_addition

t_final_bridge_zero=t_prev_addition

bridge_max_amplitude=0

num_zero_cross=0

order_param_cos_component_step=0

order_param_sin_component_step=0

order_param_cos_component_COM=0

order_param_sin_component_COM=0

while t<t_prev_addition+walker_addition_interval:

if which_model!=3:

integrand_autonomous=lambda x: integrand_model1_2(x,n_walkers

↪→ ,COP_lateral_offsets[:n_walkers],

↪→ sagittal_velocity_perturbed[:n_walkers],

↪→ normalized_leg_lengths[:n_walkers],walker_masses[:

↪→ n_walkers])

t_next_footfall_all_walkers=max(t,np.min(t_next_step[:

↪→ n_walkers]))

else:

integrand_autonomous=lambda x: integrand_model3(x,n_walkers,

↪→ inverted_pendulum_frequency_unadjusted_radians[:

↪→ n_walkers], walker_masses[:n_walkers])
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t_next_footfall_all_walkers=min(t+0.002,t_prev_addition+

↪→ walker_addition_interval)

#Fn_=jit(Fn__)

integrand=lambda t,x: integrand_autonomous(x)

ts=np.linspace(0,t_next_footfall_all_walkers-t,15 if which_model

↪→ ==3 else 10)

if which_model==3:

state=np.concatenate([bridge_displacement[:2],

↪→ COM_displacement[:n_walkers],COM_velocity[:n_walkers],

↪→ mu,eta, COM_sin_component,COM_cos_component,

↪→ d_foot_force_d_bridge_velocity,np.zeros(n_walkers),

↪→ d_foot_force_d_COM,d_foot_force_d_COM_velocity,

↪→ bridge_mean_amplitude*np.ones(1)])

else:

state=np.concatenate([bridge_displacement[:2],

↪→ COM_displacement[:n_walkers],COM_velocity[:n_walkers],

↪→ mu,eta, COM_sin_component,COM_cos_component,

↪→ d_foot_force_d_bridge_velocity,sagittal,

↪→ sagittal_sin_component,sagittal_cos_component,

↪→ bridge_mean_amplitude*np.ones(1)])

state_prev_sample=state.copy()
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J_=lambda t,x: jacobian(integrand_autonomous,len(state),x)

trajectory_current_sample=ode2(integrand, [0, ts[-1]],state,

↪→ t_eval=ts, method=’LSODA’, jac=J_, rtol=1e-6, atol=1e-8).y.

↪→ transpose()

state=trajectory_current_sample[-1]

for i,trajectory_current_subsample in enumerate(

↪→ trajectory_current_sample[:]):

if i<2:

continue

tsi=ts[i]

# if which_model!=3:

# sys.stderr.write(’%i %f %f %f ’%(n_walkers,ts[i]+t,

↪→ trajectory_current_subsample[0],

↪→ trajectory_current_subsample[1])+(’%f ’*n_walkers)%tuple((

↪→ COP_lateral_offsets[:n_walkers]-

↪→ trajectory_current_subsample[2:n_walkers+2]).tolist())+’\

↪→ n_walkers’)

# else:

# sys.stderr.write(’%i %f %f %f ’%(n_walkers,ts[i]+t,

↪→ trajectory_current_subsample[0],

↪→ trajectory_current_subsample[1])+(’%f ’*n_walkers)%tuple((
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↪→ trajectory_current_subsample[2:n_walkers+2]).tolist())+’\

↪→ n_walkers’)

if trajectory_current_sample[i-2,0]<trajectory_current_sample

↪→ [i-1,0] and trajectory_current_sample[i-1,0]>

↪→ trajectory_current_sample[i,0]:

if has_zero_cross:

COM_sin_component_full_period=

↪→ trajectory_current_sample[i-1,4*n_walkers

↪→ +2:5*n_walkers+2]

COM_cos_component_full_period=

↪→ trajectory_current_sample[i-1,5*n_walkers

↪→ +2:6*n_walkers+2]

if which_model==3:

d_foot_force_d_COM_full_period=np.array(

↪→ trajectory_current_sample[i-1,-2*

↪→ n_walkers-1:-n_walkers-1])

d_foot_force_d_COM_velocity_full_period=np.

↪→ array(trajectory_current_sample[i-1,-

↪→ n_walkers-1:-1])

else:
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sagittal_sin_component_full_period=

↪→ trajectory_current_sample[i-1,-2*

↪→ n_walkers-1:-n_walkers-1]

sagittal_cos_component_full_period=

↪→ trajectory_current_sample[i-1,-n_walkers

↪→ -1:-1]

mean_amplitude=trajectory_current_subsample[-1]

num_zero_cross+=1

has_zero_cross=True

t_final_bridge_zero=max(tsi+t,t_final_bridge_zero)

t_first_bridge_zero=min(tsi+t,t_first_bridge_zero)

if which_model!=3:

sys.stderr.write(’%i %f %f %f ’%(n_walkers,t,state[0],

↪→ state[1])+(’%f ’*n_walkers + ’0.0 ’*(max_n_walkers-

↪→ n_walkers))%tuple((COP_lateral_offsets[:n_walkers]-

↪→ state[2:n_walkers+2]).tolist())+’\n’)

else:

sys.stderr.write(’%i %f %f %f ’%(n_walkers,t,state[0],

↪→ state[1])+(’%f ’*n_walkers+ ’ 0.0 ’*(max_n_walkers-

↪→ n_walkers))%tuple(state[2:n_walkers+2].tolist())+’\

↪→ n’)
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sys.stderr.flush()

sagittal=state[7*n_walkers+2:8*n_walkers+2]

bridge_displacement=state[:2]

if has_zero_cross:

COM_sin_component=state[4*n_walkers+2:5*n_walkers+2]

