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ABSTRACT

Under the need of processing huge amounts of data, providing high-quality service, and

protecting user privacy in Artificial Intelligence of Things (AIoT), Federated Learning (FL)

has been adopted as a promising technique to facilitate its broad applications. Although the

importance of developing privacy-preserving FL has attracted lots of attention in different

aspects, the existing research is still far from perfect in real applications. In this dissertation,

we propose three privacy-related research accordingly towards three realistic weaknesses of

federated learning in the AIoT scenarios, which solve the problems of private data inference,

private data generation, and private data deletion in different stages of data life. First,

to solve the privacy inference problem of traditional FL, we design a dual differentially

private FL mechanism to achieve privacy preservation efficiently for both server side and local

clients. In particular, our proposed method focuses on FL with non-independent identically

distributed (non-i.i.d.) data distribution and gives theoretical analysis on privacy leakage

as well as algorithm convergence. The second problem is to generate heterogeneous data

privately in FL. To handle this challenging problem, we design a distributed generative

model framework that can learn a powerful generator in hierarchical AIoT systems. Thirdly,

we investigate a newly emerged machine unlearning problem, which is to remove a data point

and its influence from the trained machine learning model with efficiency and effectiveness.

Moreover, as the very first work on exact federated machine unlearning in literature, we

design a quantization based method, which can remove unlearned data from multiple clients

with significantly higher speed-up. All of the proposed methods are evaluated on different

datasets, and the results output by our models express superiority over existing baselines.

INDEX WORDS: Federated learning, Privacy preservation, Differential privacy,
Generative adversarial networks, Machine unlearning
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CHAPTER 1

INTRODUCTION

1.1 Background of Federated Learning

The explosive progress and widespread deployment of Internet of Things (IoT) are being

leveraged to advanced ubiquitous data sensing and collection across every corner in our life.

In addition, with the growing demand for high-quality customized services by IoT users, IoT

is desired to be endowed with more powerful learning capacities by Artificial Intelligence (AI)

to process the enormous amount of data in data-hungry applications [1, 2, 3, 4]. During the

past decade, machine learning has been typically applied in a centralized manner via col-

lecting the generated data to a central server, which delivers excellent performance on real

tasks. For example, in the computer vision field [5], image classification and object detection

are improved to high accuracy. In natural language processing [6], understanding and ana-

lyzing text data makes our work and communication easier, where a popular representative

is machine translation software, such as Google Translate. More importantly, some com-

bined machine learning techniques are reshaping our life. Inspired by AlphaGo, Bard, and

ChatGPT, machine learning can make better plan or decision for us, and the advancement

of self-driving technology may free people from tired driving [7, 8, 9].

Currently, two different modes of deploying machine learning are prevalent, i.e., cen-

tralized model vs. federated mode. In a centralized mode, no matter where the data is

generated, a centralized server will collect the data, train specific learning models on it,

and then provide prediction or query API for applications to use. Although the central-
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ized mode is easy to use, accurate in performance, and generalized well, there are many

consequences along with, especially from security and privacy perspectives. For instances,

(i) since all data and the model are stored in one place, the single point failure threatens

the centralized storage and model easily once attackers are able to access the server; (ii) in

a large centralized system, there will be too much data upload from devices to the server.

The data transmission for such an amount of data brings expensive cost to communication

system; (iii) from the view point of data owner, with users’ ever-increasing privacy awareness

and governments’ sophisticated privacy regulations, it becomes harder to encourage users to

contribute their valuable private data to central storage for processing. All of these above

issues raise unprecedented challenges for machine learning in a centralized mode.

Fortunately, the advent of distributed learning technologies provide us with promising so-

lutions, among which federated learning (FL) [10] is one of the most eye-catching paradigms.

In FL, geographically distributed participants collaboratively learn a global model over their

local datasets by sharing their local outputs for aggregation, which significantly reduce com-

munication cost (e.g., bandwidth and transmission time) and mitigate privacy leakage from

participants’ raw data. In concrete, FL differs traditional centralized learning mode in three

ways: (i) the FL server only holds a global model instead of the entire dataset, which de-

creases the data leakage rick of single point failure; (ii) since the structure is changed, the

communication between FL server and clients only contains model parameters, where the

transmission payload is reduced a lot; and (iii) at local client side, each local client trains

their own model on their private local data, preventing privacy leakage for one more step.
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Figure 1.1 The framework of federated learning in AIoT.

Moreover, the presence of FL not only provides a distributed learning solution but also

suits Artificial Intelligence of Things (AIoT) perfectly. In an AIoT system, there are large

numbers of smart devices with different data distribution [11, 12, 13, 14, 15], which calls a

federated structure to unit the them for collaboration. Besides, to utilize these IoT data

to achieve better performance in applications, the learning techniques are necessary. Thus,

federated learning and artificial intelligence of things suit each other seamlessly.

1.2 Privacy Issues in Federated Learning

Recently, the machine learning based services and data-driven applications are immersive

in our daily life [16, 17], overwhelming from personal devices, government facilities, to even

medical agents. Our private data involved in these scenarios, no matter willing or not,

is enduring serious privacy leakage [18, 19, 20, 21, 22, 23, 24, 25, 26]. It is under these

urgent needs, federated learning is proposed to handle the privacy issues amongst the diverse

machine learning and artificial intelligence scenarios. However, though FL separates data
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and models with privacy consideration, it still can not achieve perfect privacy protection

due to the existence of different attacks in various applications [27, 28]. As pointed out

by prior research, FL still suffers malicious attack aiming at breaking system security and

privacy [29, 30, 31]. These attacks can be categorized by different levels: (i) at the server

side, an honest-but-curious server may play the role of an insider attacker, trying to inference

private data and information of local clients; (ii) during the model transmission stage, an

outsider attacker can eavesdrop or hijack model parameters, which can be used as prior

knowledge to threaten system security and user privacy; and (iii) due to the large numbers of

local clients, malicious participants could hide themselves and try to steal private information

about the system and user. Therefore, in federated learning, privacy preservation still has a

long way to go.

In this dissertation, we mainly focus on three privacy-related research problems in fed-

erated learning with consideration of common operations during usage of federated learn-

ing, including inference, generation, and deletion. Firstly, we investigate the problem that

honest-but-curious server and malicious participants can threaten data privacy during feder-

ated learning process. Thus, our proposed approach is to design a private federated learning

mechanism that can decrease privacy inference performance. The challenges in this problem

are how to identify the privacy leakage and achieve a balance the model utility and data

privacy of the proposed mechanism.

Secondly, towards some realistic applications that need data in FL server, we explore how

to generated heterogeneous multi-source local data privately at the server side. This research
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is caused by variety of AIoT devices and applications, where the data heterogeneity appears

in different scenarios. Our approach is to design a federated generative mechanism, allowing

server to generate private heterogeneous data from all local clients. Surely, generating data

privately for heterogeneous data is the key challenge of this problem.

Thirdly, we consider a newly emerged problem that is to protect privacy of user data

during data deletion process in FL. This research corresponds to dynamic property of IoT

devices, where devices could dynamically remove their data or quit a system due to different

circumstances. In order to handle the problem, our solution is to devise a data removal

mechanism through machine unlearning techniques, in which unlearning data in FL setting

in exact manner is a big challenge.

1.3 Dissertation Organization

This dissertation is organized as follows. Related works of above topics in federated learning

are introduced in Chapter 2, in which we summarize the existing literature in three per-

spectives, including attack and protection of federated learning, generative model in hetero-

generation, and machine unlearning in different settings. Then, we investigate each of the

branch for private data inference, private data generation, and private data deletion with

proposed methods dual differentially private federated learning, federated hetero-generation,

and federated machine unlearning in Chapter 3, Chapter 4, and Chapter 5, respectively.

Thereafter, a series of promising future work is proposed towards the security and privacy

of federated learning in Chapter 6. Finally, this dissertation is concluded in Chapter 7.
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CHAPTER 2

RELATED WORKS

2.1 Attacks and Protection of Federated Learning

2.1.1 Attacks on Federated Learning

As FL has attracted more and more attentions of research and applications, various vul-

nerabilities of FL models have been explored to launch attacks, mainly including inference

attack [32, 33, 29] and poisoning attack [34, 35, 36]. To learn local users’ data privacy,

Melis et al. [32] deveoped membership inference attack by using non-zero gradients of the

embedding layer of a deep natural language processing model. A Generative Adversarial

Networks (GAN)-based active inference attack was designed by Hitaj et al. [33] to generate

targeted private samples of the victim client. In [29], authors reviewed the privacy leakage

in FL and then developed an inference attack model via using each layer’s gradient of the

target model. Data poisoning attack of [34] modified the training data through flipping data

label and changing features or small regions. In [35], model poisoning attack embedded a

global backdoor trigger in FL models, which is achieved by inserting hidden backdoors into

a subset of local clients before updating to the server. In [36], by modeling the interactions

between training loss and attack performance as an adversarial min-max game, the authors

designed model poisoning attack to bypass the poisoning detection tool of FL systems. How-

ever, most of the attack models are experiment-oriented and lack theoretical analysis on the

attack factors and performance.
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2.1.2 Protection of Federated Learning

To protect data privacy in FL, secure multi-party computation (SMC) [37] and differential

privacy (DP) [38] are commonly used solutions. Although SMC offers a strong security

guarantee, the complicated computation protocols yield potentially un-affordable overheads

for small devices, such as mobile devices. Existing works incorporate DP into FL from

different aspects [39, 40, 41, 42]. McMahan et al. [39] introduced the first DP-based FL

proposal for protecting the privacy of a recurrent language model. In [40], an asynchronous

FL was designed for mobile edge computing in urban informatics using local differential

privacy to protect the privacy of self-driving vehicles. Agarwal et al. [41] studied the optimal

communication cost with binomial mechanism for FL under certain DP conditions. In [42],

DP-based noise was added twice for data privacy in FL – the first time is after training local

client models and before updating local model parameters, and the second time is during

the process of parameter aggregation. But, all of these current works only focus on FL with

i.i.d. scenario.

2.2 Generative Models in Hetero-Generation

2.2.1 Generative Models on Multi-Source Data

Generative adversarial networks (GANs) [43] originally focuses on data generation in a single

dataset. In generative model on multi-source data scenarios, two or more data sources are

provided to train variants of GANs, which can be partitioned into conditional generation

and joint generation. The conditional generation methods aim at learning a conditional dis-
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tribution of one data source given other data source(s) as the additional information, which

is prevalent in image-to-image translation [44, 45, 7], domain adaptation [46, 47, 48], do-

main generalization [49, 50, 51], etc. Zhu et al. [44] design the cycleGAN for image-to-image

translation between multiple domains, where each generator takes source domain data as

input and outputs conditional data to its target domain. Later, pix2pix [45] is developed as

a universal image-to-image translation framework that transfers one image to its desired do-

main. Xiong et al. [7] devise a conditional GAN with privacy mechanism, which can translate

original camera data into a privacy-preserving format. StarGAN [47] adopts a bidirectional

generator to learn the mapping from source domain to target domain, as well as the inverse

direction, which can successfully transfer human face among different attributes. Similar

work is concurrently conducted by Li et al. [48] who use multiple generators for domain

adaptation on each domain. Le et al. [52] explore the mutual information between data

sources to reduce the space for data generation, therefore improving the fidelity of gener-

ated data. In [53, 54], conditional generation is applied on MRI medical data to adapt with

multi-contrast image synthesis. Differently, the joint generation methods try to learn the

joint distribution of multiple data sources. CoGAN [55] is the first work to learn a joint

distribution without any tuple of paired images. As an improvement, Mao and Li [56] use

the domain label as a condition and then train only a single conditional generator to repre-

sent the joint distribution of two sources without using paired data. Then, RadialGAN [46]

is developed to learn the joint distribution of multiple data sources by training multiple

autoencoder-based generator on each source, which enhances the data augmentation quality
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and solve the missing data issues. Pu et al. [57] propose the JointGAN that adopts multi-

ple generators and one discriminator to learn the joint distribution from multiple marginal

samples.

However, all the existing generative models on multiple data sources are centralized mode,

which limits their applicability on geographically distributed data sources.

2.2.2 Generative Models in Distributed Settings

For generative models in distributed setting, Generative Adversarial Parallelization [58] is

the first work applying GANs in a distributed setting, where each GAN model is trained

on a distributed dataset. Similar idea is adopted by Hardy et al. [59] in Gossip GAN, but

the generators and discriminators are gossiped among neighborhood for adapting the global

distribution. Durugkar et al. [60] and Hardy et al. [61] simplify the previous structure via

changing multiple generators to one while keeping multiple discriminators for training, which

can provide the aggregated discriminator loss to the generator for better generation quality.

Along with this line, in [62], authors consider the distributed data generation on multiple

datasets, where the multiple discriminators are weighted averaged according to their loss

values. Since the federated learning [63] paradigm was proposed, it has been leveraged to

develop various GANs [64, 65, 66, 67, 68], in which the minor difference among these methods

is whether to aggregate generators [64], discriminators [67], or both [65, 66, 68]. However,

a high communication cost for these generative models is transmitting model parameters

iteratively. To circumvent, reformed methods in [69] and [70] set a central generator and

update it with the loss value of local discriminators, where the data volume transmitted
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between server and local clients is much smaller than transferring models. But their solutions

are not specified for non-i.i.d data, which lacks of a solid ground for landing a practical

application.

These above methods work well on a single data source but are not applicable on multiple

heterogeneous data sources.

2.3 Machine Unlearning in Different Settings

2.3.1 Exact Machine Unlearning

The concept of “machine unlearning” was first introduced in [71] and then formally defined

by [72], for which existing works can be categorized into two branches, i.e., exact unlearning

and approximate unlearning, according to their efficiency and effectiveness.

Exact unlearning requires the distribution of unlearned model should be exactly same as

the distribution of model that is retrained on the dataset without the deleted data. Since

this requirement is hard to be achieved in complicated models, exact unlearning strategies

are mainly designed on simple machine learning systems. Cao and Yang [71] first designed

unlearning algorithms for statistical query based machine learning models, such as Naive

Bayesian classifier and SVM, where the strategies are used to maintain model statistics

at learning stage and update parameter information when unlearning data comes. Then,

Ginart et al. [72] proposed the first unlearning method for unsupervised learning k-means

cluster algorithm, which adopts stability and divide-and-conquer to improve unlearning effi-

ciency. In [73], a SISA framework was designed to reduce unlearning time through sharding,



11

isolation, slicing, and aggregation, of which the idea is to split a dataset to small parts so that

the retraining time is reduced. Similarly, Aldaghri et al. [74] adopted ensemble learning to

split training dataset into disjoint shards by coding matrix. When unlearning is performed,

the unlearned data is removed from coded shards, and the corresponding model is retrained.

Following this, [75, 76] conducted unlearning algorithms on random forests algorithm, where

they used a similar idea to adjust the structure of decision tree such that the retrained subtree

can be minimized. In the above works, the exact unlearning strategies realize the unlearning

requirement by retraining a part of models, which can guarantee unlearning effectiveness but

consume too many resources, reducing unlearning efficiency.

2.3.2 Approximate Machine Unlearning

On the contrary, approximate unlearning prefers unlearning efficiency to unlearning effective-

ness. Different from exact unlearning, the distribution of approximately unlearned model

is similar to the distribution of retrained model with much less unlearning time. Instead

of retraining a part of model, approximate unlearning methods perform a post-processing

on the learned models to obtain an approximation of the fully retrained models. In the

current works, there two main methods of processing a model, i.e., gradient based meth-

ods [77, 78, 79, 80, 81] and hessian based methods [82, 83, 84, 85]. Wu et al. proposed a

DeltaGrad [77] algorithm to achieve approximate unlearning by updating the trained model

with stored gradients when certain data points are removed. Similarly, in [78], the gradi-

ents of each training batch is memorized, and the unlearning method simply removes the

parameter updates of the deleted data batch from the learned model. Neel et al. [80] and
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Ullah et al. [81] imported statistical indistinguishability and algorithm stability respectively

to unlearn data via gradient descent with provable approximation. To cover the adversar-

ial scenario where a user deliberately deletes data under specific distribution, Gupta et al.

proposed adaptive machine unlearning that can handle arbitrary model classes and training

methodologies. On the other hand, the authors of [82, 85] proposed differentially private data

removal mechanisms, which can unlearn data from the learned model by hessian matrix, and

Golatkar [83] focused on unlearning a specific class label from deep networks. Considering

the computational cost of hessian matrix, Izzo et al. [84] found a sublinear algorithm to

speed up unlearning from linear models efficiently. In summary, approximate unlearning is

faster than exact unlearning but fails to improve model utility, such as accuracy and model

difference. So, it is challenging to design an exact and efficient unlearning method as there

is still an open question.
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CHAPTER 3

PRIVATE DATA INFERENCE IN FEDERATED LEARNING

3.1 Challenges and Contributions

The explosive progress and widespread deployment of Internet of Things (IoT) are being

leveraged to advanced ubiquitous data sensing and collection across every corner in our life.

In addition, with the growing demand for high-quality customized services by IoT users, IoT

is desired to be endowed with more powerful learning capacities by Artificial Intelligence

(AI) to process the enormous amount of data in data-hungry applications, such as smart

city, smart transportation, and smart healthcare [86, 87, 88]. During past decades, machine

learning methods have been typically trained in a centralized manner via collecting all the

generated data to a central server, which performs well for accuracy but fail to satisfy the

needs of Artificial Intelligence of Things (AIoT) due to its essential flaws: (i) data collection

for such an amount of data brings expensive cost to communications; (ii) single point failure

threats the centralized storage and model easily once attackers are able to access the server;

and (iii) with users’ ever-increasing privacy awareness and governments’ sophisticated privacy

regulations, it becomes harder to encourage users to contribute their valuable private data to

central storage and processing. All of these above issues raise unprecedented challenges for

machine learning in AIoT – how to effectively and efficiently learn information from massive

data without unexpected privacy leakage?

Fortunately, the advent of distributed learning technologies provide us with promising so-

lutions, among which federated learning (FL) [10] is one of the most eye-catching paradigms.
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In FL, geographically distributed participants collaboratively learn a global model over their

local datasets by sharing their local outputs for aggregation, which significantly reduce com-

munication cost (e.g., bandwidth and transmission time) and mitigate privacy leakage from

participants’ raw data. However, though FL separates data and models with privacy con-

sideration, it is far away from perfect privacy protection. As pointed out by prior research,

FL still suffers malicious attack aiming at stealing private information, such as membership

privacy [29], model privacy [30], and attribute privacy [31]. On the other hand, in order to

resist the threats of privacy leakage, secure multi-party computation (SMC) [37] and dif-

ferential privacy (DP) [38, 39, 40, 41, 42, 89] have been widely employed to design various

privacy-preserving FL schemes. Nevertheless, the existing works on privacy threats and pri-

vacy protection in FL are limited to the impractical assumption that clients’ datasets are

independent identically distributed (i.i.d.). Until now, only few works on FL consider the

non-i.i.d. data, and none of them is related to privacy issue. In fact, the generated data

in AIoT usually has highly skewed distribution and even belongs to different data domains;

that is, clients are likely to own non-i.i.d. datasets.

For the purpose of better protecting private information, this section intends to fill the

gap of investigating privacy-preserving FL under non-i.i.d. scenario. Our research endeavor

starts with a comprehensive and deep analysis on the issue of privacy leakage in the original

FL system by taking into account both passive and active privacy inference attack. Through

our theoretical proof, the performance upper bound of privacy inference in FL is obtained,

and the influence of FL scenario (including clients’ data size and the difference of data
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distribution, etc.) on such a performance upper bound is clearly analyzed. Furthermore, a

Dual Differentially Private FL (2DP-FL) is elaborately designed to defend privacy inference

attack while guaranteeing a convergence upper bound. Particularly, with the flexible noise

addition, our 2DP-FL mechanism can meet the different needs for privacy protection. In the

real-data experiments, the feasibility of our considered inference attack, the effectiveness of

our 2DP-FL mechanism, and the superiority of our 2DP-FL mechanism over the state-of-

the-art are well validated. The contributions of this section are summarized as follows:

� To our best knowledge, this is the first work to theoretically analyze privacy leakage in

FL with non-i.i.d. setting, in which the upper bound of inferring privacy is obtained.

� To defend privacy inference attack, we propose a DP-based FL mechanism, 2DP-FL.

� Our 2DP-FL mechanism is proved to be effective with a convergence upper bound.

� Intensive experiments are conducted to evaluate our theoretical analysis on privacy

leakage as well as the advantages of 2DP-FL mechanism in achieving convergence,

protecting privacy, and maintaining model accuracy.

3.2 System Model & Problem Formulation

FL is a distributed learning paradigm that allows geographically distributed participants to

follow a common training procedure with the same objective and loss functions to build a

federated model on a server using their local datasets. The federated model parameter is

learnt by aggregating local participants’ model parameters through FedAvg algorithm [10]:
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wf
t =

∑K
k=1

nk

|D|w
k
t , where w

f
t and wk

t are the federated model parameter and client k’s model

parameter, respectively, nk is the size of client k’s dataset, and |D| =
∑K

k=1 n
k.

As shown in Fig. 3.1, in this work, we consider that a federated learning model F is

trained for C classes on the dataset (X, Y ), where X is the feature space, and Y ={1, . . . C}

is the set of all class labels. The classifier in FL is reversible, such as liner regression and

logistic regression. The goal of federated learning is to obtain an optimized model parameter

wf
t that minimizes the loss function in Eq. (3.1).

L(wf
t ) ≜

K∑
k=1

nk

|D|

C∑
i=1

pk(y = i)Ex|y=i[logFi(x,w
f
t )], (3.1)

where Fi denotes the probability of a data point belonging to the i-th class of Y .

It is worth noticing that in this work, all clients’ local datasets are non-i.i.d, i.e., Dk is

non-i.i.d. For the expected training goal, each client k optimizes his local model parameter

wk
t to minimize the loss function Lk(wk

t ) on the local dataset that follows distribution pk,

i.e.,

Lk(wk
t ) =E(x,y)∼pk [

C∑
i=1

1y=i logFi(x,w
k
t )] (3.2)

=
C∑
i=1

pk(y = i)Ex|y=i[logFi(x,w
k
t )].

To obtain the optimal parameter wk
t , gradient descent-based method is used to solve the
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Table 3.1 Summary of main notations used in Chapter 3
Notation Definition
X Feature space of data
Y Label space of data
L Loss function of federated model
Lk Loss function of k-th local client model
∇L Gradient of Loss function L
∇Lk Gradient of Loss function Lk

p Global data distribution of X
pk Data distribution of k-th client
F Learning function of model
Fi i-th digit of the learning function F
K Number of local clients
Dk Training dataset on k-th local client
nk The number of data in Dk

wf
t Model parameter of federated model at time t

wk
t Model parameter of local client k at time t

w̃f
t DP federated model at t when server noise is 0

w̃k
t DP model of client k at t when server noise is 0

ẇf
t DP federated model in our method

ẇk
t DP model of client k in our method

N f
t DP noise added by server at time t

Nk
t DP noise added by local client at time t

optimization problem iteratively with the following equation:

wk
t = wk

t−1 − η∇wL
k(wk

t−1) (3.3)

= wk
t − η

C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
k
t−1)],

where η is the selected learning rate.