COM_cos_component=state[5*n_walkers+2:6*n_walkers+2]

d_foot_force_d_bridge_velocity=state[6*n_walkers+2:7*n_walkers

↪→ +2]

if which_model!=3:

sagittal_sin_component=state[-2*n_walkers-1:-n_walkers

↪→ -1]

sagittal_cos_component=state[-n_walkers-1:-1]

else:

d_foot_force_d_COM=state[-2*n_walkers-1:-n_walkers-1]

d_foot_force_d_COM_velocity=state[-n_walkers-1:-1]

mu=state[2*n_walkers+2:3*n_walkers+2]

eta=state[3*n_walkers+2:4*n_walkers+2]

bridge_mean_amplitude=state[-1]

k=integrand_autonomous(state)

t=t_next_footfall_all_walkers
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bridge_displacement=state[:2]

COM_displacement=state[2:n_walkers+2]

COM_velocity=state[n_walkers+2:2*n_walkers+2]

if which_model!=3:

indices_foot_down=np.where(t_next_step[:n_walkers]<=t+1.0e

↪→ -10)[0]

else:

indices_foot_down=np.where(sgn(state_prev_sample[2:

↪→ n_walkers+2])!=sgn(state[2:n_walkers+2]))[0]

time_average_d_foot_force_d_bridge_velocity[indices_foot_down]+=

↪→ d_foot_force_d_bridge_velocity[indices_foot_down]

t_prev_step[indices_foot_down]=t

if which_model!=3:

for i in indices_foot_down:

if stability_margin_hof[i]<0:

tprevL[i]=t_prev_step[i]

u2=COM_displacement[indices_foot_down]+COM_velocity[

↪→ indices_foot_down]*np.sqrt(normalized_leg_lengths[

↪→ indices_foot_down]/9.8)+stability_margin_hof[

↪→ indices_foot_down]
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width=stability_margin_hof/(1-np.tanh(np.sqrt(9.81/

↪→ normalized_leg_lengths)/4.0/step_frequency_hz))

adapt = np.maximum(-0.5,(width[indices_foot_down]**2-(

↪→ COM_displacement[indices_foot_down]-u2)**2)/(4*

↪→ forward_speed[indices_foot_down]**2)) if

↪→ which_model==2 else 0

t_next_step[indices_foot_down]=t+0.5/step_frequency_hz[

↪→ indices_foot_down]*(1+adapt)

step_last[indices_foot_down]=np.maximum(step_last[

↪→ indices_foot_down],t)

step_first[indices_foot_down]=np.minimum(step_first[

↪→ indices_foot_down],t)

num_steps[indices_foot_down]+=1

if which_model!=3:

saggital_prev[indices_foot_down]=sagittal[

↪→ indices_foot_down]

COM_displacement_prev[indices_foot_down]=COM_displacement[

↪→ indices_foot_down]

indices_COM_period=np.where(np.signbit(state_prev_sample[2:

↪→ n_walkers+2])!=np.signbit(state[2:n_walkers+2]))[0]
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t_prev_prev_COM_period[indices_COM_period]=t_prev_COM_period[

↪→ indices_COM_period]

t_prev_COM_period[indices_COM_period]=t

step_interval_prev=np.zeros(len(step_interval))

step_interval_prev[:]=step_interval[:]

if which_model==3:

com_offset_current=state[2:n_walkers+2]

com_offset_prev=state_prev_sample[2:n_walkers+2]

force_change_over_step_discontinuity=2*

↪→ inverted_pendulum_frequency_unadjusted_radians[

↪→ indices_foot_down]**2*np.array(COP_offset_fixed*sgn

↪→ (com_offset_current[indices_foot_down]-

↪→ com_offset_prev[indices_foot_down]))

sagittal_velocity_perturbed[indices_foot_down]=0.0

else:

force_change_over_step_discontinuity=(u2-

↪→ COP_lateral_offsets[indices_foot_down])*9.8/

↪→ normalized_leg_lengths[indices_foot_down]

step_interval[indices_foot_down]=t_next_step[

↪→ indices_foot_down]-t_prev_step[indices_foot_down]
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sagittal_velocity_perturbed[indices_foot_down]=1-

↪→ step_interval_prev[indices_foot_down]/step_interval

↪→ [indices_foot_down]

COP_lateral_offsets[indices_foot_down]=u2

jump_term_1[indices_foot_down]+=(

↪→ force_change_over_step_discontinuity)*k[1]

jump_term_2[indices_foot_down]+=(

↪→ force_change_over_step_discontinuity)*np.array(k[2:

↪→ n_walkers+2][indices_foot_down])

jump_term_3[indices_foot_down]+=(

↪→ force_change_over_step_discontinuity)*

↪→ sagittal_velocity_perturbed[indices_foot_down]

jump_term_4[indices_foot_down]+=(

↪→ force_change_over_step_discontinuity)*np.array(k[2+

↪→ n_walkers:2+2*n_walkers][indices_foot_down])

t_prev_prev_prev_step[indices_foot_down]=t_prev_prev_step[

↪→ indices_foot_down]

t_prev_prev_step[indices_foot_down]=t_prev_step[indices_foot_down

↪→ ]

t_prev_step[indices_foot_down]=t
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stability_margin_hof[indices_foot_down]*=-1

com_offset_current=state[2:n_walkers+2]

com_offset_prev=state_prev_sample[2:n_walkers+2]

if which_model!=3:

phZ=(t-t_prev_step[:n_walkers])/(t_next_step[:n_walkers]-

↪→ t_prev_step[:n_walkers])

order_param_cos_component_step+=np.sum(np.cos(2*np.pi*phZ)

↪→ )

order_param_sin_component_step+=np.sum(np.sin(2*np.pi*phZ)

↪→ )

phase_COM=(t-t_prev_COM_period[:n_walkers])*2*np.pi/(

↪→ t_prev_COM_period[:n_walkers]-t_prev_prev_COM_period[:

↪→ n_walkers])

phase_COM=phase_COM[np.where(t_prev_COM_period>

↪→ t_prev_prev_COM_period)[0]]

order_param_cos_component_COM+=np.sum(np.cos(2*np.pi*phase_COM))

order_param_sin_component_COM+=np.sum(np.sin(2*np.pi*phase_COM))

n_footfalls+=1

n_periods_COM+=len(phase_COM)

mu[indices_foot_down]=0

eta[indices_foot_down]=0
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d_foot_force_d_bridge_velocity[indices_foot_down]=0

bridge_max_amplitude=max(bridge_max_amplitude,state[0])

time_from_first_to_last_footfall=(step_last[:n_walkers]-step_first

↪→ [:n_walkers])

mean_step_frequency=np.mean(0.5*num_steps[:n_walkers]/

↪→ time_from_first_to_last_footfall)

stdev_step_frequency=np.std(0.5*num_steps[:n_walkers]/

↪→ time_from_first_to_last_footfall)

total_integration_time=t-t_prev_addition

time_from_first_to_last_zero_cross_bridge=t_final_bridge_zero-

↪→ t_first_bridge_zero

COM_sin_component_full_period/=(

↪→ time_from_first_to_last_zero_cross_bridge*np.sqrt(

↪→ mean_amplitude/time_from_first_to_last_zero_cross_bridge))

COM_cos_component_full_period/=(

↪→ time_from_first_to_last_zero_cross_bridge*np.sqrt(

↪→ mean_amplitude/time_from_first_to_last_zero_cross_bridge))

if which_model!=3:

sagittal_sin_component_full_period/=(

↪→ time_from_first_to_last_zero_cross_bridge*np.sqrt(

↪→ mean_amplitude/
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↪→ time_from_first_to_last_zero_cross_bridge))

sagittal_cos_component_full_period/=(

↪→ time_from_first_to_last_zero_cross_bridge*np.sqrt(

↪→ mean_amplitude/

↪→ time_from_first_to_last_zero_cross_bridge))

d_foot_force_d_COM_full_period=-

↪→ inverted_pendulum_frequency_radians[:n_walkers]**2*

↪→ time_from_first_to_last_footfall

d_foot_force_d_COM_velocity_full_period=0

time_average_d_foot_force_d_bridge_velocity*=9.81/

↪→ normalized_leg_lengths[:n_walkers]

sigma_1=np.sum((time_average_d_foot_force_d_bridge_velocity+

↪→ jump_term_1)/time_from_first_to_last_footfall)

sigma_2=np.sum(-(jump_term_2+d_foot_force_d_COM_full_period)*

↪→ COM_sin_component_full_period/bridge_frequency_radians/

↪→ time_from_first_to_last_footfall+(jump_term_4+

↪→ d_foot_force_d_COM_velocity_full_period)*

↪→ COM_cos_component_full_period/

↪→ time_from_first_to_last_footfall)

sigma_3=np.sum(sagittal_sin_component_full_period*jump_term_3/

↪→ time_from_first_to_last_footfall)/bridge_frequency_radians
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↪→ if which_model!=3 else 0

order_footsteps=np.sqrt(order_param_cos_component_step*

↪→ order_param_cos_component_step+

↪→ order_param_sin_component_step*

↪→ order_param_sin_component_step)/(n_walkers*n_footfalls)

order_COM=np.sqrt(order_param_cos_component_COM*

↪→ order_param_cos_component_COM+order_param_sin_component_COM*

↪→ order_param_sin_component_COM)/(n_periods_COM)

print(n_walkers,

bridge_damping_coefficient-n_walkers*np.mean(

↪→ walker_masses[:n_walkers])/bridge_mass*(

↪→ sigma_1+sigma_2+sigma_3),

bridge_max_amplitude,

order_footsteps,

order_COM,

mean_step_frequency,

stdev_step_frequency,

np.mean(forward_speed),

np.sqrt(mean_amplitude/

↪→ time_from_first_to_last_zero_cross_bridge

↪→ ),



104

num_zero_cross/(

↪→ time_from_first_to_last_zero_cross_bridge

↪→ ),

sigma_1, sigma_2, sigma_3

)

# if bridge_damping_coefficient-n_walkers*np.mean(walker_masses[:n_walkers])

↪→ /bridge_mass*(sigma_1+sigma_2+sigma_3)<0 and break_on_crit:

if bridge_max_amplitude>0.015 and break_on_crit:

sys.exit(n_walkers)

sys.stdout.flush()

sys.exit(max_n_walkers)

B Julia source code listing: pedestrian/bridge and social force simulations

using Pkg;

Pkg.add("Plots")

Pkg.add("CUDA")

Pkg.add("ForwardDiff")

Pkg.add("DifferentialEquations")

using CUDA

using ForwardDiff

CUDA.versioninfo()
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using Plots

using LinearAlgebra

using DifferentialEquations

using Random

bridge_half_width=2

bridge_length=325

ra = 0.31

la = 0.31

A1=1.7

A2 = 1.7

B1 = 0.28

B2=0.28

tau=0.5

Ai=5

Bi =0.1

M=113e3

bridge_damp=0.043

Omega=2*pi*1.03

function social_force_term(diffzx,diffzy)

distz=sqrt.(diffzx^2+diffzy^2)
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d=max.(distz,1e-8)

nx=diffzx/d

ny=diffzy/d

cosphi=-ny

F1 = 1.7*exp((2*0.31 - d) / 0.28) * (0.31 + (1 - 0.31) * ((1 + cosphi) /

↪→ 2)) + 1.7 * exp((2*0.31 - d) / 0.28)

F1*nx,F1*ny

end

function wall_avoidance_term(z)

bound=2

leftwall=min.(z+bound,-1e-7)

rightwall=max.(z-bound,1e-7)

left_repel=5*exp.((0.31-abs.(leftwall))./0.1).*leftwall

right_repel=5*exp.((0.31-abs.(rightwall))./0.1).*rightwall

left_repel.+right_repel

end

function social_force_frontiers(F::CuDeviceVector{Float64},N::Int64,Z::

↪→ CuDeviceMatrix{Float64},Zdot::CuDeviceMatrix{Float64},Vd::