Theoretically, four common assumptions are considered to facilitate performance analysis

on FL [90, 42, 91].

1. Bounded and Unbiased Gradient. The gradient of each local loss function∇Lk(w)
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Figure 3.1 The system model of federated learning.

is bounded, and the estimator of global loss function’s gradient ∇L(w) is unbiased:

∥∇Lk(w)∥ ≤ G;∇L(w) = E{∇Lk(w)}. (3.4)

2. Lipschitz Continuity. The global loss function L(w) is Lipschitz continuous:

∥L(w)− L(w̄)∥ ≤ λ∥w − w̄∥, (3.5)

where λ is Lipschitz constant.

3. Lipschitz Continuous Gradient. The gradient of each local loss function Lk(w) is

Lipschitz continuous:

∥∇Lk(w)−∇Lk(w̄)∥ ≤ µ∥w − w̄∥, (3.6)

where µ is Lipschitz constant.
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4. Polyak-Lojasiewicz (PL) inequality. The global loss function L(w) has strong

convexity and satisfies Polyak-Lojasiewicz (PL) inequality:

τ(L(w)− L(w∗)) ≤ 1

2
∥∇L(w)∥2, (3.7)

where w∗ is the optimal model parameter.

3.3 Privacy Leakage of Federated Learning

3.3.1 Privacy Leakage Analysis

Although every client and the server in FL cannot directly access others’ local data, private

information can still be inferred from the shared model parameters. Especially, at the end

of FL, every client holds wf
t that contains the information about other clients and can be

used to infer other clients’ privacy via passive attack and/or active attack.

Typically, a classifier C is represented as a parametric function: C(x,w) = y. If there

exists an inverse function, we can compute x = C−1(y, w). As a result, given the model

parameter w and output label y of C, the corresponding input x can be inferred. Under this

situation, any client k in FL is able to learn other clients’ private information when knowing

C−1 and wf
t . For example, as a type of preimage privacy attack, model inversion attack [92]

can recover the input data in FL.

Theorem 1. Given a classifier C and an output label y, if C is reversible and Lipschitz

continuous, the distance between the real input x and the inferred input x′ has an upper
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bound: ∥x−x′∥ ≤ λ∥w−w′∥, where λ is the Lipschitz constant, w is the real model parameter,

w′ is the parameter used for inference attack.

Proof. For a reversible discriminative model C, there are C(x,w) = y and x = C−1(y, w).

Accordingly, the inference result is x′ = C−1(y, w′). From the Lipschitz continuity of C, we

have ∥x− x′∥ = ∥C−1(y, w)− C−1(y, w′)∥ ≤ λ∥w − w′∥.

Furthermore, Theorem 1 can be extended to a generic attack scenario. Any honest-but-

curious client k can infer other clients’ data by analyzing wf
t and/or wk

t . What’s worse,

the inference performance of any client k has an upper bound, which is demonstrated in

Theorem 2 and Theorem 3.

Theorem 2. Given K clients in federated learning, each client k’s local dataset has a size

nk and a distribution pk. If ∇wEx|y=i[logFi(x,w)] is αx|y=i-Lipschitz for ∀i ∈ Y , and each

local model parameter wk
mT is updated to the server every m local iterations, then the distance

between the federated model parameter wf
mT and any target local model parameter wj

mT after

T updates is upper bounded by Eq. (3.8):

∥wf
mT − wj

mT∥ ≤
K∑
k=1

nk

|D|
[(bk)m∥wj

m(T−1) − wk
m(T−1)∥ (3.8)

+ η
C∑
i=1

∥pj(y = i)− pk(y = i)∥(
m−1∑
l=0

(bk)lgmax(w
j
mT−1−l))],

where gmax(·) is the maximal gradient of model parameter.

Proof. To prove this theorem, there are two cases for consideration: m = 1 and m > 1.
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When m = 1, Eq. (3.9) can be obtained.

∥wf
mT − wj

mT∥ = ∥
K∑
k=1

nk

|D|
wk

mT − wj
mT∥ (3.9)

=∥
K∑
k=1

nk

|D|
(wk

mT−1 − η
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
k
mT−1)])

− wj
mT−1 + η

C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,w
j
mT−1)]∥

≤∥
K∑
k=1

nk

|D|
wk

mT−1 − wj
mT−1∥

+ ∥η
C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,w
j
mT−1)]

−
K∑
k=1

nk

|D|
η

C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
k
mT−1)]∥.

For the first term at the right side of the inequality in Eq. (3.9), we have ∥
∑K

k=1
nk

|D|w
k
mT−1−

wj
mT−1∥ =

∑K
k=1

nk

|D|∥w
k
mT−1−wj

mT−1∥. The second term at the right side of the inequality in
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Eq. (3.9) can be rewritten as:

∥η
C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,w
j
mT−1)] (3.10)

−
K∑
k=1

nk

|D|
η

C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
k
mT−1)]∥

=η
K∑
k=1

nk

|D|
∥

C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,w
j
mT−1)]

−
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
k
mT−1)]∥

=η
K∑
k=1

nk

|D|
∥

C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,w
j
mT−1)]

−
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
j
mT−1)]

+
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
j
mT−1)]

−
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
k
mT−1)]∥

≤η
K∑
k=1

nk

|D|
[

C∑
i=1

∥pj(y = i)− pk(y = i)∥∇wEx|y=i[logFi(x,w
j
mT−1)]

+
C∑
i=1

pk(y = i)(∇wEx|y=i[logFi(x,w
j
mT−1)]

−∇wEx|y=i[logFi(x,w
k
mT−1)])].
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Since ∇wEx|y=i[logFi(x,w)] is αx|y=i-Lipschitz for ∀i ∈ Y , Eq. (3.10) can be written as:

η

K∑
k=1

nk

|D|
[

C∑
i=1

∥pj(y = i)− pk(y = i)∥∇wEx|y=i[logFi(x,w
j
mT−1)]

+
C∑
i=1

pk(y = i)αx|y=i∥wj
mT−1 − wk

mT−1∥] (3.11)

≤η
K∑
k=1

nk

|D|
[

C∑
i=1

∥pj(y = i)− pk(y = i)∥gmax(w
j
mT−1)

+
C∑
i=1

pk(y = i)αx|y=i∥wj
mT−1 − wk

mT−1∥],

where gmax(·) is the largest gradient of weight matrix wj
mT−1.

By combining Eq. (3.10) and Eq. (3.11), Eq. (3.9) can be equivalently simplified as

Eq. (3.8), i.e.,

∥wf
mT − wj

mT∥

≤
K∑
k=1

nk

|D|
[(1 + η

C∑
i=1

pk(y = i)αx|y=i)∥wj
mT−1 − wk

mT−1∥

+η

C∑
i=1

∥pj(y = i)− pk(y = i)∥gmax(w
j
mT−1)].

That is, this theorem holds when m=1.
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When m > 1, additional analysis is addressed below.

∥wj
mT−1 − wk

mT−1∥

=∥wj
mT−2 − η

C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,w
j
mT−2)]

− wk
mT−2 + η

C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
k
mT−2)]∥

≤∥wj
mT−2 − wk

mT−2∥

+ η∥
C∑
i=1

pk(y = i)∇wEx|y=i[logFi(x,w
k
mT−2)]

−
C∑
i=1

pj(y = i)∇wEx|y=i[logFi(x,w
j
mT−2)]∥.

Following the same analysis in Eq. (3.11), we get Eq. (3.12).

∥wj
mT−1 − wk

mT−1∥

≤(1 + η
C∑
i=1

pk(y = i)αx|y=i)∥wj
mT−2 − wk

mT−2∥

+η
C∑
i=1

∥pj(y = i)− pk(y = i)∥gmax(w
j
mT−2). (3.12)

Let bk = (1 + η
∑C

i=1 p
k(y = i)αx|y=i). Since b

k is a constant greater than 1, Eq. (3.12) is
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rewritten as:

∥wj
mT−1 − wk

mT−1∥ (3.13)

≤bk∥wj
mT−2 − wk

mT−2∥+ η

C∑
i=1

∥pj(y = i)− pk(y = i)∥gmax(w
j
mT−2)

≤(bk)2∥wj
mT−3 − wk

mT−3∥+

η
C∑
i=1

∥pj(y = i)− pk(y = i)∥(gmax(w
j
mT−2) + bkgmax(w

j
mT−3))

...

≤(bk)m−1∥wj
m(T−1) − wk

m(T−1)∥+

η
C∑
i=1

∥pj(y = i)− pk(y = i)∥(
m−2∑
l=0

(bk)lgmax(w
j
mT−2−l))

By substituting Eq. (3.13) into Eq. (3.8), the theorem holds when m > 1. Therefore, the

theorem is proved.

Theorem 2 states that the distance between the federated model parameter wf
mT and the

target client j’s model parameter wj
mT is upper bounded by two factors: (i) the difference of

data distribution between client j and other clients; and (ii) the maximum gradient value of

client j during training. When an honest-but-curious client intends to attack client j using

wf
t , the inference error ∥x− x′∥ should also be restricted by the above two factors according

to Theorem 1. Moreover, this finding can be used to improve privacy protection against

attackers’ inference when the data distribution is known.

Theorem 3. Given K clients in federated learning, each client k’s local dataset has a size
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nk and a distribution pk. If ∇wEx|y=i[logFi(x,w)] is αx|y=i-Lipschitz for ∀i ∈ Y , and each

local model parameter wk
mT is updated every m local iterations, then the distance between any

two local model parameters, wu
mT and wv

mT , after T updates is upper bounded by Eq. (3.14):

∥wu
mT − wv

mT∥ ≤ (bv)m∥wv
m(T−1) − wu

m(T−1)∥ (3.14)

+ η
C∑
i=1

∥pv(y = i)− pu(y = i)∥(
m−1∑
l=0

(bv)lgmax(w
u
mT−1−l)).

Proof.

∥wu
mT − wv

mT∥ (3.15)

=∥wu
mT−1 − η

C∑
i=1

pu(y = i)∇wEx|y=i[logFi(x,w
u
mT−1)]

− wv
mT−1 + η

C∑
i=1

pv(y = i)∇wEx|y=i[logFi(x,w
v
mT−1)]∥

≤∥wu
mT−1 − wv

mT−1∥

+ ∥η
C∑
i=1

pv(y = i)∇wEx|y=i[logFi(x,w
v
mT−1)]

− η

C∑
i=1

pu(y = i)∇wEx|y=i[logFi(x,w
u
mT−1)]∥.
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For the second term at the right side of inequality in Eq. (3.15), we have

∥η
C∑
i=1

pv(y = i)∇wEx|y=i[logFi(x,w
v
mT−1)] (3.16)

− η
C∑
i=1

pu(y = i)∇wEx|y=i[logFi(x,w
u
mT−1)]∥

≤η∥
C∑
i=1

pv(y = i)αx|y=i∥wv
mT−1 − wu

mT−1∥

+ η

C∑
i=1

∥pv(y = i)− pu(y = i)∥gmax(w
u
mT−1).

Combining Eq. (3.15) and Eq. (3.16), we get a new inequality:

∥wu
mT − wv

mT∥

≤(1 + η
C∑
i=1

pv(y = i)αx|y=i)∥wv
mT−1 − wu

mT−1∥

+ η
C∑
i=1

∥pv(y = i)− pu(y = i)∥gmax(w
u
mT−1). (3.17)
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For simplicity, we denote bv = (1 + η
∑C

i=1 p
v(y = i)αx|y=i) and obtain the following result:

∥wu
mT − wv

mT∥

≤bv∥wv
mT−1 − wu

mT−1∥+ η

C∑
i=1

∥pv(y = i)− pu(y = i)∥gmax(w
u
mT−1)

≤(bv)2∥wv
mT−2 − wu

mT−2∥+

η
C∑
i=1

∥pv(y = i)− pu(y = i)∥(gmax(w
u
mT−1) + bkgmax(w

u
mT−2))

...

≤(bv)m∥wv
m(T−1) − wu

m(T−1)∥+

η
C∑
i=1

∥pv(y = i)− pu(y = i)∥(
m−1∑
l=0

(bv)lgmax(w
u
mT−1−l)).

Theorem 3 implies that the distance between two local clients’ model parameters, wu
mT

and wv
mT , is upper bounded by two factors: (i) the difference of data distribution between

clients u and v; (ii) the maximum gradient of the honest-but-curious client u during training

process. Accordingly, when client u acts as an attacker using his local model to perform

inference attack towards client v, the inference error ∥x − x′∥ is determined by the above

two factors.

To sum up, from Theorem 2 and Theorem 3, inference attack can be implemented to

learn privacy in FL under the non-i.i.d. setting, and the attack performance is influenced by

the difference of data distribution. Moreover, passive attackers (e.g. an honest-but-curious
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client k holding wf
t and wk

t ) can steal preimage privacy with easy implementation, while

active attackers (e.g., a malicious client k and an external malicious attacker) can reveal

both preimage privacy and membership privacy but requires a more powerful capacity to

collect prior knowledge (e.g., a victim’s model for white-box attack). More details about the

attack scenarios are addressed in the following two subsections.

3.3.2 Passive Attack

To collaboratively train a global model in FL, all clients should achieve some consensus,

such as the same model structure, loss function and similar data domain, which can be used

as the prior knowledge for an honest-but-curious client to perform passive inference attack.

According to Theorem 2 and Theorem 3, the honest-but-curious client only needs to analyze

the received global model parameter and/or his local model parameter without tampering

training rules or bringing negative impact on learning accuracy.

In the example of passive attack (PA) in Fig. 3.1, client 1 wants to infer the features of

{y4, y5, y6} of client 2. Ideally, the best way is using w2
t to get x = C−1(y, w2

t ). Unfortunately,

it is hard or impossible for an honest-but-curious client in FL to obtain w2
t . Instead, client

1 uses w1
t and/or wf

t for inference. That is, client 1 learns client 2’s private information via

x′ = C−1(y, w1
t ) and/or x

′ = C−1(y, wf
t ). The attack performance ∥x− x′∥ is upper bounded

by either ∥w1
t − w2

t ∥ or ∥w
f
t − w2

t ∥ as analyzed in Theorem 1, Theorem 2 and Theorem 3.
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3.3.3 Active Attack

Besides the honest-but-curious clients in passive attack, there may be active attackers aiming

at stealing privacy from benign clients of FL. An active attacker could be either an external

adversary or a participant of FL. Unlike the passive attackers who only hold their own model

parameters, the active attackers usually have stronger power to acquire more prior knowledge

and resources (e.g., hijacking transmitted parameters, eavesdropping information exchange,

and compromising local clients), leading to severe privacy leakage in FL.

As shown in Fig. 3.1, the active attacker (AA) has the ability to access a victim client k’s

model parameter wk
t and/or the aggregated model parameter wf

t . With wk
t and wf

t in hand

as a white box, the active attacker can launch three kinds of privacy inference attack. (i)

Instance-level membership attack on Dk with wk
t and D with wf

t , in which the attacker

can easily use the target model as a white box to learn whether a specific datapoint x is in the

target model’s training dataset [93]. (ii) Model inversion attack on client k with wk
t and

the entire system with wf
t , which is a white box attack and is similar to the passive attack

in Section 3.3.2. (iii) Client-level membership attack on a target client by consistently

analyzing wf
t to infer whether the target client joins the training process of FL or not, which

causes serious consequences when the target client holds identity-related data in FL. For

example, in a FL system that is trained on mobile phone trajectory datasets, the trajectory

data is user-dependent and can be used to infer other private information like sex, address,

and occupation, etc. [94, 18].
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Figure 3.2 The framework of our proposed 2DP-FL mechanism.

3.4 Dual Differentially Private Federated Learning

For passive attack, the root cause of successfully inferring any victim client j’ parameter wj
t

from wk
t and/or wf

t by any honest-but-curious client k is that the learning model overfits

the training dataset. The stronger overfitting, the more accurate inference results. Since DP

can introduce randomized noise into training process, extend the generalization capability,

and reduce the overfitting [95], it is an effective solution to relieve privacy inference attack.

Besides, DP is applicable to defend active inference attack. As active attack is essentially a

white-box attack on the victim client’s parameter wj
t and/or the federated model parameter

wf
t , injecting randomized noise into the training process can conceal private information.

In light of the above analysis, we propose a novel mechanism, named “Dual Differentially

Private Federated Learning (2DP-FL)”, in which DP-based noise is added when training

ẇk
t and before downloading ẇf

t as illustrated in Fig. 3.2. Adding noise into ẇk
t can perturb

the model parameters to resist data-level membership privacy attack and model inversion
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attack, and adding noise into ẇf
t can defend client-level membership privacy attack and

model inversion attack [39, 96].

At the beginning, the initialized global model is distributed to all local clients by setting

wk
t = ẇf

0 . Within time slot t, each client k independently trains his own local dataset Dk by

minimizing the loss function Lk, in which a random batch data B is picked and the gradient

g(x) is calculated based on each data point x ∈ Dk. To bound the gradient contribution

of each x, we clip the gradient with a predefined upper bound G, average all gradients in

B, and add a scaled gaussian noise, Nk
t ∼ N(0, (σkG)2), to achieve DP at the client side.

Then, the local model ẇk
t with DP protection is updated by gradient descent method for

each client k. After receiving the local model parameter ẇk
t+1 from the selected clients, the

server performs FedAvg algorithm to get ẇf
t+1. Then, the federated model ẇf

t+1 is updated

and distributed to all local clients, in which a noise N fk
t ∼ N(0, (σS)

2

U
) is added into ẇf

t for

each client k. With the perturbed model parameter ẇf
t+1, each client k can update ẇk

t+2 in

time slot (t+1). The pseudo-code of the operations at the clients and the server is described

in Algorithm 1.

In the original FL system, ∥wj
mT − wk

mT∥ is gradually reduced with the increase of T

because both wj
mT and wj

mT are trained based on the commonly shared federated model

parameter wf
mT , leading to an improved performance of inferring client j’s privacy at the

side of client k. However, when the server distributed noise N fk
t is equal for all clients,

which is similar as most existing works [38, 39], the privacy still can not be protected.

On the contrary, in our 2DP-FL system, every client k receives a different perturbed model
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Algorithm 1 Dual Differentially Private Federated Learning (2DP-FL)

Require: Total iteration T for FL, number of clients K, selected client U , initialized model
ẇf

t=0

Ensure: 2DP-FL model ẇf
T

1: t=0
2: for k ∈ {1, 2, . . . K} do
3: wk

t = ẇf
0

4: end for
5: while t < T do
6: for k ∈ {1, 2, . . . K} do
7: take a random batch B from Dk with probability p = |B|

|Dk|
8: compute gradient for each x ∈ B, g(x)← ∇wL

k(wk
t , x)

9: clip gradient, ḡ(x)← g(x)/max(1, ∥g(x)∥2
G

)
10: add noise, g̃ ← 1

|B|(
∑

x∈B ḡ(x) +N(0, (σkG)2)

11: update local model, ẇk
t+1 ← wk

t − ηg̃
12: end for
13: ẇf

t+1 ←
∑K

k=1
|Dk|
|D| ẇ

k
t+1

14: for k ∈ {1, 2, . . . K} do
15: wk

t+1 ← ẇf
t+1 +N(0, (σS)

2

U
)

16: end for
17: end while

(ẇf
t +N fk

t ) from the server, which is helpful to relieve the reduction of ∥wj
mT−wk

mT∥ and thus

enhance the difficulty of privacy inference. Moreover, the noise addition at the server in 2DP-

FL is flexible and can be pre-determined according to the different application requirements.

For examples, when N fj
t = N fk

t ̸= 0 for j, k ∈ [1, K], a same DP noise is added into the

federated model for distribution, which is a common method used in the current works; when

N fk
t = 0 for k ∈ [1, K], the DP noise is only added into the clients’ local model parameters,

and the corresponding federated model is denoted by w̃f
t for presentation in the following

analysis.

For privacy-preserving FL, the model accuracy is another important concern as adding

too much noise into a model would inevitably reduce learning performance. The elegant
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design of 2DP-FL lies in the flexible setting of N fk
t that can meet various privacy protection

needs with negligible impact on model accuracy, which is analyzed in Theorem 4.

Theorem 4. In our 2DP-FL mechanism, the difference between ẇf
t and w̃f

t is negligible,

i.e., ∥w̃f
t − ẇf

t ∥ = 0.

Proof. From the setting of Nk
t at each client k and N fk

t at the server, we have the following

equation:

∥w̃f
t − ẇf

t ∥ =
K∑
k=1

nk

|D|
(ẇf

t−1 − η[∇wL
k(ẇf

t−1) +Nk
t ])

−
K∑
k=1

nk

|D|
(ẇf

t−1 +N fk
t − η[∇wL

k(ẇf
t−1 +N fk

t ) +Nk
t ])

=E{∥(ẇf
t−1 − η[∇wL

k(ẇf
t−1) +Nk

t ])

− (ẇf
t−1 +N fk

t − η[∇wL
k(ẇf

t−1 +N fk
t ) +Nk

t ])∥}

=E{∥N fk
t + η[∇wL

k(ẇf
t−1 +N fk

t )−∇wL
k(ẇf

t−1)]}

1

≤0 + ηE{∥µ ·N fk
t ∥}

=0

The inequality 1 holds because N fk
t and Nk

t are both normal distribution noise with mean

value 0.

Theorem 4 tells that with various noise N fk
t , the performance of model ẇf

t is still nearly

the same as that of model w̃f
t .
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Before analyzing the convergence of 2DP-FL, an important conclusion is introduced in

Theorem 5.

Theorem 5. For the federated model w̃f , E{∥L(w̃f
t+1) − L(w̃f

t )∥} is upper bounded by the

following inequality:

E{∥L(w̃f
t+1)− L(w̃f

t )∥} ≤γ1E{∥∇L(w̃
f
t )∥2} (3.18)

+ γ2E{∥Nt+1∥}∥∇L(w̃f
t )∥+ γ3E{∥Nt+1∥2}.

Proof. First, the federated model w̃f
t at t-th step can be represented as w̃f

t =
∑K

1 P k(wk
t +

Nk
t ), where P

k = nk

|D| is the weight of client k, w
k
t is client k’s local model parameter without

noise, and Nk
t is the injected noise in client k at time t-th step. According to the property

of Lipschitz continuous gradient, we have

Lk(w̃f
t+1) ≤ Lk(w̃f

t ) +∇Lk(w̃f
t )(w̃

f
t+1 − w̃f

t ) +
µ

2
∥w̃f

t+1 − w̃f
t ∥2.