↪→ CuDeviceVector{Float64})

Zshared = CUDA.@cuDynamicSharedMem(Float64, N*2)



107

i=threadIdx().x

z1::Float64=convert(Float64,0)

z2::Float64=convert(Float64,0)

if i<=N

z1=Z[i,1]

z2=Z[i,2]

Zshared[(i-1)*2+1]=z1

Zshared[(i-1)*2+2]=z2

end

sync_threads()

if i<=N

Fix::Float64=0

Fiy::Float64=0

for j in range(1,N)

zj1=Zshared[(j-1)*2+1]

zj2=Zshared[(j-1)*2+2]

fx,fy=social_force_term(z1-zj1,z2-zj2)

Fix+=(i==j) ? 0 : fx

Fiy+=(i==j) ? 0 : fy

end

Fix+=wall_avoidance_term(z1)
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F[i]=0.5*(-Zdot[i,1]).+Fix

F[i+N]=0.5*(Vd[i]-Zdot[i,2]).+Fiy

end

return nothing

end

function test_force(x,y)

norm(social_force_term(

x, y

)

)

end

g=9.81

function H_1(y,p,L)

g./L.*(p-y)

end

function bridge_ode(deriv::CuDeviceVector{Float64},

N::Int64,

L::CuDeviceVector{Float64},
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p::CuDeviceVector{Float64},

rsum::Float64,

msum::Float64,

m::CuDeviceVector{Float64},

state::CuDeviceVector{Float64},

M::Float64,

Omega::Float64,

bridge_damp::Float64)

i=convert(Int32,threadIdx().x)

foot_force=convert(Float64,0)

g_=convert(Float64,9.81)

deriv_shared = CUDA.@cuDynamicSharedMem(eltype(deriv), 1)

if i==1

deriv_shared[1]=0

end

sync_threads()

if i<=N

r=m[i]/(M+msum)

y0dot=state[2+5*N+i]

zdot=state[2+4*N+i]

vnorm=sqrt(zdot^2+y0dot^2)
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foot_force=g_/L[i]*(p[i]-state[i+2])*(carroll(vnorm)>=0.3)

deriv_term=1/(1-rsum)*(foot_force*r)

CUDA.atomic_add!(CUDA.pointer(deriv_shared),deriv_term)

end

sync_threads()

if i==1

xdot=state[2]

x=state[1]

deriv[i]=xdot

xdotdot=1/(1-rsum)*(-bridge_damp*Omega*xdot-Omega*Omega*x)

deriv_shared[1]+=xdotdot

deriv[i+1]=deriv_shared[1]

end

sync_threads()

if i<=N

deriv[i+2+3*N]=-foot_force-deriv_shared[1]

end

return nothing

end

function bridge_pedestrian_ode_model2(deriv,state,param,t)
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N,L,m,p,vd,msum,rsum=param

y0=state[3+2*N:2+3*N]

y1=state[3:2+N]

y=min.(max.(y1+y0,-bridge_half_width),bridge_half_width)

z=state[3+N:2+2*N] .%bridge_length

ydot=state[3+3*N:2+4*N]

zdot=state[3+4*N:2+5*N]

y0dot=state[3+5*N:2+6*N]

M_=convert(Float64,M)

Omega_=convert(Float64,Omega)

bridge_damp_=convert(Float64,bridge_damp)

@sync @cuda blocks=1 threads=N shmem=sizeof(Float64) bridge_ode(deriv,N,

↪→ L,p,rsum,msum,m,state,M_,Omega_,bridge_damp_)

Z=CuArray{Float64}(CUDA.zeros(N,2))

Zdot=CuArray{Float64}(CUDA.zeros(N,2))

Z[:,1].=y

Z[:,2].=z

Zdot[:,1].=y0dot

Zdot[:,2].=zdot

crowd=CuArray{Float64}(CUDA.zeros(N*2))



112

@sync @cuda blocks=1 threads=N shmem=2*N*sizeof(Float64)

↪→ social_force_frontiers(crowd,N,Z,Zdot,vd)

vnorm=sqrt.(y0dot.^2+zdot.^2)

deriv[3:N+2].=ydot.*(carroll(vnorm).>=0.3)

deriv[3+N:2+2*N].=zdot

deriv[3+2*N:2+3*N].=y0dot

deriv[3+4*N:2+5*N].=crowd[N+1:2*N]

deriv[3+5*N:2+6*N].=crowd[1:N]

end

function carroll(v)

0.5*(0.35*v.^3 - 1.59*v.^2 + 2.93*v)

end

function deriv_carroll(v)

0.5*(0.35*3*v.^2-1.59*2*v .+2.93)

end

function inverse_carroll(v0,fp)

v=v0

for it in range(1,100)

v.-=0.99*(carroll(v)-fp)./deriv_carroll(v)

end
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v

end

function generate_crowd(N,mean_freq,std_freq)

L=randn(N)*0.092.+1.17

bmin=0.0157.+0.002*randn(N)

bmin.*=1 .-2*rand(N)

y0=rand(N)*4 .-2

y0dot=zeros(N)

y=rand(N)*0.1-0.2

z=rand(N)*325

p=bmin.*(1.0-tanh.(0.25*sqrt.(9.8./L) ./ fp))

bmin.*-1

x=0.

xdot=0.