By taking the expectation of both sides, Eq. (3.19) is obtained.

E{∥L(w̃f
t+1)− L(w̃f

t )∥} (3.19)

≤ E{∇L(w̃f
t )(w̃

f
t+1 − w̃f

t )}+
µ

2
E{∥w̃f

t+1 − w̃f
t ∥2},
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Particularly, w̃f
t+1 − w̃f

t can be expressed by:

w̃f
t+1 − w̃f

t =
K∑
1

P k(wk
t+1 +Nk

t+1)− w̃f
t (3.20)

=
K∑
1

P k(−η∇Lk(w̃f
t )) +Nt+1,

where Nt+1 =
∑K

k=1 P
kNk

t+1. Similarly, for ∥w̃f
t+1 − w̃f

t ∥, we have

∥w̃f
t+1 − w̃f

t ∥ =∥
K∑
k=1

P k(wk
t+1 +Nk

t+1)− w̃f
t ∥ (3.21)

=∥
K∑
k=1

P k(wk
t+1 − w̃f

t ) +Nt+1∥

≤E{∥wk
t+1 − w̃f

t ∥}+ ∥Nt+1∥

=∥η∇L(w̃f
t )∥+ ∥Nt+1∥.

Then we substitute Eq. (3.20) and Eq. (3.21) into Eq. (3.19) to get the following inequality:

E{∥L(w̃f
t+1)− L(w̃f

t )∥} (3.22)

≤E{∇L(w̃f
t )(

K∑
1

P k(−η∇Lk(w̃f
t )) +Nt+1)}

+
µ

2
E{[∥η∇L(w̃f

t )∥+ ∥Nt+1∥]2}

=(−η + µη2

2
)E{∥∇L(w̃f

t )∥2}+ (1 + µη)E{∥Nt+1∥}∥∇L(w̃f
t )∥

+
µ

2
E{∥Nt+1∥2}.
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For simplicity, let γ1 = −η + µη2

2
, γ2 = 1 + µη and γ3 = µ

2
. Thus, Eq. (3.22) can be

equivalently rewritten as Eq. (3.18):

E{∥L(w̃f
t+1)− L(w̃f

t )∥} ≤γ1E{∥∇L(w̃
f
t )∥2}

+ γ2E{∥Nt+1∥}∥∇L(w̃f
t )∥+ γ3E{∥Nt+1∥2}.

Theorem 6. The convergence upper bound of our proposed 2DP-FL method after T itera-

tions is given by Eq. (3.23) when η ∈ (0, 2
µ
], or Eq. (3.24) when η ∈ ( 2

µ
,+∞).

E{∥L(ẇf
T )− L(wf ∗)∥} ≤ (1 + 2τγ1)

TC0 +
γ3ω

2T log 1
δ

2τγ1ϵ2
, (3.23)

E{∥L(ẇf
T )− L(wf ∗)∥} ≤ (

1

2τ
+ γ1)G

2 +
γ3ω

2T log 1
δ

ϵ2
, (3.24)

where C0 = ∥L(w̃f
0 )− L(wf ∗)∥ represents the initialization quality of federated model.

Proof. From Theorem 4, there is

E{∥L(ẇf
T )− L(wf ∗)∥} (3.25)

=E{∥L(ẇf
T )− L(w̃f

T ) + L(w̃f
T )− L(wf ∗)∥}

≤E{∥L(w̃f
T )− L(wf ∗)∥}.
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With Eq. (3.25) and Theorem 5, we can get the following inequality:

E{∥L(w̃f
t+1)− L(wf ∗)∥} ≤ E{∥L(w̃f

t )− L(wf ∗)∥} (3.26)

+ γ1E{∥∇L(w̃f
t )∥2}+ γ2E{∥Nt+1∥}∥∇L(w̃f

t )∥+ γ3E{∥Nt+1∥2}.

When η ∈ (0, 2
µ
], γ1 ≤ 0. According to Polyak-Lojasiewicz inequality, we have

γ1E{∥∇L(w)∥2} ≤ 2τγ1E{∥L(w)− L(w∗)∥}. (3.27)

The result of substituting Eq. (3.27) into Eq. (3.26) is

E{∥L(w̃f
t+1)− L(wf ∗)∥} (3.28)

≤E{∥L(w̃f
t )− L(wf ∗)∥}+ 2τγ1E{∥L(w̃f

t )− L(wf ∗)∥}

+ γ2E{∥Nt+1∥}∥∇L(w̃f
t )∥+ γ3E{∥Nt+1∥2}

=(1 + 2τγ1)E{∥L(w̃f
t )− L(wf ∗)∥}

+ γ2E{∥Nt+1∥}∥∇L(w̃f
t )∥+ γ3E{∥Nt+1∥2}

≤(1 + 2τγ1)
2E{∥L(w̃f

t )− L(wf ∗)∥}

+ (1 + 2τγ1)[γ2E{∥Nt∥}∥∇L(w̃f
t−1)∥+ γ3E{∥Nt∥2}]

+ γ2E{∥Nt+1∥}∥∇L(w̃f
t )∥+ γ3E{∥Nt+1∥2},

where Nt+1 =
∑K

k=1 P
kNk

t+1. Since the noise Nt follows normal distribution, E{∥Nt∥} = 0
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and E{∥Nt∥2} = σ2. Therefore, we can rewrite Eq. (3.28) at time T to be

E{∥L(w̃f
T )− L(wf ∗)∥} (3.29)

≤(1 + 2τγ1)
TE{∥L(w̃f

0 )− L(wf ∗)∥}+ γ3σ
2

T−1∑
0

(1 + 2τγ1)
T

≤(1 + 2τγ1)
TC0 +

γ3σ
2

2τγ1
.

where σ = ω
√

T log 1
δ
/ϵ is the noise scale used in moments accountant [97]. Thus, by

combining Eq. (3.25) and Eq. (3.29) the convergence upper bound in Eq. (3.23) is proved.

When η ∈ ( 2
µ
,+∞), we obtain γ1 > 0 and Eq. (3.30).

γ1E{∥L(w)− L(w∗)∥} ≤ γ1
2τ

E{∥∇L(w)∥2}. (3.30)

Substituting Eq. (3.30) and Eq. (3.26) into Eq. (3.25), we can prove the upper bound in

Eq. (3.24).

Notice that in real data experiments, the learning rate η is always set to be a small

scalar around 10−4 [97], which yields a negative γ1 and leads to the convergence bound in

Eq. (3.23).

3.5 Experiments

In this section, intensive real-data experiments are carried out to validate our analysis on

privacy leakage in FL and our 2DP-FL mechanism.
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(a) (b) (c) (d) (e) (f) (g)

Figure 3.3 Visual results of attack on MNIST dataset under different scenarios.

MNIST contains 10 classes (i.e., 0 − 9) for classification problem and is adopted in our

experiments. Considering the FL system under non-i.i.d. setting, we distribute the dataset

to different clients according to their class labels, ensuring the assigned local datasets fol-

low different types of distribution. The whole dataset is divided into 15 non-overlapping

data buckets and 5 overlapping data buckets, each of which contains data associated with

a pre-determined label group. Specifically, for the non-overlapping buckets, there are 15

label groups including {0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}, {0}, {1}, . . ., {9}; and for the

overlapping buckets, there are 5 label groups including {0, 1, 2, 3}, {2, 3, 4, 5}, {4, 5, 6, 7},

{6, 7, 8, 9}, and {8, 9, 0, 1}. Each client can get one or multiple data buckets for local distri-

bution configuration.

The experiments consist of two parts, including privacy leakage analysis and defense

performance evaluation. In the analysis of privacy leakage, we show the feasibility of privacy

inference attack towards the original FL system by visualizing the data recovery results.

To investigate the defense performance of our 2DP-FL mechanism, the convergence, attack

accuracy, and classification accuracy are evaluated. Moreover, to the best of our knowledge,

the state-of-the-art scheme termed “NbAFL” [42] realizes privacy-preserving FL with the

idea similar to our 2DP-FL and is taken as a baseline for performance comparison. All
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experiments are performed on a Linux server with Intel(R) Xeon CPU E5-1607, 16 GB

memory, and the NVIDIA GeForce RTX 2080 GPU with 11 GB memory, and the common

used machine learning library Pytorch, Pysyft and OpenCV are adopted.

3.5.1 Analysis of Privacy Leakage in FL

From the analysis in Section 3.3, we know that an honest-but-curious client in FL can work

as a passive attacker to infer the privacy of a victim client’s data class by using his local

model and/or federated model. Taking model inversion attack as a case of attack scenario,

such a passive attacker aims to recover an unseen class’s common features of the victim client

whose dataset has a different distribution. In our experiments, to infer the features of unseen

classes in the victim’s dataset that holds class labels {5, 6, 7, 8, 9}, the passive attacker trains

his own dataset with class labels {0, 1, 2, 3, 4} and implements model inversion attack using

his local model parameter wk
t and/or the federated model parameter wf

t .

The results of privacy inference attack are visualized in Fig. 3.3. Fig. 3.3a shows the

original images with labels 6 and 8 from MNIST dataset. Fig. 3.3b and Fig. 3.3c display

the results of passive inference attack with the attacker’s local model parameter and the

federated model parameter in the original FL, respectively, from which we can see that

both attack results expose some feature information of the target classes. Compared with

Fig. 3.3b, the recovered images in Fig. 3.3c is closer to the original one. This is because

the difference between global data distribution and victim data distribution is more similar,

which is in line with our analysis in Section 3.3 – a smaller difference of data distribution

leads to a higher upper-bound of attack performance. When the victim’s model is used in
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active inference attack (i.e., the victim’s model is captured and used as a white box), as

shown in Fig. 3.3d, the reconstructed image is more clear, demonstrating the feasibility of

active attack. Fig. 3.3e, Fig. 3.3f and Fig. 3.3g present the recovered images of passive attack

with local model, passive attack with federated model, and active attack under our 2DP-FL

mechanism, in which it is hard to perceive that the digit labels of recovered images are 6 and

8. With the protection of our 2DP-FL mechanism, the visual quality of images recovered

by model inversion attack is significantly reduced. Moreover, we can see that the results

of Fig. 3.3e and Fig. 3.3f are worse than the result of Fig. 3.3g, because active attack uses

white-box to perform inference that tends to have smaller model error.

To evaluate the attack performance varying with data distribution, we plot the attack

results in Fig. 3.4 by changing the difference of data distribution between the attacker and

the victim, where x-axis represents the number of different classes between the attacker’s

dataset and the victim’s dataset, and the y-axis denotes the similarity between the original

and the recovered images. More specifically, more different classes between the attacker’s

dataset and the victim’s dataset results in a larger difference between data distribution. The

image similarity is measured by Structure Similarity Index Metric (SSIM) with a range of

[0, 1], where 0 means totally different and 1 means exactly the same.

Fig. 3.4a depicts the attack performance when the attacker’s local model parameter

wk
t is used. According to the Fig. 3.4a, the value of SSIM decreases as the number of

different classes is increasing, which is consistent with our theoretical analysis in Section 3.3.

Meanwhile, Fig. 3.4a shows the impact of total number of client, K, on privacy leakage in
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(a) Passive attack of local model (b) Passive attack on global model

Figure 3.4 Attack performance vs. data distribution difference.

(a) Loss of federated
model vs. ϵ

(b) Accu. of federated
model vs. ϵ

(c) Loss of federated
model vs. δ

(d) Accu. of federated
model vs. δ

Figure 3.5 Evaluation on convergence of 2DP-FL mechanism.

FL. As K becomes larger, the amount of each client’s private information included in the

federated model is reduced as the contribution of each client’ local model to the federated

model is reduced, mitigating privacy leakage in FL. When the global model parameter wf
t

by the attacker for privacy inference, similar observations can be obtained from Fig. 3.4b.
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(a) Attack performance vs. σ (b) Baseline comparison

Figure 3.6 Evaluation on privacy and utility of 2DP-FL mechanism.

3.5.2 2DP-FL Evaluation

According to the analysis in Section 3.4, our proposed 2DP-FL mechanism can defend in-

ference attack while benefiting a good data utility. We design different experiments in this

subsection to deeply investigate the performance of 2DP-FL mechanism from the aspects of

learning convergence, privacy protection, and data utility.

First, to evaluate the convergence of our 2DP-FL mechanism, we make the following

settings for Fig. 3.5: the number of clients is K=50, the number of selected clients is U=10,

and the number of training epochs is T=50. Additionally, ϵ and δ are the privacy parameters

of (ϵ, δ)-DP, where larger ϵ and δ mean less privacy protection.

As shown in Fig. 3.5a, with the increase of T (i.e., the number of training epoch), the

decrease of loss value becomes smaller and smaller, gradually reaching a stable loss value,

which reflects the convergence trend of 2DP-FL scheme from experimental perspective. Thus
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we can conclude that our 2DP-FL mechanism converges when T is large enough, which is

consistent with the convergence analysis in Theorem 6. On the other hand, a larger ϵ

(i.e., a higher privacy budget) leads to a faster convergence, because higher privacy budget

implies weaker privacy protection with less injected noise during training process. Fig. 3.5b

also confirms the convergence from the viewpoint of model accuracy, in which the accuracy

increases with epoch T and stays stable after a certain threshold. In addition, the impact

of δ on convergence is evaluated in Fig. 3.5c and Fig. 3.5d. Similar to ϵ, larger δ results in

faster convergence, less privacy protection, and higher accuracy. For example, the loss value

of δ = 10−3 shows the fastest decrease and is the first to convergence in Fig. 3.5c as well as

reaches the highest accuracy in Fig. 3.5d, because it sacrifices more privacy for maintaining

utility. From the results of Fig. 3.5, it also demonstrates that the maintenance of data utility

is achieved at the price of privacy protection.

Then, we investigate attack performance in terms of SSIM through changing the noise

scale σ of DP. The adopted FL setting is: K=50, U=10, T=50, and δ=0.001. In Fig. 3.6a,

AA represents active attack, and PA represents passive attack. When our 2DP-FL is im-

plemented for privacy protection, the attack performance is drastically reduced. The noise

scale σ along x-axis denotes the privacy protection level. With the increase of σ, the at-

tack performance is gradually reducing, which shows that our privacy protection works as

expected.

Furthermore, we compare the classification accuracy of the original FL without DP, the

baseline NbAFL mechanism, and our 2DP-FL mechanism and show the experimental results
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(a) Impact of K and U on accuracy (b) Impact of K and U on privacy

Figure 3.7 The impact of K and U .

in Fig. 3.6b. Especially, we fix ϵ = 20 for NbAFL and 2DP-FL when DP is taken into account.

Obviously, the accuracy of the original FL without DP is the best as no noise is added for

privacy protection. The accuracy of our 2DP-FL is better than that of NbAFL. In particular,

our 2DP-FL becomes convergent within the given ϵ range and achieves an accuracy of 85%.

However, for NbAFL, when T = 31, the exhausted value of ϵ exceeds the given budget 20

and only gets an accuracy of 74%. From the comparison, we obtain two critical findings:

(i) when the number of epochs is the same, 2DP-FL costs a smaller ϵ for better privacy

protection; and (ii) when privacy budget is fixed, 2DP-FL can run more epochs for better

accuracy. Thus, we can conclude that our 2DP-FL mechanism outperforms NbAFL in terms

of classification accuracy and privacy protection.
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3.5.3 Impact of K and U

In a FL system, besides privacy related parameters, hyper-parameters such as the number

of client K and the number of selected client U also play important roles in fine-tuning

the systems. Under our 2DP-FL mechanism, we evaluate the influence of K and U for

further investigating hyper-parameter strategies in the FL system. In Fig. 3.7a, when the

number of client is fixed at K=50, the federated model with a larger value of U reaches a

faster convergence and a higher accuracy as a higher participant radio (represented by U/K)

is helpful to enhance the training performance of FL systems; while for the same U (i.e.,

U=10), a larger of K implies more clients’ local datasets are available to the FL system,

improving training performance.

The overall privacy loss of the FL system, indicated by ϵ, is exhibited in Fig. 3.7b. When

K is equal, a smaller value of U can help reduce privacy loss, because with a smaller value of

U , a larger noise is added to the clients’ datasets (see line 15 of Algorithm 1). If U remains

the same, a larger value of K causes an increased privacy loss. As more clients’ local datasets

are available for federated learning, it is more possible to reveal privacy of the FL system via

data correlation, increasing the risk of privacy loss. In a summary, the learning accuracy and

privacy loss of our privacy-preserving FL mechanism 2DP-FL are dependent on the values

of K and U , which can be exploited to balance the trade-off between learning accuracy and

privacy loss in real applications.
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3.6 Summary

For the first time in literature, this chapter rigorously analyzes the issue of privacy leakage

and proves the performance upper bound of privacy inference attack in FL with non-i.i.d.

data. This analysis motivates us to develop a novel mechanism, 2DP-FL, for preserving pri-

vate information with ensuring differential privacy. Besides, the noise addition in 2DP-FL

can be flexibly set according to different application requirements, and the upper-bounded

convergence of 2DP-FL can guarantee its learning performance. Through extensive experi-

ments, the results of our theoretical analysis and the effectiveness of our 2DP-FL mechanism

can be confirmed.
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CHAPTER 4

PRIVATE DATA GENERATION IN FEDERATED LEARNING

4.1 Challenges and Contributions

Generative models have become a popular research direction in the field of deep learning

thanks to its compelling ability to generate realistic data plausibly drawn from an existing

data distribution. Different from training classifiers, a generative model can generate un-

limited synthetic data to fulfill expected tasks by using the trained generator once it has

been trained. So far, the breakthrough brought by generative models has rapidly produced

a revolutionary impact on different fields, and this impact has already flourished in various

real applications in the Artificial Internet of Things (AIoT). In IoT environments, a variety

of devices are interconnected to generate, collect, share, and process heterogeneous data for

data-driven applications [98]. With the help of the generative models, the generated data can

facilitate the procedures of data collection and process in different aspects, such as reducing

tedious data collection time, imputing missing data, augmenting data quality, and detecting

abnormal samples. In [99, 100, 101, 102], generative models have been used for traffic data

generation, traffic modeling, traffic prediction, and traffic control in smart cities. Generative

Adversarial Networks (GANs)-based models have been designed to generate and analyze

medical data in smart medication systems [103, 69, 70]. In video surveillance systems, many

generative models are designed to support object recognition [104], movement capture [105],

anomaly detection [106], and super resolution tasks [107].

Yet, most of the existing works implement the centralized generative models, which first
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collect data from IoT devices to a central server and then train generative models to achieve

generation goals. These centralized generative models may be vulnerable to the issues of

single point failure and privacy leakage [108, 109, 110]. Moreover, users’ willingness to share

data with a central server may be decline because of their privacy concerns, increasing the

difficulty in data collection and hindering the further development of IoT applications [111,

112, 113]. On the other hand, transmitting such a massive amount of data to a central

server brings expensive communication cost to IoT. To break down the obstacles of privacy

concerns and communication cost, designing distributed generative models should be a better

solution. The integration of distributed generative models into IoT can benefit individuals

and society in many aspects. For examples, in smart health, distributed generative models

can be used to synthesize the pattern of a special tumor’s MRI/CT scanning result without

privacy violation, where the synthetic data can be used for data visualization and training

dataset for other tasks; due to the existence of unaccessible data, pre-training a distributed

generative model to collect features from underlying datasets can help model developers

understand the dataset, such as checking the data sanity, detecting bias in the dataset, and

debugging misclassified samples [67, 114]; and when multiple datasets on IoT devices are

non-i.i.d. distributed, learning a distributed generative model can learn a mixed distribution

and generate data with more diversity [115].

Currently, only limited works have developed the distributed generative models but over-

look the following crucial issues in practical IoT scenarios: (i) most of the existing works

adopt the federated learning style that needs to upload large-size model parameters, which
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burdens limited network resources; (ii) all of the existing works mainly focus on i.i.d. data

for model training without studying non-i.i.d. data scenarios; and (iii) no work considers

the heterogeneity of data domain in different IoT devices. Therefore, how to design a dis-

tributed generative model to realize data generation effectively and efficiently in IoT is still

a challenging problem.

To solve this problem, we design a novel distributed generative model framework, taking

into account the essential properties of IoT devices, including wide geographic distribution,

low computation power, non-i.i.d. data, and heterogeneous data domains [116, 117, 118].

The hierarchical architecture of our proposed framework contains a cloud layer on the top,

an edge layer in the middle, and a local device layer at the bottom, which can offload the

computation cost in different layers. With respect to the data distribution and correlation in

different IoT devices, the problem of distributed data generation is studied in two scenarios:

(i) feature related scenario, where the IoT devices and the edge-side generators are trained

to capture homogeneous data distribution; and (ii) label related scenario, where domain

condition is used to train the IoT devices and the edge-side generators. The local training

results are transmitted to the cloud to global aggregation. The multi-fold contributions of

this chapter are summarized as follows.

� Based on the features of IoT applications, we design a three-layer hierarchical frame-

work to deploy distributed generative models, which is the first work to consider multi-

source heterogeneous data for distributed data generation, to our best knowledge.

� According to the data scenarios in real IoT applications, we propose two distributed
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generative models for multi-source data generation under our proposed hierarchical

framework.

� We devise synchronous and asynchronous updating strategies for training the genera-

tors on the edges, which can be adopted by different application requirements.

� Intensive experiments are conducted on different datasets from multiple data domains,

which can illustrate the performance of our data generation models compared with the

state-of-the-arts.

4.2 System Model

As shown in Fig. 4.1, our distributed generative model framework is built as a three-layer

hierarchical structure consisting of IoT devices at bottom layer, edge servers in the middle

layer, and a cloud server at the top layer. Particularly, each edge server is co-located at a

base station covering a local region, in which the edge server and the covered IoT devices

form a local community. For the purpose of data generation, a discriminator is deployed

in every IoT device, a community generator is deployed in every edge server, and a global

generator is deployed in the cloud server. Let K be the set of local communities, Gk be the

community generator of community k ∈ K, Jk be the set discriminators in community k,

and Dkj be the discriminator of IoT device j ∈ Jk in community k.

The training process of our distributed generative model consists of two stages, (i) local

community training for updating Gk at the edge servers, and (ii) global training for updat-

ing G at the cloud server. Specifically, the global training is performed by Igl iterations,



53

each of which contains Ilo iterations of local community training. In each iteration of local

community training, with the help of Dkj (j ∈ Jk), Gk is updated in a distributed manner to

learn the data distribution of local community k. After Ilo iterations of the local community

training, the parameters of community generator Gk (k ∈ K) is sent to the cloud server for

constructing G via global aggregation, which completes one iteration of the global training.