m=76.9 .+10*randn(N)

vd=inverse_carroll(ones(N),abs.(randn(N)*std_freq .+mean_freq))

vd=max.(0.1,vd)

fp=carroll(vd)

ydot= p .* sqrt.(9.81./L) .* tanh.(sqrt.(9.81./L) .* 0.5./fp)

tnext=rand(N)*0.5 ./fp
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tprev=tnext-0.5 ./fp

msum=convert(Float64,sum(m))

r=m./(M+msum)

rsum=convert(Float64,sum(r))

cat([x,xdot],y,z,y0,ydot,vd,y0dot,dims=1), (L,m,p,tnext,tprev,bmin,vd,

↪→ msum,rsum)

end

function crowd_loop(Tmax,N,crowd_state,crowd_param, tracefile)

t=0

t_trace_last=-0.1

L,m,p,tnext,tprev,bmin,vd,msum,rsum=crowd_param

L_d=CuArray{Float64}(L)

vd_d=CuArray{Float64}(vd)

m_d=CuArray{Float64}(m)

while t<Tmax

#solve the ODE until the next pedestrian footfall

L,m,p,tnext,tprev,bmin,vd,msum,rsum=crowd_param
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p_d=CuArray{Float64}(p)

crowd_param_gpu=N,L_d,m_d,p_d,vd_d,msum,rsum

t1=minimum(tnext)

if t1-t>1e-10

prob=ODEProblem(bridge_pedestrian_ode_model2,CuArray{Float64}(

↪→ crowd_state), (0,t1-t), crowd_param_gpu)

sol=solve(prob, AutoVern7(AutoTsit5(Rosenbrock23()),

abstol=1e-13,reltol=1e-10,save_everystep = false)

crowd_state=Array(sol.u[size(sol.u)[1]])

end

#update the step timing and xCOP for the pedestrians that stepped...

ii=(tnext .<=t1+1e-10)

zdot=crowd_state[3+4*N:2+5*N]

y0=crowd_state[3+2*N:2+3*N]

y0dot=crowd_state[3+5*N:2+6*N]

vnorm=sqrt.(zdot.^2+y0dot.^2)

crowd_state[3+3*N:2+4*N].*=(carroll(vnorm).>=0.3)

ydot=crowd_state[3+3*N:2+4*N]

y1=crowd_state[3:2+N]

bnd=bridge_half_width



116

p[ii].=y1[ii]+(ydot[ii].*sqrt.(L[ii]./9.81).*(carroll(vnorm[ii])

↪→ .>=0.3))+bmin[ii]

bmin[ii].=-bmin[ii]

tprev[ii].=tnext[ii]

fp=max.(0.3,carroll(vnorm))

step_width=abs.(bmin)./(1 .-tanh.(sqrt.(0.91 ./L).*0.25./fp))

step_length=max.(1e-1,0.36*(zdot/1.151466))

tnext[ii].=tnext[ii].+max.(0.1,0.5./fp[ii].*

(1 .+(carroll(vnorm[ii]).>=0.3).*(step_width[ii].^2-(y1[ii]-p[ii])

↪→ .^2)./(4*step_length[ii].^2)))

t=t1

#increase the time and, at a certain interval, write out the traces

↪→ to the file

if t_trace_last+0.01<=t

z=crowd_state[3+N:2+2*N]

x,xdot=crowd_state[1],crowd_state[2]

t_trace_last=t

line="$(N) $(t) $(x) $(xdot) "

for i in range(1,N)

line=line*" $(g/L[i]*(p[i]-y1[i])) "

end
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for i in range(1,N)

line=line*" $(p[i]-y1[i]) "

end

for i in range(1,N)

line=line*" $(y1[i]) "

end

for i in range(1,N)

line=line*" $(y0[i]) "

end

for i in range(1,N)

line=line*" $(z[i]) "

end

for i in range(1,N)

line=line*" $(ydot[i]) "

end

for i in range(1,N)

line=line*" $(y0dot[i]) "

end

for i in range(1,N)

line=line*" $(zdot[i]) "

end
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for i in range(1,N)

line=line*" $(bmin[i]) "

end

for i in range(1,N)

line=line*" $(tnext[i]) "

end

for i in range(1,N)

line=line*" $(tprev[i]) "

end

for i in range(1,N)

line=line*" $(fp[i]) "

end

for i in range(1,N)

line=line*" $(vd[i]) "

end

write(tracefile,line*"\n")

flush(tracefile)

end #if

crowd_param=(L,m,p,tnext,tprev,bmin,vd,msum,rsum)
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end #while

end #fn

function compute_traces!(N, std_freq, sample)

Tmax=20

mean_freq=0.95

CURAND.seed!(sample)

Random.seed!(sample)

tracefile=open("crowd-traces/$(N)_$(mean_freq)_$(std_freq)_$(sample).txt

↪→ ","w+")

#initial conditions

crowd_state, crowd_param=generate_crowd(N,mean_freq,std_freq)

L,m,p,tnext,tprev,bmin,vd=crowd_param

crowd_loop(Tmax,N,crowd_state,crowd_param,tracefile)

nothing

end

for N in range(160,250,step=5)

for sample in range(1,10)

@sync begin

for sigma in range(0,1.0,step=0.1)

@async begin
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compute_traces!(N,sigma,sample)

end

end

end

end

end
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CHAPTER B

Appendix for Chapter 4

A Python source code listing: toxicity detection and reinforcement learning

import pickle

import matplotlib.pyplot as plt

import sys, numpy as np

import glob

import scipy.signal

from sklearn.cluster import MiniBatchKMeans as KMeans

import sklearn

from sklearn.svm import SVR

from sklearn.preprocessing import StandardScaler

from sentence_transformers import SentenceTransformer

from sklearn.metrics import r2_score, mean_absolute_percentage_error,

↪→ accuracy_score

from torch.optim import Adam

from transformers import AdamW

import pandas as pd

import torch.nn as nn

import torch

TWT=False
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from transformers import DistilBertModel

import open_clip

# Instantiate DistilBERT tokenizer...we use the Fast version to optimize

↪→ runtime

Load=True

Train=False

RELABEL=False

from transformers import AutoTokenizer, AutoModel, AutoModelForMaskedLM

from sentence_transformers import SentenceTransformer

from sentence_transformers import evaluation

import functools

from torch.utils.data import Dataset, DataLoader

if RELABEL:

labels=pd.read_csv(’pol_train0.csv’).sample(200)

keys=np.arange(200).tolist()

text=labels[’tokens’].tolist()

comparisons=0

def compare(i,j):

while True:

try:
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global comparisons

prompt=’1:’+str(text[i])+’\n\n2:’+str(text[j])+’\n’

print(comparisons,prompt)

comparisons+=1

val=int(input())

if val==0:

return 0

elif val==1:

return -1

else:

return 1

except:

continue

keys=sorted(keys,key=functools.cmp_to_key(compare))

labels[’TOXICITY’]=np.linspace(0,1,len(labels))[keys]

labels[’text’]=text

labels.to_csv(’pol_train.csv’)

def mean_pooling(model_output, attention_mask):
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token_embeddings = model_output[0] #First element of model_output

↪→ contains all token embeddings

input_mask_expanded = attention_mask.unsqueeze(-1).expand(

↪→ token_embeddings.size()).float()

return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.

↪→ clamp(input_mask_expanded.sum(1), min=1e-9)

class BertRegressor(nn.Module):

def __init__(self, model_str=’distilbert-base-4ch’, drop_rate=0.2,

↪→ device=’cuda’):

self.model_device=device

self.regressor_device=device

super(BertRegressor, self).__init__()

self.model = AutoModelForMaskedLM.from_pretrained(model_str).to(

↪→ device)

self.model.train()

self.tokenizer=AutoTokenizer.from_pretrained(’distilbert-base-

↪→ uncased’, use_fast=True)

self.regressor1 = nn.Sequential(

nn.Dropout(drop_rate),
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nn.Linear(768,256),

nn.ReLU(),

nn.Dropout(drop_rate),

nn.Linear(256,1)).to(device)

self.params=list(self.regressor1.parameters())+list(self.model.

↪→ parameters())

self.freeze=False

def freeze_bert(self):

self.model.save_pretrained(’distilbert-base-4ch2’)

self.model=AutoModel.from_pretrained(’distilbert-base-4ch2’).cuda()

self.freeze=False

def unfreeze_bert(self):

self.model.train()

self.freeze=False

def forward(self, x, key=’text’, device=’cuda’):

if self.regressor_device!=device:

self.regressor1=self.regressor1.to(device)

self.regressor_device=device

return self.predict(self.encode(x,key=key,device=device))

def encode(self, x, key=’text’, device=’cuda’):

if self.model_device!=device:



126

self.model=self.model.to(device)

self.model_device=device

inputs=self.tokenizer(x[key].apply(str).tolist(), truncation=True,

↪→ padding=True, return_tensors="pt")

if self.freeze:

with torch.no_grad():

model_output = self.model(inputs[’input_ids’].to(device),

↪→ inputs[’attention_mask’].to(device))

else:

model_output = self.model(inputs[’input_ids’].to(device),

↪→ inputs[’attention_mask’].to(device))

sentence_embeddings = mean_pooling(model_output, inputs[’

↪→ attention_mask’].to(device))

return sentence_embeddings

def predict(self,x):

y = torch.sigmoid(self.regressor1(x))

return y

def encode_in_batches(model,df,key=’text’):

batches_out=[]

for i in range(0,int(np.ceil(len(df)/10))):

batch= df.iloc[i*10:min(i*10+10,len(df))]
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batches_out.append(model.encode(batch,key=key).detach().cpu().

↪→ numpy())

print(i)

return np.concatenate(batches_out,axis=0)

def regressor_predict(x):

reward_model.regressor1=reward_model.regressor1.to(’cpu’)

return reward_model.predict(torch.tensor(x)).detach().cpu().numpy()

import sys

from torch.nn.utils.clip_grad import clip_grad_norm_

from transformers import get_linear_schedule_with_warmup

def bert_score(model, tokenizer, tensor_input):

mask=(torch.rand(tensor_input.shape)<0.15)

masked_input = tensor_input+0

masked_input[mask]=tokenizer.mask_token_id

loss = model(masked_input.cuda(), labels=tensor_input.cuda()).loss

return loss

def train(model):

df20=pd.read_csv(’pol_val.csv’)

optimizer1 = Adam(model.params,
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lr=0.001)

optimizer2 = AdamW(model.params,

lr=0.0001)

model=model

model.train()

lossfn=torch.nn.BCELoss()

chunker0=pd.read_csv(’pol_train.csv’, chunksize=5000)

model.unfreeze_bert()

bz=512

bs=4

val_loss_avg=[]

for epoch in range(0):

for batch,df0 in enumerate(chunker0):

toks=model.tokenizer.encode(’ ’.join(df0[’text’].apply(str).

↪→ sample(frac=0.2)),return_tensors=’pt’)

toks_train=toks[0][:-bs*bz]

toks_val=toks[0][-bs*bz:]

loss_avg=[]

for i in range(0,int((len(toks_train)/bz/bs))):

optimizer2.zero_grad()

sentence=toks_train[i*bs*bz:i*bs*bz+bs*bz].reshape([bs,-1])
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loss = bert_score(model.model,model.tokenizer,sentence)

loss.backward()

loss_avg.append(loss.item())

# clip_grad_norm_(model.model.parameters(),2)

optimizer2.step()

sys.stdout.flush()

with torch.no_grad():

val_loss=bert_score(model.model, model.tokenizer, toks_val.

↪→ reshape([bs,-1]))

val_loss_avg.append(val_loss.item())

print(epoch,batch,sum(loss_avg)/len(loss_avg), val_loss.item())

sys.stdout.flush()

model.model.save_pretrained(’distilbert-4ch-finetuned2’)

model.freeze_bert()

chunker=pd.read_csv(’all_data.csv’)

for epoch in range(100):

best_loss = 1e10

for batch in range(100):

df0=chunker[chunker[’split’]==’train’]

df2=df20.sample(n=25)

df=pd.concat(
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[df0[df0[’toxicity’]>0.5].sample(n=10),

df0[df0[’toxicity’]<=0.5].sample(n=10)]

)

y=torch.tensor(np.array(df[’toxicity’])).float().cuda()

y2=torch.tensor(np.array(df2[’TOXICITY’])).float().cuda()

optimizer1.zero_grad()

outputs = model(df,key=’comment_text’)

loss0 = lossfn(outputs.squeeze(),

y.squeeze())

loss0.backward()

optimizer1.step()

with torch.no_grad():

outputs2=model(df2)

val_loss=lossfn(outputs2.squeeze(), y2.squeeze())

print(epoch,batch,loss0.item(), val_loss.item(), sklearn.