Then, the aggregated G is distributed to all communities for updating Gk during the local

community training thereafter. It is worth mentioning that the real raw data is captured and

stored in IoT devices locally without being shared. Therefore, the global generator G can

be constructed via the cooperation of edge servers and IoT devices without privacy leakage

from the real raw data. Different from most of the existing methods [67, 64, 65, 66, 68] using

federated learning to obtain GANs, our local community training structure has a single gen-

erator and multiple distributed discriminators. Besides, compared with those federated-style

GANs where models’ parameters are transmitted between cloud server and local clients, the

exchanged information in our local community training process only contains a few batches of

data and the loss function value of community generators, which can reduce communication

cost and achieve efficient data exchange.

Due to the closely distributed locations, the data within a local community usually has

the same features or class labels. While, considering the data distribution and correlation in

different communities, the data generation problem in this chapter can be discussed in two

types of scenarios: (i) feature related scenario, in which the data of different communities

has the same features but different labels; and (ii) label related scenario, in which the



54

G

G1

G2

G3

Upload Local Model

Download Model

Send Loss Value

Send Generated Data

𝐷𝐷11

𝐷𝐷12

𝐷𝐷13
𝐷𝐷31

𝐷𝐷32

𝐷𝐷33

𝐷𝐷22

𝐷𝐷23

𝐷𝐷24

𝐷𝐷21

Figure 4.1 An example of the feature related data generation.

data of different communities has the same labels but different features. The details of data

generation under these two scenarios are illustrated in Section 4.3 and Section 4.4.

4.3 Feature Related Data Generation

In the feature related scenario, our objective is to learn a mixed data distribution of all

communities via the global generator G in the cloud server, where the datasets from different

communities have the same features but different labels. As shown in the illustrative example

of Fig. 4.1, the three communities have the same feature (i.e., gray scale pixel value in

[0, 1]) and different data labels (i.e., digit labels in {0, 1, . . . , 9} and cloth labels in {t −

shirts, shoes, . . . , pants}). Finally, the global generator in the cloud server can generate

the complete dataset with all labels including digits and clothes. This scenario commonly

exists in real IoT applications. For example, medical data of a surgical hospital and a cancer

hospital may cover different disease classes. Combining the data from these two hospitals

through our framework can help generate a complete medical dataset. The design of the
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generators and the discriminators, and their interactions is detailed in the following.

4.3.1 Generator

In our framework, there are two types of generators, i.e., the community generator Gk and

the global generator G. Similar to the original GANs, the community generator Gk produces

two batches of dataGk(zd) andGk(zg) with latent vector zd and zg drawn fromN(0, 1). Then,

these data is sent to local devices, where Gk(zd) is served as fake data to update Dkj as shown

in Eq. (4.2), and Gk(zg) is employed to calculate the loss function value LDkj
(Gk) of Gk on

Dkj for back propagation as shown in Eq. (4.3).

In the cloud server, the global generator G has the same network structure as Gk, and

its parameters are aggregated from all the community generators via Eq. (4.1).

G =
∑
k∈K

exp(LD∗(Gk))∑
k′∈K exp(LD∗(Gk))

Gk, (4.1)

where the loss function LD∗(Gk) can be computed by either LDsync in Eq. (4.4) or LDasync in

Eq. (4.5) as specified in Section 4.3.3.

4.3.2 Discriminator

Corresponding to community generator Gk, in each iteration of the local community training,

the discriminator Dkj performs two-step operations: (i) discriminator updating and (ii) loss

function computation. At the first step, Dkj is trained via the IoT device’s real local data x

that follows distribution pkj(x) and the fake data Gk(zd) that is generated by Gk, which is
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expressed in Eq. (4.2).

max
Dkj

L(Dkj) =Ex∼pkj(x)[logDkj(x)]+

Ezd∼pz(z)[log(1−Dkj(Gk(zd)))].

(4.2)

After Dkj is updated, Gk(zg) is input to Dkj to calculate the loss function value of Gk as

follows,

LDkj
(Gk) = Ezd∼pz(z)[log(1−Dkj(Gk(zg)))]. (4.3)

Next, the loss value LDkj
(Gk) is sent back to Gk for the purpose of calculating gradients and

updating Gk.

4.3.3 Updating Strategy

Considering the diversity of IoT devices (e.g., laptops and smart phones) and the requirement

of IoT applications, either synchronous or asynchronous methods can be adopted to update

Gk during our local community training process.

Synchronous Updating. In the synchronous manner, Gk is updated after collecting

the loss value LDkj
(Gk) from all the local discriminators within the community k during each

updating period, where the length of a unit updating period can be pre-determined by the

system. Unlike traditional aggregation methods [69, 70] that adopt average aggregation of

all collected values, our synchronous aggregation can work well when the local distribution

pkj(x) is non-i.i.d. The aggregated loss LDsync(Gk) is computed as follows:

LDsync(Gk) =
∑
j∈Jk

eLDkj
(Gk)∑

j′∈Jk e
LDkj

(Gk)
LDkj

(Gk). (4.4)
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In Eq. (4.4), a larger value of LDkj
(Gk) means the generated data Gk(zd) is more realistic as

judged by Dkj, thus a bigger weight is assigned to LDkj
(Gk) for aggregation. The effective-

ness of such an exponential weighted aggregation method has been verified in the existing

works [60, 62] on non-i.i.d. data. After LDsync(Gk) is obtained, the community generator Gk

can be updated accordingly through the gradient ascending method.

Asynchronous Updating. Since the IoT devices may have different capacities, such as

computation rate and transmission power, there might be some stragglers who reduce time

efficiency of generator updating process if the synchronous method is adopted. To overcome

the weakness of the synchronous method, we propose an asynchronous aggregation method

to update Gk.

Basically, in the asynchronous manner, Gk is updated immediately once a loss function

value is received from a local discriminator so that there is no need to wait the slowest

discriminators for updating. Notice that with respect to Gk, the received loss function value

with a smaller degree of staleness has more contritions to accurate updating. Via taking

into account the impact of reception time on the updating performance, the “staleness” of

LDkj
(Gk) is defined to be skj = T rec

kj −T lat
k , where T rec

kj is the time when LDkj
(Gk) is received

by Gk, and T lat
k is the latest updating time of Gk. Accordingly, Gk can be updated with

obtained loss function values asynchronously through Eq. (4.5).

LDasync(Gk) =
1

|Mk|
∑
j∈Mk

e−skjLDkj
(Gk), (4.5)

where Mk is the set of local IoT devices whose loss function values are received by Gk at

the same time. As indicated in Eq. (4.5), a smaller degree of staleness is assigned a bigger
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Algorithm 2 Feature Related Data Generation

Require: the size of K, the size of Jk in each community k, the number of global iterations
Igl, and the number of local iterations Ilo

Ensure: the global generator G Initialize G, Gk, and Dkj with j ∈ Jk
1: for t = 0 to Igl do {global training}
2: for community k ∈ K in parallel do
3: Gk ← Local Community Training(Jk, Ilo)
4: end for
5: Aggregate G based on Eq. (4.1)
6: Distribute G back to communities
7: end for
8: Local Community Training(Jk, Ilo):
9: for t = 0 to Ilo do {local training}
10: Generate Gk(zd) and Gk(zg) and send to Dkj for j ∈ Jk
11: for j ∈ Jk do
12: Update Dkj via Eq. (4.2)
13: Calculate loss value LDkj

(Gk) based on Eq. (4.3)
14: end for
15: if Synchronous updating method is adopted then
16: Update Gk via Eq. (4.4)
17: end if
18: if Asynchronous updating method is adopted then
19: Update Gk via Eq. (4.5)
20: end if
21: end for
22: return G

weight on the aggregated loss value for updating Gk.

4.3.4 Training Process

In this subsection, we present the whole picture of the training process of distributed data

generation in the feature related scenario. At the beginning of the global training process,

the parameters of G, Gk, and all the discriminators are initialized with Xavier [119]. In each

global training iteration, Gk is updated via Ilo iterations of the local community training as

shown in lines 9-17 of Algorithm 2 and then is sent to the cloud server for aggregation.
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Specifically, in each community k, Gk generates two batches of data and sends them

to the discriminators within the same local community. The discriminators update weight

parameters based on Gk(zd) and calculate the loss values based on Gk(zg) as feedback to Gk

as described in Section 4.3.2. After this step, the loss value LDkj
(Gk) is sent to the edge

servers for updating Gk, where the aggregated loss can be LDsync in the synchronous updating

method or LDasync in the asynchronous updating method, which can be pre-determined by

system or application requirements.

After local community training stops, Gk is sent to the cloud server for the global aggre-

gation that follows Eq. (4.1). At the end of each global training iteration, G is distributed

back to local communities, preparing for the next iteration of global training process. After

Igl iterations of the global training process, G is output for feature related data generation.

As shown in Algorithm 2, the value of Igl determines the iterations of updating G, and

the value of Ilo decides the iterations of updating Dkj and Gk within each global training

iteration. Obviously, when Igl (resp. Ilo) is increased, the training result of G (resp. Gk)

will become better with a longer training duration. Therefore, Igl and Ilo can be set by

considering the trade-off between training result and training time.

4.4 Label Related Data Generation

In the label related scenario, the distributed datasets in different communities have different

feature distribution but the same labels; that is, the data in different communities belongs to

different domains. Mathematically, we can formulate the problem of data generation in the
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Figure 4.2 An example of the label related data generation.

label related scenario as the problem of multi-domain data generation, which is similar to

domain adaptation problem [120]. In vehicular networks, camera data captured by vehicles in

one community and LiDAR data in another community may have the same object labels [8],

which is similar to our label related scenario.

Take Fig. 4.2 as an example, where the data in the three communities shares the same

digit labels {0, 1, 2, . . . , 9} but differs in data features, such as content style, background

color, and luminance. The global generator G in the cloud can generate data from different

domains at the same time. Therefor, for the label related scenario, our goal is to train a global

generator G in the cloud server to produce various data from different data domains. To this

end, a domain classifier C is added in the cloud server to distinguish the original source of

the generated data under our framework as presented in Fig. 4.2. In the following sections,

details of label related generation will be introduced, including generators, discriminators,

domain information, and training process.
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4.4.1 Generator

In the label related scenario, the generator is expected to generate multi-domain data distri-

bution under various domain conditions, where in each community k, the domain condition,

denoted by ck, indicates the origin of the generated data. To achieve this purpose, the model

of cGANs [121] is adopted to embed the latent vector z as the domain invariant of all data

domains (e.g., the common class labels in {0, 1, 2, . . . , 9}) and to embed the domain condi-

tion ck as the domain specific of each data domain (e.g., content style, background color,

and luminance).

Specifically, the community generator Gk takes the latent vector z and the domain spe-

cific condition ck as its inputs for data generation. During the local community training

process, two batches of fake data, Gk(zd, ck) and Gk(zg, ck), are generated by Gk and sent to

Dkj to update the discriminator and to calculate the loss function value LDkj
(Gk) for back

propagation.

In the cloud server, the global generator G has the same structure as Gk and is also

aggregated by community generators as shown in Eq. (4.1). Meanwhile, the domain classifier

C can help G separate the generated data space according to the domain conditions ck. We

defer the details of domain invariant, domain specific, and domain classifier to Section 4.4.3.

4.4.2 Discriminator

The discriminators are set with two major operations, including discriminator update and

loss function computation.
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For discriminator update, Dkj is trained by the real data, x ∼ pkj(x), and the generated

data, Gk(zd, ck), through Eq. (4.6), which is the same as the training process of cGANs

max
Dkj

L(Dkj) =Ex∼pkj(x)[logDkj(x|ck)]+

Ez∼pz(z)[log(1−Dkj(Gk(zd, ck)|ck))].

(4.6)

After Dkj is updated, the loss function value of Gk, LDkj
(Gk), is calculated based on

Gk(zg, ck) as follows,

LDkj
(Gk) = Ez∼pz(z)[log(1−Dkj(Gk(zg, ck)|ck))]. (4.7)

Then, LDkj
(Gk) is sent back to edge server to update Gk.

Remark. The updating process of Gk in the label related scenario can be performed using

either synchronous or asynchronous updating methods as described in Section 4.3.3.

4.4.3 Domain Invariant and Specific

The same class labels of all communities’ data is so-called “domain invariant” that normally

exists in high-level representation space [56, 122]. For a generator that maps latent vectors

to high-dimension space, the output of its first layer denotes its high-level representation.

The distance between the first-layer output of G under two different domain conditions can

be defined as the “domain invariant loss”, which can guide the generator to produce the

required high-level representation. Through minimizing this distance, the generated result

G(z, ck) with different domain conditions are forced to possess the same information with

respect to z (i.e., the same labels).
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Since the global generator G is obtained on cloud server, with the domain condition ck

(k ∈ K), G can generate G(z, ck) falling into different data domains. Accordingly, we can

obtain the corresponding first-layer output, G1st(z, ck), to calculate the domain invariant

loss via Eq. (4.8), where L2 norm is adopted to measure the difference in the high-level

representation space.

Linv(G) =
∑

k ̸=k′∈K

∥G1st(z, ck)−G1st(z, ck′)∥2. (4.8)

Thus, minimizing Linv(G) is able to push G to decode similar high-level representations

under different domain conditions, which can help embed domain invariant information into

the latent vector z.

Domain specific is the special information that belongs to each domain. Here, the different

domain condition ck is used to represent domain specific. With the domain condition ck, the

generated data G(z, ck) is actually self-labeled, and thus can be used as the training dataset

to fulfill a supervised domain classifier training. The domain classifier C in the cloud server

is modeled as a multi-class classifier that predicts the generated data to corresponding data

domains. Concretely, C is constructed as a neural network with considering cross entropy

loss and is trained on the labeled dataset {G(z, ck), ck|k ∈ K}, where ck is used as the domain

label. During the evaluation phase of C, we can use the loss value of C as the domain specific

loss of G, which is computed in Eq. (4.9):

Lspe(G) =
∑
k∈K

H(C(G(z, ck)), ck), (4.9)

where Lspe(G) denotes the domain specific loss, and H(·, ·) represnts the cross entropy mea-
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Algorithm 3 Label Related Data Generation

Require: the size of K, the size of Jk in each community k, the number of global iterations
Igl, and the number of local iterations Ilo

Ensure: the global generator G Initialize G, C, Gk, and Dkj with j ∈ Jk
1: for t = 0 to Igl do {global training}
2: for community k ∈ K in parallel do
3: Gk ← Local Community Training(Jk, Ilo)
4: end for
5: Aggregate G based on Eq. (4.1)
6: Train the domain classifier C on {G(z, ck), ck|k ∈ K}
7: Calculate Linv(G) and Lspe(G) with C
8: Distribute G,Linv(G), and Lspe(G) back to communities
9: end for
10: Local Community Training(Jk, Ilo):
11: for t = 0 to Ilo do {local training}
12: if t ̸= 0 then
13: Update Gk by minimizing: λ1Linv(G) + λ2Lspe(G);
14: end if
15: Generate Gk(zd, ck) and Gk(zd, ck) and send to Dkj

16: for j ∈ Jk do
17: Update Dkj via Eq. (4.6)
18: Calculate loss value LDkj

(Gk) based on Eq. (4.7)
19: end for
20: if Synchronous updating method is adopted then
21: Update Gk via Eq. (4.4)
22: end if
23: if Asynchronous updating method is adopted then
24: Update Gk via Eq. (4.5)
25: end if
26: end for
27: return G

surement. Since G is expected to produce more realistic data based on the domain condition

ck, minimizing Lspe(G) can force G to embed domain specific semantics into ck.

4.4.4 Training Process

The training process of distributed data generation in the label related scenario is shown
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in Algorithm 3. Similar to Algorithm 2 in the feature related scenario, Algorithm 3 starts

with the initialization of model parameters. In each global training iteration, all local com-

munities proceed their local community training to update Gk with Ilo iterations (see lines

11-21). During each location training iteration, two batches of generated data are sent to

the local IoT devices to update their discriminators and calculate loss function values. Then,

the calculated loss function values are transmitted to the edge servers for updating Gk based

on Eq. (4.4) in a synchronous manner or Eq. (4.5) in an asynchronous manner, which can

be decided by the system and/or application requirements.

After Gk is trained and received by the cloud server, a weighted aggregation is performed

to obtain G as shown in line 5 of Algorithm 3. Then, according to the description in

Section 4.4.3, we can train the domain classifier C based on the dataset generated by G with

different domain conditions, and calculate the domain invariant loss Linv(G) and domain

specific loss Lspe(G). Thereafter, G, Linv(G), and Lspe(G) are sent back to community

generators for local training iteration. Particularly, in line 13 of Algorithm 3, λ1 ∈ (0, 1] and

λ2 ∈ (0, 1] are two pre-determined hyperparameters used as the weights of loss functions.

When the global training process ends, G is output to generate multi-domain data with the

domain condition ck. In Algorithm 3, through the settings of Igl and Ilo, we can adjust the

trade-off between training result and training time for G and Gk.
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4.5 Experiments

In this section, we deeply investigate the quality of the generated data from both visualization

and statistic aspects through the comprehensive comparison with the state-of-the-art models.

4.5.1 Experiment Settings

System Structure. The network environment is simulated on one device, where each com-

munity has 1 edge server and 5 IoT devices. Considering the available real datasets, the

number of community varies with the scenario settings, which is demonstrated as follows.

Datasets. For the feature related scenario, we choose two types data in the experiments:

(i) simulated gaussian mixed data, where the datasets of all local communities have the same

feature (i.e., variance) but different mean values; and (ii) MNIST dataset [123] and Fashion-

MNIST dataset [124], where both datasets have the same features but different class labels.

For the label related scenario, we select three pairs of datasets, each of which contains the

same labels or semantic information but belongs to different domains: (i) MNIST dataset

and inverse MNIST dataset; (ii) sketch-photo handbag dataset [125]; and (iii) sketch-photo

shoe dataset [126].

Data Distribution. Both the i.i.d. data distribution and the non-i.i.d. data distribution

are considered for the feature related and the label related scenarios in our experiments.

Accordingly, by combining the two types of data distribution and the two scenarios, we have

the following four types of settings for evaluation:
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(i) Feature related scenario with i.i.d. data. For the simulated gaussian mixed

datasets, we set 9 communities as shown in Fig. 4.3, and each cluster of gaussian data

is randomly assigned to a community. For the MNIST dataset and the Fashion-MNIST

dataset, we set 3 communities, where we assign the Fashion-MNIST dataset randomly to

one community, and split the MNIST dataset randomly to the remaining two communities.

In this way, the datasets of the three communities have the same features but different labels.

(ii) Feature related scenario with non-i.i.d. data. Here, only the MNIST and

Fashion-MNIST datasets are used because class labels are needed as indicator to split dataset

into different devices such that the data distribution on local devices within each community

is non-i.i.d. There are 3 communities, where Fashion-MNIST dataset is assigned to one com-

munity in non-i.i.d. manner, and MNIST dataset is assigned to the other two communities

with non-i.i.d. partition. As a result, the datasets of the 5 IoT devices in each community

following non-i.i.d. distribution.

(iii) Label related scenario with i.i.d. data. We set 3 communities in the whole

network. For each of the three pairs of datasets, we assign one dataset randomly to the 5

IoT devices of one community, and split the other dataset randomly to 10 IoT devices of the

remaining two communities.

(iv) Label related scenario with non-i.i.d. data. In this case, only the MNIST and

inverse MNIST datasets are adopted because they are labeled datasets. We set 3 communities

with MNIST dataset assigned to a community and inverse MNIST dataset allocated to the

remaining two communities in non-i.i.d. manner, so that the data distribution on IoT devices
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(a) Centralized GAN. (b) Federated GAN. (c) Multi-
discriminator GAN.

(d) FR data genera-
tion (sync).

(e) FR data genera-
tion (async).

Figure 4.3 Generated data of different generative models on the simulated gaussian mixed
dataset.

within community is non-i.i.d.

Baselines. Due to the different ideas and goals, we pick different baselines for feature

related and the label related scenarios. In the feature related scenario, centralized GAN

model, federated GAN (Fed GAN) [65], and multi-discriminator GAN (M-D GAN) [69] are

used for performance comparison. In the label related scenario, RegGAN [56] and federated

GAN are selected as the baseline models.

4.5.2 Feature Related Data Generation

Feature Related Scenario with I.I.D. Data. In this setting, data of different commu-

nities has the same features, and data inside the community is i.i.d. Fig. 4.3 displays the

generated data of centralized GAN, Fed GAN, M-D GAN, and our feature related (FR) data

generation model with synchronous and asynchronous updating methods, in which the black

“×” markers denote the training data points coming from 9 communities, and the blue “·”

markers are the generated data points. Thus, if the blue “·” can concentrate to the black

“×” points closer, the generated data is more similar to the real data, indicating the better

performance of generative models.
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(a) Centralized
GAN.

(b) Federated GAN.(c) Multi-
discriminator
GAN.

(d) FR data genera-
tion (sync).

(e) FR data genera-
tion (async).

Figure 4.4 Generated data of different generative models on MNIST dataset and Fashion-
MNIST dataset in i.i.d. setting.

In Fig. 4.3a, the generated data mainly concentrates around one black data cluster at the

bottom right corner, which means only partial data distribution of entire training dataset

is learned by centralized GAN. Centralized GAN cannot perform well on such gaussian

mixed data due to mode collapse of original GAN model. Fed GAN averagely aggregates

all the involved generators and discriminators on the server, producing the data that mainly

concentrates around the black data clusters at the four corners. M-D GAN uses one generator

to receive feedbacks from all discriminators for updating, which is a good way to learn the

multi-source data distribution. But, as shown in Fig. 4.3c, it also generates a number of

outliers that are far away from the black data points, because the discriminators work alone

without information exchange among all communities. Our FR data generation model is

like a combination of Fed GAN and M-D GAN, within each community, the GAN structure

resembles to M-D GAN but uses an exponentially weighted aggregation; and in the cloud

server, all community generators are exponentially weighted to obtain the global generator G

so that the information among communities can be exchanged through distributing G back
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to communities. From Fig. 4.3d, we find that almost all the generated data can concentrate

on the 9 black data clusters accurately, reflecting the best generation performance when the

synchronous updating method is used in our FR data generation model. While in Fig. 4.3e,

when the asynchronous updating method is implemented, the majority of the generated data

can concentrate on the 9 black data clusters closely, reaching a slightly worse generation

performance than our FR data generation model with synchronous update but is still better

than other baselines.

For experiments on MNIST and Fashion-MNIST, one community holds Fashion-MNIST

data and the other two hold MNIST data. Since the generated data is expected to serve

as training data in off-line/downstream applications, the utility of generative models can be

evaluated by classification accuracy on its generated data. Other metrics for quality evalu-

ation are also adopted, including Inception Score (IS) [127] and Frechet Inception Distance

(FID) [128], which is common data generation tasks. The generated images are presented in

Fig. 4.4, and the quantitative results are displayed in Table 4.1.