↪→ metrics.f1_score(y2.detach().cpu().numpy()>0.5,outputs2

↪→ .detach().cpu().numpy()>0.5))

sys.stdout.flush()

torch.save(model,’bert_toxicity2.pt’)

return model
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if Load:

reward_model=torch.load(’bert_toxicity2.pt’)

print(’load model’)

else:

reward_model = BertRegressor(drop_rate=0.2)

if Train:

reward_model=train(reward_model)

print(’train’)

reward_model.eval()

dft=pd.read_csv(’~/Downloads/test_private_expanded.csv’).sample(n=1500)

dft2=pd.read_csv(’pol_test.csv’).sample(n=1500)

regressor=reward_model

pred=regressor_predict(encode_in_batches(reward_model,dft,key=’comment_text

↪→ ’))

pred2=regressor_predict(encode_in_batches(reward_model,dft2,key=’text’))

R1t=np.array(dft[’toxicity’])

R2t=np.array(dft2[’TOXICITY’])

print(’r2=’,r2_score(R1t,pred),’, mean_abs_%_error=’,

↪→ mean_absolute_percentage_error(R1t,pred), accuracy_score(R1t>0.4,pred

↪→ >0.4))
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print(’r2=’,r2_score(R2t,pred2),’, mean_abs_%_error=’,

↪→ mean_absolute_percentage_error(R2t,pred2), accuracy_score(R2t>0.4,

↪→ pred2>0.4))

print(sklearn.metrics.classification_report(R1t>0.4, pred>0.4))

print(sklearn.metrics.classification_report(R2t>0.4, pred2>0.4))

print(’toxicity_train’)

from cuml.manifold import UMAP

if TWT:

bertmodel=reward_model

twt=pd.read_csv(’twt_firearm_min.csv’).iloc[::-1]

pickle.dump(reward_model,open(’KNN_reward.pkl’,’wb+’))

reducer = UMAP(n_components=2)

A0=np.loadtxt(’4plebs/training2.np’)

B0=reducer.fit_transform(A0[::1])

print(’umap_train’)

pickle.dump(reducer,open(’umap.pkl’,’wb+’))

infer_files=[f’4plebs/pol_embed.np.{index}’ for index in range(26600,26643)]

xl=[np.mean(B0[:,0])-np.std(B0[:,0]),np.mean(B0[:,0])+np.std(B0[:,0])*0.8]

yl=[np.mean(B0[:,1])-np.std(B0[:,1]),np.mean(B0[:,1])+np.std(B0[:,1])*0.8]

i=26599
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indexof=lambda x: int(x.split(’.’)[-1])

infer_files=sorted(infer_files, key=indexof)

#A2=np.loadtxt(infer_files[1])

#A1=np.loadtxt(infer_files[0])

import scipy.stats

import pandas as pd

import dateparser

Nc=1000

N=30

d0=dateparser.parse(’2013-01-01T00:00:00’)

d0z=dateparser.parse(’2013-01-01T00:00:00.000Z’)

d0zz=pd.Timestamp(’2013-01-01T00:00:00.000Z’)

timediff = lambda x: (dateparser.parse(str(x))-d0).total_seconds()

timediffz= lambda x: (dateparser.parse(str(x))-d0z).total_seconds()

file2s=[pd.read_csv(f’4plebs/pol_tok.csv.{indexof(infer_files[k])}’) for k

↪→ in range(N)]

from nltk.tokenize.casual import casual_tokenize

#As=[np.loadtxt(infer_files[k]) for k in range(N)]

if TWT:

twtdate=np.array((pd.to_datetime(twt[’created_at’])-d0zz).dt.

↪→ total_seconds())
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print(’load’)

def get_embeddings(x):

return ’ ’.join(casual_tokenize(str(x)))

for j,file in enumerate(infer_files[1:-N]):

ix=0

file2s=file2s[1:]+[pd.read_csv(f’4plebs/pol_tok.csv.{indexof(infer_files[j

↪→ +N-1])}’)]

with torch.no_grad():

As=[encode_in_batches(reward_model,x,key=’tokens’) for x in file2s]

if i%10!=0:

i+=1

continue

i+=1

times=[np.array(file2[’date’].apply(timediff)) for file2 in file2s]

time=np.concatenate(times)

T0=time[0]

T1=time[-1]

if TWT:

text=[file2[’tokens’] for file2 in file2s]

txt0=twt[’text’][np.logical_and(twtdate>=T0, twtdate<=T1)].apply(

↪→ get_embeddings)



135

print(’tokenize’)

txt=bertmodel.encode(txt0.tolist(), convert_to_numpy=True).astype(float)

print(’embed’)

print(txt.shape)

rtc=np.array(twt[’public_metrics.retweet_count’][np.logical_and(twtdate

↪→ >=T0,twtdate<=T1)]).astype(int)

A4=np.concatenate(As,axis=0)

file3=pd.concat(file2s)

KM=KMeans(Nc)

embedding=reducer.transform(A4)

label=np.array(KM.fit_predict(A4))

file3[’label’]=label

P=np.bincount(label).astype(np.float32)

P/=P.sum()

Vk=np.random.rand(Nc)/Nc

Nk=np.ones(Nc)

Vshuf=np.random.rand(100,Nc)/Nc

Nshuf=np.ones([100,Nc])

if TWT:

jj=np.zeros(len(txt),dtype=int)-1

dist=np.ones(len(txt))*1e-2
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for ii,cc in enumerate(KM.cluster_centers_):

dist2=np.linalg.norm(cc[None,:]-txt,axis=-1)

jj=ii*(dist2<dist)*1+jj*(dist<=dist2)*1

dist=np.minimum(dist,dist2)

kk=np.where(jj>-1)[0]

jj=np.array(jj)[kk]

reward_twt=reward[jj.astype(int)]