From the data of Fig. 4.4, centralized GAN only generates blurred partial Fashion-MNIST

data, failing to generate data from the whole dataset because of model collapse. Fed GAN

generates almost all labels, but some data is blurred and unclear, such as the 3rd and 5th

rows in Fig. 4.4b, because the average aggregation strategy used in federated GAN may

not able to collect all important feedbacks from local entities. Fig. 4.4c and Fig. 4.4d show

that M-D GAN and our FR data generation model with synchronous update present similar

results, since the structure of M-D GAN is similar to our local community design.
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Table 4.1 Quantitative comparison of different models on MNIST and Fashion-MNIST in
feature related scenario.

Setting Metrics Cent. GAN Fed. GAN M-D GAN FR (sync) FR (async)

i.i.d.
IS 3.386 4.215 4.228 4.363 3.208
FID 19.84 17.14 14.69 13.82 52.24
Accu. 82.21% 87.84% 90.60% 90.65% 53.17%

non-i.i.d
IS 3.386 2.281 2.839 3.875 2.922
FID 19.84 74.80 96.12 26.15 77.18
Accu. 82.21% 42.37% 45.22% 86.05% 51.20%

More details of performance comparison can be found from the statistics in Table. 4.1,

which reflects our observation about Fig. 4.4. It can be seen that with respect to IS (the

higher the better), FID (the lower the better), and accuracy (the higher the better), our FR

data generation model with synchronous update outperforms the remaining four models.

Feature Related Scenario with non-I.I.D. Data. The generation results are de-

picted in Fig. 4.5 and the statistics are shown in Table 4.1. Centralized GAN in Fig. 4.5 and

Fig. 4.4 outputs the same results since there is no difference for a centralized mode with i.i.d.

and non-i.i.d. data. By comparing the results of the three distributed generation models in

Fig. 4.4, Fig. 4.5, and Table 4.1, it is clear that our FR generation model with synchronous

update can achieve the best generation performance with both i.i.d. and non-i.i.d. data.

Especially, the performance improvement of our FR generation model with synchronous up-

date is more significant under non-i.i.d. setting. The success of our generation model is

credited to the following novel designs: (i) the three-layer hierarchical framework, where the

community generator Gk in each community only needs to handle homogeneous data for a

better generation performance; and (ii) the exponential parameter aggregation, which takes
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(a) Centralized
GAN.

(b) Federated GAN.(c) Multi-
discriminator
GAN.

(d) FR data genera-
tion (sync).

(e) FR data genera-
tion (async).

Figure 4.5 Generated data of different generative models on MNIST dataset and Fashion-
MNIST dataset in non-i.i.d. setting.

the advantage of the community generators to build a powerful global generator to produce

heterogeneous data from all communities with good data quality.

4.5.3 Label Related Data Generation

For the data generation problem in the label related scenario, this paper is the first one

to propose distributed generative models, so there does not exist any comparable models.

Instead, we build a distributed baseline model following the idea of federated GAN [65] for

comparison. The structure of federated GAN (Fed. GAN) contains a cloud server and five

local IoT devices. During each training iteration, each local device trains a GAN model

and upload its generator and discriminator to the cloud server for aggregation. Then, the

aggregated generator and discriminator in cloud server are distributed back to all IoT devices

for the next training iteration.

Label Related Scenario with I.I.D. Data. The generated data of the MNIST,

inverse MNIST datasets and the sketch-photo datasets are shown in Fig. 4.6 and Fig. 4.7,

respectively.



73

(a) RegGAN. (b) Federated GAN. (c) LR data generation
(sync).

(d) LR data generation
(async).

Figure 4.6 Generated data of different generative models on MNIST dataset and inverse
MNIST dataset in i.i.d. setting.

(a) RegGAN. (b) Federated GAN. (c) LR data generation
(sync).

(d) LR data generation
(async).

(e) RegGAN. (f) Federated GAN. (g) LR data generation
(sync).

(h) LR data generation
(async).

Figure 4.7 Generated data of different generative models on (sketch-photo) Handbag dataset
and Shoe dataset in i.i.d. setting.

RegGAN outputs the best generated results compared with the remaining three dis-

tributed models because it is a centralized model. Among these three distributed models,

the results of Fed. GAN and our LR data generation model with synchronous update have

similar visual quality and statistical performance, which are clear and close to the generated

results of RegGAN. On the other hand, our LR data generation model with asynchronous

update performs a little bit worse than Fed. GAN and our LR data generation model with

synchronous update. Notably, the significant difference between our LR data generation

models with different update methods and Fed. GAN is whether the generated data in the

same column has the same domain invariant. In Fig. 4.6a, Fig. 4.6c, and Fig. 4.6d, the gen-

erated data in each column always has the same class label. The reason that our LR data
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Table 4.2 Quantitative comparison of different models on MNIST and Inverse MNIST in
label related scenario.

Setting i.i.d. non-i.i.d.
Metrics RegGAN Fed. GAN LR (sync) LR (async) Fed. GAN LR (sync) LR (async)

IS 4.037 3.360 3.971 3.041 2.651 3.495 2.452
FID 26.11 33.20 28.56 41.35 53.26 45.22 59.82

generation models can produce the same class label is that we use the domain classifier to

minimize the domain invariant loss, which embeds the class label information into a domain

invariant vector z. But, in Fig. 4.6b, the domain invariant (i.e., class label) of two images

in the same column are not identical. Fed. GAN does not deploy any domain classifiers in

the cloud server except the parameter aggregation operation, and thus it can not guarantee

the same class label with z during data generation. Also, for the generated data quality of

our LR data generation model with different updating strategies, the synchronous method

performs better than the asynchronous method, which is the same as the generation perfor-

mance in the feature related scenario. Similar results on Handbag and Shoes datasets can be

found in Fig. 4.7, where the generated data of our LR data generation model with different

update methods have the same semantic information in each column, but the generated data

of Fed. GAN does not. More statistical results about the generated data are presented in

Table 4.2.

Label Related Scenario with non-I.I.D. Data. The experiments of label related

data generation with non-i.i.d. data are only conducted on the MNIST dataset and the

inverse MNIST dataset. The results of RegGAN in Fig. 4.6 and Fig. 4.8 are the same since

there is no difference for a centralized mode with i.i.d. and non-i.i.d. data. The generated
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(a) RegGAN. (b) Federated GAN. (c) LR data Generation
(sync).

(d) LR data Generation
(async).

Figure 4.8 Generated data of different generative models on MNIST dataset and inverse
MNIST dataset in non-i.i.d. setting.

results of Fed. GAN and our LR data generation models are shown in Fig. 4.8. Compared

with Fed. GAN, our LR data generation model in the synchronous manner can still produce

clear numbers from two different domains as shown in Fig. 4.8c, which is closer to the results

of RegGAN and is better than the results of Fed. GAN in Fig. 4.8b. Similar to the results in

i.i.d. setting, the generated data quality of our LR data generation model with asynchronous

update is still a little bit worse. But from the view point of domain invariant, our LR data

generation model with different update methods can produce the same labels in each column.

Yet, in Fig. 4.8b, the generated data of Fed. GAN in the same column still has different

labels, which demonstrate the effectiveness of the domain invariant loss function in our LR

data generation models. The above observations validate that our LR data generation model

work well on non-i.i.d. data with different update methods. In addition, more quantitative

results of label related data generation in non-i.i.d. setting are provided in Table 4.2, where

the data quality of our LR data generation model with synchronous update is not only better

than Fed. GAN, but also very close to the performance of RegGAN even in such non-i.i.d.

setting.
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4.6 Summary

In this chapter, our aim is to solve the problem of distributed data generation with mul-

tiple heterogeneous data sources in IoT. To this end, we design a hierarchical distributed

generative framework with the consideration of IoT features. Based on this framework, fea-

ture related data generation model and label related data generation model are proposed,

which can solve the above data generation problems successfully in a synchronous manner

or an asynchronous manner. Experiments are conducted on multiple datasets under differ-

ent distribution settings to evaluate the performance of our models from both visualization

and statistic aspects, which demonstrates the excellence of our models compared with the

start-of-art baselines.



77

CHAPTER 5

PRIVATE DATA DELETION IN FEDERATED LEARNING

5.1 Challenges and Motivations

As well known, to advance the performance of machine learning models, a sufficient amount

of data is indispensable to be collected from users and/or third parties. For examples, popu-

lar computer vision models are trained on images and videos posted by Facebook and Flickr

users [129], many natural language processing models are trained on Amazon reviews [130],

and micro-video recommendation systems are trained on Tiktok user data [131]. In a number

of real applications, users provide their data to the service providers/platforms for model

development in exchange of better service quality. Meanwhile, to protect users’ data pri-

vacy, the “Right To Be Forgotten” is enforced by some regulations, such as General Data

Protection Regulation (GDPR) [132] and California Consumer Privacy Act (CCPA) [133].

For instance, a user wants to delete part of search history, and a hospital requests to remove

some patients’ data. Thus, a practical and crucial question is that when users request to

remove data from the services or platforms, what should the service providers do?

A straightforward method to deal with users’ data removal requests is to delete the users’

data from the databases. However, due to the memorization of machine learning models [134],

the information of training data is memorized in model parameters and cannot be forgotten

easily. Moreover, such naive data deletion can be explored by malicious attackers to infer

users’ private information in various ways, including model inversion attack [92], member-

ship inference attack [33], reconstruction attack [135], etc. Therefore, how to correctly and
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completely remove users’ data from the learned models has become a challenging problem.

The rightful data removal in machine learning context, termed as “machine unlearn-

ing” [71], requires deleting data from training datasets as well as the impact of data in the

learned models. Intuitively, retraining the machine learning models from scratch on the

remaining databases sans the deleted data is a simple way to achieve unlearning objective,

but full computation cost of retraining may not be affordable, especially on the models with

millions of parameters [136]. Thus, designing a computation-efficient and time-saving un-

learning method is the core focus of current machine unlearning works. So far, there are

only a few works on machine unlearning but with different limitations, such as simple learn-

ing methods (linear regression [82, 84]), model-dependent methods (decision tree [76] and

k-means cluster [72]). Besides, existing research on federated learning (FL) mainly focuses

on improving unlearning efficiency with approximate unlearning but overlooks model utility

(e.g., model accuracy) after unlearning, which harms the performance of unlearned models.

Inspired by the limitations of existing unlearning methods, in this paper, we aim at de-

signing an exact and efficient federated machine unlearning method in model-agnostic man-

ner. First, to enable exact federated unlearning, we utilize the idea of α-quantization [137]

to improve the stability of federated model and propose our quantized federated learning

(Q-FL) algorithm, through which the quantized federated model can maintain unchanged

before and after data deletion. More importantly, the quantized federated model and the

model retrained from scratch on the remaining databases could be the same with a high

probability, so that there is no need to retrain from scratch as long as the stability is held.
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Based on the quantized federated model, we design an exact and efficient federated unlearn-

ing (Exact-Fun) algorithm that also can achieve decent unlearning efficiency and good model

utility after unlearning. We highlight the contributions of this chapter as follows:

� To the best of our knowledge, this work is the first work to investigate the exact

machine unlearning problem in the federated learning paradigm, which can be extended

to different machine learning models (model agnostic).

� The quantized federated unlearning (Q-FL) algorithm is designed to enable exact fed-

erated unlearning with the guarantee of model convergence.

� The exact and efficient federated unlearning (Exact-Fun) algorithm is proposed to

process users’ data deletion requests with proved unlearning efficiency.

� A Newton’s method based local model unlearning mechanism is developed in our ap-

proximate federated unlearning (Appro-Fun) algorithm, which is used for efficient and

approximate data deletion.

� For the proposed Appro-Fun algorithm, we prove the indistinguishability between the

unlearned model and the retrained model as well as the performance guarantee of the

unlearned model.

� Both our Exact-Fun and Appro-Fun algorithms are evaluated on real datasets via

intensive experiments, which validate the effectiveness and efficiency of our proposed

algorithms compared with state-of-the-art.
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Table 5.1 Summary of main notations used in Chapter 5

Notation Meaning
D the training dataset of entire federated system
Dk the training dataset of client k
Uj the unlearning dataset submitted by client j
Du Du = D \ Uj

wt the federated model at iteration t
wt

k the local model of client k at iteration t
ŵt the quantized federated model at iteration t
ŵu,t the quantized federated model at iteration t after unlearning
L(·) the loss function of federated model
Lk(·) the loss function of client k’s model
l(·, (x, y)) the loss function of on a data instance (x, y)

This chapter is organized as follows. The system model is introduced in Section 5.2

and the problem of federated unlearning is formulated in Section 5.3. In Section 5.4 and

Section 5.5, we detail our methodologies of exact federated unlearning and approximate

unlearning, respectively. Then, our proposed algorithms are and evaluated in Section 5.6.

Finally, we give a summary in Section 5.7.

5.2 System Model

In this section, we introduce the original framework of federated learning and present nec-

essary notations in Table 5.1.

As an advanced distributed learning paradigm, FL allows a set of distributed clients

K = {1, 2, . . . , K} to collaboratively learn a global model on the federated server using their

own local dataset Dk (k ∈ K). In Dk, each data instance is represented by (x, y), where

x ∈ X, X is the feature space of training data, y ∈ Y, and Y is the set of ground truth

labels. In a federated learning system, all the clients’ local databases together form a global

database D =
⋃

k∈KDk. During each training iteration t, the goal of each local client k in
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the system is to minimize a loss function as shown in Eq. (5.1).

Lk(w
t
k) =

1

|Dk|
∑

(x,y)∈Dk

l(wt
k, (x, y)), (5.1)

where Lk is the loss function of client k, wt
k is the model parameter of client k at iteration

t, |Dk| is the size of Dk, and l(wt
k, (x, y)) is the loss of model wt

k on instance (x, y). Then,

the clients’ local models are uploaded to the server for aggregation, and the federated model

parameter wt of iteration t is calculated via FedAvg algorithm [10].

wt =
∑
k∈K

|Dk|
|D|

wt
k. (5.2)

According to the loss function of local clients and the aggregation algorithm, the optimization

objective of federated learning system can be formulated as Eq. (5.3).

min
wt∈W

L(wt) =
∑
k∈K

|Dk|
|D|

Lk(w
t), (5.3)

where W ∈ Rd is the d-dimension hypothesis space of model parameters. In a nutshell, a

federated learning algorithm can be defined to be A : D → W, which takes D =
⋃

k∈K Dk

as the input and outputs the federated model parameter wt belonging to W as depicted in

Fig. 5.1 and Algorithm 4.

In this chapter, we make assumptions on the considered federated learning as existing

works, which can facilitate our analysis.
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Figure 5.1 The framework of federated learning and unlearning.

Algorithm 4 Federated Learning Algorithm (FedAvg)

Input: the number of iteration T , the number of clients K, the size of minibatch B, learning
rate η
Output: federated model w = ξT

1: Server executes:
2: initialize ξ0

3: for iteration t = 0 to T do
4: for client k ∈ K in parallel do
5: ξt+1

k ← ClientUpdate(k, ξt)
6: end for
7: ξt+1 ←

∑
k∈K

|Dk|
|D| ξ

t+1
k

8: end for
9: return w = ξT

10: Clients execute:
11: ClientUpdate(k, ξt): // run on each client
12: compute gradient ∇Lk(ξ

t) on Dk

13: update local model ξt+1
k ← ξt − η∇Lk(ξ

t)
14: upload model ξt+1

k to server

1. (Bounded and Unbiased Gradient) ∀w ∈W, the stochastic gradient ∇Lk(w) has

an upper bound G and is an unbiased estimator of federated loss function’s gradient
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∇L(w) [90, 138]:

∥∇Lk(w)∥ ≤ G, (5.4)

∇L(w) = E{∇Lk(w)}. (5.5)

2. (Lipschitz Continuous Gradient) ∀w,w′ ∈ W, the gradient of the loss function

Lk(·) is Lipschitz continuous with µ > 0 [42, 138]:

∥∇Lk(w)−∇Lk(w
′)∥ ≤ µ∥w − w′∥. (5.6)

3. (Lipschitz Continuity) ∀w,w′ ∈W, the loss function l(·, (x, y)) is Lipschitz contin-

uous with ι > 0 [42, 90]:

∥l(w, (x, y))− l(w′, (x, y))∥ ≤ ι∥w − w′∥. (5.7)

4. (Strong Convexity) ∀w,w′ ∈W, the loss function l(·, (x, y)) is strongly convex with

τ > 0 [42, 138]:

l(w, (x, y)) ≥ l(w′, (x, y))+∇l(w′, (x, y))⊤(w − w′)

+
τ

2
∥w − w′∥2, (5.8)



84

where ⊤ is the transpose operation.

5. (Hessian-Lipschitz) The loss function l(w, (x, y)) is Hessian Lipschitz with constant

M :

∥∇3l(w)∥ ≤M, ∀w. (5.9)

These assumptions are practical for common loss functions such as mean square error

and cross entropy loss in liner models.

5.3 Problem Formulation

The problem of exact federated unlearning is mathematically formulated in Section 5.3.

After a FL model is trained on the given training dataset, the model parameters are fixed

and can be deployed for use in applications. When client j ∈ K would like to erase his/her

data Uj ⊂ Dj (|Uj| = m < |Dj|) from the trained federated model, he/she could submit

an unlearning request to the server. Particularly, the clients hold disjoint private datasets

locally, so the unlearned data submitted by each one is different. Besides the federated model,

the federated learning algorithm A produces a set of meta-data M that is not necessarily

used during prediction but useful in the unlearning procedure for computing gradients and

intermediate results and other purposes. Accordingly, an unlearning algorithm can be defined

as A u : (A (D),Uj,M)→W, which takes the trained model A (D), the unlearning dataset

Uj, and the meta-data M as the inputs to update an unlearned model.
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To process an unlearning request, Uj should be deleted fromDj (andD), and the influence

of Uj should be revoked from the trained federated model. Moreover, a successful exact

unlearning algorithm should guarantee: (i) the unlearning cost (e.g., time and computation)

is less than the cost of training from scratch on the remaining dataset Du = D \ Uj; and

(ii) the distribution of unlearned model parameter is the same as the distribution of model

parameters trained from scratch on Du. In this work, we focus on exact federated unlearning

and approximate federated unlearning, and give their definition as follows.

Definition 1. (Exact Federated Unlearning). Given an FL algorithm A : D → W

with clients set K, and an unlearning request Uj, j ∈ K, the unlearning algorithm A u :

(A (D),Uj,M)→W can exactly unlearn Uj from A (D) if

Pr[A u(A (D),Uj,M) ∈W] = Pr[A (Du) ∈W].

The definition means that the probability distributions of unlearned model and the re-

trained model are equal.

Moreover, the definition of approximate federated unlearning is addressed as follows.

Definition 2. ((ϵ, δ)-Approximate Federated Unlearning). Given an FL algorithm

A : D → W and an unlearning request Uj from client j, the unlearning algorithm A u :

(A (D),Uj,M) → W is an (ϵ, δ)-approximate federated unlearning that unlearns Uj from
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A (D) if

Pr[A u(A (D),Uj,M) ∈W] ≤ eϵ · Pr[A (Du) ∈W] + δ, and

Pr[A (Du) ∈W] ≤ eϵ · Pr[A u(A (D),Uj,M) ∈W] + δ.

In Definition 2, the distribution of the unlearned model parameters is indistinguishable

from that of model parameters trained from scratch on the remaining dataset Du = D \Uj.

5.4 Exact Federated Unlearning

5.4.1 Quantization of Federated Learning

In the FL system, when the dataset Uj is deleted from Dj and D per client j’s unlearning

request, there may be changes in the final trained federated model. That is, the change

of local user’s dataset usually have influence on the trained model. As a result, it is hard

to guarantee the exact equivalence on distribution between the unlearned model and the

model trained from scratch on Du as required in Definition 1. To overcome this challenge,

stabilizing the FL algorithm becomes necessary to enable exact unlearning. In other words,

the trained federated model is expected to have certain stability with respect to the local

dataset, so that small changes on the local dataset should only cause a small or no change

on the distribution of trained federated model parameters. In our problem, when a dataset

Uj is requested to be unlearned, the trained federated model should not change too much.
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If such changes can be evaluated efficiently during the unlearning stage, we can achieve the

exact unlearning efficiently.

The way to reach stability in federated learning is quantization [137], where the aggre-

gated parameters of the federated model are quantized to a discrete vertex in the hypothesis

space of model parameters. The quantization operation q(α,wt) = ŵt can map its continues

input value wt to a discrete value ŵt, which is expressed as follows:

ŵt = α · z∗, s.t. z∗ = arg min
z∈Zd
∥wt − α · z∥2, (5.10)

where Zd is the d-dimensional integer space. For instance, in 1-dimension, q(α = 0.1, wt =

0.62) maps wt=0.62 to ŵt=0.6, which is like a rounding operation; and in 2-dimension,

q(α = 0.5, wt = [1.1, 2.7]) maps wt to the closest α vertex ŵt = [1.0, 2.5].

By applying quantization, we first propose the quantized federated learning (Q-FL) al-

gorithm as presented in Algorithm 5 to enable exact unlearning and then demonstrate our

exact and efficient unlearning algorithm to unlearn a dataset Uj. At the beginning of Q-FL,

the server initializes model parameter w0. The initialization is passed through quantization

function q(α, ·) to get the quantized model ŵ0, which is then distributed to all participated

clients as their local models for computing ClientUpdate(·). The operation of clients is the

same as that in the original FL described in Section 5.2, including computing gradients, up-

dating local models, and uploading their updated local models to the server. After the server

receives local updates and performs aggregation, a new federated model wt+1 is obtained.

Next, quantization function is executed in Line 7 on the federated model wt+1 to get the
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Algorithm 5 Quantized Federated Learning (Q-FL)

Input: the number of iterations T , the number of clients K, learning rate η, the granularity
of quantization α
Output: quantized federated model ŵT

1: Server executes: initialize ŵ0 = q(α,w0)
2: for iteration t = 0 to T do
3: for client k ∈ K in parallel do
4: wt+1

k ← ClientUpdate(k, ŵt)
5: end for
6: wt+1 ←

∑
k∈K

|Dk|
|D| w

t+1
k

7: ŵt+1 = q(α,wt+1)
8: save wt+1 and ŵt+1 on server; // as meta-data
9: end for
10: return ŵT

11: ClientUpdate(k, ŵt): // run on each client
12: compute gradient ∇Lk(ŵ

t) for Dk

13: update local model wt+1
k ← ŵt − η∇Lk(ŵ

t)
14: upload model wt+1

k to server.

quantized model parameter ŵt+1 = q(α,wt+1). Both the original federated model wt+1 and

the quantized federated model ŵt+1 are stored on server as meta-data M.

It is worth noticing that through quantization at server in each iteration t, the quantized

federated model become stable as a constant with a high probability with respect to unlearn-

ing small datasets. Thus, Uj can be easily unlearned from the quantized FL model without

complex re-computation and communication. Besides, the proposed Q-FL algorithm can

not only support exact unlearning, but also preserve the model utility and convergence even

if quantization operation disturbs its parameters. Hereafter, we first state a Lemma 1 and

then use it to prove the convergence bound of proposed quantized federated learning (Q-FL)

algorithm.

Lemma 1. In the Q-FL of Algorithm 5, the loss value of quantized FL model between t-th
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iteration and (t+ 1)-th iteration is bounded by the following inequality:

E{L(ŵt+1)− L(ŵt)} ≤ β1E{∥∇L(ŵt)∥2}+ β2E{∥N t+1∥2}, (5.11)

where β1 = −η + µη2

2
and β2 =

µ
2
.

Proof. The quantization function ŵt = q(α,wt) essentially is a random noise perturbation.

In each dimension of wt, a random noise with uniform distribution U(−α
2
, α
2
) is added, which

makes ŵt be a perturbed result of wt. Therefore, we have ŵt = q(α,wt) = wt+N t and obtain

Eq. (5.12).

ŵt = wt +N t =
∑
k∈K

|Dk|
|D|

wt
k +N t, (5.12)

where N t ∼ U(−α
2
, α
2
) is the noise added in iteration t. According to the training process of

gradient descent method, the local model of each client k is updated as

wt+1
k = ŵt − η∇Lk(ŵ

t). (5.13)

By combining Eq. (5.12) and Eq. (5.13), ŵt+1 can be computed as

ŵt+1 =
∑
k∈K

|Dk|
|D|

(ŵt − η∇Lk(ŵ
t)) +N t+1. (5.14)

Since the gradient of loss function Lk(w) is Lipschitz continuous (see property 2 in Assump-

tion), the loss function Lk(w) is convex [139, 140]. We can construct a new convex function
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g(w) = µ
2
w⊤w−Lk(w) [141] and obtain its gradient ∇g(w) = µw−∇Lk(w). Because of the

convexity of g(w), there is

g(ŵt+1) ≥ g(ŵt) +∇g(ŵt)⊤(ŵt+1 − ŵt). (5.15)

By substituting g(w) = µ
2
w⊤w − Lk(w) into Eq. (5.15), we get Eq. (5.16).

µ

2
ŵt+1⊤ŵt+1 − Lk(ŵ

t+1)

≥µ

2
ŵt⊤ŵt − Lk(ŵ

t) + (µŵt −∇Lk(ŵ
t))⊤(ŵt+1 − ŵt). (5.16)

That is,

Lk(ŵ
t+1)− Lk(ŵ

t)

≤∇Lk(ŵ
t)⊤(ŵt+1 − ŵt)

+
[µ
2
ŵt+1⊤ŵt+1 − µ

2
ŵt⊤ŵt − µŵt⊤(ŵt+1 − ŵt)

]
≤∇Lk(ŵ

t)⊤(ŵt+1 − ŵt) +
µ

2
∥ŵt+1 − ŵt∥2. (5.17)

From the property 1 in Assumption, the gradient is bounded and unbiased, so Eq. (5.18) is

obtained by taking expectation at both sides of Eq. (5.17).

E{L(ŵt+1)− L(ŵt)} ≤E{∇L(ŵt)⊤(ŵt+1 − ŵt)}

+
µ

2
E{∥ŵt+1 − ŵt∥2}. (5.18)
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To estimate the upper bound of the right side in Eq. (5.18), we need to bound two items:

ŵt+1−ŵt and ∥ŵt+1−ŵt∥2. From Eq. (5.12), the difference between ŵt+1 and ŵt is computed

as follows:

ŵt+1 − ŵt =
∑
k∈K

|Dk|
|D|

[
ŵt

k − η∇Lk(ŵ
t)
]
+N t+1 − ŵt

=ŵt − η
∑
k∈K

|Dk|
|D|
∇Lk(ŵ

t) +N t+1 − ŵt

=− η
∑
k∈K

|Dk|
|D|
∇Lk(ŵ

t) +N t+1

=− η∇L(ŵt) +N t+1. (5.19)

Then, for ∥ŵt+1 − ŵt∥, we have

∥ŵt+1 − ŵt∥ =∥ − η∇L(ŵt) +N t+1∥ (5.20)

≤∥η∇L(ŵt)∥+ ∥N t+1∥.
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Based on Eq. (5.19), Eq. (5.20), and Eq. (5.18), we can have

E{L(ŵt+1)− L(ŵt)}

≤E{∇L(ŵt)⊤(ŵt+1 − ŵt)}+ µ

2
E{∥ŵt+1 − ŵt∥2}

≤E{∇L(ŵt)⊤(−η∇L(ŵt) +N t+1)}

+
µ

2
E{(∥η∇L(ŵt)∥+ ∥N t+1∥)2}

=E{−η∥∇L(ŵt)∥2 + (∇L(ŵt)⊤N t+1)}

+
µ

2
E{η2∥∇L(ŵt)∥2 + 2η∥∇L(ŵt)∥∥N t+1∥+ ∥N t+1∥2}

=− ηE{∥∇L(ŵt)∥2}+ E{∥∇L(ŵt)N t+1∥}+ µη2

2
E{∥∇L(ŵt)∥2}

+ µηE{∥∇L(ŵt)∥∥N t+1∥}+ µ

2
E{∥N t+1∥2}

(i)
=(−η + µη2

2
)E{∥∇L(ŵt)∥2}+ µ

2
E{∥N t+1∥2} (5.21)

The equality (i) holds because the mean of noise N t is 0. For simplicity, let β1 = −η + µη2

2

and β2 =
µ
2
. Lemma 1 is proved.

Then, we can use Lemma 1 to prove Theorem 7.

Theorem 7. The convergence upper bound of our proposed Q-FL Algorithm 5 is given by

Eq. (5.22) when η ∈ (0, 2
µ
] and is given by Eq. (5.23) when η ∈ ( 2

µ
,∞).

E{L(ŵt)− L(w∗)} ≤ (1 + 2τβ1)
tC0 − β2α

2d[1− (1 + 2τβ1)
t]

24τβ1

, (5.22)
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E{L(ŵt)− L(w∗)} ≤ (
1

2τ
+ β1)G

2 +
β2α

2d

12
, (5.23)

where w∗ is the optimal parameter of federated model, C0 = ∥L(ŵ0)− L(w∗)∥ is the initial-

ization quality of federated model, and η is the learning rate of local models.

Proof. From Lemma 1, we have

E{L(ŵt+1)− L(w∗)} ≤E{L(ŵt)− L(w∗)} (5.24)

+β1E{∥∇L(ŵt)∥2}+ β2E{∥N t+1∥2}.

The property of strong convexity implies Polyak-Lojasiewicz (PL) inequality:

τ(l(w, (x, y))− l(w∗, (x, y))) ≤ 1

2
∥∇l(w, (x, y))∥2, (5.25)

which indicates that

2τ(L(w)− L(w∗)) ≤ ∥∇L(w)∥2. (5.26)

When η ∈ (0, 2
µ
], β1 < 0. By multiplying β1 in both sides of Eq. (5.26), we have

β1∥∇L(w)∥2 ≤ 2τβ1E{(L(w)− L(w∗))}

⇒ β1E{∥∇L(ŵt)∥2} ≤ 2τβ1E{(L(ŵt)− L(w∗))} (5.27)
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By substituting Eq. (5.27) into Eq. (5.24), the following result can be computed.

E{L(ŵt+1)− L(w∗)}

≤E{L(ŵt)− L(w∗)}+ 2τβ1E{(L(ŵt)− L(w∗))}+ β2E{∥N t+1∥2}

=(1 + 2τβ1)E{L(ŵt)− L(w∗)}+ β2E{∥N t+1∥2}

≤(1 + 2τβ1)[(1 + 2τβ1)E{L(ŵt−1)− L(w∗)}+ β2E{∥N t∥2}]

+ β2E{∥N t+1∥2}

≤(1 + 2τβ1)
2E{L(ŵt−1)− L(w∗)}+ (1 + 2τβ1)β2E{∥N t∥2}

+ β2E{∥N t+1∥2}

. . .

≤(1 + 2τβ1)
t+1E{L(ŵ0)− L(w∗)}+ β2E{∥N t+1∥2}

t∑
h=0

(1 + 2τβ1)
h

≤(1 + 2τβ1)
t+1E{L(ŵ0)− L(w∗)}+ β2α

2d

12

t∑
h=0

(1 + 2τβ1)
h

=(1 + 2τβ1)
t+1C0 − β2α

2d[1− (1 + 2τβ1)
(t+1)]

24τβ1

.

When η ∈ [ 2
µ
,∞), we have β1 > 0 and the following inequality.

E{L(ŵt)− L(w∗)} ≤ 1

2τ
E{∥∇L(ŵt)∥2} (5.28)
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By substituting Eq. (5.28) into Eq. (5.24), the result is

E{L(ŵt+1)− L(w∗)}

≤ E{L(ŵt)− L(w∗)}+ β1E{∥∇L(ŵt)∥2}+ β2E{∥N t+1∥2}

≤ 1

2τ
E{∥∇L(ŵt)∥2}+ β1E{∥∇L(ŵt)∥2}+ β2E{∥N t+1∥2}

≤ (
1

2τ
+ β1)G

2 +
β2α

2d

12
.

Theorem 7 is proved.

Theorem 7 states that even though our proposed Q-FL algorithm is obfuscated by quan-

tization, the trained federated model can still converge.

5.4.2 Exact and Efficient Federated Unlearning

When our quantized federated learning algorithm terminates after T iterations, a federated

model ŵT is completely trained. With such a quantized federated model ŵT , exact unlearning

process can be executed to unlearn Uj from the previously trained model ŵT once the

unlearning request is received from client j, and then the corresponding unlearned federated

model ŵu,T will be obtained.

According to Algorithm 5, in each iteration t ∈ [0, T ], the trained local model wt+1
j of

any client j is calculated as

wt+1
j = wt

j − η
1

|Dj|
[

∑
(x,y)∈Du

j

∇l(wt
j, (x, y)) +

∑
(x,y)∈Uj

∇l(wt
j, (x, y))]. (5.29)

When Uj is removed from client j’s dataset Dj, the updated model wu,t+1
j should be calcu-
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Figure 5.2 The framework of proposed Exact-Fun algorithm.

lated via Eq. (5.30) to unlearn Uj.

wu,t+1
j = wt

j − η
1

|Du
j |
[

∑
(x,y)∈Du

j

∇l(wt
j, (x, y))]. (5.30)

The difference between the trained local model wt+1
j and the unlearned local model wu,t+1

j

is only the gradients of data in Uj. Thus, to get wu,t+1
j efficiently without computing the

gradients of Du
j , we can directly remove the gradient of Uj from the previously trained local

model wt+1
j . By comparing Eq. (5.29) and Eq. (5.30), the rule of updating wu,t+1

j from wt+1
j

is given as

wu,t+1
j =

|Dj|
|Du

j |
wt+1

j − |Uj|
|Du

j |
wt

j +
η

|Du
j |

∑
(x,y)∈Uj

∇l(wt
j, (x, y))]. (5.31)

Notice that in Eq. (5.31), we have already got wt+1
j and wt

j in Q-FL Algorithm 5 as meta-

data and only need to compute gradients for data points in Uj. The change on the federated

model caused by unlearning request may be small if the size of Uj is not too large. Moreover,
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Algorithm 6 Exact and Efficient Federated Unlearning

Input: the number of iterations T , the number of clients K, the granularity of quantization
α, the unlearning client j and its unlearning request Uj

Output: the unlearned federated model ŵu,T

1: identify the unlearning client j and request Uj

2: for iteration t = 0 to T do
3: compute the gradient ∇Lj(w

t
j) of client j on Uj

4: update local model wu,t
j via Eq. (5.31)

5: upload wu,t
j to server

6: calculate wu,t = wt − |Du
j |

|D| (w
t
j − wu,t

j )

7: quantize wu,t, q(α,wu,t) = ŵu,t

8: if ŵu,t = ŵt // deletion makes no changes then
9: continue;
10: else
11: send ŵu,t to all clients
12: re-run Algorithm 5 on remaining dataset Du with ŵu,t as initialization for iterations

in [t, T ]
13: end if
14: end for
15: return ŵu,T

with the quantized stability of Q-FL, the federated model can still be stable with a large

probability (see Theorem 8).

The exact federated unlearning process for deleting Uj is presented in Fig. 5.2 and Al-

gorithm 6. When client j submits an unlearning request, Uj is deleted from Dj, and an

updated local model wu,t
j is computed based on client j’s trained local model at iteration t

as shown in Eq. (5.31). Then, wu,t
j is uploaded to server to aggregate a new federated model

wu,t that is quantized through quantization function q(α, ·) to produce ŵu,t. If the newly

quantized federated model ŵu,t is the same as the stored federated model ŵt, deleting Uj has

no impact on the previously trained federated model ŵt, and retraining from scratch on Du
j

would output the same federated model. This implies that our unlearning method is exact.
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On the contrary, if the newly quantized federated model ŵu,t is different from the stored fed-

erated model ŵt, the stability of quantized federated model is broken, and retraining from

the t-th iteration is needed to remove the influence of Uj from learned models in iteration t

until terminated iteration T .

In our unlearning algorithm Exact-Fun, the major computation time lies in the retraining

process (i.e., Line 12 of Algorithm 6), which can be controlled by adjusting the quantization

parameter α based on system requirements. A larger α brings a smaller retraining probability

and a less retraining cost, but also a reduced model utility because of the increase of noise

perturbation. In Theorem 8, we prove that the retraining probability of Algorithm 6 is a

function of α and a proper α value can help realize efficient unlearning.

Theorem 8. Assume the distance between the original federated model wt and its unlearned

federated model wu,t has an upper bound B, i.e., ∥wt − wu,t∥ ≤ B with t ∈ [0, T ]. The

probability Algorithm 6 needs retraining is given by Eq. (5.32).

Pr(ŵu,t ̸= ŵt) =


1− ( α

2B
)d, B ∈ [α,∞)

1− (1− B
2α
)d, B ∈ (0, α)

(5.32)

where d is the dimension of model parameter space W.

Proof. Without loss of generality, we suppose the model wt is quantized to vertex α in 1-

dimension space R. Due to the property of quantization operation, wt that is mapped to

α should originally belong to the range [α
2
, 3α

2
] with uniform distribution U(α

2
, 3α

2
). Since
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∥wt − wu,t∥ ≤ B, wu,t falls into the range [wt − B,wt + B] after unlearning process. Thus,

ŵt = ŵu,t happens only if both wt and wu,t fall into the range [α
2
, 3α

2
], through which we can

calculate the probability of ŵt being equal to ŵu,t, i.e., Pr(ŵu,t = ŵt).

On the other hand, wt, wu,t, ŵt, ŵu,t ∈ W ∈ Rd. The training process of learning algo-

rithm is random, and the distribution of each dimension of parameters is independent. Thus,

we can first calculate Pr(ŵu,t = ŵt) and Pr(ŵu,t ̸= ŵt) in 1-dimension space R and then

extend the calculation to d-dimension space Rd based on binomial distribution.

The range of wt is [α
2
, 3α

2
] with the length of α, and the range of wu,t is [wt −B,wt +B]

with the length of 2B. According to relation between the length 2B and the range [α
2
, 3α

2
],

there are three cases for discussing whether ŵu,t is in [α
2
, 3α

2
].

(i) When B ∈ [α,∞), for any wt ∈ [α
2
, 3α

2
], the probability of unlearned model wu,t falls

into [α
2
, 3α

2
] is α

2B
as B is large enough to cover the range [α

2
, 3α

2
]. So, Pr(ŵu,t = ŵt) in

1-dimension space R can be calculated as follows,

Pr(ŵu,t = ŵt) =

∫ 3α
2

α
2

1

α
· α

2B
dw =

α

2B
. (5.33)

In d-dimension space Rd, we have Pr(ŵu,t = ŵt) = ( α
2B

)d, because every dimension should

satisfy the equality requirement. Thus, in d-dimension space Rd, Pr(ŵu,t ̸= ŵt) = 1− ( α
2B

)d.

(ii) When B ∈ [α
2
, α), ∀wt ∈ [α

2
, 3α

2
−B], Pr(ŵu,t = ŵt) =

B+w−α
2

2B
; ∀wt ∈ [3α

2
−B, α

2
+B],

Pr(ŵu,t = ŵt) = α
2B

; and ∀wt ∈ [α
2
+ B, 3α

2
], Pr(ŵu,t = ŵt) =

B+ 3α
2
−w

2B
. So, Pr(ŵu,t = ŵt) in
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1-dimension space R is calculated as follows

Pr(ŵu,t = ŵt) =
1

α
[

∫ 3α
2
−B

α
2

B + w − α
2

2B
dw +

∫ α
2
+B

3α
2
−B

α

2B
dw

+

∫ 3α
2

α
2
+B

B + 3α
2
− w

2B
dw] = 1− B

2α
. (5.34)

Similarly, by extending to d-dimension space Rd, we have Pr(ŵu,t ̸= ŵt) = 1− (1− B
2α
)d.

(iii) When B ∈ (0, α
2
), similar to the case in (ii), Pr(ŵu,t = ŵt) can be calculated by

Pr(ŵu,t = ŵt) =
1

α
[

∫ α
2
+B

α
2

B + w − α
2

2B
dw +

∫ 3α
2
−B

α
2
+B

2B

2B
dw

+

∫ 3α
2

3α
2
−B

B + 3α
2
− w

2B
dw] = 1− B

2α
. (5.35)

Thus, in d-dimension space Rd, Pr(ŵu,t ̸= ŵt) = 1− (1− B
2α
)d.

Combining the cases (i), (ii), and (iii), Theorem 8 is proved.

Theorem 8 implies that a larger quantization value α can reduce the retraining probability

exponentially but may result in a worse convergence bound. The trade-off between efficiency

and convergence should be designed carefully.

Remark. Our unlearning algorithm Exact-Fun processes one unlearning request each

time. In real FL application, there may be multiple users submitting multiple unlearning

requests, for which Exact-Fun can run multiple times to accomplish these unlearning requests

one by one. Per the requirements of applications, the specific one-by-one implementation

manner can be determined in a different ways, such as “first-come-first-serve” and “priority-
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Figure 5.3 The framework of proposed Appro-Fun algorithm.

based service order”.

5.5 Approximate Federated Unlearning

When processing an unlearning request Uj, Uj should be deleted from Dj and D, and the

influence of Uj should be removed from the trained federated model. Moreover, a successful

unlearning algorithm should have unlearning cost (e.g., computation time) less than retrain-

ing cost from scratch on the remaining dataset Du. In order to achieve the approximate

unlearning in the existing FL model, we propose the Appro-Fun algorithm and present its

framework in Fig. 5.3. Appro-Fun consists of two major steps: (i) at the first step, the local

clients who request unlearning remove their private data, compute gradient and hessian, and

upload new unlearned local models to the server, which is described in Section 5.5.1; and

(ii) at the second step, the server aggregates a new unlearned model and perturbs it with

differentially private noise, which is presented in Section 5.5.2.
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5.5.1 Local Model Unlearning

To process an unlearning request, the data points should be deleted from local dataset, and

the influence of should be removed from the trained local and federated models. Without loss

of generality, we illustrate Appro-Fun algorithm using a simple case where one local client

submits one unlearning request at a time. For the case when each of multiple clients submits

multiple unlearning requests, we can repeat Appro-Fun algorithm iteratively to implement

data deletion requests one by one. Firstly, per client j’s unlearning request, Uj is removed

from client j’s local dataset Dj. Next, the trained local model wj is used to unlearn the

influence of Uj from it through Newton’s method [142] to approximate the model retrained

from scratch on dataset Du
j = Dj \ Uj.

Originally, the computation of Newton’s method is a time consuming process because

of the calculation of second-order derivation for hessian matrix. To reduce time cost, we

compute the Newton’s method in the following. Noticing that the loss function for client j

on dataset Dj is formulated below,

Lj(wj,Dj) =
1

|Dj|
∑

(x,y)∈Dj

l(wj, (x, y)). (5.36)

Rearranging Eq. (5.36) will give us Eq. (5.37) as follows

|Dj| · Lj(wj,Dj) =
∑

(x,y)∈Du
j

l(wj, (x, y)) +
∑

(x,y)∈Uj

l(wj, (x, y))

=|Du
j | · Lu

j (wj,D
u
j ) + |Uj| · Lj(wj,Uj), (5.37)
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where Lu
j (wj,D

u
j ) is the loss value on dataset Du

j and Lj(wj,Uj) is the loss value on removed

dataset Uj.

Since the local model wj is a trained local optimizer on Dj, the gradient ∇Lj(wj,Dj)

is approximately zero. Thus, we can calculate the approximation of gradient ∇Lu
j (wj,D

u
j )

with respect to wj in Eq. (5.38).

∇Lu
j (wj,D

u
j ) = −

|Uj|
|Du

j |
· ∇Lj(wj,Uj). (5.38)

In this way, we only need to perform gradient computation for those removed data in Uj,

which is much less than original method calculating on all remaining data.

Furthermore, the hessian matrix of loss function on Du
j can be calculated with the re-

moved data Uj as well. The second order derivative of Eq. (5.37) can be written as

|Dj| · ∇2Lj(wj,Dj) =|Du
j | · ∇2Lu

j (wj,D
u
j )

+ |Uj| · ∇2Lj(wj,Uj). (5.39)

Accordingly, we have the hessian matrix H of Lu
j (wj,D

u
j ) as

H =
|Dj|
|Du

j |
· ∇2Lj(wj,Dj)−

|Uj|
|Du

j |
· ∇2Lj(wj,Uj). (5.40)

Because the first term∇2Lj(wj,Dj) can be calculated offline before unlearning process starts,

the unlearning process only needs to calculate the second-order derivative for ∇2Lj(wj,Uj),
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Algorithm 7 Approximate Federated Unlearning (Appro-Fun)

Input: the trained model w from Algorithm 4, the number of clients K, the unlearning
request Uj, parameters ϵ and δ to calculated σ
Output: the unlearned federated model w̃u

1: local client executes:
2: compute gradient ∇Lu

j (wj,D
u
j ) as Eq. (5.38)

3: compute hessian matrix H as Eq. (5.40)
4: update local model w̄u

j of client j as Eq. (5.41)
5: upload w̄u

j to server
6: server executes:
7: calculate w̄u = w − |Dj |

|D| (wj − w̄u
j )

8: noise perturbation w̃u ← w̄u +N(0, σ2I)
9: return unlearned federated model w̃u

which can save more computation cost.