DD=np.stack([reward_twt,rtc[kk]],axis=-1)

np.savetxt(’frames/%07d.rtc.np’%i,DD)

plt.scatter(reward_twt,rtc[kk])

plt.xlabel(’Toxicity’,fontsize=20)

plt.ylabel(’RT count’,fontsize=20)

plt.savefig(’frames/%07d.rtc.png’%i,dpi=400)

L=np.unique(label)

for it in range(1):

rewards=[]

for t in range(A4.shape[0]-1):

rewards.append(regressor_predict(A4[t]))

Vk[label[t]]+=0.25*(rewards[-1]+0.99*Vk[label[t+1]]-Vk[label[t]])

print(’value_iter’)

logitP=np.nan_to_num(np.log(P))
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P0=P*1.0

plt.scatter(Vk[L]/Nk[L],logitP[L],s=10,alpha=0.9,c=’cornflowerblue’)

coef=np.linalg.lstsq(np.stack([Vk[L],np.ones(len(L))],axis=-1),logitP[L])

↪→ [0]

#plt.plot(Vk[L],coef[0]*Vk[L]+coef[1],’k--’)

plt.xlim([Vk[L].min(), Vk[L].max()])

plt.ylim([logitP[L].min(),0])

plt.xlabel(’TD Value’,fontsize=20)

plt.ylabel(’$S^{-1}(P)$’,fontsize=20)

plt.savefig(’frames/%07d.td_value_logit.png’%i, dpi=1000)

file3[’value’]=Vk[label]

file3[’P’]=P[label]

file3.to_csv(f’4plebs/pol_labeled_VF.csv.{i}’)

np.savetxt(’frames/%07d.td_value.np’%i,np.stack([Vk[L],P[L]],axis=-1))

plt.clf()

if True:

A=A4[:]

np.savetxt(f’frames/centroids.{i}.np’,KM.cluster_centers_)

print(i)

plt.scatter(embedding[:,0], embedding[:,1], c=label, s=0.5,alpha=np.

↪→ minimum(6*P[label],1), cmap=’gist_stern’)
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plt.xlim(xl)

plt.ylim(yl)

plt.savefig(’frames/%07d.cluster.png’%i, dpi=600)

plt.clf()

h,_,_,_=plt.hist2d(embedding[:,0], embedding[:,1], bins=200, range=[xl,

↪→ yl], density=True, weights=Vk[label], cmap=’magma’)

plt.xlim(xl)

plt.ylim(yl)

plt.clf()

plt.pcolor(h.T, cmap=’magma’)

cb=plt.colorbar()

plt.savefig(’frames/%07d.utility.png’%i, dpi=600)

plt.clf()

# for shuf in range(100):

# i_shuf=np.random.permutation(np.arange(len(A4)-1))

# label_shuf=label[i_shuf]

# reward_shuf=np.array(rewards)[i_shuf]

# for it in range(1):

# for t in range(reward_shuf.shape[0]-1):

# Vshuf[shuf,label_shuf[t]]+=0.25*(reward_shuf[t]+0.99*Vk[label_shuf[t+1]]-

↪→ Vk[label_shuf[t]])
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#cshuf=np.array([scipy.stats.kendalltau(Vshuf[i,L]/Nshuf[i,L],logitP[L])

↪→ [0] for i in range(100)])

#r=scipy.stats.kendalltau(Vk[L]/Nk[L],logitP[L])[0]

#print(’shuf_test’)

#pk=1-(cshuf<r).mean()

#cutoff=np.argsort(cshuf)[-1]

#cutoff2=np.argsort(cshuf)[0]

#r2=scipy.stats.kendalltau(Vshuf[cutoff,L]/Nshuf[cutoff,L],logitP[L])[0]

#r3=scipy.stats.kendalltau(Vshuf[cutoff2,L]/Nshuf[cutoff2,L],logitP[L])

↪→ [0]

#print(r,pk,r2,r3)

#plt.scatter(Vshuf[cutoff,L]/Nshuf[cutoff,L],P[L],s=10,alpha=0.9,c=’gray

↪→ ’)

#plt.xlabel(’TD Value’,fontsize=20)

#plt.ylabel(’P’,fontsize=20)

#plt.savefig(’frames/%07d.td_value_shuf_max.png’%i, dpi=1000)

plt.clf()

plt.scatter(Vk[L]/Nk[L],P[L],s=10,alpha=0.9,c=’cornflowerblue’)

plt.xlabel(’TD Value’,fontsize=20)

plt.ylabel(’P’,fontsize=20)

plt.savefig(’frames/%07d.td_value.png’%i, dpi=1000)
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plt.clf()

plt.plot(file3[’date’][:len(label)],Vk[label],linewidth=0.25)

plt.xticks([file3[’date’].min(),file3[’date’].max()])

plt.xlabel(’time’,fontsize=20)

plt.ylabel(’TD Value’,fontsize=20)

plt.savefig(’frames/%07d.td_value_t.png’%i, dpi=1000)

plt.clf()

np.savetxt(’frames/%07d.td_value_t.np’%i,np.stack([label,Vk[label],P[

↪→ label]],axis=-1))

plt.scatter(embedding[:,0], embedding[:,1], c=Vk[label]/Nk[label], alpha

↪→ =0.4, cmap=’magma’, s=1)

plt.xlim(xl)

plt.ylim(yl)

cb=plt.colorbar()

plt.savefig(’frames/%07d.V.png’%i, dpi=600)

plt.clf()

np.savetxt(f’frames/%07d.umap.np’%i,embedding[:,:])

np.savetxt(f’frames/%07d.umap_centroids.np’%i,embedding[:,:])

np.savetxt(f’frames/%07d.clust.np’%i,label[:])

np.savetxt(f’frames/%07d.toxic.np’%i,rewards[:])

print(’saved’)
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