With the gradient ∇Lu
j (wj,D

u
j ) obtained in Eq. (5.38) and the hessian matrix H, the

local client j can unlearn Uj via Newton’s method to get w̄u
j :

w̄u
j = wj −H−1∇Lu

j (wj,D
u
j ) = wj +

|Uj|
|Du

j |
H−1∇Lj(wj,Uj), (5.41)

where w̄u
j is the temporarily unlearned model of client j and is uploaded to the server for next

step operation. In real implementation, the calculation in Eq. (5.41) is estimated through

approximate hessian as solved in [143, 144] to save time. The computation process of the

above local model unlearning is presented in lines 1-5 of Algorithm 7.

5.5.2 Federated Model Perturbation

The local model unlearning step only processes the unlearning request at local client j’ side,

which is not enough to remove private data in the federated setting. The federated model

still needs further operation to remove the impact of unlearned dataset Uj as shown in
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lines 6-8 of Algorithm 7. Upon receiving the uploaded model parameter w̄u
j from client j,

a new federated model w̄u is aggregated at the server. This federated model w̄u is treated

as an temporarily unlearned version of the previously trained federated model w, (i.e., the

output of Algorithm 4). Recall that in Definition 2, approximate unlearning requires that

the unlearned model w̄u and the retrained model wu should be indistinguishable. While,

given an Uj, w̄
u will be directly calculated from Uj and w̄u

j , so the distance between w̄u and

wu is also deterministic [85]. To this end, w̄u should be obfuscated into a random range by

adding differentially private noise to reach indistinguishability.

To achieve indistinguishability between the temporarily unlearned model w̄u and the

model wu retrained from scratch, noise scale should be set according to the distance ∥wu −

w̄u∥. Actually, ∥wu − w̄u∥ is similar to the global sensitivity of differential privacy [145],

which can guide the noise scale adding into w̄u. Specifically, Theorem A.1 in [145] approves

the range of σ for (ϵ, δ)-differentially private mechanisms. Thus, with the similar analysis for

(ϵ, δ)-approximate federated unlearning (see line 8 of Algorithm 7), the noise scale σ should

satisfy

σ ≥
max ∥wu − w̄u∥

√
2 ln(1.25/δ)

ϵ
. (5.42)

Since the clients’ unlearning requests are unpredictable to the FL system, it is hard or

impossible to obtain the exact value of max ∥wu− w̄u∥. In stead, we can estimate the upper

bound of ∥wu−w̄u∥ for noise addition without losing too much model utility after unlearning.

In the following, we present theoretical analysis on the upper bound of ∥wu− w̄u∥ as well as
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the performance of output unlearned model.

Lemma 2. Let w be the model parameter of Algorithm 4 trained on the original dataset D

and wu be the model parameter retrained on the remaining dataset Du = D \ Uj. Then, the

distance between w and wu is bounded by Eq. (5.43):

∥w − wu∥ ≤ 2mι

|D|τ
, (5.43)

where m is the size of unlearning dataset Uj, ι and τ are constant given in Section 5.2.

Proof. Without loss of generality, we assume the unlearning request is from a client j who

holds dataset Dj.

The loss functions of client j on dataset Dj and the remaining dataset Du
j are defined as

follows:

Lj(w,Dj) =
1

|Dj|
∑

(x,y)∈Dj

l(w, (x, y)) (5.44)

Lu
j (w,D

u
j ) =

1

|Du
j |

∑
(x,y)∈Du

j

l(w, (x, y)) (5.45)

where |Du
j | is the size of dataset Du

j = Dj \ Uj.

Let wj = argminw∈W
1

|Dj |
∑

(x,y)∈Dj
l(w, (x, y)) be the local minimizer of Eq. (5.44) and

the local minimizer of Eq. (5.45) be wu
j = argminw∈W

1
|Du

j |
∑

(x,y)∈Du
j
l(w, (x, y)). Thus, we
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can have the following equation

Lj(w
u
j ,Dj)− Lj(wj,Dj)

=
1

|Dj|
∑

(x,y)∈Dj

l(wu
j , (x, y))−

1

|Dj|
∑

(x,y)∈Dj

l(wj, (x, y))

=
1

|Dj|
[

∑
(x,y)∈Du

j

l(wu
j , (x, y))−

∑
(x,y)∈Du

j

l(wj, (x, y))

+
∑

(x,y)∈Uj

l(wu
j , (x, y))−

∑
(x,y)∈Uj

l(wj, (x, y))]

=
1

|Dj|
[|Du

j |(Lu
j (w

u
j ,D

u
j )− Lu

j (wj,D
u
j ))

+
∑

(x,y)∈Uj

l(wu
j , (x, y))−

∑
(x,y)∈Uj

l(wj, (x, y))]

(i)

≤ 1

|Dj|
[
∑

(x,y)∈Uj

l(wu
j , (x, y))−

∑
(x,y)∈Uj

l(wj, (x, y))]

(ii)

≤ mι

|Dj|
∥wu

j − wj∥, (5.46)

where the inequality (i) holds because wu
j is the minimizer of Lu

j (w
u
j ,D

u
j ) defined above, and

(ii) holds because the loss function l(w, (x, y)) is ι-Lipschitz.

Additionally, based on the assumption of strong convexity (assumption (4)), we can get

the following equation

Lj(w
u
j ,Dj)− Lj(wj,Dj) ≥

τ

2
∥wu

j − wj∥2 (5.47)
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Combining the Eq. (5.46) and Eq. (5.47), we can derive the following inequality

τ

2
∥wu

j − wj∥2 ≤ Lj(w
u
j ,Dj)− Lj(wj,Dj) ≤

mι

|Dj|
∥wu

j − wj∥

⇒ ∥wu
j − wj∥ ≤

2mι

|Dj|τ
(5.48)

This inequality Eq. (5.48) indicates that the change of model parameter on client j before

and after unlearning is bounded. Then, the unlearned model of client j is uploaded to server

for aggregation, where the weight of client j is at most
|Dj |
|D| . Thus, the federated model on

server before and after unlearning Uj is bounded in a range by the following inequality

∥wu − w∥ ≤ |Dj|
|D|
· 2mι

|Dj|τ
=

2mι

|D|τ
. (5.49)

This finishes the proof of Lemma 2.

The upper bound of ∥w − wu∥ is used to find the distance between wu and w̄u.

Theorem 9. Let wu be the model parameter retrained from scratch on dataset Du and w̄u be

the approximately unlearned federated model in Line 7 of Algorithm 7. The distance between

wu and w̄u is bounded by Eq. (5.50):

∥wu − w̄u∥ ≤ 2m2ι2M

|D||Dj|τ 3
, (5.50)

where m is the size of unlearning dataset Uj and M is the Hessian-Lipschitz constant.
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Proof. Based on Eq. (5.44) and Eq. (5.45), we can calculate the Taylor’s expansion for

∇Lu
j (w

u
j ,D

u
j ) at point wj as follows,

∇Lu
j (w

u
j ,D

u
j ) = ∇Lu

j (wj,D
u
j ) +∇2Lu

j (wj,D
u
j )[w

u
j − wj]

+
1

2
∇3Lu

j (wj,D
u
j )[w

u
j − wj]

2

(i)⇒ ∥−∇Lu
j (wj,D

u
j )−H[wu

j − wj]∥

=
1

2
∇3Lu

j (wj,D
u
j )∥wu

j − wj∥2

⇒ ∥∇Lu
j (wj,D

u
j ) +H[wu

j − wj]∥
(ii)

≤ M

2
∥wu

j − wj∥2. (5.51)

The reason of (i) is that wu
j is the minimizer of loss function Lu

j (w
u
j ,D

u
j ), so ∇Lu

j (w
u
j ,D

u
j ) is

zero. The inequality (ii) holds because the loss function is M -Hessian Lipschitz.

Moreover, we can rewrite the above term ∇Lu
j (wj,D

u
j ) as

∇Lu
j (wj,D

u
j ) =

1

|Du
j |

∑
(x,y)∈Du

j

∇l(wj, (x, y))

=
1

|Du
j |
[
∑

(x,y)∈Dj

∇l(wj, (x, y))−
∑

(x,y)∈Uj

∇l(wj, (x, y))]

=
1

|Du
j |
[|Dj|∇Lj(wj,Dj)−

∑
(x,y)∈Uj

∇l(wj, (x, y))]

(i)
= − 1

|Du
j |

∑
(x,y)∈Uj

∇l(wj, (x, y)) = −
|Uj|
|Du

j |
∇Lj(wj,Uj), (5.52)

where the equality (i) holds because wj is the minimizer of loss function Lj(wj,Dj).

Next, let β be the difference between wu
j and w̄u

j , that is, wu
j − w̄u

j = β. Since in the
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Line 4 of Algorithm 7 we have w̄u
j = wj +

|Uj |
|Du

j |
H−1∇Lj(wj,Uj), the following equation is

obtained,

wu
j − w̄u

j = wu
j − [wj +

|Uj|
|Du

j |
H−1∇Lj(wj,Uj)] = β

⇒ wu
j − wj =

|Uj|
|Du

j |
H−1∇Lj(wj,Uj) + β (5.53)

Substituting Eq. (5.52) and Eq. (5.53) into Eq. (5.51), we can get the inequality

∥ − |Uj|
|Du

j |
∇Lj(wj,Uj) +H[

|Uj|
|Du

j |
H−1∇Lj(wj,Uj) + β]∥

≤ M

2
∥wu

j − wj∥2. (5.54)

Rearranging Eq. (5.54), we can simplify the inequality to Eq. (5.55)

∥Hβ]∥ = ∥∇2Lu
j (wj,D

u
j )β]∥ ≤

M

2
∥wu

j − wj∥2. (5.55)

Due to the τ -strongly convexity of loss function, we can have a corollary [139]

∥∇2Lu
j (wj,D

u
j )β]∥ ≥ τ∥β∥. (5.56)

Combining the Eq. (5.55) and Eq. (5.56), we can have the upper bound distance between
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wu
j and w̄u

j

∥wu
j − w̄u

j ∥ = ∥β∥ ≤
M

2τ
∥wu

j − wj∥2. (5.57)

Here, ∥wu
j − wj∥ is proved with an upper bound in Eq. (5.48) of Lemma 2. After the

aggregation on server side, we can get the distance between wu and w̄u in the following

equation,

∥wu − w̄u∥ ≤ 2m2ι2M

|D||Dj|τ 3
. (5.58)

This ends the proof of Theorem 9.

By combining Eq. (5.42) and Eq. (5.50), we obtain the setting for σ in Appro-Fun algo-

rithm:

σ ≥
2m2ι2M

√
2 ln(1.25/δ)

|D||Dj|τ 3ϵ
. (5.59)

Although our Appro-Fun algorithm injects gaussian noise during unlearning process, the

unlearning effectiveness can be still kept in an acceptable range with performance guarantee,

which is measured from two aspects. On the one hand, we use the loss difference between the

unlearned model w̃u and the optimal model that is retrained from scratch on Du to quantify

performance gap and analyze it in Theorem 10.

Theorem 10. Let L(wu∗) be the loss of the optimal model retrained from scratch on remain-

ing dataset Du and L(w̃u) be loss of unlearned model w̃u output by Appro-Fun Algorithm (i.e.,
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Algorithm 7). The loss distance can be bounded by:

E{L(w̃u)− L(wu∗)} ≤ 2m2ι3M

|D||Dj|τ 3
+

2m2ι2M
√

2d ln(1.25/δ)

|D||Dj|τ 3ϵ

+
µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2). (5.60)

This means that our unlearned model has a bounded performance loss compared with

the optimal retained model.

Proof.

E{L(w̃u)− L(wu∗)}

=E{L(w̃u)− L(wu) + L(wu)− L(wu∗)}

≤E{L(w̃u)− L(wu)}+ E{L(wu)− L(wu∗)}

(i)

≤E{L(w̃u)− L(wu)}+ µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2)

(ii)

≤ ιE{∥w̃u − wu∥}+ µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2) (5.61)

where the inequality (i) holds because the convergence bound of federated learning is proved

by [138], and the inequality (ii) holds due to the Lipschitzness of loss function l(w, (x, y)).
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Then, based on Theorem 9, we can calculate the expectation of ∥w̃u − wu∥ as follows

E{∥w̃u − wu∥} =E{∥w̃u − w̄u + w̄u − wu∥}

≤E{∥w̃u − w̄u∥}+ E{∥w̄u − wu∥}

≤E{∥N∥}+ 2m2ι2M

|D||Dj|τ 3

≤
√
dσ +

2m2ι2M

|D||Dj|τ 3
(5.62)

where N is the gaussian noise added in each unlearning process as shown in Line 8 of

Algorithm 7.

Combining the Eq. (5.61), Eq. (5.62) and the value of σ, we can prove Theorem 10 as

follows

E{L(w̃u)− L(wu∗)} ≤ 2m2ι3M

|D||Dj|τ 3
+

2m2ι2M
√

2d ln(1.25/δ)

|D||Dj|τ 3ϵ

+
µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2). (5.63)

This finishes the proof of Theorem 10.

On the other hand, we use the loss difference between the unlearned model w̃u and the

optimal original federated model trained on original dataset D to evaluate the influence of

data deletion, which is proved in Theorem 11.

Theorem 11. Let L(w∗) be the loss of the optimal model trained on original dataset D and

L(w̃u) be the loss of unlearned model w̃u output by Appro-Fun Algorithm (i.e., Algorithm 7).
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The loss distance can be bounded by:

E{L(w̃u)− L(w∗)} ≤ m|Dj|ι2

(nj −m)|D|τ
+

2m2ι3M
√

2d ln(1.25/δ)

|D||Dj|τ 3ϵ

+
µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2). (5.64)

Here nj −m is the size of dataset Du
j = Dj \Uj. This conclusion implies that compared

with the optimal original model, the performance loss brought by data removal via our

Appro-Fun algorithm is bounded.

Proof.

E{L(w̃u)− L(w∗)}

=E{L(w̃u)− L(w) + L(w)− L(w∗)}

≤E{L(w̃u)− L(w)}+ E{L(w)− L(w∗)}

(i)

≤E{L(w̃u)− L(w)}+ µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2)

(ii)

≤ ιE{∥w̃u − w∥}+ µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2) (5.65)

where w is the output of Algorithm 4, the inequality (i) holds because the convergence bound

of federated learning is proved by [138], and the inequality (ii) holds due to the Lipschitzness

of loss function l(w, (x, y)).
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According to the Appro-Fun Algorithm 7, we can get

E{∥w̃u − w∥} = E{∥w̄u +N − w∥}

(i)
=E{∥|Dj|

|D|
(
|Uj|
|Du

j |
H−1∇Lj(wj,Uj)) +N∥}

≤|Dj|
|D|
|Uj|
|Du

j |
E{∥H−1∇Lj(wj,Uj)∥}+ E{∥N∥}

(ii)

≤ |Dj|
|D|

|Uj|
|Du

j |τ
E{∥∇Lj(wj,Uj)∥}+ E{∥N∥}

=
|Dj|
|D|

|Uj|
|Du

j |τ
E{∥ 1

|Uj|
∑

(x,y)∈Uj

∇l(wj, (x, y))∥}+ E{∥N∥}

(iii)

≤ |Dj|
|D|

|Uj|
|Du

j |τ
|Uj|ι
|Uj|

+
√
dσ =

m|Dj|ι
(nj −m)|D|τ

+
√
dσ, (5.66)

where N is the gaussian noise added in each unlearning process. The expectation above

is taken with respect to the dataset D and noise N . The equation (i) is obtained from

Eq. (5.41). The inequality (ii) holds because of the τ -strong convexity of loss function,

which implies ∇2Lu
j (wj,D

u
j ) ⪰ τI. The inequality (iii) holds because the loss function is ι

Lipschitz.

Combining the Eq. (5.65), Eq. (5.66), and Eq. (5.59), we can prove Theorem 11 as follows,

E{L(w̃u)− L(w∗)} ≤ m|Dj|ι2

(nj −m)|D|τ
+

2m2ι3M
√

2d ln(1.25/δ)

|D||Dj|τ 3ϵ

+
µ

ι(T − 1 + 8ι
µ
)
(
2∆

µ
+ 4ιE{C0}2). (5.67)
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Table 5.2 The structure of neural networks.
Layer F-MNIST Model CIFAR-10 Model

1 (5, 5)× 20, Conv, ReLu (5, 5)× 32, Conv, ReLu
2 (2, 2), Maxpooling (2, 2), Maxpooling
3 (5, 5)× 50, Conv, Leaky ReLU (5, 5)× 64, Conv, Leaky ReLU
4 (2, 2), Maxpooling (2, 2), Maxpooling
5 opt× 256, Dense, Leaky ReLU (5, 5)× 128, Conv, Leaky ReLU
6 256× 10, Dense (2, 2), Maxpooling
7 opt× 256, Dense, Leaky ReLU
8 256× 10, Dense

5.6 Experiments

In this section, we conduct intensive experiments to validate the performance of Q-FL algo-

rithm, Exact-Fun algorithm, and Appro-Fun algorithm.

5.6.1 Experiment Settings

Fashion-MNIST dataset and CIFAR-10 dataset are adopted in our experiments. Our exper-

iments are implemented by Pytorch on Google Colab Tesla T4 GPU. The learning model

we use is neural networks for both Fashion-MNIST dataset and CIFAR-10 dataset. Model

structure of Fashion-MNIST and CIFAR-10 datasets is shown in the following Table 5.2.

Training and Unlearning Scenarios. We set the number of clients K to be 10,

20, and 50. Our proposed Exact-Fun mechanism can support unlearning from multiple

clients, each of which may submit multiple unlearning requests. For evaluation, 10% × K

clients are randomly selected, and each of them submits 5 unlearning requests, so there are

0.5K unlearning requests in total. These requests are processed via Algorithm 6 one-by-

one. Notably, in practice, the unlearned data should be a small portion of a client’s local

database, otherwise, the motivation of performing unlearning may not be sufficient, and the
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effectiveness and efficiency of unlearning may not be good [71, 72]. So, for each selected

client who request unlearning, the total number of unlearned data in the 5 requests is at

most 20% of his/her local dataset, i.e., the portion of unlearned data is p ≤ 20%.

Baseline Models. For Q-FL algorithm, we choose the original federated learning (OFL)

algorithm as a baseline, to compare model convergence, model accuracy, and training speed

in Section 5.6.2. Since we are the first to explore the exact federated unlearning prob-

lem and there is no existing exact federated unlearning baselines. Retraining with OFL

algorithm from scratch on the remaining dataset Du is adopted as a baseline to evaluate

our proposed Exact-Fun algorithm. Besides, one state-of-the-art approximate federated un-

learning method [146] on INFOCOM 2022, is selected as baseline for unlearning performance

comparison. The evaluation of unlearning performance is presented in Section 5.6.3.

In addition, to evaluate our Appro-Fun algorithm, one state-of-the-art approximate fed-

erated unlearning method published in INFOCOM 2022 [146], is selected for comparing

unlearning performance. This baseline has settings similar to our problem: (i) both use

approximate hessian matrix to calculate unlearned models on local client side, and (ii) both

upload the local unlearned models to the server server for aggregation. But some techniques

of the baseline are different from ours: (i) the baseline uses all remaining data to approxi-

mate the diagonal hessian matrix, and (ii) all local clients’ models in the baseline method

need to be updated.
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Figure 5.4 The loss value of FL models with different α (K=50).
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Figure 5.5 The accuracy value of FL models with different α (K=50).

5.6.2 Q-FL Performance

Our Q-FL algorithm uses quantization to stabilize the training process so as to facilitate exact

unlearning. The impact of quantization on the federated learning is deeply investigated by

changing the value of quantization parameter α to measure model convergence, accuracy,

and training speed.
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To evaluate the influence of α on our Q-FL algorithm empirically, we set α={0.02, 0.01,

0.005, 0.0025} for Fashion-MNIST dataset and α = {0.0005, 0.001, 0.002, 0.004} for CIFAR-

10 dataset. The loss values of federated models on corresponding test datasets during each

iteration are shown in Fig. 5.4. First of all, we can see that the loss values of all compared

federated models decrease with the increase of T and reach to a stable level after a certain

number iterations (e.g., T = 35 in Fig. 5.4a). This observation confirms that our quantized

federated learning can converge as analyzed in Theorem 7. For our Q-FL, a greater α value

means more noise is added in model parameter, leading to a bigger loss value and a slower

convergence speed. Especially, as shown in Fig. 5.4, the loss value of Q-FL with α = 0.0025

converges nearly as fast as the baseline OFL. Therefore, though the quantization parameter

α has an impact on model convergence, an appropriate α value can help our Q-FL achieve

the comparable learning performance as the original federated learning. Similar conclusions

can be found for CIFAR-10 dataset, which show our Q-FL models can converge and achieve

small loss value as original federated learning.

Then, we present the influence of α on the testing accuracy of federated models in Fig. 5.5.

As we can see from Fig. 5.5a, the accuracy of the compared federated models on Fashion-

MNIST is increased when T grows up and can reach a stable value after the training process

is done. Besides, for our Q-FL model, the quantized federated model with a smaller α value

can achieve higher accuracy, and the training accuracy is more stable, because a smaller α

means less noise is injected to model parameters. This stable accuracy also implies the Q-FL

algorithm is converged. Specifically, when α = 0.0025, the accuracy of Q-FL on Fashion-
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Table 5.3 Training time comparison between OFL and Q-FL

Q-FL w/ Q-FL w/ Q-FL w/ Q-FL w/
K OFL α = 0.02 α = 0.01 α = 0.005 α = 0.0025

K=10 6.66±0.002 6.71±0.002 6.74±0.002 6.75±0.002 6.79±0.002
K=20 11.56±0.003 11.58±0.003 11.59±0.003 11.61±0.003 11.64±0.003
K=50 26.87±0.003 26.94±0.003 27.09±0.003 27.19±0.003 27.35±0.003

MNIST dataset is extremely close to OFL, which means our proposed Q-FL has comparable

accuracy as the original federated learning if α is small enough. Similarly, the accuracy of Q-

FL models on CIFAR-10 dataset is always increasing and reaches a stable value in Fig. 5.5b.

When α is small, the accuracies of Q-FL models have little difference from that of OFL.

In addition, we also compare the training time of our Q-FL and the baseline OFL.

Table 5.3 shows the average training time of one iteration (in second) of our Q-FL and the

baseline OFL, where we can see that the Q-FL only increases the average training time of one

iteration 2% compared with the baseline. This minor extra time cost is acceptable considering

the significant unlearning efficiency improved by our Exact-Fun unlearning algorithm in next

section. In a nutshell, the quantization function q(α, ·) of our Q-FL algorithm is not a time

consuming process and can achieve desired model accuracy.

5.6.3 Unlearning Effectiveness and Efficiency

In this part, we evaluate the effectiveness and efficiency of our Exact-Fun algorithm. Due to

the page limit, we only present the results with K=20.

Unlearning Effectiveness. The unlearning effectiveness can be evaluated in terms of

the accuracy difference between the retrained federated model and the unlearned federated

model output by different unlearning algorithms (i.e., Exact-Fun and INFOCOM22 algo-
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α=0.01
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Figure 5.6 SAPE on Fashion-MNIST test data and unlearned data with different α and p in
Fig. 5.6a, 5.6b, 5.6c, 5.6d; speed-up in 5.6e, 5.6f.

rithm). Here we adopt Symmetric Absolute Percentage Error (SAPE), which is used in

many unlearning literature [146, 77, 147], to measure the difference between two accuracies,

Acc1 and Acc2 as unlearning effectiveness: SAPE(Acc1, Acc2) =
|Acc1−Acc2|
|Acc1|+|Acc2| × 100%. SAPE

computed on different datasets can address unlearning effectiveness from two aspects: (i) for

the test data, a smaller value of SAPE means the accuracy of unlearned model is closer to the

accuracy of the retrained model, indicating a better prediction performance of unlearning

algorithm; while (ii) for the unlearned data, a smaller SAPE means the unlearned model

contains less information about the removed data.

Fig. 5.6a shows the impact of the quantization parameter α on the effectiveness of Exact-
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Fun with setting p = 0.1. The baseline (INFOCOM22) is not impact by α, and has constant

SAPE when α varies. Clearly, we find that the SAPE value on the test data increases as α

is getting greater. The reason is that a greater α introduces more noise perturbation on the

quantized federated learning process, which leads a lower accuracy in our unlearned federated

model. Compared with the baseline INFOCOM22, our Exact-Fun algorithm beats it when

α is small (e.g., α is 0.0025, 0.005 and 0.01). On the other hand, the SAPE on the unlearned

data increases slowly for small α values and increases sharply when α becomes 0.02. When α

is smaller, our Exact-Fun algorithm is more likely to retrain the quantized federated model

on remaining dataset as the retraining method does, so the accuracy difference between our

unlearned model and the retrained model becomes smaller. When α is larger, our Exact-Fun

has less probability to retrain for unlearning, resulting in larger accuracy difference between

our unlearned model and the retrained model on the unlearned data. Then, the SAPE

of our unlearned model is better than the baseline except α=0.02. The attractive merit

of our Exact-Fun is the exact unlearning guarantee for user, while the baseline is just an

approximate solution. So, we can conclude that a proper α can help Exact-Fun algorithm

achieve better effectiveness than the baseline.

Hereafter, we explore the impact of unlearning portion p on unlearning effectiveness

with p = {0.05, 0.1, 0.15, 0.2}. In Fig. 5.6c and Fig. 5.6d, the SAPE values on the test

data and unlearned data are presented. We can observe when the unlearning portion p

increases, the SAPE value of our Exact-Fun decreases, which can be explained through

the viewpoint of model retraining. When p is smaller, the probability of retraining the
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quantized federated model in Exact-Fun is lower, causing a larger difference between our

quantized model and the retrained model. In contrast, when p becomes larger, our Exact-

Fun algorithm needs to be retrained on the remaining dataset, so the accuracy difference

is reduced. Especially, the SAPE value on the unlearned data decreases drastically from

p=0.05 to p=0.1. Because Exact-Fun does not retrain the quantized model when p=0.05,

the accuracy difference between our unlearned model and the retrained model is large. While,

SAPE of the baseline INFOCOM22 keeps increasing when p gets larger, because the baseline

adopts a hessian matrix based approximate unlearning, which has more error when more data

is removed. As a summary, our Exact-Fun algorithm outperforms the baseline approximate

unlearning algorithm in effectiveness when unlearning more data.

Since the purpose of unlearning is to remove the private information of deleted data,

membership inference attack (MIA) is a metric to evaluate the unlearning effectiveness in

many related works [148, 149, 150], which infers whether a data sample is in the training

dataset of a model or not. So, for the deleted data, a lower MIA accuracy means that the

unlearning algorithm has stronger privacy protection. In Table 5.4, original model means we

only delete data but do not change the trained model, so high MIA accuracy remains on both

datasets. Retrained model has the lowest MIA accuracy (near 50%) due to the complete

retraining on remaining dataset, so a good unlearning algorithm should have similar MIA

accuracy to the retrained model. From Table 5.4, we can see that for all α, our Exact-Fun

achieves similar accuracy as the retrained model and is much lower that that of INFOCOM22,

which means our Exact-Fun is stronger in private information removal. The reason of Exact-
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Table 5.4 MIA accuracy (%) for deleted data on original model, retrained model, and different
unlearning algorithms

Baseline Baseline Baseline Exact-Fun Exact-Fun Exact-Fun Exact-Fun
Dataset Original Model Retrained Model INFOCOM22 α=0.0025 α=0.005 α=0.01 α=0.02

F-MNIST 82.86±1.35 51.54±2.27 62.29±1.49 52.75±1.60 52.15±2.02 52.34±1.62 56.17±1.63
CIFAR-10 87.11±1.13 53.03±1.83 69.21±1.22 54.60±1.64 54.74±1.90 52.59±1.67 59.79±2.78

Fun’s success is that quantization perturbs model parameters, and some retraining further

removes the information of deleted data.

Unlearning Efficiency. The unlearning efficiency can be measured by the unlearning

speed-up ratio. Specifically, we unlearn the same unlearning requests (i.e., deleting the

same data) via retraining method and different unlearning algorithms separately, and we can

obtain the average time to process one unlearning request for each method. The unlearning

speed-up ratio is the ratio of the average time of retraining method to the average time of

different unlearning algorithms. The higher speed-up ratio, the better efficiency.

The influence of α on the efficiency of Exact-Fun is shown in Fig. 5.6e. It is obvious that

the speed-up ratio increases with the increase of α, because a greater α value indicates a

stronger stability of our quantized federated model and less retraining probability, leading

to higher speed-up ratio. Compared with the baseline (with fixed speed-up ratio 1.53),

our Exact-Fun is more efficient for every α. Then, the influence of p on the unlearning

efficiency is reported in Fig. 5.6f. With the increase of p, the speed-up ratio of Exact-Fun is

reduced because unlearning a larger portion part of data may break the stability of quantized

federated model, which results in more retraining time. For the baseline, even though its

speed-up ratio increases as p gets larger, our Exact-Fun still outperforms and can achieve

over 10,000× speed-up ratio when p=0.05.
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Figure 5.7 SAPE comparison between Appro-Fun and baseline with different unlearning
portion p and ϵ.

5.6.4 Unlearning Effectiveness of Appro-Fun

In this section, we evaluate the effectiveness of Appro-Fun algorithm in terms of SAPE,

model difference, loss difference, and privacy leakage.

SAPE Comparison. We adopt Symmetric Absolute Percentage Error (SAPE) to mea-

sure the accuracy difference between the retrained federated model and the unlearned feder-

ated model, which is used as an effectiveness metric in many unlearning literatures [146, 77,

147]. SAPE is calculated as: SAPE(Acc1, Acc2) =
|Acc1−Acc2|
|Acc1|+|Acc2| × 100% with Acc1 and Acc2

being two accuracy values. SAPE computed on different datasets can address unlearning

effectiveness from different aspects: (i) for the test data, a smaller SAPE value means the

accuracy of unlearned model is closer to that of the retrained model, indicating a better

prediction result of the unlearned model; while (ii) for the unlearned data, a smaller SAPE

value means the unlearned model contains less information about the removed data, leaking

less privacy about the removed data.

We evaluate the SAPE values of Appro-Fun algorithm and baseline by changing un-



126

learning portion p. First, the SAPE value on test data of Fashion-MNIST dataset is shown

in Fig. 5.7a, where the unlearning portion p is set to be {0.05, 0.1, 0.15, 0.2}. We can see

that the SAPE value gets increased along with the increase of unlearning portion p, be-

cause when more data is removed, the difference between unlearned model and the retrained

model becomes larger, increasing difference in model accuracy. Meanwhile, when more data

is removed, the larger scale noise is injected in our Appro-Fun’s unlearned models (see

Eq. (5.59)), which also causes more loss on prediction accuracy. Therefore, the unlearned

models of our Appro-Fun algorithm have a drastically increased SAPE value when p gets

larger, e.g., p = 0.2. Then, comparing the unlearned models with different ϵ in Fig. 5.7a, we

can find that a larger ϵ can achieve a smaller SAPE value, meaning the unlearned model’s

prediction accuracy is closer to that of the retrained model. The reason is that a larger ϵ

allows more relaxed approximation and less noise injection into the unlearned model, which

can help obtain more accurate prediction. In addition, even though the SAPE value of the

baseline approximate method is increasing slowly, our Appro-Fun algorithm can still achieves

smaller SAPE values when p is smaller. The reason is that the baseline adopts a diagonal

hessian matrix for approximate unlearning operation, which loses too much useful informa-

tion during unlearning and causes low accuracy. While when p grows, the baseline is slightly

better than our Appro-Fun for smaller ϵ settings (e.g., ϵ=5, 10). This is because a larger

p and a smaller ϵ imply more noise perturbation in our algorithm, reducing the prediction

accuracy of our unlearned models.

Fig. 5.7b depicts the trend of SAPE on unlearned data in Fashion-MNIST dataset. Sim-
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Figure 5.8 Model difference between Appro-Fun and baseline.

ilar to the results on test data, the SAPE value is getting larger when p increases. When

comparing different ϵ, the larger ϵ, the less noise injection, which reduces the SAPE values.

Compared with the baseline unlearned model, our unlearned model has smaller SAPE values

in most settings (except p=0.2, ϵ=5 in Fig. 5.7b). Moreover, it is worth noticing that the

SAPE values on unlearned data are relatively smaller than those on test data. This means

that our unlearned model performs more similarly to the retrained model on the removed

data, which indicates a better unlearning effectiveness. Similar results of SAPE on CIFAR-

10 dataset are provided in Fig. 5.7c and Fig. 5.7d. In both test data and unlearned data,

our Appro-Fun algorithm outperforms the baseline for all p value and most ϵ (except p=0.2

on unlearned data). As a summary, our Appro-Fun algorithm is better than the baseline

method in most case of federated unlearning settings, especially when ϵ is set reasonably.

Model and Loss Comparison. As pointed out by [83], the SAPE value may not be



128

enough to qualify the unlearning effectiveness. For complex machine learning models, the

difference between unlearned model parameters and the retrained model parameters is also

a vital metric. Therefore, we calculate the average element-wise model difference between

the unlearned models (i.e., output by Appro-Fun and the baseline) and the retrained model

as another measurement of unlearning effectiveness. As shown in Fig. 5.8a, along with the

increase of p, the difference between the unlearned model and the retrained model is getting

larger for both our Appro-Fun algorithm and the baseline. This is because when deleting

more data, noise injection and approximate hessian matrix cause larger error, which enlarges

the distance between the unlearned model and the retrained model. While our Appro-Fun

models achieve smaller difference than the baseline, which means better model similarity to

the fully retrained model.

On the other hand, the number of clients K varies in the unlearning processes. A larger

number of clients in FL system can reduce the model difference thanks to federated aggre-

gation. In Fig. 5.8a, with the same p, the model differences when K=50 are always smaller

than that when K=10, which means more involved clients can mitigate the model difference

of unlearned federated models by averaging. This critical findings indicates the approximate

federated unlearning may have better effectiveness in the federated system with more clients.

Similar results can be observed from Fig. 5.8b, where our Appro-Fun algorithm has smaller

model difference compared with the baseline. In particular, only when p=0.2, our unlearned

model difference is slightly larger than the baseline. This may be caused by the injected

noise in our Appro-Fun algorithm as we proved in Theorem 9 implying the larger amount
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Figure 5.9 Loss comparison on test data.

of unlearned data, the larger model difference and differentially private noise scale. To sum

up, our Appro-Fun algorithm produces better unlearned model than the baseline method in

terms of model difference at most unlearning settings.

In addition, the prediction loss on test data is adopted as another metric for unlearning

effectiveness. After processing each unlearning request, we test the loss of all unlearned

models (including Appro-Fun, baseline, and Retraining) on the same test dataset so as to

undertand how well an unlearned model performs on future prediction. In Fig. 5.9a, the

loss on test data of all unlearning methods increase as the number of unlearning requests

increases, because there are less training data available and more approximate error. For our

Appro-Fun algorithm, when ϵ is larger (e.g., ϵ=10, 15), the loss is not only smaller than the

baseline, but also closer to the retrained model, showing its unlearning effectiveness. Only

when ϵ is small (i.e., ϵ=5), our Appro-Fun performs slightly worse than the baseline as the

number of unlearning requests increases. From the results in Fig. 5.9b, the same conclusion
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Table 5.5 MIA accuracy (%) for deleted data on different models.

Baseline Our Appro-Fun Algorithm
Dataset Retrained Liu et al. ϵ=5 ϵ=10 ϵ=15

F-MNIST 51.54±2.27 62.29±1.49 46.49±1.03 56.33±2.15 60.31±1.76
CIFAR-10 53.03±1.83 69.21±1.22 49.60±1.51 58.17±2.11 63.04±1.27

can be drawn, which means our Appro-Fun algorithm can achieve less loss on test data when

ϵ is larger.

Privacy Leakage Comparison. Since the purpose of unlearning is to remove the

private information of deleted data, membership inference attack (MIA) is a suitable metric

to evaluate the privacy level in many related works [148, 149, 150]. MIA infers whether a data

sample is in the training dataset of a model, so for the deleted data, a lower MIA accuracy

means that the unlearning algorithm has stronger privacy protection. In Table 5.5, for all

ϵ, our Appro-Fun algorithm obtains lower MIA accuracy values than the baseline; especially

when ϵ is smaller (e.g., ϵ=5) Appro-Fun is even better. The reason of Appro-Fun’s success is

that we not only delete private data at local client side but also introduce differential privacy

on server side, which provide enhanced protection for the unlearned data.

5.6.5 Unlearning Efficiency of Appro-Fun

First of all, the original federated model is trained to converge using Algorithm 4. Then,

we unlearn the same unlearning requests on the federated model through retraining, Appro-

Fun, and the baseline separately. Finally, we calculate the average time to process one

unlearning request in all algorithms. The speed-up ratio is the ratio of the average time of

the retraining method to the average time of the unlearning algorithm. In Table 5.6, the
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Table 5.6 The speed-up ratio comparison between Appro-Fun and baseline on Fashion-
MNIST and CIFAR-10 datasets.

Baseline Liu et al. Our Appro-Fun Algorithm
Dataset Retraining p=0.05 p=0.1 p=0.15 p=0.2 p=0.05 p=0.1 p=0.15 p=0.2

F-MNIST 1255.71 (s) 2.17× 2.23× 2.25× 2.36× 6.58× 6.32× 5.24× 4.75×
CIFAR-10 2851.54 (s) 5.47× 5.70× 6.42× 7.08× 12.13× 11.07× 9.66× 8.81×

column “Retraining” provides the absolute time cost (in seconds) of the retraining method,

and the speed-up ratio are given in the following columns with different p values. On both

datasets with all p values, our unlearning speed-up ratio is higher than that of the baseline.

This is because our Appro-Fun adopts a simpler approximation updating strategy with less

calculation (see Section 5.5.1) than the approximation method used by the baseline, reaching

faster approximation. Moreover, the speed-up ratio of Appro-Fun is decreased as p increases.

The reason is that when p gets larger, there are more data needs to be unlearned, yielding

more re-computation cost for gradient and hessian. On the other hand, the speed-up ratio

is higher in complex dataset (CIFAR-10) than simple dataset (F-MNIST). For a complex

dataset, retraining process requires more recalculations of gradient information for each

sample, which greatly increases the time cost of retraining from scratch. Thus, our Appro-

Fun algorithm can achieve better unlearning efficiency than the baseline method and deliver

higher speed-up ratio on complex datasets than simple ones.

5.7 Summary

In this chapter, we study the novel federated unlearning problem. As the first solution of

exact federated unlearning, we design a Q-FL algorithm that supports exact unlearning,

and then propose the Exact-Fun algorithm to achieve unlearning. In addition, we analyze
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the convergence upper bound of proposed Q-FL algorithm, and give the analytical retraining

probability of the Exact-Fun algorithm. In Appro-Fun, local model unlearning and federated

model perturbation methods are designed by leveraging approximate Newton’s updating

and differential privacy, respectively. We theoretically approve the performance guarantee of

Appro-Fun in terms of training convergency. Extensive experiments are conducted on real

datasets and show that our algorithms outperform the state-of-the-art baseline in terms of

effectiveness and efficiency.
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CHAPTER 6

FUTURE WORK

6.1 Future Research Plans

For my future research, I will continue to focus on federated learning from personalization

and fairness aspects, and also I will study the privacy and security of self-supervised learning.

6.1.1 Future Work 1: Personalization and Fairness in Federated Learning

Federated learning has already achieved numerous successes, given the global server holding

a generic model collaboratively trained from local clients. However, the general federated

learning approach faces several fundamental challenges: (i) poor convergence on highly het-

erogeneous data or devices, (ii) lack of personalized solution, and (iii) in sufficient fairness

on minority. These issues deteriorate the performance of the global federated learning model

on individual clients in the presence of heterogeneous local data distributions and may even

disincentivize affected clients from joining the federated learning process. Compared with

traditional federated learning, some challenges need to be solved towards personalization

and fairness.

� Reducing data heterogeneity and imbalance. Data heterogeneity and class imbalance

on different local clients are the main reasons of personalized federated learning for

diverse users. Therefore, an efficient way to strengthen the performance of federated

learning and personalization is to adjust federated learning framework through client

selection, meta-learning, or transfer learning, to get a consensus between the server
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and clients, so that the trained local model can achieve better performance on local

private data by shifting from the global model.

� Devise personalized local algorithms. Due the diversity of local devices, the deployed

local models might have different structures as per computation power. Therefore,

the goal of personalization is to build personalized models by modifying the FL model

aggregation process or applying different local learning algorithm in setting. We can

either provide a personalized model architecture tailored to each client based on its

power and data, or leverage client relationships to improve personalized model perfor-

mance from related clients.

� Define and execute fair prediction. As federated learning technologies become more

widely adopted by businesses to support decisionmaking, there has been a growing

interest in developing methods to ensure fairness in order to avoid undesirable ethical

and social implications. Current approaches do not adequately address the unique

set of fairness-related challenges presented in federated learning, which include new

sources of bias introduced by the diversity of participating clients due to unequal local

data sizes, activity patterns, location, and connection quality. The study of fairness in

federated learning is still in its infancy and the framing of fairness has not yet been well-

defined. As federated learning approaches maturity, advances in improving fairness will

become increasingly important in order for federated learning to be adopted at scale.
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6.1.2 Future Work 2: Privacy and Security in Self-Supervised Learning

Self-Supervised learning method has made their own story in many applications, because

they can take advantages of unlimited unlabeled data from all over the digital world. But,

it is this advantage that leads self-supervised learning vulnerable to privacy and security

related issues. The training data collected from Internet may be maliciously modified, which

cause adversarial impact on self-supervised models. Besides, the privacy of collected data is

not formally defined, resulting in unexpected privacy leakage for the data owners. Targeting

on these issues of self-supervised learning, some corresponding research can be proposed.

� Adversarial attacks on self-supervised learning. As a machine learning paradigm, self-

supervised model is inevitably vulnerable to adversarial attacks. And the unlimited

data from Internet is adequate resource for attacker to design various adversarial at-

tacks to break the trained models. In contrast, investigating attacks on self-supervised

model can help us understand the explainability of deep learning and self-supervised

learning as well.

� Defense for adversarial attacks in self-supervised learning. Like the attack and defense

in tradition machine learning, the arm race in self-supervised learning exists. To get

a reliable and secure self-supervised learning model, it is necessary for us to design

robust learning algorithms or efficient methods to detect maliciously changed input

data.

� Privacy leakage from data and model. Any learned model trained from a dataset
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captures the statistical information of its training data samples, but the privacy leakage

in self-supervised learning model has not been investigated yet. Figuring out the

privacy leakage and how privacy is leaked can not only help us build trustworthy

self-supervised models but also encourage data owners’ contribution for better model

development.
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CHAPTER 7

CONCLUSION

In this dissertation, we study the problems of privacy preservation in federated learning

framework, which is a popular machine learning framework in current AIoT applications.

As the users’ data contains highly private information of all individuals, protecting privacy

and defending existing privacy attacks are with great importance. On the premise of such,

we identify three significant privacy leakage scenarios and pose attention on how to design

privacy-preserving solutions in there scenarios. Our methods handle different applications

and needs, including private data inference, private data generation, and private data dele-

tion. And promising future works are under going to produce more diverse and better

solution in this direction.

Firstly, we analyzes the issue of privacy leakage and proves the performance upper bound

of privacy inference attack in FL with non-i.i.d. data, for the first time in literature. This

analysis motivates us to develop a novel mechanism, 2DP-FL, for preserving private informa-

tion with ensuring differential privacy. Besides, the noise addition in 2DP-FL can be flexibly

set according to different application requirements, and the upper-bounded convergence of

2DP-FL can guarantee its learning performance.

Secondly, we solve the problem of distributed data generation with multiple heterogeneous

data sources in IoT. To this end, we design a hierarchical distributed generative framework

with the consideration of IoT features. Based on this framework, feature related data gen-

eration model and label related data generation model are proposed, which can solve the
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above data generation problems successfully in a synchronous manner or an asynchronous

manner.

Thirdly, we study the novel federated unlearning problem. As the first solution of ex-

act federated unlearning, we design a Q-FL algorithm that supports exact unlearning, and

then propose the Exact-Fun algorithm to achieve unlearning. In addition, we analyze the

convergence upper bound of proposed Q-FL algorithm, and give the analytical retraining

probability of the Exact-Fun algorithm. In Appro-Fun, local model unlearning and feder-

ated model perturbation methods are designed by leveraging approximate Newton’s updating

and differential privacy, respectively. We theoretically approve the performance guarantee

of Appro-Fun in terms of training convergence.

All of the proposed solutions are thoroughly discussed and validated through extensive

evaluations. We also discuss some topics for future study in this dissertation in federated

learning and security/privacy aspects. Overall, this dissertation provides a body of solutions

for the privacy preservation in federated learning. These solutions comprehensively address

the novel challenges for privacy preservation posed by the research fields and communities.

We believe this study will serve as a strong reference for the tasks of federated learning,

privacy preservation, and even IoT-related publications. Additionally, this dissertation will

inspire future efforts to publish some relevant academic outputs.
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